]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/vmalloc.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes...
[net-next-2.6.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
d43c36dc 15#include <linux/sched.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
3ac7fe5a 21#include <linux/debugobjects.h>
23016969 22#include <linux/kallsyms.h>
db64fe02
NP
23#include <linux/list.h>
24#include <linux/rbtree.h>
25#include <linux/radix-tree.h>
26#include <linux/rcupdate.h>
f0aa6617 27#include <linux/pfn.h>
89219d37 28#include <linux/kmemleak.h>
db64fe02 29#include <asm/atomic.h>
1da177e4
LT
30#include <asm/uaccess.h>
31#include <asm/tlbflush.h>
2dca6999 32#include <asm/shmparam.h>
1da177e4 33
a0d40c80 34bool vmap_lazy_unmap __read_mostly = true;
1da177e4 35
db64fe02 36/*** Page table manipulation functions ***/
b221385b 37
1da177e4
LT
38static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
39{
40 pte_t *pte;
41
42 pte = pte_offset_kernel(pmd, addr);
43 do {
44 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
45 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
46 } while (pte++, addr += PAGE_SIZE, addr != end);
47}
48
db64fe02 49static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
50{
51 pmd_t *pmd;
52 unsigned long next;
53
54 pmd = pmd_offset(pud, addr);
55 do {
56 next = pmd_addr_end(addr, end);
57 if (pmd_none_or_clear_bad(pmd))
58 continue;
59 vunmap_pte_range(pmd, addr, next);
60 } while (pmd++, addr = next, addr != end);
61}
62
db64fe02 63static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
1da177e4
LT
64{
65 pud_t *pud;
66 unsigned long next;
67
68 pud = pud_offset(pgd, addr);
69 do {
70 next = pud_addr_end(addr, end);
71 if (pud_none_or_clear_bad(pud))
72 continue;
73 vunmap_pmd_range(pud, addr, next);
74 } while (pud++, addr = next, addr != end);
75}
76
db64fe02 77static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
78{
79 pgd_t *pgd;
80 unsigned long next;
1da177e4
LT
81
82 BUG_ON(addr >= end);
83 pgd = pgd_offset_k(addr);
1da177e4
LT
84 do {
85 next = pgd_addr_end(addr, end);
86 if (pgd_none_or_clear_bad(pgd))
87 continue;
88 vunmap_pud_range(pgd, addr, next);
89 } while (pgd++, addr = next, addr != end);
1da177e4
LT
90}
91
92static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 93 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
94{
95 pte_t *pte;
96
db64fe02
NP
97 /*
98 * nr is a running index into the array which helps higher level
99 * callers keep track of where we're up to.
100 */
101
872fec16 102 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
103 if (!pte)
104 return -ENOMEM;
105 do {
db64fe02
NP
106 struct page *page = pages[*nr];
107
108 if (WARN_ON(!pte_none(*pte)))
109 return -EBUSY;
110 if (WARN_ON(!page))
1da177e4
LT
111 return -ENOMEM;
112 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 113 (*nr)++;
1da177e4
LT
114 } while (pte++, addr += PAGE_SIZE, addr != end);
115 return 0;
116}
117
db64fe02
NP
118static int vmap_pmd_range(pud_t *pud, unsigned long addr,
119 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
120{
121 pmd_t *pmd;
122 unsigned long next;
123
124 pmd = pmd_alloc(&init_mm, pud, addr);
125 if (!pmd)
126 return -ENOMEM;
127 do {
128 next = pmd_addr_end(addr, end);
db64fe02 129 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
130 return -ENOMEM;
131 } while (pmd++, addr = next, addr != end);
132 return 0;
133}
134
db64fe02
NP
135static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
136 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
137{
138 pud_t *pud;
139 unsigned long next;
140
141 pud = pud_alloc(&init_mm, pgd, addr);
142 if (!pud)
143 return -ENOMEM;
144 do {
145 next = pud_addr_end(addr, end);
db64fe02 146 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
147 return -ENOMEM;
148 } while (pud++, addr = next, addr != end);
149 return 0;
150}
151
db64fe02
NP
152/*
153 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
154 * will have pfns corresponding to the "pages" array.
155 *
156 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
157 */
8fc48985
TH
158static int vmap_page_range_noflush(unsigned long start, unsigned long end,
159 pgprot_t prot, struct page **pages)
1da177e4
LT
160{
161 pgd_t *pgd;
162 unsigned long next;
2e4e27c7 163 unsigned long addr = start;
db64fe02
NP
164 int err = 0;
165 int nr = 0;
1da177e4
LT
166
167 BUG_ON(addr >= end);
168 pgd = pgd_offset_k(addr);
1da177e4
LT
169 do {
170 next = pgd_addr_end(addr, end);
db64fe02 171 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
1da177e4 172 if (err)
bf88c8c8 173 return err;
1da177e4 174 } while (pgd++, addr = next, addr != end);
db64fe02 175
db64fe02 176 return nr;
1da177e4
LT
177}
178
8fc48985
TH
179static int vmap_page_range(unsigned long start, unsigned long end,
180 pgprot_t prot, struct page **pages)
181{
182 int ret;
183
184 ret = vmap_page_range_noflush(start, end, prot, pages);
185 flush_cache_vmap(start, end);
186 return ret;
187}
188
81ac3ad9 189int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
190{
191 /*
ab4f2ee1 192 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
193 * and fall back on vmalloc() if that fails. Others
194 * just put it in the vmalloc space.
195 */
196#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
197 unsigned long addr = (unsigned long)x;
198 if (addr >= MODULES_VADDR && addr < MODULES_END)
199 return 1;
200#endif
201 return is_vmalloc_addr(x);
202}
203
48667e7a 204/*
db64fe02 205 * Walk a vmap address to the struct page it maps.
48667e7a 206 */
b3bdda02 207struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
208{
209 unsigned long addr = (unsigned long) vmalloc_addr;
210 struct page *page = NULL;
211 pgd_t *pgd = pgd_offset_k(addr);
48667e7a 212
7aa413de
IM
213 /*
214 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
215 * architectures that do not vmalloc module space
216 */
73bdf0a6 217 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 218
48667e7a 219 if (!pgd_none(*pgd)) {
db64fe02 220 pud_t *pud = pud_offset(pgd, addr);
48667e7a 221 if (!pud_none(*pud)) {
db64fe02 222 pmd_t *pmd = pmd_offset(pud, addr);
48667e7a 223 if (!pmd_none(*pmd)) {
db64fe02
NP
224 pte_t *ptep, pte;
225
48667e7a
CL
226 ptep = pte_offset_map(pmd, addr);
227 pte = *ptep;
228 if (pte_present(pte))
229 page = pte_page(pte);
230 pte_unmap(ptep);
231 }
232 }
233 }
234 return page;
235}
236EXPORT_SYMBOL(vmalloc_to_page);
237
238/*
239 * Map a vmalloc()-space virtual address to the physical page frame number.
240 */
b3bdda02 241unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a
CL
242{
243 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
244}
245EXPORT_SYMBOL(vmalloc_to_pfn);
246
db64fe02
NP
247
248/*** Global kva allocator ***/
249
250#define VM_LAZY_FREE 0x01
251#define VM_LAZY_FREEING 0x02
252#define VM_VM_AREA 0x04
253
254struct vmap_area {
255 unsigned long va_start;
256 unsigned long va_end;
257 unsigned long flags;
258 struct rb_node rb_node; /* address sorted rbtree */
259 struct list_head list; /* address sorted list */
260 struct list_head purge_list; /* "lazy purge" list */
261 void *private;
262 struct rcu_head rcu_head;
263};
264
265static DEFINE_SPINLOCK(vmap_area_lock);
266static struct rb_root vmap_area_root = RB_ROOT;
267static LIST_HEAD(vmap_area_list);
ca23e405 268static unsigned long vmap_area_pcpu_hole;
db64fe02
NP
269
270static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 271{
db64fe02
NP
272 struct rb_node *n = vmap_area_root.rb_node;
273
274 while (n) {
275 struct vmap_area *va;
276
277 va = rb_entry(n, struct vmap_area, rb_node);
278 if (addr < va->va_start)
279 n = n->rb_left;
280 else if (addr > va->va_start)
281 n = n->rb_right;
282 else
283 return va;
284 }
285
286 return NULL;
287}
288
289static void __insert_vmap_area(struct vmap_area *va)
290{
291 struct rb_node **p = &vmap_area_root.rb_node;
292 struct rb_node *parent = NULL;
293 struct rb_node *tmp;
294
295 while (*p) {
296 struct vmap_area *tmp;
297
298 parent = *p;
299 tmp = rb_entry(parent, struct vmap_area, rb_node);
300 if (va->va_start < tmp->va_end)
301 p = &(*p)->rb_left;
302 else if (va->va_end > tmp->va_start)
303 p = &(*p)->rb_right;
304 else
305 BUG();
306 }
307
308 rb_link_node(&va->rb_node, parent, p);
309 rb_insert_color(&va->rb_node, &vmap_area_root);
310
311 /* address-sort this list so it is usable like the vmlist */
312 tmp = rb_prev(&va->rb_node);
313 if (tmp) {
314 struct vmap_area *prev;
315 prev = rb_entry(tmp, struct vmap_area, rb_node);
316 list_add_rcu(&va->list, &prev->list);
317 } else
318 list_add_rcu(&va->list, &vmap_area_list);
319}
320
321static void purge_vmap_area_lazy(void);
322
323/*
324 * Allocate a region of KVA of the specified size and alignment, within the
325 * vstart and vend.
326 */
327static struct vmap_area *alloc_vmap_area(unsigned long size,
328 unsigned long align,
329 unsigned long vstart, unsigned long vend,
330 int node, gfp_t gfp_mask)
331{
332 struct vmap_area *va;
333 struct rb_node *n;
1da177e4 334 unsigned long addr;
db64fe02
NP
335 int purged = 0;
336
7766970c 337 BUG_ON(!size);
db64fe02
NP
338 BUG_ON(size & ~PAGE_MASK);
339
db64fe02
NP
340 va = kmalloc_node(sizeof(struct vmap_area),
341 gfp_mask & GFP_RECLAIM_MASK, node);
342 if (unlikely(!va))
343 return ERR_PTR(-ENOMEM);
344
345retry:
0ae15132
GC
346 addr = ALIGN(vstart, align);
347
db64fe02 348 spin_lock(&vmap_area_lock);
7766970c
NP
349 if (addr + size - 1 < addr)
350 goto overflow;
351
db64fe02
NP
352 /* XXX: could have a last_hole cache */
353 n = vmap_area_root.rb_node;
354 if (n) {
355 struct vmap_area *first = NULL;
356
357 do {
358 struct vmap_area *tmp;
359 tmp = rb_entry(n, struct vmap_area, rb_node);
360 if (tmp->va_end >= addr) {
361 if (!first && tmp->va_start < addr + size)
362 first = tmp;
363 n = n->rb_left;
364 } else {
365 first = tmp;
366 n = n->rb_right;
367 }
368 } while (n);
369
370 if (!first)
371 goto found;
372
373 if (first->va_end < addr) {
374 n = rb_next(&first->rb_node);
375 if (n)
376 first = rb_entry(n, struct vmap_area, rb_node);
377 else
378 goto found;
379 }
380
f011c2da 381 while (addr + size > first->va_start && addr + size <= vend) {
db64fe02 382 addr = ALIGN(first->va_end + PAGE_SIZE, align);
7766970c
NP
383 if (addr + size - 1 < addr)
384 goto overflow;
db64fe02
NP
385
386 n = rb_next(&first->rb_node);
387 if (n)
388 first = rb_entry(n, struct vmap_area, rb_node);
389 else
390 goto found;
391 }
392 }
393found:
394 if (addr + size > vend) {
7766970c 395overflow:
db64fe02
NP
396 spin_unlock(&vmap_area_lock);
397 if (!purged) {
398 purge_vmap_area_lazy();
399 purged = 1;
400 goto retry;
401 }
402 if (printk_ratelimit())
c1279c4e
GC
403 printk(KERN_WARNING
404 "vmap allocation for size %lu failed: "
405 "use vmalloc=<size> to increase size.\n", size);
2498ce42 406 kfree(va);
db64fe02
NP
407 return ERR_PTR(-EBUSY);
408 }
409
410 BUG_ON(addr & (align-1));
411
412 va->va_start = addr;
413 va->va_end = addr + size;
414 va->flags = 0;
415 __insert_vmap_area(va);
416 spin_unlock(&vmap_area_lock);
417
418 return va;
419}
420
421static void rcu_free_va(struct rcu_head *head)
422{
423 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
424
425 kfree(va);
426}
427
428static void __free_vmap_area(struct vmap_area *va)
429{
430 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
431 rb_erase(&va->rb_node, &vmap_area_root);
432 RB_CLEAR_NODE(&va->rb_node);
433 list_del_rcu(&va->list);
434
ca23e405
TH
435 /*
436 * Track the highest possible candidate for pcpu area
437 * allocation. Areas outside of vmalloc area can be returned
438 * here too, consider only end addresses which fall inside
439 * vmalloc area proper.
440 */
441 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
442 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
443
db64fe02
NP
444 call_rcu(&va->rcu_head, rcu_free_va);
445}
446
447/*
448 * Free a region of KVA allocated by alloc_vmap_area
449 */
450static void free_vmap_area(struct vmap_area *va)
451{
452 spin_lock(&vmap_area_lock);
453 __free_vmap_area(va);
454 spin_unlock(&vmap_area_lock);
455}
456
457/*
458 * Clear the pagetable entries of a given vmap_area
459 */
460static void unmap_vmap_area(struct vmap_area *va)
461{
462 vunmap_page_range(va->va_start, va->va_end);
463}
464
cd52858c
NP
465static void vmap_debug_free_range(unsigned long start, unsigned long end)
466{
467 /*
468 * Unmap page tables and force a TLB flush immediately if
469 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
470 * bugs similarly to those in linear kernel virtual address
471 * space after a page has been freed.
472 *
473 * All the lazy freeing logic is still retained, in order to
474 * minimise intrusiveness of this debugging feature.
475 *
476 * This is going to be *slow* (linear kernel virtual address
477 * debugging doesn't do a broadcast TLB flush so it is a lot
478 * faster).
479 */
480#ifdef CONFIG_DEBUG_PAGEALLOC
481 vunmap_page_range(start, end);
482 flush_tlb_kernel_range(start, end);
483#endif
484}
485
db64fe02
NP
486/*
487 * lazy_max_pages is the maximum amount of virtual address space we gather up
488 * before attempting to purge with a TLB flush.
489 *
490 * There is a tradeoff here: a larger number will cover more kernel page tables
491 * and take slightly longer to purge, but it will linearly reduce the number of
492 * global TLB flushes that must be performed. It would seem natural to scale
493 * this number up linearly with the number of CPUs (because vmapping activity
494 * could also scale linearly with the number of CPUs), however it is likely
495 * that in practice, workloads might be constrained in other ways that mean
496 * vmap activity will not scale linearly with CPUs. Also, I want to be
497 * conservative and not introduce a big latency on huge systems, so go with
498 * a less aggressive log scale. It will still be an improvement over the old
499 * code, and it will be simple to change the scale factor if we find that it
500 * becomes a problem on bigger systems.
501 */
502static unsigned long lazy_max_pages(void)
503{
504 unsigned int log;
505
a0d40c80
JF
506 if (!vmap_lazy_unmap)
507 return 0;
508
db64fe02
NP
509 log = fls(num_online_cpus());
510
511 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
512}
513
514static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
515
02b709df
NP
516/* for per-CPU blocks */
517static void purge_fragmented_blocks_allcpus(void);
518
db64fe02
NP
519/*
520 * Purges all lazily-freed vmap areas.
521 *
522 * If sync is 0 then don't purge if there is already a purge in progress.
523 * If force_flush is 1, then flush kernel TLBs between *start and *end even
524 * if we found no lazy vmap areas to unmap (callers can use this to optimise
525 * their own TLB flushing).
526 * Returns with *start = min(*start, lowest purged address)
527 * *end = max(*end, highest purged address)
528 */
529static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
530 int sync, int force_flush)
531{
46666d8a 532 static DEFINE_SPINLOCK(purge_lock);
db64fe02
NP
533 LIST_HEAD(valist);
534 struct vmap_area *va;
cbb76676 535 struct vmap_area *n_va;
db64fe02
NP
536 int nr = 0;
537
538 /*
539 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
540 * should not expect such behaviour. This just simplifies locking for
541 * the case that isn't actually used at the moment anyway.
542 */
543 if (!sync && !force_flush) {
46666d8a 544 if (!spin_trylock(&purge_lock))
db64fe02
NP
545 return;
546 } else
46666d8a 547 spin_lock(&purge_lock);
db64fe02 548
02b709df
NP
549 if (sync)
550 purge_fragmented_blocks_allcpus();
551
db64fe02
NP
552 rcu_read_lock();
553 list_for_each_entry_rcu(va, &vmap_area_list, list) {
554 if (va->flags & VM_LAZY_FREE) {
555 if (va->va_start < *start)
556 *start = va->va_start;
557 if (va->va_end > *end)
558 *end = va->va_end;
559 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
560 unmap_vmap_area(va);
561 list_add_tail(&va->purge_list, &valist);
562 va->flags |= VM_LAZY_FREEING;
563 va->flags &= ~VM_LAZY_FREE;
564 }
565 }
566 rcu_read_unlock();
567
88f50044 568 if (nr)
db64fe02 569 atomic_sub(nr, &vmap_lazy_nr);
db64fe02
NP
570
571 if (nr || force_flush)
572 flush_tlb_kernel_range(*start, *end);
573
574 if (nr) {
575 spin_lock(&vmap_area_lock);
cbb76676 576 list_for_each_entry_safe(va, n_va, &valist, purge_list)
db64fe02
NP
577 __free_vmap_area(va);
578 spin_unlock(&vmap_area_lock);
579 }
46666d8a 580 spin_unlock(&purge_lock);
db64fe02
NP
581}
582
496850e5
NP
583/*
584 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
585 * is already purging.
586 */
587static void try_purge_vmap_area_lazy(void)
588{
589 unsigned long start = ULONG_MAX, end = 0;
590
591 __purge_vmap_area_lazy(&start, &end, 0, 0);
592}
593
db64fe02
NP
594/*
595 * Kick off a purge of the outstanding lazy areas.
596 */
597static void purge_vmap_area_lazy(void)
598{
599 unsigned long start = ULONG_MAX, end = 0;
600
496850e5 601 __purge_vmap_area_lazy(&start, &end, 1, 0);
db64fe02
NP
602}
603
604/*
b29acbdc
NP
605 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
606 * called for the correct range previously.
db64fe02 607 */
b29acbdc 608static void free_unmap_vmap_area_noflush(struct vmap_area *va)
db64fe02
NP
609{
610 va->flags |= VM_LAZY_FREE;
611 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
612 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
496850e5 613 try_purge_vmap_area_lazy();
db64fe02
NP
614}
615
b29acbdc
NP
616/*
617 * Free and unmap a vmap area
618 */
619static void free_unmap_vmap_area(struct vmap_area *va)
620{
621 flush_cache_vunmap(va->va_start, va->va_end);
622 free_unmap_vmap_area_noflush(va);
623}
624
db64fe02
NP
625static struct vmap_area *find_vmap_area(unsigned long addr)
626{
627 struct vmap_area *va;
628
629 spin_lock(&vmap_area_lock);
630 va = __find_vmap_area(addr);
631 spin_unlock(&vmap_area_lock);
632
633 return va;
634}
635
636static void free_unmap_vmap_area_addr(unsigned long addr)
637{
638 struct vmap_area *va;
639
640 va = find_vmap_area(addr);
641 BUG_ON(!va);
642 free_unmap_vmap_area(va);
643}
644
645
646/*** Per cpu kva allocator ***/
647
648/*
649 * vmap space is limited especially on 32 bit architectures. Ensure there is
650 * room for at least 16 percpu vmap blocks per CPU.
651 */
652/*
653 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
654 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
655 * instead (we just need a rough idea)
656 */
657#if BITS_PER_LONG == 32
658#define VMALLOC_SPACE (128UL*1024*1024)
659#else
660#define VMALLOC_SPACE (128UL*1024*1024*1024)
661#endif
662
663#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
664#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
665#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
666#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
667#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
668#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
669#define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
670 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
671 VMALLOC_PAGES / NR_CPUS / 16))
672
673#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
674
9b463334
JF
675static bool vmap_initialized __read_mostly = false;
676
db64fe02
NP
677struct vmap_block_queue {
678 spinlock_t lock;
679 struct list_head free;
db64fe02
NP
680};
681
682struct vmap_block {
683 spinlock_t lock;
684 struct vmap_area *va;
685 struct vmap_block_queue *vbq;
686 unsigned long free, dirty;
687 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
688 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
de560423
NP
689 struct list_head free_list;
690 struct rcu_head rcu_head;
02b709df 691 struct list_head purge;
db64fe02
NP
692};
693
694/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
695static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
696
697/*
698 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
699 * in the free path. Could get rid of this if we change the API to return a
700 * "cookie" from alloc, to be passed to free. But no big deal yet.
701 */
702static DEFINE_SPINLOCK(vmap_block_tree_lock);
703static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
704
705/*
706 * We should probably have a fallback mechanism to allocate virtual memory
707 * out of partially filled vmap blocks. However vmap block sizing should be
708 * fairly reasonable according to the vmalloc size, so it shouldn't be a
709 * big problem.
710 */
711
712static unsigned long addr_to_vb_idx(unsigned long addr)
713{
714 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
715 addr /= VMAP_BLOCK_SIZE;
716 return addr;
717}
718
719static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
720{
721 struct vmap_block_queue *vbq;
722 struct vmap_block *vb;
723 struct vmap_area *va;
724 unsigned long vb_idx;
725 int node, err;
726
727 node = numa_node_id();
728
729 vb = kmalloc_node(sizeof(struct vmap_block),
730 gfp_mask & GFP_RECLAIM_MASK, node);
731 if (unlikely(!vb))
732 return ERR_PTR(-ENOMEM);
733
734 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
735 VMALLOC_START, VMALLOC_END,
736 node, gfp_mask);
737 if (unlikely(IS_ERR(va))) {
738 kfree(vb);
e7d86340 739 return ERR_CAST(va);
db64fe02
NP
740 }
741
742 err = radix_tree_preload(gfp_mask);
743 if (unlikely(err)) {
744 kfree(vb);
745 free_vmap_area(va);
746 return ERR_PTR(err);
747 }
748
749 spin_lock_init(&vb->lock);
750 vb->va = va;
751 vb->free = VMAP_BBMAP_BITS;
752 vb->dirty = 0;
753 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
754 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
755 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
756
757 vb_idx = addr_to_vb_idx(va->va_start);
758 spin_lock(&vmap_block_tree_lock);
759 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
760 spin_unlock(&vmap_block_tree_lock);
761 BUG_ON(err);
762 radix_tree_preload_end();
763
764 vbq = &get_cpu_var(vmap_block_queue);
765 vb->vbq = vbq;
766 spin_lock(&vbq->lock);
de560423 767 list_add_rcu(&vb->free_list, &vbq->free);
db64fe02 768 spin_unlock(&vbq->lock);
3f04ba85 769 put_cpu_var(vmap_block_queue);
db64fe02
NP
770
771 return vb;
772}
773
774static void rcu_free_vb(struct rcu_head *head)
775{
776 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
777
778 kfree(vb);
779}
780
781static void free_vmap_block(struct vmap_block *vb)
782{
783 struct vmap_block *tmp;
784 unsigned long vb_idx;
785
db64fe02
NP
786 vb_idx = addr_to_vb_idx(vb->va->va_start);
787 spin_lock(&vmap_block_tree_lock);
788 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
789 spin_unlock(&vmap_block_tree_lock);
790 BUG_ON(tmp != vb);
791
b29acbdc 792 free_unmap_vmap_area_noflush(vb->va);
db64fe02
NP
793 call_rcu(&vb->rcu_head, rcu_free_vb);
794}
795
02b709df
NP
796static void purge_fragmented_blocks(int cpu)
797{
798 LIST_HEAD(purge);
799 struct vmap_block *vb;
800 struct vmap_block *n_vb;
801 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
802
803 rcu_read_lock();
804 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
805
806 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
807 continue;
808
809 spin_lock(&vb->lock);
810 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
811 vb->free = 0; /* prevent further allocs after releasing lock */
812 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
813 bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
814 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
815 spin_lock(&vbq->lock);
816 list_del_rcu(&vb->free_list);
817 spin_unlock(&vbq->lock);
818 spin_unlock(&vb->lock);
819 list_add_tail(&vb->purge, &purge);
820 } else
821 spin_unlock(&vb->lock);
822 }
823 rcu_read_unlock();
824
825 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
826 list_del(&vb->purge);
827 free_vmap_block(vb);
828 }
829}
830
831static void purge_fragmented_blocks_thiscpu(void)
832{
833 purge_fragmented_blocks(smp_processor_id());
834}
835
836static void purge_fragmented_blocks_allcpus(void)
837{
838 int cpu;
839
840 for_each_possible_cpu(cpu)
841 purge_fragmented_blocks(cpu);
842}
843
db64fe02
NP
844static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
845{
846 struct vmap_block_queue *vbq;
847 struct vmap_block *vb;
848 unsigned long addr = 0;
849 unsigned int order;
02b709df 850 int purge = 0;
db64fe02
NP
851
852 BUG_ON(size & ~PAGE_MASK);
853 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
854 order = get_order(size);
855
856again:
857 rcu_read_lock();
858 vbq = &get_cpu_var(vmap_block_queue);
859 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
860 int i;
861
862 spin_lock(&vb->lock);
02b709df
NP
863 if (vb->free < 1UL << order)
864 goto next;
865
db64fe02
NP
866 i = bitmap_find_free_region(vb->alloc_map,
867 VMAP_BBMAP_BITS, order);
868
02b709df
NP
869 if (i < 0) {
870 if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
871 /* fragmented and no outstanding allocations */
872 BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
873 purge = 1;
db64fe02 874 }
02b709df 875 goto next;
db64fe02 876 }
02b709df
NP
877 addr = vb->va->va_start + (i << PAGE_SHIFT);
878 BUG_ON(addr_to_vb_idx(addr) !=
879 addr_to_vb_idx(vb->va->va_start));
880 vb->free -= 1UL << order;
881 if (vb->free == 0) {
882 spin_lock(&vbq->lock);
883 list_del_rcu(&vb->free_list);
884 spin_unlock(&vbq->lock);
885 }
886 spin_unlock(&vb->lock);
887 break;
888next:
db64fe02
NP
889 spin_unlock(&vb->lock);
890 }
02b709df
NP
891
892 if (purge)
893 purge_fragmented_blocks_thiscpu();
894
3f04ba85 895 put_cpu_var(vmap_block_queue);
db64fe02
NP
896 rcu_read_unlock();
897
898 if (!addr) {
899 vb = new_vmap_block(gfp_mask);
900 if (IS_ERR(vb))
901 return vb;
902 goto again;
903 }
904
905 return (void *)addr;
906}
907
908static void vb_free(const void *addr, unsigned long size)
909{
910 unsigned long offset;
911 unsigned long vb_idx;
912 unsigned int order;
913 struct vmap_block *vb;
914
915 BUG_ON(size & ~PAGE_MASK);
916 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
917
918 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
919
db64fe02
NP
920 order = get_order(size);
921
922 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
923
924 vb_idx = addr_to_vb_idx((unsigned long)addr);
925 rcu_read_lock();
926 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
927 rcu_read_unlock();
928 BUG_ON(!vb);
929
930 spin_lock(&vb->lock);
de560423 931 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
d086817d 932
db64fe02
NP
933 vb->dirty += 1UL << order;
934 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 935 BUG_ON(vb->free);
db64fe02
NP
936 spin_unlock(&vb->lock);
937 free_vmap_block(vb);
938 } else
939 spin_unlock(&vb->lock);
940}
941
942/**
943 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
944 *
945 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
946 * to amortize TLB flushing overheads. What this means is that any page you
947 * have now, may, in a former life, have been mapped into kernel virtual
948 * address by the vmap layer and so there might be some CPUs with TLB entries
949 * still referencing that page (additional to the regular 1:1 kernel mapping).
950 *
951 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
952 * be sure that none of the pages we have control over will have any aliases
953 * from the vmap layer.
954 */
955void vm_unmap_aliases(void)
956{
957 unsigned long start = ULONG_MAX, end = 0;
958 int cpu;
959 int flush = 0;
960
9b463334
JF
961 if (unlikely(!vmap_initialized))
962 return;
963
db64fe02
NP
964 for_each_possible_cpu(cpu) {
965 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
966 struct vmap_block *vb;
967
968 rcu_read_lock();
969 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
970 int i;
971
972 spin_lock(&vb->lock);
973 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
974 while (i < VMAP_BBMAP_BITS) {
975 unsigned long s, e;
976 int j;
977 j = find_next_zero_bit(vb->dirty_map,
978 VMAP_BBMAP_BITS, i);
979
980 s = vb->va->va_start + (i << PAGE_SHIFT);
981 e = vb->va->va_start + (j << PAGE_SHIFT);
982 vunmap_page_range(s, e);
983 flush = 1;
984
985 if (s < start)
986 start = s;
987 if (e > end)
988 end = e;
989
990 i = j;
991 i = find_next_bit(vb->dirty_map,
992 VMAP_BBMAP_BITS, i);
993 }
994 spin_unlock(&vb->lock);
995 }
996 rcu_read_unlock();
997 }
998
999 __purge_vmap_area_lazy(&start, &end, 1, flush);
1000}
1001EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1002
1003/**
1004 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1005 * @mem: the pointer returned by vm_map_ram
1006 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1007 */
1008void vm_unmap_ram(const void *mem, unsigned int count)
1009{
1010 unsigned long size = count << PAGE_SHIFT;
1011 unsigned long addr = (unsigned long)mem;
1012
1013 BUG_ON(!addr);
1014 BUG_ON(addr < VMALLOC_START);
1015 BUG_ON(addr > VMALLOC_END);
1016 BUG_ON(addr & (PAGE_SIZE-1));
1017
1018 debug_check_no_locks_freed(mem, size);
cd52858c 1019 vmap_debug_free_range(addr, addr+size);
db64fe02
NP
1020
1021 if (likely(count <= VMAP_MAX_ALLOC))
1022 vb_free(mem, size);
1023 else
1024 free_unmap_vmap_area_addr(addr);
1025}
1026EXPORT_SYMBOL(vm_unmap_ram);
1027
1028/**
1029 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1030 * @pages: an array of pointers to the pages to be mapped
1031 * @count: number of pages
1032 * @node: prefer to allocate data structures on this node
1033 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad
RD
1034 *
1035 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1036 */
1037void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1038{
1039 unsigned long size = count << PAGE_SHIFT;
1040 unsigned long addr;
1041 void *mem;
1042
1043 if (likely(count <= VMAP_MAX_ALLOC)) {
1044 mem = vb_alloc(size, GFP_KERNEL);
1045 if (IS_ERR(mem))
1046 return NULL;
1047 addr = (unsigned long)mem;
1048 } else {
1049 struct vmap_area *va;
1050 va = alloc_vmap_area(size, PAGE_SIZE,
1051 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1052 if (IS_ERR(va))
1053 return NULL;
1054
1055 addr = va->va_start;
1056 mem = (void *)addr;
1057 }
1058 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1059 vm_unmap_ram(mem, count);
1060 return NULL;
1061 }
1062 return mem;
1063}
1064EXPORT_SYMBOL(vm_map_ram);
1065
f0aa6617
TH
1066/**
1067 * vm_area_register_early - register vmap area early during boot
1068 * @vm: vm_struct to register
c0c0a293 1069 * @align: requested alignment
f0aa6617
TH
1070 *
1071 * This function is used to register kernel vm area before
1072 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1073 * proper values on entry and other fields should be zero. On return,
1074 * vm->addr contains the allocated address.
1075 *
1076 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1077 */
c0c0a293 1078void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1079{
1080 static size_t vm_init_off __initdata;
c0c0a293
TH
1081 unsigned long addr;
1082
1083 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1084 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1085
c0c0a293 1086 vm->addr = (void *)addr;
f0aa6617
TH
1087
1088 vm->next = vmlist;
1089 vmlist = vm;
1090}
1091
db64fe02
NP
1092void __init vmalloc_init(void)
1093{
822c18f2
IK
1094 struct vmap_area *va;
1095 struct vm_struct *tmp;
db64fe02
NP
1096 int i;
1097
1098 for_each_possible_cpu(i) {
1099 struct vmap_block_queue *vbq;
1100
1101 vbq = &per_cpu(vmap_block_queue, i);
1102 spin_lock_init(&vbq->lock);
1103 INIT_LIST_HEAD(&vbq->free);
db64fe02 1104 }
9b463334 1105
822c18f2
IK
1106 /* Import existing vmlist entries. */
1107 for (tmp = vmlist; tmp; tmp = tmp->next) {
43ebdac4 1108 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
822c18f2
IK
1109 va->flags = tmp->flags | VM_VM_AREA;
1110 va->va_start = (unsigned long)tmp->addr;
1111 va->va_end = va->va_start + tmp->size;
1112 __insert_vmap_area(va);
1113 }
ca23e405
TH
1114
1115 vmap_area_pcpu_hole = VMALLOC_END;
1116
9b463334 1117 vmap_initialized = true;
db64fe02
NP
1118}
1119
8fc48985
TH
1120/**
1121 * map_kernel_range_noflush - map kernel VM area with the specified pages
1122 * @addr: start of the VM area to map
1123 * @size: size of the VM area to map
1124 * @prot: page protection flags to use
1125 * @pages: pages to map
1126 *
1127 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1128 * specify should have been allocated using get_vm_area() and its
1129 * friends.
1130 *
1131 * NOTE:
1132 * This function does NOT do any cache flushing. The caller is
1133 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1134 * before calling this function.
1135 *
1136 * RETURNS:
1137 * The number of pages mapped on success, -errno on failure.
1138 */
1139int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1140 pgprot_t prot, struct page **pages)
1141{
1142 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1143}
1144
1145/**
1146 * unmap_kernel_range_noflush - unmap kernel VM area
1147 * @addr: start of the VM area to unmap
1148 * @size: size of the VM area to unmap
1149 *
1150 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1151 * specify should have been allocated using get_vm_area() and its
1152 * friends.
1153 *
1154 * NOTE:
1155 * This function does NOT do any cache flushing. The caller is
1156 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1157 * before calling this function and flush_tlb_kernel_range() after.
1158 */
1159void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1160{
1161 vunmap_page_range(addr, addr + size);
1162}
1163
1164/**
1165 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1166 * @addr: start of the VM area to unmap
1167 * @size: size of the VM area to unmap
1168 *
1169 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1170 * the unmapping and tlb after.
1171 */
db64fe02
NP
1172void unmap_kernel_range(unsigned long addr, unsigned long size)
1173{
1174 unsigned long end = addr + size;
f6fcba70
TH
1175
1176 flush_cache_vunmap(addr, end);
db64fe02
NP
1177 vunmap_page_range(addr, end);
1178 flush_tlb_kernel_range(addr, end);
1179}
1180
1181int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1182{
1183 unsigned long addr = (unsigned long)area->addr;
1184 unsigned long end = addr + area->size - PAGE_SIZE;
1185 int err;
1186
1187 err = vmap_page_range(addr, end, prot, *pages);
1188 if (err > 0) {
1189 *pages += err;
1190 err = 0;
1191 }
1192
1193 return err;
1194}
1195EXPORT_SYMBOL_GPL(map_vm_area);
1196
1197/*** Old vmalloc interfaces ***/
1198DEFINE_RWLOCK(vmlist_lock);
1199struct vm_struct *vmlist;
1200
cf88c790
TH
1201static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1202 unsigned long flags, void *caller)
1203{
1204 struct vm_struct *tmp, **p;
1205
1206 vm->flags = flags;
1207 vm->addr = (void *)va->va_start;
1208 vm->size = va->va_end - va->va_start;
1209 vm->caller = caller;
1210 va->private = vm;
1211 va->flags |= VM_VM_AREA;
1212
1213 write_lock(&vmlist_lock);
1214 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1215 if (tmp->addr >= vm->addr)
1216 break;
1217 }
1218 vm->next = *p;
1219 *p = vm;
1220 write_unlock(&vmlist_lock);
1221}
1222
db64fe02 1223static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999
DM
1224 unsigned long align, unsigned long flags, unsigned long start,
1225 unsigned long end, int node, gfp_t gfp_mask, void *caller)
db64fe02
NP
1226{
1227 static struct vmap_area *va;
1228 struct vm_struct *area;
1da177e4 1229
52fd24ca 1230 BUG_ON(in_interrupt());
1da177e4
LT
1231 if (flags & VM_IOREMAP) {
1232 int bit = fls(size);
1233
1234 if (bit > IOREMAP_MAX_ORDER)
1235 bit = IOREMAP_MAX_ORDER;
1236 else if (bit < PAGE_SHIFT)
1237 bit = PAGE_SHIFT;
1238
1239 align = 1ul << bit;
1240 }
db64fe02 1241
1da177e4 1242 size = PAGE_ALIGN(size);
31be8309
OH
1243 if (unlikely(!size))
1244 return NULL;
1da177e4 1245
cf88c790 1246 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1247 if (unlikely(!area))
1248 return NULL;
1249
1da177e4
LT
1250 /*
1251 * We always allocate a guard page.
1252 */
1253 size += PAGE_SIZE;
1254
db64fe02
NP
1255 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1256 if (IS_ERR(va)) {
1257 kfree(area);
1258 return NULL;
1da177e4 1259 }
1da177e4 1260
cf88c790 1261 insert_vmalloc_vm(area, va, flags, caller);
1da177e4 1262 return area;
1da177e4
LT
1263}
1264
930fc45a
CL
1265struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1266 unsigned long start, unsigned long end)
1267{
2dca6999 1268 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
23016969 1269 __builtin_return_address(0));
930fc45a 1270}
5992b6da 1271EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1272
c2968612
BH
1273struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1274 unsigned long start, unsigned long end,
1275 void *caller)
1276{
2dca6999 1277 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
c2968612
BH
1278 caller);
1279}
1280
1da177e4 1281/**
183ff22b 1282 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
1283 * @size: size of the area
1284 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1285 *
1286 * Search an area of @size in the kernel virtual mapping area,
1287 * and reserved it for out purposes. Returns the area descriptor
1288 * on success or %NULL on failure.
1289 */
1290struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1291{
2dca6999 1292 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
23016969
CL
1293 -1, GFP_KERNEL, __builtin_return_address(0));
1294}
1295
1296struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1297 void *caller)
1298{
2dca6999 1299 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
23016969 1300 -1, GFP_KERNEL, caller);
1da177e4
LT
1301}
1302
52fd24ca
GP
1303struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1304 int node, gfp_t gfp_mask)
930fc45a 1305{
2dca6999
DM
1306 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1307 node, gfp_mask, __builtin_return_address(0));
930fc45a
CL
1308}
1309
db64fe02 1310static struct vm_struct *find_vm_area(const void *addr)
83342314 1311{
db64fe02 1312 struct vmap_area *va;
83342314 1313
db64fe02
NP
1314 va = find_vmap_area((unsigned long)addr);
1315 if (va && va->flags & VM_VM_AREA)
1316 return va->private;
1da177e4 1317
1da177e4 1318 return NULL;
1da177e4
LT
1319}
1320
7856dfeb 1321/**
183ff22b 1322 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
1323 * @addr: base address
1324 *
1325 * Search for the kernel VM area starting at @addr, and remove it.
1326 * This function returns the found VM area, but using it is NOT safe
1327 * on SMP machines, except for its size or flags.
1328 */
b3bdda02 1329struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1330{
db64fe02
NP
1331 struct vmap_area *va;
1332
1333 va = find_vmap_area((unsigned long)addr);
1334 if (va && va->flags & VM_VM_AREA) {
1335 struct vm_struct *vm = va->private;
1336 struct vm_struct *tmp, **p;
dd32c279
KH
1337 /*
1338 * remove from list and disallow access to this vm_struct
1339 * before unmap. (address range confliction is maintained by
1340 * vmap.)
1341 */
db64fe02
NP
1342 write_lock(&vmlist_lock);
1343 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1344 ;
1345 *p = tmp->next;
1346 write_unlock(&vmlist_lock);
1347
dd32c279
KH
1348 vmap_debug_free_range(va->va_start, va->va_end);
1349 free_unmap_vmap_area(va);
1350 vm->size -= PAGE_SIZE;
1351
db64fe02
NP
1352 return vm;
1353 }
1354 return NULL;
7856dfeb
AK
1355}
1356
b3bdda02 1357static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1358{
1359 struct vm_struct *area;
1360
1361 if (!addr)
1362 return;
1363
1364 if ((PAGE_SIZE-1) & (unsigned long)addr) {
4c8573e2 1365 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1da177e4
LT
1366 return;
1367 }
1368
1369 area = remove_vm_area(addr);
1370 if (unlikely(!area)) {
4c8573e2 1371 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1372 addr);
1da177e4
LT
1373 return;
1374 }
1375
9a11b49a 1376 debug_check_no_locks_freed(addr, area->size);
3ac7fe5a 1377 debug_check_no_obj_freed(addr, area->size);
9a11b49a 1378
1da177e4
LT
1379 if (deallocate_pages) {
1380 int i;
1381
1382 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1383 struct page *page = area->pages[i];
1384
1385 BUG_ON(!page);
1386 __free_page(page);
1da177e4
LT
1387 }
1388
8757d5fa 1389 if (area->flags & VM_VPAGES)
1da177e4
LT
1390 vfree(area->pages);
1391 else
1392 kfree(area->pages);
1393 }
1394
1395 kfree(area);
1396 return;
1397}
1398
1399/**
1400 * vfree - release memory allocated by vmalloc()
1da177e4
LT
1401 * @addr: memory base address
1402 *
183ff22b 1403 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
1404 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1405 * NULL, no operation is performed.
1da177e4 1406 *
80e93eff 1407 * Must not be called in interrupt context.
1da177e4 1408 */
b3bdda02 1409void vfree(const void *addr)
1da177e4
LT
1410{
1411 BUG_ON(in_interrupt());
89219d37
CM
1412
1413 kmemleak_free(addr);
1414
1da177e4
LT
1415 __vunmap(addr, 1);
1416}
1da177e4
LT
1417EXPORT_SYMBOL(vfree);
1418
1419/**
1420 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
1421 * @addr: memory base address
1422 *
1423 * Free the virtually contiguous memory area starting at @addr,
1424 * which was created from the page array passed to vmap().
1425 *
80e93eff 1426 * Must not be called in interrupt context.
1da177e4 1427 */
b3bdda02 1428void vunmap(const void *addr)
1da177e4
LT
1429{
1430 BUG_ON(in_interrupt());
34754b69 1431 might_sleep();
1da177e4
LT
1432 __vunmap(addr, 0);
1433}
1da177e4
LT
1434EXPORT_SYMBOL(vunmap);
1435
1436/**
1437 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
1438 * @pages: array of page pointers
1439 * @count: number of pages to map
1440 * @flags: vm_area->flags
1441 * @prot: page protection for the mapping
1442 *
1443 * Maps @count pages from @pages into contiguous kernel virtual
1444 * space.
1445 */
1446void *vmap(struct page **pages, unsigned int count,
1447 unsigned long flags, pgprot_t prot)
1448{
1449 struct vm_struct *area;
1450
34754b69
PZ
1451 might_sleep();
1452
4481374c 1453 if (count > totalram_pages)
1da177e4
LT
1454 return NULL;
1455
23016969
CL
1456 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1457 __builtin_return_address(0));
1da177e4
LT
1458 if (!area)
1459 return NULL;
23016969 1460
1da177e4
LT
1461 if (map_vm_area(area, prot, &pages)) {
1462 vunmap(area->addr);
1463 return NULL;
1464 }
1465
1466 return area->addr;
1467}
1da177e4
LT
1468EXPORT_SYMBOL(vmap);
1469
2dca6999
DM
1470static void *__vmalloc_node(unsigned long size, unsigned long align,
1471 gfp_t gfp_mask, pgprot_t prot,
db64fe02 1472 int node, void *caller);
e31d9eb5 1473static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
23016969 1474 pgprot_t prot, int node, void *caller)
1da177e4
LT
1475{
1476 struct page **pages;
1477 unsigned int nr_pages, array_size, i;
976d6dfb 1478 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1da177e4
LT
1479
1480 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1481 array_size = (nr_pages * sizeof(struct page *));
1482
1483 area->nr_pages = nr_pages;
1484 /* Please note that the recursion is strictly bounded. */
8757d5fa 1485 if (array_size > PAGE_SIZE) {
976d6dfb 1486 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
23016969 1487 PAGE_KERNEL, node, caller);
8757d5fa 1488 area->flags |= VM_VPAGES;
286e1ea3 1489 } else {
976d6dfb 1490 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 1491 }
1da177e4 1492 area->pages = pages;
23016969 1493 area->caller = caller;
1da177e4
LT
1494 if (!area->pages) {
1495 remove_vm_area(area->addr);
1496 kfree(area);
1497 return NULL;
1498 }
1da177e4
LT
1499
1500 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1501 struct page *page;
1502
930fc45a 1503 if (node < 0)
bf53d6f8 1504 page = alloc_page(gfp_mask);
930fc45a 1505 else
bf53d6f8
CL
1506 page = alloc_pages_node(node, gfp_mask, 0);
1507
1508 if (unlikely(!page)) {
1da177e4
LT
1509 /* Successfully allocated i pages, free them in __vunmap() */
1510 area->nr_pages = i;
1511 goto fail;
1512 }
bf53d6f8 1513 area->pages[i] = page;
1da177e4
LT
1514 }
1515
1516 if (map_vm_area(area, prot, &pages))
1517 goto fail;
1518 return area->addr;
1519
1520fail:
1521 vfree(area->addr);
1522 return NULL;
1523}
1524
930fc45a
CL
1525void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1526{
89219d37
CM
1527 void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
1528 __builtin_return_address(0));
1529
1530 /*
1531 * A ref_count = 3 is needed because the vm_struct and vmap_area
1532 * structures allocated in the __get_vm_area_node() function contain
1533 * references to the virtual address of the vmalloc'ed block.
1534 */
1535 kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
1536
1537 return addr;
930fc45a
CL
1538}
1539
1da177e4 1540/**
930fc45a 1541 * __vmalloc_node - allocate virtually contiguous memory
1da177e4 1542 * @size: allocation size
2dca6999 1543 * @align: desired alignment
1da177e4
LT
1544 * @gfp_mask: flags for the page level allocator
1545 * @prot: protection mask for the allocated pages
d44e0780 1546 * @node: node to use for allocation or -1
c85d194b 1547 * @caller: caller's return address
1da177e4
LT
1548 *
1549 * Allocate enough pages to cover @size from the page level
1550 * allocator with @gfp_mask flags. Map them into contiguous
1551 * kernel virtual space, using a pagetable protection of @prot.
1552 */
2dca6999
DM
1553static void *__vmalloc_node(unsigned long size, unsigned long align,
1554 gfp_t gfp_mask, pgprot_t prot,
1555 int node, void *caller)
1da177e4
LT
1556{
1557 struct vm_struct *area;
89219d37
CM
1558 void *addr;
1559 unsigned long real_size = size;
1da177e4
LT
1560
1561 size = PAGE_ALIGN(size);
4481374c 1562 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1da177e4
LT
1563 return NULL;
1564
2dca6999
DM
1565 area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START,
1566 VMALLOC_END, node, gfp_mask, caller);
23016969 1567
1da177e4
LT
1568 if (!area)
1569 return NULL;
1570
89219d37
CM
1571 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1572
1573 /*
1574 * A ref_count = 3 is needed because the vm_struct and vmap_area
1575 * structures allocated in the __get_vm_area_node() function contain
1576 * references to the virtual address of the vmalloc'ed block.
1577 */
1578 kmemleak_alloc(addr, real_size, 3, gfp_mask);
1579
1580 return addr;
1da177e4
LT
1581}
1582
930fc45a
CL
1583void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1584{
2dca6999 1585 return __vmalloc_node(size, 1, gfp_mask, prot, -1,
23016969 1586 __builtin_return_address(0));
930fc45a 1587}
1da177e4
LT
1588EXPORT_SYMBOL(__vmalloc);
1589
1590/**
1591 * vmalloc - allocate virtually contiguous memory
1da177e4 1592 * @size: allocation size
1da177e4
LT
1593 * Allocate enough pages to cover @size from the page level
1594 * allocator and map them into contiguous kernel virtual space.
1595 *
c1c8897f 1596 * For tight control over page level allocator and protection flags
1da177e4
LT
1597 * use __vmalloc() instead.
1598 */
1599void *vmalloc(unsigned long size)
1600{
2dca6999 1601 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
23016969 1602 -1, __builtin_return_address(0));
1da177e4 1603}
1da177e4
LT
1604EXPORT_SYMBOL(vmalloc);
1605
83342314 1606/**
ead04089
REB
1607 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1608 * @size: allocation size
83342314 1609 *
ead04089
REB
1610 * The resulting memory area is zeroed so it can be mapped to userspace
1611 * without leaking data.
83342314
NP
1612 */
1613void *vmalloc_user(unsigned long size)
1614{
1615 struct vm_struct *area;
1616 void *ret;
1617
2dca6999
DM
1618 ret = __vmalloc_node(size, SHMLBA,
1619 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
84877848 1620 PAGE_KERNEL, -1, __builtin_return_address(0));
2b4ac44e 1621 if (ret) {
db64fe02 1622 area = find_vm_area(ret);
2b4ac44e 1623 area->flags |= VM_USERMAP;
2b4ac44e 1624 }
83342314
NP
1625 return ret;
1626}
1627EXPORT_SYMBOL(vmalloc_user);
1628
930fc45a
CL
1629/**
1630 * vmalloc_node - allocate memory on a specific node
930fc45a 1631 * @size: allocation size
d44e0780 1632 * @node: numa node
930fc45a
CL
1633 *
1634 * Allocate enough pages to cover @size from the page level
1635 * allocator and map them into contiguous kernel virtual space.
1636 *
c1c8897f 1637 * For tight control over page level allocator and protection flags
930fc45a
CL
1638 * use __vmalloc() instead.
1639 */
1640void *vmalloc_node(unsigned long size, int node)
1641{
2dca6999 1642 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
23016969 1643 node, __builtin_return_address(0));
930fc45a
CL
1644}
1645EXPORT_SYMBOL(vmalloc_node);
1646
4dc3b16b
PP
1647#ifndef PAGE_KERNEL_EXEC
1648# define PAGE_KERNEL_EXEC PAGE_KERNEL
1649#endif
1650
1da177e4
LT
1651/**
1652 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
1653 * @size: allocation size
1654 *
1655 * Kernel-internal function to allocate enough pages to cover @size
1656 * the page level allocator and map them into contiguous and
1657 * executable kernel virtual space.
1658 *
c1c8897f 1659 * For tight control over page level allocator and protection flags
1da177e4
LT
1660 * use __vmalloc() instead.
1661 */
1662
1da177e4
LT
1663void *vmalloc_exec(unsigned long size)
1664{
2dca6999 1665 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
84877848 1666 -1, __builtin_return_address(0));
1da177e4
LT
1667}
1668
0d08e0d3 1669#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
7ac674f5 1670#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3 1671#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
7ac674f5 1672#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
0d08e0d3
AK
1673#else
1674#define GFP_VMALLOC32 GFP_KERNEL
1675#endif
1676
1da177e4
LT
1677/**
1678 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
1679 * @size: allocation size
1680 *
1681 * Allocate enough 32bit PA addressable pages to cover @size from the
1682 * page level allocator and map them into contiguous kernel virtual space.
1683 */
1684void *vmalloc_32(unsigned long size)
1685{
2dca6999 1686 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
84877848 1687 -1, __builtin_return_address(0));
1da177e4 1688}
1da177e4
LT
1689EXPORT_SYMBOL(vmalloc_32);
1690
83342314 1691/**
ead04089 1692 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 1693 * @size: allocation size
ead04089
REB
1694 *
1695 * The resulting memory area is 32bit addressable and zeroed so it can be
1696 * mapped to userspace without leaking data.
83342314
NP
1697 */
1698void *vmalloc_32_user(unsigned long size)
1699{
1700 struct vm_struct *area;
1701 void *ret;
1702
2dca6999 1703 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
84877848 1704 -1, __builtin_return_address(0));
2b4ac44e 1705 if (ret) {
db64fe02 1706 area = find_vm_area(ret);
2b4ac44e 1707 area->flags |= VM_USERMAP;
2b4ac44e 1708 }
83342314
NP
1709 return ret;
1710}
1711EXPORT_SYMBOL(vmalloc_32_user);
1712
d0107eb0
KH
1713/*
1714 * small helper routine , copy contents to buf from addr.
1715 * If the page is not present, fill zero.
1716 */
1717
1718static int aligned_vread(char *buf, char *addr, unsigned long count)
1719{
1720 struct page *p;
1721 int copied = 0;
1722
1723 while (count) {
1724 unsigned long offset, length;
1725
1726 offset = (unsigned long)addr & ~PAGE_MASK;
1727 length = PAGE_SIZE - offset;
1728 if (length > count)
1729 length = count;
1730 p = vmalloc_to_page(addr);
1731 /*
1732 * To do safe access to this _mapped_ area, we need
1733 * lock. But adding lock here means that we need to add
1734 * overhead of vmalloc()/vfree() calles for this _debug_
1735 * interface, rarely used. Instead of that, we'll use
1736 * kmap() and get small overhead in this access function.
1737 */
1738 if (p) {
1739 /*
1740 * we can expect USER0 is not used (see vread/vwrite's
1741 * function description)
1742 */
1743 void *map = kmap_atomic(p, KM_USER0);
1744 memcpy(buf, map + offset, length);
1745 kunmap_atomic(map, KM_USER0);
1746 } else
1747 memset(buf, 0, length);
1748
1749 addr += length;
1750 buf += length;
1751 copied += length;
1752 count -= length;
1753 }
1754 return copied;
1755}
1756
1757static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1758{
1759 struct page *p;
1760 int copied = 0;
1761
1762 while (count) {
1763 unsigned long offset, length;
1764
1765 offset = (unsigned long)addr & ~PAGE_MASK;
1766 length = PAGE_SIZE - offset;
1767 if (length > count)
1768 length = count;
1769 p = vmalloc_to_page(addr);
1770 /*
1771 * To do safe access to this _mapped_ area, we need
1772 * lock. But adding lock here means that we need to add
1773 * overhead of vmalloc()/vfree() calles for this _debug_
1774 * interface, rarely used. Instead of that, we'll use
1775 * kmap() and get small overhead in this access function.
1776 */
1777 if (p) {
1778 /*
1779 * we can expect USER0 is not used (see vread/vwrite's
1780 * function description)
1781 */
1782 void *map = kmap_atomic(p, KM_USER0);
1783 memcpy(map + offset, buf, length);
1784 kunmap_atomic(map, KM_USER0);
1785 }
1786 addr += length;
1787 buf += length;
1788 copied += length;
1789 count -= length;
1790 }
1791 return copied;
1792}
1793
1794/**
1795 * vread() - read vmalloc area in a safe way.
1796 * @buf: buffer for reading data
1797 * @addr: vm address.
1798 * @count: number of bytes to be read.
1799 *
1800 * Returns # of bytes which addr and buf should be increased.
1801 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1802 * includes any intersect with alive vmalloc area.
1803 *
1804 * This function checks that addr is a valid vmalloc'ed area, and
1805 * copy data from that area to a given buffer. If the given memory range
1806 * of [addr...addr+count) includes some valid address, data is copied to
1807 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1808 * IOREMAP area is treated as memory hole and no copy is done.
1809 *
1810 * If [addr...addr+count) doesn't includes any intersects with alive
1811 * vm_struct area, returns 0.
1812 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1813 * the caller should guarantee KM_USER0 is not used.
1814 *
1815 * Note: In usual ops, vread() is never necessary because the caller
1816 * should know vmalloc() area is valid and can use memcpy().
1817 * This is for routines which have to access vmalloc area without
1818 * any informaion, as /dev/kmem.
1819 *
1820 */
1821
1da177e4
LT
1822long vread(char *buf, char *addr, unsigned long count)
1823{
1824 struct vm_struct *tmp;
1825 char *vaddr, *buf_start = buf;
d0107eb0 1826 unsigned long buflen = count;
1da177e4
LT
1827 unsigned long n;
1828
1829 /* Don't allow overflow */
1830 if ((unsigned long) addr + count < count)
1831 count = -(unsigned long) addr;
1832
1833 read_lock(&vmlist_lock);
d0107eb0 1834 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1da177e4
LT
1835 vaddr = (char *) tmp->addr;
1836 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1837 continue;
1838 while (addr < vaddr) {
1839 if (count == 0)
1840 goto finished;
1841 *buf = '\0';
1842 buf++;
1843 addr++;
1844 count--;
1845 }
1846 n = vaddr + tmp->size - PAGE_SIZE - addr;
d0107eb0
KH
1847 if (n > count)
1848 n = count;
1849 if (!(tmp->flags & VM_IOREMAP))
1850 aligned_vread(buf, addr, n);
1851 else /* IOREMAP area is treated as memory hole */
1852 memset(buf, 0, n);
1853 buf += n;
1854 addr += n;
1855 count -= n;
1da177e4
LT
1856 }
1857finished:
1858 read_unlock(&vmlist_lock);
d0107eb0
KH
1859
1860 if (buf == buf_start)
1861 return 0;
1862 /* zero-fill memory holes */
1863 if (buf != buf_start + buflen)
1864 memset(buf, 0, buflen - (buf - buf_start));
1865
1866 return buflen;
1da177e4
LT
1867}
1868
d0107eb0
KH
1869/**
1870 * vwrite() - write vmalloc area in a safe way.
1871 * @buf: buffer for source data
1872 * @addr: vm address.
1873 * @count: number of bytes to be read.
1874 *
1875 * Returns # of bytes which addr and buf should be incresed.
1876 * (same number to @count).
1877 * If [addr...addr+count) doesn't includes any intersect with valid
1878 * vmalloc area, returns 0.
1879 *
1880 * This function checks that addr is a valid vmalloc'ed area, and
1881 * copy data from a buffer to the given addr. If specified range of
1882 * [addr...addr+count) includes some valid address, data is copied from
1883 * proper area of @buf. If there are memory holes, no copy to hole.
1884 * IOREMAP area is treated as memory hole and no copy is done.
1885 *
1886 * If [addr...addr+count) doesn't includes any intersects with alive
1887 * vm_struct area, returns 0.
1888 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1889 * the caller should guarantee KM_USER0 is not used.
1890 *
1891 * Note: In usual ops, vwrite() is never necessary because the caller
1892 * should know vmalloc() area is valid and can use memcpy().
1893 * This is for routines which have to access vmalloc area without
1894 * any informaion, as /dev/kmem.
1895 *
1896 * The caller should guarantee KM_USER1 is not used.
1897 */
1898
1da177e4
LT
1899long vwrite(char *buf, char *addr, unsigned long count)
1900{
1901 struct vm_struct *tmp;
d0107eb0
KH
1902 char *vaddr;
1903 unsigned long n, buflen;
1904 int copied = 0;
1da177e4
LT
1905
1906 /* Don't allow overflow */
1907 if ((unsigned long) addr + count < count)
1908 count = -(unsigned long) addr;
d0107eb0 1909 buflen = count;
1da177e4
LT
1910
1911 read_lock(&vmlist_lock);
d0107eb0 1912 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1da177e4
LT
1913 vaddr = (char *) tmp->addr;
1914 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1915 continue;
1916 while (addr < vaddr) {
1917 if (count == 0)
1918 goto finished;
1919 buf++;
1920 addr++;
1921 count--;
1922 }
1923 n = vaddr + tmp->size - PAGE_SIZE - addr;
d0107eb0
KH
1924 if (n > count)
1925 n = count;
1926 if (!(tmp->flags & VM_IOREMAP)) {
1927 aligned_vwrite(buf, addr, n);
1928 copied++;
1929 }
1930 buf += n;
1931 addr += n;
1932 count -= n;
1da177e4
LT
1933 }
1934finished:
1935 read_unlock(&vmlist_lock);
d0107eb0
KH
1936 if (!copied)
1937 return 0;
1938 return buflen;
1da177e4 1939}
83342314
NP
1940
1941/**
1942 * remap_vmalloc_range - map vmalloc pages to userspace
83342314
NP
1943 * @vma: vma to cover (map full range of vma)
1944 * @addr: vmalloc memory
1945 * @pgoff: number of pages into addr before first page to map
7682486b
RD
1946 *
1947 * Returns: 0 for success, -Exxx on failure
83342314
NP
1948 *
1949 * This function checks that addr is a valid vmalloc'ed area, and
1950 * that it is big enough to cover the vma. Will return failure if
1951 * that criteria isn't met.
1952 *
72fd4a35 1953 * Similar to remap_pfn_range() (see mm/memory.c)
83342314
NP
1954 */
1955int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1956 unsigned long pgoff)
1957{
1958 struct vm_struct *area;
1959 unsigned long uaddr = vma->vm_start;
1960 unsigned long usize = vma->vm_end - vma->vm_start;
83342314
NP
1961
1962 if ((PAGE_SIZE-1) & (unsigned long)addr)
1963 return -EINVAL;
1964
db64fe02 1965 area = find_vm_area(addr);
83342314 1966 if (!area)
db64fe02 1967 return -EINVAL;
83342314
NP
1968
1969 if (!(area->flags & VM_USERMAP))
db64fe02 1970 return -EINVAL;
83342314
NP
1971
1972 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
db64fe02 1973 return -EINVAL;
83342314
NP
1974
1975 addr += pgoff << PAGE_SHIFT;
1976 do {
1977 struct page *page = vmalloc_to_page(addr);
db64fe02
NP
1978 int ret;
1979
83342314
NP
1980 ret = vm_insert_page(vma, uaddr, page);
1981 if (ret)
1982 return ret;
1983
1984 uaddr += PAGE_SIZE;
1985 addr += PAGE_SIZE;
1986 usize -= PAGE_SIZE;
1987 } while (usize > 0);
1988
1989 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1990 vma->vm_flags |= VM_RESERVED;
1991
db64fe02 1992 return 0;
83342314
NP
1993}
1994EXPORT_SYMBOL(remap_vmalloc_range);
1995
1eeb66a1
CH
1996/*
1997 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1998 * have one.
1999 */
2000void __attribute__((weak)) vmalloc_sync_all(void)
2001{
2002}
5f4352fb
JF
2003
2004
2f569afd 2005static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb
JF
2006{
2007 /* apply_to_page_range() does all the hard work. */
2008 return 0;
2009}
2010
2011/**
2012 * alloc_vm_area - allocate a range of kernel address space
2013 * @size: size of the area
7682486b
RD
2014 *
2015 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
2016 *
2017 * This function reserves a range of kernel address space, and
2018 * allocates pagetables to map that range. No actual mappings
2019 * are created. If the kernel address space is not shared
2020 * between processes, it syncs the pagetable across all
2021 * processes.
2022 */
2023struct vm_struct *alloc_vm_area(size_t size)
2024{
2025 struct vm_struct *area;
2026
23016969
CL
2027 area = get_vm_area_caller(size, VM_IOREMAP,
2028 __builtin_return_address(0));
5f4352fb
JF
2029 if (area == NULL)
2030 return NULL;
2031
2032 /*
2033 * This ensures that page tables are constructed for this region
2034 * of kernel virtual address space and mapped into init_mm.
2035 */
2036 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2037 area->size, f, NULL)) {
2038 free_vm_area(area);
2039 return NULL;
2040 }
2041
2042 /* Make sure the pagetables are constructed in process kernel
2043 mappings */
2044 vmalloc_sync_all();
2045
2046 return area;
2047}
2048EXPORT_SYMBOL_GPL(alloc_vm_area);
2049
2050void free_vm_area(struct vm_struct *area)
2051{
2052 struct vm_struct *ret;
2053 ret = remove_vm_area(area->addr);
2054 BUG_ON(ret != area);
2055 kfree(area);
2056}
2057EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 2058
ca23e405
TH
2059static struct vmap_area *node_to_va(struct rb_node *n)
2060{
2061 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2062}
2063
2064/**
2065 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2066 * @end: target address
2067 * @pnext: out arg for the next vmap_area
2068 * @pprev: out arg for the previous vmap_area
2069 *
2070 * Returns: %true if either or both of next and prev are found,
2071 * %false if no vmap_area exists
2072 *
2073 * Find vmap_areas end addresses of which enclose @end. ie. if not
2074 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2075 */
2076static bool pvm_find_next_prev(unsigned long end,
2077 struct vmap_area **pnext,
2078 struct vmap_area **pprev)
2079{
2080 struct rb_node *n = vmap_area_root.rb_node;
2081 struct vmap_area *va = NULL;
2082
2083 while (n) {
2084 va = rb_entry(n, struct vmap_area, rb_node);
2085 if (end < va->va_end)
2086 n = n->rb_left;
2087 else if (end > va->va_end)
2088 n = n->rb_right;
2089 else
2090 break;
2091 }
2092
2093 if (!va)
2094 return false;
2095
2096 if (va->va_end > end) {
2097 *pnext = va;
2098 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2099 } else {
2100 *pprev = va;
2101 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2102 }
2103 return true;
2104}
2105
2106/**
2107 * pvm_determine_end - find the highest aligned address between two vmap_areas
2108 * @pnext: in/out arg for the next vmap_area
2109 * @pprev: in/out arg for the previous vmap_area
2110 * @align: alignment
2111 *
2112 * Returns: determined end address
2113 *
2114 * Find the highest aligned address between *@pnext and *@pprev below
2115 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2116 * down address is between the end addresses of the two vmap_areas.
2117 *
2118 * Please note that the address returned by this function may fall
2119 * inside *@pnext vmap_area. The caller is responsible for checking
2120 * that.
2121 */
2122static unsigned long pvm_determine_end(struct vmap_area **pnext,
2123 struct vmap_area **pprev,
2124 unsigned long align)
2125{
2126 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2127 unsigned long addr;
2128
2129 if (*pnext)
2130 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2131 else
2132 addr = vmalloc_end;
2133
2134 while (*pprev && (*pprev)->va_end > addr) {
2135 *pnext = *pprev;
2136 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2137 }
2138
2139 return addr;
2140}
2141
2142/**
2143 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2144 * @offsets: array containing offset of each area
2145 * @sizes: array containing size of each area
2146 * @nr_vms: the number of areas to allocate
2147 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2148 * @gfp_mask: allocation mask
2149 *
2150 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2151 * vm_structs on success, %NULL on failure
2152 *
2153 * Percpu allocator wants to use congruent vm areas so that it can
2154 * maintain the offsets among percpu areas. This function allocates
2155 * congruent vmalloc areas for it. These areas tend to be scattered
2156 * pretty far, distance between two areas easily going up to
2157 * gigabytes. To avoid interacting with regular vmallocs, these areas
2158 * are allocated from top.
2159 *
2160 * Despite its complicated look, this allocator is rather simple. It
2161 * does everything top-down and scans areas from the end looking for
2162 * matching slot. While scanning, if any of the areas overlaps with
2163 * existing vmap_area, the base address is pulled down to fit the
2164 * area. Scanning is repeated till all the areas fit and then all
2165 * necessary data structres are inserted and the result is returned.
2166 */
2167struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2168 const size_t *sizes, int nr_vms,
2169 size_t align, gfp_t gfp_mask)
2170{
2171 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2172 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2173 struct vmap_area **vas, *prev, *next;
2174 struct vm_struct **vms;
2175 int area, area2, last_area, term_area;
2176 unsigned long base, start, end, last_end;
2177 bool purged = false;
2178
2179 gfp_mask &= GFP_RECLAIM_MASK;
2180
2181 /* verify parameters and allocate data structures */
2182 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2183 for (last_area = 0, area = 0; area < nr_vms; area++) {
2184 start = offsets[area];
2185 end = start + sizes[area];
2186
2187 /* is everything aligned properly? */
2188 BUG_ON(!IS_ALIGNED(offsets[area], align));
2189 BUG_ON(!IS_ALIGNED(sizes[area], align));
2190
2191 /* detect the area with the highest address */
2192 if (start > offsets[last_area])
2193 last_area = area;
2194
2195 for (area2 = 0; area2 < nr_vms; area2++) {
2196 unsigned long start2 = offsets[area2];
2197 unsigned long end2 = start2 + sizes[area2];
2198
2199 if (area2 == area)
2200 continue;
2201
2202 BUG_ON(start2 >= start && start2 < end);
2203 BUG_ON(end2 <= end && end2 > start);
2204 }
2205 }
2206 last_end = offsets[last_area] + sizes[last_area];
2207
2208 if (vmalloc_end - vmalloc_start < last_end) {
2209 WARN_ON(true);
2210 return NULL;
2211 }
2212
2213 vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask);
2214 vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask);
2215 if (!vas || !vms)
2216 goto err_free;
2217
2218 for (area = 0; area < nr_vms; area++) {
2219 vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask);
2220 vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask);
2221 if (!vas[area] || !vms[area])
2222 goto err_free;
2223 }
2224retry:
2225 spin_lock(&vmap_area_lock);
2226
2227 /* start scanning - we scan from the top, begin with the last area */
2228 area = term_area = last_area;
2229 start = offsets[area];
2230 end = start + sizes[area];
2231
2232 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2233 base = vmalloc_end - last_end;
2234 goto found;
2235 }
2236 base = pvm_determine_end(&next, &prev, align) - end;
2237
2238 while (true) {
2239 BUG_ON(next && next->va_end <= base + end);
2240 BUG_ON(prev && prev->va_end > base + end);
2241
2242 /*
2243 * base might have underflowed, add last_end before
2244 * comparing.
2245 */
2246 if (base + last_end < vmalloc_start + last_end) {
2247 spin_unlock(&vmap_area_lock);
2248 if (!purged) {
2249 purge_vmap_area_lazy();
2250 purged = true;
2251 goto retry;
2252 }
2253 goto err_free;
2254 }
2255
2256 /*
2257 * If next overlaps, move base downwards so that it's
2258 * right below next and then recheck.
2259 */
2260 if (next && next->va_start < base + end) {
2261 base = pvm_determine_end(&next, &prev, align) - end;
2262 term_area = area;
2263 continue;
2264 }
2265
2266 /*
2267 * If prev overlaps, shift down next and prev and move
2268 * base so that it's right below new next and then
2269 * recheck.
2270 */
2271 if (prev && prev->va_end > base + start) {
2272 next = prev;
2273 prev = node_to_va(rb_prev(&next->rb_node));
2274 base = pvm_determine_end(&next, &prev, align) - end;
2275 term_area = area;
2276 continue;
2277 }
2278
2279 /*
2280 * This area fits, move on to the previous one. If
2281 * the previous one is the terminal one, we're done.
2282 */
2283 area = (area + nr_vms - 1) % nr_vms;
2284 if (area == term_area)
2285 break;
2286 start = offsets[area];
2287 end = start + sizes[area];
2288 pvm_find_next_prev(base + end, &next, &prev);
2289 }
2290found:
2291 /* we've found a fitting base, insert all va's */
2292 for (area = 0; area < nr_vms; area++) {
2293 struct vmap_area *va = vas[area];
2294
2295 va->va_start = base + offsets[area];
2296 va->va_end = va->va_start + sizes[area];
2297 __insert_vmap_area(va);
2298 }
2299
2300 vmap_area_pcpu_hole = base + offsets[last_area];
2301
2302 spin_unlock(&vmap_area_lock);
2303
2304 /* insert all vm's */
2305 for (area = 0; area < nr_vms; area++)
2306 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2307 pcpu_get_vm_areas);
2308
2309 kfree(vas);
2310 return vms;
2311
2312err_free:
2313 for (area = 0; area < nr_vms; area++) {
2314 if (vas)
2315 kfree(vas[area]);
2316 if (vms)
2317 kfree(vms[area]);
2318 }
2319 kfree(vas);
2320 kfree(vms);
2321 return NULL;
2322}
2323
2324/**
2325 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2326 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2327 * @nr_vms: the number of allocated areas
2328 *
2329 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2330 */
2331void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2332{
2333 int i;
2334
2335 for (i = 0; i < nr_vms; i++)
2336 free_vm_area(vms[i]);
2337 kfree(vms);
2338}
a10aa579
CL
2339
2340#ifdef CONFIG_PROC_FS
2341static void *s_start(struct seq_file *m, loff_t *pos)
2342{
2343 loff_t n = *pos;
2344 struct vm_struct *v;
2345
2346 read_lock(&vmlist_lock);
2347 v = vmlist;
2348 while (n > 0 && v) {
2349 n--;
2350 v = v->next;
2351 }
2352 if (!n)
2353 return v;
2354
2355 return NULL;
2356
2357}
2358
2359static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2360{
2361 struct vm_struct *v = p;
2362
2363 ++*pos;
2364 return v->next;
2365}
2366
2367static void s_stop(struct seq_file *m, void *p)
2368{
2369 read_unlock(&vmlist_lock);
2370}
2371
a47a126a
ED
2372static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2373{
2374 if (NUMA_BUILD) {
2375 unsigned int nr, *counters = m->private;
2376
2377 if (!counters)
2378 return;
2379
2380 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2381
2382 for (nr = 0; nr < v->nr_pages; nr++)
2383 counters[page_to_nid(v->pages[nr])]++;
2384
2385 for_each_node_state(nr, N_HIGH_MEMORY)
2386 if (counters[nr])
2387 seq_printf(m, " N%u=%u", nr, counters[nr]);
2388 }
2389}
2390
a10aa579
CL
2391static int s_show(struct seq_file *m, void *p)
2392{
2393 struct vm_struct *v = p;
2394
2395 seq_printf(m, "0x%p-0x%p %7ld",
2396 v->addr, v->addr + v->size, v->size);
2397
23016969 2398 if (v->caller) {
9c246247 2399 char buff[KSYM_SYMBOL_LEN];
23016969
CL
2400
2401 seq_putc(m, ' ');
2402 sprint_symbol(buff, (unsigned long)v->caller);
2403 seq_puts(m, buff);
2404 }
2405
a10aa579
CL
2406 if (v->nr_pages)
2407 seq_printf(m, " pages=%d", v->nr_pages);
2408
2409 if (v->phys_addr)
ffa71f33 2410 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
a10aa579
CL
2411
2412 if (v->flags & VM_IOREMAP)
2413 seq_printf(m, " ioremap");
2414
2415 if (v->flags & VM_ALLOC)
2416 seq_printf(m, " vmalloc");
2417
2418 if (v->flags & VM_MAP)
2419 seq_printf(m, " vmap");
2420
2421 if (v->flags & VM_USERMAP)
2422 seq_printf(m, " user");
2423
2424 if (v->flags & VM_VPAGES)
2425 seq_printf(m, " vpages");
2426
a47a126a 2427 show_numa_info(m, v);
a10aa579
CL
2428 seq_putc(m, '\n');
2429 return 0;
2430}
2431
5f6a6a9c 2432static const struct seq_operations vmalloc_op = {
a10aa579
CL
2433 .start = s_start,
2434 .next = s_next,
2435 .stop = s_stop,
2436 .show = s_show,
2437};
5f6a6a9c
AD
2438
2439static int vmalloc_open(struct inode *inode, struct file *file)
2440{
2441 unsigned int *ptr = NULL;
2442 int ret;
2443
51980ac9 2444 if (NUMA_BUILD) {
5f6a6a9c 2445 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
51980ac9
KV
2446 if (ptr == NULL)
2447 return -ENOMEM;
2448 }
5f6a6a9c
AD
2449 ret = seq_open(file, &vmalloc_op);
2450 if (!ret) {
2451 struct seq_file *m = file->private_data;
2452 m->private = ptr;
2453 } else
2454 kfree(ptr);
2455 return ret;
2456}
2457
2458static const struct file_operations proc_vmalloc_operations = {
2459 .open = vmalloc_open,
2460 .read = seq_read,
2461 .llseek = seq_lseek,
2462 .release = seq_release_private,
2463};
2464
2465static int __init proc_vmalloc_init(void)
2466{
2467 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2468 return 0;
2469}
2470module_init(proc_vmalloc_init);
a10aa579
CL
2471#endif
2472