]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/memcontrol.c
memcg: add zone_reclaim_stat
[net-next-2.6.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d13d1443 24#include <linux/pagemap.h>
d52aa412 25#include <linux/smp.h>
8a9f3ccd 26#include <linux/page-flags.h>
66e1707b 27#include <linux/backing-dev.h>
8a9f3ccd
BS
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
8c7c6e34 30#include <linux/mutex.h>
b6ac57d5 31#include <linux/slab.h>
66e1707b
BS
32#include <linux/swap.h>
33#include <linux/spinlock.h>
34#include <linux/fs.h>
d2ceb9b7 35#include <linux/seq_file.h>
33327948 36#include <linux/vmalloc.h>
b69408e8 37#include <linux/mm_inline.h>
52d4b9ac 38#include <linux/page_cgroup.h>
08e552c6 39#include "internal.h"
8cdea7c0 40
8697d331
BS
41#include <asm/uaccess.h>
42
a181b0e8 43struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 44#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 45
c077719b
KH
46#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48int do_swap_account __read_mostly;
49static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50#else
51#define do_swap_account (0)
52#endif
53
54
d52aa412
KH
55/*
56 * Statistics for memory cgroup.
57 */
58enum mem_cgroup_stat_index {
59 /*
60 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
61 */
62 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
63 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
55e462b0
BR
64 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
65 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
66
67 MEM_CGROUP_STAT_NSTATS,
68};
69
70struct mem_cgroup_stat_cpu {
71 s64 count[MEM_CGROUP_STAT_NSTATS];
72} ____cacheline_aligned_in_smp;
73
74struct mem_cgroup_stat {
c8dad2bb 75 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
76};
77
78/*
79 * For accounting under irq disable, no need for increment preempt count.
80 */
addb9efe 81static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
82 enum mem_cgroup_stat_index idx, int val)
83{
addb9efe 84 stat->count[idx] += val;
d52aa412
KH
85}
86
87static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
88 enum mem_cgroup_stat_index idx)
89{
90 int cpu;
91 s64 ret = 0;
92 for_each_possible_cpu(cpu)
93 ret += stat->cpustat[cpu].count[idx];
94 return ret;
95}
96
6d12e2d8
KH
97/*
98 * per-zone information in memory controller.
99 */
6d12e2d8 100struct mem_cgroup_per_zone {
072c56c1
KH
101 /*
102 * spin_lock to protect the per cgroup LRU
103 */
b69408e8
CL
104 struct list_head lists[NR_LRU_LISTS];
105 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
106
107 struct zone_reclaim_stat reclaim_stat;
6d12e2d8
KH
108};
109/* Macro for accessing counter */
110#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
111
112struct mem_cgroup_per_node {
113 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
114};
115
116struct mem_cgroup_lru_info {
117 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
118};
119
8cdea7c0
BS
120/*
121 * The memory controller data structure. The memory controller controls both
122 * page cache and RSS per cgroup. We would eventually like to provide
123 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
124 * to help the administrator determine what knobs to tune.
125 *
126 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
127 * we hit the water mark. May be even add a low water mark, such that
128 * no reclaim occurs from a cgroup at it's low water mark, this is
129 * a feature that will be implemented much later in the future.
8cdea7c0
BS
130 */
131struct mem_cgroup {
132 struct cgroup_subsys_state css;
133 /*
134 * the counter to account for memory usage
135 */
136 struct res_counter res;
8c7c6e34
KH
137 /*
138 * the counter to account for mem+swap usage.
139 */
140 struct res_counter memsw;
78fb7466
PE
141 /*
142 * Per cgroup active and inactive list, similar to the
143 * per zone LRU lists.
78fb7466 144 */
6d12e2d8 145 struct mem_cgroup_lru_info info;
072c56c1 146
6c48a1d0 147 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
148
149 /*
150 * While reclaiming in a hiearchy, we cache the last child we
151 * reclaimed from. Protected by cgroup_lock()
152 */
153 struct mem_cgroup *last_scanned_child;
18f59ea7
BS
154 /*
155 * Should the accounting and control be hierarchical, per subtree?
156 */
157 bool use_hierarchy;
a636b327 158 unsigned long last_oom_jiffies;
8c7c6e34
KH
159 int obsolete;
160 atomic_t refcnt;
14797e23
KM
161
162 unsigned int inactive_ratio;
163
d52aa412 164 /*
c8dad2bb 165 * statistics. This must be placed at the end of memcg.
d52aa412
KH
166 */
167 struct mem_cgroup_stat stat;
8cdea7c0
BS
168};
169
217bc319
KH
170enum charge_type {
171 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
172 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 173 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 174 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 175 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
c05555b5
KH
176 NR_CHARGE_TYPE,
177};
178
52d4b9ac
KH
179/* only for here (for easy reading.) */
180#define PCGF_CACHE (1UL << PCG_CACHE)
181#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 182#define PCGF_LOCK (1UL << PCG_LOCK)
c05555b5
KH
183static const unsigned long
184pcg_default_flags[NR_CHARGE_TYPE] = {
08e552c6
KH
185 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
186 PCGF_USED | PCGF_LOCK, /* Anon */
187 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
52d4b9ac 188 0, /* FORCE */
217bc319
KH
189};
190
8c7c6e34
KH
191/* for encoding cft->private value on file */
192#define _MEM (0)
193#define _MEMSWAP (1)
194#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
195#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
196#define MEMFILE_ATTR(val) ((val) & 0xffff)
197
198static void mem_cgroup_get(struct mem_cgroup *mem);
199static void mem_cgroup_put(struct mem_cgroup *mem);
200
c05555b5
KH
201static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
202 struct page_cgroup *pc,
203 bool charge)
d52aa412
KH
204{
205 int val = (charge)? 1 : -1;
206 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 207 struct mem_cgroup_stat_cpu *cpustat;
08e552c6 208 int cpu = get_cpu();
d52aa412 209
08e552c6 210 cpustat = &stat->cpustat[cpu];
c05555b5 211 if (PageCgroupCache(pc))
addb9efe 212 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 213 else
addb9efe 214 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
215
216 if (charge)
addb9efe 217 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
218 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
219 else
addb9efe 220 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 221 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
08e552c6 222 put_cpu();
6d12e2d8
KH
223}
224
d5b69e38 225static struct mem_cgroup_per_zone *
6d12e2d8
KH
226mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
227{
6d12e2d8
KH
228 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
229}
230
d5b69e38 231static struct mem_cgroup_per_zone *
6d12e2d8
KH
232page_cgroup_zoneinfo(struct page_cgroup *pc)
233{
234 struct mem_cgroup *mem = pc->mem_cgroup;
235 int nid = page_cgroup_nid(pc);
236 int zid = page_cgroup_zid(pc);
d52aa412 237
54992762
KM
238 if (!mem)
239 return NULL;
240
6d12e2d8
KH
241 return mem_cgroup_zoneinfo(mem, nid, zid);
242}
243
244static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
b69408e8 245 enum lru_list idx)
6d12e2d8
KH
246{
247 int nid, zid;
248 struct mem_cgroup_per_zone *mz;
249 u64 total = 0;
250
251 for_each_online_node(nid)
252 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
253 mz = mem_cgroup_zoneinfo(mem, nid, zid);
254 total += MEM_CGROUP_ZSTAT(mz, idx);
255 }
256 return total;
d52aa412
KH
257}
258
d5b69e38 259static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
260{
261 return container_of(cgroup_subsys_state(cont,
262 mem_cgroup_subsys_id), struct mem_cgroup,
263 css);
264}
265
cf475ad2 266struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 267{
31a78f23
BS
268 /*
269 * mm_update_next_owner() may clear mm->owner to NULL
270 * if it races with swapoff, page migration, etc.
271 * So this can be called with p == NULL.
272 */
273 if (unlikely(!p))
274 return NULL;
275
78fb7466
PE
276 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
277 struct mem_cgroup, css);
278}
279
08e552c6
KH
280/*
281 * Following LRU functions are allowed to be used without PCG_LOCK.
282 * Operations are called by routine of global LRU independently from memcg.
283 * What we have to take care of here is validness of pc->mem_cgroup.
284 *
285 * Changes to pc->mem_cgroup happens when
286 * 1. charge
287 * 2. moving account
288 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
289 * It is added to LRU before charge.
290 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
291 * When moving account, the page is not on LRU. It's isolated.
292 */
4f98a2fe 293
08e552c6
KH
294void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
295{
296 struct page_cgroup *pc;
297 struct mem_cgroup *mem;
298 struct mem_cgroup_per_zone *mz;
6d12e2d8 299
f8d66542 300 if (mem_cgroup_disabled())
08e552c6
KH
301 return;
302 pc = lookup_page_cgroup(page);
303 /* can happen while we handle swapcache. */
304 if (list_empty(&pc->lru))
305 return;
306 mz = page_cgroup_zoneinfo(pc);
307 mem = pc->mem_cgroup;
b69408e8 308 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
08e552c6
KH
309 list_del_init(&pc->lru);
310 return;
6d12e2d8
KH
311}
312
08e552c6 313void mem_cgroup_del_lru(struct page *page)
6d12e2d8 314{
08e552c6
KH
315 mem_cgroup_del_lru_list(page, page_lru(page));
316}
b69408e8 317
08e552c6
KH
318void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
319{
320 struct mem_cgroup_per_zone *mz;
321 struct page_cgroup *pc;
b69408e8 322
f8d66542 323 if (mem_cgroup_disabled())
08e552c6 324 return;
6d12e2d8 325
08e552c6
KH
326 pc = lookup_page_cgroup(page);
327 smp_rmb();
328 /* unused page is not rotated. */
329 if (!PageCgroupUsed(pc))
330 return;
331 mz = page_cgroup_zoneinfo(pc);
332 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
333}
334
08e552c6 335void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 336{
08e552c6
KH
337 struct page_cgroup *pc;
338 struct mem_cgroup_per_zone *mz;
6d12e2d8 339
f8d66542 340 if (mem_cgroup_disabled())
08e552c6
KH
341 return;
342 pc = lookup_page_cgroup(page);
343 /* barrier to sync with "charge" */
344 smp_rmb();
345 if (!PageCgroupUsed(pc))
894bc310 346 return;
b69408e8 347
08e552c6 348 mz = page_cgroup_zoneinfo(pc);
b69408e8 349 MEM_CGROUP_ZSTAT(mz, lru) += 1;
08e552c6
KH
350 list_add(&pc->lru, &mz->lists[lru]);
351}
352/*
353 * To add swapcache into LRU. Be careful to all this function.
354 * zone->lru_lock shouldn't be held and irq must not be disabled.
355 */
356static void mem_cgroup_lru_fixup(struct page *page)
357{
358 if (!isolate_lru_page(page))
359 putback_lru_page(page);
360}
361
362void mem_cgroup_move_lists(struct page *page,
363 enum lru_list from, enum lru_list to)
364{
f8d66542 365 if (mem_cgroup_disabled())
08e552c6
KH
366 return;
367 mem_cgroup_del_lru_list(page, from);
368 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
369}
370
4c4a2214
DR
371int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
372{
373 int ret;
374
375 task_lock(task);
bd845e38 376 ret = task->mm && mm_match_cgroup(task->mm, mem);
4c4a2214
DR
377 task_unlock(task);
378 return ret;
379}
380
58ae83db
KH
381/*
382 * Calculate mapped_ratio under memory controller. This will be used in
383 * vmscan.c for deteremining we have to reclaim mapped pages.
384 */
385int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
386{
387 long total, rss;
388
389 /*
390 * usage is recorded in bytes. But, here, we assume the number of
391 * physical pages can be represented by "long" on any arch.
392 */
393 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
394 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
395 return (int)((rss * 100L) / total);
396}
8869b8f6 397
6c48a1d0
KH
398/*
399 * prev_priority control...this will be used in memory reclaim path.
400 */
401int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
402{
403 return mem->prev_priority;
404}
405
406void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
407{
408 if (priority < mem->prev_priority)
409 mem->prev_priority = priority;
410}
411
412void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
413{
414 mem->prev_priority = priority;
415}
416
cc38108e
KH
417/*
418 * Calculate # of pages to be scanned in this priority/zone.
419 * See also vmscan.c
420 *
421 * priority starts from "DEF_PRIORITY" and decremented in each loop.
422 * (see include/linux/mmzone.h)
423 */
424
b69408e8
CL
425long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone,
426 int priority, enum lru_list lru)
cc38108e 427{
b69408e8 428 long nr_pages;
cc38108e
KH
429 int nid = zone->zone_pgdat->node_id;
430 int zid = zone_idx(zone);
431 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
432
b69408e8 433 nr_pages = MEM_CGROUP_ZSTAT(mz, lru);
cc38108e 434
b69408e8 435 return (nr_pages >> priority);
cc38108e
KH
436}
437
14797e23
KM
438int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
439{
440 unsigned long active;
441 unsigned long inactive;
442
443 inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
444 active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
445
446 if (inactive * memcg->inactive_ratio < active)
447 return 1;
448
449 return 0;
450}
451
a3d8e054
KM
452unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
453 struct zone *zone,
454 enum lru_list lru)
455{
456 int nid = zone->zone_pgdat->node_id;
457 int zid = zone_idx(zone);
458 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
459
460 return MEM_CGROUP_ZSTAT(mz, lru);
461}
462
3e2f41f1
KM
463struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
464 struct zone *zone)
465{
466 int nid = zone->zone_pgdat->node_id;
467 int zid = zone_idx(zone);
468 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
469
470 return &mz->reclaim_stat;
471}
472
473struct zone_reclaim_stat *
474mem_cgroup_get_reclaim_stat_from_page(struct page *page)
475{
476 struct page_cgroup *pc;
477 struct mem_cgroup_per_zone *mz;
478
479 if (mem_cgroup_disabled())
480 return NULL;
481
482 pc = lookup_page_cgroup(page);
483 mz = page_cgroup_zoneinfo(pc);
484 if (!mz)
485 return NULL;
486
487 return &mz->reclaim_stat;
488}
489
66e1707b
BS
490unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
491 struct list_head *dst,
492 unsigned long *scanned, int order,
493 int mode, struct zone *z,
494 struct mem_cgroup *mem_cont,
4f98a2fe 495 int active, int file)
66e1707b
BS
496{
497 unsigned long nr_taken = 0;
498 struct page *page;
499 unsigned long scan;
500 LIST_HEAD(pc_list);
501 struct list_head *src;
ff7283fa 502 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
503 int nid = z->zone_pgdat->node_id;
504 int zid = zone_idx(z);
505 struct mem_cgroup_per_zone *mz;
4f98a2fe 506 int lru = LRU_FILE * !!file + !!active;
66e1707b 507
cf475ad2 508 BUG_ON(!mem_cont);
1ecaab2b 509 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 510 src = &mz->lists[lru];
66e1707b 511
ff7283fa
KH
512 scan = 0;
513 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 514 if (scan >= nr_to_scan)
ff7283fa 515 break;
08e552c6
KH
516
517 page = pc->page;
52d4b9ac
KH
518 if (unlikely(!PageCgroupUsed(pc)))
519 continue;
436c6541 520 if (unlikely(!PageLRU(page)))
ff7283fa 521 continue;
ff7283fa 522
436c6541 523 scan++;
4f98a2fe 524 if (__isolate_lru_page(page, mode, file) == 0) {
66e1707b
BS
525 list_move(&page->lru, dst);
526 nr_taken++;
527 }
528 }
529
66e1707b
BS
530 *scanned = scan;
531 return nr_taken;
532}
533
6d61ef40
BS
534#define mem_cgroup_from_res_counter(counter, member) \
535 container_of(counter, struct mem_cgroup, member)
536
537/*
538 * This routine finds the DFS walk successor. This routine should be
539 * called with cgroup_mutex held
540 */
541static struct mem_cgroup *
542mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
543{
544 struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
545
546 curr_cgroup = curr->css.cgroup;
547 root_cgroup = root_mem->css.cgroup;
548
549 if (!list_empty(&curr_cgroup->children)) {
550 /*
551 * Walk down to children
552 */
553 mem_cgroup_put(curr);
554 cgroup = list_entry(curr_cgroup->children.next,
555 struct cgroup, sibling);
556 curr = mem_cgroup_from_cont(cgroup);
557 mem_cgroup_get(curr);
558 goto done;
559 }
560
561visit_parent:
562 if (curr_cgroup == root_cgroup) {
563 mem_cgroup_put(curr);
564 curr = root_mem;
565 mem_cgroup_get(curr);
566 goto done;
567 }
568
569 /*
570 * Goto next sibling
571 */
572 if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
573 mem_cgroup_put(curr);
574 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
575 sibling);
576 curr = mem_cgroup_from_cont(cgroup);
577 mem_cgroup_get(curr);
578 goto done;
579 }
580
581 /*
582 * Go up to next parent and next parent's sibling if need be
583 */
584 curr_cgroup = curr_cgroup->parent;
585 goto visit_parent;
586
587done:
588 root_mem->last_scanned_child = curr;
589 return curr;
590}
591
592/*
593 * Visit the first child (need not be the first child as per the ordering
594 * of the cgroup list, since we track last_scanned_child) of @mem and use
595 * that to reclaim free pages from.
596 */
597static struct mem_cgroup *
598mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
599{
600 struct cgroup *cgroup;
601 struct mem_cgroup *ret;
602 bool obsolete = (root_mem->last_scanned_child &&
603 root_mem->last_scanned_child->obsolete);
604
605 /*
606 * Scan all children under the mem_cgroup mem
607 */
608 cgroup_lock();
609 if (list_empty(&root_mem->css.cgroup->children)) {
610 ret = root_mem;
611 goto done;
612 }
613
614 if (!root_mem->last_scanned_child || obsolete) {
615
616 if (obsolete)
617 mem_cgroup_put(root_mem->last_scanned_child);
618
619 cgroup = list_first_entry(&root_mem->css.cgroup->children,
620 struct cgroup, sibling);
621 ret = mem_cgroup_from_cont(cgroup);
622 mem_cgroup_get(ret);
623 } else
624 ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
625 root_mem);
626
627done:
628 root_mem->last_scanned_child = ret;
629 cgroup_unlock();
630 return ret;
631}
632
b85a96c0
DN
633static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
634{
635 if (do_swap_account) {
636 if (res_counter_check_under_limit(&mem->res) &&
637 res_counter_check_under_limit(&mem->memsw))
638 return true;
639 } else
640 if (res_counter_check_under_limit(&mem->res))
641 return true;
642 return false;
643}
644
6d61ef40
BS
645/*
646 * Dance down the hierarchy if needed to reclaim memory. We remember the
647 * last child we reclaimed from, so that we don't end up penalizing
648 * one child extensively based on its position in the children list.
649 *
650 * root_mem is the original ancestor that we've been reclaim from.
651 */
652static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
653 gfp_t gfp_mask, bool noswap)
654{
655 struct mem_cgroup *next_mem;
656 int ret = 0;
657
658 /*
659 * Reclaim unconditionally and don't check for return value.
660 * We need to reclaim in the current group and down the tree.
661 * One might think about checking for children before reclaiming,
662 * but there might be left over accounting, even after children
663 * have left.
664 */
665 ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap);
b85a96c0 666 if (mem_cgroup_check_under_limit(root_mem))
6d61ef40 667 return 0;
670ec2f1
DN
668 if (!root_mem->use_hierarchy)
669 return ret;
6d61ef40
BS
670
671 next_mem = mem_cgroup_get_first_node(root_mem);
672
673 while (next_mem != root_mem) {
674 if (next_mem->obsolete) {
675 mem_cgroup_put(next_mem);
676 cgroup_lock();
677 next_mem = mem_cgroup_get_first_node(root_mem);
678 cgroup_unlock();
679 continue;
680 }
681 ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap);
b85a96c0 682 if (mem_cgroup_check_under_limit(root_mem))
6d61ef40
BS
683 return 0;
684 cgroup_lock();
685 next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
686 cgroup_unlock();
687 }
688 return ret;
689}
690
a636b327
KH
691bool mem_cgroup_oom_called(struct task_struct *task)
692{
693 bool ret = false;
694 struct mem_cgroup *mem;
695 struct mm_struct *mm;
696
697 rcu_read_lock();
698 mm = task->mm;
699 if (!mm)
700 mm = &init_mm;
701 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
702 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
703 ret = true;
704 rcu_read_unlock();
705 return ret;
706}
f817ed48
KH
707/*
708 * Unlike exported interface, "oom" parameter is added. if oom==true,
709 * oom-killer can be invoked.
8a9f3ccd 710 */
f817ed48 711static int __mem_cgroup_try_charge(struct mm_struct *mm,
8c7c6e34
KH
712 gfp_t gfp_mask, struct mem_cgroup **memcg,
713 bool oom)
8a9f3ccd 714{
6d61ef40 715 struct mem_cgroup *mem, *mem_over_limit;
7a81b88c 716 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
28dbc4b6 717 struct res_counter *fail_res;
a636b327
KH
718
719 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
720 /* Don't account this! */
721 *memcg = NULL;
722 return 0;
723 }
724
8a9f3ccd 725 /*
3be91277
HD
726 * We always charge the cgroup the mm_struct belongs to.
727 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
728 * thread group leader migrates. It's possible that mm is not
729 * set, if so charge the init_mm (happens for pagecache usage).
730 */
7a81b88c 731 if (likely(!*memcg)) {
e8589cc1
KH
732 rcu_read_lock();
733 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
734 if (unlikely(!mem)) {
735 rcu_read_unlock();
31a78f23
BS
736 return 0;
737 }
e8589cc1
KH
738 /*
739 * For every charge from the cgroup, increment reference count
740 */
741 css_get(&mem->css);
7a81b88c 742 *memcg = mem;
e8589cc1
KH
743 rcu_read_unlock();
744 } else {
7a81b88c
KH
745 mem = *memcg;
746 css_get(&mem->css);
e8589cc1 747 }
8a9f3ccd 748
8c7c6e34
KH
749 while (1) {
750 int ret;
751 bool noswap = false;
7a81b88c 752
28dbc4b6 753 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
8c7c6e34
KH
754 if (likely(!ret)) {
755 if (!do_swap_account)
756 break;
28dbc4b6
BS
757 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
758 &fail_res);
8c7c6e34
KH
759 if (likely(!ret))
760 break;
761 /* mem+swap counter fails */
762 res_counter_uncharge(&mem->res, PAGE_SIZE);
763 noswap = true;
6d61ef40
BS
764 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
765 memsw);
766 } else
767 /* mem counter fails */
768 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
769 res);
770
3be91277 771 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 772 goto nomem;
e1a1cd59 773
6d61ef40
BS
774 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
775 noswap);
66e1707b
BS
776
777 /*
8869b8f6
HD
778 * try_to_free_mem_cgroup_pages() might not give us a full
779 * picture of reclaim. Some pages are reclaimed and might be
780 * moved to swap cache or just unmapped from the cgroup.
781 * Check the limit again to see if the reclaim reduced the
782 * current usage of the cgroup before giving up
8c7c6e34 783 *
8869b8f6 784 */
b85a96c0
DN
785 if (mem_cgroup_check_under_limit(mem_over_limit))
786 continue;
3be91277
HD
787
788 if (!nr_retries--) {
a636b327 789 if (oom) {
88700756
KH
790 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
791 mem_over_limit->last_oom_jiffies = jiffies;
a636b327 792 }
7a81b88c 793 goto nomem;
66e1707b 794 }
8a9f3ccd 795 }
7a81b88c
KH
796 return 0;
797nomem:
798 css_put(&mem->css);
799 return -ENOMEM;
800}
8a9f3ccd 801
f817ed48
KH
802/**
803 * mem_cgroup_try_charge - get charge of PAGE_SIZE.
804 * @mm: an mm_struct which is charged against. (when *memcg is NULL)
805 * @gfp_mask: gfp_mask for reclaim.
806 * @memcg: a pointer to memory cgroup which is charged against.
807 *
808 * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
809 * memory cgroup from @mm is got and stored in *memcg.
810 *
811 * Returns 0 if success. -ENOMEM at failure.
812 * This call can invoke OOM-Killer.
813 */
814
815int mem_cgroup_try_charge(struct mm_struct *mm,
816 gfp_t mask, struct mem_cgroup **memcg)
817{
818 return __mem_cgroup_try_charge(mm, mask, memcg, true);
819}
820
7a81b88c
KH
821/*
822 * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
823 * USED state. If already USED, uncharge and return.
824 */
825
826static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
827 struct page_cgroup *pc,
828 enum charge_type ctype)
829{
7a81b88c
KH
830 /* try_charge() can return NULL to *memcg, taking care of it. */
831 if (!mem)
832 return;
52d4b9ac
KH
833
834 lock_page_cgroup(pc);
835 if (unlikely(PageCgroupUsed(pc))) {
836 unlock_page_cgroup(pc);
837 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
838 if (do_swap_account)
839 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
52d4b9ac 840 css_put(&mem->css);
7a81b88c 841 return;
52d4b9ac 842 }
8a9f3ccd 843 pc->mem_cgroup = mem;
08e552c6 844 smp_wmb();
c05555b5 845 pc->flags = pcg_default_flags[ctype];
3be91277 846
08e552c6 847 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 848
52d4b9ac 849 unlock_page_cgroup(pc);
7a81b88c 850}
66e1707b 851
f817ed48
KH
852/**
853 * mem_cgroup_move_account - move account of the page
854 * @pc: page_cgroup of the page.
855 * @from: mem_cgroup which the page is moved from.
856 * @to: mem_cgroup which the page is moved to. @from != @to.
857 *
858 * The caller must confirm following.
08e552c6 859 * - page is not on LRU (isolate_page() is useful.)
f817ed48
KH
860 *
861 * returns 0 at success,
862 * returns -EBUSY when lock is busy or "pc" is unstable.
863 *
864 * This function does "uncharge" from old cgroup but doesn't do "charge" to
865 * new cgroup. It should be done by a caller.
866 */
867
868static int mem_cgroup_move_account(struct page_cgroup *pc,
869 struct mem_cgroup *from, struct mem_cgroup *to)
870{
871 struct mem_cgroup_per_zone *from_mz, *to_mz;
872 int nid, zid;
873 int ret = -EBUSY;
874
f817ed48 875 VM_BUG_ON(from == to);
08e552c6 876 VM_BUG_ON(PageLRU(pc->page));
f817ed48
KH
877
878 nid = page_cgroup_nid(pc);
879 zid = page_cgroup_zid(pc);
880 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
881 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
882
f817ed48
KH
883 if (!trylock_page_cgroup(pc))
884 return ret;
885
886 if (!PageCgroupUsed(pc))
887 goto out;
888
889 if (pc->mem_cgroup != from)
890 goto out;
891
08e552c6
KH
892 css_put(&from->css);
893 res_counter_uncharge(&from->res, PAGE_SIZE);
894 mem_cgroup_charge_statistics(from, pc, false);
895 if (do_swap_account)
896 res_counter_uncharge(&from->memsw, PAGE_SIZE);
897 pc->mem_cgroup = to;
898 mem_cgroup_charge_statistics(to, pc, true);
899 css_get(&to->css);
900 ret = 0;
f817ed48
KH
901out:
902 unlock_page_cgroup(pc);
903 return ret;
904}
905
906/*
907 * move charges to its parent.
908 */
909
910static int mem_cgroup_move_parent(struct page_cgroup *pc,
911 struct mem_cgroup *child,
912 gfp_t gfp_mask)
913{
08e552c6 914 struct page *page = pc->page;
f817ed48
KH
915 struct cgroup *cg = child->css.cgroup;
916 struct cgroup *pcg = cg->parent;
917 struct mem_cgroup *parent;
f817ed48
KH
918 int ret;
919
920 /* Is ROOT ? */
921 if (!pcg)
922 return -EINVAL;
923
08e552c6 924
f817ed48
KH
925 parent = mem_cgroup_from_cont(pcg);
926
08e552c6 927
f817ed48 928 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
a636b327 929 if (ret || !parent)
f817ed48
KH
930 return ret;
931
08e552c6
KH
932 if (!get_page_unless_zero(page))
933 return -EBUSY;
934
935 ret = isolate_lru_page(page);
936
937 if (ret)
938 goto cancel;
f817ed48 939
f817ed48 940 ret = mem_cgroup_move_account(pc, child, parent);
f817ed48 941
08e552c6 942 /* drop extra refcnt by try_charge() (move_account increment one) */
f817ed48 943 css_put(&parent->css);
08e552c6
KH
944 putback_lru_page(page);
945 if (!ret) {
946 put_page(page);
947 return 0;
8c7c6e34 948 }
08e552c6
KH
949 /* uncharge if move fails */
950cancel:
951 res_counter_uncharge(&parent->res, PAGE_SIZE);
952 if (do_swap_account)
953 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
954 put_page(page);
f817ed48
KH
955 return ret;
956}
957
7a81b88c
KH
958/*
959 * Charge the memory controller for page usage.
960 * Return
961 * 0 if the charge was successful
962 * < 0 if the cgroup is over its limit
963 */
964static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
965 gfp_t gfp_mask, enum charge_type ctype,
966 struct mem_cgroup *memcg)
967{
968 struct mem_cgroup *mem;
969 struct page_cgroup *pc;
970 int ret;
971
972 pc = lookup_page_cgroup(page);
973 /* can happen at boot */
974 if (unlikely(!pc))
975 return 0;
976 prefetchw(pc);
977
978 mem = memcg;
f817ed48 979 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
a636b327 980 if (ret || !mem)
7a81b88c
KH
981 return ret;
982
983 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 984 return 0;
8a9f3ccd
BS
985}
986
7a81b88c
KH
987int mem_cgroup_newpage_charge(struct page *page,
988 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 989{
f8d66542 990 if (mem_cgroup_disabled())
cede86ac 991 return 0;
52d4b9ac
KH
992 if (PageCompound(page))
993 return 0;
69029cd5
KH
994 /*
995 * If already mapped, we don't have to account.
996 * If page cache, page->mapping has address_space.
997 * But page->mapping may have out-of-use anon_vma pointer,
998 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
999 * is NULL.
1000 */
1001 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1002 return 0;
1003 if (unlikely(!mm))
1004 mm = &init_mm;
217bc319 1005 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1006 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
1007}
1008
e1a1cd59
BS
1009int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1010 gfp_t gfp_mask)
8697d331 1011{
f8d66542 1012 if (mem_cgroup_disabled())
cede86ac 1013 return 0;
52d4b9ac
KH
1014 if (PageCompound(page))
1015 return 0;
accf163e
KH
1016 /*
1017 * Corner case handling. This is called from add_to_page_cache()
1018 * in usual. But some FS (shmem) precharges this page before calling it
1019 * and call add_to_page_cache() with GFP_NOWAIT.
1020 *
1021 * For GFP_NOWAIT case, the page may be pre-charged before calling
1022 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1023 * charge twice. (It works but has to pay a bit larger cost.)
1024 */
1025 if (!(gfp_mask & __GFP_WAIT)) {
1026 struct page_cgroup *pc;
1027
52d4b9ac
KH
1028
1029 pc = lookup_page_cgroup(page);
1030 if (!pc)
1031 return 0;
1032 lock_page_cgroup(pc);
1033 if (PageCgroupUsed(pc)) {
1034 unlock_page_cgroup(pc);
accf163e
KH
1035 return 0;
1036 }
52d4b9ac 1037 unlock_page_cgroup(pc);
accf163e
KH
1038 }
1039
69029cd5 1040 if (unlikely(!mm))
8697d331 1041 mm = &init_mm;
accf163e 1042
c05555b5
KH
1043 if (page_is_file_cache(page))
1044 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1045 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
c05555b5
KH
1046 else
1047 return mem_cgroup_charge_common(page, mm, gfp_mask,
1048 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
e8589cc1
KH
1049}
1050
8c7c6e34
KH
1051int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1052 struct page *page,
1053 gfp_t mask, struct mem_cgroup **ptr)
1054{
1055 struct mem_cgroup *mem;
1056 swp_entry_t ent;
1057
f8d66542 1058 if (mem_cgroup_disabled())
8c7c6e34
KH
1059 return 0;
1060
1061 if (!do_swap_account)
1062 goto charge_cur_mm;
1063
1064 /*
1065 * A racing thread's fault, or swapoff, may have already updated
1066 * the pte, and even removed page from swap cache: return success
1067 * to go on to do_swap_page()'s pte_same() test, which should fail.
1068 */
1069 if (!PageSwapCache(page))
1070 return 0;
1071
1072 ent.val = page_private(page);
1073
1074 mem = lookup_swap_cgroup(ent);
1075 if (!mem || mem->obsolete)
1076 goto charge_cur_mm;
1077 *ptr = mem;
1078 return __mem_cgroup_try_charge(NULL, mask, ptr, true);
1079charge_cur_mm:
1080 if (unlikely(!mm))
1081 mm = &init_mm;
1082 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1083}
1084
d13d1443 1085#ifdef CONFIG_SWAP
8c7c6e34 1086
d13d1443
KH
1087int mem_cgroup_cache_charge_swapin(struct page *page,
1088 struct mm_struct *mm, gfp_t mask, bool locked)
1089{
1090 int ret = 0;
1091
f8d66542 1092 if (mem_cgroup_disabled())
d13d1443
KH
1093 return 0;
1094 if (unlikely(!mm))
1095 mm = &init_mm;
1096 if (!locked)
1097 lock_page(page);
1098 /*
1099 * If not locked, the page can be dropped from SwapCache until
1100 * we reach here.
1101 */
1102 if (PageSwapCache(page)) {
8c7c6e34
KH
1103 struct mem_cgroup *mem = NULL;
1104 swp_entry_t ent;
1105
1106 ent.val = page_private(page);
1107 if (do_swap_account) {
1108 mem = lookup_swap_cgroup(ent);
1109 if (mem && mem->obsolete)
1110 mem = NULL;
1111 if (mem)
1112 mm = NULL;
1113 }
d13d1443 1114 ret = mem_cgroup_charge_common(page, mm, mask,
8c7c6e34
KH
1115 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1116
1117 if (!ret && do_swap_account) {
1118 /* avoid double counting */
1119 mem = swap_cgroup_record(ent, NULL);
1120 if (mem) {
1121 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1122 mem_cgroup_put(mem);
1123 }
1124 }
d13d1443
KH
1125 }
1126 if (!locked)
1127 unlock_page(page);
08e552c6
KH
1128 /* add this page(page_cgroup) to the LRU we want. */
1129 mem_cgroup_lru_fixup(page);
d13d1443
KH
1130
1131 return ret;
1132}
1133#endif
1134
7a81b88c
KH
1135void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1136{
1137 struct page_cgroup *pc;
1138
f8d66542 1139 if (mem_cgroup_disabled())
7a81b88c
KH
1140 return;
1141 if (!ptr)
1142 return;
1143 pc = lookup_page_cgroup(page);
1144 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
8c7c6e34
KH
1145 /*
1146 * Now swap is on-memory. This means this page may be
1147 * counted both as mem and swap....double count.
1148 * Fix it by uncharging from memsw. This SwapCache is stable
1149 * because we're still under lock_page().
1150 */
1151 if (do_swap_account) {
1152 swp_entry_t ent = {.val = page_private(page)};
1153 struct mem_cgroup *memcg;
1154 memcg = swap_cgroup_record(ent, NULL);
1155 if (memcg) {
1156 /* If memcg is obsolete, memcg can be != ptr */
1157 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1158 mem_cgroup_put(memcg);
1159 }
1160
1161 }
08e552c6
KH
1162 /* add this page(page_cgroup) to the LRU we want. */
1163 mem_cgroup_lru_fixup(page);
7a81b88c
KH
1164}
1165
1166void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1167{
f8d66542 1168 if (mem_cgroup_disabled())
7a81b88c
KH
1169 return;
1170 if (!mem)
1171 return;
1172 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
1173 if (do_swap_account)
1174 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
7a81b88c
KH
1175 css_put(&mem->css);
1176}
1177
1178
8a9f3ccd 1179/*
69029cd5 1180 * uncharge if !page_mapped(page)
8a9f3ccd 1181 */
8c7c6e34 1182static struct mem_cgroup *
69029cd5 1183__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 1184{
8289546e 1185 struct page_cgroup *pc;
8c7c6e34 1186 struct mem_cgroup *mem = NULL;
072c56c1 1187 struct mem_cgroup_per_zone *mz;
8a9f3ccd 1188
f8d66542 1189 if (mem_cgroup_disabled())
8c7c6e34 1190 return NULL;
4077960e 1191
d13d1443 1192 if (PageSwapCache(page))
8c7c6e34 1193 return NULL;
d13d1443 1194
8697d331 1195 /*
3c541e14 1196 * Check if our page_cgroup is valid
8697d331 1197 */
52d4b9ac
KH
1198 pc = lookup_page_cgroup(page);
1199 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 1200 return NULL;
b9c565d5 1201
52d4b9ac 1202 lock_page_cgroup(pc);
d13d1443 1203
8c7c6e34
KH
1204 mem = pc->mem_cgroup;
1205
d13d1443
KH
1206 if (!PageCgroupUsed(pc))
1207 goto unlock_out;
1208
1209 switch (ctype) {
1210 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1211 if (page_mapped(page))
1212 goto unlock_out;
1213 break;
1214 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1215 if (!PageAnon(page)) { /* Shared memory */
1216 if (page->mapping && !page_is_file_cache(page))
1217 goto unlock_out;
1218 } else if (page_mapped(page)) /* Anon */
1219 goto unlock_out;
1220 break;
1221 default:
1222 break;
52d4b9ac 1223 }
d13d1443 1224
8c7c6e34
KH
1225 res_counter_uncharge(&mem->res, PAGE_SIZE);
1226 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1227 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1228
08e552c6 1229 mem_cgroup_charge_statistics(mem, pc, false);
52d4b9ac 1230 ClearPageCgroupUsed(pc);
b9c565d5 1231
69029cd5 1232 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 1233 unlock_page_cgroup(pc);
fb59e9f1 1234
a7fe942e
KH
1235 /* at swapout, this memcg will be accessed to record to swap */
1236 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1237 css_put(&mem->css);
6d12e2d8 1238
8c7c6e34 1239 return mem;
d13d1443
KH
1240
1241unlock_out:
1242 unlock_page_cgroup(pc);
8c7c6e34 1243 return NULL;
3c541e14
BS
1244}
1245
69029cd5
KH
1246void mem_cgroup_uncharge_page(struct page *page)
1247{
52d4b9ac
KH
1248 /* early check. */
1249 if (page_mapped(page))
1250 return;
1251 if (page->mapping && !PageAnon(page))
1252 return;
69029cd5
KH
1253 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1254}
1255
1256void mem_cgroup_uncharge_cache_page(struct page *page)
1257{
1258 VM_BUG_ON(page_mapped(page));
b7abea96 1259 VM_BUG_ON(page->mapping);
69029cd5
KH
1260 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1261}
1262
8c7c6e34
KH
1263/*
1264 * called from __delete_from_swap_cache() and drop "page" account.
1265 * memcg information is recorded to swap_cgroup of "ent"
1266 */
1267void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1268{
1269 struct mem_cgroup *memcg;
1270
1271 memcg = __mem_cgroup_uncharge_common(page,
1272 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1273 /* record memcg information */
1274 if (do_swap_account && memcg) {
1275 swap_cgroup_record(ent, memcg);
1276 mem_cgroup_get(memcg);
1277 }
a7fe942e
KH
1278 if (memcg)
1279 css_put(&memcg->css);
8c7c6e34
KH
1280}
1281
1282#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1283/*
1284 * called from swap_entry_free(). remove record in swap_cgroup and
1285 * uncharge "memsw" account.
1286 */
1287void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 1288{
8c7c6e34
KH
1289 struct mem_cgroup *memcg;
1290
1291 if (!do_swap_account)
1292 return;
1293
1294 memcg = swap_cgroup_record(ent, NULL);
1295 if (memcg) {
1296 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1297 mem_cgroup_put(memcg);
1298 }
d13d1443 1299}
8c7c6e34 1300#endif
d13d1443 1301
ae41be37 1302/*
01b1ae63
KH
1303 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1304 * page belongs to.
ae41be37 1305 */
01b1ae63 1306int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
1307{
1308 struct page_cgroup *pc;
e8589cc1 1309 struct mem_cgroup *mem = NULL;
e8589cc1 1310 int ret = 0;
8869b8f6 1311
f8d66542 1312 if (mem_cgroup_disabled())
4077960e
BS
1313 return 0;
1314
52d4b9ac
KH
1315 pc = lookup_page_cgroup(page);
1316 lock_page_cgroup(pc);
1317 if (PageCgroupUsed(pc)) {
e8589cc1
KH
1318 mem = pc->mem_cgroup;
1319 css_get(&mem->css);
e8589cc1 1320 }
52d4b9ac 1321 unlock_page_cgroup(pc);
01b1ae63 1322
e8589cc1 1323 if (mem) {
2c26fdd7 1324 ret = mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem);
e8589cc1
KH
1325 css_put(&mem->css);
1326 }
01b1ae63 1327 *ptr = mem;
e8589cc1 1328 return ret;
ae41be37 1329}
8869b8f6 1330
69029cd5 1331/* remove redundant charge if migration failed*/
01b1ae63
KH
1332void mem_cgroup_end_migration(struct mem_cgroup *mem,
1333 struct page *oldpage, struct page *newpage)
ae41be37 1334{
01b1ae63
KH
1335 struct page *target, *unused;
1336 struct page_cgroup *pc;
1337 enum charge_type ctype;
1338
1339 if (!mem)
1340 return;
1341
1342 /* at migration success, oldpage->mapping is NULL. */
1343 if (oldpage->mapping) {
1344 target = oldpage;
1345 unused = NULL;
1346 } else {
1347 target = newpage;
1348 unused = oldpage;
1349 }
1350
1351 if (PageAnon(target))
1352 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1353 else if (page_is_file_cache(target))
1354 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1355 else
1356 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1357
1358 /* unused page is not on radix-tree now. */
d13d1443 1359 if (unused)
01b1ae63
KH
1360 __mem_cgroup_uncharge_common(unused, ctype);
1361
1362 pc = lookup_page_cgroup(target);
69029cd5 1363 /*
01b1ae63
KH
1364 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1365 * So, double-counting is effectively avoided.
1366 */
1367 __mem_cgroup_commit_charge(mem, pc, ctype);
1368
1369 /*
1370 * Both of oldpage and newpage are still under lock_page().
1371 * Then, we don't have to care about race in radix-tree.
1372 * But we have to be careful that this page is unmapped or not.
1373 *
1374 * There is a case for !page_mapped(). At the start of
1375 * migration, oldpage was mapped. But now, it's zapped.
1376 * But we know *target* page is not freed/reused under us.
1377 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 1378 */
01b1ae63
KH
1379 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1380 mem_cgroup_uncharge_page(target);
ae41be37 1381}
78fb7466 1382
c9b0ed51
KH
1383/*
1384 * A call to try to shrink memory usage under specified resource controller.
1385 * This is typically used for page reclaiming for shmem for reducing side
1386 * effect of page allocation from shmem, which is used by some mem_cgroup.
1387 */
1388int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
1389{
1390 struct mem_cgroup *mem;
1391 int progress = 0;
1392 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1393
f8d66542 1394 if (mem_cgroup_disabled())
cede86ac 1395 return 0;
9623e078
HD
1396 if (!mm)
1397 return 0;
cede86ac 1398
c9b0ed51
KH
1399 rcu_read_lock();
1400 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
1401 if (unlikely(!mem)) {
1402 rcu_read_unlock();
1403 return 0;
1404 }
c9b0ed51
KH
1405 css_get(&mem->css);
1406 rcu_read_unlock();
1407
1408 do {
8c7c6e34 1409 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask, true);
b85a96c0 1410 progress += mem_cgroup_check_under_limit(mem);
c9b0ed51
KH
1411 } while (!progress && --retry);
1412
1413 css_put(&mem->css);
1414 if (!retry)
1415 return -ENOMEM;
1416 return 0;
1417}
1418
14797e23
KM
1419/*
1420 * The inactive anon list should be small enough that the VM never has to
1421 * do too much work, but large enough that each inactive page has a chance
1422 * to be referenced again before it is swapped out.
1423 *
1424 * this calculation is straightforward porting from
1425 * page_alloc.c::setup_per_zone_inactive_ratio().
1426 * it describe more detail.
1427 */
1428static void mem_cgroup_set_inactive_ratio(struct mem_cgroup *memcg)
1429{
1430 unsigned int gb, ratio;
1431
1432 gb = res_counter_read_u64(&memcg->res, RES_LIMIT) >> 30;
1433 if (gb)
1434 ratio = int_sqrt(10 * gb);
1435 else
1436 ratio = 1;
1437
1438 memcg->inactive_ratio = ratio;
1439
1440}
1441
8c7c6e34
KH
1442static DEFINE_MUTEX(set_limit_mutex);
1443
d38d2a75 1444static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 1445 unsigned long long val)
628f4235
KH
1446{
1447
1448 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1449 int progress;
8c7c6e34 1450 u64 memswlimit;
628f4235
KH
1451 int ret = 0;
1452
8c7c6e34 1453 while (retry_count) {
628f4235
KH
1454 if (signal_pending(current)) {
1455 ret = -EINTR;
1456 break;
1457 }
8c7c6e34
KH
1458 /*
1459 * Rather than hide all in some function, I do this in
1460 * open coded manner. You see what this really does.
1461 * We have to guarantee mem->res.limit < mem->memsw.limit.
1462 */
1463 mutex_lock(&set_limit_mutex);
1464 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1465 if (memswlimit < val) {
1466 ret = -EINVAL;
1467 mutex_unlock(&set_limit_mutex);
628f4235
KH
1468 break;
1469 }
8c7c6e34
KH
1470 ret = res_counter_set_limit(&memcg->res, val);
1471 mutex_unlock(&set_limit_mutex);
1472
1473 if (!ret)
1474 break;
1475
bced0520 1476 progress = try_to_free_mem_cgroup_pages(memcg,
2c26fdd7 1477 GFP_KERNEL, false);
8c7c6e34
KH
1478 if (!progress) retry_count--;
1479 }
14797e23
KM
1480
1481 if (!ret)
1482 mem_cgroup_set_inactive_ratio(memcg);
1483
8c7c6e34
KH
1484 return ret;
1485}
1486
1487int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1488 unsigned long long val)
1489{
1490 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1491 u64 memlimit, oldusage, curusage;
1492 int ret;
1493
1494 if (!do_swap_account)
1495 return -EINVAL;
1496
1497 while (retry_count) {
1498 if (signal_pending(current)) {
1499 ret = -EINTR;
1500 break;
1501 }
1502 /*
1503 * Rather than hide all in some function, I do this in
1504 * open coded manner. You see what this really does.
1505 * We have to guarantee mem->res.limit < mem->memsw.limit.
1506 */
1507 mutex_lock(&set_limit_mutex);
1508 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1509 if (memlimit > val) {
1510 ret = -EINVAL;
1511 mutex_unlock(&set_limit_mutex);
1512 break;
1513 }
1514 ret = res_counter_set_limit(&memcg->memsw, val);
1515 mutex_unlock(&set_limit_mutex);
1516
1517 if (!ret)
1518 break;
1519
1520 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2c26fdd7 1521 try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, true);
8c7c6e34
KH
1522 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1523 if (curusage >= oldusage)
628f4235
KH
1524 retry_count--;
1525 }
1526 return ret;
1527}
1528
cc847582
KH
1529/*
1530 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
1531 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1532 */
f817ed48 1533static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 1534 int node, int zid, enum lru_list lru)
cc847582 1535{
08e552c6
KH
1536 struct zone *zone;
1537 struct mem_cgroup_per_zone *mz;
f817ed48 1538 struct page_cgroup *pc, *busy;
08e552c6 1539 unsigned long flags, loop;
072c56c1 1540 struct list_head *list;
f817ed48 1541 int ret = 0;
072c56c1 1542
08e552c6
KH
1543 zone = &NODE_DATA(node)->node_zones[zid];
1544 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 1545 list = &mz->lists[lru];
cc847582 1546
f817ed48
KH
1547 loop = MEM_CGROUP_ZSTAT(mz, lru);
1548 /* give some margin against EBUSY etc...*/
1549 loop += 256;
1550 busy = NULL;
1551 while (loop--) {
1552 ret = 0;
08e552c6 1553 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 1554 if (list_empty(list)) {
08e552c6 1555 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 1556 break;
f817ed48
KH
1557 }
1558 pc = list_entry(list->prev, struct page_cgroup, lru);
1559 if (busy == pc) {
1560 list_move(&pc->lru, list);
1561 busy = 0;
08e552c6 1562 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
1563 continue;
1564 }
08e552c6 1565 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 1566
2c26fdd7 1567 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 1568 if (ret == -ENOMEM)
52d4b9ac 1569 break;
f817ed48
KH
1570
1571 if (ret == -EBUSY || ret == -EINVAL) {
1572 /* found lock contention or "pc" is obsolete. */
1573 busy = pc;
1574 cond_resched();
1575 } else
1576 busy = NULL;
cc847582 1577 }
08e552c6 1578
f817ed48
KH
1579 if (!ret && !list_empty(list))
1580 return -EBUSY;
1581 return ret;
cc847582
KH
1582}
1583
1584/*
1585 * make mem_cgroup's charge to be 0 if there is no task.
1586 * This enables deleting this mem_cgroup.
1587 */
c1e862c1 1588static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 1589{
f817ed48
KH
1590 int ret;
1591 int node, zid, shrink;
1592 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 1593 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 1594
cc847582 1595 css_get(&mem->css);
f817ed48
KH
1596
1597 shrink = 0;
c1e862c1
KH
1598 /* should free all ? */
1599 if (free_all)
1600 goto try_to_free;
f817ed48 1601move_account:
1ecaab2b 1602 while (mem->res.usage > 0) {
f817ed48 1603 ret = -EBUSY;
c1e862c1
KH
1604 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1605 goto out;
1606 ret = -EINTR;
1607 if (signal_pending(current))
cc847582 1608 goto out;
52d4b9ac
KH
1609 /* This is for making all *used* pages to be on LRU. */
1610 lru_add_drain_all();
f817ed48
KH
1611 ret = 0;
1612 for_each_node_state(node, N_POSSIBLE) {
1613 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 1614 enum lru_list l;
f817ed48
KH
1615 for_each_lru(l) {
1616 ret = mem_cgroup_force_empty_list(mem,
08e552c6 1617 node, zid, l);
f817ed48
KH
1618 if (ret)
1619 break;
1620 }
1ecaab2b 1621 }
f817ed48
KH
1622 if (ret)
1623 break;
1624 }
1625 /* it seems parent cgroup doesn't have enough mem */
1626 if (ret == -ENOMEM)
1627 goto try_to_free;
52d4b9ac 1628 cond_resched();
cc847582
KH
1629 }
1630 ret = 0;
1631out:
1632 css_put(&mem->css);
1633 return ret;
f817ed48
KH
1634
1635try_to_free:
c1e862c1
KH
1636 /* returns EBUSY if there is a task or if we come here twice. */
1637 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
1638 ret = -EBUSY;
1639 goto out;
1640 }
c1e862c1
KH
1641 /* we call try-to-free pages for make this cgroup empty */
1642 lru_add_drain_all();
f817ed48
KH
1643 /* try to free all pages in this cgroup */
1644 shrink = 1;
1645 while (nr_retries && mem->res.usage > 0) {
1646 int progress;
c1e862c1
KH
1647
1648 if (signal_pending(current)) {
1649 ret = -EINTR;
1650 goto out;
1651 }
f817ed48 1652 progress = try_to_free_mem_cgroup_pages(mem,
2c26fdd7 1653 GFP_KERNEL, false);
c1e862c1 1654 if (!progress) {
f817ed48 1655 nr_retries--;
c1e862c1
KH
1656 /* maybe some writeback is necessary */
1657 congestion_wait(WRITE, HZ/10);
1658 }
f817ed48
KH
1659
1660 }
08e552c6 1661 lru_add_drain();
f817ed48
KH
1662 /* try move_account...there may be some *locked* pages. */
1663 if (mem->res.usage)
1664 goto move_account;
1665 ret = 0;
1666 goto out;
cc847582
KH
1667}
1668
c1e862c1
KH
1669int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1670{
1671 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1672}
1673
1674
18f59ea7
BS
1675static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1676{
1677 return mem_cgroup_from_cont(cont)->use_hierarchy;
1678}
1679
1680static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1681 u64 val)
1682{
1683 int retval = 0;
1684 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1685 struct cgroup *parent = cont->parent;
1686 struct mem_cgroup *parent_mem = NULL;
1687
1688 if (parent)
1689 parent_mem = mem_cgroup_from_cont(parent);
1690
1691 cgroup_lock();
1692 /*
1693 * If parent's use_hiearchy is set, we can't make any modifications
1694 * in the child subtrees. If it is unset, then the change can
1695 * occur, provided the current cgroup has no children.
1696 *
1697 * For the root cgroup, parent_mem is NULL, we allow value to be
1698 * set if there are no children.
1699 */
1700 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1701 (val == 1 || val == 0)) {
1702 if (list_empty(&cont->children))
1703 mem->use_hierarchy = val;
1704 else
1705 retval = -EBUSY;
1706 } else
1707 retval = -EINVAL;
1708 cgroup_unlock();
1709
1710 return retval;
1711}
1712
2c3daa72 1713static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 1714{
8c7c6e34
KH
1715 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1716 u64 val = 0;
1717 int type, name;
1718
1719 type = MEMFILE_TYPE(cft->private);
1720 name = MEMFILE_ATTR(cft->private);
1721 switch (type) {
1722 case _MEM:
1723 val = res_counter_read_u64(&mem->res, name);
1724 break;
1725 case _MEMSWAP:
1726 if (do_swap_account)
1727 val = res_counter_read_u64(&mem->memsw, name);
1728 break;
1729 default:
1730 BUG();
1731 break;
1732 }
1733 return val;
8cdea7c0 1734}
628f4235
KH
1735/*
1736 * The user of this function is...
1737 * RES_LIMIT.
1738 */
856c13aa
PM
1739static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1740 const char *buffer)
8cdea7c0 1741{
628f4235 1742 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 1743 int type, name;
628f4235
KH
1744 unsigned long long val;
1745 int ret;
1746
8c7c6e34
KH
1747 type = MEMFILE_TYPE(cft->private);
1748 name = MEMFILE_ATTR(cft->private);
1749 switch (name) {
628f4235
KH
1750 case RES_LIMIT:
1751 /* This function does all necessary parse...reuse it */
1752 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
1753 if (ret)
1754 break;
1755 if (type == _MEM)
628f4235 1756 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
1757 else
1758 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235
KH
1759 break;
1760 default:
1761 ret = -EINVAL; /* should be BUG() ? */
1762 break;
1763 }
1764 return ret;
8cdea7c0
BS
1765}
1766
29f2a4da 1767static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
1768{
1769 struct mem_cgroup *mem;
8c7c6e34 1770 int type, name;
c84872e1
PE
1771
1772 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
1773 type = MEMFILE_TYPE(event);
1774 name = MEMFILE_ATTR(event);
1775 switch (name) {
29f2a4da 1776 case RES_MAX_USAGE:
8c7c6e34
KH
1777 if (type == _MEM)
1778 res_counter_reset_max(&mem->res);
1779 else
1780 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
1781 break;
1782 case RES_FAILCNT:
8c7c6e34
KH
1783 if (type == _MEM)
1784 res_counter_reset_failcnt(&mem->res);
1785 else
1786 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
1787 break;
1788 }
85cc59db 1789 return 0;
c84872e1
PE
1790}
1791
d2ceb9b7
KH
1792static const struct mem_cgroup_stat_desc {
1793 const char *msg;
1794 u64 unit;
1795} mem_cgroup_stat_desc[] = {
1796 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1797 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
55e462b0
BR
1798 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1799 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
d2ceb9b7
KH
1800};
1801
c64745cf
PM
1802static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1803 struct cgroup_map_cb *cb)
d2ceb9b7 1804{
d2ceb9b7
KH
1805 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1806 struct mem_cgroup_stat *stat = &mem_cont->stat;
1807 int i;
1808
1809 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1810 s64 val;
1811
1812 val = mem_cgroup_read_stat(stat, i);
1813 val *= mem_cgroup_stat_desc[i].unit;
c64745cf 1814 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
d2ceb9b7 1815 }
6d12e2d8
KH
1816 /* showing # of active pages */
1817 {
4f98a2fe
RR
1818 unsigned long active_anon, inactive_anon;
1819 unsigned long active_file, inactive_file;
7b854121 1820 unsigned long unevictable;
4f98a2fe
RR
1821
1822 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1823 LRU_INACTIVE_ANON);
1824 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1825 LRU_ACTIVE_ANON);
1826 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1827 LRU_INACTIVE_FILE);
1828 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1829 LRU_ACTIVE_FILE);
7b854121
LS
1830 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1831 LRU_UNEVICTABLE);
1832
4f98a2fe
RR
1833 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1834 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1835 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1836 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
7b854121
LS
1837 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1838
6d12e2d8 1839 }
d2ceb9b7
KH
1840 return 0;
1841}
1842
c1e862c1 1843
8cdea7c0
BS
1844static struct cftype mem_cgroup_files[] = {
1845 {
0eea1030 1846 .name = "usage_in_bytes",
8c7c6e34 1847 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 1848 .read_u64 = mem_cgroup_read,
8cdea7c0 1849 },
c84872e1
PE
1850 {
1851 .name = "max_usage_in_bytes",
8c7c6e34 1852 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 1853 .trigger = mem_cgroup_reset,
c84872e1
PE
1854 .read_u64 = mem_cgroup_read,
1855 },
8cdea7c0 1856 {
0eea1030 1857 .name = "limit_in_bytes",
8c7c6e34 1858 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 1859 .write_string = mem_cgroup_write,
2c3daa72 1860 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
1861 },
1862 {
1863 .name = "failcnt",
8c7c6e34 1864 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 1865 .trigger = mem_cgroup_reset,
2c3daa72 1866 .read_u64 = mem_cgroup_read,
8cdea7c0 1867 },
d2ceb9b7
KH
1868 {
1869 .name = "stat",
c64745cf 1870 .read_map = mem_control_stat_show,
d2ceb9b7 1871 },
c1e862c1
KH
1872 {
1873 .name = "force_empty",
1874 .trigger = mem_cgroup_force_empty_write,
1875 },
18f59ea7
BS
1876 {
1877 .name = "use_hierarchy",
1878 .write_u64 = mem_cgroup_hierarchy_write,
1879 .read_u64 = mem_cgroup_hierarchy_read,
1880 },
8cdea7c0
BS
1881};
1882
8c7c6e34
KH
1883#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1884static struct cftype memsw_cgroup_files[] = {
1885 {
1886 .name = "memsw.usage_in_bytes",
1887 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
1888 .read_u64 = mem_cgroup_read,
1889 },
1890 {
1891 .name = "memsw.max_usage_in_bytes",
1892 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
1893 .trigger = mem_cgroup_reset,
1894 .read_u64 = mem_cgroup_read,
1895 },
1896 {
1897 .name = "memsw.limit_in_bytes",
1898 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
1899 .write_string = mem_cgroup_write,
1900 .read_u64 = mem_cgroup_read,
1901 },
1902 {
1903 .name = "memsw.failcnt",
1904 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
1905 .trigger = mem_cgroup_reset,
1906 .read_u64 = mem_cgroup_read,
1907 },
1908};
1909
1910static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
1911{
1912 if (!do_swap_account)
1913 return 0;
1914 return cgroup_add_files(cont, ss, memsw_cgroup_files,
1915 ARRAY_SIZE(memsw_cgroup_files));
1916};
1917#else
1918static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
1919{
1920 return 0;
1921}
1922#endif
1923
6d12e2d8
KH
1924static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1925{
1926 struct mem_cgroup_per_node *pn;
1ecaab2b 1927 struct mem_cgroup_per_zone *mz;
b69408e8 1928 enum lru_list l;
41e3355d 1929 int zone, tmp = node;
1ecaab2b
KH
1930 /*
1931 * This routine is called against possible nodes.
1932 * But it's BUG to call kmalloc() against offline node.
1933 *
1934 * TODO: this routine can waste much memory for nodes which will
1935 * never be onlined. It's better to use memory hotplug callback
1936 * function.
1937 */
41e3355d
KH
1938 if (!node_state(node, N_NORMAL_MEMORY))
1939 tmp = -1;
1940 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
1941 if (!pn)
1942 return 1;
1ecaab2b 1943
6d12e2d8
KH
1944 mem->info.nodeinfo[node] = pn;
1945 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
1946
1947 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1948 mz = &pn->zoneinfo[zone];
b69408e8
CL
1949 for_each_lru(l)
1950 INIT_LIST_HEAD(&mz->lists[l]);
1ecaab2b 1951 }
6d12e2d8
KH
1952 return 0;
1953}
1954
1ecaab2b
KH
1955static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1956{
1957 kfree(mem->info.nodeinfo[node]);
1958}
1959
c8dad2bb
JB
1960static int mem_cgroup_size(void)
1961{
1962 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
1963 return sizeof(struct mem_cgroup) + cpustat_size;
1964}
1965
33327948
KH
1966static struct mem_cgroup *mem_cgroup_alloc(void)
1967{
1968 struct mem_cgroup *mem;
c8dad2bb 1969 int size = mem_cgroup_size();
33327948 1970
c8dad2bb
JB
1971 if (size < PAGE_SIZE)
1972 mem = kmalloc(size, GFP_KERNEL);
33327948 1973 else
c8dad2bb 1974 mem = vmalloc(size);
33327948
KH
1975
1976 if (mem)
c8dad2bb 1977 memset(mem, 0, size);
33327948
KH
1978 return mem;
1979}
1980
8c7c6e34
KH
1981/*
1982 * At destroying mem_cgroup, references from swap_cgroup can remain.
1983 * (scanning all at force_empty is too costly...)
1984 *
1985 * Instead of clearing all references at force_empty, we remember
1986 * the number of reference from swap_cgroup and free mem_cgroup when
1987 * it goes down to 0.
1988 *
1989 * When mem_cgroup is destroyed, mem->obsolete will be set to 0 and
1990 * entry which points to this memcg will be ignore at swapin.
1991 *
1992 * Removal of cgroup itself succeeds regardless of refs from swap.
1993 */
1994
33327948
KH
1995static void mem_cgroup_free(struct mem_cgroup *mem)
1996{
08e552c6
KH
1997 int node;
1998
8c7c6e34
KH
1999 if (atomic_read(&mem->refcnt) > 0)
2000 return;
08e552c6
KH
2001
2002
2003 for_each_node_state(node, N_POSSIBLE)
2004 free_mem_cgroup_per_zone_info(mem, node);
2005
c8dad2bb 2006 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
2007 kfree(mem);
2008 else
2009 vfree(mem);
2010}
2011
8c7c6e34
KH
2012static void mem_cgroup_get(struct mem_cgroup *mem)
2013{
2014 atomic_inc(&mem->refcnt);
2015}
2016
2017static void mem_cgroup_put(struct mem_cgroup *mem)
2018{
2019 if (atomic_dec_and_test(&mem->refcnt)) {
2020 if (!mem->obsolete)
2021 return;
2022 mem_cgroup_free(mem);
2023 }
2024}
2025
33327948 2026
c077719b
KH
2027#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2028static void __init enable_swap_cgroup(void)
2029{
f8d66542 2030 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
2031 do_swap_account = 1;
2032}
2033#else
2034static void __init enable_swap_cgroup(void)
2035{
2036}
2037#endif
2038
8cdea7c0
BS
2039static struct cgroup_subsys_state *
2040mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2041{
28dbc4b6 2042 struct mem_cgroup *mem, *parent;
6d12e2d8 2043 int node;
8cdea7c0 2044
c8dad2bb
JB
2045 mem = mem_cgroup_alloc();
2046 if (!mem)
2047 return ERR_PTR(-ENOMEM);
78fb7466 2048
6d12e2d8
KH
2049 for_each_node_state(node, N_POSSIBLE)
2050 if (alloc_mem_cgroup_per_zone_info(mem, node))
2051 goto free_out;
c077719b 2052 /* root ? */
28dbc4b6 2053 if (cont->parent == NULL) {
c077719b 2054 enable_swap_cgroup();
28dbc4b6 2055 parent = NULL;
18f59ea7 2056 } else {
28dbc4b6 2057 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
2058 mem->use_hierarchy = parent->use_hierarchy;
2059 }
28dbc4b6 2060
18f59ea7
BS
2061 if (parent && parent->use_hierarchy) {
2062 res_counter_init(&mem->res, &parent->res);
2063 res_counter_init(&mem->memsw, &parent->memsw);
2064 } else {
2065 res_counter_init(&mem->res, NULL);
2066 res_counter_init(&mem->memsw, NULL);
2067 }
14797e23 2068 mem_cgroup_set_inactive_ratio(mem);
6d61ef40
BS
2069 mem->last_scanned_child = NULL;
2070
8cdea7c0 2071 return &mem->css;
6d12e2d8
KH
2072free_out:
2073 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 2074 free_mem_cgroup_per_zone_info(mem, node);
c8dad2bb 2075 mem_cgroup_free(mem);
2dda81ca 2076 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
2077}
2078
df878fb0
KH
2079static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2080 struct cgroup *cont)
2081{
2082 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
8c7c6e34 2083 mem->obsolete = 1;
c1e862c1 2084 mem_cgroup_force_empty(mem, false);
df878fb0
KH
2085}
2086
8cdea7c0
BS
2087static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2088 struct cgroup *cont)
2089{
33327948 2090 mem_cgroup_free(mem_cgroup_from_cont(cont));
8cdea7c0
BS
2091}
2092
2093static int mem_cgroup_populate(struct cgroup_subsys *ss,
2094 struct cgroup *cont)
2095{
8c7c6e34
KH
2096 int ret;
2097
2098 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2099 ARRAY_SIZE(mem_cgroup_files));
2100
2101 if (!ret)
2102 ret = register_memsw_files(cont, ss);
2103 return ret;
8cdea7c0
BS
2104}
2105
67e465a7
BS
2106static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2107 struct cgroup *cont,
2108 struct cgroup *old_cont,
2109 struct task_struct *p)
2110{
67e465a7 2111 /*
f9717d28
NK
2112 * FIXME: It's better to move charges of this process from old
2113 * memcg to new memcg. But it's just on TODO-List now.
67e465a7 2114 */
67e465a7
BS
2115}
2116
8cdea7c0
BS
2117struct cgroup_subsys mem_cgroup_subsys = {
2118 .name = "memory",
2119 .subsys_id = mem_cgroup_subsys_id,
2120 .create = mem_cgroup_create,
df878fb0 2121 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
2122 .destroy = mem_cgroup_destroy,
2123 .populate = mem_cgroup_populate,
67e465a7 2124 .attach = mem_cgroup_move_task,
6d12e2d8 2125 .early_init = 0,
8cdea7c0 2126};
c077719b
KH
2127
2128#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2129
2130static int __init disable_swap_account(char *s)
2131{
2132 really_do_swap_account = 0;
2133 return 1;
2134}
2135__setup("noswapaccount", disable_swap_account);
2136#endif