]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/vmalloc.c
Remove unused code from mm/tiny-shmem.c
[net-next-2.6.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/highmem.h>
14#include <linux/slab.h>
15#include <linux/spinlock.h>
16#include <linux/interrupt.h>
17
18#include <linux/vmalloc.h>
19
20#include <asm/uaccess.h>
21#include <asm/tlbflush.h>
22
23
24DEFINE_RWLOCK(vmlist_lock);
25struct vm_struct *vmlist;
26
b221385b
AB
27static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
28 int node);
29
1da177e4
LT
30static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
31{
32 pte_t *pte;
33
34 pte = pte_offset_kernel(pmd, addr);
35 do {
36 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
37 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
38 } while (pte++, addr += PAGE_SIZE, addr != end);
39}
40
41static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
42 unsigned long end)
43{
44 pmd_t *pmd;
45 unsigned long next;
46
47 pmd = pmd_offset(pud, addr);
48 do {
49 next = pmd_addr_end(addr, end);
50 if (pmd_none_or_clear_bad(pmd))
51 continue;
52 vunmap_pte_range(pmd, addr, next);
53 } while (pmd++, addr = next, addr != end);
54}
55
56static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
57 unsigned long end)
58{
59 pud_t *pud;
60 unsigned long next;
61
62 pud = pud_offset(pgd, addr);
63 do {
64 next = pud_addr_end(addr, end);
65 if (pud_none_or_clear_bad(pud))
66 continue;
67 vunmap_pmd_range(pud, addr, next);
68 } while (pud++, addr = next, addr != end);
69}
70
c19c03fc 71void unmap_kernel_range(unsigned long addr, unsigned long size)
1da177e4
LT
72{
73 pgd_t *pgd;
74 unsigned long next;
c19c03fc
BH
75 unsigned long start = addr;
76 unsigned long end = addr + size;
1da177e4
LT
77
78 BUG_ON(addr >= end);
79 pgd = pgd_offset_k(addr);
80 flush_cache_vunmap(addr, end);
81 do {
82 next = pgd_addr_end(addr, end);
83 if (pgd_none_or_clear_bad(pgd))
84 continue;
85 vunmap_pud_range(pgd, addr, next);
86 } while (pgd++, addr = next, addr != end);
c19c03fc
BH
87 flush_tlb_kernel_range(start, end);
88}
89
90static void unmap_vm_area(struct vm_struct *area)
91{
92 unmap_kernel_range((unsigned long)area->addr, area->size);
1da177e4
LT
93}
94
95static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
96 unsigned long end, pgprot_t prot, struct page ***pages)
97{
98 pte_t *pte;
99
872fec16 100 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
101 if (!pte)
102 return -ENOMEM;
103 do {
104 struct page *page = **pages;
105 WARN_ON(!pte_none(*pte));
106 if (!page)
107 return -ENOMEM;
108 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
109 (*pages)++;
110 } while (pte++, addr += PAGE_SIZE, addr != end);
111 return 0;
112}
113
114static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
115 unsigned long end, pgprot_t prot, struct page ***pages)
116{
117 pmd_t *pmd;
118 unsigned long next;
119
120 pmd = pmd_alloc(&init_mm, pud, addr);
121 if (!pmd)
122 return -ENOMEM;
123 do {
124 next = pmd_addr_end(addr, end);
125 if (vmap_pte_range(pmd, addr, next, prot, pages))
126 return -ENOMEM;
127 } while (pmd++, addr = next, addr != end);
128 return 0;
129}
130
131static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
132 unsigned long end, pgprot_t prot, struct page ***pages)
133{
134 pud_t *pud;
135 unsigned long next;
136
137 pud = pud_alloc(&init_mm, pgd, addr);
138 if (!pud)
139 return -ENOMEM;
140 do {
141 next = pud_addr_end(addr, end);
142 if (vmap_pmd_range(pud, addr, next, prot, pages))
143 return -ENOMEM;
144 } while (pud++, addr = next, addr != end);
145 return 0;
146}
147
148int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
149{
150 pgd_t *pgd;
151 unsigned long next;
152 unsigned long addr = (unsigned long) area->addr;
153 unsigned long end = addr + area->size - PAGE_SIZE;
154 int err;
155
156 BUG_ON(addr >= end);
157 pgd = pgd_offset_k(addr);
1da177e4
LT
158 do {
159 next = pgd_addr_end(addr, end);
160 err = vmap_pud_range(pgd, addr, next, prot, pages);
161 if (err)
162 break;
163 } while (pgd++, addr = next, addr != end);
1da177e4
LT
164 flush_cache_vmap((unsigned long) area->addr, end);
165 return err;
166}
5992b6da 167EXPORT_SYMBOL_GPL(map_vm_area);
1da177e4 168
48667e7a
CL
169/*
170 * Map a vmalloc()-space virtual address to the physical page.
171 */
b3bdda02 172struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
173{
174 unsigned long addr = (unsigned long) vmalloc_addr;
175 struct page *page = NULL;
176 pgd_t *pgd = pgd_offset_k(addr);
177 pud_t *pud;
178 pmd_t *pmd;
179 pte_t *ptep, pte;
180
181 if (!pgd_none(*pgd)) {
182 pud = pud_offset(pgd, addr);
183 if (!pud_none(*pud)) {
184 pmd = pmd_offset(pud, addr);
185 if (!pmd_none(*pmd)) {
186 ptep = pte_offset_map(pmd, addr);
187 pte = *ptep;
188 if (pte_present(pte))
189 page = pte_page(pte);
190 pte_unmap(ptep);
191 }
192 }
193 }
194 return page;
195}
196EXPORT_SYMBOL(vmalloc_to_page);
197
198/*
199 * Map a vmalloc()-space virtual address to the physical page frame number.
200 */
b3bdda02 201unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a
CL
202{
203 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
204}
205EXPORT_SYMBOL(vmalloc_to_pfn);
206
52fd24ca
GP
207static struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags,
208 unsigned long start, unsigned long end,
209 int node, gfp_t gfp_mask)
1da177e4
LT
210{
211 struct vm_struct **p, *tmp, *area;
212 unsigned long align = 1;
213 unsigned long addr;
214
52fd24ca 215 BUG_ON(in_interrupt());
1da177e4
LT
216 if (flags & VM_IOREMAP) {
217 int bit = fls(size);
218
219 if (bit > IOREMAP_MAX_ORDER)
220 bit = IOREMAP_MAX_ORDER;
221 else if (bit < PAGE_SHIFT)
222 bit = PAGE_SHIFT;
223
224 align = 1ul << bit;
225 }
226 addr = ALIGN(start, align);
227 size = PAGE_ALIGN(size);
31be8309
OH
228 if (unlikely(!size))
229 return NULL;
1da177e4 230
6cb06229
CL
231 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
232
1da177e4
LT
233 if (unlikely(!area))
234 return NULL;
235
1da177e4
LT
236 /*
237 * We always allocate a guard page.
238 */
239 size += PAGE_SIZE;
240
241 write_lock(&vmlist_lock);
242 for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
243 if ((unsigned long)tmp->addr < addr) {
244 if((unsigned long)tmp->addr + tmp->size >= addr)
245 addr = ALIGN(tmp->size +
246 (unsigned long)tmp->addr, align);
247 continue;
248 }
249 if ((size + addr) < addr)
250 goto out;
251 if (size + addr <= (unsigned long)tmp->addr)
252 goto found;
253 addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
254 if (addr > end - size)
255 goto out;
256 }
257
258found:
259 area->next = *p;
260 *p = area;
261
262 area->flags = flags;
263 area->addr = (void *)addr;
264 area->size = size;
265 area->pages = NULL;
266 area->nr_pages = 0;
267 area->phys_addr = 0;
268 write_unlock(&vmlist_lock);
269
270 return area;
271
272out:
273 write_unlock(&vmlist_lock);
274 kfree(area);
275 if (printk_ratelimit())
276 printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
277 return NULL;
278}
279
930fc45a
CL
280struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
281 unsigned long start, unsigned long end)
282{
52fd24ca 283 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL);
930fc45a 284}
5992b6da 285EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 286
1da177e4 287/**
183ff22b 288 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
289 * @size: size of the area
290 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
291 *
292 * Search an area of @size in the kernel virtual mapping area,
293 * and reserved it for out purposes. Returns the area descriptor
294 * on success or %NULL on failure.
295 */
296struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
297{
298 return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END);
299}
300
52fd24ca
GP
301struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
302 int node, gfp_t gfp_mask)
930fc45a 303{
52fd24ca
GP
304 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
305 gfp_mask);
930fc45a
CL
306}
307
83342314 308/* Caller must hold vmlist_lock */
b3bdda02 309static struct vm_struct *__find_vm_area(const void *addr)
83342314
NP
310{
311 struct vm_struct *tmp;
312
313 for (tmp = vmlist; tmp != NULL; tmp = tmp->next) {
314 if (tmp->addr == addr)
315 break;
316 }
317
318 return tmp;
319}
320
7856dfeb 321/* Caller must hold vmlist_lock */
b3bdda02 322static struct vm_struct *__remove_vm_area(const void *addr)
1da177e4
LT
323{
324 struct vm_struct **p, *tmp;
325
1da177e4
LT
326 for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
327 if (tmp->addr == addr)
328 goto found;
329 }
1da177e4
LT
330 return NULL;
331
332found:
333 unmap_vm_area(tmp);
334 *p = tmp->next;
1da177e4
LT
335
336 /*
337 * Remove the guard page.
338 */
339 tmp->size -= PAGE_SIZE;
340 return tmp;
341}
342
7856dfeb 343/**
183ff22b 344 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
345 * @addr: base address
346 *
347 * Search for the kernel VM area starting at @addr, and remove it.
348 * This function returns the found VM area, but using it is NOT safe
349 * on SMP machines, except for its size or flags.
350 */
b3bdda02 351struct vm_struct *remove_vm_area(const void *addr)
7856dfeb
AK
352{
353 struct vm_struct *v;
354 write_lock(&vmlist_lock);
355 v = __remove_vm_area(addr);
356 write_unlock(&vmlist_lock);
357 return v;
358}
359
b3bdda02 360static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
361{
362 struct vm_struct *area;
363
364 if (!addr)
365 return;
366
367 if ((PAGE_SIZE-1) & (unsigned long)addr) {
368 printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
369 WARN_ON(1);
370 return;
371 }
372
373 area = remove_vm_area(addr);
374 if (unlikely(!area)) {
375 printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
376 addr);
377 WARN_ON(1);
378 return;
379 }
380
9a11b49a
IM
381 debug_check_no_locks_freed(addr, area->size);
382
1da177e4
LT
383 if (deallocate_pages) {
384 int i;
385
386 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
387 struct page *page = area->pages[i];
388
389 BUG_ON(!page);
390 __free_page(page);
1da177e4
LT
391 }
392
8757d5fa 393 if (area->flags & VM_VPAGES)
1da177e4
LT
394 vfree(area->pages);
395 else
396 kfree(area->pages);
397 }
398
399 kfree(area);
400 return;
401}
402
403/**
404 * vfree - release memory allocated by vmalloc()
1da177e4
LT
405 * @addr: memory base address
406 *
183ff22b 407 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
408 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
409 * NULL, no operation is performed.
1da177e4 410 *
80e93eff 411 * Must not be called in interrupt context.
1da177e4 412 */
b3bdda02 413void vfree(const void *addr)
1da177e4
LT
414{
415 BUG_ON(in_interrupt());
416 __vunmap(addr, 1);
417}
1da177e4
LT
418EXPORT_SYMBOL(vfree);
419
420/**
421 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
422 * @addr: memory base address
423 *
424 * Free the virtually contiguous memory area starting at @addr,
425 * which was created from the page array passed to vmap().
426 *
80e93eff 427 * Must not be called in interrupt context.
1da177e4 428 */
b3bdda02 429void vunmap(const void *addr)
1da177e4
LT
430{
431 BUG_ON(in_interrupt());
432 __vunmap(addr, 0);
433}
1da177e4
LT
434EXPORT_SYMBOL(vunmap);
435
436/**
437 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
438 * @pages: array of page pointers
439 * @count: number of pages to map
440 * @flags: vm_area->flags
441 * @prot: page protection for the mapping
442 *
443 * Maps @count pages from @pages into contiguous kernel virtual
444 * space.
445 */
446void *vmap(struct page **pages, unsigned int count,
447 unsigned long flags, pgprot_t prot)
448{
449 struct vm_struct *area;
450
451 if (count > num_physpages)
452 return NULL;
453
454 area = get_vm_area((count << PAGE_SHIFT), flags);
455 if (!area)
456 return NULL;
457 if (map_vm_area(area, prot, &pages)) {
458 vunmap(area->addr);
459 return NULL;
460 }
461
462 return area->addr;
463}
1da177e4
LT
464EXPORT_SYMBOL(vmap);
465
930fc45a
CL
466void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
467 pgprot_t prot, int node)
1da177e4
LT
468{
469 struct page **pages;
470 unsigned int nr_pages, array_size, i;
471
472 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
473 array_size = (nr_pages * sizeof(struct page *));
474
475 area->nr_pages = nr_pages;
476 /* Please note that the recursion is strictly bounded. */
8757d5fa 477 if (array_size > PAGE_SIZE) {
94f6030c
CL
478 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
479 PAGE_KERNEL, node);
8757d5fa 480 area->flags |= VM_VPAGES;
286e1ea3
AM
481 } else {
482 pages = kmalloc_node(array_size,
6cb06229 483 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
286e1ea3
AM
484 node);
485 }
1da177e4
LT
486 area->pages = pages;
487 if (!area->pages) {
488 remove_vm_area(area->addr);
489 kfree(area);
490 return NULL;
491 }
1da177e4
LT
492
493 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
494 struct page *page;
495
930fc45a 496 if (node < 0)
bf53d6f8 497 page = alloc_page(gfp_mask);
930fc45a 498 else
bf53d6f8
CL
499 page = alloc_pages_node(node, gfp_mask, 0);
500
501 if (unlikely(!page)) {
1da177e4
LT
502 /* Successfully allocated i pages, free them in __vunmap() */
503 area->nr_pages = i;
504 goto fail;
505 }
bf53d6f8 506 area->pages[i] = page;
1da177e4
LT
507 }
508
509 if (map_vm_area(area, prot, &pages))
510 goto fail;
511 return area->addr;
512
513fail:
514 vfree(area->addr);
515 return NULL;
516}
517
930fc45a
CL
518void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
519{
520 return __vmalloc_area_node(area, gfp_mask, prot, -1);
521}
522
1da177e4 523/**
930fc45a 524 * __vmalloc_node - allocate virtually contiguous memory
1da177e4
LT
525 * @size: allocation size
526 * @gfp_mask: flags for the page level allocator
527 * @prot: protection mask for the allocated pages
d44e0780 528 * @node: node to use for allocation or -1
1da177e4
LT
529 *
530 * Allocate enough pages to cover @size from the page level
531 * allocator with @gfp_mask flags. Map them into contiguous
532 * kernel virtual space, using a pagetable protection of @prot.
533 */
b221385b
AB
534static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
535 int node)
1da177e4
LT
536{
537 struct vm_struct *area;
538
539 size = PAGE_ALIGN(size);
540 if (!size || (size >> PAGE_SHIFT) > num_physpages)
541 return NULL;
542
52fd24ca 543 area = get_vm_area_node(size, VM_ALLOC, node, gfp_mask);
1da177e4
LT
544 if (!area)
545 return NULL;
546
930fc45a 547 return __vmalloc_area_node(area, gfp_mask, prot, node);
1da177e4
LT
548}
549
930fc45a
CL
550void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
551{
552 return __vmalloc_node(size, gfp_mask, prot, -1);
553}
1da177e4
LT
554EXPORT_SYMBOL(__vmalloc);
555
556/**
557 * vmalloc - allocate virtually contiguous memory
1da177e4 558 * @size: allocation size
1da177e4
LT
559 * Allocate enough pages to cover @size from the page level
560 * allocator and map them into contiguous kernel virtual space.
561 *
c1c8897f 562 * For tight control over page level allocator and protection flags
1da177e4
LT
563 * use __vmalloc() instead.
564 */
565void *vmalloc(unsigned long size)
566{
83342314 567 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
1da177e4 568}
1da177e4
LT
569EXPORT_SYMBOL(vmalloc);
570
83342314 571/**
ead04089
REB
572 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
573 * @size: allocation size
83342314 574 *
ead04089
REB
575 * The resulting memory area is zeroed so it can be mapped to userspace
576 * without leaking data.
83342314
NP
577 */
578void *vmalloc_user(unsigned long size)
579{
580 struct vm_struct *area;
581 void *ret;
582
583 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
2b4ac44e
ED
584 if (ret) {
585 write_lock(&vmlist_lock);
586 area = __find_vm_area(ret);
587 area->flags |= VM_USERMAP;
588 write_unlock(&vmlist_lock);
589 }
83342314
NP
590 return ret;
591}
592EXPORT_SYMBOL(vmalloc_user);
593
930fc45a
CL
594/**
595 * vmalloc_node - allocate memory on a specific node
930fc45a 596 * @size: allocation size
d44e0780 597 * @node: numa node
930fc45a
CL
598 *
599 * Allocate enough pages to cover @size from the page level
600 * allocator and map them into contiguous kernel virtual space.
601 *
c1c8897f 602 * For tight control over page level allocator and protection flags
930fc45a
CL
603 * use __vmalloc() instead.
604 */
605void *vmalloc_node(unsigned long size, int node)
606{
83342314 607 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, node);
930fc45a
CL
608}
609EXPORT_SYMBOL(vmalloc_node);
610
4dc3b16b
PP
611#ifndef PAGE_KERNEL_EXEC
612# define PAGE_KERNEL_EXEC PAGE_KERNEL
613#endif
614
1da177e4
LT
615/**
616 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
617 * @size: allocation size
618 *
619 * Kernel-internal function to allocate enough pages to cover @size
620 * the page level allocator and map them into contiguous and
621 * executable kernel virtual space.
622 *
c1c8897f 623 * For tight control over page level allocator and protection flags
1da177e4
LT
624 * use __vmalloc() instead.
625 */
626
1da177e4
LT
627void *vmalloc_exec(unsigned long size)
628{
629 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
630}
631
0d08e0d3 632#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
7ac674f5 633#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3 634#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
7ac674f5 635#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
0d08e0d3
AK
636#else
637#define GFP_VMALLOC32 GFP_KERNEL
638#endif
639
1da177e4
LT
640/**
641 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
642 * @size: allocation size
643 *
644 * Allocate enough 32bit PA addressable pages to cover @size from the
645 * page level allocator and map them into contiguous kernel virtual space.
646 */
647void *vmalloc_32(unsigned long size)
648{
0d08e0d3 649 return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
1da177e4 650}
1da177e4
LT
651EXPORT_SYMBOL(vmalloc_32);
652
83342314 653/**
ead04089 654 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 655 * @size: allocation size
ead04089
REB
656 *
657 * The resulting memory area is 32bit addressable and zeroed so it can be
658 * mapped to userspace without leaking data.
83342314
NP
659 */
660void *vmalloc_32_user(unsigned long size)
661{
662 struct vm_struct *area;
663 void *ret;
664
0d08e0d3 665 ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
2b4ac44e
ED
666 if (ret) {
667 write_lock(&vmlist_lock);
668 area = __find_vm_area(ret);
669 area->flags |= VM_USERMAP;
670 write_unlock(&vmlist_lock);
671 }
83342314
NP
672 return ret;
673}
674EXPORT_SYMBOL(vmalloc_32_user);
675
1da177e4
LT
676long vread(char *buf, char *addr, unsigned long count)
677{
678 struct vm_struct *tmp;
679 char *vaddr, *buf_start = buf;
680 unsigned long n;
681
682 /* Don't allow overflow */
683 if ((unsigned long) addr + count < count)
684 count = -(unsigned long) addr;
685
686 read_lock(&vmlist_lock);
687 for (tmp = vmlist; tmp; tmp = tmp->next) {
688 vaddr = (char *) tmp->addr;
689 if (addr >= vaddr + tmp->size - PAGE_SIZE)
690 continue;
691 while (addr < vaddr) {
692 if (count == 0)
693 goto finished;
694 *buf = '\0';
695 buf++;
696 addr++;
697 count--;
698 }
699 n = vaddr + tmp->size - PAGE_SIZE - addr;
700 do {
701 if (count == 0)
702 goto finished;
703 *buf = *addr;
704 buf++;
705 addr++;
706 count--;
707 } while (--n > 0);
708 }
709finished:
710 read_unlock(&vmlist_lock);
711 return buf - buf_start;
712}
713
714long vwrite(char *buf, char *addr, unsigned long count)
715{
716 struct vm_struct *tmp;
717 char *vaddr, *buf_start = buf;
718 unsigned long n;
719
720 /* Don't allow overflow */
721 if ((unsigned long) addr + count < count)
722 count = -(unsigned long) addr;
723
724 read_lock(&vmlist_lock);
725 for (tmp = vmlist; tmp; tmp = tmp->next) {
726 vaddr = (char *) tmp->addr;
727 if (addr >= vaddr + tmp->size - PAGE_SIZE)
728 continue;
729 while (addr < vaddr) {
730 if (count == 0)
731 goto finished;
732 buf++;
733 addr++;
734 count--;
735 }
736 n = vaddr + tmp->size - PAGE_SIZE - addr;
737 do {
738 if (count == 0)
739 goto finished;
740 *addr = *buf;
741 buf++;
742 addr++;
743 count--;
744 } while (--n > 0);
745 }
746finished:
747 read_unlock(&vmlist_lock);
748 return buf - buf_start;
749}
83342314
NP
750
751/**
752 * remap_vmalloc_range - map vmalloc pages to userspace
83342314
NP
753 * @vma: vma to cover (map full range of vma)
754 * @addr: vmalloc memory
755 * @pgoff: number of pages into addr before first page to map
756 * @returns: 0 for success, -Exxx on failure
757 *
758 * This function checks that addr is a valid vmalloc'ed area, and
759 * that it is big enough to cover the vma. Will return failure if
760 * that criteria isn't met.
761 *
72fd4a35 762 * Similar to remap_pfn_range() (see mm/memory.c)
83342314
NP
763 */
764int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
765 unsigned long pgoff)
766{
767 struct vm_struct *area;
768 unsigned long uaddr = vma->vm_start;
769 unsigned long usize = vma->vm_end - vma->vm_start;
770 int ret;
771
772 if ((PAGE_SIZE-1) & (unsigned long)addr)
773 return -EINVAL;
774
775 read_lock(&vmlist_lock);
776 area = __find_vm_area(addr);
777 if (!area)
778 goto out_einval_locked;
779
780 if (!(area->flags & VM_USERMAP))
781 goto out_einval_locked;
782
783 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
784 goto out_einval_locked;
785 read_unlock(&vmlist_lock);
786
787 addr += pgoff << PAGE_SHIFT;
788 do {
789 struct page *page = vmalloc_to_page(addr);
790 ret = vm_insert_page(vma, uaddr, page);
791 if (ret)
792 return ret;
793
794 uaddr += PAGE_SIZE;
795 addr += PAGE_SIZE;
796 usize -= PAGE_SIZE;
797 } while (usize > 0);
798
799 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
800 vma->vm_flags |= VM_RESERVED;
801
802 return ret;
803
804out_einval_locked:
805 read_unlock(&vmlist_lock);
806 return -EINVAL;
807}
808EXPORT_SYMBOL(remap_vmalloc_range);
809
1eeb66a1
CH
810/*
811 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
812 * have one.
813 */
814void __attribute__((weak)) vmalloc_sync_all(void)
815{
816}
5f4352fb
JF
817
818
819static int f(pte_t *pte, struct page *pmd_page, unsigned long addr, void *data)
820{
821 /* apply_to_page_range() does all the hard work. */
822 return 0;
823}
824
825/**
826 * alloc_vm_area - allocate a range of kernel address space
827 * @size: size of the area
828 * @returns: NULL on failure, vm_struct on success
829 *
830 * This function reserves a range of kernel address space, and
831 * allocates pagetables to map that range. No actual mappings
832 * are created. If the kernel address space is not shared
833 * between processes, it syncs the pagetable across all
834 * processes.
835 */
836struct vm_struct *alloc_vm_area(size_t size)
837{
838 struct vm_struct *area;
839
840 area = get_vm_area(size, VM_IOREMAP);
841 if (area == NULL)
842 return NULL;
843
844 /*
845 * This ensures that page tables are constructed for this region
846 * of kernel virtual address space and mapped into init_mm.
847 */
848 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
849 area->size, f, NULL)) {
850 free_vm_area(area);
851 return NULL;
852 }
853
854 /* Make sure the pagetables are constructed in process kernel
855 mappings */
856 vmalloc_sync_all();
857
858 return area;
859}
860EXPORT_SYMBOL_GPL(alloc_vm_area);
861
862void free_vm_area(struct vm_struct *area)
863{
864 struct vm_struct *ret;
865 ret = remove_vm_area(area->addr);
866 BUG_ON(ret != area);
867 kfree(area);
868}
869EXPORT_SYMBOL_GPL(free_vm_area);