]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/vmalloc.c
Use WARN() in kernel/irq/manage.c
[net-next-2.6.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/highmem.h>
14#include <linux/slab.h>
15#include <linux/spinlock.h>
16#include <linux/interrupt.h>
a10aa579 17#include <linux/seq_file.h>
3ac7fe5a 18#include <linux/debugobjects.h>
1da177e4 19#include <linux/vmalloc.h>
23016969 20#include <linux/kallsyms.h>
1da177e4
LT
21
22#include <asm/uaccess.h>
23#include <asm/tlbflush.h>
24
25
26DEFINE_RWLOCK(vmlist_lock);
27struct vm_struct *vmlist;
28
b221385b 29static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
23016969 30 int node, void *caller);
b221385b 31
1da177e4
LT
32static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
33{
34 pte_t *pte;
35
36 pte = pte_offset_kernel(pmd, addr);
37 do {
38 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
39 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
40 } while (pte++, addr += PAGE_SIZE, addr != end);
41}
42
43static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
44 unsigned long end)
45{
46 pmd_t *pmd;
47 unsigned long next;
48
49 pmd = pmd_offset(pud, addr);
50 do {
51 next = pmd_addr_end(addr, end);
52 if (pmd_none_or_clear_bad(pmd))
53 continue;
54 vunmap_pte_range(pmd, addr, next);
55 } while (pmd++, addr = next, addr != end);
56}
57
58static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
59 unsigned long end)
60{
61 pud_t *pud;
62 unsigned long next;
63
64 pud = pud_offset(pgd, addr);
65 do {
66 next = pud_addr_end(addr, end);
67 if (pud_none_or_clear_bad(pud))
68 continue;
69 vunmap_pmd_range(pud, addr, next);
70 } while (pud++, addr = next, addr != end);
71}
72
c19c03fc 73void unmap_kernel_range(unsigned long addr, unsigned long size)
1da177e4
LT
74{
75 pgd_t *pgd;
76 unsigned long next;
c19c03fc
BH
77 unsigned long start = addr;
78 unsigned long end = addr + size;
1da177e4
LT
79
80 BUG_ON(addr >= end);
81 pgd = pgd_offset_k(addr);
82 flush_cache_vunmap(addr, end);
83 do {
84 next = pgd_addr_end(addr, end);
85 if (pgd_none_or_clear_bad(pgd))
86 continue;
87 vunmap_pud_range(pgd, addr, next);
88 } while (pgd++, addr = next, addr != end);
c19c03fc
BH
89 flush_tlb_kernel_range(start, end);
90}
91
92static void unmap_vm_area(struct vm_struct *area)
93{
94 unmap_kernel_range((unsigned long)area->addr, area->size);
1da177e4
LT
95}
96
97static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
98 unsigned long end, pgprot_t prot, struct page ***pages)
99{
100 pte_t *pte;
101
872fec16 102 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
103 if (!pte)
104 return -ENOMEM;
105 do {
106 struct page *page = **pages;
107 WARN_ON(!pte_none(*pte));
108 if (!page)
109 return -ENOMEM;
110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
111 (*pages)++;
112 } while (pte++, addr += PAGE_SIZE, addr != end);
113 return 0;
114}
115
116static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 unsigned long end, pgprot_t prot, struct page ***pages)
118{
119 pmd_t *pmd;
120 unsigned long next;
121
122 pmd = pmd_alloc(&init_mm, pud, addr);
123 if (!pmd)
124 return -ENOMEM;
125 do {
126 next = pmd_addr_end(addr, end);
127 if (vmap_pte_range(pmd, addr, next, prot, pages))
128 return -ENOMEM;
129 } while (pmd++, addr = next, addr != end);
130 return 0;
131}
132
133static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 unsigned long end, pgprot_t prot, struct page ***pages)
135{
136 pud_t *pud;
137 unsigned long next;
138
139 pud = pud_alloc(&init_mm, pgd, addr);
140 if (!pud)
141 return -ENOMEM;
142 do {
143 next = pud_addr_end(addr, end);
144 if (vmap_pmd_range(pud, addr, next, prot, pages))
145 return -ENOMEM;
146 } while (pud++, addr = next, addr != end);
147 return 0;
148}
149
150int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
151{
152 pgd_t *pgd;
153 unsigned long next;
154 unsigned long addr = (unsigned long) area->addr;
155 unsigned long end = addr + area->size - PAGE_SIZE;
156 int err;
157
158 BUG_ON(addr >= end);
159 pgd = pgd_offset_k(addr);
1da177e4
LT
160 do {
161 next = pgd_addr_end(addr, end);
162 err = vmap_pud_range(pgd, addr, next, prot, pages);
163 if (err)
164 break;
165 } while (pgd++, addr = next, addr != end);
1da177e4
LT
166 flush_cache_vmap((unsigned long) area->addr, end);
167 return err;
168}
5992b6da 169EXPORT_SYMBOL_GPL(map_vm_area);
1da177e4 170
48667e7a
CL
171/*
172 * Map a vmalloc()-space virtual address to the physical page.
173 */
b3bdda02 174struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
175{
176 unsigned long addr = (unsigned long) vmalloc_addr;
177 struct page *page = NULL;
178 pgd_t *pgd = pgd_offset_k(addr);
179 pud_t *pud;
180 pmd_t *pmd;
181 pte_t *ptep, pte;
182
183 if (!pgd_none(*pgd)) {
184 pud = pud_offset(pgd, addr);
185 if (!pud_none(*pud)) {
186 pmd = pmd_offset(pud, addr);
187 if (!pmd_none(*pmd)) {
188 ptep = pte_offset_map(pmd, addr);
189 pte = *ptep;
190 if (pte_present(pte))
191 page = pte_page(pte);
192 pte_unmap(ptep);
193 }
194 }
195 }
196 return page;
197}
198EXPORT_SYMBOL(vmalloc_to_page);
199
200/*
201 * Map a vmalloc()-space virtual address to the physical page frame number.
202 */
b3bdda02 203unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a
CL
204{
205 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
206}
207EXPORT_SYMBOL(vmalloc_to_pfn);
208
23016969
CL
209static struct vm_struct *
210__get_vm_area_node(unsigned long size, unsigned long flags, unsigned long start,
211 unsigned long end, int node, gfp_t gfp_mask, void *caller)
1da177e4
LT
212{
213 struct vm_struct **p, *tmp, *area;
214 unsigned long align = 1;
215 unsigned long addr;
216
52fd24ca 217 BUG_ON(in_interrupt());
1da177e4
LT
218 if (flags & VM_IOREMAP) {
219 int bit = fls(size);
220
221 if (bit > IOREMAP_MAX_ORDER)
222 bit = IOREMAP_MAX_ORDER;
223 else if (bit < PAGE_SHIFT)
224 bit = PAGE_SHIFT;
225
226 align = 1ul << bit;
227 }
228 addr = ALIGN(start, align);
229 size = PAGE_ALIGN(size);
31be8309
OH
230 if (unlikely(!size))
231 return NULL;
1da177e4 232
6cb06229
CL
233 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
234
1da177e4
LT
235 if (unlikely(!area))
236 return NULL;
237
1da177e4
LT
238 /*
239 * We always allocate a guard page.
240 */
241 size += PAGE_SIZE;
242
243 write_lock(&vmlist_lock);
244 for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
245 if ((unsigned long)tmp->addr < addr) {
246 if((unsigned long)tmp->addr + tmp->size >= addr)
247 addr = ALIGN(tmp->size +
248 (unsigned long)tmp->addr, align);
249 continue;
250 }
251 if ((size + addr) < addr)
252 goto out;
253 if (size + addr <= (unsigned long)tmp->addr)
254 goto found;
255 addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
256 if (addr > end - size)
257 goto out;
258 }
5dc33185
RB
259 if ((size + addr) < addr)
260 goto out;
261 if (addr > end - size)
262 goto out;
1da177e4
LT
263
264found:
265 area->next = *p;
266 *p = area;
267
268 area->flags = flags;
269 area->addr = (void *)addr;
270 area->size = size;
271 area->pages = NULL;
272 area->nr_pages = 0;
273 area->phys_addr = 0;
23016969 274 area->caller = caller;
1da177e4
LT
275 write_unlock(&vmlist_lock);
276
277 return area;
278
279out:
280 write_unlock(&vmlist_lock);
281 kfree(area);
282 if (printk_ratelimit())
283 printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
284 return NULL;
285}
286
930fc45a
CL
287struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
288 unsigned long start, unsigned long end)
289{
23016969
CL
290 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
291 __builtin_return_address(0));
930fc45a 292}
5992b6da 293EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 294
1da177e4 295/**
183ff22b 296 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
297 * @size: size of the area
298 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
299 *
300 * Search an area of @size in the kernel virtual mapping area,
301 * and reserved it for out purposes. Returns the area descriptor
302 * on success or %NULL on failure.
303 */
304struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
305{
23016969
CL
306 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
307 -1, GFP_KERNEL, __builtin_return_address(0));
308}
309
310struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
311 void *caller)
312{
313 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
314 -1, GFP_KERNEL, caller);
1da177e4
LT
315}
316
52fd24ca
GP
317struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
318 int node, gfp_t gfp_mask)
930fc45a 319{
52fd24ca 320 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
23016969 321 gfp_mask, __builtin_return_address(0));
930fc45a
CL
322}
323
83342314 324/* Caller must hold vmlist_lock */
b3bdda02 325static struct vm_struct *__find_vm_area(const void *addr)
83342314
NP
326{
327 struct vm_struct *tmp;
328
329 for (tmp = vmlist; tmp != NULL; tmp = tmp->next) {
330 if (tmp->addr == addr)
331 break;
332 }
333
334 return tmp;
335}
336
7856dfeb 337/* Caller must hold vmlist_lock */
b3bdda02 338static struct vm_struct *__remove_vm_area(const void *addr)
1da177e4
LT
339{
340 struct vm_struct **p, *tmp;
341
1da177e4
LT
342 for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
343 if (tmp->addr == addr)
344 goto found;
345 }
1da177e4
LT
346 return NULL;
347
348found:
349 unmap_vm_area(tmp);
350 *p = tmp->next;
1da177e4
LT
351
352 /*
353 * Remove the guard page.
354 */
355 tmp->size -= PAGE_SIZE;
356 return tmp;
357}
358
7856dfeb 359/**
183ff22b 360 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
361 * @addr: base address
362 *
363 * Search for the kernel VM area starting at @addr, and remove it.
364 * This function returns the found VM area, but using it is NOT safe
365 * on SMP machines, except for its size or flags.
366 */
b3bdda02 367struct vm_struct *remove_vm_area(const void *addr)
7856dfeb
AK
368{
369 struct vm_struct *v;
370 write_lock(&vmlist_lock);
371 v = __remove_vm_area(addr);
372 write_unlock(&vmlist_lock);
373 return v;
374}
375
b3bdda02 376static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
377{
378 struct vm_struct *area;
379
380 if (!addr)
381 return;
382
383 if ((PAGE_SIZE-1) & (unsigned long)addr) {
384 printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
385 WARN_ON(1);
386 return;
387 }
388
389 area = remove_vm_area(addr);
390 if (unlikely(!area)) {
391 printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
392 addr);
393 WARN_ON(1);
394 return;
395 }
396
9a11b49a 397 debug_check_no_locks_freed(addr, area->size);
3ac7fe5a 398 debug_check_no_obj_freed(addr, area->size);
9a11b49a 399
1da177e4
LT
400 if (deallocate_pages) {
401 int i;
402
403 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
404 struct page *page = area->pages[i];
405
406 BUG_ON(!page);
407 __free_page(page);
1da177e4
LT
408 }
409
8757d5fa 410 if (area->flags & VM_VPAGES)
1da177e4
LT
411 vfree(area->pages);
412 else
413 kfree(area->pages);
414 }
415
416 kfree(area);
417 return;
418}
419
420/**
421 * vfree - release memory allocated by vmalloc()
1da177e4
LT
422 * @addr: memory base address
423 *
183ff22b 424 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
425 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
426 * NULL, no operation is performed.
1da177e4 427 *
80e93eff 428 * Must not be called in interrupt context.
1da177e4 429 */
b3bdda02 430void vfree(const void *addr)
1da177e4
LT
431{
432 BUG_ON(in_interrupt());
433 __vunmap(addr, 1);
434}
1da177e4
LT
435EXPORT_SYMBOL(vfree);
436
437/**
438 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
439 * @addr: memory base address
440 *
441 * Free the virtually contiguous memory area starting at @addr,
442 * which was created from the page array passed to vmap().
443 *
80e93eff 444 * Must not be called in interrupt context.
1da177e4 445 */
b3bdda02 446void vunmap(const void *addr)
1da177e4
LT
447{
448 BUG_ON(in_interrupt());
449 __vunmap(addr, 0);
450}
1da177e4
LT
451EXPORT_SYMBOL(vunmap);
452
453/**
454 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
455 * @pages: array of page pointers
456 * @count: number of pages to map
457 * @flags: vm_area->flags
458 * @prot: page protection for the mapping
459 *
460 * Maps @count pages from @pages into contiguous kernel virtual
461 * space.
462 */
463void *vmap(struct page **pages, unsigned int count,
464 unsigned long flags, pgprot_t prot)
465{
466 struct vm_struct *area;
467
468 if (count > num_physpages)
469 return NULL;
470
23016969
CL
471 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
472 __builtin_return_address(0));
1da177e4
LT
473 if (!area)
474 return NULL;
23016969 475
1da177e4
LT
476 if (map_vm_area(area, prot, &pages)) {
477 vunmap(area->addr);
478 return NULL;
479 }
480
481 return area->addr;
482}
1da177e4
LT
483EXPORT_SYMBOL(vmap);
484
e31d9eb5 485static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
23016969 486 pgprot_t prot, int node, void *caller)
1da177e4
LT
487{
488 struct page **pages;
489 unsigned int nr_pages, array_size, i;
490
491 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
492 array_size = (nr_pages * sizeof(struct page *));
493
494 area->nr_pages = nr_pages;
495 /* Please note that the recursion is strictly bounded. */
8757d5fa 496 if (array_size > PAGE_SIZE) {
94f6030c 497 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
23016969 498 PAGE_KERNEL, node, caller);
8757d5fa 499 area->flags |= VM_VPAGES;
286e1ea3
AM
500 } else {
501 pages = kmalloc_node(array_size,
6cb06229 502 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
286e1ea3
AM
503 node);
504 }
1da177e4 505 area->pages = pages;
23016969 506 area->caller = caller;
1da177e4
LT
507 if (!area->pages) {
508 remove_vm_area(area->addr);
509 kfree(area);
510 return NULL;
511 }
1da177e4
LT
512
513 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
514 struct page *page;
515
930fc45a 516 if (node < 0)
bf53d6f8 517 page = alloc_page(gfp_mask);
930fc45a 518 else
bf53d6f8
CL
519 page = alloc_pages_node(node, gfp_mask, 0);
520
521 if (unlikely(!page)) {
1da177e4
LT
522 /* Successfully allocated i pages, free them in __vunmap() */
523 area->nr_pages = i;
524 goto fail;
525 }
bf53d6f8 526 area->pages[i] = page;
1da177e4
LT
527 }
528
529 if (map_vm_area(area, prot, &pages))
530 goto fail;
531 return area->addr;
532
533fail:
534 vfree(area->addr);
535 return NULL;
536}
537
930fc45a
CL
538void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
539{
23016969
CL
540 return __vmalloc_area_node(area, gfp_mask, prot, -1,
541 __builtin_return_address(0));
930fc45a
CL
542}
543
1da177e4 544/**
930fc45a 545 * __vmalloc_node - allocate virtually contiguous memory
1da177e4
LT
546 * @size: allocation size
547 * @gfp_mask: flags for the page level allocator
548 * @prot: protection mask for the allocated pages
d44e0780 549 * @node: node to use for allocation or -1
c85d194b 550 * @caller: caller's return address
1da177e4
LT
551 *
552 * Allocate enough pages to cover @size from the page level
553 * allocator with @gfp_mask flags. Map them into contiguous
554 * kernel virtual space, using a pagetable protection of @prot.
555 */
b221385b 556static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
23016969 557 int node, void *caller)
1da177e4
LT
558{
559 struct vm_struct *area;
560
561 size = PAGE_ALIGN(size);
562 if (!size || (size >> PAGE_SHIFT) > num_physpages)
563 return NULL;
564
23016969
CL
565 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
566 node, gfp_mask, caller);
567
1da177e4
LT
568 if (!area)
569 return NULL;
570
23016969 571 return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1da177e4
LT
572}
573
930fc45a
CL
574void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
575{
23016969
CL
576 return __vmalloc_node(size, gfp_mask, prot, -1,
577 __builtin_return_address(0));
930fc45a 578}
1da177e4
LT
579EXPORT_SYMBOL(__vmalloc);
580
581/**
582 * vmalloc - allocate virtually contiguous memory
1da177e4 583 * @size: allocation size
1da177e4
LT
584 * Allocate enough pages to cover @size from the page level
585 * allocator and map them into contiguous kernel virtual space.
586 *
c1c8897f 587 * For tight control over page level allocator and protection flags
1da177e4
LT
588 * use __vmalloc() instead.
589 */
590void *vmalloc(unsigned long size)
591{
23016969
CL
592 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
593 -1, __builtin_return_address(0));
1da177e4 594}
1da177e4
LT
595EXPORT_SYMBOL(vmalloc);
596
83342314 597/**
ead04089
REB
598 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
599 * @size: allocation size
83342314 600 *
ead04089
REB
601 * The resulting memory area is zeroed so it can be mapped to userspace
602 * without leaking data.
83342314
NP
603 */
604void *vmalloc_user(unsigned long size)
605{
606 struct vm_struct *area;
607 void *ret;
608
609 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
2b4ac44e
ED
610 if (ret) {
611 write_lock(&vmlist_lock);
612 area = __find_vm_area(ret);
613 area->flags |= VM_USERMAP;
614 write_unlock(&vmlist_lock);
615 }
83342314
NP
616 return ret;
617}
618EXPORT_SYMBOL(vmalloc_user);
619
930fc45a
CL
620/**
621 * vmalloc_node - allocate memory on a specific node
930fc45a 622 * @size: allocation size
d44e0780 623 * @node: numa node
930fc45a
CL
624 *
625 * Allocate enough pages to cover @size from the page level
626 * allocator and map them into contiguous kernel virtual space.
627 *
c1c8897f 628 * For tight control over page level allocator and protection flags
930fc45a
CL
629 * use __vmalloc() instead.
630 */
631void *vmalloc_node(unsigned long size, int node)
632{
23016969
CL
633 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
634 node, __builtin_return_address(0));
930fc45a
CL
635}
636EXPORT_SYMBOL(vmalloc_node);
637
4dc3b16b
PP
638#ifndef PAGE_KERNEL_EXEC
639# define PAGE_KERNEL_EXEC PAGE_KERNEL
640#endif
641
1da177e4
LT
642/**
643 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
644 * @size: allocation size
645 *
646 * Kernel-internal function to allocate enough pages to cover @size
647 * the page level allocator and map them into contiguous and
648 * executable kernel virtual space.
649 *
c1c8897f 650 * For tight control over page level allocator and protection flags
1da177e4
LT
651 * use __vmalloc() instead.
652 */
653
1da177e4
LT
654void *vmalloc_exec(unsigned long size)
655{
656 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
657}
658
0d08e0d3 659#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
7ac674f5 660#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3 661#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
7ac674f5 662#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
0d08e0d3
AK
663#else
664#define GFP_VMALLOC32 GFP_KERNEL
665#endif
666
1da177e4
LT
667/**
668 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
669 * @size: allocation size
670 *
671 * Allocate enough 32bit PA addressable pages to cover @size from the
672 * page level allocator and map them into contiguous kernel virtual space.
673 */
674void *vmalloc_32(unsigned long size)
675{
0d08e0d3 676 return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
1da177e4 677}
1da177e4
LT
678EXPORT_SYMBOL(vmalloc_32);
679
83342314 680/**
ead04089 681 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 682 * @size: allocation size
ead04089
REB
683 *
684 * The resulting memory area is 32bit addressable and zeroed so it can be
685 * mapped to userspace without leaking data.
83342314
NP
686 */
687void *vmalloc_32_user(unsigned long size)
688{
689 struct vm_struct *area;
690 void *ret;
691
0d08e0d3 692 ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
2b4ac44e
ED
693 if (ret) {
694 write_lock(&vmlist_lock);
695 area = __find_vm_area(ret);
696 area->flags |= VM_USERMAP;
697 write_unlock(&vmlist_lock);
698 }
83342314
NP
699 return ret;
700}
701EXPORT_SYMBOL(vmalloc_32_user);
702
1da177e4
LT
703long vread(char *buf, char *addr, unsigned long count)
704{
705 struct vm_struct *tmp;
706 char *vaddr, *buf_start = buf;
707 unsigned long n;
708
709 /* Don't allow overflow */
710 if ((unsigned long) addr + count < count)
711 count = -(unsigned long) addr;
712
713 read_lock(&vmlist_lock);
714 for (tmp = vmlist; tmp; tmp = tmp->next) {
715 vaddr = (char *) tmp->addr;
716 if (addr >= vaddr + tmp->size - PAGE_SIZE)
717 continue;
718 while (addr < vaddr) {
719 if (count == 0)
720 goto finished;
721 *buf = '\0';
722 buf++;
723 addr++;
724 count--;
725 }
726 n = vaddr + tmp->size - PAGE_SIZE - addr;
727 do {
728 if (count == 0)
729 goto finished;
730 *buf = *addr;
731 buf++;
732 addr++;
733 count--;
734 } while (--n > 0);
735 }
736finished:
737 read_unlock(&vmlist_lock);
738 return buf - buf_start;
739}
740
741long vwrite(char *buf, char *addr, unsigned long count)
742{
743 struct vm_struct *tmp;
744 char *vaddr, *buf_start = buf;
745 unsigned long n;
746
747 /* Don't allow overflow */
748 if ((unsigned long) addr + count < count)
749 count = -(unsigned long) addr;
750
751 read_lock(&vmlist_lock);
752 for (tmp = vmlist; tmp; tmp = tmp->next) {
753 vaddr = (char *) tmp->addr;
754 if (addr >= vaddr + tmp->size - PAGE_SIZE)
755 continue;
756 while (addr < vaddr) {
757 if (count == 0)
758 goto finished;
759 buf++;
760 addr++;
761 count--;
762 }
763 n = vaddr + tmp->size - PAGE_SIZE - addr;
764 do {
765 if (count == 0)
766 goto finished;
767 *addr = *buf;
768 buf++;
769 addr++;
770 count--;
771 } while (--n > 0);
772 }
773finished:
774 read_unlock(&vmlist_lock);
775 return buf - buf_start;
776}
83342314
NP
777
778/**
779 * remap_vmalloc_range - map vmalloc pages to userspace
83342314
NP
780 * @vma: vma to cover (map full range of vma)
781 * @addr: vmalloc memory
782 * @pgoff: number of pages into addr before first page to map
7682486b
RD
783 *
784 * Returns: 0 for success, -Exxx on failure
83342314
NP
785 *
786 * This function checks that addr is a valid vmalloc'ed area, and
787 * that it is big enough to cover the vma. Will return failure if
788 * that criteria isn't met.
789 *
72fd4a35 790 * Similar to remap_pfn_range() (see mm/memory.c)
83342314
NP
791 */
792int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
793 unsigned long pgoff)
794{
795 struct vm_struct *area;
796 unsigned long uaddr = vma->vm_start;
797 unsigned long usize = vma->vm_end - vma->vm_start;
798 int ret;
799
800 if ((PAGE_SIZE-1) & (unsigned long)addr)
801 return -EINVAL;
802
803 read_lock(&vmlist_lock);
804 area = __find_vm_area(addr);
805 if (!area)
806 goto out_einval_locked;
807
808 if (!(area->flags & VM_USERMAP))
809 goto out_einval_locked;
810
811 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
812 goto out_einval_locked;
813 read_unlock(&vmlist_lock);
814
815 addr += pgoff << PAGE_SHIFT;
816 do {
817 struct page *page = vmalloc_to_page(addr);
818 ret = vm_insert_page(vma, uaddr, page);
819 if (ret)
820 return ret;
821
822 uaddr += PAGE_SIZE;
823 addr += PAGE_SIZE;
824 usize -= PAGE_SIZE;
825 } while (usize > 0);
826
827 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
828 vma->vm_flags |= VM_RESERVED;
829
830 return ret;
831
832out_einval_locked:
833 read_unlock(&vmlist_lock);
834 return -EINVAL;
835}
836EXPORT_SYMBOL(remap_vmalloc_range);
837
1eeb66a1
CH
838/*
839 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
840 * have one.
841 */
842void __attribute__((weak)) vmalloc_sync_all(void)
843{
844}
5f4352fb
JF
845
846
2f569afd 847static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb
JF
848{
849 /* apply_to_page_range() does all the hard work. */
850 return 0;
851}
852
853/**
854 * alloc_vm_area - allocate a range of kernel address space
855 * @size: size of the area
7682486b
RD
856 *
857 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
858 *
859 * This function reserves a range of kernel address space, and
860 * allocates pagetables to map that range. No actual mappings
861 * are created. If the kernel address space is not shared
862 * between processes, it syncs the pagetable across all
863 * processes.
864 */
865struct vm_struct *alloc_vm_area(size_t size)
866{
867 struct vm_struct *area;
868
23016969
CL
869 area = get_vm_area_caller(size, VM_IOREMAP,
870 __builtin_return_address(0));
5f4352fb
JF
871 if (area == NULL)
872 return NULL;
873
874 /*
875 * This ensures that page tables are constructed for this region
876 * of kernel virtual address space and mapped into init_mm.
877 */
878 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
879 area->size, f, NULL)) {
880 free_vm_area(area);
881 return NULL;
882 }
883
884 /* Make sure the pagetables are constructed in process kernel
885 mappings */
886 vmalloc_sync_all();
887
888 return area;
889}
890EXPORT_SYMBOL_GPL(alloc_vm_area);
891
892void free_vm_area(struct vm_struct *area)
893{
894 struct vm_struct *ret;
895 ret = remove_vm_area(area->addr);
896 BUG_ON(ret != area);
897 kfree(area);
898}
899EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579
CL
900
901
902#ifdef CONFIG_PROC_FS
903static void *s_start(struct seq_file *m, loff_t *pos)
904{
905 loff_t n = *pos;
906 struct vm_struct *v;
907
908 read_lock(&vmlist_lock);
909 v = vmlist;
910 while (n > 0 && v) {
911 n--;
912 v = v->next;
913 }
914 if (!n)
915 return v;
916
917 return NULL;
918
919}
920
921static void *s_next(struct seq_file *m, void *p, loff_t *pos)
922{
923 struct vm_struct *v = p;
924
925 ++*pos;
926 return v->next;
927}
928
929static void s_stop(struct seq_file *m, void *p)
930{
931 read_unlock(&vmlist_lock);
932}
933
a47a126a
ED
934static void show_numa_info(struct seq_file *m, struct vm_struct *v)
935{
936 if (NUMA_BUILD) {
937 unsigned int nr, *counters = m->private;
938
939 if (!counters)
940 return;
941
942 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
943
944 for (nr = 0; nr < v->nr_pages; nr++)
945 counters[page_to_nid(v->pages[nr])]++;
946
947 for_each_node_state(nr, N_HIGH_MEMORY)
948 if (counters[nr])
949 seq_printf(m, " N%u=%u", nr, counters[nr]);
950 }
951}
952
a10aa579
CL
953static int s_show(struct seq_file *m, void *p)
954{
955 struct vm_struct *v = p;
956
957 seq_printf(m, "0x%p-0x%p %7ld",
958 v->addr, v->addr + v->size, v->size);
959
23016969
CL
960 if (v->caller) {
961 char buff[2 * KSYM_NAME_LEN];
962
963 seq_putc(m, ' ');
964 sprint_symbol(buff, (unsigned long)v->caller);
965 seq_puts(m, buff);
966 }
967
a10aa579
CL
968 if (v->nr_pages)
969 seq_printf(m, " pages=%d", v->nr_pages);
970
971 if (v->phys_addr)
972 seq_printf(m, " phys=%lx", v->phys_addr);
973
974 if (v->flags & VM_IOREMAP)
975 seq_printf(m, " ioremap");
976
977 if (v->flags & VM_ALLOC)
978 seq_printf(m, " vmalloc");
979
980 if (v->flags & VM_MAP)
981 seq_printf(m, " vmap");
982
983 if (v->flags & VM_USERMAP)
984 seq_printf(m, " user");
985
986 if (v->flags & VM_VPAGES)
987 seq_printf(m, " vpages");
988
a47a126a 989 show_numa_info(m, v);
a10aa579
CL
990 seq_putc(m, '\n');
991 return 0;
992}
993
994const struct seq_operations vmalloc_op = {
995 .start = s_start,
996 .next = s_next,
997 .stop = s_stop,
998 .show = s_show,
999};
1000#endif
1001