]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
Linux 2.6.35-rc4
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0 81#define CREATE_TRACE_POINTS
ad8d75ff 82#include <trace/events/sched.h>
a8d154b0 83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
e05606d3
IM
123static inline int rt_policy(int policy)
124{
3f33a7ce 125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
126 return 1;
127 return 0;
128}
129
130static inline int task_has_rt_policy(struct task_struct *p)
131{
132 return rt_policy(p->policy);
133}
134
1da177e4 135/*
6aa645ea 136 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 137 */
6aa645ea
IM
138struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
141};
142
d0b27fa7 143struct rt_bandwidth {
ea736ed5 144 /* nests inside the rq lock: */
0986b11b 145 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
d0b27fa7
PZ
149};
150
151static struct rt_bandwidth def_rt_bandwidth;
152
153static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154
155static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156{
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
162
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166
167 if (!overrun)
168 break;
169
170 idle = do_sched_rt_period_timer(rt_b, overrun);
171 }
172
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
174}
175
176static
177void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178{
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
181
0986b11b 182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 183
d0b27fa7
PZ
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
187}
188
c8bfff6d
KH
189static inline int rt_bandwidth_enabled(void)
190{
191 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
192}
193
194static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195{
196 ktime_t now;
197
cac64d00 198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
199 return;
200
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
203
0986b11b 204 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 205 for (;;) {
7f1e2ca9
PZ
206 unsigned long delta;
207 ktime_t soft, hard;
208
d0b27fa7
PZ
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
211
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
214
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 219 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 220 }
0986b11b 221 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
222}
223
224#ifdef CONFIG_RT_GROUP_SCHED
225static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226{
227 hrtimer_cancel(&rt_b->rt_period_timer);
228}
229#endif
230
712555ee
HC
231/*
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
234 */
235static DEFINE_MUTEX(sched_domains_mutex);
236
7c941438 237#ifdef CONFIG_CGROUP_SCHED
29f59db3 238
68318b8e
SV
239#include <linux/cgroup.h>
240
29f59db3
SV
241struct cfs_rq;
242
6f505b16
PZ
243static LIST_HEAD(task_groups);
244
29f59db3 245/* task group related information */
4cf86d77 246struct task_group {
68318b8e 247 struct cgroup_subsys_state css;
6c415b92 248
052f1dc7 249#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
052f1dc7
PZ
255#endif
256
257#ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
260
d0b27fa7 261 struct rt_bandwidth rt_bandwidth;
052f1dc7 262#endif
6b2d7700 263
ae8393e5 264 struct rcu_head rcu;
6f505b16 265 struct list_head list;
f473aa5e
PZ
266
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
29f59db3
SV
270};
271
eff766a6 272#define root_task_group init_task_group
6f505b16 273
8ed36996 274/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
275 * a task group's cpu shares.
276 */
8ed36996 277static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 278
e9036b36
CG
279#ifdef CONFIG_FAIR_GROUP_SCHED
280
57310a98
PZ
281#ifdef CONFIG_SMP
282static int root_task_group_empty(void)
283{
284 return list_empty(&root_task_group.children);
285}
286#endif
287
052f1dc7 288# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 289
cb4ad1ff 290/*
2e084786
LJ
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
cb4ad1ff
MX
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
297 */
18d95a28 298#define MIN_SHARES 2
2e084786 299#define MAX_SHARES (1UL << 18)
18d95a28 300
052f1dc7
PZ
301static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302#endif
303
29f59db3 304/* Default task group.
3a252015 305 * Every task in system belong to this group at bootup.
29f59db3 306 */
434d53b0 307struct task_group init_task_group;
29f59db3 308
7c941438 309#endif /* CONFIG_CGROUP_SCHED */
29f59db3 310
6aa645ea
IM
311/* CFS-related fields in a runqueue */
312struct cfs_rq {
313 struct load_weight load;
314 unsigned long nr_running;
315
6aa645ea 316 u64 exec_clock;
e9acbff6 317 u64 min_vruntime;
6aa645ea
IM
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
4a55bd5e
PZ
321
322 struct list_head tasks;
323 struct list_head *balance_iterator;
324
325 /*
326 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
327 * It is set to NULL otherwise (i.e when none are currently running).
328 */
4793241b 329 struct sched_entity *curr, *next, *last;
ddc97297 330
5ac5c4d6 331 unsigned int nr_spread_over;
ddc97297 332
62160e3f 333#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
334 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
335
41a2d6cf
IM
336 /*
337 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
338 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
339 * (like users, containers etc.)
340 *
341 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
342 * list is used during load balance.
343 */
41a2d6cf
IM
344 struct list_head leaf_cfs_rq_list;
345 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
346
347#ifdef CONFIG_SMP
c09595f6 348 /*
c8cba857 349 * the part of load.weight contributed by tasks
c09595f6 350 */
c8cba857 351 unsigned long task_weight;
c09595f6 352
c8cba857
PZ
353 /*
354 * h_load = weight * f(tg)
355 *
356 * Where f(tg) is the recursive weight fraction assigned to
357 * this group.
358 */
359 unsigned long h_load;
c09595f6 360
c8cba857
PZ
361 /*
362 * this cpu's part of tg->shares
363 */
364 unsigned long shares;
f1d239f7
PZ
365
366 /*
367 * load.weight at the time we set shares
368 */
369 unsigned long rq_weight;
c09595f6 370#endif
6aa645ea
IM
371#endif
372};
1da177e4 373
6aa645ea
IM
374/* Real-Time classes' related field in a runqueue: */
375struct rt_rq {
376 struct rt_prio_array active;
63489e45 377 unsigned long rt_nr_running;
052f1dc7 378#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
379 struct {
380 int curr; /* highest queued rt task prio */
398a153b 381#ifdef CONFIG_SMP
e864c499 382 int next; /* next highest */
398a153b 383#endif
e864c499 384 } highest_prio;
6f505b16 385#endif
fa85ae24 386#ifdef CONFIG_SMP
73fe6aae 387 unsigned long rt_nr_migratory;
a1ba4d8b 388 unsigned long rt_nr_total;
a22d7fc1 389 int overloaded;
917b627d 390 struct plist_head pushable_tasks;
fa85ae24 391#endif
6f505b16 392 int rt_throttled;
fa85ae24 393 u64 rt_time;
ac086bc2 394 u64 rt_runtime;
ea736ed5 395 /* Nests inside the rq lock: */
0986b11b 396 raw_spinlock_t rt_runtime_lock;
6f505b16 397
052f1dc7 398#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
399 unsigned long rt_nr_boosted;
400
6f505b16
PZ
401 struct rq *rq;
402 struct list_head leaf_rt_rq_list;
403 struct task_group *tg;
6f505b16 404#endif
6aa645ea
IM
405};
406
57d885fe
GH
407#ifdef CONFIG_SMP
408
409/*
410 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
411 * variables. Each exclusive cpuset essentially defines an island domain by
412 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
413 * exclusive cpuset is created, we also create and attach a new root-domain
414 * object.
415 *
57d885fe
GH
416 */
417struct root_domain {
418 atomic_t refcount;
c6c4927b
RR
419 cpumask_var_t span;
420 cpumask_var_t online;
637f5085 421
0eab9146 422 /*
637f5085
GH
423 * The "RT overload" flag: it gets set if a CPU has more than
424 * one runnable RT task.
425 */
c6c4927b 426 cpumask_var_t rto_mask;
0eab9146 427 atomic_t rto_count;
6e0534f2
GH
428#ifdef CONFIG_SMP
429 struct cpupri cpupri;
430#endif
57d885fe
GH
431};
432
dc938520
GH
433/*
434 * By default the system creates a single root-domain with all cpus as
435 * members (mimicking the global state we have today).
436 */
57d885fe
GH
437static struct root_domain def_root_domain;
438
439#endif
440
1da177e4
LT
441/*
442 * This is the main, per-CPU runqueue data structure.
443 *
444 * Locking rule: those places that want to lock multiple runqueues
445 * (such as the load balancing or the thread migration code), lock
446 * acquire operations must be ordered by ascending &runqueue.
447 */
70b97a7f 448struct rq {
d8016491 449 /* runqueue lock: */
05fa785c 450 raw_spinlock_t lock;
1da177e4
LT
451
452 /*
453 * nr_running and cpu_load should be in the same cacheline because
454 * remote CPUs use both these fields when doing load calculation.
455 */
456 unsigned long nr_running;
6aa645ea
IM
457 #define CPU_LOAD_IDX_MAX 5
458 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 459#ifdef CONFIG_NO_HZ
39c0cbe2 460 u64 nohz_stamp;
46cb4b7c
SS
461 unsigned char in_nohz_recently;
462#endif
a64692a3
MG
463 unsigned int skip_clock_update;
464
d8016491
IM
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
6aa645ea
IM
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
6f505b16 471 struct rt_rq rt;
6f505b16 472
6aa645ea 473#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
476#endif
477#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 478 struct list_head leaf_rt_rq_list;
1da177e4 479#endif
1da177e4
LT
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
36c8b586 489 struct task_struct *curr, *idle;
c9819f45 490 unsigned long next_balance;
1da177e4 491 struct mm_struct *prev_mm;
6aa645ea 492
3e51f33f 493 u64 clock;
6aa645ea 494
1da177e4
LT
495 atomic_t nr_iowait;
496
497#ifdef CONFIG_SMP
0eab9146 498 struct root_domain *rd;
1da177e4
LT
499 struct sched_domain *sd;
500
e51fd5e2
PZ
501 unsigned long cpu_power;
502
a0a522ce 503 unsigned char idle_at_tick;
1da177e4 504 /* For active balancing */
3f029d3c 505 int post_schedule;
1da177e4
LT
506 int active_balance;
507 int push_cpu;
969c7921 508 struct cpu_stop_work active_balance_work;
d8016491
IM
509 /* cpu of this runqueue: */
510 int cpu;
1f11eb6a 511 int online;
1da177e4 512
a8a51d5e 513 unsigned long avg_load_per_task;
1da177e4 514
e9e9250b
PZ
515 u64 rt_avg;
516 u64 age_stamp;
1b9508f6
MG
517 u64 idle_stamp;
518 u64 avg_idle;
1da177e4
LT
519#endif
520
dce48a84
TG
521 /* calc_load related fields */
522 unsigned long calc_load_update;
523 long calc_load_active;
524
8f4d37ec 525#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
526#ifdef CONFIG_SMP
527 int hrtick_csd_pending;
528 struct call_single_data hrtick_csd;
529#endif
8f4d37ec
PZ
530 struct hrtimer hrtick_timer;
531#endif
532
1da177e4
LT
533#ifdef CONFIG_SCHEDSTATS
534 /* latency stats */
535 struct sched_info rq_sched_info;
9c2c4802
KC
536 unsigned long long rq_cpu_time;
537 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
538
539 /* sys_sched_yield() stats */
480b9434 540 unsigned int yld_count;
1da177e4
LT
541
542 /* schedule() stats */
480b9434
KC
543 unsigned int sched_switch;
544 unsigned int sched_count;
545 unsigned int sched_goidle;
1da177e4
LT
546
547 /* try_to_wake_up() stats */
480b9434
KC
548 unsigned int ttwu_count;
549 unsigned int ttwu_local;
b8efb561
IM
550
551 /* BKL stats */
480b9434 552 unsigned int bkl_count;
1da177e4
LT
553#endif
554};
555
f34e3b61 556static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 557
7d478721
PZ
558static inline
559void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 560{
7d478721 561 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
a64692a3
MG
562
563 /*
564 * A queue event has occurred, and we're going to schedule. In
565 * this case, we can save a useless back to back clock update.
566 */
567 if (test_tsk_need_resched(p))
568 rq->skip_clock_update = 1;
dd41f596
IM
569}
570
0a2966b4
CL
571static inline int cpu_of(struct rq *rq)
572{
573#ifdef CONFIG_SMP
574 return rq->cpu;
575#else
576 return 0;
577#endif
578}
579
497f0ab3 580#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
581 rcu_dereference_check((p), \
582 rcu_read_lock_sched_held() || \
583 lockdep_is_held(&sched_domains_mutex))
584
674311d5
NP
585/*
586 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 587 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
588 *
589 * The domain tree of any CPU may only be accessed from within
590 * preempt-disabled sections.
591 */
48f24c4d 592#define for_each_domain(cpu, __sd) \
497f0ab3 593 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
594
595#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
596#define this_rq() (&__get_cpu_var(runqueues))
597#define task_rq(p) cpu_rq(task_cpu(p))
598#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 599#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 600
dc61b1d6
PZ
601#ifdef CONFIG_CGROUP_SCHED
602
603/*
604 * Return the group to which this tasks belongs.
605 *
606 * We use task_subsys_state_check() and extend the RCU verification
607 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
608 * holds that lock for each task it moves into the cgroup. Therefore
609 * by holding that lock, we pin the task to the current cgroup.
610 */
611static inline struct task_group *task_group(struct task_struct *p)
612{
613 struct cgroup_subsys_state *css;
614
615 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
616 lockdep_is_held(&task_rq(p)->lock));
617 return container_of(css, struct task_group, css);
618}
619
620/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
621static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
622{
623#ifdef CONFIG_FAIR_GROUP_SCHED
624 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
625 p->se.parent = task_group(p)->se[cpu];
626#endif
627
628#ifdef CONFIG_RT_GROUP_SCHED
629 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
630 p->rt.parent = task_group(p)->rt_se[cpu];
631#endif
632}
633
634#else /* CONFIG_CGROUP_SCHED */
635
636static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
637static inline struct task_group *task_group(struct task_struct *p)
638{
639 return NULL;
640}
641
642#endif /* CONFIG_CGROUP_SCHED */
643
aa9c4c0f 644inline void update_rq_clock(struct rq *rq)
3e51f33f 645{
a64692a3
MG
646 if (!rq->skip_clock_update)
647 rq->clock = sched_clock_cpu(cpu_of(rq));
3e51f33f
PZ
648}
649
bf5c91ba
IM
650/*
651 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
652 */
653#ifdef CONFIG_SCHED_DEBUG
654# define const_debug __read_mostly
655#else
656# define const_debug static const
657#endif
658
017730c1
IM
659/**
660 * runqueue_is_locked
e17b38bf 661 * @cpu: the processor in question.
017730c1
IM
662 *
663 * Returns true if the current cpu runqueue is locked.
664 * This interface allows printk to be called with the runqueue lock
665 * held and know whether or not it is OK to wake up the klogd.
666 */
89f19f04 667int runqueue_is_locked(int cpu)
017730c1 668{
05fa785c 669 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
670}
671
bf5c91ba
IM
672/*
673 * Debugging: various feature bits
674 */
f00b45c1
PZ
675
676#define SCHED_FEAT(name, enabled) \
677 __SCHED_FEAT_##name ,
678
bf5c91ba 679enum {
f00b45c1 680#include "sched_features.h"
bf5c91ba
IM
681};
682
f00b45c1
PZ
683#undef SCHED_FEAT
684
685#define SCHED_FEAT(name, enabled) \
686 (1UL << __SCHED_FEAT_##name) * enabled |
687
bf5c91ba 688const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
689#include "sched_features.h"
690 0;
691
692#undef SCHED_FEAT
693
694#ifdef CONFIG_SCHED_DEBUG
695#define SCHED_FEAT(name, enabled) \
696 #name ,
697
983ed7a6 698static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
699#include "sched_features.h"
700 NULL
701};
702
703#undef SCHED_FEAT
704
34f3a814 705static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 706{
f00b45c1
PZ
707 int i;
708
709 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
710 if (!(sysctl_sched_features & (1UL << i)))
711 seq_puts(m, "NO_");
712 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 713 }
34f3a814 714 seq_puts(m, "\n");
f00b45c1 715
34f3a814 716 return 0;
f00b45c1
PZ
717}
718
719static ssize_t
720sched_feat_write(struct file *filp, const char __user *ubuf,
721 size_t cnt, loff_t *ppos)
722{
723 char buf[64];
724 char *cmp = buf;
725 int neg = 0;
726 int i;
727
728 if (cnt > 63)
729 cnt = 63;
730
731 if (copy_from_user(&buf, ubuf, cnt))
732 return -EFAULT;
733
734 buf[cnt] = 0;
735
c24b7c52 736 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
737 neg = 1;
738 cmp += 3;
739 }
740
741 for (i = 0; sched_feat_names[i]; i++) {
742 int len = strlen(sched_feat_names[i]);
743
744 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
745 if (neg)
746 sysctl_sched_features &= ~(1UL << i);
747 else
748 sysctl_sched_features |= (1UL << i);
749 break;
750 }
751 }
752
753 if (!sched_feat_names[i])
754 return -EINVAL;
755
42994724 756 *ppos += cnt;
f00b45c1
PZ
757
758 return cnt;
759}
760
34f3a814
LZ
761static int sched_feat_open(struct inode *inode, struct file *filp)
762{
763 return single_open(filp, sched_feat_show, NULL);
764}
765
828c0950 766static const struct file_operations sched_feat_fops = {
34f3a814
LZ
767 .open = sched_feat_open,
768 .write = sched_feat_write,
769 .read = seq_read,
770 .llseek = seq_lseek,
771 .release = single_release,
f00b45c1
PZ
772};
773
774static __init int sched_init_debug(void)
775{
f00b45c1
PZ
776 debugfs_create_file("sched_features", 0644, NULL, NULL,
777 &sched_feat_fops);
778
779 return 0;
780}
781late_initcall(sched_init_debug);
782
783#endif
784
785#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 786
b82d9fdd
PZ
787/*
788 * Number of tasks to iterate in a single balance run.
789 * Limited because this is done with IRQs disabled.
790 */
791const_debug unsigned int sysctl_sched_nr_migrate = 32;
792
2398f2c6
PZ
793/*
794 * ratelimit for updating the group shares.
55cd5340 795 * default: 0.25ms
2398f2c6 796 */
55cd5340 797unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 798unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 799
ffda12a1
PZ
800/*
801 * Inject some fuzzyness into changing the per-cpu group shares
802 * this avoids remote rq-locks at the expense of fairness.
803 * default: 4
804 */
805unsigned int sysctl_sched_shares_thresh = 4;
806
e9e9250b
PZ
807/*
808 * period over which we average the RT time consumption, measured
809 * in ms.
810 *
811 * default: 1s
812 */
813const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
814
fa85ae24 815/*
9f0c1e56 816 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
817 * default: 1s
818 */
9f0c1e56 819unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 820
6892b75e
IM
821static __read_mostly int scheduler_running;
822
9f0c1e56
PZ
823/*
824 * part of the period that we allow rt tasks to run in us.
825 * default: 0.95s
826 */
827int sysctl_sched_rt_runtime = 950000;
fa85ae24 828
d0b27fa7
PZ
829static inline u64 global_rt_period(void)
830{
831 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
832}
833
834static inline u64 global_rt_runtime(void)
835{
e26873bb 836 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
837 return RUNTIME_INF;
838
839 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
840}
fa85ae24 841
1da177e4 842#ifndef prepare_arch_switch
4866cde0
NP
843# define prepare_arch_switch(next) do { } while (0)
844#endif
845#ifndef finish_arch_switch
846# define finish_arch_switch(prev) do { } while (0)
847#endif
848
051a1d1a
DA
849static inline int task_current(struct rq *rq, struct task_struct *p)
850{
851 return rq->curr == p;
852}
853
4866cde0 854#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 855static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 856{
051a1d1a 857 return task_current(rq, p);
4866cde0
NP
858}
859
70b97a7f 860static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
861{
862}
863
70b97a7f 864static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 865{
da04c035
IM
866#ifdef CONFIG_DEBUG_SPINLOCK
867 /* this is a valid case when another task releases the spinlock */
868 rq->lock.owner = current;
869#endif
8a25d5de
IM
870 /*
871 * If we are tracking spinlock dependencies then we have to
872 * fix up the runqueue lock - which gets 'carried over' from
873 * prev into current:
874 */
875 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
876
05fa785c 877 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
878}
879
880#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 881static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
882{
883#ifdef CONFIG_SMP
884 return p->oncpu;
885#else
051a1d1a 886 return task_current(rq, p);
4866cde0
NP
887#endif
888}
889
70b97a7f 890static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
891{
892#ifdef CONFIG_SMP
893 /*
894 * We can optimise this out completely for !SMP, because the
895 * SMP rebalancing from interrupt is the only thing that cares
896 * here.
897 */
898 next->oncpu = 1;
899#endif
900#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 901 raw_spin_unlock_irq(&rq->lock);
4866cde0 902#else
05fa785c 903 raw_spin_unlock(&rq->lock);
4866cde0
NP
904#endif
905}
906
70b97a7f 907static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
908{
909#ifdef CONFIG_SMP
910 /*
911 * After ->oncpu is cleared, the task can be moved to a different CPU.
912 * We must ensure this doesn't happen until the switch is completely
913 * finished.
914 */
915 smp_wmb();
916 prev->oncpu = 0;
917#endif
918#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 local_irq_enable();
1da177e4 920#endif
4866cde0
NP
921}
922#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 923
0970d299 924/*
65cc8e48
PZ
925 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
926 * against ttwu().
0970d299
PZ
927 */
928static inline int task_is_waking(struct task_struct *p)
929{
0017d735 930 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
931}
932
b29739f9
IM
933/*
934 * __task_rq_lock - lock the runqueue a given task resides on.
935 * Must be called interrupts disabled.
936 */
70b97a7f 937static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
938 __acquires(rq->lock)
939{
0970d299
PZ
940 struct rq *rq;
941
3a5c359a 942 for (;;) {
0970d299 943 rq = task_rq(p);
05fa785c 944 raw_spin_lock(&rq->lock);
65cc8e48 945 if (likely(rq == task_rq(p)))
3a5c359a 946 return rq;
05fa785c 947 raw_spin_unlock(&rq->lock);
b29739f9 948 }
b29739f9
IM
949}
950
1da177e4
LT
951/*
952 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 953 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
954 * explicitly disabling preemption.
955 */
70b97a7f 956static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
957 __acquires(rq->lock)
958{
70b97a7f 959 struct rq *rq;
1da177e4 960
3a5c359a
AK
961 for (;;) {
962 local_irq_save(*flags);
963 rq = task_rq(p);
05fa785c 964 raw_spin_lock(&rq->lock);
65cc8e48 965 if (likely(rq == task_rq(p)))
3a5c359a 966 return rq;
05fa785c 967 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 968 }
1da177e4
LT
969}
970
a9957449 971static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
972 __releases(rq->lock)
973{
05fa785c 974 raw_spin_unlock(&rq->lock);
b29739f9
IM
975}
976
70b97a7f 977static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
978 __releases(rq->lock)
979{
05fa785c 980 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
981}
982
1da177e4 983/*
cc2a73b5 984 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 985 */
a9957449 986static struct rq *this_rq_lock(void)
1da177e4
LT
987 __acquires(rq->lock)
988{
70b97a7f 989 struct rq *rq;
1da177e4
LT
990
991 local_irq_disable();
992 rq = this_rq();
05fa785c 993 raw_spin_lock(&rq->lock);
1da177e4
LT
994
995 return rq;
996}
997
8f4d37ec
PZ
998#ifdef CONFIG_SCHED_HRTICK
999/*
1000 * Use HR-timers to deliver accurate preemption points.
1001 *
1002 * Its all a bit involved since we cannot program an hrt while holding the
1003 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1004 * reschedule event.
1005 *
1006 * When we get rescheduled we reprogram the hrtick_timer outside of the
1007 * rq->lock.
1008 */
8f4d37ec
PZ
1009
1010/*
1011 * Use hrtick when:
1012 * - enabled by features
1013 * - hrtimer is actually high res
1014 */
1015static inline int hrtick_enabled(struct rq *rq)
1016{
1017 if (!sched_feat(HRTICK))
1018 return 0;
ba42059f 1019 if (!cpu_active(cpu_of(rq)))
b328ca18 1020 return 0;
8f4d37ec
PZ
1021 return hrtimer_is_hres_active(&rq->hrtick_timer);
1022}
1023
8f4d37ec
PZ
1024static void hrtick_clear(struct rq *rq)
1025{
1026 if (hrtimer_active(&rq->hrtick_timer))
1027 hrtimer_cancel(&rq->hrtick_timer);
1028}
1029
8f4d37ec
PZ
1030/*
1031 * High-resolution timer tick.
1032 * Runs from hardirq context with interrupts disabled.
1033 */
1034static enum hrtimer_restart hrtick(struct hrtimer *timer)
1035{
1036 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1037
1038 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1039
05fa785c 1040 raw_spin_lock(&rq->lock);
3e51f33f 1041 update_rq_clock(rq);
8f4d37ec 1042 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1043 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1044
1045 return HRTIMER_NORESTART;
1046}
1047
95e904c7 1048#ifdef CONFIG_SMP
31656519
PZ
1049/*
1050 * called from hardirq (IPI) context
1051 */
1052static void __hrtick_start(void *arg)
b328ca18 1053{
31656519 1054 struct rq *rq = arg;
b328ca18 1055
05fa785c 1056 raw_spin_lock(&rq->lock);
31656519
PZ
1057 hrtimer_restart(&rq->hrtick_timer);
1058 rq->hrtick_csd_pending = 0;
05fa785c 1059 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1060}
1061
31656519
PZ
1062/*
1063 * Called to set the hrtick timer state.
1064 *
1065 * called with rq->lock held and irqs disabled
1066 */
1067static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1068{
31656519
PZ
1069 struct hrtimer *timer = &rq->hrtick_timer;
1070 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1071
cc584b21 1072 hrtimer_set_expires(timer, time);
31656519
PZ
1073
1074 if (rq == this_rq()) {
1075 hrtimer_restart(timer);
1076 } else if (!rq->hrtick_csd_pending) {
6e275637 1077 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1078 rq->hrtick_csd_pending = 1;
1079 }
b328ca18
PZ
1080}
1081
1082static int
1083hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1084{
1085 int cpu = (int)(long)hcpu;
1086
1087 switch (action) {
1088 case CPU_UP_CANCELED:
1089 case CPU_UP_CANCELED_FROZEN:
1090 case CPU_DOWN_PREPARE:
1091 case CPU_DOWN_PREPARE_FROZEN:
1092 case CPU_DEAD:
1093 case CPU_DEAD_FROZEN:
31656519 1094 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1095 return NOTIFY_OK;
1096 }
1097
1098 return NOTIFY_DONE;
1099}
1100
fa748203 1101static __init void init_hrtick(void)
b328ca18
PZ
1102{
1103 hotcpu_notifier(hotplug_hrtick, 0);
1104}
31656519
PZ
1105#else
1106/*
1107 * Called to set the hrtick timer state.
1108 *
1109 * called with rq->lock held and irqs disabled
1110 */
1111static void hrtick_start(struct rq *rq, u64 delay)
1112{
7f1e2ca9 1113 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1114 HRTIMER_MODE_REL_PINNED, 0);
31656519 1115}
b328ca18 1116
006c75f1 1117static inline void init_hrtick(void)
8f4d37ec 1118{
8f4d37ec 1119}
31656519 1120#endif /* CONFIG_SMP */
8f4d37ec 1121
31656519 1122static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1123{
31656519
PZ
1124#ifdef CONFIG_SMP
1125 rq->hrtick_csd_pending = 0;
8f4d37ec 1126
31656519
PZ
1127 rq->hrtick_csd.flags = 0;
1128 rq->hrtick_csd.func = __hrtick_start;
1129 rq->hrtick_csd.info = rq;
1130#endif
8f4d37ec 1131
31656519
PZ
1132 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1133 rq->hrtick_timer.function = hrtick;
8f4d37ec 1134}
006c75f1 1135#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1136static inline void hrtick_clear(struct rq *rq)
1137{
1138}
1139
8f4d37ec
PZ
1140static inline void init_rq_hrtick(struct rq *rq)
1141{
1142}
1143
b328ca18
PZ
1144static inline void init_hrtick(void)
1145{
1146}
006c75f1 1147#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1148
c24d20db
IM
1149/*
1150 * resched_task - mark a task 'to be rescheduled now'.
1151 *
1152 * On UP this means the setting of the need_resched flag, on SMP it
1153 * might also involve a cross-CPU call to trigger the scheduler on
1154 * the target CPU.
1155 */
1156#ifdef CONFIG_SMP
1157
1158#ifndef tsk_is_polling
1159#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1160#endif
1161
31656519 1162static void resched_task(struct task_struct *p)
c24d20db
IM
1163{
1164 int cpu;
1165
05fa785c 1166 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1167
5ed0cec0 1168 if (test_tsk_need_resched(p))
c24d20db
IM
1169 return;
1170
5ed0cec0 1171 set_tsk_need_resched(p);
c24d20db
IM
1172
1173 cpu = task_cpu(p);
1174 if (cpu == smp_processor_id())
1175 return;
1176
1177 /* NEED_RESCHED must be visible before we test polling */
1178 smp_mb();
1179 if (!tsk_is_polling(p))
1180 smp_send_reschedule(cpu);
1181}
1182
1183static void resched_cpu(int cpu)
1184{
1185 struct rq *rq = cpu_rq(cpu);
1186 unsigned long flags;
1187
05fa785c 1188 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1189 return;
1190 resched_task(cpu_curr(cpu));
05fa785c 1191 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1192}
06d8308c
TG
1193
1194#ifdef CONFIG_NO_HZ
1195/*
1196 * When add_timer_on() enqueues a timer into the timer wheel of an
1197 * idle CPU then this timer might expire before the next timer event
1198 * which is scheduled to wake up that CPU. In case of a completely
1199 * idle system the next event might even be infinite time into the
1200 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1201 * leaves the inner idle loop so the newly added timer is taken into
1202 * account when the CPU goes back to idle and evaluates the timer
1203 * wheel for the next timer event.
1204 */
1205void wake_up_idle_cpu(int cpu)
1206{
1207 struct rq *rq = cpu_rq(cpu);
1208
1209 if (cpu == smp_processor_id())
1210 return;
1211
1212 /*
1213 * This is safe, as this function is called with the timer
1214 * wheel base lock of (cpu) held. When the CPU is on the way
1215 * to idle and has not yet set rq->curr to idle then it will
1216 * be serialized on the timer wheel base lock and take the new
1217 * timer into account automatically.
1218 */
1219 if (rq->curr != rq->idle)
1220 return;
1221
1222 /*
1223 * We can set TIF_RESCHED on the idle task of the other CPU
1224 * lockless. The worst case is that the other CPU runs the
1225 * idle task through an additional NOOP schedule()
1226 */
5ed0cec0 1227 set_tsk_need_resched(rq->idle);
06d8308c
TG
1228
1229 /* NEED_RESCHED must be visible before we test polling */
1230 smp_mb();
1231 if (!tsk_is_polling(rq->idle))
1232 smp_send_reschedule(cpu);
1233}
39c0cbe2
MG
1234
1235int nohz_ratelimit(int cpu)
1236{
1237 struct rq *rq = cpu_rq(cpu);
1238 u64 diff = rq->clock - rq->nohz_stamp;
1239
1240 rq->nohz_stamp = rq->clock;
1241
1242 return diff < (NSEC_PER_SEC / HZ) >> 1;
1243}
1244
6d6bc0ad 1245#endif /* CONFIG_NO_HZ */
06d8308c 1246
e9e9250b
PZ
1247static u64 sched_avg_period(void)
1248{
1249 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1250}
1251
1252static void sched_avg_update(struct rq *rq)
1253{
1254 s64 period = sched_avg_period();
1255
1256 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1257 /*
1258 * Inline assembly required to prevent the compiler
1259 * optimising this loop into a divmod call.
1260 * See __iter_div_u64_rem() for another example of this.
1261 */
1262 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1263 rq->age_stamp += period;
1264 rq->rt_avg /= 2;
1265 }
1266}
1267
1268static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1269{
1270 rq->rt_avg += rt_delta;
1271 sched_avg_update(rq);
1272}
1273
6d6bc0ad 1274#else /* !CONFIG_SMP */
31656519 1275static void resched_task(struct task_struct *p)
c24d20db 1276{
05fa785c 1277 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1278 set_tsk_need_resched(p);
c24d20db 1279}
e9e9250b
PZ
1280
1281static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1282{
1283}
6d6bc0ad 1284#endif /* CONFIG_SMP */
c24d20db 1285
45bf76df
IM
1286#if BITS_PER_LONG == 32
1287# define WMULT_CONST (~0UL)
1288#else
1289# define WMULT_CONST (1UL << 32)
1290#endif
1291
1292#define WMULT_SHIFT 32
1293
194081eb
IM
1294/*
1295 * Shift right and round:
1296 */
cf2ab469 1297#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1298
a7be37ac
PZ
1299/*
1300 * delta *= weight / lw
1301 */
cb1c4fc9 1302static unsigned long
45bf76df
IM
1303calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1304 struct load_weight *lw)
1305{
1306 u64 tmp;
1307
7a232e03
LJ
1308 if (!lw->inv_weight) {
1309 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1310 lw->inv_weight = 1;
1311 else
1312 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1313 / (lw->weight+1);
1314 }
45bf76df
IM
1315
1316 tmp = (u64)delta_exec * weight;
1317 /*
1318 * Check whether we'd overflow the 64-bit multiplication:
1319 */
194081eb 1320 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1321 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1322 WMULT_SHIFT/2);
1323 else
cf2ab469 1324 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1325
ecf691da 1326 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1327}
1328
1091985b 1329static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1330{
1331 lw->weight += inc;
e89996ae 1332 lw->inv_weight = 0;
45bf76df
IM
1333}
1334
1091985b 1335static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1336{
1337 lw->weight -= dec;
e89996ae 1338 lw->inv_weight = 0;
45bf76df
IM
1339}
1340
2dd73a4f
PW
1341/*
1342 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1343 * of tasks with abnormal "nice" values across CPUs the contribution that
1344 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1345 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1346 * scaled version of the new time slice allocation that they receive on time
1347 * slice expiry etc.
1348 */
1349
cce7ade8
PZ
1350#define WEIGHT_IDLEPRIO 3
1351#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1352
1353/*
1354 * Nice levels are multiplicative, with a gentle 10% change for every
1355 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1356 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1357 * that remained on nice 0.
1358 *
1359 * The "10% effect" is relative and cumulative: from _any_ nice level,
1360 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1361 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1362 * If a task goes up by ~10% and another task goes down by ~10% then
1363 * the relative distance between them is ~25%.)
dd41f596
IM
1364 */
1365static const int prio_to_weight[40] = {
254753dc
IM
1366 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1367 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1368 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1369 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1370 /* 0 */ 1024, 820, 655, 526, 423,
1371 /* 5 */ 335, 272, 215, 172, 137,
1372 /* 10 */ 110, 87, 70, 56, 45,
1373 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1374};
1375
5714d2de
IM
1376/*
1377 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1378 *
1379 * In cases where the weight does not change often, we can use the
1380 * precalculated inverse to speed up arithmetics by turning divisions
1381 * into multiplications:
1382 */
dd41f596 1383static const u32 prio_to_wmult[40] = {
254753dc
IM
1384 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1385 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1386 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1387 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1388 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1389 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1390 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1391 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1392};
2dd73a4f 1393
ef12fefa
BR
1394/* Time spent by the tasks of the cpu accounting group executing in ... */
1395enum cpuacct_stat_index {
1396 CPUACCT_STAT_USER, /* ... user mode */
1397 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1398
1399 CPUACCT_STAT_NSTATS,
1400};
1401
d842de87
SV
1402#ifdef CONFIG_CGROUP_CPUACCT
1403static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1404static void cpuacct_update_stats(struct task_struct *tsk,
1405 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1406#else
1407static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1408static inline void cpuacct_update_stats(struct task_struct *tsk,
1409 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1410#endif
1411
18d95a28
PZ
1412static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1413{
1414 update_load_add(&rq->load, load);
1415}
1416
1417static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1418{
1419 update_load_sub(&rq->load, load);
1420}
1421
7940ca36 1422#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1423typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1424
1425/*
1426 * Iterate the full tree, calling @down when first entering a node and @up when
1427 * leaving it for the final time.
1428 */
eb755805 1429static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1430{
1431 struct task_group *parent, *child;
eb755805 1432 int ret;
c09595f6
PZ
1433
1434 rcu_read_lock();
1435 parent = &root_task_group;
1436down:
eb755805
PZ
1437 ret = (*down)(parent, data);
1438 if (ret)
1439 goto out_unlock;
c09595f6
PZ
1440 list_for_each_entry_rcu(child, &parent->children, siblings) {
1441 parent = child;
1442 goto down;
1443
1444up:
1445 continue;
1446 }
eb755805
PZ
1447 ret = (*up)(parent, data);
1448 if (ret)
1449 goto out_unlock;
c09595f6
PZ
1450
1451 child = parent;
1452 parent = parent->parent;
1453 if (parent)
1454 goto up;
eb755805 1455out_unlock:
c09595f6 1456 rcu_read_unlock();
eb755805
PZ
1457
1458 return ret;
c09595f6
PZ
1459}
1460
eb755805
PZ
1461static int tg_nop(struct task_group *tg, void *data)
1462{
1463 return 0;
c09595f6 1464}
eb755805
PZ
1465#endif
1466
1467#ifdef CONFIG_SMP
f5f08f39
PZ
1468/* Used instead of source_load when we know the type == 0 */
1469static unsigned long weighted_cpuload(const int cpu)
1470{
1471 return cpu_rq(cpu)->load.weight;
1472}
1473
1474/*
1475 * Return a low guess at the load of a migration-source cpu weighted
1476 * according to the scheduling class and "nice" value.
1477 *
1478 * We want to under-estimate the load of migration sources, to
1479 * balance conservatively.
1480 */
1481static unsigned long source_load(int cpu, int type)
1482{
1483 struct rq *rq = cpu_rq(cpu);
1484 unsigned long total = weighted_cpuload(cpu);
1485
1486 if (type == 0 || !sched_feat(LB_BIAS))
1487 return total;
1488
1489 return min(rq->cpu_load[type-1], total);
1490}
1491
1492/*
1493 * Return a high guess at the load of a migration-target cpu weighted
1494 * according to the scheduling class and "nice" value.
1495 */
1496static unsigned long target_load(int cpu, int type)
1497{
1498 struct rq *rq = cpu_rq(cpu);
1499 unsigned long total = weighted_cpuload(cpu);
1500
1501 if (type == 0 || !sched_feat(LB_BIAS))
1502 return total;
1503
1504 return max(rq->cpu_load[type-1], total);
1505}
1506
ae154be1
PZ
1507static unsigned long power_of(int cpu)
1508{
e51fd5e2 1509 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1510}
1511
eb755805
PZ
1512static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1513
1514static unsigned long cpu_avg_load_per_task(int cpu)
1515{
1516 struct rq *rq = cpu_rq(cpu);
af6d596f 1517 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1518
4cd42620
SR
1519 if (nr_running)
1520 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1521 else
1522 rq->avg_load_per_task = 0;
eb755805
PZ
1523
1524 return rq->avg_load_per_task;
1525}
1526
1527#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1528
43cf38eb 1529static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1530
c09595f6
PZ
1531static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1532
1533/*
1534 * Calculate and set the cpu's group shares.
1535 */
34d76c41
PZ
1536static void update_group_shares_cpu(struct task_group *tg, int cpu,
1537 unsigned long sd_shares,
1538 unsigned long sd_rq_weight,
4a6cc4bd 1539 unsigned long *usd_rq_weight)
18d95a28 1540{
34d76c41 1541 unsigned long shares, rq_weight;
a5004278 1542 int boost = 0;
c09595f6 1543
4a6cc4bd 1544 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1545 if (!rq_weight) {
1546 boost = 1;
1547 rq_weight = NICE_0_LOAD;
1548 }
c8cba857 1549
c09595f6 1550 /*
a8af7246
PZ
1551 * \Sum_j shares_j * rq_weight_i
1552 * shares_i = -----------------------------
1553 * \Sum_j rq_weight_j
c09595f6 1554 */
ec4e0e2f 1555 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1556 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1557
ffda12a1
PZ
1558 if (abs(shares - tg->se[cpu]->load.weight) >
1559 sysctl_sched_shares_thresh) {
1560 struct rq *rq = cpu_rq(cpu);
1561 unsigned long flags;
c09595f6 1562
05fa785c 1563 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1564 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1565 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1566 __set_se_shares(tg->se[cpu], shares);
05fa785c 1567 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1568 }
18d95a28 1569}
c09595f6
PZ
1570
1571/*
c8cba857
PZ
1572 * Re-compute the task group their per cpu shares over the given domain.
1573 * This needs to be done in a bottom-up fashion because the rq weight of a
1574 * parent group depends on the shares of its child groups.
c09595f6 1575 */
eb755805 1576static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1577{
cd8ad40d 1578 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1579 unsigned long *usd_rq_weight;
eb755805 1580 struct sched_domain *sd = data;
34d76c41 1581 unsigned long flags;
c8cba857 1582 int i;
c09595f6 1583
34d76c41
PZ
1584 if (!tg->se[0])
1585 return 0;
1586
1587 local_irq_save(flags);
4a6cc4bd 1588 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1589
758b2cdc 1590 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1591 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1592 usd_rq_weight[i] = weight;
34d76c41 1593
cd8ad40d 1594 rq_weight += weight;
ec4e0e2f
KC
1595 /*
1596 * If there are currently no tasks on the cpu pretend there
1597 * is one of average load so that when a new task gets to
1598 * run here it will not get delayed by group starvation.
1599 */
ec4e0e2f
KC
1600 if (!weight)
1601 weight = NICE_0_LOAD;
1602
cd8ad40d 1603 sum_weight += weight;
c8cba857 1604 shares += tg->cfs_rq[i]->shares;
c09595f6 1605 }
c09595f6 1606
cd8ad40d
PZ
1607 if (!rq_weight)
1608 rq_weight = sum_weight;
1609
c8cba857
PZ
1610 if ((!shares && rq_weight) || shares > tg->shares)
1611 shares = tg->shares;
1612
1613 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1614 shares = tg->shares;
c09595f6 1615
758b2cdc 1616 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1617 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1618
1619 local_irq_restore(flags);
eb755805
PZ
1620
1621 return 0;
c09595f6
PZ
1622}
1623
1624/*
c8cba857
PZ
1625 * Compute the cpu's hierarchical load factor for each task group.
1626 * This needs to be done in a top-down fashion because the load of a child
1627 * group is a fraction of its parents load.
c09595f6 1628 */
eb755805 1629static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1630{
c8cba857 1631 unsigned long load;
eb755805 1632 long cpu = (long)data;
c09595f6 1633
c8cba857
PZ
1634 if (!tg->parent) {
1635 load = cpu_rq(cpu)->load.weight;
1636 } else {
1637 load = tg->parent->cfs_rq[cpu]->h_load;
1638 load *= tg->cfs_rq[cpu]->shares;
1639 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1640 }
c09595f6 1641
c8cba857 1642 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1643
eb755805 1644 return 0;
c09595f6
PZ
1645}
1646
c8cba857 1647static void update_shares(struct sched_domain *sd)
4d8d595d 1648{
e7097159
PZ
1649 s64 elapsed;
1650 u64 now;
1651
1652 if (root_task_group_empty())
1653 return;
1654
1655 now = cpu_clock(raw_smp_processor_id());
1656 elapsed = now - sd->last_update;
2398f2c6
PZ
1657
1658 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1659 sd->last_update = now;
eb755805 1660 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1661 }
4d8d595d
PZ
1662}
1663
eb755805 1664static void update_h_load(long cpu)
c09595f6 1665{
eb755805 1666 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1667}
1668
c09595f6
PZ
1669#else
1670
c8cba857 1671static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1672{
1673}
1674
18d95a28
PZ
1675#endif
1676
8f45e2b5
GH
1677#ifdef CONFIG_PREEMPT
1678
b78bb868
PZ
1679static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1680
70574a99 1681/*
8f45e2b5
GH
1682 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1683 * way at the expense of forcing extra atomic operations in all
1684 * invocations. This assures that the double_lock is acquired using the
1685 * same underlying policy as the spinlock_t on this architecture, which
1686 * reduces latency compared to the unfair variant below. However, it
1687 * also adds more overhead and therefore may reduce throughput.
70574a99 1688 */
8f45e2b5
GH
1689static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1690 __releases(this_rq->lock)
1691 __acquires(busiest->lock)
1692 __acquires(this_rq->lock)
1693{
05fa785c 1694 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1695 double_rq_lock(this_rq, busiest);
1696
1697 return 1;
1698}
1699
1700#else
1701/*
1702 * Unfair double_lock_balance: Optimizes throughput at the expense of
1703 * latency by eliminating extra atomic operations when the locks are
1704 * already in proper order on entry. This favors lower cpu-ids and will
1705 * grant the double lock to lower cpus over higher ids under contention,
1706 * regardless of entry order into the function.
1707 */
1708static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1709 __releases(this_rq->lock)
1710 __acquires(busiest->lock)
1711 __acquires(this_rq->lock)
1712{
1713 int ret = 0;
1714
05fa785c 1715 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1716 if (busiest < this_rq) {
05fa785c
TG
1717 raw_spin_unlock(&this_rq->lock);
1718 raw_spin_lock(&busiest->lock);
1719 raw_spin_lock_nested(&this_rq->lock,
1720 SINGLE_DEPTH_NESTING);
70574a99
AD
1721 ret = 1;
1722 } else
05fa785c
TG
1723 raw_spin_lock_nested(&busiest->lock,
1724 SINGLE_DEPTH_NESTING);
70574a99
AD
1725 }
1726 return ret;
1727}
1728
8f45e2b5
GH
1729#endif /* CONFIG_PREEMPT */
1730
1731/*
1732 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1733 */
1734static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1735{
1736 if (unlikely(!irqs_disabled())) {
1737 /* printk() doesn't work good under rq->lock */
05fa785c 1738 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1739 BUG_ON(1);
1740 }
1741
1742 return _double_lock_balance(this_rq, busiest);
1743}
1744
70574a99
AD
1745static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1746 __releases(busiest->lock)
1747{
05fa785c 1748 raw_spin_unlock(&busiest->lock);
70574a99
AD
1749 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1750}
1e3c88bd
PZ
1751
1752/*
1753 * double_rq_lock - safely lock two runqueues
1754 *
1755 * Note this does not disable interrupts like task_rq_lock,
1756 * you need to do so manually before calling.
1757 */
1758static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1759 __acquires(rq1->lock)
1760 __acquires(rq2->lock)
1761{
1762 BUG_ON(!irqs_disabled());
1763 if (rq1 == rq2) {
1764 raw_spin_lock(&rq1->lock);
1765 __acquire(rq2->lock); /* Fake it out ;) */
1766 } else {
1767 if (rq1 < rq2) {
1768 raw_spin_lock(&rq1->lock);
1769 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1770 } else {
1771 raw_spin_lock(&rq2->lock);
1772 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1773 }
1774 }
1e3c88bd
PZ
1775}
1776
1777/*
1778 * double_rq_unlock - safely unlock two runqueues
1779 *
1780 * Note this does not restore interrupts like task_rq_unlock,
1781 * you need to do so manually after calling.
1782 */
1783static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1784 __releases(rq1->lock)
1785 __releases(rq2->lock)
1786{
1787 raw_spin_unlock(&rq1->lock);
1788 if (rq1 != rq2)
1789 raw_spin_unlock(&rq2->lock);
1790 else
1791 __release(rq2->lock);
1792}
1793
18d95a28
PZ
1794#endif
1795
30432094 1796#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1797static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1798{
30432094 1799#ifdef CONFIG_SMP
34e83e85
IM
1800 cfs_rq->shares = shares;
1801#endif
1802}
30432094 1803#endif
e7693a36 1804
74f5187a 1805static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1806static void update_sysctl(void);
acb4a848 1807static int get_update_sysctl_factor(void);
dce48a84 1808
cd29fe6f
PZ
1809static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1810{
1811 set_task_rq(p, cpu);
1812#ifdef CONFIG_SMP
1813 /*
1814 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1815 * successfuly executed on another CPU. We must ensure that updates of
1816 * per-task data have been completed by this moment.
1817 */
1818 smp_wmb();
1819 task_thread_info(p)->cpu = cpu;
1820#endif
1821}
dce48a84 1822
1e3c88bd 1823static const struct sched_class rt_sched_class;
dd41f596
IM
1824
1825#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1826#define for_each_class(class) \
1827 for (class = sched_class_highest; class; class = class->next)
dd41f596 1828
1e3c88bd
PZ
1829#include "sched_stats.h"
1830
c09595f6 1831static void inc_nr_running(struct rq *rq)
9c217245
IM
1832{
1833 rq->nr_running++;
9c217245
IM
1834}
1835
c09595f6 1836static void dec_nr_running(struct rq *rq)
9c217245
IM
1837{
1838 rq->nr_running--;
9c217245
IM
1839}
1840
45bf76df
IM
1841static void set_load_weight(struct task_struct *p)
1842{
1843 if (task_has_rt_policy(p)) {
e51fd5e2
PZ
1844 p->se.load.weight = 0;
1845 p->se.load.inv_weight = WMULT_CONST;
dd41f596
IM
1846 return;
1847 }
45bf76df 1848
dd41f596
IM
1849 /*
1850 * SCHED_IDLE tasks get minimal weight:
1851 */
1852 if (p->policy == SCHED_IDLE) {
1853 p->se.load.weight = WEIGHT_IDLEPRIO;
1854 p->se.load.inv_weight = WMULT_IDLEPRIO;
1855 return;
1856 }
71f8bd46 1857
dd41f596
IM
1858 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1859 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1860}
1861
371fd7e7 1862static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1863{
a64692a3 1864 update_rq_clock(rq);
dd41f596 1865 sched_info_queued(p);
371fd7e7 1866 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1867 p->se.on_rq = 1;
71f8bd46
IM
1868}
1869
371fd7e7 1870static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1871{
a64692a3 1872 update_rq_clock(rq);
46ac22ba 1873 sched_info_dequeued(p);
371fd7e7 1874 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1875 p->se.on_rq = 0;
71f8bd46
IM
1876}
1877
1e3c88bd
PZ
1878/*
1879 * activate_task - move a task to the runqueue.
1880 */
371fd7e7 1881static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1882{
1883 if (task_contributes_to_load(p))
1884 rq->nr_uninterruptible--;
1885
371fd7e7 1886 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1887 inc_nr_running(rq);
1888}
1889
1890/*
1891 * deactivate_task - remove a task from the runqueue.
1892 */
371fd7e7 1893static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1894{
1895 if (task_contributes_to_load(p))
1896 rq->nr_uninterruptible++;
1897
371fd7e7 1898 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1899 dec_nr_running(rq);
1900}
1901
1902#include "sched_idletask.c"
1903#include "sched_fair.c"
1904#include "sched_rt.c"
1905#ifdef CONFIG_SCHED_DEBUG
1906# include "sched_debug.c"
1907#endif
1908
14531189 1909/*
dd41f596 1910 * __normal_prio - return the priority that is based on the static prio
14531189 1911 */
14531189
IM
1912static inline int __normal_prio(struct task_struct *p)
1913{
dd41f596 1914 return p->static_prio;
14531189
IM
1915}
1916
b29739f9
IM
1917/*
1918 * Calculate the expected normal priority: i.e. priority
1919 * without taking RT-inheritance into account. Might be
1920 * boosted by interactivity modifiers. Changes upon fork,
1921 * setprio syscalls, and whenever the interactivity
1922 * estimator recalculates.
1923 */
36c8b586 1924static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1925{
1926 int prio;
1927
e05606d3 1928 if (task_has_rt_policy(p))
b29739f9
IM
1929 prio = MAX_RT_PRIO-1 - p->rt_priority;
1930 else
1931 prio = __normal_prio(p);
1932 return prio;
1933}
1934
1935/*
1936 * Calculate the current priority, i.e. the priority
1937 * taken into account by the scheduler. This value might
1938 * be boosted by RT tasks, or might be boosted by
1939 * interactivity modifiers. Will be RT if the task got
1940 * RT-boosted. If not then it returns p->normal_prio.
1941 */
36c8b586 1942static int effective_prio(struct task_struct *p)
b29739f9
IM
1943{
1944 p->normal_prio = normal_prio(p);
1945 /*
1946 * If we are RT tasks or we were boosted to RT priority,
1947 * keep the priority unchanged. Otherwise, update priority
1948 * to the normal priority:
1949 */
1950 if (!rt_prio(p->prio))
1951 return p->normal_prio;
1952 return p->prio;
1953}
1954
1da177e4
LT
1955/**
1956 * task_curr - is this task currently executing on a CPU?
1957 * @p: the task in question.
1958 */
36c8b586 1959inline int task_curr(const struct task_struct *p)
1da177e4
LT
1960{
1961 return cpu_curr(task_cpu(p)) == p;
1962}
1963
cb469845
SR
1964static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1965 const struct sched_class *prev_class,
1966 int oldprio, int running)
1967{
1968 if (prev_class != p->sched_class) {
1969 if (prev_class->switched_from)
1970 prev_class->switched_from(rq, p, running);
1971 p->sched_class->switched_to(rq, p, running);
1972 } else
1973 p->sched_class->prio_changed(rq, p, oldprio, running);
1974}
1975
1da177e4 1976#ifdef CONFIG_SMP
cc367732
IM
1977/*
1978 * Is this task likely cache-hot:
1979 */
e7693a36 1980static int
cc367732
IM
1981task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1982{
1983 s64 delta;
1984
e6c8fba7
PZ
1985 if (p->sched_class != &fair_sched_class)
1986 return 0;
1987
f540a608
IM
1988 /*
1989 * Buddy candidates are cache hot:
1990 */
f685ceac 1991 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
1992 (&p->se == cfs_rq_of(&p->se)->next ||
1993 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1994 return 1;
1995
6bc1665b
IM
1996 if (sysctl_sched_migration_cost == -1)
1997 return 1;
1998 if (sysctl_sched_migration_cost == 0)
1999 return 0;
2000
cc367732
IM
2001 delta = now - p->se.exec_start;
2002
2003 return delta < (s64)sysctl_sched_migration_cost;
2004}
2005
dd41f596 2006void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2007{
e2912009
PZ
2008#ifdef CONFIG_SCHED_DEBUG
2009 /*
2010 * We should never call set_task_cpu() on a blocked task,
2011 * ttwu() will sort out the placement.
2012 */
077614ee
PZ
2013 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2014 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2015#endif
2016
de1d7286 2017 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2018
0c69774e
PZ
2019 if (task_cpu(p) != new_cpu) {
2020 p->se.nr_migrations++;
2021 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2022 }
dd41f596
IM
2023
2024 __set_task_cpu(p, new_cpu);
c65cc870
IM
2025}
2026
969c7921 2027struct migration_arg {
36c8b586 2028 struct task_struct *task;
1da177e4 2029 int dest_cpu;
70b97a7f 2030};
1da177e4 2031
969c7921
TH
2032static int migration_cpu_stop(void *data);
2033
1da177e4
LT
2034/*
2035 * The task's runqueue lock must be held.
2036 * Returns true if you have to wait for migration thread.
2037 */
969c7921 2038static bool migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2039{
70b97a7f 2040 struct rq *rq = task_rq(p);
1da177e4
LT
2041
2042 /*
2043 * If the task is not on a runqueue (and not running), then
e2912009 2044 * the next wake-up will properly place the task.
1da177e4 2045 */
969c7921 2046 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2047}
2048
2049/*
2050 * wait_task_inactive - wait for a thread to unschedule.
2051 *
85ba2d86
RM
2052 * If @match_state is nonzero, it's the @p->state value just checked and
2053 * not expected to change. If it changes, i.e. @p might have woken up,
2054 * then return zero. When we succeed in waiting for @p to be off its CPU,
2055 * we return a positive number (its total switch count). If a second call
2056 * a short while later returns the same number, the caller can be sure that
2057 * @p has remained unscheduled the whole time.
2058 *
1da177e4
LT
2059 * The caller must ensure that the task *will* unschedule sometime soon,
2060 * else this function might spin for a *long* time. This function can't
2061 * be called with interrupts off, or it may introduce deadlock with
2062 * smp_call_function() if an IPI is sent by the same process we are
2063 * waiting to become inactive.
2064 */
85ba2d86 2065unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2066{
2067 unsigned long flags;
dd41f596 2068 int running, on_rq;
85ba2d86 2069 unsigned long ncsw;
70b97a7f 2070 struct rq *rq;
1da177e4 2071
3a5c359a
AK
2072 for (;;) {
2073 /*
2074 * We do the initial early heuristics without holding
2075 * any task-queue locks at all. We'll only try to get
2076 * the runqueue lock when things look like they will
2077 * work out!
2078 */
2079 rq = task_rq(p);
fa490cfd 2080
3a5c359a
AK
2081 /*
2082 * If the task is actively running on another CPU
2083 * still, just relax and busy-wait without holding
2084 * any locks.
2085 *
2086 * NOTE! Since we don't hold any locks, it's not
2087 * even sure that "rq" stays as the right runqueue!
2088 * But we don't care, since "task_running()" will
2089 * return false if the runqueue has changed and p
2090 * is actually now running somewhere else!
2091 */
85ba2d86
RM
2092 while (task_running(rq, p)) {
2093 if (match_state && unlikely(p->state != match_state))
2094 return 0;
3a5c359a 2095 cpu_relax();
85ba2d86 2096 }
fa490cfd 2097
3a5c359a
AK
2098 /*
2099 * Ok, time to look more closely! We need the rq
2100 * lock now, to be *sure*. If we're wrong, we'll
2101 * just go back and repeat.
2102 */
2103 rq = task_rq_lock(p, &flags);
27a9da65 2104 trace_sched_wait_task(p);
3a5c359a
AK
2105 running = task_running(rq, p);
2106 on_rq = p->se.on_rq;
85ba2d86 2107 ncsw = 0;
f31e11d8 2108 if (!match_state || p->state == match_state)
93dcf55f 2109 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2110 task_rq_unlock(rq, &flags);
fa490cfd 2111
85ba2d86
RM
2112 /*
2113 * If it changed from the expected state, bail out now.
2114 */
2115 if (unlikely(!ncsw))
2116 break;
2117
3a5c359a
AK
2118 /*
2119 * Was it really running after all now that we
2120 * checked with the proper locks actually held?
2121 *
2122 * Oops. Go back and try again..
2123 */
2124 if (unlikely(running)) {
2125 cpu_relax();
2126 continue;
2127 }
fa490cfd 2128
3a5c359a
AK
2129 /*
2130 * It's not enough that it's not actively running,
2131 * it must be off the runqueue _entirely_, and not
2132 * preempted!
2133 *
80dd99b3 2134 * So if it was still runnable (but just not actively
3a5c359a
AK
2135 * running right now), it's preempted, and we should
2136 * yield - it could be a while.
2137 */
2138 if (unlikely(on_rq)) {
2139 schedule_timeout_uninterruptible(1);
2140 continue;
2141 }
fa490cfd 2142
3a5c359a
AK
2143 /*
2144 * Ahh, all good. It wasn't running, and it wasn't
2145 * runnable, which means that it will never become
2146 * running in the future either. We're all done!
2147 */
2148 break;
2149 }
85ba2d86
RM
2150
2151 return ncsw;
1da177e4
LT
2152}
2153
2154/***
2155 * kick_process - kick a running thread to enter/exit the kernel
2156 * @p: the to-be-kicked thread
2157 *
2158 * Cause a process which is running on another CPU to enter
2159 * kernel-mode, without any delay. (to get signals handled.)
2160 *
2161 * NOTE: this function doesnt have to take the runqueue lock,
2162 * because all it wants to ensure is that the remote task enters
2163 * the kernel. If the IPI races and the task has been migrated
2164 * to another CPU then no harm is done and the purpose has been
2165 * achieved as well.
2166 */
36c8b586 2167void kick_process(struct task_struct *p)
1da177e4
LT
2168{
2169 int cpu;
2170
2171 preempt_disable();
2172 cpu = task_cpu(p);
2173 if ((cpu != smp_processor_id()) && task_curr(p))
2174 smp_send_reschedule(cpu);
2175 preempt_enable();
2176}
b43e3521 2177EXPORT_SYMBOL_GPL(kick_process);
476d139c 2178#endif /* CONFIG_SMP */
1da177e4 2179
0793a61d
TG
2180/**
2181 * task_oncpu_function_call - call a function on the cpu on which a task runs
2182 * @p: the task to evaluate
2183 * @func: the function to be called
2184 * @info: the function call argument
2185 *
2186 * Calls the function @func when the task is currently running. This might
2187 * be on the current CPU, which just calls the function directly
2188 */
2189void task_oncpu_function_call(struct task_struct *p,
2190 void (*func) (void *info), void *info)
2191{
2192 int cpu;
2193
2194 preempt_disable();
2195 cpu = task_cpu(p);
2196 if (task_curr(p))
2197 smp_call_function_single(cpu, func, info, 1);
2198 preempt_enable();
2199}
2200
970b13ba 2201#ifdef CONFIG_SMP
30da688e
ON
2202/*
2203 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2204 */
5da9a0fb
PZ
2205static int select_fallback_rq(int cpu, struct task_struct *p)
2206{
2207 int dest_cpu;
2208 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2209
2210 /* Look for allowed, online CPU in same node. */
2211 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2212 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2213 return dest_cpu;
2214
2215 /* Any allowed, online CPU? */
2216 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2217 if (dest_cpu < nr_cpu_ids)
2218 return dest_cpu;
2219
2220 /* No more Mr. Nice Guy. */
897f0b3c 2221 if (unlikely(dest_cpu >= nr_cpu_ids)) {
9084bb82 2222 dest_cpu = cpuset_cpus_allowed_fallback(p);
5da9a0fb
PZ
2223 /*
2224 * Don't tell them about moving exiting tasks or
2225 * kernel threads (both mm NULL), since they never
2226 * leave kernel.
2227 */
2228 if (p->mm && printk_ratelimit()) {
2229 printk(KERN_INFO "process %d (%s) no "
2230 "longer affine to cpu%d\n",
2231 task_pid_nr(p), p->comm, cpu);
2232 }
2233 }
2234
2235 return dest_cpu;
2236}
2237
e2912009 2238/*
30da688e 2239 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2240 */
970b13ba 2241static inline
0017d735 2242int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2243{
0017d735 2244 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2245
2246 /*
2247 * In order not to call set_task_cpu() on a blocking task we need
2248 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2249 * cpu.
2250 *
2251 * Since this is common to all placement strategies, this lives here.
2252 *
2253 * [ this allows ->select_task() to simply return task_cpu(p) and
2254 * not worry about this generic constraint ]
2255 */
2256 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2257 !cpu_online(cpu)))
5da9a0fb 2258 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2259
2260 return cpu;
970b13ba 2261}
09a40af5
MG
2262
2263static void update_avg(u64 *avg, u64 sample)
2264{
2265 s64 diff = sample - *avg;
2266 *avg += diff >> 3;
2267}
970b13ba
PZ
2268#endif
2269
1da177e4
LT
2270/***
2271 * try_to_wake_up - wake up a thread
2272 * @p: the to-be-woken-up thread
2273 * @state: the mask of task states that can be woken
2274 * @sync: do a synchronous wakeup?
2275 *
2276 * Put it on the run-queue if it's not already there. The "current"
2277 * thread is always on the run-queue (except when the actual
2278 * re-schedule is in progress), and as such you're allowed to do
2279 * the simpler "current->state = TASK_RUNNING" to mark yourself
2280 * runnable without the overhead of this.
2281 *
2282 * returns failure only if the task is already active.
2283 */
7d478721
PZ
2284static int try_to_wake_up(struct task_struct *p, unsigned int state,
2285 int wake_flags)
1da177e4 2286{
cc367732 2287 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2288 unsigned long flags;
371fd7e7 2289 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2290 struct rq *rq;
1da177e4 2291
e9c84311 2292 this_cpu = get_cpu();
2398f2c6 2293
04e2f174 2294 smp_wmb();
ab3b3aa5 2295 rq = task_rq_lock(p, &flags);
e9c84311 2296 if (!(p->state & state))
1da177e4
LT
2297 goto out;
2298
dd41f596 2299 if (p->se.on_rq)
1da177e4
LT
2300 goto out_running;
2301
2302 cpu = task_cpu(p);
cc367732 2303 orig_cpu = cpu;
1da177e4
LT
2304
2305#ifdef CONFIG_SMP
2306 if (unlikely(task_running(rq, p)))
2307 goto out_activate;
2308
e9c84311
PZ
2309 /*
2310 * In order to handle concurrent wakeups and release the rq->lock
2311 * we put the task in TASK_WAKING state.
eb24073b
IM
2312 *
2313 * First fix up the nr_uninterruptible count:
e9c84311 2314 */
cc87f76a
PZ
2315 if (task_contributes_to_load(p)) {
2316 if (likely(cpu_online(orig_cpu)))
2317 rq->nr_uninterruptible--;
2318 else
2319 this_rq()->nr_uninterruptible--;
2320 }
e9c84311 2321 p->state = TASK_WAKING;
efbbd05a 2322
371fd7e7 2323 if (p->sched_class->task_waking) {
efbbd05a 2324 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2325 en_flags |= ENQUEUE_WAKING;
2326 }
efbbd05a 2327
0017d735
PZ
2328 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2329 if (cpu != orig_cpu)
5d2f5a61 2330 set_task_cpu(p, cpu);
0017d735 2331 __task_rq_unlock(rq);
ab19cb23 2332
0970d299
PZ
2333 rq = cpu_rq(cpu);
2334 raw_spin_lock(&rq->lock);
f5dc3753 2335
0970d299
PZ
2336 /*
2337 * We migrated the task without holding either rq->lock, however
2338 * since the task is not on the task list itself, nobody else
2339 * will try and migrate the task, hence the rq should match the
2340 * cpu we just moved it to.
2341 */
2342 WARN_ON(task_cpu(p) != cpu);
e9c84311 2343 WARN_ON(p->state != TASK_WAKING);
1da177e4 2344
e7693a36
GH
2345#ifdef CONFIG_SCHEDSTATS
2346 schedstat_inc(rq, ttwu_count);
2347 if (cpu == this_cpu)
2348 schedstat_inc(rq, ttwu_local);
2349 else {
2350 struct sched_domain *sd;
2351 for_each_domain(this_cpu, sd) {
758b2cdc 2352 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2353 schedstat_inc(sd, ttwu_wake_remote);
2354 break;
2355 }
2356 }
2357 }
6d6bc0ad 2358#endif /* CONFIG_SCHEDSTATS */
e7693a36 2359
1da177e4
LT
2360out_activate:
2361#endif /* CONFIG_SMP */
41acab88 2362 schedstat_inc(p, se.statistics.nr_wakeups);
7d478721 2363 if (wake_flags & WF_SYNC)
41acab88 2364 schedstat_inc(p, se.statistics.nr_wakeups_sync);
cc367732 2365 if (orig_cpu != cpu)
41acab88 2366 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
cc367732 2367 if (cpu == this_cpu)
41acab88 2368 schedstat_inc(p, se.statistics.nr_wakeups_local);
cc367732 2369 else
41acab88 2370 schedstat_inc(p, se.statistics.nr_wakeups_remote);
371fd7e7 2371 activate_task(rq, p, en_flags);
1da177e4
LT
2372 success = 1;
2373
2374out_running:
27a9da65 2375 trace_sched_wakeup(p, success);
7d478721 2376 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2377
1da177e4 2378 p->state = TASK_RUNNING;
9a897c5a 2379#ifdef CONFIG_SMP
efbbd05a
PZ
2380 if (p->sched_class->task_woken)
2381 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2382
2383 if (unlikely(rq->idle_stamp)) {
2384 u64 delta = rq->clock - rq->idle_stamp;
2385 u64 max = 2*sysctl_sched_migration_cost;
2386
2387 if (delta > max)
2388 rq->avg_idle = max;
2389 else
2390 update_avg(&rq->avg_idle, delta);
2391 rq->idle_stamp = 0;
2392 }
9a897c5a 2393#endif
1da177e4
LT
2394out:
2395 task_rq_unlock(rq, &flags);
e9c84311 2396 put_cpu();
1da177e4
LT
2397
2398 return success;
2399}
2400
50fa610a
DH
2401/**
2402 * wake_up_process - Wake up a specific process
2403 * @p: The process to be woken up.
2404 *
2405 * Attempt to wake up the nominated process and move it to the set of runnable
2406 * processes. Returns 1 if the process was woken up, 0 if it was already
2407 * running.
2408 *
2409 * It may be assumed that this function implies a write memory barrier before
2410 * changing the task state if and only if any tasks are woken up.
2411 */
7ad5b3a5 2412int wake_up_process(struct task_struct *p)
1da177e4 2413{
d9514f6c 2414 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2415}
1da177e4
LT
2416EXPORT_SYMBOL(wake_up_process);
2417
7ad5b3a5 2418int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2419{
2420 return try_to_wake_up(p, state, 0);
2421}
2422
1da177e4
LT
2423/*
2424 * Perform scheduler related setup for a newly forked process p.
2425 * p is forked by current.
dd41f596
IM
2426 *
2427 * __sched_fork() is basic setup used by init_idle() too:
2428 */
2429static void __sched_fork(struct task_struct *p)
2430{
dd41f596
IM
2431 p->se.exec_start = 0;
2432 p->se.sum_exec_runtime = 0;
f6cf891c 2433 p->se.prev_sum_exec_runtime = 0;
6c594c21 2434 p->se.nr_migrations = 0;
6cfb0d5d
IM
2435
2436#ifdef CONFIG_SCHEDSTATS
41acab88 2437 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2438#endif
476d139c 2439
fa717060 2440 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2441 p->se.on_rq = 0;
4a55bd5e 2442 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2443
e107be36
AK
2444#ifdef CONFIG_PREEMPT_NOTIFIERS
2445 INIT_HLIST_HEAD(&p->preempt_notifiers);
2446#endif
dd41f596
IM
2447}
2448
2449/*
2450 * fork()/clone()-time setup:
2451 */
2452void sched_fork(struct task_struct *p, int clone_flags)
2453{
2454 int cpu = get_cpu();
2455
2456 __sched_fork(p);
06b83b5f 2457 /*
0017d735 2458 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2459 * nobody will actually run it, and a signal or other external
2460 * event cannot wake it up and insert it on the runqueue either.
2461 */
0017d735 2462 p->state = TASK_RUNNING;
dd41f596 2463
b9dc29e7
MG
2464 /*
2465 * Revert to default priority/policy on fork if requested.
2466 */
2467 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2468 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2469 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2470 p->normal_prio = p->static_prio;
2471 }
b9dc29e7 2472
6c697bdf
MG
2473 if (PRIO_TO_NICE(p->static_prio) < 0) {
2474 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2475 p->normal_prio = p->static_prio;
6c697bdf
MG
2476 set_load_weight(p);
2477 }
2478
b9dc29e7
MG
2479 /*
2480 * We don't need the reset flag anymore after the fork. It has
2481 * fulfilled its duty:
2482 */
2483 p->sched_reset_on_fork = 0;
2484 }
ca94c442 2485
f83f9ac2
PW
2486 /*
2487 * Make sure we do not leak PI boosting priority to the child.
2488 */
2489 p->prio = current->normal_prio;
2490
2ddbf952
HS
2491 if (!rt_prio(p->prio))
2492 p->sched_class = &fair_sched_class;
b29739f9 2493
cd29fe6f
PZ
2494 if (p->sched_class->task_fork)
2495 p->sched_class->task_fork(p);
2496
86951599
PZ
2497 /*
2498 * The child is not yet in the pid-hash so no cgroup attach races,
2499 * and the cgroup is pinned to this child due to cgroup_fork()
2500 * is ran before sched_fork().
2501 *
2502 * Silence PROVE_RCU.
2503 */
2504 rcu_read_lock();
5f3edc1b 2505 set_task_cpu(p, cpu);
86951599 2506 rcu_read_unlock();
5f3edc1b 2507
52f17b6c 2508#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2509 if (likely(sched_info_on()))
52f17b6c 2510 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2511#endif
d6077cb8 2512#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2513 p->oncpu = 0;
2514#endif
1da177e4 2515#ifdef CONFIG_PREEMPT
4866cde0 2516 /* Want to start with kernel preemption disabled. */
a1261f54 2517 task_thread_info(p)->preempt_count = 1;
1da177e4 2518#endif
917b627d
GH
2519 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2520
476d139c 2521 put_cpu();
1da177e4
LT
2522}
2523
2524/*
2525 * wake_up_new_task - wake up a newly created task for the first time.
2526 *
2527 * This function will do some initial scheduler statistics housekeeping
2528 * that must be done for every newly created context, then puts the task
2529 * on the runqueue and wakes it.
2530 */
7ad5b3a5 2531void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2532{
2533 unsigned long flags;
dd41f596 2534 struct rq *rq;
c890692b 2535 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2536
2537#ifdef CONFIG_SMP
0017d735
PZ
2538 rq = task_rq_lock(p, &flags);
2539 p->state = TASK_WAKING;
2540
fabf318e
PZ
2541 /*
2542 * Fork balancing, do it here and not earlier because:
2543 * - cpus_allowed can change in the fork path
2544 * - any previously selected cpu might disappear through hotplug
2545 *
0017d735
PZ
2546 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2547 * without people poking at ->cpus_allowed.
fabf318e 2548 */
0017d735 2549 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2550 set_task_cpu(p, cpu);
1da177e4 2551
06b83b5f 2552 p->state = TASK_RUNNING;
0017d735
PZ
2553 task_rq_unlock(rq, &flags);
2554#endif
2555
2556 rq = task_rq_lock(p, &flags);
cd29fe6f 2557 activate_task(rq, p, 0);
27a9da65 2558 trace_sched_wakeup_new(p, 1);
a7558e01 2559 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2560#ifdef CONFIG_SMP
efbbd05a
PZ
2561 if (p->sched_class->task_woken)
2562 p->sched_class->task_woken(rq, p);
9a897c5a 2563#endif
dd41f596 2564 task_rq_unlock(rq, &flags);
fabf318e 2565 put_cpu();
1da177e4
LT
2566}
2567
e107be36
AK
2568#ifdef CONFIG_PREEMPT_NOTIFIERS
2569
2570/**
80dd99b3 2571 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2572 * @notifier: notifier struct to register
e107be36
AK
2573 */
2574void preempt_notifier_register(struct preempt_notifier *notifier)
2575{
2576 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2577}
2578EXPORT_SYMBOL_GPL(preempt_notifier_register);
2579
2580/**
2581 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2582 * @notifier: notifier struct to unregister
e107be36
AK
2583 *
2584 * This is safe to call from within a preemption notifier.
2585 */
2586void preempt_notifier_unregister(struct preempt_notifier *notifier)
2587{
2588 hlist_del(&notifier->link);
2589}
2590EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2591
2592static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2593{
2594 struct preempt_notifier *notifier;
2595 struct hlist_node *node;
2596
2597 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2598 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2599}
2600
2601static void
2602fire_sched_out_preempt_notifiers(struct task_struct *curr,
2603 struct task_struct *next)
2604{
2605 struct preempt_notifier *notifier;
2606 struct hlist_node *node;
2607
2608 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2609 notifier->ops->sched_out(notifier, next);
2610}
2611
6d6bc0ad 2612#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2613
2614static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2615{
2616}
2617
2618static void
2619fire_sched_out_preempt_notifiers(struct task_struct *curr,
2620 struct task_struct *next)
2621{
2622}
2623
6d6bc0ad 2624#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2625
4866cde0
NP
2626/**
2627 * prepare_task_switch - prepare to switch tasks
2628 * @rq: the runqueue preparing to switch
421cee29 2629 * @prev: the current task that is being switched out
4866cde0
NP
2630 * @next: the task we are going to switch to.
2631 *
2632 * This is called with the rq lock held and interrupts off. It must
2633 * be paired with a subsequent finish_task_switch after the context
2634 * switch.
2635 *
2636 * prepare_task_switch sets up locking and calls architecture specific
2637 * hooks.
2638 */
e107be36
AK
2639static inline void
2640prepare_task_switch(struct rq *rq, struct task_struct *prev,
2641 struct task_struct *next)
4866cde0 2642{
e107be36 2643 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2644 prepare_lock_switch(rq, next);
2645 prepare_arch_switch(next);
2646}
2647
1da177e4
LT
2648/**
2649 * finish_task_switch - clean up after a task-switch
344babaa 2650 * @rq: runqueue associated with task-switch
1da177e4
LT
2651 * @prev: the thread we just switched away from.
2652 *
4866cde0
NP
2653 * finish_task_switch must be called after the context switch, paired
2654 * with a prepare_task_switch call before the context switch.
2655 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2656 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2657 *
2658 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2659 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2660 * with the lock held can cause deadlocks; see schedule() for
2661 * details.)
2662 */
a9957449 2663static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2664 __releases(rq->lock)
2665{
1da177e4 2666 struct mm_struct *mm = rq->prev_mm;
55a101f8 2667 long prev_state;
1da177e4
LT
2668
2669 rq->prev_mm = NULL;
2670
2671 /*
2672 * A task struct has one reference for the use as "current".
c394cc9f 2673 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2674 * schedule one last time. The schedule call will never return, and
2675 * the scheduled task must drop that reference.
c394cc9f 2676 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2677 * still held, otherwise prev could be scheduled on another cpu, die
2678 * there before we look at prev->state, and then the reference would
2679 * be dropped twice.
2680 * Manfred Spraul <manfred@colorfullife.com>
2681 */
55a101f8 2682 prev_state = prev->state;
4866cde0 2683 finish_arch_switch(prev);
8381f65d
JI
2684#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2685 local_irq_disable();
2686#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2687 perf_event_task_sched_in(current);
8381f65d
JI
2688#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2689 local_irq_enable();
2690#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2691 finish_lock_switch(rq, prev);
e8fa1362 2692
e107be36 2693 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2694 if (mm)
2695 mmdrop(mm);
c394cc9f 2696 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2697 /*
2698 * Remove function-return probe instances associated with this
2699 * task and put them back on the free list.
9761eea8 2700 */
c6fd91f0 2701 kprobe_flush_task(prev);
1da177e4 2702 put_task_struct(prev);
c6fd91f0 2703 }
1da177e4
LT
2704}
2705
3f029d3c
GH
2706#ifdef CONFIG_SMP
2707
2708/* assumes rq->lock is held */
2709static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2710{
2711 if (prev->sched_class->pre_schedule)
2712 prev->sched_class->pre_schedule(rq, prev);
2713}
2714
2715/* rq->lock is NOT held, but preemption is disabled */
2716static inline void post_schedule(struct rq *rq)
2717{
2718 if (rq->post_schedule) {
2719 unsigned long flags;
2720
05fa785c 2721 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2722 if (rq->curr->sched_class->post_schedule)
2723 rq->curr->sched_class->post_schedule(rq);
05fa785c 2724 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2725
2726 rq->post_schedule = 0;
2727 }
2728}
2729
2730#else
da19ab51 2731
3f029d3c
GH
2732static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2733{
2734}
2735
2736static inline void post_schedule(struct rq *rq)
2737{
1da177e4
LT
2738}
2739
3f029d3c
GH
2740#endif
2741
1da177e4
LT
2742/**
2743 * schedule_tail - first thing a freshly forked thread must call.
2744 * @prev: the thread we just switched away from.
2745 */
36c8b586 2746asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2747 __releases(rq->lock)
2748{
70b97a7f
IM
2749 struct rq *rq = this_rq();
2750
4866cde0 2751 finish_task_switch(rq, prev);
da19ab51 2752
3f029d3c
GH
2753 /*
2754 * FIXME: do we need to worry about rq being invalidated by the
2755 * task_switch?
2756 */
2757 post_schedule(rq);
70b97a7f 2758
4866cde0
NP
2759#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2760 /* In this case, finish_task_switch does not reenable preemption */
2761 preempt_enable();
2762#endif
1da177e4 2763 if (current->set_child_tid)
b488893a 2764 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2765}
2766
2767/*
2768 * context_switch - switch to the new MM and the new
2769 * thread's register state.
2770 */
dd41f596 2771static inline void
70b97a7f 2772context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2773 struct task_struct *next)
1da177e4 2774{
dd41f596 2775 struct mm_struct *mm, *oldmm;
1da177e4 2776
e107be36 2777 prepare_task_switch(rq, prev, next);
27a9da65 2778 trace_sched_switch(prev, next);
dd41f596
IM
2779 mm = next->mm;
2780 oldmm = prev->active_mm;
9226d125
ZA
2781 /*
2782 * For paravirt, this is coupled with an exit in switch_to to
2783 * combine the page table reload and the switch backend into
2784 * one hypercall.
2785 */
224101ed 2786 arch_start_context_switch(prev);
9226d125 2787
710390d9 2788 if (likely(!mm)) {
1da177e4
LT
2789 next->active_mm = oldmm;
2790 atomic_inc(&oldmm->mm_count);
2791 enter_lazy_tlb(oldmm, next);
2792 } else
2793 switch_mm(oldmm, mm, next);
2794
710390d9 2795 if (likely(!prev->mm)) {
1da177e4 2796 prev->active_mm = NULL;
1da177e4
LT
2797 rq->prev_mm = oldmm;
2798 }
3a5f5e48
IM
2799 /*
2800 * Since the runqueue lock will be released by the next
2801 * task (which is an invalid locking op but in the case
2802 * of the scheduler it's an obvious special-case), so we
2803 * do an early lockdep release here:
2804 */
2805#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2806 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2807#endif
1da177e4
LT
2808
2809 /* Here we just switch the register state and the stack. */
2810 switch_to(prev, next, prev);
2811
dd41f596
IM
2812 barrier();
2813 /*
2814 * this_rq must be evaluated again because prev may have moved
2815 * CPUs since it called schedule(), thus the 'rq' on its stack
2816 * frame will be invalid.
2817 */
2818 finish_task_switch(this_rq(), prev);
1da177e4
LT
2819}
2820
2821/*
2822 * nr_running, nr_uninterruptible and nr_context_switches:
2823 *
2824 * externally visible scheduler statistics: current number of runnable
2825 * threads, current number of uninterruptible-sleeping threads, total
2826 * number of context switches performed since bootup.
2827 */
2828unsigned long nr_running(void)
2829{
2830 unsigned long i, sum = 0;
2831
2832 for_each_online_cpu(i)
2833 sum += cpu_rq(i)->nr_running;
2834
2835 return sum;
f711f609 2836}
1da177e4
LT
2837
2838unsigned long nr_uninterruptible(void)
f711f609 2839{
1da177e4 2840 unsigned long i, sum = 0;
f711f609 2841
0a945022 2842 for_each_possible_cpu(i)
1da177e4 2843 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2844
2845 /*
1da177e4
LT
2846 * Since we read the counters lockless, it might be slightly
2847 * inaccurate. Do not allow it to go below zero though:
f711f609 2848 */
1da177e4
LT
2849 if (unlikely((long)sum < 0))
2850 sum = 0;
f711f609 2851
1da177e4 2852 return sum;
f711f609 2853}
f711f609 2854
1da177e4 2855unsigned long long nr_context_switches(void)
46cb4b7c 2856{
cc94abfc
SR
2857 int i;
2858 unsigned long long sum = 0;
46cb4b7c 2859
0a945022 2860 for_each_possible_cpu(i)
1da177e4 2861 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2862
1da177e4
LT
2863 return sum;
2864}
483b4ee6 2865
1da177e4
LT
2866unsigned long nr_iowait(void)
2867{
2868 unsigned long i, sum = 0;
483b4ee6 2869
0a945022 2870 for_each_possible_cpu(i)
1da177e4 2871 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2872
1da177e4
LT
2873 return sum;
2874}
483b4ee6 2875
8c215bd3 2876unsigned long nr_iowait_cpu(int cpu)
69d25870 2877{
8c215bd3 2878 struct rq *this = cpu_rq(cpu);
69d25870
AV
2879 return atomic_read(&this->nr_iowait);
2880}
46cb4b7c 2881
69d25870
AV
2882unsigned long this_cpu_load(void)
2883{
2884 struct rq *this = this_rq();
2885 return this->cpu_load[0];
2886}
e790fb0b 2887
46cb4b7c 2888
dce48a84
TG
2889/* Variables and functions for calc_load */
2890static atomic_long_t calc_load_tasks;
2891static unsigned long calc_load_update;
2892unsigned long avenrun[3];
2893EXPORT_SYMBOL(avenrun);
46cb4b7c 2894
74f5187a
PZ
2895static long calc_load_fold_active(struct rq *this_rq)
2896{
2897 long nr_active, delta = 0;
2898
2899 nr_active = this_rq->nr_running;
2900 nr_active += (long) this_rq->nr_uninterruptible;
2901
2902 if (nr_active != this_rq->calc_load_active) {
2903 delta = nr_active - this_rq->calc_load_active;
2904 this_rq->calc_load_active = nr_active;
2905 }
2906
2907 return delta;
2908}
2909
2910#ifdef CONFIG_NO_HZ
2911/*
2912 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2913 *
2914 * When making the ILB scale, we should try to pull this in as well.
2915 */
2916static atomic_long_t calc_load_tasks_idle;
2917
2918static void calc_load_account_idle(struct rq *this_rq)
2919{
2920 long delta;
2921
2922 delta = calc_load_fold_active(this_rq);
2923 if (delta)
2924 atomic_long_add(delta, &calc_load_tasks_idle);
2925}
2926
2927static long calc_load_fold_idle(void)
2928{
2929 long delta = 0;
2930
2931 /*
2932 * Its got a race, we don't care...
2933 */
2934 if (atomic_long_read(&calc_load_tasks_idle))
2935 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2936
2937 return delta;
2938}
2939#else
2940static void calc_load_account_idle(struct rq *this_rq)
2941{
2942}
2943
2944static inline long calc_load_fold_idle(void)
2945{
2946 return 0;
2947}
2948#endif
2949
2d02494f
TG
2950/**
2951 * get_avenrun - get the load average array
2952 * @loads: pointer to dest load array
2953 * @offset: offset to add
2954 * @shift: shift count to shift the result left
2955 *
2956 * These values are estimates at best, so no need for locking.
2957 */
2958void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2959{
2960 loads[0] = (avenrun[0] + offset) << shift;
2961 loads[1] = (avenrun[1] + offset) << shift;
2962 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2963}
46cb4b7c 2964
dce48a84
TG
2965static unsigned long
2966calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2967{
dce48a84
TG
2968 load *= exp;
2969 load += active * (FIXED_1 - exp);
2970 return load >> FSHIFT;
2971}
46cb4b7c
SS
2972
2973/*
dce48a84
TG
2974 * calc_load - update the avenrun load estimates 10 ticks after the
2975 * CPUs have updated calc_load_tasks.
7835b98b 2976 */
dce48a84 2977void calc_global_load(void)
7835b98b 2978{
dce48a84
TG
2979 unsigned long upd = calc_load_update + 10;
2980 long active;
1da177e4 2981
dce48a84
TG
2982 if (time_before(jiffies, upd))
2983 return;
1da177e4 2984
dce48a84
TG
2985 active = atomic_long_read(&calc_load_tasks);
2986 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2987
dce48a84
TG
2988 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2989 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2990 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2991
dce48a84
TG
2992 calc_load_update += LOAD_FREQ;
2993}
1da177e4 2994
dce48a84 2995/*
74f5187a
PZ
2996 * Called from update_cpu_load() to periodically update this CPU's
2997 * active count.
dce48a84
TG
2998 */
2999static void calc_load_account_active(struct rq *this_rq)
3000{
74f5187a 3001 long delta;
08c183f3 3002
74f5187a
PZ
3003 if (time_before(jiffies, this_rq->calc_load_update))
3004 return;
783609c6 3005
74f5187a
PZ
3006 delta = calc_load_fold_active(this_rq);
3007 delta += calc_load_fold_idle();
3008 if (delta)
dce48a84 3009 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3010
3011 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3012}
3013
3014/*
dd41f596
IM
3015 * Update rq->cpu_load[] statistics. This function is usually called every
3016 * scheduler tick (TICK_NSEC).
46cb4b7c 3017 */
dd41f596 3018static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3019{
495eca49 3020 unsigned long this_load = this_rq->load.weight;
dd41f596 3021 int i, scale;
46cb4b7c 3022
dd41f596 3023 this_rq->nr_load_updates++;
46cb4b7c 3024
dd41f596
IM
3025 /* Update our load: */
3026 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3027 unsigned long old_load, new_load;
7d1e6a9b 3028
dd41f596 3029 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3030
dd41f596
IM
3031 old_load = this_rq->cpu_load[i];
3032 new_load = this_load;
a25707f3
IM
3033 /*
3034 * Round up the averaging division if load is increasing. This
3035 * prevents us from getting stuck on 9 if the load is 10, for
3036 * example.
3037 */
3038 if (new_load > old_load)
3039 new_load += scale-1;
dd41f596
IM
3040 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3041 }
46cb4b7c 3042
74f5187a 3043 calc_load_account_active(this_rq);
46cb4b7c
SS
3044}
3045
dd41f596 3046#ifdef CONFIG_SMP
8a0be9ef 3047
46cb4b7c 3048/*
38022906
PZ
3049 * sched_exec - execve() is a valuable balancing opportunity, because at
3050 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3051 */
38022906 3052void sched_exec(void)
46cb4b7c 3053{
38022906 3054 struct task_struct *p = current;
1da177e4 3055 unsigned long flags;
70b97a7f 3056 struct rq *rq;
0017d735 3057 int dest_cpu;
46cb4b7c 3058
1da177e4 3059 rq = task_rq_lock(p, &flags);
0017d735
PZ
3060 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3061 if (dest_cpu == smp_processor_id())
3062 goto unlock;
38022906 3063
46cb4b7c 3064 /*
38022906 3065 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3066 */
30da688e 3067 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
969c7921
TH
3068 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3069 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3070
1da177e4 3071 task_rq_unlock(rq, &flags);
969c7921 3072 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3073 return;
3074 }
0017d735 3075unlock:
1da177e4 3076 task_rq_unlock(rq, &flags);
1da177e4 3077}
dd41f596 3078
1da177e4
LT
3079#endif
3080
1da177e4
LT
3081DEFINE_PER_CPU(struct kernel_stat, kstat);
3082
3083EXPORT_PER_CPU_SYMBOL(kstat);
3084
3085/*
c5f8d995 3086 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3087 * @p in case that task is currently running.
c5f8d995
HS
3088 *
3089 * Called with task_rq_lock() held on @rq.
1da177e4 3090 */
c5f8d995
HS
3091static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3092{
3093 u64 ns = 0;
3094
3095 if (task_current(rq, p)) {
3096 update_rq_clock(rq);
3097 ns = rq->clock - p->se.exec_start;
3098 if ((s64)ns < 0)
3099 ns = 0;
3100 }
3101
3102 return ns;
3103}
3104
bb34d92f 3105unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3106{
1da177e4 3107 unsigned long flags;
41b86e9c 3108 struct rq *rq;
bb34d92f 3109 u64 ns = 0;
48f24c4d 3110
41b86e9c 3111 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3112 ns = do_task_delta_exec(p, rq);
3113 task_rq_unlock(rq, &flags);
1508487e 3114
c5f8d995
HS
3115 return ns;
3116}
f06febc9 3117
c5f8d995
HS
3118/*
3119 * Return accounted runtime for the task.
3120 * In case the task is currently running, return the runtime plus current's
3121 * pending runtime that have not been accounted yet.
3122 */
3123unsigned long long task_sched_runtime(struct task_struct *p)
3124{
3125 unsigned long flags;
3126 struct rq *rq;
3127 u64 ns = 0;
3128
3129 rq = task_rq_lock(p, &flags);
3130 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3131 task_rq_unlock(rq, &flags);
3132
3133 return ns;
3134}
48f24c4d 3135
c5f8d995
HS
3136/*
3137 * Return sum_exec_runtime for the thread group.
3138 * In case the task is currently running, return the sum plus current's
3139 * pending runtime that have not been accounted yet.
3140 *
3141 * Note that the thread group might have other running tasks as well,
3142 * so the return value not includes other pending runtime that other
3143 * running tasks might have.
3144 */
3145unsigned long long thread_group_sched_runtime(struct task_struct *p)
3146{
3147 struct task_cputime totals;
3148 unsigned long flags;
3149 struct rq *rq;
3150 u64 ns;
3151
3152 rq = task_rq_lock(p, &flags);
3153 thread_group_cputime(p, &totals);
3154 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3155 task_rq_unlock(rq, &flags);
48f24c4d 3156
1da177e4
LT
3157 return ns;
3158}
3159
1da177e4
LT
3160/*
3161 * Account user cpu time to a process.
3162 * @p: the process that the cpu time gets accounted to
1da177e4 3163 * @cputime: the cpu time spent in user space since the last update
457533a7 3164 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3165 */
457533a7
MS
3166void account_user_time(struct task_struct *p, cputime_t cputime,
3167 cputime_t cputime_scaled)
1da177e4
LT
3168{
3169 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3170 cputime64_t tmp;
3171
457533a7 3172 /* Add user time to process. */
1da177e4 3173 p->utime = cputime_add(p->utime, cputime);
457533a7 3174 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3175 account_group_user_time(p, cputime);
1da177e4
LT
3176
3177 /* Add user time to cpustat. */
3178 tmp = cputime_to_cputime64(cputime);
3179 if (TASK_NICE(p) > 0)
3180 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3181 else
3182 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3183
3184 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3185 /* Account for user time used */
3186 acct_update_integrals(p);
1da177e4
LT
3187}
3188
94886b84
LV
3189/*
3190 * Account guest cpu time to a process.
3191 * @p: the process that the cpu time gets accounted to
3192 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3193 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3194 */
457533a7
MS
3195static void account_guest_time(struct task_struct *p, cputime_t cputime,
3196 cputime_t cputime_scaled)
94886b84
LV
3197{
3198 cputime64_t tmp;
3199 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3200
3201 tmp = cputime_to_cputime64(cputime);
3202
457533a7 3203 /* Add guest time to process. */
94886b84 3204 p->utime = cputime_add(p->utime, cputime);
457533a7 3205 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3206 account_group_user_time(p, cputime);
94886b84
LV
3207 p->gtime = cputime_add(p->gtime, cputime);
3208
457533a7 3209 /* Add guest time to cpustat. */
ce0e7b28
RO
3210 if (TASK_NICE(p) > 0) {
3211 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3212 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3213 } else {
3214 cpustat->user = cputime64_add(cpustat->user, tmp);
3215 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3216 }
94886b84
LV
3217}
3218
1da177e4
LT
3219/*
3220 * Account system cpu time to a process.
3221 * @p: the process that the cpu time gets accounted to
3222 * @hardirq_offset: the offset to subtract from hardirq_count()
3223 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3224 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3225 */
3226void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3227 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3228{
3229 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3230 cputime64_t tmp;
3231
983ed7a6 3232 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3233 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3234 return;
3235 }
94886b84 3236
457533a7 3237 /* Add system time to process. */
1da177e4 3238 p->stime = cputime_add(p->stime, cputime);
457533a7 3239 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3240 account_group_system_time(p, cputime);
1da177e4
LT
3241
3242 /* Add system time to cpustat. */
3243 tmp = cputime_to_cputime64(cputime);
3244 if (hardirq_count() - hardirq_offset)
3245 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3246 else if (softirq_count())
3247 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3248 else
79741dd3
MS
3249 cpustat->system = cputime64_add(cpustat->system, tmp);
3250
ef12fefa
BR
3251 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3252
1da177e4
LT
3253 /* Account for system time used */
3254 acct_update_integrals(p);
1da177e4
LT
3255}
3256
c66f08be 3257/*
1da177e4 3258 * Account for involuntary wait time.
1da177e4 3259 * @steal: the cpu time spent in involuntary wait
c66f08be 3260 */
79741dd3 3261void account_steal_time(cputime_t cputime)
c66f08be 3262{
79741dd3
MS
3263 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3264 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3265
3266 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3267}
3268
1da177e4 3269/*
79741dd3
MS
3270 * Account for idle time.
3271 * @cputime: the cpu time spent in idle wait
1da177e4 3272 */
79741dd3 3273void account_idle_time(cputime_t cputime)
1da177e4
LT
3274{
3275 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3276 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3277 struct rq *rq = this_rq();
1da177e4 3278
79741dd3
MS
3279 if (atomic_read(&rq->nr_iowait) > 0)
3280 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3281 else
3282 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3283}
3284
79741dd3
MS
3285#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3286
3287/*
3288 * Account a single tick of cpu time.
3289 * @p: the process that the cpu time gets accounted to
3290 * @user_tick: indicates if the tick is a user or a system tick
3291 */
3292void account_process_tick(struct task_struct *p, int user_tick)
3293{
a42548a1 3294 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3295 struct rq *rq = this_rq();
3296
3297 if (user_tick)
a42548a1 3298 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3299 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3300 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3301 one_jiffy_scaled);
3302 else
a42548a1 3303 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3304}
3305
3306/*
3307 * Account multiple ticks of steal time.
3308 * @p: the process from which the cpu time has been stolen
3309 * @ticks: number of stolen ticks
3310 */
3311void account_steal_ticks(unsigned long ticks)
3312{
3313 account_steal_time(jiffies_to_cputime(ticks));
3314}
3315
3316/*
3317 * Account multiple ticks of idle time.
3318 * @ticks: number of stolen ticks
3319 */
3320void account_idle_ticks(unsigned long ticks)
3321{
3322 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3323}
3324
79741dd3
MS
3325#endif
3326
49048622
BS
3327/*
3328 * Use precise platform statistics if available:
3329 */
3330#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3331void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3332{
d99ca3b9
HS
3333 *ut = p->utime;
3334 *st = p->stime;
49048622
BS
3335}
3336
0cf55e1e 3337void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3338{
0cf55e1e
HS
3339 struct task_cputime cputime;
3340
3341 thread_group_cputime(p, &cputime);
3342
3343 *ut = cputime.utime;
3344 *st = cputime.stime;
49048622
BS
3345}
3346#else
761b1d26
HS
3347
3348#ifndef nsecs_to_cputime
b7b20df9 3349# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3350#endif
3351
d180c5bc 3352void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3353{
d99ca3b9 3354 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3355
3356 /*
3357 * Use CFS's precise accounting:
3358 */
d180c5bc 3359 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3360
3361 if (total) {
d180c5bc
HS
3362 u64 temp;
3363
3364 temp = (u64)(rtime * utime);
49048622 3365 do_div(temp, total);
d180c5bc
HS
3366 utime = (cputime_t)temp;
3367 } else
3368 utime = rtime;
49048622 3369
d180c5bc
HS
3370 /*
3371 * Compare with previous values, to keep monotonicity:
3372 */
761b1d26 3373 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3374 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3375
d99ca3b9
HS
3376 *ut = p->prev_utime;
3377 *st = p->prev_stime;
49048622
BS
3378}
3379
0cf55e1e
HS
3380/*
3381 * Must be called with siglock held.
3382 */
3383void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3384{
0cf55e1e
HS
3385 struct signal_struct *sig = p->signal;
3386 struct task_cputime cputime;
3387 cputime_t rtime, utime, total;
49048622 3388
0cf55e1e 3389 thread_group_cputime(p, &cputime);
49048622 3390
0cf55e1e
HS
3391 total = cputime_add(cputime.utime, cputime.stime);
3392 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3393
0cf55e1e
HS
3394 if (total) {
3395 u64 temp;
49048622 3396
0cf55e1e
HS
3397 temp = (u64)(rtime * cputime.utime);
3398 do_div(temp, total);
3399 utime = (cputime_t)temp;
3400 } else
3401 utime = rtime;
3402
3403 sig->prev_utime = max(sig->prev_utime, utime);
3404 sig->prev_stime = max(sig->prev_stime,
3405 cputime_sub(rtime, sig->prev_utime));
3406
3407 *ut = sig->prev_utime;
3408 *st = sig->prev_stime;
49048622 3409}
49048622 3410#endif
49048622 3411
7835b98b
CL
3412/*
3413 * This function gets called by the timer code, with HZ frequency.
3414 * We call it with interrupts disabled.
3415 *
3416 * It also gets called by the fork code, when changing the parent's
3417 * timeslices.
3418 */
3419void scheduler_tick(void)
3420{
7835b98b
CL
3421 int cpu = smp_processor_id();
3422 struct rq *rq = cpu_rq(cpu);
dd41f596 3423 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3424
3425 sched_clock_tick();
dd41f596 3426
05fa785c 3427 raw_spin_lock(&rq->lock);
3e51f33f 3428 update_rq_clock(rq);
f1a438d8 3429 update_cpu_load(rq);
fa85ae24 3430 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3431 raw_spin_unlock(&rq->lock);
7835b98b 3432
49f47433 3433 perf_event_task_tick(curr);
e220d2dc 3434
e418e1c2 3435#ifdef CONFIG_SMP
dd41f596
IM
3436 rq->idle_at_tick = idle_cpu(cpu);
3437 trigger_load_balance(rq, cpu);
e418e1c2 3438#endif
1da177e4
LT
3439}
3440
132380a0 3441notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3442{
3443 if (in_lock_functions(addr)) {
3444 addr = CALLER_ADDR2;
3445 if (in_lock_functions(addr))
3446 addr = CALLER_ADDR3;
3447 }
3448 return addr;
3449}
1da177e4 3450
7e49fcce
SR
3451#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3452 defined(CONFIG_PREEMPT_TRACER))
3453
43627582 3454void __kprobes add_preempt_count(int val)
1da177e4 3455{
6cd8a4bb 3456#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3457 /*
3458 * Underflow?
3459 */
9a11b49a
IM
3460 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3461 return;
6cd8a4bb 3462#endif
1da177e4 3463 preempt_count() += val;
6cd8a4bb 3464#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3465 /*
3466 * Spinlock count overflowing soon?
3467 */
33859f7f
MOS
3468 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3469 PREEMPT_MASK - 10);
6cd8a4bb
SR
3470#endif
3471 if (preempt_count() == val)
3472 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3473}
3474EXPORT_SYMBOL(add_preempt_count);
3475
43627582 3476void __kprobes sub_preempt_count(int val)
1da177e4 3477{
6cd8a4bb 3478#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3479 /*
3480 * Underflow?
3481 */
01e3eb82 3482 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3483 return;
1da177e4
LT
3484 /*
3485 * Is the spinlock portion underflowing?
3486 */
9a11b49a
IM
3487 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3488 !(preempt_count() & PREEMPT_MASK)))
3489 return;
6cd8a4bb 3490#endif
9a11b49a 3491
6cd8a4bb
SR
3492 if (preempt_count() == val)
3493 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3494 preempt_count() -= val;
3495}
3496EXPORT_SYMBOL(sub_preempt_count);
3497
3498#endif
3499
3500/*
dd41f596 3501 * Print scheduling while atomic bug:
1da177e4 3502 */
dd41f596 3503static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3504{
838225b4
SS
3505 struct pt_regs *regs = get_irq_regs();
3506
3df0fc5b
PZ
3507 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3508 prev->comm, prev->pid, preempt_count());
838225b4 3509
dd41f596 3510 debug_show_held_locks(prev);
e21f5b15 3511 print_modules();
dd41f596
IM
3512 if (irqs_disabled())
3513 print_irqtrace_events(prev);
838225b4
SS
3514
3515 if (regs)
3516 show_regs(regs);
3517 else
3518 dump_stack();
dd41f596 3519}
1da177e4 3520
dd41f596
IM
3521/*
3522 * Various schedule()-time debugging checks and statistics:
3523 */
3524static inline void schedule_debug(struct task_struct *prev)
3525{
1da177e4 3526 /*
41a2d6cf 3527 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3528 * schedule() atomically, we ignore that path for now.
3529 * Otherwise, whine if we are scheduling when we should not be.
3530 */
3f33a7ce 3531 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3532 __schedule_bug(prev);
3533
1da177e4
LT
3534 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3535
2d72376b 3536 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3537#ifdef CONFIG_SCHEDSTATS
3538 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3539 schedstat_inc(this_rq(), bkl_count);
3540 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3541 }
3542#endif
dd41f596
IM
3543}
3544
6cecd084 3545static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3546{
a64692a3
MG
3547 if (prev->se.on_rq)
3548 update_rq_clock(rq);
3549 rq->skip_clock_update = 0;
6cecd084 3550 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3551}
3552
dd41f596
IM
3553/*
3554 * Pick up the highest-prio task:
3555 */
3556static inline struct task_struct *
b67802ea 3557pick_next_task(struct rq *rq)
dd41f596 3558{
5522d5d5 3559 const struct sched_class *class;
dd41f596 3560 struct task_struct *p;
1da177e4
LT
3561
3562 /*
dd41f596
IM
3563 * Optimization: we know that if all tasks are in
3564 * the fair class we can call that function directly:
1da177e4 3565 */
dd41f596 3566 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3567 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3568 if (likely(p))
3569 return p;
1da177e4
LT
3570 }
3571
dd41f596
IM
3572 class = sched_class_highest;
3573 for ( ; ; ) {
fb8d4724 3574 p = class->pick_next_task(rq);
dd41f596
IM
3575 if (p)
3576 return p;
3577 /*
3578 * Will never be NULL as the idle class always
3579 * returns a non-NULL p:
3580 */
3581 class = class->next;
3582 }
3583}
1da177e4 3584
dd41f596
IM
3585/*
3586 * schedule() is the main scheduler function.
3587 */
ff743345 3588asmlinkage void __sched schedule(void)
dd41f596
IM
3589{
3590 struct task_struct *prev, *next;
67ca7bde 3591 unsigned long *switch_count;
dd41f596 3592 struct rq *rq;
31656519 3593 int cpu;
dd41f596 3594
ff743345
PZ
3595need_resched:
3596 preempt_disable();
dd41f596
IM
3597 cpu = smp_processor_id();
3598 rq = cpu_rq(cpu);
25502a6c 3599 rcu_note_context_switch(cpu);
dd41f596
IM
3600 prev = rq->curr;
3601 switch_count = &prev->nivcsw;
3602
3603 release_kernel_lock(prev);
3604need_resched_nonpreemptible:
3605
3606 schedule_debug(prev);
1da177e4 3607
31656519 3608 if (sched_feat(HRTICK))
f333fdc9 3609 hrtick_clear(rq);
8f4d37ec 3610
05fa785c 3611 raw_spin_lock_irq(&rq->lock);
1e819950 3612 clear_tsk_need_resched(prev);
1da177e4 3613
1da177e4 3614 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 3615 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 3616 prev->state = TASK_RUNNING;
16882c1e 3617 else
371fd7e7 3618 deactivate_task(rq, prev, DEQUEUE_SLEEP);
dd41f596 3619 switch_count = &prev->nvcsw;
1da177e4
LT
3620 }
3621
3f029d3c 3622 pre_schedule(rq, prev);
f65eda4f 3623
dd41f596 3624 if (unlikely(!rq->nr_running))
1da177e4 3625 idle_balance(cpu, rq);
1da177e4 3626
df1c99d4 3627 put_prev_task(rq, prev);
b67802ea 3628 next = pick_next_task(rq);
1da177e4 3629
1da177e4 3630 if (likely(prev != next)) {
673a90a1 3631 sched_info_switch(prev, next);
49f47433 3632 perf_event_task_sched_out(prev, next);
673a90a1 3633
1da177e4
LT
3634 rq->nr_switches++;
3635 rq->curr = next;
3636 ++*switch_count;
3637
dd41f596 3638 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3639 /*
3640 * the context switch might have flipped the stack from under
3641 * us, hence refresh the local variables.
3642 */
3643 cpu = smp_processor_id();
3644 rq = cpu_rq(cpu);
1da177e4 3645 } else
05fa785c 3646 raw_spin_unlock_irq(&rq->lock);
1da177e4 3647
3f029d3c 3648 post_schedule(rq);
1da177e4 3649
6d558c3a
YZ
3650 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3651 prev = rq->curr;
3652 switch_count = &prev->nivcsw;
1da177e4 3653 goto need_resched_nonpreemptible;
6d558c3a 3654 }
8f4d37ec 3655
1da177e4 3656 preempt_enable_no_resched();
ff743345 3657 if (need_resched())
1da177e4
LT
3658 goto need_resched;
3659}
1da177e4
LT
3660EXPORT_SYMBOL(schedule);
3661
c08f7829 3662#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3663/*
3664 * Look out! "owner" is an entirely speculative pointer
3665 * access and not reliable.
3666 */
3667int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3668{
3669 unsigned int cpu;
3670 struct rq *rq;
3671
3672 if (!sched_feat(OWNER_SPIN))
3673 return 0;
3674
3675#ifdef CONFIG_DEBUG_PAGEALLOC
3676 /*
3677 * Need to access the cpu field knowing that
3678 * DEBUG_PAGEALLOC could have unmapped it if
3679 * the mutex owner just released it and exited.
3680 */
3681 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 3682 return 0;
0d66bf6d
PZ
3683#else
3684 cpu = owner->cpu;
3685#endif
3686
3687 /*
3688 * Even if the access succeeded (likely case),
3689 * the cpu field may no longer be valid.
3690 */
3691 if (cpu >= nr_cpumask_bits)
4b402210 3692 return 0;
0d66bf6d
PZ
3693
3694 /*
3695 * We need to validate that we can do a
3696 * get_cpu() and that we have the percpu area.
3697 */
3698 if (!cpu_online(cpu))
4b402210 3699 return 0;
0d66bf6d
PZ
3700
3701 rq = cpu_rq(cpu);
3702
3703 for (;;) {
3704 /*
3705 * Owner changed, break to re-assess state.
3706 */
3707 if (lock->owner != owner)
3708 break;
3709
3710 /*
3711 * Is that owner really running on that cpu?
3712 */
3713 if (task_thread_info(rq->curr) != owner || need_resched())
3714 return 0;
3715
3716 cpu_relax();
3717 }
4b402210 3718
0d66bf6d
PZ
3719 return 1;
3720}
3721#endif
3722
1da177e4
LT
3723#ifdef CONFIG_PREEMPT
3724/*
2ed6e34f 3725 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3726 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3727 * occur there and call schedule directly.
3728 */
3729asmlinkage void __sched preempt_schedule(void)
3730{
3731 struct thread_info *ti = current_thread_info();
6478d880 3732
1da177e4
LT
3733 /*
3734 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3735 * we do not want to preempt the current task. Just return..
1da177e4 3736 */
beed33a8 3737 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3738 return;
3739
3a5c359a
AK
3740 do {
3741 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3742 schedule();
3a5c359a 3743 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3744
3a5c359a
AK
3745 /*
3746 * Check again in case we missed a preemption opportunity
3747 * between schedule and now.
3748 */
3749 barrier();
5ed0cec0 3750 } while (need_resched());
1da177e4 3751}
1da177e4
LT
3752EXPORT_SYMBOL(preempt_schedule);
3753
3754/*
2ed6e34f 3755 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3756 * off of irq context.
3757 * Note, that this is called and return with irqs disabled. This will
3758 * protect us against recursive calling from irq.
3759 */
3760asmlinkage void __sched preempt_schedule_irq(void)
3761{
3762 struct thread_info *ti = current_thread_info();
6478d880 3763
2ed6e34f 3764 /* Catch callers which need to be fixed */
1da177e4
LT
3765 BUG_ON(ti->preempt_count || !irqs_disabled());
3766
3a5c359a
AK
3767 do {
3768 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3769 local_irq_enable();
3770 schedule();
3771 local_irq_disable();
3a5c359a 3772 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3773
3a5c359a
AK
3774 /*
3775 * Check again in case we missed a preemption opportunity
3776 * between schedule and now.
3777 */
3778 barrier();
5ed0cec0 3779 } while (need_resched());
1da177e4
LT
3780}
3781
3782#endif /* CONFIG_PREEMPT */
3783
63859d4f 3784int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3785 void *key)
1da177e4 3786{
63859d4f 3787 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3788}
1da177e4
LT
3789EXPORT_SYMBOL(default_wake_function);
3790
3791/*
41a2d6cf
IM
3792 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3793 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3794 * number) then we wake all the non-exclusive tasks and one exclusive task.
3795 *
3796 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3797 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3798 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3799 */
78ddb08f 3800static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3801 int nr_exclusive, int wake_flags, void *key)
1da177e4 3802{
2e45874c 3803 wait_queue_t *curr, *next;
1da177e4 3804
2e45874c 3805 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3806 unsigned flags = curr->flags;
3807
63859d4f 3808 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3809 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3810 break;
3811 }
3812}
3813
3814/**
3815 * __wake_up - wake up threads blocked on a waitqueue.
3816 * @q: the waitqueue
3817 * @mode: which threads
3818 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3819 * @key: is directly passed to the wakeup function
50fa610a
DH
3820 *
3821 * It may be assumed that this function implies a write memory barrier before
3822 * changing the task state if and only if any tasks are woken up.
1da177e4 3823 */
7ad5b3a5 3824void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3825 int nr_exclusive, void *key)
1da177e4
LT
3826{
3827 unsigned long flags;
3828
3829 spin_lock_irqsave(&q->lock, flags);
3830 __wake_up_common(q, mode, nr_exclusive, 0, key);
3831 spin_unlock_irqrestore(&q->lock, flags);
3832}
1da177e4
LT
3833EXPORT_SYMBOL(__wake_up);
3834
3835/*
3836 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3837 */
7ad5b3a5 3838void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3839{
3840 __wake_up_common(q, mode, 1, 0, NULL);
3841}
22c43c81 3842EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3843
4ede816a
DL
3844void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3845{
3846 __wake_up_common(q, mode, 1, 0, key);
3847}
3848
1da177e4 3849/**
4ede816a 3850 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3851 * @q: the waitqueue
3852 * @mode: which threads
3853 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3854 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3855 *
3856 * The sync wakeup differs that the waker knows that it will schedule
3857 * away soon, so while the target thread will be woken up, it will not
3858 * be migrated to another CPU - ie. the two threads are 'synchronized'
3859 * with each other. This can prevent needless bouncing between CPUs.
3860 *
3861 * On UP it can prevent extra preemption.
50fa610a
DH
3862 *
3863 * It may be assumed that this function implies a write memory barrier before
3864 * changing the task state if and only if any tasks are woken up.
1da177e4 3865 */
4ede816a
DL
3866void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3867 int nr_exclusive, void *key)
1da177e4
LT
3868{
3869 unsigned long flags;
7d478721 3870 int wake_flags = WF_SYNC;
1da177e4
LT
3871
3872 if (unlikely(!q))
3873 return;
3874
3875 if (unlikely(!nr_exclusive))
7d478721 3876 wake_flags = 0;
1da177e4
LT
3877
3878 spin_lock_irqsave(&q->lock, flags);
7d478721 3879 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3880 spin_unlock_irqrestore(&q->lock, flags);
3881}
4ede816a
DL
3882EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3883
3884/*
3885 * __wake_up_sync - see __wake_up_sync_key()
3886 */
3887void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3888{
3889 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3890}
1da177e4
LT
3891EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3892
65eb3dc6
KD
3893/**
3894 * complete: - signals a single thread waiting on this completion
3895 * @x: holds the state of this particular completion
3896 *
3897 * This will wake up a single thread waiting on this completion. Threads will be
3898 * awakened in the same order in which they were queued.
3899 *
3900 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3901 *
3902 * It may be assumed that this function implies a write memory barrier before
3903 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3904 */
b15136e9 3905void complete(struct completion *x)
1da177e4
LT
3906{
3907 unsigned long flags;
3908
3909 spin_lock_irqsave(&x->wait.lock, flags);
3910 x->done++;
d9514f6c 3911 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3912 spin_unlock_irqrestore(&x->wait.lock, flags);
3913}
3914EXPORT_SYMBOL(complete);
3915
65eb3dc6
KD
3916/**
3917 * complete_all: - signals all threads waiting on this completion
3918 * @x: holds the state of this particular completion
3919 *
3920 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3921 *
3922 * It may be assumed that this function implies a write memory barrier before
3923 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3924 */
b15136e9 3925void complete_all(struct completion *x)
1da177e4
LT
3926{
3927 unsigned long flags;
3928
3929 spin_lock_irqsave(&x->wait.lock, flags);
3930 x->done += UINT_MAX/2;
d9514f6c 3931 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3932 spin_unlock_irqrestore(&x->wait.lock, flags);
3933}
3934EXPORT_SYMBOL(complete_all);
3935
8cbbe86d
AK
3936static inline long __sched
3937do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3938{
1da177e4
LT
3939 if (!x->done) {
3940 DECLARE_WAITQUEUE(wait, current);
3941
a93d2f17 3942 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3943 do {
94d3d824 3944 if (signal_pending_state(state, current)) {
ea71a546
ON
3945 timeout = -ERESTARTSYS;
3946 break;
8cbbe86d
AK
3947 }
3948 __set_current_state(state);
1da177e4
LT
3949 spin_unlock_irq(&x->wait.lock);
3950 timeout = schedule_timeout(timeout);
3951 spin_lock_irq(&x->wait.lock);
ea71a546 3952 } while (!x->done && timeout);
1da177e4 3953 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3954 if (!x->done)
3955 return timeout;
1da177e4
LT
3956 }
3957 x->done--;
ea71a546 3958 return timeout ?: 1;
1da177e4 3959}
1da177e4 3960
8cbbe86d
AK
3961static long __sched
3962wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3963{
1da177e4
LT
3964 might_sleep();
3965
3966 spin_lock_irq(&x->wait.lock);
8cbbe86d 3967 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3968 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3969 return timeout;
3970}
1da177e4 3971
65eb3dc6
KD
3972/**
3973 * wait_for_completion: - waits for completion of a task
3974 * @x: holds the state of this particular completion
3975 *
3976 * This waits to be signaled for completion of a specific task. It is NOT
3977 * interruptible and there is no timeout.
3978 *
3979 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3980 * and interrupt capability. Also see complete().
3981 */
b15136e9 3982void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3983{
3984 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3985}
8cbbe86d 3986EXPORT_SYMBOL(wait_for_completion);
1da177e4 3987
65eb3dc6
KD
3988/**
3989 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3990 * @x: holds the state of this particular completion
3991 * @timeout: timeout value in jiffies
3992 *
3993 * This waits for either a completion of a specific task to be signaled or for a
3994 * specified timeout to expire. The timeout is in jiffies. It is not
3995 * interruptible.
3996 */
b15136e9 3997unsigned long __sched
8cbbe86d 3998wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3999{
8cbbe86d 4000 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4001}
8cbbe86d 4002EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4003
65eb3dc6
KD
4004/**
4005 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4006 * @x: holds the state of this particular completion
4007 *
4008 * This waits for completion of a specific task to be signaled. It is
4009 * interruptible.
4010 */
8cbbe86d 4011int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4012{
51e97990
AK
4013 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4014 if (t == -ERESTARTSYS)
4015 return t;
4016 return 0;
0fec171c 4017}
8cbbe86d 4018EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4019
65eb3dc6
KD
4020/**
4021 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4022 * @x: holds the state of this particular completion
4023 * @timeout: timeout value in jiffies
4024 *
4025 * This waits for either a completion of a specific task to be signaled or for a
4026 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4027 */
b15136e9 4028unsigned long __sched
8cbbe86d
AK
4029wait_for_completion_interruptible_timeout(struct completion *x,
4030 unsigned long timeout)
0fec171c 4031{
8cbbe86d 4032 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4033}
8cbbe86d 4034EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4035
65eb3dc6
KD
4036/**
4037 * wait_for_completion_killable: - waits for completion of a task (killable)
4038 * @x: holds the state of this particular completion
4039 *
4040 * This waits to be signaled for completion of a specific task. It can be
4041 * interrupted by a kill signal.
4042 */
009e577e
MW
4043int __sched wait_for_completion_killable(struct completion *x)
4044{
4045 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4046 if (t == -ERESTARTSYS)
4047 return t;
4048 return 0;
4049}
4050EXPORT_SYMBOL(wait_for_completion_killable);
4051
0aa12fb4
SW
4052/**
4053 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4054 * @x: holds the state of this particular completion
4055 * @timeout: timeout value in jiffies
4056 *
4057 * This waits for either a completion of a specific task to be
4058 * signaled or for a specified timeout to expire. It can be
4059 * interrupted by a kill signal. The timeout is in jiffies.
4060 */
4061unsigned long __sched
4062wait_for_completion_killable_timeout(struct completion *x,
4063 unsigned long timeout)
4064{
4065 return wait_for_common(x, timeout, TASK_KILLABLE);
4066}
4067EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4068
be4de352
DC
4069/**
4070 * try_wait_for_completion - try to decrement a completion without blocking
4071 * @x: completion structure
4072 *
4073 * Returns: 0 if a decrement cannot be done without blocking
4074 * 1 if a decrement succeeded.
4075 *
4076 * If a completion is being used as a counting completion,
4077 * attempt to decrement the counter without blocking. This
4078 * enables us to avoid waiting if the resource the completion
4079 * is protecting is not available.
4080 */
4081bool try_wait_for_completion(struct completion *x)
4082{
7539a3b3 4083 unsigned long flags;
be4de352
DC
4084 int ret = 1;
4085
7539a3b3 4086 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4087 if (!x->done)
4088 ret = 0;
4089 else
4090 x->done--;
7539a3b3 4091 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4092 return ret;
4093}
4094EXPORT_SYMBOL(try_wait_for_completion);
4095
4096/**
4097 * completion_done - Test to see if a completion has any waiters
4098 * @x: completion structure
4099 *
4100 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4101 * 1 if there are no waiters.
4102 *
4103 */
4104bool completion_done(struct completion *x)
4105{
7539a3b3 4106 unsigned long flags;
be4de352
DC
4107 int ret = 1;
4108
7539a3b3 4109 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4110 if (!x->done)
4111 ret = 0;
7539a3b3 4112 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4113 return ret;
4114}
4115EXPORT_SYMBOL(completion_done);
4116
8cbbe86d
AK
4117static long __sched
4118sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4119{
0fec171c
IM
4120 unsigned long flags;
4121 wait_queue_t wait;
4122
4123 init_waitqueue_entry(&wait, current);
1da177e4 4124
8cbbe86d 4125 __set_current_state(state);
1da177e4 4126
8cbbe86d
AK
4127 spin_lock_irqsave(&q->lock, flags);
4128 __add_wait_queue(q, &wait);
4129 spin_unlock(&q->lock);
4130 timeout = schedule_timeout(timeout);
4131 spin_lock_irq(&q->lock);
4132 __remove_wait_queue(q, &wait);
4133 spin_unlock_irqrestore(&q->lock, flags);
4134
4135 return timeout;
4136}
4137
4138void __sched interruptible_sleep_on(wait_queue_head_t *q)
4139{
4140 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4141}
1da177e4
LT
4142EXPORT_SYMBOL(interruptible_sleep_on);
4143
0fec171c 4144long __sched
95cdf3b7 4145interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4146{
8cbbe86d 4147 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4148}
1da177e4
LT
4149EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4150
0fec171c 4151void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4152{
8cbbe86d 4153 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4154}
1da177e4
LT
4155EXPORT_SYMBOL(sleep_on);
4156
0fec171c 4157long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4158{
8cbbe86d 4159 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4160}
1da177e4
LT
4161EXPORT_SYMBOL(sleep_on_timeout);
4162
b29739f9
IM
4163#ifdef CONFIG_RT_MUTEXES
4164
4165/*
4166 * rt_mutex_setprio - set the current priority of a task
4167 * @p: task
4168 * @prio: prio value (kernel-internal form)
4169 *
4170 * This function changes the 'effective' priority of a task. It does
4171 * not touch ->normal_prio like __setscheduler().
4172 *
4173 * Used by the rt_mutex code to implement priority inheritance logic.
4174 */
36c8b586 4175void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4176{
4177 unsigned long flags;
83b699ed 4178 int oldprio, on_rq, running;
70b97a7f 4179 struct rq *rq;
83ab0aa0 4180 const struct sched_class *prev_class;
b29739f9
IM
4181
4182 BUG_ON(prio < 0 || prio > MAX_PRIO);
4183
4184 rq = task_rq_lock(p, &flags);
4185
d5f9f942 4186 oldprio = p->prio;
83ab0aa0 4187 prev_class = p->sched_class;
dd41f596 4188 on_rq = p->se.on_rq;
051a1d1a 4189 running = task_current(rq, p);
0e1f3483 4190 if (on_rq)
69be72c1 4191 dequeue_task(rq, p, 0);
0e1f3483
HS
4192 if (running)
4193 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4194
4195 if (rt_prio(prio))
4196 p->sched_class = &rt_sched_class;
4197 else
4198 p->sched_class = &fair_sched_class;
4199
b29739f9
IM
4200 p->prio = prio;
4201
0e1f3483
HS
4202 if (running)
4203 p->sched_class->set_curr_task(rq);
dd41f596 4204 if (on_rq) {
371fd7e7 4205 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4206
4207 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4208 }
4209 task_rq_unlock(rq, &flags);
4210}
4211
4212#endif
4213
36c8b586 4214void set_user_nice(struct task_struct *p, long nice)
1da177e4 4215{
dd41f596 4216 int old_prio, delta, on_rq;
1da177e4 4217 unsigned long flags;
70b97a7f 4218 struct rq *rq;
1da177e4
LT
4219
4220 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4221 return;
4222 /*
4223 * We have to be careful, if called from sys_setpriority(),
4224 * the task might be in the middle of scheduling on another CPU.
4225 */
4226 rq = task_rq_lock(p, &flags);
4227 /*
4228 * The RT priorities are set via sched_setscheduler(), but we still
4229 * allow the 'normal' nice value to be set - but as expected
4230 * it wont have any effect on scheduling until the task is
dd41f596 4231 * SCHED_FIFO/SCHED_RR:
1da177e4 4232 */
e05606d3 4233 if (task_has_rt_policy(p)) {
1da177e4
LT
4234 p->static_prio = NICE_TO_PRIO(nice);
4235 goto out_unlock;
4236 }
dd41f596 4237 on_rq = p->se.on_rq;
c09595f6 4238 if (on_rq)
69be72c1 4239 dequeue_task(rq, p, 0);
1da177e4 4240
1da177e4 4241 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4242 set_load_weight(p);
b29739f9
IM
4243 old_prio = p->prio;
4244 p->prio = effective_prio(p);
4245 delta = p->prio - old_prio;
1da177e4 4246
dd41f596 4247 if (on_rq) {
371fd7e7 4248 enqueue_task(rq, p, 0);
1da177e4 4249 /*
d5f9f942
AM
4250 * If the task increased its priority or is running and
4251 * lowered its priority, then reschedule its CPU:
1da177e4 4252 */
d5f9f942 4253 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4254 resched_task(rq->curr);
4255 }
4256out_unlock:
4257 task_rq_unlock(rq, &flags);
4258}
1da177e4
LT
4259EXPORT_SYMBOL(set_user_nice);
4260
e43379f1
MM
4261/*
4262 * can_nice - check if a task can reduce its nice value
4263 * @p: task
4264 * @nice: nice value
4265 */
36c8b586 4266int can_nice(const struct task_struct *p, const int nice)
e43379f1 4267{
024f4747
MM
4268 /* convert nice value [19,-20] to rlimit style value [1,40] */
4269 int nice_rlim = 20 - nice;
48f24c4d 4270
78d7d407 4271 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4272 capable(CAP_SYS_NICE));
4273}
4274
1da177e4
LT
4275#ifdef __ARCH_WANT_SYS_NICE
4276
4277/*
4278 * sys_nice - change the priority of the current process.
4279 * @increment: priority increment
4280 *
4281 * sys_setpriority is a more generic, but much slower function that
4282 * does similar things.
4283 */
5add95d4 4284SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4285{
48f24c4d 4286 long nice, retval;
1da177e4
LT
4287
4288 /*
4289 * Setpriority might change our priority at the same moment.
4290 * We don't have to worry. Conceptually one call occurs first
4291 * and we have a single winner.
4292 */
e43379f1
MM
4293 if (increment < -40)
4294 increment = -40;
1da177e4
LT
4295 if (increment > 40)
4296 increment = 40;
4297
2b8f836f 4298 nice = TASK_NICE(current) + increment;
1da177e4
LT
4299 if (nice < -20)
4300 nice = -20;
4301 if (nice > 19)
4302 nice = 19;
4303
e43379f1
MM
4304 if (increment < 0 && !can_nice(current, nice))
4305 return -EPERM;
4306
1da177e4
LT
4307 retval = security_task_setnice(current, nice);
4308 if (retval)
4309 return retval;
4310
4311 set_user_nice(current, nice);
4312 return 0;
4313}
4314
4315#endif
4316
4317/**
4318 * task_prio - return the priority value of a given task.
4319 * @p: the task in question.
4320 *
4321 * This is the priority value as seen by users in /proc.
4322 * RT tasks are offset by -200. Normal tasks are centered
4323 * around 0, value goes from -16 to +15.
4324 */
36c8b586 4325int task_prio(const struct task_struct *p)
1da177e4
LT
4326{
4327 return p->prio - MAX_RT_PRIO;
4328}
4329
4330/**
4331 * task_nice - return the nice value of a given task.
4332 * @p: the task in question.
4333 */
36c8b586 4334int task_nice(const struct task_struct *p)
1da177e4
LT
4335{
4336 return TASK_NICE(p);
4337}
150d8bed 4338EXPORT_SYMBOL(task_nice);
1da177e4
LT
4339
4340/**
4341 * idle_cpu - is a given cpu idle currently?
4342 * @cpu: the processor in question.
4343 */
4344int idle_cpu(int cpu)
4345{
4346 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4347}
4348
1da177e4
LT
4349/**
4350 * idle_task - return the idle task for a given cpu.
4351 * @cpu: the processor in question.
4352 */
36c8b586 4353struct task_struct *idle_task(int cpu)
1da177e4
LT
4354{
4355 return cpu_rq(cpu)->idle;
4356}
4357
4358/**
4359 * find_process_by_pid - find a process with a matching PID value.
4360 * @pid: the pid in question.
4361 */
a9957449 4362static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4363{
228ebcbe 4364 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4365}
4366
4367/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4368static void
4369__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4370{
dd41f596 4371 BUG_ON(p->se.on_rq);
48f24c4d 4372
1da177e4
LT
4373 p->policy = policy;
4374 p->rt_priority = prio;
b29739f9
IM
4375 p->normal_prio = normal_prio(p);
4376 /* we are holding p->pi_lock already */
4377 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4378 if (rt_prio(p->prio))
4379 p->sched_class = &rt_sched_class;
4380 else
4381 p->sched_class = &fair_sched_class;
2dd73a4f 4382 set_load_weight(p);
1da177e4
LT
4383}
4384
c69e8d9c
DH
4385/*
4386 * check the target process has a UID that matches the current process's
4387 */
4388static bool check_same_owner(struct task_struct *p)
4389{
4390 const struct cred *cred = current_cred(), *pcred;
4391 bool match;
4392
4393 rcu_read_lock();
4394 pcred = __task_cred(p);
4395 match = (cred->euid == pcred->euid ||
4396 cred->euid == pcred->uid);
4397 rcu_read_unlock();
4398 return match;
4399}
4400
961ccddd
RR
4401static int __sched_setscheduler(struct task_struct *p, int policy,
4402 struct sched_param *param, bool user)
1da177e4 4403{
83b699ed 4404 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4405 unsigned long flags;
83ab0aa0 4406 const struct sched_class *prev_class;
70b97a7f 4407 struct rq *rq;
ca94c442 4408 int reset_on_fork;
1da177e4 4409
66e5393a
SR
4410 /* may grab non-irq protected spin_locks */
4411 BUG_ON(in_interrupt());
1da177e4
LT
4412recheck:
4413 /* double check policy once rq lock held */
ca94c442
LP
4414 if (policy < 0) {
4415 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4416 policy = oldpolicy = p->policy;
ca94c442
LP
4417 } else {
4418 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4419 policy &= ~SCHED_RESET_ON_FORK;
4420
4421 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4422 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4423 policy != SCHED_IDLE)
4424 return -EINVAL;
4425 }
4426
1da177e4
LT
4427 /*
4428 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4429 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4430 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4431 */
4432 if (param->sched_priority < 0 ||
95cdf3b7 4433 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4434 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4435 return -EINVAL;
e05606d3 4436 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4437 return -EINVAL;
4438
37e4ab3f
OC
4439 /*
4440 * Allow unprivileged RT tasks to decrease priority:
4441 */
961ccddd 4442 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4443 if (rt_policy(policy)) {
8dc3e909 4444 unsigned long rlim_rtprio;
8dc3e909
ON
4445
4446 if (!lock_task_sighand(p, &flags))
4447 return -ESRCH;
78d7d407 4448 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4449 unlock_task_sighand(p, &flags);
4450
4451 /* can't set/change the rt policy */
4452 if (policy != p->policy && !rlim_rtprio)
4453 return -EPERM;
4454
4455 /* can't increase priority */
4456 if (param->sched_priority > p->rt_priority &&
4457 param->sched_priority > rlim_rtprio)
4458 return -EPERM;
4459 }
dd41f596
IM
4460 /*
4461 * Like positive nice levels, dont allow tasks to
4462 * move out of SCHED_IDLE either:
4463 */
4464 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4465 return -EPERM;
5fe1d75f 4466
37e4ab3f 4467 /* can't change other user's priorities */
c69e8d9c 4468 if (!check_same_owner(p))
37e4ab3f 4469 return -EPERM;
ca94c442
LP
4470
4471 /* Normal users shall not reset the sched_reset_on_fork flag */
4472 if (p->sched_reset_on_fork && !reset_on_fork)
4473 return -EPERM;
37e4ab3f 4474 }
1da177e4 4475
725aad24 4476 if (user) {
725aad24
JF
4477 retval = security_task_setscheduler(p, policy, param);
4478 if (retval)
4479 return retval;
4480 }
4481
b29739f9
IM
4482 /*
4483 * make sure no PI-waiters arrive (or leave) while we are
4484 * changing the priority of the task:
4485 */
1d615482 4486 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4487 /*
4488 * To be able to change p->policy safely, the apropriate
4489 * runqueue lock must be held.
4490 */
b29739f9 4491 rq = __task_rq_lock(p);
dc61b1d6
PZ
4492
4493#ifdef CONFIG_RT_GROUP_SCHED
4494 if (user) {
4495 /*
4496 * Do not allow realtime tasks into groups that have no runtime
4497 * assigned.
4498 */
4499 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4500 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4501 __task_rq_unlock(rq);
4502 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4503 return -EPERM;
4504 }
4505 }
4506#endif
4507
1da177e4
LT
4508 /* recheck policy now with rq lock held */
4509 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4510 policy = oldpolicy = -1;
b29739f9 4511 __task_rq_unlock(rq);
1d615482 4512 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4513 goto recheck;
4514 }
dd41f596 4515 on_rq = p->se.on_rq;
051a1d1a 4516 running = task_current(rq, p);
0e1f3483 4517 if (on_rq)
2e1cb74a 4518 deactivate_task(rq, p, 0);
0e1f3483
HS
4519 if (running)
4520 p->sched_class->put_prev_task(rq, p);
f6b53205 4521
ca94c442
LP
4522 p->sched_reset_on_fork = reset_on_fork;
4523
1da177e4 4524 oldprio = p->prio;
83ab0aa0 4525 prev_class = p->sched_class;
dd41f596 4526 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4527
0e1f3483
HS
4528 if (running)
4529 p->sched_class->set_curr_task(rq);
dd41f596
IM
4530 if (on_rq) {
4531 activate_task(rq, p, 0);
cb469845
SR
4532
4533 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4534 }
b29739f9 4535 __task_rq_unlock(rq);
1d615482 4536 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4537
95e02ca9
TG
4538 rt_mutex_adjust_pi(p);
4539
1da177e4
LT
4540 return 0;
4541}
961ccddd
RR
4542
4543/**
4544 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4545 * @p: the task in question.
4546 * @policy: new policy.
4547 * @param: structure containing the new RT priority.
4548 *
4549 * NOTE that the task may be already dead.
4550 */
4551int sched_setscheduler(struct task_struct *p, int policy,
4552 struct sched_param *param)
4553{
4554 return __sched_setscheduler(p, policy, param, true);
4555}
1da177e4
LT
4556EXPORT_SYMBOL_GPL(sched_setscheduler);
4557
961ccddd
RR
4558/**
4559 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4560 * @p: the task in question.
4561 * @policy: new policy.
4562 * @param: structure containing the new RT priority.
4563 *
4564 * Just like sched_setscheduler, only don't bother checking if the
4565 * current context has permission. For example, this is needed in
4566 * stop_machine(): we create temporary high priority worker threads,
4567 * but our caller might not have that capability.
4568 */
4569int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4570 struct sched_param *param)
4571{
4572 return __sched_setscheduler(p, policy, param, false);
4573}
4574
95cdf3b7
IM
4575static int
4576do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4577{
1da177e4
LT
4578 struct sched_param lparam;
4579 struct task_struct *p;
36c8b586 4580 int retval;
1da177e4
LT
4581
4582 if (!param || pid < 0)
4583 return -EINVAL;
4584 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4585 return -EFAULT;
5fe1d75f
ON
4586
4587 rcu_read_lock();
4588 retval = -ESRCH;
1da177e4 4589 p = find_process_by_pid(pid);
5fe1d75f
ON
4590 if (p != NULL)
4591 retval = sched_setscheduler(p, policy, &lparam);
4592 rcu_read_unlock();
36c8b586 4593
1da177e4
LT
4594 return retval;
4595}
4596
4597/**
4598 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4599 * @pid: the pid in question.
4600 * @policy: new policy.
4601 * @param: structure containing the new RT priority.
4602 */
5add95d4
HC
4603SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4604 struct sched_param __user *, param)
1da177e4 4605{
c21761f1
JB
4606 /* negative values for policy are not valid */
4607 if (policy < 0)
4608 return -EINVAL;
4609
1da177e4
LT
4610 return do_sched_setscheduler(pid, policy, param);
4611}
4612
4613/**
4614 * sys_sched_setparam - set/change the RT priority of a thread
4615 * @pid: the pid in question.
4616 * @param: structure containing the new RT priority.
4617 */
5add95d4 4618SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4619{
4620 return do_sched_setscheduler(pid, -1, param);
4621}
4622
4623/**
4624 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4625 * @pid: the pid in question.
4626 */
5add95d4 4627SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4628{
36c8b586 4629 struct task_struct *p;
3a5c359a 4630 int retval;
1da177e4
LT
4631
4632 if (pid < 0)
3a5c359a 4633 return -EINVAL;
1da177e4
LT
4634
4635 retval = -ESRCH;
5fe85be0 4636 rcu_read_lock();
1da177e4
LT
4637 p = find_process_by_pid(pid);
4638 if (p) {
4639 retval = security_task_getscheduler(p);
4640 if (!retval)
ca94c442
LP
4641 retval = p->policy
4642 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4643 }
5fe85be0 4644 rcu_read_unlock();
1da177e4
LT
4645 return retval;
4646}
4647
4648/**
ca94c442 4649 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4650 * @pid: the pid in question.
4651 * @param: structure containing the RT priority.
4652 */
5add95d4 4653SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4654{
4655 struct sched_param lp;
36c8b586 4656 struct task_struct *p;
3a5c359a 4657 int retval;
1da177e4
LT
4658
4659 if (!param || pid < 0)
3a5c359a 4660 return -EINVAL;
1da177e4 4661
5fe85be0 4662 rcu_read_lock();
1da177e4
LT
4663 p = find_process_by_pid(pid);
4664 retval = -ESRCH;
4665 if (!p)
4666 goto out_unlock;
4667
4668 retval = security_task_getscheduler(p);
4669 if (retval)
4670 goto out_unlock;
4671
4672 lp.sched_priority = p->rt_priority;
5fe85be0 4673 rcu_read_unlock();
1da177e4
LT
4674
4675 /*
4676 * This one might sleep, we cannot do it with a spinlock held ...
4677 */
4678 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4679
1da177e4
LT
4680 return retval;
4681
4682out_unlock:
5fe85be0 4683 rcu_read_unlock();
1da177e4
LT
4684 return retval;
4685}
4686
96f874e2 4687long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4688{
5a16f3d3 4689 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4690 struct task_struct *p;
4691 int retval;
1da177e4 4692
95402b38 4693 get_online_cpus();
23f5d142 4694 rcu_read_lock();
1da177e4
LT
4695
4696 p = find_process_by_pid(pid);
4697 if (!p) {
23f5d142 4698 rcu_read_unlock();
95402b38 4699 put_online_cpus();
1da177e4
LT
4700 return -ESRCH;
4701 }
4702
23f5d142 4703 /* Prevent p going away */
1da177e4 4704 get_task_struct(p);
23f5d142 4705 rcu_read_unlock();
1da177e4 4706
5a16f3d3
RR
4707 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4708 retval = -ENOMEM;
4709 goto out_put_task;
4710 }
4711 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4712 retval = -ENOMEM;
4713 goto out_free_cpus_allowed;
4714 }
1da177e4 4715 retval = -EPERM;
c69e8d9c 4716 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4717 goto out_unlock;
4718
e7834f8f
DQ
4719 retval = security_task_setscheduler(p, 0, NULL);
4720 if (retval)
4721 goto out_unlock;
4722
5a16f3d3
RR
4723 cpuset_cpus_allowed(p, cpus_allowed);
4724 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4725 again:
5a16f3d3 4726 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4727
8707d8b8 4728 if (!retval) {
5a16f3d3
RR
4729 cpuset_cpus_allowed(p, cpus_allowed);
4730 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4731 /*
4732 * We must have raced with a concurrent cpuset
4733 * update. Just reset the cpus_allowed to the
4734 * cpuset's cpus_allowed
4735 */
5a16f3d3 4736 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4737 goto again;
4738 }
4739 }
1da177e4 4740out_unlock:
5a16f3d3
RR
4741 free_cpumask_var(new_mask);
4742out_free_cpus_allowed:
4743 free_cpumask_var(cpus_allowed);
4744out_put_task:
1da177e4 4745 put_task_struct(p);
95402b38 4746 put_online_cpus();
1da177e4
LT
4747 return retval;
4748}
4749
4750static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4751 struct cpumask *new_mask)
1da177e4 4752{
96f874e2
RR
4753 if (len < cpumask_size())
4754 cpumask_clear(new_mask);
4755 else if (len > cpumask_size())
4756 len = cpumask_size();
4757
1da177e4
LT
4758 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4759}
4760
4761/**
4762 * sys_sched_setaffinity - set the cpu affinity of a process
4763 * @pid: pid of the process
4764 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4765 * @user_mask_ptr: user-space pointer to the new cpu mask
4766 */
5add95d4
HC
4767SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4768 unsigned long __user *, user_mask_ptr)
1da177e4 4769{
5a16f3d3 4770 cpumask_var_t new_mask;
1da177e4
LT
4771 int retval;
4772
5a16f3d3
RR
4773 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4774 return -ENOMEM;
1da177e4 4775
5a16f3d3
RR
4776 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4777 if (retval == 0)
4778 retval = sched_setaffinity(pid, new_mask);
4779 free_cpumask_var(new_mask);
4780 return retval;
1da177e4
LT
4781}
4782
96f874e2 4783long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4784{
36c8b586 4785 struct task_struct *p;
31605683
TG
4786 unsigned long flags;
4787 struct rq *rq;
1da177e4 4788 int retval;
1da177e4 4789
95402b38 4790 get_online_cpus();
23f5d142 4791 rcu_read_lock();
1da177e4
LT
4792
4793 retval = -ESRCH;
4794 p = find_process_by_pid(pid);
4795 if (!p)
4796 goto out_unlock;
4797
e7834f8f
DQ
4798 retval = security_task_getscheduler(p);
4799 if (retval)
4800 goto out_unlock;
4801
31605683 4802 rq = task_rq_lock(p, &flags);
96f874e2 4803 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4804 task_rq_unlock(rq, &flags);
1da177e4
LT
4805
4806out_unlock:
23f5d142 4807 rcu_read_unlock();
95402b38 4808 put_online_cpus();
1da177e4 4809
9531b62f 4810 return retval;
1da177e4
LT
4811}
4812
4813/**
4814 * sys_sched_getaffinity - get the cpu affinity of a process
4815 * @pid: pid of the process
4816 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4817 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4818 */
5add95d4
HC
4819SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4820 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4821{
4822 int ret;
f17c8607 4823 cpumask_var_t mask;
1da177e4 4824
84fba5ec 4825 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4826 return -EINVAL;
4827 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4828 return -EINVAL;
4829
f17c8607
RR
4830 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4831 return -ENOMEM;
1da177e4 4832
f17c8607
RR
4833 ret = sched_getaffinity(pid, mask);
4834 if (ret == 0) {
8bc037fb 4835 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4836
4837 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4838 ret = -EFAULT;
4839 else
cd3d8031 4840 ret = retlen;
f17c8607
RR
4841 }
4842 free_cpumask_var(mask);
1da177e4 4843
f17c8607 4844 return ret;
1da177e4
LT
4845}
4846
4847/**
4848 * sys_sched_yield - yield the current processor to other threads.
4849 *
dd41f596
IM
4850 * This function yields the current CPU to other tasks. If there are no
4851 * other threads running on this CPU then this function will return.
1da177e4 4852 */
5add95d4 4853SYSCALL_DEFINE0(sched_yield)
1da177e4 4854{
70b97a7f 4855 struct rq *rq = this_rq_lock();
1da177e4 4856
2d72376b 4857 schedstat_inc(rq, yld_count);
4530d7ab 4858 current->sched_class->yield_task(rq);
1da177e4
LT
4859
4860 /*
4861 * Since we are going to call schedule() anyway, there's
4862 * no need to preempt or enable interrupts:
4863 */
4864 __release(rq->lock);
8a25d5de 4865 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4866 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4867 preempt_enable_no_resched();
4868
4869 schedule();
4870
4871 return 0;
4872}
4873
d86ee480
PZ
4874static inline int should_resched(void)
4875{
4876 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4877}
4878
e7b38404 4879static void __cond_resched(void)
1da177e4 4880{
e7aaaa69
FW
4881 add_preempt_count(PREEMPT_ACTIVE);
4882 schedule();
4883 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4884}
4885
02b67cc3 4886int __sched _cond_resched(void)
1da177e4 4887{
d86ee480 4888 if (should_resched()) {
1da177e4
LT
4889 __cond_resched();
4890 return 1;
4891 }
4892 return 0;
4893}
02b67cc3 4894EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4895
4896/*
613afbf8 4897 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4898 * call schedule, and on return reacquire the lock.
4899 *
41a2d6cf 4900 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4901 * operations here to prevent schedule() from being called twice (once via
4902 * spin_unlock(), once by hand).
4903 */
613afbf8 4904int __cond_resched_lock(spinlock_t *lock)
1da177e4 4905{
d86ee480 4906 int resched = should_resched();
6df3cecb
JK
4907 int ret = 0;
4908
f607c668
PZ
4909 lockdep_assert_held(lock);
4910
95c354fe 4911 if (spin_needbreak(lock) || resched) {
1da177e4 4912 spin_unlock(lock);
d86ee480 4913 if (resched)
95c354fe
NP
4914 __cond_resched();
4915 else
4916 cpu_relax();
6df3cecb 4917 ret = 1;
1da177e4 4918 spin_lock(lock);
1da177e4 4919 }
6df3cecb 4920 return ret;
1da177e4 4921}
613afbf8 4922EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4923
613afbf8 4924int __sched __cond_resched_softirq(void)
1da177e4
LT
4925{
4926 BUG_ON(!in_softirq());
4927
d86ee480 4928 if (should_resched()) {
98d82567 4929 local_bh_enable();
1da177e4
LT
4930 __cond_resched();
4931 local_bh_disable();
4932 return 1;
4933 }
4934 return 0;
4935}
613afbf8 4936EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4937
1da177e4
LT
4938/**
4939 * yield - yield the current processor to other threads.
4940 *
72fd4a35 4941 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4942 * thread runnable and calls sys_sched_yield().
4943 */
4944void __sched yield(void)
4945{
4946 set_current_state(TASK_RUNNING);
4947 sys_sched_yield();
4948}
1da177e4
LT
4949EXPORT_SYMBOL(yield);
4950
4951/*
41a2d6cf 4952 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4953 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4954 */
4955void __sched io_schedule(void)
4956{
54d35f29 4957 struct rq *rq = raw_rq();
1da177e4 4958
0ff92245 4959 delayacct_blkio_start();
1da177e4 4960 atomic_inc(&rq->nr_iowait);
8f0dfc34 4961 current->in_iowait = 1;
1da177e4 4962 schedule();
8f0dfc34 4963 current->in_iowait = 0;
1da177e4 4964 atomic_dec(&rq->nr_iowait);
0ff92245 4965 delayacct_blkio_end();
1da177e4 4966}
1da177e4
LT
4967EXPORT_SYMBOL(io_schedule);
4968
4969long __sched io_schedule_timeout(long timeout)
4970{
54d35f29 4971 struct rq *rq = raw_rq();
1da177e4
LT
4972 long ret;
4973
0ff92245 4974 delayacct_blkio_start();
1da177e4 4975 atomic_inc(&rq->nr_iowait);
8f0dfc34 4976 current->in_iowait = 1;
1da177e4 4977 ret = schedule_timeout(timeout);
8f0dfc34 4978 current->in_iowait = 0;
1da177e4 4979 atomic_dec(&rq->nr_iowait);
0ff92245 4980 delayacct_blkio_end();
1da177e4
LT
4981 return ret;
4982}
4983
4984/**
4985 * sys_sched_get_priority_max - return maximum RT priority.
4986 * @policy: scheduling class.
4987 *
4988 * this syscall returns the maximum rt_priority that can be used
4989 * by a given scheduling class.
4990 */
5add95d4 4991SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4992{
4993 int ret = -EINVAL;
4994
4995 switch (policy) {
4996 case SCHED_FIFO:
4997 case SCHED_RR:
4998 ret = MAX_USER_RT_PRIO-1;
4999 break;
5000 case SCHED_NORMAL:
b0a9499c 5001 case SCHED_BATCH:
dd41f596 5002 case SCHED_IDLE:
1da177e4
LT
5003 ret = 0;
5004 break;
5005 }
5006 return ret;
5007}
5008
5009/**
5010 * sys_sched_get_priority_min - return minimum RT priority.
5011 * @policy: scheduling class.
5012 *
5013 * this syscall returns the minimum rt_priority that can be used
5014 * by a given scheduling class.
5015 */
5add95d4 5016SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5017{
5018 int ret = -EINVAL;
5019
5020 switch (policy) {
5021 case SCHED_FIFO:
5022 case SCHED_RR:
5023 ret = 1;
5024 break;
5025 case SCHED_NORMAL:
b0a9499c 5026 case SCHED_BATCH:
dd41f596 5027 case SCHED_IDLE:
1da177e4
LT
5028 ret = 0;
5029 }
5030 return ret;
5031}
5032
5033/**
5034 * sys_sched_rr_get_interval - return the default timeslice of a process.
5035 * @pid: pid of the process.
5036 * @interval: userspace pointer to the timeslice value.
5037 *
5038 * this syscall writes the default timeslice value of a given process
5039 * into the user-space timespec buffer. A value of '0' means infinity.
5040 */
17da2bd9 5041SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5042 struct timespec __user *, interval)
1da177e4 5043{
36c8b586 5044 struct task_struct *p;
a4ec24b4 5045 unsigned int time_slice;
dba091b9
TG
5046 unsigned long flags;
5047 struct rq *rq;
3a5c359a 5048 int retval;
1da177e4 5049 struct timespec t;
1da177e4
LT
5050
5051 if (pid < 0)
3a5c359a 5052 return -EINVAL;
1da177e4
LT
5053
5054 retval = -ESRCH;
1a551ae7 5055 rcu_read_lock();
1da177e4
LT
5056 p = find_process_by_pid(pid);
5057 if (!p)
5058 goto out_unlock;
5059
5060 retval = security_task_getscheduler(p);
5061 if (retval)
5062 goto out_unlock;
5063
dba091b9
TG
5064 rq = task_rq_lock(p, &flags);
5065 time_slice = p->sched_class->get_rr_interval(rq, p);
5066 task_rq_unlock(rq, &flags);
a4ec24b4 5067
1a551ae7 5068 rcu_read_unlock();
a4ec24b4 5069 jiffies_to_timespec(time_slice, &t);
1da177e4 5070 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5071 return retval;
3a5c359a 5072
1da177e4 5073out_unlock:
1a551ae7 5074 rcu_read_unlock();
1da177e4
LT
5075 return retval;
5076}
5077
7c731e0a 5078static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5079
82a1fcb9 5080void sched_show_task(struct task_struct *p)
1da177e4 5081{
1da177e4 5082 unsigned long free = 0;
36c8b586 5083 unsigned state;
1da177e4 5084
1da177e4 5085 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5086 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5087 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5088#if BITS_PER_LONG == 32
1da177e4 5089 if (state == TASK_RUNNING)
3df0fc5b 5090 printk(KERN_CONT " running ");
1da177e4 5091 else
3df0fc5b 5092 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5093#else
5094 if (state == TASK_RUNNING)
3df0fc5b 5095 printk(KERN_CONT " running task ");
1da177e4 5096 else
3df0fc5b 5097 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5098#endif
5099#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5100 free = stack_not_used(p);
1da177e4 5101#endif
3df0fc5b 5102 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5103 task_pid_nr(p), task_pid_nr(p->real_parent),
5104 (unsigned long)task_thread_info(p)->flags);
1da177e4 5105
5fb5e6de 5106 show_stack(p, NULL);
1da177e4
LT
5107}
5108
e59e2ae2 5109void show_state_filter(unsigned long state_filter)
1da177e4 5110{
36c8b586 5111 struct task_struct *g, *p;
1da177e4 5112
4bd77321 5113#if BITS_PER_LONG == 32
3df0fc5b
PZ
5114 printk(KERN_INFO
5115 " task PC stack pid father\n");
1da177e4 5116#else
3df0fc5b
PZ
5117 printk(KERN_INFO
5118 " task PC stack pid father\n");
1da177e4
LT
5119#endif
5120 read_lock(&tasklist_lock);
5121 do_each_thread(g, p) {
5122 /*
5123 * reset the NMI-timeout, listing all files on a slow
5124 * console might take alot of time:
5125 */
5126 touch_nmi_watchdog();
39bc89fd 5127 if (!state_filter || (p->state & state_filter))
82a1fcb9 5128 sched_show_task(p);
1da177e4
LT
5129 } while_each_thread(g, p);
5130
04c9167f
JF
5131 touch_all_softlockup_watchdogs();
5132
dd41f596
IM
5133#ifdef CONFIG_SCHED_DEBUG
5134 sysrq_sched_debug_show();
5135#endif
1da177e4 5136 read_unlock(&tasklist_lock);
e59e2ae2
IM
5137 /*
5138 * Only show locks if all tasks are dumped:
5139 */
93335a21 5140 if (!state_filter)
e59e2ae2 5141 debug_show_all_locks();
1da177e4
LT
5142}
5143
1df21055
IM
5144void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5145{
dd41f596 5146 idle->sched_class = &idle_sched_class;
1df21055
IM
5147}
5148
f340c0d1
IM
5149/**
5150 * init_idle - set up an idle thread for a given CPU
5151 * @idle: task in question
5152 * @cpu: cpu the idle task belongs to
5153 *
5154 * NOTE: this function does not set the idle thread's NEED_RESCHED
5155 * flag, to make booting more robust.
5156 */
5c1e1767 5157void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5158{
70b97a7f 5159 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5160 unsigned long flags;
5161
05fa785c 5162 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5163
dd41f596 5164 __sched_fork(idle);
06b83b5f 5165 idle->state = TASK_RUNNING;
dd41f596
IM
5166 idle->se.exec_start = sched_clock();
5167
96f874e2 5168 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5169 __set_task_cpu(idle, cpu);
1da177e4 5170
1da177e4 5171 rq->curr = rq->idle = idle;
4866cde0
NP
5172#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5173 idle->oncpu = 1;
5174#endif
05fa785c 5175 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5176
5177 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5178#if defined(CONFIG_PREEMPT)
5179 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5180#else
a1261f54 5181 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5182#endif
dd41f596
IM
5183 /*
5184 * The idle tasks have their own, simple scheduling class:
5185 */
5186 idle->sched_class = &idle_sched_class;
fb52607a 5187 ftrace_graph_init_task(idle);
1da177e4
LT
5188}
5189
5190/*
5191 * In a system that switches off the HZ timer nohz_cpu_mask
5192 * indicates which cpus entered this state. This is used
5193 * in the rcu update to wait only for active cpus. For system
5194 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5195 * always be CPU_BITS_NONE.
1da177e4 5196 */
6a7b3dc3 5197cpumask_var_t nohz_cpu_mask;
1da177e4 5198
19978ca6
IM
5199/*
5200 * Increase the granularity value when there are more CPUs,
5201 * because with more CPUs the 'effective latency' as visible
5202 * to users decreases. But the relationship is not linear,
5203 * so pick a second-best guess by going with the log2 of the
5204 * number of CPUs.
5205 *
5206 * This idea comes from the SD scheduler of Con Kolivas:
5207 */
acb4a848 5208static int get_update_sysctl_factor(void)
19978ca6 5209{
4ca3ef71 5210 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5211 unsigned int factor;
5212
5213 switch (sysctl_sched_tunable_scaling) {
5214 case SCHED_TUNABLESCALING_NONE:
5215 factor = 1;
5216 break;
5217 case SCHED_TUNABLESCALING_LINEAR:
5218 factor = cpus;
5219 break;
5220 case SCHED_TUNABLESCALING_LOG:
5221 default:
5222 factor = 1 + ilog2(cpus);
5223 break;
5224 }
19978ca6 5225
acb4a848
CE
5226 return factor;
5227}
19978ca6 5228
acb4a848
CE
5229static void update_sysctl(void)
5230{
5231 unsigned int factor = get_update_sysctl_factor();
19978ca6 5232
0bcdcf28
CE
5233#define SET_SYSCTL(name) \
5234 (sysctl_##name = (factor) * normalized_sysctl_##name)
5235 SET_SYSCTL(sched_min_granularity);
5236 SET_SYSCTL(sched_latency);
5237 SET_SYSCTL(sched_wakeup_granularity);
5238 SET_SYSCTL(sched_shares_ratelimit);
5239#undef SET_SYSCTL
5240}
55cd5340 5241
0bcdcf28
CE
5242static inline void sched_init_granularity(void)
5243{
5244 update_sysctl();
19978ca6
IM
5245}
5246
1da177e4
LT
5247#ifdef CONFIG_SMP
5248/*
5249 * This is how migration works:
5250 *
969c7921
TH
5251 * 1) we invoke migration_cpu_stop() on the target CPU using
5252 * stop_one_cpu().
5253 * 2) stopper starts to run (implicitly forcing the migrated thread
5254 * off the CPU)
5255 * 3) it checks whether the migrated task is still in the wrong runqueue.
5256 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5257 * it and puts it into the right queue.
969c7921
TH
5258 * 5) stopper completes and stop_one_cpu() returns and the migration
5259 * is done.
1da177e4
LT
5260 */
5261
5262/*
5263 * Change a given task's CPU affinity. Migrate the thread to a
5264 * proper CPU and schedule it away if the CPU it's executing on
5265 * is removed from the allowed bitmask.
5266 *
5267 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5268 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5269 * call is not atomic; no spinlocks may be held.
5270 */
96f874e2 5271int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5272{
5273 unsigned long flags;
70b97a7f 5274 struct rq *rq;
969c7921 5275 unsigned int dest_cpu;
48f24c4d 5276 int ret = 0;
1da177e4 5277
65cc8e48
PZ
5278 /*
5279 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5280 * drop the rq->lock and still rely on ->cpus_allowed.
5281 */
5282again:
5283 while (task_is_waking(p))
5284 cpu_relax();
1da177e4 5285 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5286 if (task_is_waking(p)) {
5287 task_rq_unlock(rq, &flags);
5288 goto again;
5289 }
e2912009 5290
6ad4c188 5291 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5292 ret = -EINVAL;
5293 goto out;
5294 }
5295
9985b0ba 5296 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5297 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5298 ret = -EINVAL;
5299 goto out;
5300 }
5301
73fe6aae 5302 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5303 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5304 else {
96f874e2
RR
5305 cpumask_copy(&p->cpus_allowed, new_mask);
5306 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5307 }
5308
1da177e4 5309 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5310 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5311 goto out;
5312
969c7921
TH
5313 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5314 if (migrate_task(p, dest_cpu)) {
5315 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5316 /* Need help from migration thread: drop lock and wait. */
5317 task_rq_unlock(rq, &flags);
969c7921 5318 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5319 tlb_migrate_finish(p->mm);
5320 return 0;
5321 }
5322out:
5323 task_rq_unlock(rq, &flags);
48f24c4d 5324
1da177e4
LT
5325 return ret;
5326}
cd8ba7cd 5327EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5328
5329/*
41a2d6cf 5330 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5331 * this because either it can't run here any more (set_cpus_allowed()
5332 * away from this CPU, or CPU going down), or because we're
5333 * attempting to rebalance this task on exec (sched_exec).
5334 *
5335 * So we race with normal scheduler movements, but that's OK, as long
5336 * as the task is no longer on this CPU.
efc30814
KK
5337 *
5338 * Returns non-zero if task was successfully migrated.
1da177e4 5339 */
efc30814 5340static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5341{
70b97a7f 5342 struct rq *rq_dest, *rq_src;
e2912009 5343 int ret = 0;
1da177e4 5344
e761b772 5345 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5346 return ret;
1da177e4
LT
5347
5348 rq_src = cpu_rq(src_cpu);
5349 rq_dest = cpu_rq(dest_cpu);
5350
5351 double_rq_lock(rq_src, rq_dest);
5352 /* Already moved. */
5353 if (task_cpu(p) != src_cpu)
b1e38734 5354 goto done;
1da177e4 5355 /* Affinity changed (again). */
96f874e2 5356 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5357 goto fail;
1da177e4 5358
e2912009
PZ
5359 /*
5360 * If we're not on a rq, the next wake-up will ensure we're
5361 * placed properly.
5362 */
5363 if (p->se.on_rq) {
2e1cb74a 5364 deactivate_task(rq_src, p, 0);
e2912009 5365 set_task_cpu(p, dest_cpu);
dd41f596 5366 activate_task(rq_dest, p, 0);
15afe09b 5367 check_preempt_curr(rq_dest, p, 0);
1da177e4 5368 }
b1e38734 5369done:
efc30814 5370 ret = 1;
b1e38734 5371fail:
1da177e4 5372 double_rq_unlock(rq_src, rq_dest);
efc30814 5373 return ret;
1da177e4
LT
5374}
5375
5376/*
969c7921
TH
5377 * migration_cpu_stop - this will be executed by a highprio stopper thread
5378 * and performs thread migration by bumping thread off CPU then
5379 * 'pushing' onto another runqueue.
1da177e4 5380 */
969c7921 5381static int migration_cpu_stop(void *data)
1da177e4 5382{
969c7921 5383 struct migration_arg *arg = data;
f7b4cddc 5384
969c7921
TH
5385 /*
5386 * The original target cpu might have gone down and we might
5387 * be on another cpu but it doesn't matter.
5388 */
f7b4cddc 5389 local_irq_disable();
969c7921 5390 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5391 local_irq_enable();
1da177e4 5392 return 0;
f7b4cddc
ON
5393}
5394
1da177e4 5395#ifdef CONFIG_HOTPLUG_CPU
054b9108 5396/*
3a4fa0a2 5397 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5398 */
6a1bdc1b 5399void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5400{
1445c08d
ON
5401 struct rq *rq = cpu_rq(dead_cpu);
5402 int needs_cpu, uninitialized_var(dest_cpu);
5403 unsigned long flags;
e76bd8d9 5404
1445c08d 5405 local_irq_save(flags);
e76bd8d9 5406
1445c08d
ON
5407 raw_spin_lock(&rq->lock);
5408 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5409 if (needs_cpu)
5410 dest_cpu = select_fallback_rq(dead_cpu, p);
5411 raw_spin_unlock(&rq->lock);
c1804d54
ON
5412 /*
5413 * It can only fail if we race with set_cpus_allowed(),
5414 * in the racer should migrate the task anyway.
5415 */
1445c08d 5416 if (needs_cpu)
c1804d54 5417 __migrate_task(p, dead_cpu, dest_cpu);
1445c08d 5418 local_irq_restore(flags);
1da177e4
LT
5419}
5420
5421/*
5422 * While a dead CPU has no uninterruptible tasks queued at this point,
5423 * it might still have a nonzero ->nr_uninterruptible counter, because
5424 * for performance reasons the counter is not stricly tracking tasks to
5425 * their home CPUs. So we just add the counter to another CPU's counter,
5426 * to keep the global sum constant after CPU-down:
5427 */
70b97a7f 5428static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5429{
6ad4c188 5430 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5431 unsigned long flags;
5432
5433 local_irq_save(flags);
5434 double_rq_lock(rq_src, rq_dest);
5435 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5436 rq_src->nr_uninterruptible = 0;
5437 double_rq_unlock(rq_src, rq_dest);
5438 local_irq_restore(flags);
5439}
5440
5441/* Run through task list and migrate tasks from the dead cpu. */
5442static void migrate_live_tasks(int src_cpu)
5443{
48f24c4d 5444 struct task_struct *p, *t;
1da177e4 5445
f7b4cddc 5446 read_lock(&tasklist_lock);
1da177e4 5447
48f24c4d
IM
5448 do_each_thread(t, p) {
5449 if (p == current)
1da177e4
LT
5450 continue;
5451
48f24c4d
IM
5452 if (task_cpu(p) == src_cpu)
5453 move_task_off_dead_cpu(src_cpu, p);
5454 } while_each_thread(t, p);
1da177e4 5455
f7b4cddc 5456 read_unlock(&tasklist_lock);
1da177e4
LT
5457}
5458
dd41f596
IM
5459/*
5460 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5461 * It does so by boosting its priority to highest possible.
5462 * Used by CPU offline code.
1da177e4
LT
5463 */
5464void sched_idle_next(void)
5465{
48f24c4d 5466 int this_cpu = smp_processor_id();
70b97a7f 5467 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5468 struct task_struct *p = rq->idle;
5469 unsigned long flags;
5470
5471 /* cpu has to be offline */
48f24c4d 5472 BUG_ON(cpu_online(this_cpu));
1da177e4 5473
48f24c4d
IM
5474 /*
5475 * Strictly not necessary since rest of the CPUs are stopped by now
5476 * and interrupts disabled on the current cpu.
1da177e4 5477 */
05fa785c 5478 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5479
dd41f596 5480 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5481
94bc9a7b 5482 activate_task(rq, p, 0);
1da177e4 5483
05fa785c 5484 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5485}
5486
48f24c4d
IM
5487/*
5488 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5489 * offline.
5490 */
5491void idle_task_exit(void)
5492{
5493 struct mm_struct *mm = current->active_mm;
5494
5495 BUG_ON(cpu_online(smp_processor_id()));
5496
5497 if (mm != &init_mm)
5498 switch_mm(mm, &init_mm, current);
5499 mmdrop(mm);
5500}
5501
054b9108 5502/* called under rq->lock with disabled interrupts */
36c8b586 5503static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5504{
70b97a7f 5505 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5506
5507 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5508 BUG_ON(!p->exit_state);
1da177e4
LT
5509
5510 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5511 BUG_ON(p->state == TASK_DEAD);
1da177e4 5512
48f24c4d 5513 get_task_struct(p);
1da177e4
LT
5514
5515 /*
5516 * Drop lock around migration; if someone else moves it,
41a2d6cf 5517 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5518 * fine.
5519 */
05fa785c 5520 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5521 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5522 raw_spin_lock_irq(&rq->lock);
1da177e4 5523
48f24c4d 5524 put_task_struct(p);
1da177e4
LT
5525}
5526
5527/* release_task() removes task from tasklist, so we won't find dead tasks. */
5528static void migrate_dead_tasks(unsigned int dead_cpu)
5529{
70b97a7f 5530 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5531 struct task_struct *next;
48f24c4d 5532
dd41f596
IM
5533 for ( ; ; ) {
5534 if (!rq->nr_running)
5535 break;
b67802ea 5536 next = pick_next_task(rq);
dd41f596
IM
5537 if (!next)
5538 break;
79c53799 5539 next->sched_class->put_prev_task(rq, next);
dd41f596 5540 migrate_dead(dead_cpu, next);
e692ab53 5541
1da177e4
LT
5542 }
5543}
dce48a84
TG
5544
5545/*
5546 * remove the tasks which were accounted by rq from calc_load_tasks.
5547 */
5548static void calc_global_load_remove(struct rq *rq)
5549{
5550 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5551 rq->calc_load_active = 0;
dce48a84 5552}
1da177e4
LT
5553#endif /* CONFIG_HOTPLUG_CPU */
5554
e692ab53
NP
5555#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5556
5557static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5558 {
5559 .procname = "sched_domain",
c57baf1e 5560 .mode = 0555,
e0361851 5561 },
56992309 5562 {}
e692ab53
NP
5563};
5564
5565static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5566 {
5567 .procname = "kernel",
c57baf1e 5568 .mode = 0555,
e0361851
AD
5569 .child = sd_ctl_dir,
5570 },
56992309 5571 {}
e692ab53
NP
5572};
5573
5574static struct ctl_table *sd_alloc_ctl_entry(int n)
5575{
5576 struct ctl_table *entry =
5cf9f062 5577 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5578
e692ab53
NP
5579 return entry;
5580}
5581
6382bc90
MM
5582static void sd_free_ctl_entry(struct ctl_table **tablep)
5583{
cd790076 5584 struct ctl_table *entry;
6382bc90 5585
cd790076
MM
5586 /*
5587 * In the intermediate directories, both the child directory and
5588 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5589 * will always be set. In the lowest directory the names are
cd790076
MM
5590 * static strings and all have proc handlers.
5591 */
5592 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5593 if (entry->child)
5594 sd_free_ctl_entry(&entry->child);
cd790076
MM
5595 if (entry->proc_handler == NULL)
5596 kfree(entry->procname);
5597 }
6382bc90
MM
5598
5599 kfree(*tablep);
5600 *tablep = NULL;
5601}
5602
e692ab53 5603static void
e0361851 5604set_table_entry(struct ctl_table *entry,
e692ab53
NP
5605 const char *procname, void *data, int maxlen,
5606 mode_t mode, proc_handler *proc_handler)
5607{
e692ab53
NP
5608 entry->procname = procname;
5609 entry->data = data;
5610 entry->maxlen = maxlen;
5611 entry->mode = mode;
5612 entry->proc_handler = proc_handler;
5613}
5614
5615static struct ctl_table *
5616sd_alloc_ctl_domain_table(struct sched_domain *sd)
5617{
a5d8c348 5618 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5619
ad1cdc1d
MM
5620 if (table == NULL)
5621 return NULL;
5622
e0361851 5623 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5624 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5625 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5626 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5627 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5628 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5629 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5630 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5631 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5632 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5633 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5634 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5635 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5636 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5637 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5638 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5639 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5640 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5641 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5642 &sd->cache_nice_tries,
5643 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5644 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5645 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5646 set_table_entry(&table[11], "name", sd->name,
5647 CORENAME_MAX_SIZE, 0444, proc_dostring);
5648 /* &table[12] is terminator */
e692ab53
NP
5649
5650 return table;
5651}
5652
9a4e7159 5653static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5654{
5655 struct ctl_table *entry, *table;
5656 struct sched_domain *sd;
5657 int domain_num = 0, i;
5658 char buf[32];
5659
5660 for_each_domain(cpu, sd)
5661 domain_num++;
5662 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5663 if (table == NULL)
5664 return NULL;
e692ab53
NP
5665
5666 i = 0;
5667 for_each_domain(cpu, sd) {
5668 snprintf(buf, 32, "domain%d", i);
e692ab53 5669 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5670 entry->mode = 0555;
e692ab53
NP
5671 entry->child = sd_alloc_ctl_domain_table(sd);
5672 entry++;
5673 i++;
5674 }
5675 return table;
5676}
5677
5678static struct ctl_table_header *sd_sysctl_header;
6382bc90 5679static void register_sched_domain_sysctl(void)
e692ab53 5680{
6ad4c188 5681 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5682 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5683 char buf[32];
5684
7378547f
MM
5685 WARN_ON(sd_ctl_dir[0].child);
5686 sd_ctl_dir[0].child = entry;
5687
ad1cdc1d
MM
5688 if (entry == NULL)
5689 return;
5690
6ad4c188 5691 for_each_possible_cpu(i) {
e692ab53 5692 snprintf(buf, 32, "cpu%d", i);
e692ab53 5693 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5694 entry->mode = 0555;
e692ab53 5695 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5696 entry++;
e692ab53 5697 }
7378547f
MM
5698
5699 WARN_ON(sd_sysctl_header);
e692ab53
NP
5700 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5701}
6382bc90 5702
7378547f 5703/* may be called multiple times per register */
6382bc90
MM
5704static void unregister_sched_domain_sysctl(void)
5705{
7378547f
MM
5706 if (sd_sysctl_header)
5707 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5708 sd_sysctl_header = NULL;
7378547f
MM
5709 if (sd_ctl_dir[0].child)
5710 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5711}
e692ab53 5712#else
6382bc90
MM
5713static void register_sched_domain_sysctl(void)
5714{
5715}
5716static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5717{
5718}
5719#endif
5720
1f11eb6a
GH
5721static void set_rq_online(struct rq *rq)
5722{
5723 if (!rq->online) {
5724 const struct sched_class *class;
5725
c6c4927b 5726 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5727 rq->online = 1;
5728
5729 for_each_class(class) {
5730 if (class->rq_online)
5731 class->rq_online(rq);
5732 }
5733 }
5734}
5735
5736static void set_rq_offline(struct rq *rq)
5737{
5738 if (rq->online) {
5739 const struct sched_class *class;
5740
5741 for_each_class(class) {
5742 if (class->rq_offline)
5743 class->rq_offline(rq);
5744 }
5745
c6c4927b 5746 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5747 rq->online = 0;
5748 }
5749}
5750
1da177e4
LT
5751/*
5752 * migration_call - callback that gets triggered when a CPU is added.
5753 * Here we can start up the necessary migration thread for the new CPU.
5754 */
48f24c4d
IM
5755static int __cpuinit
5756migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5757{
48f24c4d 5758 int cpu = (long)hcpu;
1da177e4 5759 unsigned long flags;
969c7921 5760 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5761
5762 switch (action) {
5be9361c 5763
1da177e4 5764 case CPU_UP_PREPARE:
8bb78442 5765 case CPU_UP_PREPARE_FROZEN:
a468d389 5766 rq->calc_load_update = calc_load_update;
1da177e4 5767 break;
48f24c4d 5768
1da177e4 5769 case CPU_ONLINE:
8bb78442 5770 case CPU_ONLINE_FROZEN:
1f94ef59 5771 /* Update our root-domain */
05fa785c 5772 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5773 if (rq->rd) {
c6c4927b 5774 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5775
5776 set_rq_online(rq);
1f94ef59 5777 }
05fa785c 5778 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5779 break;
48f24c4d 5780
1da177e4 5781#ifdef CONFIG_HOTPLUG_CPU
1da177e4 5782 case CPU_DEAD:
8bb78442 5783 case CPU_DEAD_FROZEN:
1da177e4 5784 migrate_live_tasks(cpu);
1da177e4 5785 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5786 raw_spin_lock_irq(&rq->lock);
2e1cb74a 5787 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5788 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5789 rq->idle->sched_class = &idle_sched_class;
1da177e4 5790 migrate_dead_tasks(cpu);
05fa785c 5791 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5792 migrate_nr_uninterruptible(rq);
5793 BUG_ON(rq->nr_running != 0);
dce48a84 5794 calc_global_load_remove(rq);
1da177e4 5795 break;
57d885fe 5796
08f503b0
GH
5797 case CPU_DYING:
5798 case CPU_DYING_FROZEN:
57d885fe 5799 /* Update our root-domain */
05fa785c 5800 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5801 if (rq->rd) {
c6c4927b 5802 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5803 set_rq_offline(rq);
57d885fe 5804 }
05fa785c 5805 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5806 break;
1da177e4
LT
5807#endif
5808 }
5809 return NOTIFY_OK;
5810}
5811
f38b0820
PM
5812/*
5813 * Register at high priority so that task migration (migrate_all_tasks)
5814 * happens before everything else. This has to be lower priority than
cdd6c482 5815 * the notifier in the perf_event subsystem, though.
1da177e4 5816 */
26c2143b 5817static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5818 .notifier_call = migration_call,
5819 .priority = 10
5820};
5821
7babe8db 5822static int __init migration_init(void)
1da177e4
LT
5823{
5824 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5825 int err;
48f24c4d
IM
5826
5827 /* Start one for the boot CPU: */
07dccf33
AM
5828 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5829 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5830 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5831 register_cpu_notifier(&migration_notifier);
7babe8db 5832
a004cd42 5833 return 0;
1da177e4 5834}
7babe8db 5835early_initcall(migration_init);
1da177e4
LT
5836#endif
5837
5838#ifdef CONFIG_SMP
476f3534 5839
3e9830dc 5840#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5841
f6630114
MT
5842static __read_mostly int sched_domain_debug_enabled;
5843
5844static int __init sched_domain_debug_setup(char *str)
5845{
5846 sched_domain_debug_enabled = 1;
5847
5848 return 0;
5849}
5850early_param("sched_debug", sched_domain_debug_setup);
5851
7c16ec58 5852static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5853 struct cpumask *groupmask)
1da177e4 5854{
4dcf6aff 5855 struct sched_group *group = sd->groups;
434d53b0 5856 char str[256];
1da177e4 5857
968ea6d8 5858 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5859 cpumask_clear(groupmask);
4dcf6aff
IM
5860
5861 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5862
5863 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5864 printk("does not load-balance\n");
4dcf6aff 5865 if (sd->parent)
3df0fc5b
PZ
5866 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5867 " has parent");
4dcf6aff 5868 return -1;
41c7ce9a
NP
5869 }
5870
3df0fc5b 5871 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5872
758b2cdc 5873 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5874 printk(KERN_ERR "ERROR: domain->span does not contain "
5875 "CPU%d\n", cpu);
4dcf6aff 5876 }
758b2cdc 5877 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5878 printk(KERN_ERR "ERROR: domain->groups does not contain"
5879 " CPU%d\n", cpu);
4dcf6aff 5880 }
1da177e4 5881
4dcf6aff 5882 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5883 do {
4dcf6aff 5884 if (!group) {
3df0fc5b
PZ
5885 printk("\n");
5886 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5887 break;
5888 }
5889
18a3885f 5890 if (!group->cpu_power) {
3df0fc5b
PZ
5891 printk(KERN_CONT "\n");
5892 printk(KERN_ERR "ERROR: domain->cpu_power not "
5893 "set\n");
4dcf6aff
IM
5894 break;
5895 }
1da177e4 5896
758b2cdc 5897 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5898 printk(KERN_CONT "\n");
5899 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5900 break;
5901 }
1da177e4 5902
758b2cdc 5903 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5904 printk(KERN_CONT "\n");
5905 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5906 break;
5907 }
1da177e4 5908
758b2cdc 5909 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5910
968ea6d8 5911 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5912
3df0fc5b 5913 printk(KERN_CONT " %s", str);
18a3885f 5914 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
5915 printk(KERN_CONT " (cpu_power = %d)",
5916 group->cpu_power);
381512cf 5917 }
1da177e4 5918
4dcf6aff
IM
5919 group = group->next;
5920 } while (group != sd->groups);
3df0fc5b 5921 printk(KERN_CONT "\n");
1da177e4 5922
758b2cdc 5923 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5924 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5925
758b2cdc
RR
5926 if (sd->parent &&
5927 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5928 printk(KERN_ERR "ERROR: parent span is not a superset "
5929 "of domain->span\n");
4dcf6aff
IM
5930 return 0;
5931}
1da177e4 5932
4dcf6aff
IM
5933static void sched_domain_debug(struct sched_domain *sd, int cpu)
5934{
d5dd3db1 5935 cpumask_var_t groupmask;
4dcf6aff 5936 int level = 0;
1da177e4 5937
f6630114
MT
5938 if (!sched_domain_debug_enabled)
5939 return;
5940
4dcf6aff
IM
5941 if (!sd) {
5942 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5943 return;
5944 }
1da177e4 5945
4dcf6aff
IM
5946 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5947
d5dd3db1 5948 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
5949 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
5950 return;
5951 }
5952
4dcf6aff 5953 for (;;) {
7c16ec58 5954 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 5955 break;
1da177e4
LT
5956 level++;
5957 sd = sd->parent;
33859f7f 5958 if (!sd)
4dcf6aff
IM
5959 break;
5960 }
d5dd3db1 5961 free_cpumask_var(groupmask);
1da177e4 5962}
6d6bc0ad 5963#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5964# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 5965#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5966
1a20ff27 5967static int sd_degenerate(struct sched_domain *sd)
245af2c7 5968{
758b2cdc 5969 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5970 return 1;
5971
5972 /* Following flags need at least 2 groups */
5973 if (sd->flags & (SD_LOAD_BALANCE |
5974 SD_BALANCE_NEWIDLE |
5975 SD_BALANCE_FORK |
89c4710e
SS
5976 SD_BALANCE_EXEC |
5977 SD_SHARE_CPUPOWER |
5978 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5979 if (sd->groups != sd->groups->next)
5980 return 0;
5981 }
5982
5983 /* Following flags don't use groups */
c88d5910 5984 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5985 return 0;
5986
5987 return 1;
5988}
5989
48f24c4d
IM
5990static int
5991sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5992{
5993 unsigned long cflags = sd->flags, pflags = parent->flags;
5994
5995 if (sd_degenerate(parent))
5996 return 1;
5997
758b2cdc 5998 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5999 return 0;
6000
245af2c7
SS
6001 /* Flags needing groups don't count if only 1 group in parent */
6002 if (parent->groups == parent->groups->next) {
6003 pflags &= ~(SD_LOAD_BALANCE |
6004 SD_BALANCE_NEWIDLE |
6005 SD_BALANCE_FORK |
89c4710e
SS
6006 SD_BALANCE_EXEC |
6007 SD_SHARE_CPUPOWER |
6008 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6009 if (nr_node_ids == 1)
6010 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6011 }
6012 if (~cflags & pflags)
6013 return 0;
6014
6015 return 1;
6016}
6017
c6c4927b
RR
6018static void free_rootdomain(struct root_domain *rd)
6019{
047106ad
PZ
6020 synchronize_sched();
6021
68e74568
RR
6022 cpupri_cleanup(&rd->cpupri);
6023
c6c4927b
RR
6024 free_cpumask_var(rd->rto_mask);
6025 free_cpumask_var(rd->online);
6026 free_cpumask_var(rd->span);
6027 kfree(rd);
6028}
6029
57d885fe
GH
6030static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6031{
a0490fa3 6032 struct root_domain *old_rd = NULL;
57d885fe 6033 unsigned long flags;
57d885fe 6034
05fa785c 6035 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6036
6037 if (rq->rd) {
a0490fa3 6038 old_rd = rq->rd;
57d885fe 6039
c6c4927b 6040 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6041 set_rq_offline(rq);
57d885fe 6042
c6c4927b 6043 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6044
a0490fa3
IM
6045 /*
6046 * If we dont want to free the old_rt yet then
6047 * set old_rd to NULL to skip the freeing later
6048 * in this function:
6049 */
6050 if (!atomic_dec_and_test(&old_rd->refcount))
6051 old_rd = NULL;
57d885fe
GH
6052 }
6053
6054 atomic_inc(&rd->refcount);
6055 rq->rd = rd;
6056
c6c4927b 6057 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6058 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6059 set_rq_online(rq);
57d885fe 6060
05fa785c 6061 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6062
6063 if (old_rd)
6064 free_rootdomain(old_rd);
57d885fe
GH
6065}
6066
fd5e1b5d 6067static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 6068{
36b7b6d4
PE
6069 gfp_t gfp = GFP_KERNEL;
6070
57d885fe
GH
6071 memset(rd, 0, sizeof(*rd));
6072
36b7b6d4
PE
6073 if (bootmem)
6074 gfp = GFP_NOWAIT;
c6c4927b 6075
36b7b6d4 6076 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 6077 goto out;
36b7b6d4 6078 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 6079 goto free_span;
36b7b6d4 6080 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 6081 goto free_online;
6e0534f2 6082
0fb53029 6083 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 6084 goto free_rto_mask;
c6c4927b 6085 return 0;
6e0534f2 6086
68e74568
RR
6087free_rto_mask:
6088 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6089free_online:
6090 free_cpumask_var(rd->online);
6091free_span:
6092 free_cpumask_var(rd->span);
0c910d28 6093out:
c6c4927b 6094 return -ENOMEM;
57d885fe
GH
6095}
6096
6097static void init_defrootdomain(void)
6098{
c6c4927b
RR
6099 init_rootdomain(&def_root_domain, true);
6100
57d885fe
GH
6101 atomic_set(&def_root_domain.refcount, 1);
6102}
6103
dc938520 6104static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6105{
6106 struct root_domain *rd;
6107
6108 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6109 if (!rd)
6110 return NULL;
6111
c6c4927b
RR
6112 if (init_rootdomain(rd, false) != 0) {
6113 kfree(rd);
6114 return NULL;
6115 }
57d885fe
GH
6116
6117 return rd;
6118}
6119
1da177e4 6120/*
0eab9146 6121 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6122 * hold the hotplug lock.
6123 */
0eab9146
IM
6124static void
6125cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6126{
70b97a7f 6127 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6128 struct sched_domain *tmp;
6129
669c55e9
PZ
6130 for (tmp = sd; tmp; tmp = tmp->parent)
6131 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6132
245af2c7 6133 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6134 for (tmp = sd; tmp; ) {
245af2c7
SS
6135 struct sched_domain *parent = tmp->parent;
6136 if (!parent)
6137 break;
f29c9b1c 6138
1a848870 6139 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6140 tmp->parent = parent->parent;
1a848870
SS
6141 if (parent->parent)
6142 parent->parent->child = tmp;
f29c9b1c
LZ
6143 } else
6144 tmp = tmp->parent;
245af2c7
SS
6145 }
6146
1a848870 6147 if (sd && sd_degenerate(sd)) {
245af2c7 6148 sd = sd->parent;
1a848870
SS
6149 if (sd)
6150 sd->child = NULL;
6151 }
1da177e4
LT
6152
6153 sched_domain_debug(sd, cpu);
6154
57d885fe 6155 rq_attach_root(rq, rd);
674311d5 6156 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6157}
6158
6159/* cpus with isolated domains */
dcc30a35 6160static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6161
6162/* Setup the mask of cpus configured for isolated domains */
6163static int __init isolated_cpu_setup(char *str)
6164{
bdddd296 6165 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6166 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6167 return 1;
6168}
6169
8927f494 6170__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6171
6172/*
6711cab4
SS
6173 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6174 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6175 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6176 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6177 *
6178 * init_sched_build_groups will build a circular linked list of the groups
6179 * covered by the given span, and will set each group's ->cpumask correctly,
6180 * and ->cpu_power to 0.
6181 */
a616058b 6182static void
96f874e2
RR
6183init_sched_build_groups(const struct cpumask *span,
6184 const struct cpumask *cpu_map,
6185 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6186 struct sched_group **sg,
96f874e2
RR
6187 struct cpumask *tmpmask),
6188 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6189{
6190 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6191 int i;
6192
96f874e2 6193 cpumask_clear(covered);
7c16ec58 6194
abcd083a 6195 for_each_cpu(i, span) {
6711cab4 6196 struct sched_group *sg;
7c16ec58 6197 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6198 int j;
6199
758b2cdc 6200 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6201 continue;
6202
758b2cdc 6203 cpumask_clear(sched_group_cpus(sg));
18a3885f 6204 sg->cpu_power = 0;
1da177e4 6205
abcd083a 6206 for_each_cpu(j, span) {
7c16ec58 6207 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6208 continue;
6209
96f874e2 6210 cpumask_set_cpu(j, covered);
758b2cdc 6211 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6212 }
6213 if (!first)
6214 first = sg;
6215 if (last)
6216 last->next = sg;
6217 last = sg;
6218 }
6219 last->next = first;
6220}
6221
9c1cfda2 6222#define SD_NODES_PER_DOMAIN 16
1da177e4 6223
9c1cfda2 6224#ifdef CONFIG_NUMA
198e2f18 6225
9c1cfda2
JH
6226/**
6227 * find_next_best_node - find the next node to include in a sched_domain
6228 * @node: node whose sched_domain we're building
6229 * @used_nodes: nodes already in the sched_domain
6230 *
41a2d6cf 6231 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6232 * finds the closest node not already in the @used_nodes map.
6233 *
6234 * Should use nodemask_t.
6235 */
c5f59f08 6236static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6237{
6238 int i, n, val, min_val, best_node = 0;
6239
6240 min_val = INT_MAX;
6241
076ac2af 6242 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6243 /* Start at @node */
076ac2af 6244 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6245
6246 if (!nr_cpus_node(n))
6247 continue;
6248
6249 /* Skip already used nodes */
c5f59f08 6250 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6251 continue;
6252
6253 /* Simple min distance search */
6254 val = node_distance(node, n);
6255
6256 if (val < min_val) {
6257 min_val = val;
6258 best_node = n;
6259 }
6260 }
6261
c5f59f08 6262 node_set(best_node, *used_nodes);
9c1cfda2
JH
6263 return best_node;
6264}
6265
6266/**
6267 * sched_domain_node_span - get a cpumask for a node's sched_domain
6268 * @node: node whose cpumask we're constructing
73486722 6269 * @span: resulting cpumask
9c1cfda2 6270 *
41a2d6cf 6271 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6272 * should be one that prevents unnecessary balancing, but also spreads tasks
6273 * out optimally.
6274 */
96f874e2 6275static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6276{
c5f59f08 6277 nodemask_t used_nodes;
48f24c4d 6278 int i;
9c1cfda2 6279
6ca09dfc 6280 cpumask_clear(span);
c5f59f08 6281 nodes_clear(used_nodes);
9c1cfda2 6282
6ca09dfc 6283 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6284 node_set(node, used_nodes);
9c1cfda2
JH
6285
6286 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6287 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6288
6ca09dfc 6289 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6290 }
9c1cfda2 6291}
6d6bc0ad 6292#endif /* CONFIG_NUMA */
9c1cfda2 6293
5c45bf27 6294int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6295
6c99e9ad
RR
6296/*
6297 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6298 *
6299 * ( See the the comments in include/linux/sched.h:struct sched_group
6300 * and struct sched_domain. )
6c99e9ad
RR
6301 */
6302struct static_sched_group {
6303 struct sched_group sg;
6304 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6305};
6306
6307struct static_sched_domain {
6308 struct sched_domain sd;
6309 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6310};
6311
49a02c51
AH
6312struct s_data {
6313#ifdef CONFIG_NUMA
6314 int sd_allnodes;
6315 cpumask_var_t domainspan;
6316 cpumask_var_t covered;
6317 cpumask_var_t notcovered;
6318#endif
6319 cpumask_var_t nodemask;
6320 cpumask_var_t this_sibling_map;
6321 cpumask_var_t this_core_map;
6322 cpumask_var_t send_covered;
6323 cpumask_var_t tmpmask;
6324 struct sched_group **sched_group_nodes;
6325 struct root_domain *rd;
6326};
6327
2109b99e
AH
6328enum s_alloc {
6329 sa_sched_groups = 0,
6330 sa_rootdomain,
6331 sa_tmpmask,
6332 sa_send_covered,
6333 sa_this_core_map,
6334 sa_this_sibling_map,
6335 sa_nodemask,
6336 sa_sched_group_nodes,
6337#ifdef CONFIG_NUMA
6338 sa_notcovered,
6339 sa_covered,
6340 sa_domainspan,
6341#endif
6342 sa_none,
6343};
6344
9c1cfda2 6345/*
48f24c4d 6346 * SMT sched-domains:
9c1cfda2 6347 */
1da177e4 6348#ifdef CONFIG_SCHED_SMT
6c99e9ad 6349static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6350static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6351
41a2d6cf 6352static int
96f874e2
RR
6353cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6354 struct sched_group **sg, struct cpumask *unused)
1da177e4 6355{
6711cab4 6356 if (sg)
1871e52c 6357 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6358 return cpu;
6359}
6d6bc0ad 6360#endif /* CONFIG_SCHED_SMT */
1da177e4 6361
48f24c4d
IM
6362/*
6363 * multi-core sched-domains:
6364 */
1e9f28fa 6365#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6366static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6367static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6368#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6369
6370#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6371static int
96f874e2
RR
6372cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6373 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6374{
6711cab4 6375 int group;
7c16ec58 6376
c69fc56d 6377 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6378 group = cpumask_first(mask);
6711cab4 6379 if (sg)
6c99e9ad 6380 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6381 return group;
1e9f28fa
SS
6382}
6383#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6384static int
96f874e2
RR
6385cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6386 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6387{
6711cab4 6388 if (sg)
6c99e9ad 6389 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6390 return cpu;
6391}
6392#endif
6393
6c99e9ad
RR
6394static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6395static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6396
41a2d6cf 6397static int
96f874e2
RR
6398cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6399 struct sched_group **sg, struct cpumask *mask)
1da177e4 6400{
6711cab4 6401 int group;
48f24c4d 6402#ifdef CONFIG_SCHED_MC
6ca09dfc 6403 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6404 group = cpumask_first(mask);
1e9f28fa 6405#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6406 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6407 group = cpumask_first(mask);
1da177e4 6408#else
6711cab4 6409 group = cpu;
1da177e4 6410#endif
6711cab4 6411 if (sg)
6c99e9ad 6412 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6413 return group;
1da177e4
LT
6414}
6415
6416#ifdef CONFIG_NUMA
1da177e4 6417/*
9c1cfda2
JH
6418 * The init_sched_build_groups can't handle what we want to do with node
6419 * groups, so roll our own. Now each node has its own list of groups which
6420 * gets dynamically allocated.
1da177e4 6421 */
62ea9ceb 6422static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6423static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6424
62ea9ceb 6425static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6426static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6427
96f874e2
RR
6428static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6429 struct sched_group **sg,
6430 struct cpumask *nodemask)
9c1cfda2 6431{
6711cab4
SS
6432 int group;
6433
6ca09dfc 6434 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6435 group = cpumask_first(nodemask);
6711cab4
SS
6436
6437 if (sg)
6c99e9ad 6438 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6439 return group;
1da177e4 6440}
6711cab4 6441
08069033
SS
6442static void init_numa_sched_groups_power(struct sched_group *group_head)
6443{
6444 struct sched_group *sg = group_head;
6445 int j;
6446
6447 if (!sg)
6448 return;
3a5c359a 6449 do {
758b2cdc 6450 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6451 struct sched_domain *sd;
08069033 6452
6c99e9ad 6453 sd = &per_cpu(phys_domains, j).sd;
13318a71 6454 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6455 /*
6456 * Only add "power" once for each
6457 * physical package.
6458 */
6459 continue;
6460 }
08069033 6461
18a3885f 6462 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6463 }
6464 sg = sg->next;
6465 } while (sg != group_head);
08069033 6466}
0601a88d
AH
6467
6468static int build_numa_sched_groups(struct s_data *d,
6469 const struct cpumask *cpu_map, int num)
6470{
6471 struct sched_domain *sd;
6472 struct sched_group *sg, *prev;
6473 int n, j;
6474
6475 cpumask_clear(d->covered);
6476 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6477 if (cpumask_empty(d->nodemask)) {
6478 d->sched_group_nodes[num] = NULL;
6479 goto out;
6480 }
6481
6482 sched_domain_node_span(num, d->domainspan);
6483 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6484
6485 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6486 GFP_KERNEL, num);
6487 if (!sg) {
3df0fc5b
PZ
6488 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6489 num);
0601a88d
AH
6490 return -ENOMEM;
6491 }
6492 d->sched_group_nodes[num] = sg;
6493
6494 for_each_cpu(j, d->nodemask) {
6495 sd = &per_cpu(node_domains, j).sd;
6496 sd->groups = sg;
6497 }
6498
18a3885f 6499 sg->cpu_power = 0;
0601a88d
AH
6500 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6501 sg->next = sg;
6502 cpumask_or(d->covered, d->covered, d->nodemask);
6503
6504 prev = sg;
6505 for (j = 0; j < nr_node_ids; j++) {
6506 n = (num + j) % nr_node_ids;
6507 cpumask_complement(d->notcovered, d->covered);
6508 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6509 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6510 if (cpumask_empty(d->tmpmask))
6511 break;
6512 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6513 if (cpumask_empty(d->tmpmask))
6514 continue;
6515 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6516 GFP_KERNEL, num);
6517 if (!sg) {
3df0fc5b
PZ
6518 printk(KERN_WARNING
6519 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6520 return -ENOMEM;
6521 }
18a3885f 6522 sg->cpu_power = 0;
0601a88d
AH
6523 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6524 sg->next = prev->next;
6525 cpumask_or(d->covered, d->covered, d->tmpmask);
6526 prev->next = sg;
6527 prev = sg;
6528 }
6529out:
6530 return 0;
6531}
6d6bc0ad 6532#endif /* CONFIG_NUMA */
1da177e4 6533
a616058b 6534#ifdef CONFIG_NUMA
51888ca2 6535/* Free memory allocated for various sched_group structures */
96f874e2
RR
6536static void free_sched_groups(const struct cpumask *cpu_map,
6537 struct cpumask *nodemask)
51888ca2 6538{
a616058b 6539 int cpu, i;
51888ca2 6540
abcd083a 6541 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6542 struct sched_group **sched_group_nodes
6543 = sched_group_nodes_bycpu[cpu];
6544
51888ca2
SV
6545 if (!sched_group_nodes)
6546 continue;
6547
076ac2af 6548 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6549 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6550
6ca09dfc 6551 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6552 if (cpumask_empty(nodemask))
51888ca2
SV
6553 continue;
6554
6555 if (sg == NULL)
6556 continue;
6557 sg = sg->next;
6558next_sg:
6559 oldsg = sg;
6560 sg = sg->next;
6561 kfree(oldsg);
6562 if (oldsg != sched_group_nodes[i])
6563 goto next_sg;
6564 }
6565 kfree(sched_group_nodes);
6566 sched_group_nodes_bycpu[cpu] = NULL;
6567 }
51888ca2 6568}
6d6bc0ad 6569#else /* !CONFIG_NUMA */
96f874e2
RR
6570static void free_sched_groups(const struct cpumask *cpu_map,
6571 struct cpumask *nodemask)
a616058b
SS
6572{
6573}
6d6bc0ad 6574#endif /* CONFIG_NUMA */
51888ca2 6575
89c4710e
SS
6576/*
6577 * Initialize sched groups cpu_power.
6578 *
6579 * cpu_power indicates the capacity of sched group, which is used while
6580 * distributing the load between different sched groups in a sched domain.
6581 * Typically cpu_power for all the groups in a sched domain will be same unless
6582 * there are asymmetries in the topology. If there are asymmetries, group
6583 * having more cpu_power will pickup more load compared to the group having
6584 * less cpu_power.
89c4710e
SS
6585 */
6586static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6587{
6588 struct sched_domain *child;
6589 struct sched_group *group;
f93e65c1
PZ
6590 long power;
6591 int weight;
89c4710e
SS
6592
6593 WARN_ON(!sd || !sd->groups);
6594
13318a71 6595 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6596 return;
6597
6598 child = sd->child;
6599
18a3885f 6600 sd->groups->cpu_power = 0;
5517d86b 6601
f93e65c1
PZ
6602 if (!child) {
6603 power = SCHED_LOAD_SCALE;
6604 weight = cpumask_weight(sched_domain_span(sd));
6605 /*
6606 * SMT siblings share the power of a single core.
a52bfd73
PZ
6607 * Usually multiple threads get a better yield out of
6608 * that one core than a single thread would have,
6609 * reflect that in sd->smt_gain.
f93e65c1 6610 */
a52bfd73
PZ
6611 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6612 power *= sd->smt_gain;
f93e65c1 6613 power /= weight;
a52bfd73
PZ
6614 power >>= SCHED_LOAD_SHIFT;
6615 }
18a3885f 6616 sd->groups->cpu_power += power;
89c4710e
SS
6617 return;
6618 }
6619
89c4710e 6620 /*
f93e65c1 6621 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6622 */
6623 group = child->groups;
6624 do {
18a3885f 6625 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6626 group = group->next;
6627 } while (group != child->groups);
6628}
6629
7c16ec58
MT
6630/*
6631 * Initializers for schedule domains
6632 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6633 */
6634
a5d8c348
IM
6635#ifdef CONFIG_SCHED_DEBUG
6636# define SD_INIT_NAME(sd, type) sd->name = #type
6637#else
6638# define SD_INIT_NAME(sd, type) do { } while (0)
6639#endif
6640
7c16ec58 6641#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6642
7c16ec58
MT
6643#define SD_INIT_FUNC(type) \
6644static noinline void sd_init_##type(struct sched_domain *sd) \
6645{ \
6646 memset(sd, 0, sizeof(*sd)); \
6647 *sd = SD_##type##_INIT; \
1d3504fc 6648 sd->level = SD_LV_##type; \
a5d8c348 6649 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6650}
6651
6652SD_INIT_FUNC(CPU)
6653#ifdef CONFIG_NUMA
6654 SD_INIT_FUNC(ALLNODES)
6655 SD_INIT_FUNC(NODE)
6656#endif
6657#ifdef CONFIG_SCHED_SMT
6658 SD_INIT_FUNC(SIBLING)
6659#endif
6660#ifdef CONFIG_SCHED_MC
6661 SD_INIT_FUNC(MC)
6662#endif
6663
1d3504fc
HS
6664static int default_relax_domain_level = -1;
6665
6666static int __init setup_relax_domain_level(char *str)
6667{
30e0e178
LZ
6668 unsigned long val;
6669
6670 val = simple_strtoul(str, NULL, 0);
6671 if (val < SD_LV_MAX)
6672 default_relax_domain_level = val;
6673
1d3504fc
HS
6674 return 1;
6675}
6676__setup("relax_domain_level=", setup_relax_domain_level);
6677
6678static void set_domain_attribute(struct sched_domain *sd,
6679 struct sched_domain_attr *attr)
6680{
6681 int request;
6682
6683 if (!attr || attr->relax_domain_level < 0) {
6684 if (default_relax_domain_level < 0)
6685 return;
6686 else
6687 request = default_relax_domain_level;
6688 } else
6689 request = attr->relax_domain_level;
6690 if (request < sd->level) {
6691 /* turn off idle balance on this domain */
c88d5910 6692 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6693 } else {
6694 /* turn on idle balance on this domain */
c88d5910 6695 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6696 }
6697}
6698
2109b99e
AH
6699static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6700 const struct cpumask *cpu_map)
6701{
6702 switch (what) {
6703 case sa_sched_groups:
6704 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6705 d->sched_group_nodes = NULL;
6706 case sa_rootdomain:
6707 free_rootdomain(d->rd); /* fall through */
6708 case sa_tmpmask:
6709 free_cpumask_var(d->tmpmask); /* fall through */
6710 case sa_send_covered:
6711 free_cpumask_var(d->send_covered); /* fall through */
6712 case sa_this_core_map:
6713 free_cpumask_var(d->this_core_map); /* fall through */
6714 case sa_this_sibling_map:
6715 free_cpumask_var(d->this_sibling_map); /* fall through */
6716 case sa_nodemask:
6717 free_cpumask_var(d->nodemask); /* fall through */
6718 case sa_sched_group_nodes:
d1b55138 6719#ifdef CONFIG_NUMA
2109b99e
AH
6720 kfree(d->sched_group_nodes); /* fall through */
6721 case sa_notcovered:
6722 free_cpumask_var(d->notcovered); /* fall through */
6723 case sa_covered:
6724 free_cpumask_var(d->covered); /* fall through */
6725 case sa_domainspan:
6726 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6727#endif
2109b99e
AH
6728 case sa_none:
6729 break;
6730 }
6731}
3404c8d9 6732
2109b99e
AH
6733static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6734 const struct cpumask *cpu_map)
6735{
3404c8d9 6736#ifdef CONFIG_NUMA
2109b99e
AH
6737 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6738 return sa_none;
6739 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6740 return sa_domainspan;
6741 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6742 return sa_covered;
6743 /* Allocate the per-node list of sched groups */
6744 d->sched_group_nodes = kcalloc(nr_node_ids,
6745 sizeof(struct sched_group *), GFP_KERNEL);
6746 if (!d->sched_group_nodes) {
3df0fc5b 6747 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6748 return sa_notcovered;
d1b55138 6749 }
2109b99e 6750 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6751#endif
2109b99e
AH
6752 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6753 return sa_sched_group_nodes;
6754 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6755 return sa_nodemask;
6756 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6757 return sa_this_sibling_map;
6758 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6759 return sa_this_core_map;
6760 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6761 return sa_send_covered;
6762 d->rd = alloc_rootdomain();
6763 if (!d->rd) {
3df0fc5b 6764 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6765 return sa_tmpmask;
57d885fe 6766 }
2109b99e
AH
6767 return sa_rootdomain;
6768}
57d885fe 6769
7f4588f3
AH
6770static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6771 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6772{
6773 struct sched_domain *sd = NULL;
7c16ec58 6774#ifdef CONFIG_NUMA
7f4588f3 6775 struct sched_domain *parent;
1da177e4 6776
7f4588f3
AH
6777 d->sd_allnodes = 0;
6778 if (cpumask_weight(cpu_map) >
6779 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6780 sd = &per_cpu(allnodes_domains, i).sd;
6781 SD_INIT(sd, ALLNODES);
1d3504fc 6782 set_domain_attribute(sd, attr);
7f4588f3
AH
6783 cpumask_copy(sched_domain_span(sd), cpu_map);
6784 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6785 d->sd_allnodes = 1;
6786 }
6787 parent = sd;
6788
6789 sd = &per_cpu(node_domains, i).sd;
6790 SD_INIT(sd, NODE);
6791 set_domain_attribute(sd, attr);
6792 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6793 sd->parent = parent;
6794 if (parent)
6795 parent->child = sd;
6796 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6797#endif
7f4588f3
AH
6798 return sd;
6799}
1da177e4 6800
87cce662
AH
6801static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6802 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6803 struct sched_domain *parent, int i)
6804{
6805 struct sched_domain *sd;
6806 sd = &per_cpu(phys_domains, i).sd;
6807 SD_INIT(sd, CPU);
6808 set_domain_attribute(sd, attr);
6809 cpumask_copy(sched_domain_span(sd), d->nodemask);
6810 sd->parent = parent;
6811 if (parent)
6812 parent->child = sd;
6813 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6814 return sd;
6815}
1da177e4 6816
410c4081
AH
6817static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6818 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6819 struct sched_domain *parent, int i)
6820{
6821 struct sched_domain *sd = parent;
1e9f28fa 6822#ifdef CONFIG_SCHED_MC
410c4081
AH
6823 sd = &per_cpu(core_domains, i).sd;
6824 SD_INIT(sd, MC);
6825 set_domain_attribute(sd, attr);
6826 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6827 sd->parent = parent;
6828 parent->child = sd;
6829 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 6830#endif
410c4081
AH
6831 return sd;
6832}
1e9f28fa 6833
d8173535
AH
6834static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6835 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6836 struct sched_domain *parent, int i)
6837{
6838 struct sched_domain *sd = parent;
1da177e4 6839#ifdef CONFIG_SCHED_SMT
d8173535
AH
6840 sd = &per_cpu(cpu_domains, i).sd;
6841 SD_INIT(sd, SIBLING);
6842 set_domain_attribute(sd, attr);
6843 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6844 sd->parent = parent;
6845 parent->child = sd;
6846 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 6847#endif
d8173535
AH
6848 return sd;
6849}
1da177e4 6850
0e8e85c9
AH
6851static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6852 const struct cpumask *cpu_map, int cpu)
6853{
6854 switch (l) {
1da177e4 6855#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
6856 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6857 cpumask_and(d->this_sibling_map, cpu_map,
6858 topology_thread_cpumask(cpu));
6859 if (cpu == cpumask_first(d->this_sibling_map))
6860 init_sched_build_groups(d->this_sibling_map, cpu_map,
6861 &cpu_to_cpu_group,
6862 d->send_covered, d->tmpmask);
6863 break;
1da177e4 6864#endif
1e9f28fa 6865#ifdef CONFIG_SCHED_MC
a2af04cd
AH
6866 case SD_LV_MC: /* set up multi-core groups */
6867 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6868 if (cpu == cpumask_first(d->this_core_map))
6869 init_sched_build_groups(d->this_core_map, cpu_map,
6870 &cpu_to_core_group,
6871 d->send_covered, d->tmpmask);
6872 break;
1e9f28fa 6873#endif
86548096
AH
6874 case SD_LV_CPU: /* set up physical groups */
6875 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6876 if (!cpumask_empty(d->nodemask))
6877 init_sched_build_groups(d->nodemask, cpu_map,
6878 &cpu_to_phys_group,
6879 d->send_covered, d->tmpmask);
6880 break;
1da177e4 6881#ifdef CONFIG_NUMA
de616e36
AH
6882 case SD_LV_ALLNODES:
6883 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6884 d->send_covered, d->tmpmask);
6885 break;
6886#endif
0e8e85c9
AH
6887 default:
6888 break;
7c16ec58 6889 }
0e8e85c9 6890}
9c1cfda2 6891
2109b99e
AH
6892/*
6893 * Build sched domains for a given set of cpus and attach the sched domains
6894 * to the individual cpus
6895 */
6896static int __build_sched_domains(const struct cpumask *cpu_map,
6897 struct sched_domain_attr *attr)
6898{
6899 enum s_alloc alloc_state = sa_none;
6900 struct s_data d;
294b0c96 6901 struct sched_domain *sd;
2109b99e 6902 int i;
7c16ec58 6903#ifdef CONFIG_NUMA
2109b99e 6904 d.sd_allnodes = 0;
7c16ec58 6905#endif
9c1cfda2 6906
2109b99e
AH
6907 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6908 if (alloc_state != sa_rootdomain)
6909 goto error;
6910 alloc_state = sa_sched_groups;
9c1cfda2 6911
1da177e4 6912 /*
1a20ff27 6913 * Set up domains for cpus specified by the cpu_map.
1da177e4 6914 */
abcd083a 6915 for_each_cpu(i, cpu_map) {
49a02c51
AH
6916 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
6917 cpu_map);
9761eea8 6918
7f4588f3 6919 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 6920 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 6921 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 6922 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 6923 }
9c1cfda2 6924
abcd083a 6925 for_each_cpu(i, cpu_map) {
0e8e85c9 6926 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 6927 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 6928 }
9c1cfda2 6929
1da177e4 6930 /* Set up physical groups */
86548096
AH
6931 for (i = 0; i < nr_node_ids; i++)
6932 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 6933
1da177e4
LT
6934#ifdef CONFIG_NUMA
6935 /* Set up node groups */
de616e36
AH
6936 if (d.sd_allnodes)
6937 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 6938
0601a88d
AH
6939 for (i = 0; i < nr_node_ids; i++)
6940 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 6941 goto error;
1da177e4
LT
6942#endif
6943
6944 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6945#ifdef CONFIG_SCHED_SMT
abcd083a 6946 for_each_cpu(i, cpu_map) {
294b0c96 6947 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 6948 init_sched_groups_power(i, sd);
5c45bf27 6949 }
1da177e4 6950#endif
1e9f28fa 6951#ifdef CONFIG_SCHED_MC
abcd083a 6952 for_each_cpu(i, cpu_map) {
294b0c96 6953 sd = &per_cpu(core_domains, i).sd;
89c4710e 6954 init_sched_groups_power(i, sd);
5c45bf27
SS
6955 }
6956#endif
1e9f28fa 6957
abcd083a 6958 for_each_cpu(i, cpu_map) {
294b0c96 6959 sd = &per_cpu(phys_domains, i).sd;
89c4710e 6960 init_sched_groups_power(i, sd);
1da177e4
LT
6961 }
6962
9c1cfda2 6963#ifdef CONFIG_NUMA
076ac2af 6964 for (i = 0; i < nr_node_ids; i++)
49a02c51 6965 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 6966
49a02c51 6967 if (d.sd_allnodes) {
6711cab4 6968 struct sched_group *sg;
f712c0c7 6969
96f874e2 6970 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 6971 d.tmpmask);
f712c0c7
SS
6972 init_numa_sched_groups_power(sg);
6973 }
9c1cfda2
JH
6974#endif
6975
1da177e4 6976 /* Attach the domains */
abcd083a 6977 for_each_cpu(i, cpu_map) {
1da177e4 6978#ifdef CONFIG_SCHED_SMT
6c99e9ad 6979 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 6980#elif defined(CONFIG_SCHED_MC)
6c99e9ad 6981 sd = &per_cpu(core_domains, i).sd;
1da177e4 6982#else
6c99e9ad 6983 sd = &per_cpu(phys_domains, i).sd;
1da177e4 6984#endif
49a02c51 6985 cpu_attach_domain(sd, d.rd, i);
1da177e4 6986 }
51888ca2 6987
2109b99e
AH
6988 d.sched_group_nodes = NULL; /* don't free this we still need it */
6989 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
6990 return 0;
51888ca2 6991
51888ca2 6992error:
2109b99e
AH
6993 __free_domain_allocs(&d, alloc_state, cpu_map);
6994 return -ENOMEM;
1da177e4 6995}
029190c5 6996
96f874e2 6997static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
6998{
6999 return __build_sched_domains(cpu_map, NULL);
7000}
7001
acc3f5d7 7002static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7003static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7004static struct sched_domain_attr *dattr_cur;
7005 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7006
7007/*
7008 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7009 * cpumask) fails, then fallback to a single sched domain,
7010 * as determined by the single cpumask fallback_doms.
029190c5 7011 */
4212823f 7012static cpumask_var_t fallback_doms;
029190c5 7013
ee79d1bd
HC
7014/*
7015 * arch_update_cpu_topology lets virtualized architectures update the
7016 * cpu core maps. It is supposed to return 1 if the topology changed
7017 * or 0 if it stayed the same.
7018 */
7019int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7020{
ee79d1bd 7021 return 0;
22e52b07
HC
7022}
7023
acc3f5d7
RR
7024cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7025{
7026 int i;
7027 cpumask_var_t *doms;
7028
7029 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7030 if (!doms)
7031 return NULL;
7032 for (i = 0; i < ndoms; i++) {
7033 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7034 free_sched_domains(doms, i);
7035 return NULL;
7036 }
7037 }
7038 return doms;
7039}
7040
7041void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7042{
7043 unsigned int i;
7044 for (i = 0; i < ndoms; i++)
7045 free_cpumask_var(doms[i]);
7046 kfree(doms);
7047}
7048
1a20ff27 7049/*
41a2d6cf 7050 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7051 * For now this just excludes isolated cpus, but could be used to
7052 * exclude other special cases in the future.
1a20ff27 7053 */
96f874e2 7054static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7055{
7378547f
MM
7056 int err;
7057
22e52b07 7058 arch_update_cpu_topology();
029190c5 7059 ndoms_cur = 1;
acc3f5d7 7060 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7061 if (!doms_cur)
acc3f5d7
RR
7062 doms_cur = &fallback_doms;
7063 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7064 dattr_cur = NULL;
acc3f5d7 7065 err = build_sched_domains(doms_cur[0]);
6382bc90 7066 register_sched_domain_sysctl();
7378547f
MM
7067
7068 return err;
1a20ff27
DG
7069}
7070
96f874e2
RR
7071static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7072 struct cpumask *tmpmask)
1da177e4 7073{
7c16ec58 7074 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7075}
1da177e4 7076
1a20ff27
DG
7077/*
7078 * Detach sched domains from a group of cpus specified in cpu_map
7079 * These cpus will now be attached to the NULL domain
7080 */
96f874e2 7081static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7082{
96f874e2
RR
7083 /* Save because hotplug lock held. */
7084 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7085 int i;
7086
abcd083a 7087 for_each_cpu(i, cpu_map)
57d885fe 7088 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7089 synchronize_sched();
96f874e2 7090 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7091}
7092
1d3504fc
HS
7093/* handle null as "default" */
7094static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7095 struct sched_domain_attr *new, int idx_new)
7096{
7097 struct sched_domain_attr tmp;
7098
7099 /* fast path */
7100 if (!new && !cur)
7101 return 1;
7102
7103 tmp = SD_ATTR_INIT;
7104 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7105 new ? (new + idx_new) : &tmp,
7106 sizeof(struct sched_domain_attr));
7107}
7108
029190c5
PJ
7109/*
7110 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7111 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7112 * doms_new[] to the current sched domain partitioning, doms_cur[].
7113 * It destroys each deleted domain and builds each new domain.
7114 *
acc3f5d7 7115 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7116 * The masks don't intersect (don't overlap.) We should setup one
7117 * sched domain for each mask. CPUs not in any of the cpumasks will
7118 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7119 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7120 * it as it is.
7121 *
acc3f5d7
RR
7122 * The passed in 'doms_new' should be allocated using
7123 * alloc_sched_domains. This routine takes ownership of it and will
7124 * free_sched_domains it when done with it. If the caller failed the
7125 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7126 * and partition_sched_domains() will fallback to the single partition
7127 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7128 *
96f874e2 7129 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7130 * ndoms_new == 0 is a special case for destroying existing domains,
7131 * and it will not create the default domain.
dfb512ec 7132 *
029190c5
PJ
7133 * Call with hotplug lock held
7134 */
acc3f5d7 7135void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7136 struct sched_domain_attr *dattr_new)
029190c5 7137{
dfb512ec 7138 int i, j, n;
d65bd5ec 7139 int new_topology;
029190c5 7140
712555ee 7141 mutex_lock(&sched_domains_mutex);
a1835615 7142
7378547f
MM
7143 /* always unregister in case we don't destroy any domains */
7144 unregister_sched_domain_sysctl();
7145
d65bd5ec
HC
7146 /* Let architecture update cpu core mappings. */
7147 new_topology = arch_update_cpu_topology();
7148
dfb512ec 7149 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7150
7151 /* Destroy deleted domains */
7152 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7153 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7154 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7155 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7156 goto match1;
7157 }
7158 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7159 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7160match1:
7161 ;
7162 }
7163
e761b772
MK
7164 if (doms_new == NULL) {
7165 ndoms_cur = 0;
acc3f5d7 7166 doms_new = &fallback_doms;
6ad4c188 7167 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7168 WARN_ON_ONCE(dattr_new);
e761b772
MK
7169 }
7170
029190c5
PJ
7171 /* Build new domains */
7172 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7173 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7174 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7175 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7176 goto match2;
7177 }
7178 /* no match - add a new doms_new */
acc3f5d7 7179 __build_sched_domains(doms_new[i],
1d3504fc 7180 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7181match2:
7182 ;
7183 }
7184
7185 /* Remember the new sched domains */
acc3f5d7
RR
7186 if (doms_cur != &fallback_doms)
7187 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7188 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7189 doms_cur = doms_new;
1d3504fc 7190 dattr_cur = dattr_new;
029190c5 7191 ndoms_cur = ndoms_new;
7378547f
MM
7192
7193 register_sched_domain_sysctl();
a1835615 7194
712555ee 7195 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7196}
7197
5c45bf27 7198#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7199static void arch_reinit_sched_domains(void)
5c45bf27 7200{
95402b38 7201 get_online_cpus();
dfb512ec
MK
7202
7203 /* Destroy domains first to force the rebuild */
7204 partition_sched_domains(0, NULL, NULL);
7205
e761b772 7206 rebuild_sched_domains();
95402b38 7207 put_online_cpus();
5c45bf27
SS
7208}
7209
7210static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7211{
afb8a9b7 7212 unsigned int level = 0;
5c45bf27 7213
afb8a9b7
GS
7214 if (sscanf(buf, "%u", &level) != 1)
7215 return -EINVAL;
7216
7217 /*
7218 * level is always be positive so don't check for
7219 * level < POWERSAVINGS_BALANCE_NONE which is 0
7220 * What happens on 0 or 1 byte write,
7221 * need to check for count as well?
7222 */
7223
7224 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7225 return -EINVAL;
7226
7227 if (smt)
afb8a9b7 7228 sched_smt_power_savings = level;
5c45bf27 7229 else
afb8a9b7 7230 sched_mc_power_savings = level;
5c45bf27 7231
c70f22d2 7232 arch_reinit_sched_domains();
5c45bf27 7233
c70f22d2 7234 return count;
5c45bf27
SS
7235}
7236
5c45bf27 7237#ifdef CONFIG_SCHED_MC
f718cd4a 7238static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7239 struct sysdev_class_attribute *attr,
f718cd4a 7240 char *page)
5c45bf27
SS
7241{
7242 return sprintf(page, "%u\n", sched_mc_power_savings);
7243}
f718cd4a 7244static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7245 struct sysdev_class_attribute *attr,
48f24c4d 7246 const char *buf, size_t count)
5c45bf27
SS
7247{
7248 return sched_power_savings_store(buf, count, 0);
7249}
f718cd4a
AK
7250static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7251 sched_mc_power_savings_show,
7252 sched_mc_power_savings_store);
5c45bf27
SS
7253#endif
7254
7255#ifdef CONFIG_SCHED_SMT
f718cd4a 7256static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7257 struct sysdev_class_attribute *attr,
f718cd4a 7258 char *page)
5c45bf27
SS
7259{
7260 return sprintf(page, "%u\n", sched_smt_power_savings);
7261}
f718cd4a 7262static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7263 struct sysdev_class_attribute *attr,
48f24c4d 7264 const char *buf, size_t count)
5c45bf27
SS
7265{
7266 return sched_power_savings_store(buf, count, 1);
7267}
f718cd4a
AK
7268static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7269 sched_smt_power_savings_show,
6707de00
AB
7270 sched_smt_power_savings_store);
7271#endif
7272
39aac648 7273int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7274{
7275 int err = 0;
7276
7277#ifdef CONFIG_SCHED_SMT
7278 if (smt_capable())
7279 err = sysfs_create_file(&cls->kset.kobj,
7280 &attr_sched_smt_power_savings.attr);
7281#endif
7282#ifdef CONFIG_SCHED_MC
7283 if (!err && mc_capable())
7284 err = sysfs_create_file(&cls->kset.kobj,
7285 &attr_sched_mc_power_savings.attr);
7286#endif
7287 return err;
7288}
6d6bc0ad 7289#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7290
e761b772 7291#ifndef CONFIG_CPUSETS
1da177e4 7292/*
e761b772
MK
7293 * Add online and remove offline CPUs from the scheduler domains.
7294 * When cpusets are enabled they take over this function.
1da177e4
LT
7295 */
7296static int update_sched_domains(struct notifier_block *nfb,
7297 unsigned long action, void *hcpu)
e761b772
MK
7298{
7299 switch (action) {
7300 case CPU_ONLINE:
7301 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
7302 case CPU_DOWN_PREPARE:
7303 case CPU_DOWN_PREPARE_FROZEN:
7304 case CPU_DOWN_FAILED:
7305 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 7306 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7307 return NOTIFY_OK;
7308
7309 default:
7310 return NOTIFY_DONE;
7311 }
7312}
7313#endif
7314
7315static int update_runtime(struct notifier_block *nfb,
7316 unsigned long action, void *hcpu)
1da177e4 7317{
7def2be1
PZ
7318 int cpu = (int)(long)hcpu;
7319
1da177e4 7320 switch (action) {
1da177e4 7321 case CPU_DOWN_PREPARE:
8bb78442 7322 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7323 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7324 return NOTIFY_OK;
7325
1da177e4 7326 case CPU_DOWN_FAILED:
8bb78442 7327 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7328 case CPU_ONLINE:
8bb78442 7329 case CPU_ONLINE_FROZEN:
7def2be1 7330 enable_runtime(cpu_rq(cpu));
e761b772
MK
7331 return NOTIFY_OK;
7332
1da177e4
LT
7333 default:
7334 return NOTIFY_DONE;
7335 }
1da177e4 7336}
1da177e4
LT
7337
7338void __init sched_init_smp(void)
7339{
dcc30a35
RR
7340 cpumask_var_t non_isolated_cpus;
7341
7342 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7343 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7344
434d53b0
MT
7345#if defined(CONFIG_NUMA)
7346 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7347 GFP_KERNEL);
7348 BUG_ON(sched_group_nodes_bycpu == NULL);
7349#endif
95402b38 7350 get_online_cpus();
712555ee 7351 mutex_lock(&sched_domains_mutex);
6ad4c188 7352 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7353 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7354 if (cpumask_empty(non_isolated_cpus))
7355 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7356 mutex_unlock(&sched_domains_mutex);
95402b38 7357 put_online_cpus();
e761b772
MK
7358
7359#ifndef CONFIG_CPUSETS
1da177e4
LT
7360 /* XXX: Theoretical race here - CPU may be hotplugged now */
7361 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7362#endif
7363
7364 /* RT runtime code needs to handle some hotplug events */
7365 hotcpu_notifier(update_runtime, 0);
7366
b328ca18 7367 init_hrtick();
5c1e1767
NP
7368
7369 /* Move init over to a non-isolated CPU */
dcc30a35 7370 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7371 BUG();
19978ca6 7372 sched_init_granularity();
dcc30a35 7373 free_cpumask_var(non_isolated_cpus);
4212823f 7374
0e3900e6 7375 init_sched_rt_class();
1da177e4
LT
7376}
7377#else
7378void __init sched_init_smp(void)
7379{
19978ca6 7380 sched_init_granularity();
1da177e4
LT
7381}
7382#endif /* CONFIG_SMP */
7383
cd1bb94b
AB
7384const_debug unsigned int sysctl_timer_migration = 1;
7385
1da177e4
LT
7386int in_sched_functions(unsigned long addr)
7387{
1da177e4
LT
7388 return in_lock_functions(addr) ||
7389 (addr >= (unsigned long)__sched_text_start
7390 && addr < (unsigned long)__sched_text_end);
7391}
7392
a9957449 7393static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7394{
7395 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7396 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7397#ifdef CONFIG_FAIR_GROUP_SCHED
7398 cfs_rq->rq = rq;
7399#endif
67e9fb2a 7400 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7401}
7402
fa85ae24
PZ
7403static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7404{
7405 struct rt_prio_array *array;
7406 int i;
7407
7408 array = &rt_rq->active;
7409 for (i = 0; i < MAX_RT_PRIO; i++) {
7410 INIT_LIST_HEAD(array->queue + i);
7411 __clear_bit(i, array->bitmap);
7412 }
7413 /* delimiter for bitsearch: */
7414 __set_bit(MAX_RT_PRIO, array->bitmap);
7415
052f1dc7 7416#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7417 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7418#ifdef CONFIG_SMP
e864c499 7419 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7420#endif
48d5e258 7421#endif
fa85ae24
PZ
7422#ifdef CONFIG_SMP
7423 rt_rq->rt_nr_migratory = 0;
fa85ae24 7424 rt_rq->overloaded = 0;
05fa785c 7425 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7426#endif
7427
7428 rt_rq->rt_time = 0;
7429 rt_rq->rt_throttled = 0;
ac086bc2 7430 rt_rq->rt_runtime = 0;
0986b11b 7431 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7432
052f1dc7 7433#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7434 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7435 rt_rq->rq = rq;
7436#endif
fa85ae24
PZ
7437}
7438
6f505b16 7439#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7440static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7441 struct sched_entity *se, int cpu, int add,
7442 struct sched_entity *parent)
6f505b16 7443{
ec7dc8ac 7444 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7445 tg->cfs_rq[cpu] = cfs_rq;
7446 init_cfs_rq(cfs_rq, rq);
7447 cfs_rq->tg = tg;
7448 if (add)
7449 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7450
7451 tg->se[cpu] = se;
354d60c2
DG
7452 /* se could be NULL for init_task_group */
7453 if (!se)
7454 return;
7455
ec7dc8ac
DG
7456 if (!parent)
7457 se->cfs_rq = &rq->cfs;
7458 else
7459 se->cfs_rq = parent->my_q;
7460
6f505b16
PZ
7461 se->my_q = cfs_rq;
7462 se->load.weight = tg->shares;
e05510d0 7463 se->load.inv_weight = 0;
ec7dc8ac 7464 se->parent = parent;
6f505b16 7465}
052f1dc7 7466#endif
6f505b16 7467
052f1dc7 7468#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7469static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7470 struct sched_rt_entity *rt_se, int cpu, int add,
7471 struct sched_rt_entity *parent)
6f505b16 7472{
ec7dc8ac
DG
7473 struct rq *rq = cpu_rq(cpu);
7474
6f505b16
PZ
7475 tg->rt_rq[cpu] = rt_rq;
7476 init_rt_rq(rt_rq, rq);
7477 rt_rq->tg = tg;
ac086bc2 7478 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7479 if (add)
7480 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7481
7482 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7483 if (!rt_se)
7484 return;
7485
ec7dc8ac
DG
7486 if (!parent)
7487 rt_se->rt_rq = &rq->rt;
7488 else
7489 rt_se->rt_rq = parent->my_q;
7490
6f505b16 7491 rt_se->my_q = rt_rq;
ec7dc8ac 7492 rt_se->parent = parent;
6f505b16
PZ
7493 INIT_LIST_HEAD(&rt_se->run_list);
7494}
7495#endif
7496
1da177e4
LT
7497void __init sched_init(void)
7498{
dd41f596 7499 int i, j;
434d53b0
MT
7500 unsigned long alloc_size = 0, ptr;
7501
7502#ifdef CONFIG_FAIR_GROUP_SCHED
7503 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7504#endif
7505#ifdef CONFIG_RT_GROUP_SCHED
7506 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7507#endif
df7c8e84 7508#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7509 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7510#endif
434d53b0 7511 if (alloc_size) {
36b7b6d4 7512 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7513
7514#ifdef CONFIG_FAIR_GROUP_SCHED
7515 init_task_group.se = (struct sched_entity **)ptr;
7516 ptr += nr_cpu_ids * sizeof(void **);
7517
7518 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7519 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7520
6d6bc0ad 7521#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7522#ifdef CONFIG_RT_GROUP_SCHED
7523 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7524 ptr += nr_cpu_ids * sizeof(void **);
7525
7526 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7527 ptr += nr_cpu_ids * sizeof(void **);
7528
6d6bc0ad 7529#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7530#ifdef CONFIG_CPUMASK_OFFSTACK
7531 for_each_possible_cpu(i) {
7532 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7533 ptr += cpumask_size();
7534 }
7535#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7536 }
dd41f596 7537
57d885fe
GH
7538#ifdef CONFIG_SMP
7539 init_defrootdomain();
7540#endif
7541
d0b27fa7
PZ
7542 init_rt_bandwidth(&def_rt_bandwidth,
7543 global_rt_period(), global_rt_runtime());
7544
7545#ifdef CONFIG_RT_GROUP_SCHED
7546 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7547 global_rt_period(), global_rt_runtime());
6d6bc0ad 7548#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7549
7c941438 7550#ifdef CONFIG_CGROUP_SCHED
6f505b16 7551 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7552 INIT_LIST_HEAD(&init_task_group.children);
7553
7c941438 7554#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7555
4a6cc4bd
JK
7556#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7557 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7558 __alignof__(unsigned long));
7559#endif
0a945022 7560 for_each_possible_cpu(i) {
70b97a7f 7561 struct rq *rq;
1da177e4
LT
7562
7563 rq = cpu_rq(i);
05fa785c 7564 raw_spin_lock_init(&rq->lock);
7897986b 7565 rq->nr_running = 0;
dce48a84
TG
7566 rq->calc_load_active = 0;
7567 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7568 init_cfs_rq(&rq->cfs, rq);
6f505b16 7569 init_rt_rq(&rq->rt, rq);
dd41f596 7570#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7571 init_task_group.shares = init_task_group_load;
6f505b16 7572 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7573#ifdef CONFIG_CGROUP_SCHED
7574 /*
7575 * How much cpu bandwidth does init_task_group get?
7576 *
7577 * In case of task-groups formed thr' the cgroup filesystem, it
7578 * gets 100% of the cpu resources in the system. This overall
7579 * system cpu resource is divided among the tasks of
7580 * init_task_group and its child task-groups in a fair manner,
7581 * based on each entity's (task or task-group's) weight
7582 * (se->load.weight).
7583 *
7584 * In other words, if init_task_group has 10 tasks of weight
7585 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7586 * then A0's share of the cpu resource is:
7587 *
0d905bca 7588 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7589 *
7590 * We achieve this by letting init_task_group's tasks sit
7591 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7592 */
ec7dc8ac 7593 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7594#endif
354d60c2
DG
7595#endif /* CONFIG_FAIR_GROUP_SCHED */
7596
7597 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7598#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7599 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7600#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7601 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7602#endif
dd41f596 7603#endif
1da177e4 7604
dd41f596
IM
7605 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7606 rq->cpu_load[j] = 0;
1da177e4 7607#ifdef CONFIG_SMP
41c7ce9a 7608 rq->sd = NULL;
57d885fe 7609 rq->rd = NULL;
e51fd5e2 7610 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 7611 rq->post_schedule = 0;
1da177e4 7612 rq->active_balance = 0;
dd41f596 7613 rq->next_balance = jiffies;
1da177e4 7614 rq->push_cpu = 0;
0a2966b4 7615 rq->cpu = i;
1f11eb6a 7616 rq->online = 0;
eae0c9df
MG
7617 rq->idle_stamp = 0;
7618 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7619 rq_attach_root(rq, &def_root_domain);
1da177e4 7620#endif
8f4d37ec 7621 init_rq_hrtick(rq);
1da177e4 7622 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7623 }
7624
2dd73a4f 7625 set_load_weight(&init_task);
b50f60ce 7626
e107be36
AK
7627#ifdef CONFIG_PREEMPT_NOTIFIERS
7628 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7629#endif
7630
c9819f45 7631#ifdef CONFIG_SMP
962cf36c 7632 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7633#endif
7634
b50f60ce 7635#ifdef CONFIG_RT_MUTEXES
1d615482 7636 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7637#endif
7638
1da177e4
LT
7639 /*
7640 * The boot idle thread does lazy MMU switching as well:
7641 */
7642 atomic_inc(&init_mm.mm_count);
7643 enter_lazy_tlb(&init_mm, current);
7644
7645 /*
7646 * Make us the idle thread. Technically, schedule() should not be
7647 * called from this thread, however somewhere below it might be,
7648 * but because we are the idle thread, we just pick up running again
7649 * when this runqueue becomes "idle".
7650 */
7651 init_idle(current, smp_processor_id());
dce48a84
TG
7652
7653 calc_load_update = jiffies + LOAD_FREQ;
7654
dd41f596
IM
7655 /*
7656 * During early bootup we pretend to be a normal task:
7657 */
7658 current->sched_class = &fair_sched_class;
6892b75e 7659
6a7b3dc3 7660 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7661 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7662#ifdef CONFIG_SMP
7d1e6a9b 7663#ifdef CONFIG_NO_HZ
49557e62 7664 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 7665 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 7666#endif
bdddd296
RR
7667 /* May be allocated at isolcpus cmdline parse time */
7668 if (cpu_isolated_map == NULL)
7669 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7670#endif /* SMP */
6a7b3dc3 7671
cdd6c482 7672 perf_event_init();
0d905bca 7673
6892b75e 7674 scheduler_running = 1;
1da177e4
LT
7675}
7676
7677#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7678static inline int preempt_count_equals(int preempt_offset)
7679{
234da7bc 7680 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7681
7682 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7683}
7684
d894837f 7685void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7686{
48f24c4d 7687#ifdef in_atomic
1da177e4
LT
7688 static unsigned long prev_jiffy; /* ratelimiting */
7689
e4aafea2
FW
7690 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7691 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7692 return;
7693 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7694 return;
7695 prev_jiffy = jiffies;
7696
3df0fc5b
PZ
7697 printk(KERN_ERR
7698 "BUG: sleeping function called from invalid context at %s:%d\n",
7699 file, line);
7700 printk(KERN_ERR
7701 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7702 in_atomic(), irqs_disabled(),
7703 current->pid, current->comm);
aef745fc
IM
7704
7705 debug_show_held_locks(current);
7706 if (irqs_disabled())
7707 print_irqtrace_events(current);
7708 dump_stack();
1da177e4
LT
7709#endif
7710}
7711EXPORT_SYMBOL(__might_sleep);
7712#endif
7713
7714#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7715static void normalize_task(struct rq *rq, struct task_struct *p)
7716{
7717 int on_rq;
3e51f33f 7718
3a5e4dc1
AK
7719 on_rq = p->se.on_rq;
7720 if (on_rq)
7721 deactivate_task(rq, p, 0);
7722 __setscheduler(rq, p, SCHED_NORMAL, 0);
7723 if (on_rq) {
7724 activate_task(rq, p, 0);
7725 resched_task(rq->curr);
7726 }
7727}
7728
1da177e4
LT
7729void normalize_rt_tasks(void)
7730{
a0f98a1c 7731 struct task_struct *g, *p;
1da177e4 7732 unsigned long flags;
70b97a7f 7733 struct rq *rq;
1da177e4 7734
4cf5d77a 7735 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7736 do_each_thread(g, p) {
178be793
IM
7737 /*
7738 * Only normalize user tasks:
7739 */
7740 if (!p->mm)
7741 continue;
7742
6cfb0d5d 7743 p->se.exec_start = 0;
6cfb0d5d 7744#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7745 p->se.statistics.wait_start = 0;
7746 p->se.statistics.sleep_start = 0;
7747 p->se.statistics.block_start = 0;
6cfb0d5d 7748#endif
dd41f596
IM
7749
7750 if (!rt_task(p)) {
7751 /*
7752 * Renice negative nice level userspace
7753 * tasks back to 0:
7754 */
7755 if (TASK_NICE(p) < 0 && p->mm)
7756 set_user_nice(p, 0);
1da177e4 7757 continue;
dd41f596 7758 }
1da177e4 7759
1d615482 7760 raw_spin_lock(&p->pi_lock);
b29739f9 7761 rq = __task_rq_lock(p);
1da177e4 7762
178be793 7763 normalize_task(rq, p);
3a5e4dc1 7764
b29739f9 7765 __task_rq_unlock(rq);
1d615482 7766 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7767 } while_each_thread(g, p);
7768
4cf5d77a 7769 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7770}
7771
7772#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7773
67fc4e0c 7774#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7775/*
67fc4e0c 7776 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7777 *
7778 * They can only be called when the whole system has been
7779 * stopped - every CPU needs to be quiescent, and no scheduling
7780 * activity can take place. Using them for anything else would
7781 * be a serious bug, and as a result, they aren't even visible
7782 * under any other configuration.
7783 */
7784
7785/**
7786 * curr_task - return the current task for a given cpu.
7787 * @cpu: the processor in question.
7788 *
7789 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7790 */
36c8b586 7791struct task_struct *curr_task(int cpu)
1df5c10a
LT
7792{
7793 return cpu_curr(cpu);
7794}
7795
67fc4e0c
JW
7796#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7797
7798#ifdef CONFIG_IA64
1df5c10a
LT
7799/**
7800 * set_curr_task - set the current task for a given cpu.
7801 * @cpu: the processor in question.
7802 * @p: the task pointer to set.
7803 *
7804 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7805 * are serviced on a separate stack. It allows the architecture to switch the
7806 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7807 * must be called with all CPU's synchronized, and interrupts disabled, the
7808 * and caller must save the original value of the current task (see
7809 * curr_task() above) and restore that value before reenabling interrupts and
7810 * re-starting the system.
7811 *
7812 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7813 */
36c8b586 7814void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7815{
7816 cpu_curr(cpu) = p;
7817}
7818
7819#endif
29f59db3 7820
bccbe08a
PZ
7821#ifdef CONFIG_FAIR_GROUP_SCHED
7822static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7823{
7824 int i;
7825
7826 for_each_possible_cpu(i) {
7827 if (tg->cfs_rq)
7828 kfree(tg->cfs_rq[i]);
7829 if (tg->se)
7830 kfree(tg->se[i]);
6f505b16
PZ
7831 }
7832
7833 kfree(tg->cfs_rq);
7834 kfree(tg->se);
6f505b16
PZ
7835}
7836
ec7dc8ac
DG
7837static
7838int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 7839{
29f59db3 7840 struct cfs_rq *cfs_rq;
eab17229 7841 struct sched_entity *se;
9b5b7751 7842 struct rq *rq;
29f59db3
SV
7843 int i;
7844
434d53b0 7845 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7846 if (!tg->cfs_rq)
7847 goto err;
434d53b0 7848 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7849 if (!tg->se)
7850 goto err;
052f1dc7
PZ
7851
7852 tg->shares = NICE_0_LOAD;
29f59db3
SV
7853
7854 for_each_possible_cpu(i) {
9b5b7751 7855 rq = cpu_rq(i);
29f59db3 7856
eab17229
LZ
7857 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7858 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
7859 if (!cfs_rq)
7860 goto err;
7861
eab17229
LZ
7862 se = kzalloc_node(sizeof(struct sched_entity),
7863 GFP_KERNEL, cpu_to_node(i));
29f59db3 7864 if (!se)
dfc12eb2 7865 goto err_free_rq;
29f59db3 7866
eab17229 7867 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
7868 }
7869
7870 return 1;
7871
dfc12eb2
PC
7872 err_free_rq:
7873 kfree(cfs_rq);
bccbe08a
PZ
7874 err:
7875 return 0;
7876}
7877
7878static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7879{
7880 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7881 &cpu_rq(cpu)->leaf_cfs_rq_list);
7882}
7883
7884static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7885{
7886 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7887}
6d6bc0ad 7888#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
7889static inline void free_fair_sched_group(struct task_group *tg)
7890{
7891}
7892
ec7dc8ac
DG
7893static inline
7894int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7895{
7896 return 1;
7897}
7898
7899static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7900{
7901}
7902
7903static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7904{
7905}
6d6bc0ad 7906#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
7907
7908#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
7909static void free_rt_sched_group(struct task_group *tg)
7910{
7911 int i;
7912
d0b27fa7
PZ
7913 destroy_rt_bandwidth(&tg->rt_bandwidth);
7914
bccbe08a
PZ
7915 for_each_possible_cpu(i) {
7916 if (tg->rt_rq)
7917 kfree(tg->rt_rq[i]);
7918 if (tg->rt_se)
7919 kfree(tg->rt_se[i]);
7920 }
7921
7922 kfree(tg->rt_rq);
7923 kfree(tg->rt_se);
7924}
7925
ec7dc8ac
DG
7926static
7927int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7928{
7929 struct rt_rq *rt_rq;
eab17229 7930 struct sched_rt_entity *rt_se;
bccbe08a
PZ
7931 struct rq *rq;
7932 int i;
7933
434d53b0 7934 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
7935 if (!tg->rt_rq)
7936 goto err;
434d53b0 7937 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
7938 if (!tg->rt_se)
7939 goto err;
7940
d0b27fa7
PZ
7941 init_rt_bandwidth(&tg->rt_bandwidth,
7942 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
7943
7944 for_each_possible_cpu(i) {
7945 rq = cpu_rq(i);
7946
eab17229
LZ
7947 rt_rq = kzalloc_node(sizeof(struct rt_rq),
7948 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
7949 if (!rt_rq)
7950 goto err;
29f59db3 7951
eab17229
LZ
7952 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
7953 GFP_KERNEL, cpu_to_node(i));
6f505b16 7954 if (!rt_se)
dfc12eb2 7955 goto err_free_rq;
29f59db3 7956
eab17229 7957 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
7958 }
7959
bccbe08a
PZ
7960 return 1;
7961
dfc12eb2
PC
7962 err_free_rq:
7963 kfree(rt_rq);
bccbe08a
PZ
7964 err:
7965 return 0;
7966}
7967
7968static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7969{
7970 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7971 &cpu_rq(cpu)->leaf_rt_rq_list);
7972}
7973
7974static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7975{
7976 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7977}
6d6bc0ad 7978#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
7979static inline void free_rt_sched_group(struct task_group *tg)
7980{
7981}
7982
ec7dc8ac
DG
7983static inline
7984int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7985{
7986 return 1;
7987}
7988
7989static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7990{
7991}
7992
7993static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7994{
7995}
6d6bc0ad 7996#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 7997
7c941438 7998#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
7999static void free_sched_group(struct task_group *tg)
8000{
8001 free_fair_sched_group(tg);
8002 free_rt_sched_group(tg);
8003 kfree(tg);
8004}
8005
8006/* allocate runqueue etc for a new task group */
ec7dc8ac 8007struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8008{
8009 struct task_group *tg;
8010 unsigned long flags;
8011 int i;
8012
8013 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8014 if (!tg)
8015 return ERR_PTR(-ENOMEM);
8016
ec7dc8ac 8017 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8018 goto err;
8019
ec7dc8ac 8020 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8021 goto err;
8022
8ed36996 8023 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8024 for_each_possible_cpu(i) {
bccbe08a
PZ
8025 register_fair_sched_group(tg, i);
8026 register_rt_sched_group(tg, i);
9b5b7751 8027 }
6f505b16 8028 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8029
8030 WARN_ON(!parent); /* root should already exist */
8031
8032 tg->parent = parent;
f473aa5e 8033 INIT_LIST_HEAD(&tg->children);
09f2724a 8034 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8035 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8036
9b5b7751 8037 return tg;
29f59db3
SV
8038
8039err:
6f505b16 8040 free_sched_group(tg);
29f59db3
SV
8041 return ERR_PTR(-ENOMEM);
8042}
8043
9b5b7751 8044/* rcu callback to free various structures associated with a task group */
6f505b16 8045static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8046{
29f59db3 8047 /* now it should be safe to free those cfs_rqs */
6f505b16 8048 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8049}
8050
9b5b7751 8051/* Destroy runqueue etc associated with a task group */
4cf86d77 8052void sched_destroy_group(struct task_group *tg)
29f59db3 8053{
8ed36996 8054 unsigned long flags;
9b5b7751 8055 int i;
29f59db3 8056
8ed36996 8057 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8058 for_each_possible_cpu(i) {
bccbe08a
PZ
8059 unregister_fair_sched_group(tg, i);
8060 unregister_rt_sched_group(tg, i);
9b5b7751 8061 }
6f505b16 8062 list_del_rcu(&tg->list);
f473aa5e 8063 list_del_rcu(&tg->siblings);
8ed36996 8064 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8065
9b5b7751 8066 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8067 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8068}
8069
9b5b7751 8070/* change task's runqueue when it moves between groups.
3a252015
IM
8071 * The caller of this function should have put the task in its new group
8072 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8073 * reflect its new group.
9b5b7751
SV
8074 */
8075void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8076{
8077 int on_rq, running;
8078 unsigned long flags;
8079 struct rq *rq;
8080
8081 rq = task_rq_lock(tsk, &flags);
8082
051a1d1a 8083 running = task_current(rq, tsk);
29f59db3
SV
8084 on_rq = tsk->se.on_rq;
8085
0e1f3483 8086 if (on_rq)
29f59db3 8087 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8088 if (unlikely(running))
8089 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8090
6f505b16 8091 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8092
810b3817
PZ
8093#ifdef CONFIG_FAIR_GROUP_SCHED
8094 if (tsk->sched_class->moved_group)
88ec22d3 8095 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8096#endif
8097
0e1f3483
HS
8098 if (unlikely(running))
8099 tsk->sched_class->set_curr_task(rq);
8100 if (on_rq)
371fd7e7 8101 enqueue_task(rq, tsk, 0);
29f59db3 8102
29f59db3
SV
8103 task_rq_unlock(rq, &flags);
8104}
7c941438 8105#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8106
052f1dc7 8107#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8108static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8109{
8110 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8111 int on_rq;
8112
29f59db3 8113 on_rq = se->on_rq;
62fb1851 8114 if (on_rq)
29f59db3
SV
8115 dequeue_entity(cfs_rq, se, 0);
8116
8117 se->load.weight = shares;
e05510d0 8118 se->load.inv_weight = 0;
29f59db3 8119
62fb1851 8120 if (on_rq)
29f59db3 8121 enqueue_entity(cfs_rq, se, 0);
c09595f6 8122}
62fb1851 8123
c09595f6
PZ
8124static void set_se_shares(struct sched_entity *se, unsigned long shares)
8125{
8126 struct cfs_rq *cfs_rq = se->cfs_rq;
8127 struct rq *rq = cfs_rq->rq;
8128 unsigned long flags;
8129
05fa785c 8130 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8131 __set_se_shares(se, shares);
05fa785c 8132 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8133}
8134
8ed36996
PZ
8135static DEFINE_MUTEX(shares_mutex);
8136
4cf86d77 8137int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8138{
8139 int i;
8ed36996 8140 unsigned long flags;
c61935fd 8141
ec7dc8ac
DG
8142 /*
8143 * We can't change the weight of the root cgroup.
8144 */
8145 if (!tg->se[0])
8146 return -EINVAL;
8147
18d95a28
PZ
8148 if (shares < MIN_SHARES)
8149 shares = MIN_SHARES;
cb4ad1ff
MX
8150 else if (shares > MAX_SHARES)
8151 shares = MAX_SHARES;
62fb1851 8152
8ed36996 8153 mutex_lock(&shares_mutex);
9b5b7751 8154 if (tg->shares == shares)
5cb350ba 8155 goto done;
29f59db3 8156
8ed36996 8157 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8158 for_each_possible_cpu(i)
8159 unregister_fair_sched_group(tg, i);
f473aa5e 8160 list_del_rcu(&tg->siblings);
8ed36996 8161 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8162
8163 /* wait for any ongoing reference to this group to finish */
8164 synchronize_sched();
8165
8166 /*
8167 * Now we are free to modify the group's share on each cpu
8168 * w/o tripping rebalance_share or load_balance_fair.
8169 */
9b5b7751 8170 tg->shares = shares;
c09595f6
PZ
8171 for_each_possible_cpu(i) {
8172 /*
8173 * force a rebalance
8174 */
8175 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8176 set_se_shares(tg->se[i], shares);
c09595f6 8177 }
29f59db3 8178
6b2d7700
SV
8179 /*
8180 * Enable load balance activity on this group, by inserting it back on
8181 * each cpu's rq->leaf_cfs_rq_list.
8182 */
8ed36996 8183 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8184 for_each_possible_cpu(i)
8185 register_fair_sched_group(tg, i);
f473aa5e 8186 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8187 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8188done:
8ed36996 8189 mutex_unlock(&shares_mutex);
9b5b7751 8190 return 0;
29f59db3
SV
8191}
8192
5cb350ba
DG
8193unsigned long sched_group_shares(struct task_group *tg)
8194{
8195 return tg->shares;
8196}
052f1dc7 8197#endif
5cb350ba 8198
052f1dc7 8199#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8200/*
9f0c1e56 8201 * Ensure that the real time constraints are schedulable.
6f505b16 8202 */
9f0c1e56
PZ
8203static DEFINE_MUTEX(rt_constraints_mutex);
8204
8205static unsigned long to_ratio(u64 period, u64 runtime)
8206{
8207 if (runtime == RUNTIME_INF)
9a7e0b18 8208 return 1ULL << 20;
9f0c1e56 8209
9a7e0b18 8210 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8211}
8212
9a7e0b18
PZ
8213/* Must be called with tasklist_lock held */
8214static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8215{
9a7e0b18 8216 struct task_struct *g, *p;
b40b2e8e 8217
9a7e0b18
PZ
8218 do_each_thread(g, p) {
8219 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8220 return 1;
8221 } while_each_thread(g, p);
b40b2e8e 8222
9a7e0b18
PZ
8223 return 0;
8224}
b40b2e8e 8225
9a7e0b18
PZ
8226struct rt_schedulable_data {
8227 struct task_group *tg;
8228 u64 rt_period;
8229 u64 rt_runtime;
8230};
b40b2e8e 8231
9a7e0b18
PZ
8232static int tg_schedulable(struct task_group *tg, void *data)
8233{
8234 struct rt_schedulable_data *d = data;
8235 struct task_group *child;
8236 unsigned long total, sum = 0;
8237 u64 period, runtime;
b40b2e8e 8238
9a7e0b18
PZ
8239 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8240 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8241
9a7e0b18
PZ
8242 if (tg == d->tg) {
8243 period = d->rt_period;
8244 runtime = d->rt_runtime;
b40b2e8e 8245 }
b40b2e8e 8246
4653f803
PZ
8247 /*
8248 * Cannot have more runtime than the period.
8249 */
8250 if (runtime > period && runtime != RUNTIME_INF)
8251 return -EINVAL;
6f505b16 8252
4653f803
PZ
8253 /*
8254 * Ensure we don't starve existing RT tasks.
8255 */
9a7e0b18
PZ
8256 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8257 return -EBUSY;
6f505b16 8258
9a7e0b18 8259 total = to_ratio(period, runtime);
6f505b16 8260
4653f803
PZ
8261 /*
8262 * Nobody can have more than the global setting allows.
8263 */
8264 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8265 return -EINVAL;
6f505b16 8266
4653f803
PZ
8267 /*
8268 * The sum of our children's runtime should not exceed our own.
8269 */
9a7e0b18
PZ
8270 list_for_each_entry_rcu(child, &tg->children, siblings) {
8271 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8272 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8273
9a7e0b18
PZ
8274 if (child == d->tg) {
8275 period = d->rt_period;
8276 runtime = d->rt_runtime;
8277 }
6f505b16 8278
9a7e0b18 8279 sum += to_ratio(period, runtime);
9f0c1e56 8280 }
6f505b16 8281
9a7e0b18
PZ
8282 if (sum > total)
8283 return -EINVAL;
8284
8285 return 0;
6f505b16
PZ
8286}
8287
9a7e0b18 8288static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8289{
9a7e0b18
PZ
8290 struct rt_schedulable_data data = {
8291 .tg = tg,
8292 .rt_period = period,
8293 .rt_runtime = runtime,
8294 };
8295
8296 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8297}
8298
d0b27fa7
PZ
8299static int tg_set_bandwidth(struct task_group *tg,
8300 u64 rt_period, u64 rt_runtime)
6f505b16 8301{
ac086bc2 8302 int i, err = 0;
9f0c1e56 8303
9f0c1e56 8304 mutex_lock(&rt_constraints_mutex);
521f1a24 8305 read_lock(&tasklist_lock);
9a7e0b18
PZ
8306 err = __rt_schedulable(tg, rt_period, rt_runtime);
8307 if (err)
9f0c1e56 8308 goto unlock;
ac086bc2 8309
0986b11b 8310 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8311 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8312 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8313
8314 for_each_possible_cpu(i) {
8315 struct rt_rq *rt_rq = tg->rt_rq[i];
8316
0986b11b 8317 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8318 rt_rq->rt_runtime = rt_runtime;
0986b11b 8319 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8320 }
0986b11b 8321 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8322 unlock:
521f1a24 8323 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8324 mutex_unlock(&rt_constraints_mutex);
8325
8326 return err;
6f505b16
PZ
8327}
8328
d0b27fa7
PZ
8329int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8330{
8331 u64 rt_runtime, rt_period;
8332
8333 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8334 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8335 if (rt_runtime_us < 0)
8336 rt_runtime = RUNTIME_INF;
8337
8338 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8339}
8340
9f0c1e56
PZ
8341long sched_group_rt_runtime(struct task_group *tg)
8342{
8343 u64 rt_runtime_us;
8344
d0b27fa7 8345 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8346 return -1;
8347
d0b27fa7 8348 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8349 do_div(rt_runtime_us, NSEC_PER_USEC);
8350 return rt_runtime_us;
8351}
d0b27fa7
PZ
8352
8353int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8354{
8355 u64 rt_runtime, rt_period;
8356
8357 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8358 rt_runtime = tg->rt_bandwidth.rt_runtime;
8359
619b0488
R
8360 if (rt_period == 0)
8361 return -EINVAL;
8362
d0b27fa7
PZ
8363 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8364}
8365
8366long sched_group_rt_period(struct task_group *tg)
8367{
8368 u64 rt_period_us;
8369
8370 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8371 do_div(rt_period_us, NSEC_PER_USEC);
8372 return rt_period_us;
8373}
8374
8375static int sched_rt_global_constraints(void)
8376{
4653f803 8377 u64 runtime, period;
d0b27fa7
PZ
8378 int ret = 0;
8379
ec5d4989
HS
8380 if (sysctl_sched_rt_period <= 0)
8381 return -EINVAL;
8382
4653f803
PZ
8383 runtime = global_rt_runtime();
8384 period = global_rt_period();
8385
8386 /*
8387 * Sanity check on the sysctl variables.
8388 */
8389 if (runtime > period && runtime != RUNTIME_INF)
8390 return -EINVAL;
10b612f4 8391
d0b27fa7 8392 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8393 read_lock(&tasklist_lock);
4653f803 8394 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8395 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8396 mutex_unlock(&rt_constraints_mutex);
8397
8398 return ret;
8399}
54e99124
DG
8400
8401int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8402{
8403 /* Don't accept realtime tasks when there is no way for them to run */
8404 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8405 return 0;
8406
8407 return 1;
8408}
8409
6d6bc0ad 8410#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8411static int sched_rt_global_constraints(void)
8412{
ac086bc2
PZ
8413 unsigned long flags;
8414 int i;
8415
ec5d4989
HS
8416 if (sysctl_sched_rt_period <= 0)
8417 return -EINVAL;
8418
60aa605d
PZ
8419 /*
8420 * There's always some RT tasks in the root group
8421 * -- migration, kstopmachine etc..
8422 */
8423 if (sysctl_sched_rt_runtime == 0)
8424 return -EBUSY;
8425
0986b11b 8426 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8427 for_each_possible_cpu(i) {
8428 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8429
0986b11b 8430 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8431 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8432 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8433 }
0986b11b 8434 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8435
d0b27fa7
PZ
8436 return 0;
8437}
6d6bc0ad 8438#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8439
8440int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8441 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8442 loff_t *ppos)
8443{
8444 int ret;
8445 int old_period, old_runtime;
8446 static DEFINE_MUTEX(mutex);
8447
8448 mutex_lock(&mutex);
8449 old_period = sysctl_sched_rt_period;
8450 old_runtime = sysctl_sched_rt_runtime;
8451
8d65af78 8452 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8453
8454 if (!ret && write) {
8455 ret = sched_rt_global_constraints();
8456 if (ret) {
8457 sysctl_sched_rt_period = old_period;
8458 sysctl_sched_rt_runtime = old_runtime;
8459 } else {
8460 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8461 def_rt_bandwidth.rt_period =
8462 ns_to_ktime(global_rt_period());
8463 }
8464 }
8465 mutex_unlock(&mutex);
8466
8467 return ret;
8468}
68318b8e 8469
052f1dc7 8470#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8471
8472/* return corresponding task_group object of a cgroup */
2b01dfe3 8473static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8474{
2b01dfe3
PM
8475 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8476 struct task_group, css);
68318b8e
SV
8477}
8478
8479static struct cgroup_subsys_state *
2b01dfe3 8480cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8481{
ec7dc8ac 8482 struct task_group *tg, *parent;
68318b8e 8483
2b01dfe3 8484 if (!cgrp->parent) {
68318b8e 8485 /* This is early initialization for the top cgroup */
68318b8e
SV
8486 return &init_task_group.css;
8487 }
8488
ec7dc8ac
DG
8489 parent = cgroup_tg(cgrp->parent);
8490 tg = sched_create_group(parent);
68318b8e
SV
8491 if (IS_ERR(tg))
8492 return ERR_PTR(-ENOMEM);
8493
68318b8e
SV
8494 return &tg->css;
8495}
8496
41a2d6cf
IM
8497static void
8498cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8499{
2b01dfe3 8500 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8501
8502 sched_destroy_group(tg);
8503}
8504
41a2d6cf 8505static int
be367d09 8506cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8507{
b68aa230 8508#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8509 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8510 return -EINVAL;
8511#else
68318b8e
SV
8512 /* We don't support RT-tasks being in separate groups */
8513 if (tsk->sched_class != &fair_sched_class)
8514 return -EINVAL;
b68aa230 8515#endif
be367d09
BB
8516 return 0;
8517}
68318b8e 8518
be367d09
BB
8519static int
8520cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8521 struct task_struct *tsk, bool threadgroup)
8522{
8523 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8524 if (retval)
8525 return retval;
8526 if (threadgroup) {
8527 struct task_struct *c;
8528 rcu_read_lock();
8529 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8530 retval = cpu_cgroup_can_attach_task(cgrp, c);
8531 if (retval) {
8532 rcu_read_unlock();
8533 return retval;
8534 }
8535 }
8536 rcu_read_unlock();
8537 }
68318b8e
SV
8538 return 0;
8539}
8540
8541static void
2b01dfe3 8542cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8543 struct cgroup *old_cont, struct task_struct *tsk,
8544 bool threadgroup)
68318b8e
SV
8545{
8546 sched_move_task(tsk);
be367d09
BB
8547 if (threadgroup) {
8548 struct task_struct *c;
8549 rcu_read_lock();
8550 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8551 sched_move_task(c);
8552 }
8553 rcu_read_unlock();
8554 }
68318b8e
SV
8555}
8556
052f1dc7 8557#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8558static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8559 u64 shareval)
68318b8e 8560{
2b01dfe3 8561 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8562}
8563
f4c753b7 8564static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8565{
2b01dfe3 8566 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8567
8568 return (u64) tg->shares;
8569}
6d6bc0ad 8570#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8571
052f1dc7 8572#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8573static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8574 s64 val)
6f505b16 8575{
06ecb27c 8576 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8577}
8578
06ecb27c 8579static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8580{
06ecb27c 8581 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8582}
d0b27fa7
PZ
8583
8584static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8585 u64 rt_period_us)
8586{
8587 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8588}
8589
8590static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8591{
8592 return sched_group_rt_period(cgroup_tg(cgrp));
8593}
6d6bc0ad 8594#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8595
fe5c7cc2 8596static struct cftype cpu_files[] = {
052f1dc7 8597#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8598 {
8599 .name = "shares",
f4c753b7
PM
8600 .read_u64 = cpu_shares_read_u64,
8601 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8602 },
052f1dc7
PZ
8603#endif
8604#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8605 {
9f0c1e56 8606 .name = "rt_runtime_us",
06ecb27c
PM
8607 .read_s64 = cpu_rt_runtime_read,
8608 .write_s64 = cpu_rt_runtime_write,
6f505b16 8609 },
d0b27fa7
PZ
8610 {
8611 .name = "rt_period_us",
f4c753b7
PM
8612 .read_u64 = cpu_rt_period_read_uint,
8613 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8614 },
052f1dc7 8615#endif
68318b8e
SV
8616};
8617
8618static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8619{
fe5c7cc2 8620 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8621}
8622
8623struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8624 .name = "cpu",
8625 .create = cpu_cgroup_create,
8626 .destroy = cpu_cgroup_destroy,
8627 .can_attach = cpu_cgroup_can_attach,
8628 .attach = cpu_cgroup_attach,
8629 .populate = cpu_cgroup_populate,
8630 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8631 .early_init = 1,
8632};
8633
052f1dc7 8634#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8635
8636#ifdef CONFIG_CGROUP_CPUACCT
8637
8638/*
8639 * CPU accounting code for task groups.
8640 *
8641 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8642 * (balbir@in.ibm.com).
8643 */
8644
934352f2 8645/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8646struct cpuacct {
8647 struct cgroup_subsys_state css;
8648 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8649 u64 __percpu *cpuusage;
ef12fefa 8650 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8651 struct cpuacct *parent;
d842de87
SV
8652};
8653
8654struct cgroup_subsys cpuacct_subsys;
8655
8656/* return cpu accounting group corresponding to this container */
32cd756a 8657static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8658{
32cd756a 8659 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8660 struct cpuacct, css);
8661}
8662
8663/* return cpu accounting group to which this task belongs */
8664static inline struct cpuacct *task_ca(struct task_struct *tsk)
8665{
8666 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8667 struct cpuacct, css);
8668}
8669
8670/* create a new cpu accounting group */
8671static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8672 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8673{
8674 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8675 int i;
d842de87
SV
8676
8677 if (!ca)
ef12fefa 8678 goto out;
d842de87
SV
8679
8680 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8681 if (!ca->cpuusage)
8682 goto out_free_ca;
8683
8684 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8685 if (percpu_counter_init(&ca->cpustat[i], 0))
8686 goto out_free_counters;
d842de87 8687
934352f2
BR
8688 if (cgrp->parent)
8689 ca->parent = cgroup_ca(cgrp->parent);
8690
d842de87 8691 return &ca->css;
ef12fefa
BR
8692
8693out_free_counters:
8694 while (--i >= 0)
8695 percpu_counter_destroy(&ca->cpustat[i]);
8696 free_percpu(ca->cpuusage);
8697out_free_ca:
8698 kfree(ca);
8699out:
8700 return ERR_PTR(-ENOMEM);
d842de87
SV
8701}
8702
8703/* destroy an existing cpu accounting group */
41a2d6cf 8704static void
32cd756a 8705cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8706{
32cd756a 8707 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8708 int i;
d842de87 8709
ef12fefa
BR
8710 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8711 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8712 free_percpu(ca->cpuusage);
8713 kfree(ca);
8714}
8715
720f5498
KC
8716static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8717{
b36128c8 8718 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8719 u64 data;
8720
8721#ifndef CONFIG_64BIT
8722 /*
8723 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8724 */
05fa785c 8725 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8726 data = *cpuusage;
05fa785c 8727 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8728#else
8729 data = *cpuusage;
8730#endif
8731
8732 return data;
8733}
8734
8735static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8736{
b36128c8 8737 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8738
8739#ifndef CONFIG_64BIT
8740 /*
8741 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8742 */
05fa785c 8743 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8744 *cpuusage = val;
05fa785c 8745 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8746#else
8747 *cpuusage = val;
8748#endif
8749}
8750
d842de87 8751/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8752static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8753{
32cd756a 8754 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8755 u64 totalcpuusage = 0;
8756 int i;
8757
720f5498
KC
8758 for_each_present_cpu(i)
8759 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8760
8761 return totalcpuusage;
8762}
8763
0297b803
DG
8764static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8765 u64 reset)
8766{
8767 struct cpuacct *ca = cgroup_ca(cgrp);
8768 int err = 0;
8769 int i;
8770
8771 if (reset) {
8772 err = -EINVAL;
8773 goto out;
8774 }
8775
720f5498
KC
8776 for_each_present_cpu(i)
8777 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8778
0297b803
DG
8779out:
8780 return err;
8781}
8782
e9515c3c
KC
8783static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8784 struct seq_file *m)
8785{
8786 struct cpuacct *ca = cgroup_ca(cgroup);
8787 u64 percpu;
8788 int i;
8789
8790 for_each_present_cpu(i) {
8791 percpu = cpuacct_cpuusage_read(ca, i);
8792 seq_printf(m, "%llu ", (unsigned long long) percpu);
8793 }
8794 seq_printf(m, "\n");
8795 return 0;
8796}
8797
ef12fefa
BR
8798static const char *cpuacct_stat_desc[] = {
8799 [CPUACCT_STAT_USER] = "user",
8800 [CPUACCT_STAT_SYSTEM] = "system",
8801};
8802
8803static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8804 struct cgroup_map_cb *cb)
8805{
8806 struct cpuacct *ca = cgroup_ca(cgrp);
8807 int i;
8808
8809 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8810 s64 val = percpu_counter_read(&ca->cpustat[i]);
8811 val = cputime64_to_clock_t(val);
8812 cb->fill(cb, cpuacct_stat_desc[i], val);
8813 }
8814 return 0;
8815}
8816
d842de87
SV
8817static struct cftype files[] = {
8818 {
8819 .name = "usage",
f4c753b7
PM
8820 .read_u64 = cpuusage_read,
8821 .write_u64 = cpuusage_write,
d842de87 8822 },
e9515c3c
KC
8823 {
8824 .name = "usage_percpu",
8825 .read_seq_string = cpuacct_percpu_seq_read,
8826 },
ef12fefa
BR
8827 {
8828 .name = "stat",
8829 .read_map = cpuacct_stats_show,
8830 },
d842de87
SV
8831};
8832
32cd756a 8833static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8834{
32cd756a 8835 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8836}
8837
8838/*
8839 * charge this task's execution time to its accounting group.
8840 *
8841 * called with rq->lock held.
8842 */
8843static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8844{
8845 struct cpuacct *ca;
934352f2 8846 int cpu;
d842de87 8847
c40c6f85 8848 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8849 return;
8850
934352f2 8851 cpu = task_cpu(tsk);
a18b83b7
BR
8852
8853 rcu_read_lock();
8854
d842de87 8855 ca = task_ca(tsk);
d842de87 8856
934352f2 8857 for (; ca; ca = ca->parent) {
b36128c8 8858 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8859 *cpuusage += cputime;
8860 }
a18b83b7
BR
8861
8862 rcu_read_unlock();
d842de87
SV
8863}
8864
fa535a77
AB
8865/*
8866 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8867 * in cputime_t units. As a result, cpuacct_update_stats calls
8868 * percpu_counter_add with values large enough to always overflow the
8869 * per cpu batch limit causing bad SMP scalability.
8870 *
8871 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8872 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8873 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8874 */
8875#ifdef CONFIG_SMP
8876#define CPUACCT_BATCH \
8877 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8878#else
8879#define CPUACCT_BATCH 0
8880#endif
8881
ef12fefa
BR
8882/*
8883 * Charge the system/user time to the task's accounting group.
8884 */
8885static void cpuacct_update_stats(struct task_struct *tsk,
8886 enum cpuacct_stat_index idx, cputime_t val)
8887{
8888 struct cpuacct *ca;
fa535a77 8889 int batch = CPUACCT_BATCH;
ef12fefa
BR
8890
8891 if (unlikely(!cpuacct_subsys.active))
8892 return;
8893
8894 rcu_read_lock();
8895 ca = task_ca(tsk);
8896
8897 do {
fa535a77 8898 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
8899 ca = ca->parent;
8900 } while (ca);
8901 rcu_read_unlock();
8902}
8903
d842de87
SV
8904struct cgroup_subsys cpuacct_subsys = {
8905 .name = "cpuacct",
8906 .create = cpuacct_create,
8907 .destroy = cpuacct_destroy,
8908 .populate = cpuacct_populate,
8909 .subsys_id = cpuacct_subsys_id,
8910};
8911#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
8912
8913#ifndef CONFIG_SMP
8914
03b042bf
PM
8915void synchronize_sched_expedited(void)
8916{
fc390cde 8917 barrier();
03b042bf
PM
8918}
8919EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8920
8921#else /* #ifndef CONFIG_SMP */
8922
cc631fb7 8923static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
03b042bf 8924
cc631fb7 8925static int synchronize_sched_expedited_cpu_stop(void *data)
03b042bf 8926{
969c7921
TH
8927 /*
8928 * There must be a full memory barrier on each affected CPU
8929 * between the time that try_stop_cpus() is called and the
8930 * time that it returns.
8931 *
8932 * In the current initial implementation of cpu_stop, the
8933 * above condition is already met when the control reaches
8934 * this point and the following smp_mb() is not strictly
8935 * necessary. Do smp_mb() anyway for documentation and
8936 * robustness against future implementation changes.
8937 */
cc631fb7 8938 smp_mb(); /* See above comment block. */
969c7921 8939 return 0;
03b042bf 8940}
03b042bf
PM
8941
8942/*
8943 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
8944 * approach to force grace period to end quickly. This consumes
8945 * significant time on all CPUs, and is thus not recommended for
8946 * any sort of common-case code.
8947 *
8948 * Note that it is illegal to call this function while holding any
8949 * lock that is acquired by a CPU-hotplug notifier. Failing to
8950 * observe this restriction will result in deadlock.
8951 */
8952void synchronize_sched_expedited(void)
8953{
969c7921 8954 int snap, trycount = 0;
03b042bf
PM
8955
8956 smp_mb(); /* ensure prior mod happens before capturing snap. */
969c7921 8957 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
03b042bf 8958 get_online_cpus();
969c7921
TH
8959 while (try_stop_cpus(cpu_online_mask,
8960 synchronize_sched_expedited_cpu_stop,
94458d5e 8961 NULL) == -EAGAIN) {
03b042bf
PM
8962 put_online_cpus();
8963 if (trycount++ < 10)
8964 udelay(trycount * num_online_cpus());
8965 else {
8966 synchronize_sched();
8967 return;
8968 }
969c7921 8969 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
03b042bf
PM
8970 smp_mb(); /* ensure test happens before caller kfree */
8971 return;
8972 }
8973 get_online_cpus();
8974 }
969c7921 8975 atomic_inc(&synchronize_sched_expedited_count);
cc631fb7 8976 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
03b042bf 8977 put_online_cpus();
03b042bf
PM
8978}
8979EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8980
8981#endif /* #else #ifndef CONFIG_SMP */