]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/vmalloc.c
[PATCH] docs: fix misinformation about overcommit_memory
[net-next-2.6.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 */
9
10#include <linux/mm.h>
11#include <linux/module.h>
12#include <linux/highmem.h>
13#include <linux/slab.h>
14#include <linux/spinlock.h>
15#include <linux/interrupt.h>
16
17#include <linux/vmalloc.h>
18
19#include <asm/uaccess.h>
20#include <asm/tlbflush.h>
21
22
23DEFINE_RWLOCK(vmlist_lock);
24struct vm_struct *vmlist;
25
26static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
27{
28 pte_t *pte;
29
30 pte = pte_offset_kernel(pmd, addr);
31 do {
32 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
33 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
34 } while (pte++, addr += PAGE_SIZE, addr != end);
35}
36
37static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
38 unsigned long end)
39{
40 pmd_t *pmd;
41 unsigned long next;
42
43 pmd = pmd_offset(pud, addr);
44 do {
45 next = pmd_addr_end(addr, end);
46 if (pmd_none_or_clear_bad(pmd))
47 continue;
48 vunmap_pte_range(pmd, addr, next);
49 } while (pmd++, addr = next, addr != end);
50}
51
52static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
53 unsigned long end)
54{
55 pud_t *pud;
56 unsigned long next;
57
58 pud = pud_offset(pgd, addr);
59 do {
60 next = pud_addr_end(addr, end);
61 if (pud_none_or_clear_bad(pud))
62 continue;
63 vunmap_pmd_range(pud, addr, next);
64 } while (pud++, addr = next, addr != end);
65}
66
67void unmap_vm_area(struct vm_struct *area)
68{
69 pgd_t *pgd;
70 unsigned long next;
71 unsigned long addr = (unsigned long) area->addr;
72 unsigned long end = addr + area->size;
73
74 BUG_ON(addr >= end);
75 pgd = pgd_offset_k(addr);
76 flush_cache_vunmap(addr, end);
77 do {
78 next = pgd_addr_end(addr, end);
79 if (pgd_none_or_clear_bad(pgd))
80 continue;
81 vunmap_pud_range(pgd, addr, next);
82 } while (pgd++, addr = next, addr != end);
83 flush_tlb_kernel_range((unsigned long) area->addr, end);
84}
85
86static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
87 unsigned long end, pgprot_t prot, struct page ***pages)
88{
89 pte_t *pte;
90
91 pte = pte_alloc_kernel(&init_mm, pmd, addr);
92 if (!pte)
93 return -ENOMEM;
94 do {
95 struct page *page = **pages;
96 WARN_ON(!pte_none(*pte));
97 if (!page)
98 return -ENOMEM;
99 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
100 (*pages)++;
101 } while (pte++, addr += PAGE_SIZE, addr != end);
102 return 0;
103}
104
105static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
106 unsigned long end, pgprot_t prot, struct page ***pages)
107{
108 pmd_t *pmd;
109 unsigned long next;
110
111 pmd = pmd_alloc(&init_mm, pud, addr);
112 if (!pmd)
113 return -ENOMEM;
114 do {
115 next = pmd_addr_end(addr, end);
116 if (vmap_pte_range(pmd, addr, next, prot, pages))
117 return -ENOMEM;
118 } while (pmd++, addr = next, addr != end);
119 return 0;
120}
121
122static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
123 unsigned long end, pgprot_t prot, struct page ***pages)
124{
125 pud_t *pud;
126 unsigned long next;
127
128 pud = pud_alloc(&init_mm, pgd, addr);
129 if (!pud)
130 return -ENOMEM;
131 do {
132 next = pud_addr_end(addr, end);
133 if (vmap_pmd_range(pud, addr, next, prot, pages))
134 return -ENOMEM;
135 } while (pud++, addr = next, addr != end);
136 return 0;
137}
138
139int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
140{
141 pgd_t *pgd;
142 unsigned long next;
143 unsigned long addr = (unsigned long) area->addr;
144 unsigned long end = addr + area->size - PAGE_SIZE;
145 int err;
146
147 BUG_ON(addr >= end);
148 pgd = pgd_offset_k(addr);
149 spin_lock(&init_mm.page_table_lock);
150 do {
151 next = pgd_addr_end(addr, end);
152 err = vmap_pud_range(pgd, addr, next, prot, pages);
153 if (err)
154 break;
155 } while (pgd++, addr = next, addr != end);
156 spin_unlock(&init_mm.page_table_lock);
157 flush_cache_vmap((unsigned long) area->addr, end);
158 return err;
159}
160
1da177e4
LT
161struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
162 unsigned long start, unsigned long end)
163{
164 struct vm_struct **p, *tmp, *area;
165 unsigned long align = 1;
166 unsigned long addr;
167
168 if (flags & VM_IOREMAP) {
169 int bit = fls(size);
170
171 if (bit > IOREMAP_MAX_ORDER)
172 bit = IOREMAP_MAX_ORDER;
173 else if (bit < PAGE_SHIFT)
174 bit = PAGE_SHIFT;
175
176 align = 1ul << bit;
177 }
178 addr = ALIGN(start, align);
179 size = PAGE_ALIGN(size);
180
181 area = kmalloc(sizeof(*area), GFP_KERNEL);
182 if (unlikely(!area))
183 return NULL;
184
185 if (unlikely(!size)) {
186 kfree (area);
187 return NULL;
188 }
189
190 /*
191 * We always allocate a guard page.
192 */
193 size += PAGE_SIZE;
194
195 write_lock(&vmlist_lock);
196 for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
197 if ((unsigned long)tmp->addr < addr) {
198 if((unsigned long)tmp->addr + tmp->size >= addr)
199 addr = ALIGN(tmp->size +
200 (unsigned long)tmp->addr, align);
201 continue;
202 }
203 if ((size + addr) < addr)
204 goto out;
205 if (size + addr <= (unsigned long)tmp->addr)
206 goto found;
207 addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
208 if (addr > end - size)
209 goto out;
210 }
211
212found:
213 area->next = *p;
214 *p = area;
215
216 area->flags = flags;
217 area->addr = (void *)addr;
218 area->size = size;
219 area->pages = NULL;
220 area->nr_pages = 0;
221 area->phys_addr = 0;
222 write_unlock(&vmlist_lock);
223
224 return area;
225
226out:
227 write_unlock(&vmlist_lock);
228 kfree(area);
229 if (printk_ratelimit())
230 printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
231 return NULL;
232}
233
234/**
235 * get_vm_area - reserve a contingous kernel virtual area
236 *
237 * @size: size of the area
238 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
239 *
240 * Search an area of @size in the kernel virtual mapping area,
241 * and reserved it for out purposes. Returns the area descriptor
242 * on success or %NULL on failure.
243 */
244struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
245{
246 return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END);
247}
248
7856dfeb
AK
249/* Caller must hold vmlist_lock */
250struct vm_struct *__remove_vm_area(void *addr)
1da177e4
LT
251{
252 struct vm_struct **p, *tmp;
253
1da177e4
LT
254 for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
255 if (tmp->addr == addr)
256 goto found;
257 }
1da177e4
LT
258 return NULL;
259
260found:
261 unmap_vm_area(tmp);
262 *p = tmp->next;
1da177e4
LT
263
264 /*
265 * Remove the guard page.
266 */
267 tmp->size -= PAGE_SIZE;
268 return tmp;
269}
270
7856dfeb
AK
271/**
272 * remove_vm_area - find and remove a contingous kernel virtual area
273 *
274 * @addr: base address
275 *
276 * Search for the kernel VM area starting at @addr, and remove it.
277 * This function returns the found VM area, but using it is NOT safe
278 * on SMP machines, except for its size or flags.
279 */
280struct vm_struct *remove_vm_area(void *addr)
281{
282 struct vm_struct *v;
283 write_lock(&vmlist_lock);
284 v = __remove_vm_area(addr);
285 write_unlock(&vmlist_lock);
286 return v;
287}
288
1da177e4
LT
289void __vunmap(void *addr, int deallocate_pages)
290{
291 struct vm_struct *area;
292
293 if (!addr)
294 return;
295
296 if ((PAGE_SIZE-1) & (unsigned long)addr) {
297 printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
298 WARN_ON(1);
299 return;
300 }
301
302 area = remove_vm_area(addr);
303 if (unlikely(!area)) {
304 printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
305 addr);
306 WARN_ON(1);
307 return;
308 }
309
310 if (deallocate_pages) {
311 int i;
312
313 for (i = 0; i < area->nr_pages; i++) {
314 if (unlikely(!area->pages[i]))
315 BUG();
316 __free_page(area->pages[i]);
317 }
318
319 if (area->nr_pages > PAGE_SIZE/sizeof(struct page *))
320 vfree(area->pages);
321 else
322 kfree(area->pages);
323 }
324
325 kfree(area);
326 return;
327}
328
329/**
330 * vfree - release memory allocated by vmalloc()
331 *
332 * @addr: memory base address
333 *
334 * Free the virtually contiguous memory area starting at @addr, as
335 * obtained from vmalloc(), vmalloc_32() or __vmalloc().
336 *
337 * May not be called in interrupt context.
338 */
339void vfree(void *addr)
340{
341 BUG_ON(in_interrupt());
342 __vunmap(addr, 1);
343}
344
345EXPORT_SYMBOL(vfree);
346
347/**
348 * vunmap - release virtual mapping obtained by vmap()
349 *
350 * @addr: memory base address
351 *
352 * Free the virtually contiguous memory area starting at @addr,
353 * which was created from the page array passed to vmap().
354 *
355 * May not be called in interrupt context.
356 */
357void vunmap(void *addr)
358{
359 BUG_ON(in_interrupt());
360 __vunmap(addr, 0);
361}
362
363EXPORT_SYMBOL(vunmap);
364
365/**
366 * vmap - map an array of pages into virtually contiguous space
367 *
368 * @pages: array of page pointers
369 * @count: number of pages to map
370 * @flags: vm_area->flags
371 * @prot: page protection for the mapping
372 *
373 * Maps @count pages from @pages into contiguous kernel virtual
374 * space.
375 */
376void *vmap(struct page **pages, unsigned int count,
377 unsigned long flags, pgprot_t prot)
378{
379 struct vm_struct *area;
380
381 if (count > num_physpages)
382 return NULL;
383
384 area = get_vm_area((count << PAGE_SHIFT), flags);
385 if (!area)
386 return NULL;
387 if (map_vm_area(area, prot, &pages)) {
388 vunmap(area->addr);
389 return NULL;
390 }
391
392 return area->addr;
393}
394
395EXPORT_SYMBOL(vmap);
396
397void *__vmalloc_area(struct vm_struct *area, unsigned int __nocast gfp_mask, pgprot_t prot)
398{
399 struct page **pages;
400 unsigned int nr_pages, array_size, i;
401
402 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
403 array_size = (nr_pages * sizeof(struct page *));
404
405 area->nr_pages = nr_pages;
406 /* Please note that the recursion is strictly bounded. */
407 if (array_size > PAGE_SIZE)
408 pages = __vmalloc(array_size, gfp_mask, PAGE_KERNEL);
409 else
410 pages = kmalloc(array_size, (gfp_mask & ~__GFP_HIGHMEM));
411 area->pages = pages;
412 if (!area->pages) {
413 remove_vm_area(area->addr);
414 kfree(area);
415 return NULL;
416 }
417 memset(area->pages, 0, array_size);
418
419 for (i = 0; i < area->nr_pages; i++) {
420 area->pages[i] = alloc_page(gfp_mask);
421 if (unlikely(!area->pages[i])) {
422 /* Successfully allocated i pages, free them in __vunmap() */
423 area->nr_pages = i;
424 goto fail;
425 }
426 }
427
428 if (map_vm_area(area, prot, &pages))
429 goto fail;
430 return area->addr;
431
432fail:
433 vfree(area->addr);
434 return NULL;
435}
436
437/**
438 * __vmalloc - allocate virtually contiguous memory
439 *
440 * @size: allocation size
441 * @gfp_mask: flags for the page level allocator
442 * @prot: protection mask for the allocated pages
443 *
444 * Allocate enough pages to cover @size from the page level
445 * allocator with @gfp_mask flags. Map them into contiguous
446 * kernel virtual space, using a pagetable protection of @prot.
447 */
448void *__vmalloc(unsigned long size, unsigned int __nocast gfp_mask, pgprot_t prot)
449{
450 struct vm_struct *area;
451
452 size = PAGE_ALIGN(size);
453 if (!size || (size >> PAGE_SHIFT) > num_physpages)
454 return NULL;
455
456 area = get_vm_area(size, VM_ALLOC);
457 if (!area)
458 return NULL;
459
460 return __vmalloc_area(area, gfp_mask, prot);
461}
462
463EXPORT_SYMBOL(__vmalloc);
464
465/**
466 * vmalloc - allocate virtually contiguous memory
467 *
468 * @size: allocation size
469 *
470 * Allocate enough pages to cover @size from the page level
471 * allocator and map them into contiguous kernel virtual space.
472 *
473 * For tight cotrol over page level allocator and protection flags
474 * use __vmalloc() instead.
475 */
476void *vmalloc(unsigned long size)
477{
478 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
479}
480
481EXPORT_SYMBOL(vmalloc);
482
4dc3b16b
PP
483#ifndef PAGE_KERNEL_EXEC
484# define PAGE_KERNEL_EXEC PAGE_KERNEL
485#endif
486
1da177e4
LT
487/**
488 * vmalloc_exec - allocate virtually contiguous, executable memory
489 *
490 * @size: allocation size
491 *
492 * Kernel-internal function to allocate enough pages to cover @size
493 * the page level allocator and map them into contiguous and
494 * executable kernel virtual space.
495 *
496 * For tight cotrol over page level allocator and protection flags
497 * use __vmalloc() instead.
498 */
499
1da177e4
LT
500void *vmalloc_exec(unsigned long size)
501{
502 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
503}
504
505/**
506 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
507 *
508 * @size: allocation size
509 *
510 * Allocate enough 32bit PA addressable pages to cover @size from the
511 * page level allocator and map them into contiguous kernel virtual space.
512 */
513void *vmalloc_32(unsigned long size)
514{
515 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
516}
517
518EXPORT_SYMBOL(vmalloc_32);
519
520long vread(char *buf, char *addr, unsigned long count)
521{
522 struct vm_struct *tmp;
523 char *vaddr, *buf_start = buf;
524 unsigned long n;
525
526 /* Don't allow overflow */
527 if ((unsigned long) addr + count < count)
528 count = -(unsigned long) addr;
529
530 read_lock(&vmlist_lock);
531 for (tmp = vmlist; tmp; tmp = tmp->next) {
532 vaddr = (char *) tmp->addr;
533 if (addr >= vaddr + tmp->size - PAGE_SIZE)
534 continue;
535 while (addr < vaddr) {
536 if (count == 0)
537 goto finished;
538 *buf = '\0';
539 buf++;
540 addr++;
541 count--;
542 }
543 n = vaddr + tmp->size - PAGE_SIZE - addr;
544 do {
545 if (count == 0)
546 goto finished;
547 *buf = *addr;
548 buf++;
549 addr++;
550 count--;
551 } while (--n > 0);
552 }
553finished:
554 read_unlock(&vmlist_lock);
555 return buf - buf_start;
556}
557
558long vwrite(char *buf, char *addr, unsigned long count)
559{
560 struct vm_struct *tmp;
561 char *vaddr, *buf_start = buf;
562 unsigned long n;
563
564 /* Don't allow overflow */
565 if ((unsigned long) addr + count < count)
566 count = -(unsigned long) addr;
567
568 read_lock(&vmlist_lock);
569 for (tmp = vmlist; tmp; tmp = tmp->next) {
570 vaddr = (char *) tmp->addr;
571 if (addr >= vaddr + tmp->size - PAGE_SIZE)
572 continue;
573 while (addr < vaddr) {
574 if (count == 0)
575 goto finished;
576 buf++;
577 addr++;
578 count--;
579 }
580 n = vaddr + tmp->size - PAGE_SIZE - addr;
581 do {
582 if (count == 0)
583 goto finished;
584 *addr = *buf;
585 buf++;
586 addr++;
587 count--;
588 } while (--n > 0);
589 }
590finished:
591 read_unlock(&vmlist_lock);
592 return buf - buf_start;
593}