]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/vmalloc.c
video/framebuffer: fix bug: jpegview cannot work on framebuffer device other than...
[net-next-2.6.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/slab.h>
16#include <linux/spinlock.h>
e97a630e 17#include <linux/mutex.h>
1da177e4 18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
3ac7fe5a 21#include <linux/debugobjects.h>
23016969 22#include <linux/kallsyms.h>
db64fe02
NP
23#include <linux/list.h>
24#include <linux/rbtree.h>
25#include <linux/radix-tree.h>
26#include <linux/rcupdate.h>
1da177e4 27
db64fe02 28#include <asm/atomic.h>
1da177e4
LT
29#include <asm/uaccess.h>
30#include <asm/tlbflush.h>
31
32
db64fe02 33/*** Page table manipulation functions ***/
b221385b 34
1da177e4
LT
35static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
36{
37 pte_t *pte;
38
39 pte = pte_offset_kernel(pmd, addr);
40 do {
41 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
42 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
43 } while (pte++, addr += PAGE_SIZE, addr != end);
44}
45
db64fe02 46static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
47{
48 pmd_t *pmd;
49 unsigned long next;
50
51 pmd = pmd_offset(pud, addr);
52 do {
53 next = pmd_addr_end(addr, end);
54 if (pmd_none_or_clear_bad(pmd))
55 continue;
56 vunmap_pte_range(pmd, addr, next);
57 } while (pmd++, addr = next, addr != end);
58}
59
db64fe02 60static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
1da177e4
LT
61{
62 pud_t *pud;
63 unsigned long next;
64
65 pud = pud_offset(pgd, addr);
66 do {
67 next = pud_addr_end(addr, end);
68 if (pud_none_or_clear_bad(pud))
69 continue;
70 vunmap_pmd_range(pud, addr, next);
71 } while (pud++, addr = next, addr != end);
72}
73
db64fe02 74static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
75{
76 pgd_t *pgd;
77 unsigned long next;
1da177e4
LT
78
79 BUG_ON(addr >= end);
80 pgd = pgd_offset_k(addr);
1da177e4
LT
81 do {
82 next = pgd_addr_end(addr, end);
83 if (pgd_none_or_clear_bad(pgd))
84 continue;
85 vunmap_pud_range(pgd, addr, next);
86 } while (pgd++, addr = next, addr != end);
1da177e4
LT
87}
88
89static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 90 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
91{
92 pte_t *pte;
93
db64fe02
NP
94 /*
95 * nr is a running index into the array which helps higher level
96 * callers keep track of where we're up to.
97 */
98
872fec16 99 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
100 if (!pte)
101 return -ENOMEM;
102 do {
db64fe02
NP
103 struct page *page = pages[*nr];
104
105 if (WARN_ON(!pte_none(*pte)))
106 return -EBUSY;
107 if (WARN_ON(!page))
1da177e4
LT
108 return -ENOMEM;
109 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 110 (*nr)++;
1da177e4
LT
111 } while (pte++, addr += PAGE_SIZE, addr != end);
112 return 0;
113}
114
db64fe02
NP
115static int vmap_pmd_range(pud_t *pud, unsigned long addr,
116 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
117{
118 pmd_t *pmd;
119 unsigned long next;
120
121 pmd = pmd_alloc(&init_mm, pud, addr);
122 if (!pmd)
123 return -ENOMEM;
124 do {
125 next = pmd_addr_end(addr, end);
db64fe02 126 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
127 return -ENOMEM;
128 } while (pmd++, addr = next, addr != end);
129 return 0;
130}
131
db64fe02
NP
132static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
133 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
134{
135 pud_t *pud;
136 unsigned long next;
137
138 pud = pud_alloc(&init_mm, pgd, addr);
139 if (!pud)
140 return -ENOMEM;
141 do {
142 next = pud_addr_end(addr, end);
db64fe02 143 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
144 return -ENOMEM;
145 } while (pud++, addr = next, addr != end);
146 return 0;
147}
148
db64fe02
NP
149/*
150 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
151 * will have pfns corresponding to the "pages" array.
152 *
153 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
154 */
2e4e27c7 155static int vmap_page_range(unsigned long start, unsigned long end,
db64fe02 156 pgprot_t prot, struct page **pages)
1da177e4
LT
157{
158 pgd_t *pgd;
159 unsigned long next;
2e4e27c7 160 unsigned long addr = start;
db64fe02
NP
161 int err = 0;
162 int nr = 0;
1da177e4
LT
163
164 BUG_ON(addr >= end);
165 pgd = pgd_offset_k(addr);
1da177e4
LT
166 do {
167 next = pgd_addr_end(addr, end);
db64fe02 168 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
1da177e4
LT
169 if (err)
170 break;
171 } while (pgd++, addr = next, addr != end);
2e4e27c7 172 flush_cache_vmap(start, end);
db64fe02
NP
173
174 if (unlikely(err))
175 return err;
176 return nr;
1da177e4
LT
177}
178
73bdf0a6
LT
179static inline int is_vmalloc_or_module_addr(const void *x)
180{
181 /*
ab4f2ee1 182 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
183 * and fall back on vmalloc() if that fails. Others
184 * just put it in the vmalloc space.
185 */
186#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
187 unsigned long addr = (unsigned long)x;
188 if (addr >= MODULES_VADDR && addr < MODULES_END)
189 return 1;
190#endif
191 return is_vmalloc_addr(x);
192}
193
48667e7a 194/*
db64fe02 195 * Walk a vmap address to the struct page it maps.
48667e7a 196 */
b3bdda02 197struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
198{
199 unsigned long addr = (unsigned long) vmalloc_addr;
200 struct page *page = NULL;
201 pgd_t *pgd = pgd_offset_k(addr);
48667e7a 202
7aa413de
IM
203 /*
204 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
205 * architectures that do not vmalloc module space
206 */
73bdf0a6 207 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 208
48667e7a 209 if (!pgd_none(*pgd)) {
db64fe02 210 pud_t *pud = pud_offset(pgd, addr);
48667e7a 211 if (!pud_none(*pud)) {
db64fe02 212 pmd_t *pmd = pmd_offset(pud, addr);
48667e7a 213 if (!pmd_none(*pmd)) {
db64fe02
NP
214 pte_t *ptep, pte;
215
48667e7a
CL
216 ptep = pte_offset_map(pmd, addr);
217 pte = *ptep;
218 if (pte_present(pte))
219 page = pte_page(pte);
220 pte_unmap(ptep);
221 }
222 }
223 }
224 return page;
225}
226EXPORT_SYMBOL(vmalloc_to_page);
227
228/*
229 * Map a vmalloc()-space virtual address to the physical page frame number.
230 */
b3bdda02 231unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a
CL
232{
233 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
234}
235EXPORT_SYMBOL(vmalloc_to_pfn);
236
db64fe02
NP
237
238/*** Global kva allocator ***/
239
240#define VM_LAZY_FREE 0x01
241#define VM_LAZY_FREEING 0x02
242#define VM_VM_AREA 0x04
243
244struct vmap_area {
245 unsigned long va_start;
246 unsigned long va_end;
247 unsigned long flags;
248 struct rb_node rb_node; /* address sorted rbtree */
249 struct list_head list; /* address sorted list */
250 struct list_head purge_list; /* "lazy purge" list */
251 void *private;
252 struct rcu_head rcu_head;
253};
254
255static DEFINE_SPINLOCK(vmap_area_lock);
256static struct rb_root vmap_area_root = RB_ROOT;
257static LIST_HEAD(vmap_area_list);
258
259static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 260{
db64fe02
NP
261 struct rb_node *n = vmap_area_root.rb_node;
262
263 while (n) {
264 struct vmap_area *va;
265
266 va = rb_entry(n, struct vmap_area, rb_node);
267 if (addr < va->va_start)
268 n = n->rb_left;
269 else if (addr > va->va_start)
270 n = n->rb_right;
271 else
272 return va;
273 }
274
275 return NULL;
276}
277
278static void __insert_vmap_area(struct vmap_area *va)
279{
280 struct rb_node **p = &vmap_area_root.rb_node;
281 struct rb_node *parent = NULL;
282 struct rb_node *tmp;
283
284 while (*p) {
285 struct vmap_area *tmp;
286
287 parent = *p;
288 tmp = rb_entry(parent, struct vmap_area, rb_node);
289 if (va->va_start < tmp->va_end)
290 p = &(*p)->rb_left;
291 else if (va->va_end > tmp->va_start)
292 p = &(*p)->rb_right;
293 else
294 BUG();
295 }
296
297 rb_link_node(&va->rb_node, parent, p);
298 rb_insert_color(&va->rb_node, &vmap_area_root);
299
300 /* address-sort this list so it is usable like the vmlist */
301 tmp = rb_prev(&va->rb_node);
302 if (tmp) {
303 struct vmap_area *prev;
304 prev = rb_entry(tmp, struct vmap_area, rb_node);
305 list_add_rcu(&va->list, &prev->list);
306 } else
307 list_add_rcu(&va->list, &vmap_area_list);
308}
309
310static void purge_vmap_area_lazy(void);
311
312/*
313 * Allocate a region of KVA of the specified size and alignment, within the
314 * vstart and vend.
315 */
316static struct vmap_area *alloc_vmap_area(unsigned long size,
317 unsigned long align,
318 unsigned long vstart, unsigned long vend,
319 int node, gfp_t gfp_mask)
320{
321 struct vmap_area *va;
322 struct rb_node *n;
1da177e4 323 unsigned long addr;
db64fe02
NP
324 int purged = 0;
325
326 BUG_ON(size & ~PAGE_MASK);
327
db64fe02
NP
328 va = kmalloc_node(sizeof(struct vmap_area),
329 gfp_mask & GFP_RECLAIM_MASK, node);
330 if (unlikely(!va))
331 return ERR_PTR(-ENOMEM);
332
333retry:
0ae15132
GC
334 addr = ALIGN(vstart, align);
335
db64fe02
NP
336 spin_lock(&vmap_area_lock);
337 /* XXX: could have a last_hole cache */
338 n = vmap_area_root.rb_node;
339 if (n) {
340 struct vmap_area *first = NULL;
341
342 do {
343 struct vmap_area *tmp;
344 tmp = rb_entry(n, struct vmap_area, rb_node);
345 if (tmp->va_end >= addr) {
346 if (!first && tmp->va_start < addr + size)
347 first = tmp;
348 n = n->rb_left;
349 } else {
350 first = tmp;
351 n = n->rb_right;
352 }
353 } while (n);
354
355 if (!first)
356 goto found;
357
358 if (first->va_end < addr) {
359 n = rb_next(&first->rb_node);
360 if (n)
361 first = rb_entry(n, struct vmap_area, rb_node);
362 else
363 goto found;
364 }
365
f011c2da 366 while (addr + size > first->va_start && addr + size <= vend) {
db64fe02
NP
367 addr = ALIGN(first->va_end + PAGE_SIZE, align);
368
369 n = rb_next(&first->rb_node);
370 if (n)
371 first = rb_entry(n, struct vmap_area, rb_node);
372 else
373 goto found;
374 }
375 }
376found:
377 if (addr + size > vend) {
378 spin_unlock(&vmap_area_lock);
379 if (!purged) {
380 purge_vmap_area_lazy();
381 purged = 1;
382 goto retry;
383 }
384 if (printk_ratelimit())
c1279c4e
GC
385 printk(KERN_WARNING
386 "vmap allocation for size %lu failed: "
387 "use vmalloc=<size> to increase size.\n", size);
db64fe02
NP
388 return ERR_PTR(-EBUSY);
389 }
390
391 BUG_ON(addr & (align-1));
392
393 va->va_start = addr;
394 va->va_end = addr + size;
395 va->flags = 0;
396 __insert_vmap_area(va);
397 spin_unlock(&vmap_area_lock);
398
399 return va;
400}
401
402static void rcu_free_va(struct rcu_head *head)
403{
404 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
405
406 kfree(va);
407}
408
409static void __free_vmap_area(struct vmap_area *va)
410{
411 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
412 rb_erase(&va->rb_node, &vmap_area_root);
413 RB_CLEAR_NODE(&va->rb_node);
414 list_del_rcu(&va->list);
415
416 call_rcu(&va->rcu_head, rcu_free_va);
417}
418
419/*
420 * Free a region of KVA allocated by alloc_vmap_area
421 */
422static void free_vmap_area(struct vmap_area *va)
423{
424 spin_lock(&vmap_area_lock);
425 __free_vmap_area(va);
426 spin_unlock(&vmap_area_lock);
427}
428
429/*
430 * Clear the pagetable entries of a given vmap_area
431 */
432static void unmap_vmap_area(struct vmap_area *va)
433{
434 vunmap_page_range(va->va_start, va->va_end);
435}
436
cd52858c
NP
437static void vmap_debug_free_range(unsigned long start, unsigned long end)
438{
439 /*
440 * Unmap page tables and force a TLB flush immediately if
441 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
442 * bugs similarly to those in linear kernel virtual address
443 * space after a page has been freed.
444 *
445 * All the lazy freeing logic is still retained, in order to
446 * minimise intrusiveness of this debugging feature.
447 *
448 * This is going to be *slow* (linear kernel virtual address
449 * debugging doesn't do a broadcast TLB flush so it is a lot
450 * faster).
451 */
452#ifdef CONFIG_DEBUG_PAGEALLOC
453 vunmap_page_range(start, end);
454 flush_tlb_kernel_range(start, end);
455#endif
456}
457
db64fe02
NP
458/*
459 * lazy_max_pages is the maximum amount of virtual address space we gather up
460 * before attempting to purge with a TLB flush.
461 *
462 * There is a tradeoff here: a larger number will cover more kernel page tables
463 * and take slightly longer to purge, but it will linearly reduce the number of
464 * global TLB flushes that must be performed. It would seem natural to scale
465 * this number up linearly with the number of CPUs (because vmapping activity
466 * could also scale linearly with the number of CPUs), however it is likely
467 * that in practice, workloads might be constrained in other ways that mean
468 * vmap activity will not scale linearly with CPUs. Also, I want to be
469 * conservative and not introduce a big latency on huge systems, so go with
470 * a less aggressive log scale. It will still be an improvement over the old
471 * code, and it will be simple to change the scale factor if we find that it
472 * becomes a problem on bigger systems.
473 */
474static unsigned long lazy_max_pages(void)
475{
476 unsigned int log;
477
478 log = fls(num_online_cpus());
479
480 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
481}
482
483static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
484
485/*
486 * Purges all lazily-freed vmap areas.
487 *
488 * If sync is 0 then don't purge if there is already a purge in progress.
489 * If force_flush is 1, then flush kernel TLBs between *start and *end even
490 * if we found no lazy vmap areas to unmap (callers can use this to optimise
491 * their own TLB flushing).
492 * Returns with *start = min(*start, lowest purged address)
493 * *end = max(*end, highest purged address)
494 */
495static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
496 int sync, int force_flush)
497{
e97a630e 498 static DEFINE_MUTEX(purge_lock);
db64fe02
NP
499 LIST_HEAD(valist);
500 struct vmap_area *va;
501 int nr = 0;
502
503 /*
504 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
505 * should not expect such behaviour. This just simplifies locking for
506 * the case that isn't actually used at the moment anyway.
507 */
508 if (!sync && !force_flush) {
e97a630e 509 if (!mutex_trylock(&purge_lock))
db64fe02
NP
510 return;
511 } else
e97a630e 512 mutex_lock(&purge_lock);
db64fe02
NP
513
514 rcu_read_lock();
515 list_for_each_entry_rcu(va, &vmap_area_list, list) {
516 if (va->flags & VM_LAZY_FREE) {
517 if (va->va_start < *start)
518 *start = va->va_start;
519 if (va->va_end > *end)
520 *end = va->va_end;
521 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
522 unmap_vmap_area(va);
523 list_add_tail(&va->purge_list, &valist);
524 va->flags |= VM_LAZY_FREEING;
525 va->flags &= ~VM_LAZY_FREE;
526 }
527 }
528 rcu_read_unlock();
529
530 if (nr) {
531 BUG_ON(nr > atomic_read(&vmap_lazy_nr));
532 atomic_sub(nr, &vmap_lazy_nr);
533 }
534
535 if (nr || force_flush)
536 flush_tlb_kernel_range(*start, *end);
537
538 if (nr) {
539 spin_lock(&vmap_area_lock);
540 list_for_each_entry(va, &valist, purge_list)
541 __free_vmap_area(va);
542 spin_unlock(&vmap_area_lock);
543 }
e97a630e 544 mutex_unlock(&purge_lock);
db64fe02
NP
545}
546
496850e5
NP
547/*
548 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
549 * is already purging.
550 */
551static void try_purge_vmap_area_lazy(void)
552{
553 unsigned long start = ULONG_MAX, end = 0;
554
555 __purge_vmap_area_lazy(&start, &end, 0, 0);
556}
557
db64fe02
NP
558/*
559 * Kick off a purge of the outstanding lazy areas.
560 */
561static void purge_vmap_area_lazy(void)
562{
563 unsigned long start = ULONG_MAX, end = 0;
564
496850e5 565 __purge_vmap_area_lazy(&start, &end, 1, 0);
db64fe02
NP
566}
567
568/*
b29acbdc
NP
569 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
570 * called for the correct range previously.
db64fe02 571 */
b29acbdc 572static void free_unmap_vmap_area_noflush(struct vmap_area *va)
db64fe02
NP
573{
574 va->flags |= VM_LAZY_FREE;
575 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
576 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
496850e5 577 try_purge_vmap_area_lazy();
db64fe02
NP
578}
579
b29acbdc
NP
580/*
581 * Free and unmap a vmap area
582 */
583static void free_unmap_vmap_area(struct vmap_area *va)
584{
585 flush_cache_vunmap(va->va_start, va->va_end);
586 free_unmap_vmap_area_noflush(va);
587}
588
db64fe02
NP
589static struct vmap_area *find_vmap_area(unsigned long addr)
590{
591 struct vmap_area *va;
592
593 spin_lock(&vmap_area_lock);
594 va = __find_vmap_area(addr);
595 spin_unlock(&vmap_area_lock);
596
597 return va;
598}
599
600static void free_unmap_vmap_area_addr(unsigned long addr)
601{
602 struct vmap_area *va;
603
604 va = find_vmap_area(addr);
605 BUG_ON(!va);
606 free_unmap_vmap_area(va);
607}
608
609
610/*** Per cpu kva allocator ***/
611
612/*
613 * vmap space is limited especially on 32 bit architectures. Ensure there is
614 * room for at least 16 percpu vmap blocks per CPU.
615 */
616/*
617 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
618 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
619 * instead (we just need a rough idea)
620 */
621#if BITS_PER_LONG == 32
622#define VMALLOC_SPACE (128UL*1024*1024)
623#else
624#define VMALLOC_SPACE (128UL*1024*1024*1024)
625#endif
626
627#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
628#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
629#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
630#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
631#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
632#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
633#define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
634 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
635 VMALLOC_PAGES / NR_CPUS / 16))
636
637#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
638
9b463334
JF
639static bool vmap_initialized __read_mostly = false;
640
db64fe02
NP
641struct vmap_block_queue {
642 spinlock_t lock;
643 struct list_head free;
644 struct list_head dirty;
645 unsigned int nr_dirty;
646};
647
648struct vmap_block {
649 spinlock_t lock;
650 struct vmap_area *va;
651 struct vmap_block_queue *vbq;
652 unsigned long free, dirty;
653 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
654 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
655 union {
656 struct {
657 struct list_head free_list;
658 struct list_head dirty_list;
659 };
660 struct rcu_head rcu_head;
661 };
662};
663
664/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
665static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
666
667/*
668 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
669 * in the free path. Could get rid of this if we change the API to return a
670 * "cookie" from alloc, to be passed to free. But no big deal yet.
671 */
672static DEFINE_SPINLOCK(vmap_block_tree_lock);
673static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
674
675/*
676 * We should probably have a fallback mechanism to allocate virtual memory
677 * out of partially filled vmap blocks. However vmap block sizing should be
678 * fairly reasonable according to the vmalloc size, so it shouldn't be a
679 * big problem.
680 */
681
682static unsigned long addr_to_vb_idx(unsigned long addr)
683{
684 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
685 addr /= VMAP_BLOCK_SIZE;
686 return addr;
687}
688
689static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
690{
691 struct vmap_block_queue *vbq;
692 struct vmap_block *vb;
693 struct vmap_area *va;
694 unsigned long vb_idx;
695 int node, err;
696
697 node = numa_node_id();
698
699 vb = kmalloc_node(sizeof(struct vmap_block),
700 gfp_mask & GFP_RECLAIM_MASK, node);
701 if (unlikely(!vb))
702 return ERR_PTR(-ENOMEM);
703
704 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
705 VMALLOC_START, VMALLOC_END,
706 node, gfp_mask);
707 if (unlikely(IS_ERR(va))) {
708 kfree(vb);
709 return ERR_PTR(PTR_ERR(va));
710 }
711
712 err = radix_tree_preload(gfp_mask);
713 if (unlikely(err)) {
714 kfree(vb);
715 free_vmap_area(va);
716 return ERR_PTR(err);
717 }
718
719 spin_lock_init(&vb->lock);
720 vb->va = va;
721 vb->free = VMAP_BBMAP_BITS;
722 vb->dirty = 0;
723 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
724 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
725 INIT_LIST_HEAD(&vb->free_list);
726 INIT_LIST_HEAD(&vb->dirty_list);
727
728 vb_idx = addr_to_vb_idx(va->va_start);
729 spin_lock(&vmap_block_tree_lock);
730 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
731 spin_unlock(&vmap_block_tree_lock);
732 BUG_ON(err);
733 radix_tree_preload_end();
734
735 vbq = &get_cpu_var(vmap_block_queue);
736 vb->vbq = vbq;
737 spin_lock(&vbq->lock);
738 list_add(&vb->free_list, &vbq->free);
739 spin_unlock(&vbq->lock);
740 put_cpu_var(vmap_cpu_blocks);
741
742 return vb;
743}
744
745static void rcu_free_vb(struct rcu_head *head)
746{
747 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
748
749 kfree(vb);
750}
751
752static void free_vmap_block(struct vmap_block *vb)
753{
754 struct vmap_block *tmp;
755 unsigned long vb_idx;
756
757 spin_lock(&vb->vbq->lock);
758 if (!list_empty(&vb->free_list))
759 list_del(&vb->free_list);
760 if (!list_empty(&vb->dirty_list))
761 list_del(&vb->dirty_list);
762 spin_unlock(&vb->vbq->lock);
763
764 vb_idx = addr_to_vb_idx(vb->va->va_start);
765 spin_lock(&vmap_block_tree_lock);
766 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
767 spin_unlock(&vmap_block_tree_lock);
768 BUG_ON(tmp != vb);
769
b29acbdc 770 free_unmap_vmap_area_noflush(vb->va);
db64fe02
NP
771 call_rcu(&vb->rcu_head, rcu_free_vb);
772}
773
774static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
775{
776 struct vmap_block_queue *vbq;
777 struct vmap_block *vb;
778 unsigned long addr = 0;
779 unsigned int order;
780
781 BUG_ON(size & ~PAGE_MASK);
782 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
783 order = get_order(size);
784
785again:
786 rcu_read_lock();
787 vbq = &get_cpu_var(vmap_block_queue);
788 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
789 int i;
790
791 spin_lock(&vb->lock);
792 i = bitmap_find_free_region(vb->alloc_map,
793 VMAP_BBMAP_BITS, order);
794
795 if (i >= 0) {
796 addr = vb->va->va_start + (i << PAGE_SHIFT);
797 BUG_ON(addr_to_vb_idx(addr) !=
798 addr_to_vb_idx(vb->va->va_start));
799 vb->free -= 1UL << order;
800 if (vb->free == 0) {
801 spin_lock(&vbq->lock);
802 list_del_init(&vb->free_list);
803 spin_unlock(&vbq->lock);
804 }
805 spin_unlock(&vb->lock);
806 break;
807 }
808 spin_unlock(&vb->lock);
809 }
810 put_cpu_var(vmap_cpu_blocks);
811 rcu_read_unlock();
812
813 if (!addr) {
814 vb = new_vmap_block(gfp_mask);
815 if (IS_ERR(vb))
816 return vb;
817 goto again;
818 }
819
820 return (void *)addr;
821}
822
823static void vb_free(const void *addr, unsigned long size)
824{
825 unsigned long offset;
826 unsigned long vb_idx;
827 unsigned int order;
828 struct vmap_block *vb;
829
830 BUG_ON(size & ~PAGE_MASK);
831 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
832
833 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
834
db64fe02
NP
835 order = get_order(size);
836
837 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
838
839 vb_idx = addr_to_vb_idx((unsigned long)addr);
840 rcu_read_lock();
841 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
842 rcu_read_unlock();
843 BUG_ON(!vb);
844
845 spin_lock(&vb->lock);
846 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
847 if (!vb->dirty) {
848 spin_lock(&vb->vbq->lock);
849 list_add(&vb->dirty_list, &vb->vbq->dirty);
850 spin_unlock(&vb->vbq->lock);
851 }
852 vb->dirty += 1UL << order;
853 if (vb->dirty == VMAP_BBMAP_BITS) {
854 BUG_ON(vb->free || !list_empty(&vb->free_list));
855 spin_unlock(&vb->lock);
856 free_vmap_block(vb);
857 } else
858 spin_unlock(&vb->lock);
859}
860
861/**
862 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
863 *
864 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
865 * to amortize TLB flushing overheads. What this means is that any page you
866 * have now, may, in a former life, have been mapped into kernel virtual
867 * address by the vmap layer and so there might be some CPUs with TLB entries
868 * still referencing that page (additional to the regular 1:1 kernel mapping).
869 *
870 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
871 * be sure that none of the pages we have control over will have any aliases
872 * from the vmap layer.
873 */
874void vm_unmap_aliases(void)
875{
876 unsigned long start = ULONG_MAX, end = 0;
877 int cpu;
878 int flush = 0;
879
9b463334
JF
880 if (unlikely(!vmap_initialized))
881 return;
882
db64fe02
NP
883 for_each_possible_cpu(cpu) {
884 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
885 struct vmap_block *vb;
886
887 rcu_read_lock();
888 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
889 int i;
890
891 spin_lock(&vb->lock);
892 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
893 while (i < VMAP_BBMAP_BITS) {
894 unsigned long s, e;
895 int j;
896 j = find_next_zero_bit(vb->dirty_map,
897 VMAP_BBMAP_BITS, i);
898
899 s = vb->va->va_start + (i << PAGE_SHIFT);
900 e = vb->va->va_start + (j << PAGE_SHIFT);
901 vunmap_page_range(s, e);
902 flush = 1;
903
904 if (s < start)
905 start = s;
906 if (e > end)
907 end = e;
908
909 i = j;
910 i = find_next_bit(vb->dirty_map,
911 VMAP_BBMAP_BITS, i);
912 }
913 spin_unlock(&vb->lock);
914 }
915 rcu_read_unlock();
916 }
917
918 __purge_vmap_area_lazy(&start, &end, 1, flush);
919}
920EXPORT_SYMBOL_GPL(vm_unmap_aliases);
921
922/**
923 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
924 * @mem: the pointer returned by vm_map_ram
925 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
926 */
927void vm_unmap_ram(const void *mem, unsigned int count)
928{
929 unsigned long size = count << PAGE_SHIFT;
930 unsigned long addr = (unsigned long)mem;
931
932 BUG_ON(!addr);
933 BUG_ON(addr < VMALLOC_START);
934 BUG_ON(addr > VMALLOC_END);
935 BUG_ON(addr & (PAGE_SIZE-1));
936
937 debug_check_no_locks_freed(mem, size);
cd52858c 938 vmap_debug_free_range(addr, addr+size);
db64fe02
NP
939
940 if (likely(count <= VMAP_MAX_ALLOC))
941 vb_free(mem, size);
942 else
943 free_unmap_vmap_area_addr(addr);
944}
945EXPORT_SYMBOL(vm_unmap_ram);
946
947/**
948 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
949 * @pages: an array of pointers to the pages to be mapped
950 * @count: number of pages
951 * @node: prefer to allocate data structures on this node
952 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad
RD
953 *
954 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
955 */
956void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
957{
958 unsigned long size = count << PAGE_SHIFT;
959 unsigned long addr;
960 void *mem;
961
962 if (likely(count <= VMAP_MAX_ALLOC)) {
963 mem = vb_alloc(size, GFP_KERNEL);
964 if (IS_ERR(mem))
965 return NULL;
966 addr = (unsigned long)mem;
967 } else {
968 struct vmap_area *va;
969 va = alloc_vmap_area(size, PAGE_SIZE,
970 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
971 if (IS_ERR(va))
972 return NULL;
973
974 addr = va->va_start;
975 mem = (void *)addr;
976 }
977 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
978 vm_unmap_ram(mem, count);
979 return NULL;
980 }
981 return mem;
982}
983EXPORT_SYMBOL(vm_map_ram);
984
985void __init vmalloc_init(void)
986{
987 int i;
988
989 for_each_possible_cpu(i) {
990 struct vmap_block_queue *vbq;
991
992 vbq = &per_cpu(vmap_block_queue, i);
993 spin_lock_init(&vbq->lock);
994 INIT_LIST_HEAD(&vbq->free);
995 INIT_LIST_HEAD(&vbq->dirty);
996 vbq->nr_dirty = 0;
997 }
9b463334
JF
998
999 vmap_initialized = true;
db64fe02
NP
1000}
1001
1002void unmap_kernel_range(unsigned long addr, unsigned long size)
1003{
1004 unsigned long end = addr + size;
1005 vunmap_page_range(addr, end);
1006 flush_tlb_kernel_range(addr, end);
1007}
1008
1009int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1010{
1011 unsigned long addr = (unsigned long)area->addr;
1012 unsigned long end = addr + area->size - PAGE_SIZE;
1013 int err;
1014
1015 err = vmap_page_range(addr, end, prot, *pages);
1016 if (err > 0) {
1017 *pages += err;
1018 err = 0;
1019 }
1020
1021 return err;
1022}
1023EXPORT_SYMBOL_GPL(map_vm_area);
1024
1025/*** Old vmalloc interfaces ***/
1026DEFINE_RWLOCK(vmlist_lock);
1027struct vm_struct *vmlist;
1028
1029static struct vm_struct *__get_vm_area_node(unsigned long size,
1030 unsigned long flags, unsigned long start, unsigned long end,
1031 int node, gfp_t gfp_mask, void *caller)
1032{
1033 static struct vmap_area *va;
1034 struct vm_struct *area;
1035 struct vm_struct *tmp, **p;
1036 unsigned long align = 1;
1da177e4 1037
52fd24ca 1038 BUG_ON(in_interrupt());
1da177e4
LT
1039 if (flags & VM_IOREMAP) {
1040 int bit = fls(size);
1041
1042 if (bit > IOREMAP_MAX_ORDER)
1043 bit = IOREMAP_MAX_ORDER;
1044 else if (bit < PAGE_SHIFT)
1045 bit = PAGE_SHIFT;
1046
1047 align = 1ul << bit;
1048 }
db64fe02 1049
1da177e4 1050 size = PAGE_ALIGN(size);
31be8309
OH
1051 if (unlikely(!size))
1052 return NULL;
1da177e4 1053
6cb06229 1054 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1055 if (unlikely(!area))
1056 return NULL;
1057
1da177e4
LT
1058 /*
1059 * We always allocate a guard page.
1060 */
1061 size += PAGE_SIZE;
1062
db64fe02
NP
1063 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1064 if (IS_ERR(va)) {
1065 kfree(area);
1066 return NULL;
1da177e4 1067 }
1da177e4
LT
1068
1069 area->flags = flags;
db64fe02 1070 area->addr = (void *)va->va_start;
1da177e4
LT
1071 area->size = size;
1072 area->pages = NULL;
1073 area->nr_pages = 0;
1074 area->phys_addr = 0;
23016969 1075 area->caller = caller;
db64fe02
NP
1076 va->private = area;
1077 va->flags |= VM_VM_AREA;
1078
1079 write_lock(&vmlist_lock);
1080 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1081 if (tmp->addr >= area->addr)
1082 break;
1083 }
1084 area->next = *p;
1085 *p = area;
1da177e4
LT
1086 write_unlock(&vmlist_lock);
1087
1088 return area;
1da177e4
LT
1089}
1090
930fc45a
CL
1091struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1092 unsigned long start, unsigned long end)
1093{
23016969
CL
1094 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1095 __builtin_return_address(0));
930fc45a 1096}
5992b6da 1097EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1098
1da177e4 1099/**
183ff22b 1100 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
1101 * @size: size of the area
1102 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1103 *
1104 * Search an area of @size in the kernel virtual mapping area,
1105 * and reserved it for out purposes. Returns the area descriptor
1106 * on success or %NULL on failure.
1107 */
1108struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1109{
23016969
CL
1110 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1111 -1, GFP_KERNEL, __builtin_return_address(0));
1112}
1113
1114struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1115 void *caller)
1116{
1117 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1118 -1, GFP_KERNEL, caller);
1da177e4
LT
1119}
1120
52fd24ca
GP
1121struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1122 int node, gfp_t gfp_mask)
930fc45a 1123{
52fd24ca 1124 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
23016969 1125 gfp_mask, __builtin_return_address(0));
930fc45a
CL
1126}
1127
db64fe02 1128static struct vm_struct *find_vm_area(const void *addr)
83342314 1129{
db64fe02 1130 struct vmap_area *va;
83342314 1131
db64fe02
NP
1132 va = find_vmap_area((unsigned long)addr);
1133 if (va && va->flags & VM_VM_AREA)
1134 return va->private;
1da177e4 1135
1da177e4 1136 return NULL;
1da177e4
LT
1137}
1138
7856dfeb 1139/**
183ff22b 1140 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
1141 * @addr: base address
1142 *
1143 * Search for the kernel VM area starting at @addr, and remove it.
1144 * This function returns the found VM area, but using it is NOT safe
1145 * on SMP machines, except for its size or flags.
1146 */
b3bdda02 1147struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1148{
db64fe02
NP
1149 struct vmap_area *va;
1150
1151 va = find_vmap_area((unsigned long)addr);
1152 if (va && va->flags & VM_VM_AREA) {
1153 struct vm_struct *vm = va->private;
1154 struct vm_struct *tmp, **p;
cd52858c
NP
1155
1156 vmap_debug_free_range(va->va_start, va->va_end);
db64fe02
NP
1157 free_unmap_vmap_area(va);
1158 vm->size -= PAGE_SIZE;
1159
1160 write_lock(&vmlist_lock);
1161 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1162 ;
1163 *p = tmp->next;
1164 write_unlock(&vmlist_lock);
1165
1166 return vm;
1167 }
1168 return NULL;
7856dfeb
AK
1169}
1170
b3bdda02 1171static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1172{
1173 struct vm_struct *area;
1174
1175 if (!addr)
1176 return;
1177
1178 if ((PAGE_SIZE-1) & (unsigned long)addr) {
4c8573e2 1179 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1da177e4
LT
1180 return;
1181 }
1182
1183 area = remove_vm_area(addr);
1184 if (unlikely(!area)) {
4c8573e2 1185 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1186 addr);
1da177e4
LT
1187 return;
1188 }
1189
9a11b49a 1190 debug_check_no_locks_freed(addr, area->size);
3ac7fe5a 1191 debug_check_no_obj_freed(addr, area->size);
9a11b49a 1192
1da177e4
LT
1193 if (deallocate_pages) {
1194 int i;
1195
1196 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1197 struct page *page = area->pages[i];
1198
1199 BUG_ON(!page);
1200 __free_page(page);
1da177e4
LT
1201 }
1202
8757d5fa 1203 if (area->flags & VM_VPAGES)
1da177e4
LT
1204 vfree(area->pages);
1205 else
1206 kfree(area->pages);
1207 }
1208
1209 kfree(area);
1210 return;
1211}
1212
1213/**
1214 * vfree - release memory allocated by vmalloc()
1da177e4
LT
1215 * @addr: memory base address
1216 *
183ff22b 1217 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
1218 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1219 * NULL, no operation is performed.
1da177e4 1220 *
80e93eff 1221 * Must not be called in interrupt context.
1da177e4 1222 */
b3bdda02 1223void vfree(const void *addr)
1da177e4
LT
1224{
1225 BUG_ON(in_interrupt());
1226 __vunmap(addr, 1);
1227}
1da177e4
LT
1228EXPORT_SYMBOL(vfree);
1229
1230/**
1231 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
1232 * @addr: memory base address
1233 *
1234 * Free the virtually contiguous memory area starting at @addr,
1235 * which was created from the page array passed to vmap().
1236 *
80e93eff 1237 * Must not be called in interrupt context.
1da177e4 1238 */
b3bdda02 1239void vunmap(const void *addr)
1da177e4
LT
1240{
1241 BUG_ON(in_interrupt());
1242 __vunmap(addr, 0);
1243}
1da177e4
LT
1244EXPORT_SYMBOL(vunmap);
1245
1246/**
1247 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
1248 * @pages: array of page pointers
1249 * @count: number of pages to map
1250 * @flags: vm_area->flags
1251 * @prot: page protection for the mapping
1252 *
1253 * Maps @count pages from @pages into contiguous kernel virtual
1254 * space.
1255 */
1256void *vmap(struct page **pages, unsigned int count,
1257 unsigned long flags, pgprot_t prot)
1258{
1259 struct vm_struct *area;
1260
1261 if (count > num_physpages)
1262 return NULL;
1263
23016969
CL
1264 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1265 __builtin_return_address(0));
1da177e4
LT
1266 if (!area)
1267 return NULL;
23016969 1268
1da177e4
LT
1269 if (map_vm_area(area, prot, &pages)) {
1270 vunmap(area->addr);
1271 return NULL;
1272 }
1273
1274 return area->addr;
1275}
1da177e4
LT
1276EXPORT_SYMBOL(vmap);
1277
db64fe02
NP
1278static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1279 int node, void *caller);
e31d9eb5 1280static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
23016969 1281 pgprot_t prot, int node, void *caller)
1da177e4
LT
1282{
1283 struct page **pages;
1284 unsigned int nr_pages, array_size, i;
1285
1286 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1287 array_size = (nr_pages * sizeof(struct page *));
1288
1289 area->nr_pages = nr_pages;
1290 /* Please note that the recursion is strictly bounded. */
8757d5fa 1291 if (array_size > PAGE_SIZE) {
94f6030c 1292 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
23016969 1293 PAGE_KERNEL, node, caller);
8757d5fa 1294 area->flags |= VM_VPAGES;
286e1ea3
AM
1295 } else {
1296 pages = kmalloc_node(array_size,
6cb06229 1297 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
286e1ea3
AM
1298 node);
1299 }
1da177e4 1300 area->pages = pages;
23016969 1301 area->caller = caller;
1da177e4
LT
1302 if (!area->pages) {
1303 remove_vm_area(area->addr);
1304 kfree(area);
1305 return NULL;
1306 }
1da177e4
LT
1307
1308 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1309 struct page *page;
1310
930fc45a 1311 if (node < 0)
bf53d6f8 1312 page = alloc_page(gfp_mask);
930fc45a 1313 else
bf53d6f8
CL
1314 page = alloc_pages_node(node, gfp_mask, 0);
1315
1316 if (unlikely(!page)) {
1da177e4
LT
1317 /* Successfully allocated i pages, free them in __vunmap() */
1318 area->nr_pages = i;
1319 goto fail;
1320 }
bf53d6f8 1321 area->pages[i] = page;
1da177e4
LT
1322 }
1323
1324 if (map_vm_area(area, prot, &pages))
1325 goto fail;
1326 return area->addr;
1327
1328fail:
1329 vfree(area->addr);
1330 return NULL;
1331}
1332
930fc45a
CL
1333void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1334{
23016969
CL
1335 return __vmalloc_area_node(area, gfp_mask, prot, -1,
1336 __builtin_return_address(0));
930fc45a
CL
1337}
1338
1da177e4 1339/**
930fc45a 1340 * __vmalloc_node - allocate virtually contiguous memory
1da177e4
LT
1341 * @size: allocation size
1342 * @gfp_mask: flags for the page level allocator
1343 * @prot: protection mask for the allocated pages
d44e0780 1344 * @node: node to use for allocation or -1
c85d194b 1345 * @caller: caller's return address
1da177e4
LT
1346 *
1347 * Allocate enough pages to cover @size from the page level
1348 * allocator with @gfp_mask flags. Map them into contiguous
1349 * kernel virtual space, using a pagetable protection of @prot.
1350 */
b221385b 1351static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
23016969 1352 int node, void *caller)
1da177e4
LT
1353{
1354 struct vm_struct *area;
1355
1356 size = PAGE_ALIGN(size);
1357 if (!size || (size >> PAGE_SHIFT) > num_physpages)
1358 return NULL;
1359
23016969
CL
1360 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1361 node, gfp_mask, caller);
1362
1da177e4
LT
1363 if (!area)
1364 return NULL;
1365
23016969 1366 return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1da177e4
LT
1367}
1368
930fc45a
CL
1369void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1370{
23016969
CL
1371 return __vmalloc_node(size, gfp_mask, prot, -1,
1372 __builtin_return_address(0));
930fc45a 1373}
1da177e4
LT
1374EXPORT_SYMBOL(__vmalloc);
1375
1376/**
1377 * vmalloc - allocate virtually contiguous memory
1da177e4 1378 * @size: allocation size
1da177e4
LT
1379 * Allocate enough pages to cover @size from the page level
1380 * allocator and map them into contiguous kernel virtual space.
1381 *
c1c8897f 1382 * For tight control over page level allocator and protection flags
1da177e4
LT
1383 * use __vmalloc() instead.
1384 */
1385void *vmalloc(unsigned long size)
1386{
23016969
CL
1387 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1388 -1, __builtin_return_address(0));
1da177e4 1389}
1da177e4
LT
1390EXPORT_SYMBOL(vmalloc);
1391
83342314 1392/**
ead04089
REB
1393 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1394 * @size: allocation size
83342314 1395 *
ead04089
REB
1396 * The resulting memory area is zeroed so it can be mapped to userspace
1397 * without leaking data.
83342314
NP
1398 */
1399void *vmalloc_user(unsigned long size)
1400{
1401 struct vm_struct *area;
1402 void *ret;
1403
84877848
GC
1404 ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1405 PAGE_KERNEL, -1, __builtin_return_address(0));
2b4ac44e 1406 if (ret) {
db64fe02 1407 area = find_vm_area(ret);
2b4ac44e 1408 area->flags |= VM_USERMAP;
2b4ac44e 1409 }
83342314
NP
1410 return ret;
1411}
1412EXPORT_SYMBOL(vmalloc_user);
1413
930fc45a
CL
1414/**
1415 * vmalloc_node - allocate memory on a specific node
930fc45a 1416 * @size: allocation size
d44e0780 1417 * @node: numa node
930fc45a
CL
1418 *
1419 * Allocate enough pages to cover @size from the page level
1420 * allocator and map them into contiguous kernel virtual space.
1421 *
c1c8897f 1422 * For tight control over page level allocator and protection flags
930fc45a
CL
1423 * use __vmalloc() instead.
1424 */
1425void *vmalloc_node(unsigned long size, int node)
1426{
23016969
CL
1427 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1428 node, __builtin_return_address(0));
930fc45a
CL
1429}
1430EXPORT_SYMBOL(vmalloc_node);
1431
4dc3b16b
PP
1432#ifndef PAGE_KERNEL_EXEC
1433# define PAGE_KERNEL_EXEC PAGE_KERNEL
1434#endif
1435
1da177e4
LT
1436/**
1437 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
1438 * @size: allocation size
1439 *
1440 * Kernel-internal function to allocate enough pages to cover @size
1441 * the page level allocator and map them into contiguous and
1442 * executable kernel virtual space.
1443 *
c1c8897f 1444 * For tight control over page level allocator and protection flags
1da177e4
LT
1445 * use __vmalloc() instead.
1446 */
1447
1da177e4
LT
1448void *vmalloc_exec(unsigned long size)
1449{
84877848
GC
1450 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1451 -1, __builtin_return_address(0));
1da177e4
LT
1452}
1453
0d08e0d3 1454#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
7ac674f5 1455#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3 1456#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
7ac674f5 1457#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
0d08e0d3
AK
1458#else
1459#define GFP_VMALLOC32 GFP_KERNEL
1460#endif
1461
1da177e4
LT
1462/**
1463 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
1464 * @size: allocation size
1465 *
1466 * Allocate enough 32bit PA addressable pages to cover @size from the
1467 * page level allocator and map them into contiguous kernel virtual space.
1468 */
1469void *vmalloc_32(unsigned long size)
1470{
84877848
GC
1471 return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL,
1472 -1, __builtin_return_address(0));
1da177e4 1473}
1da177e4
LT
1474EXPORT_SYMBOL(vmalloc_32);
1475
83342314 1476/**
ead04089 1477 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 1478 * @size: allocation size
ead04089
REB
1479 *
1480 * The resulting memory area is 32bit addressable and zeroed so it can be
1481 * mapped to userspace without leaking data.
83342314
NP
1482 */
1483void *vmalloc_32_user(unsigned long size)
1484{
1485 struct vm_struct *area;
1486 void *ret;
1487
84877848
GC
1488 ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1489 -1, __builtin_return_address(0));
2b4ac44e 1490 if (ret) {
db64fe02 1491 area = find_vm_area(ret);
2b4ac44e 1492 area->flags |= VM_USERMAP;
2b4ac44e 1493 }
83342314
NP
1494 return ret;
1495}
1496EXPORT_SYMBOL(vmalloc_32_user);
1497
1da177e4
LT
1498long vread(char *buf, char *addr, unsigned long count)
1499{
1500 struct vm_struct *tmp;
1501 char *vaddr, *buf_start = buf;
1502 unsigned long n;
1503
1504 /* Don't allow overflow */
1505 if ((unsigned long) addr + count < count)
1506 count = -(unsigned long) addr;
1507
1508 read_lock(&vmlist_lock);
1509 for (tmp = vmlist; tmp; tmp = tmp->next) {
1510 vaddr = (char *) tmp->addr;
1511 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1512 continue;
1513 while (addr < vaddr) {
1514 if (count == 0)
1515 goto finished;
1516 *buf = '\0';
1517 buf++;
1518 addr++;
1519 count--;
1520 }
1521 n = vaddr + tmp->size - PAGE_SIZE - addr;
1522 do {
1523 if (count == 0)
1524 goto finished;
1525 *buf = *addr;
1526 buf++;
1527 addr++;
1528 count--;
1529 } while (--n > 0);
1530 }
1531finished:
1532 read_unlock(&vmlist_lock);
1533 return buf - buf_start;
1534}
1535
1536long vwrite(char *buf, char *addr, unsigned long count)
1537{
1538 struct vm_struct *tmp;
1539 char *vaddr, *buf_start = buf;
1540 unsigned long n;
1541
1542 /* Don't allow overflow */
1543 if ((unsigned long) addr + count < count)
1544 count = -(unsigned long) addr;
1545
1546 read_lock(&vmlist_lock);
1547 for (tmp = vmlist; tmp; tmp = tmp->next) {
1548 vaddr = (char *) tmp->addr;
1549 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1550 continue;
1551 while (addr < vaddr) {
1552 if (count == 0)
1553 goto finished;
1554 buf++;
1555 addr++;
1556 count--;
1557 }
1558 n = vaddr + tmp->size - PAGE_SIZE - addr;
1559 do {
1560 if (count == 0)
1561 goto finished;
1562 *addr = *buf;
1563 buf++;
1564 addr++;
1565 count--;
1566 } while (--n > 0);
1567 }
1568finished:
1569 read_unlock(&vmlist_lock);
1570 return buf - buf_start;
1571}
83342314
NP
1572
1573/**
1574 * remap_vmalloc_range - map vmalloc pages to userspace
83342314
NP
1575 * @vma: vma to cover (map full range of vma)
1576 * @addr: vmalloc memory
1577 * @pgoff: number of pages into addr before first page to map
7682486b
RD
1578 *
1579 * Returns: 0 for success, -Exxx on failure
83342314
NP
1580 *
1581 * This function checks that addr is a valid vmalloc'ed area, and
1582 * that it is big enough to cover the vma. Will return failure if
1583 * that criteria isn't met.
1584 *
72fd4a35 1585 * Similar to remap_pfn_range() (see mm/memory.c)
83342314
NP
1586 */
1587int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1588 unsigned long pgoff)
1589{
1590 struct vm_struct *area;
1591 unsigned long uaddr = vma->vm_start;
1592 unsigned long usize = vma->vm_end - vma->vm_start;
83342314
NP
1593
1594 if ((PAGE_SIZE-1) & (unsigned long)addr)
1595 return -EINVAL;
1596
db64fe02 1597 area = find_vm_area(addr);
83342314 1598 if (!area)
db64fe02 1599 return -EINVAL;
83342314
NP
1600
1601 if (!(area->flags & VM_USERMAP))
db64fe02 1602 return -EINVAL;
83342314
NP
1603
1604 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
db64fe02 1605 return -EINVAL;
83342314
NP
1606
1607 addr += pgoff << PAGE_SHIFT;
1608 do {
1609 struct page *page = vmalloc_to_page(addr);
db64fe02
NP
1610 int ret;
1611
83342314
NP
1612 ret = vm_insert_page(vma, uaddr, page);
1613 if (ret)
1614 return ret;
1615
1616 uaddr += PAGE_SIZE;
1617 addr += PAGE_SIZE;
1618 usize -= PAGE_SIZE;
1619 } while (usize > 0);
1620
1621 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1622 vma->vm_flags |= VM_RESERVED;
1623
db64fe02 1624 return 0;
83342314
NP
1625}
1626EXPORT_SYMBOL(remap_vmalloc_range);
1627
1eeb66a1
CH
1628/*
1629 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1630 * have one.
1631 */
1632void __attribute__((weak)) vmalloc_sync_all(void)
1633{
1634}
5f4352fb
JF
1635
1636
2f569afd 1637static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb
JF
1638{
1639 /* apply_to_page_range() does all the hard work. */
1640 return 0;
1641}
1642
1643/**
1644 * alloc_vm_area - allocate a range of kernel address space
1645 * @size: size of the area
7682486b
RD
1646 *
1647 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
1648 *
1649 * This function reserves a range of kernel address space, and
1650 * allocates pagetables to map that range. No actual mappings
1651 * are created. If the kernel address space is not shared
1652 * between processes, it syncs the pagetable across all
1653 * processes.
1654 */
1655struct vm_struct *alloc_vm_area(size_t size)
1656{
1657 struct vm_struct *area;
1658
23016969
CL
1659 area = get_vm_area_caller(size, VM_IOREMAP,
1660 __builtin_return_address(0));
5f4352fb
JF
1661 if (area == NULL)
1662 return NULL;
1663
1664 /*
1665 * This ensures that page tables are constructed for this region
1666 * of kernel virtual address space and mapped into init_mm.
1667 */
1668 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1669 area->size, f, NULL)) {
1670 free_vm_area(area);
1671 return NULL;
1672 }
1673
1674 /* Make sure the pagetables are constructed in process kernel
1675 mappings */
1676 vmalloc_sync_all();
1677
1678 return area;
1679}
1680EXPORT_SYMBOL_GPL(alloc_vm_area);
1681
1682void free_vm_area(struct vm_struct *area)
1683{
1684 struct vm_struct *ret;
1685 ret = remove_vm_area(area->addr);
1686 BUG_ON(ret != area);
1687 kfree(area);
1688}
1689EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579
CL
1690
1691
1692#ifdef CONFIG_PROC_FS
1693static void *s_start(struct seq_file *m, loff_t *pos)
1694{
1695 loff_t n = *pos;
1696 struct vm_struct *v;
1697
1698 read_lock(&vmlist_lock);
1699 v = vmlist;
1700 while (n > 0 && v) {
1701 n--;
1702 v = v->next;
1703 }
1704 if (!n)
1705 return v;
1706
1707 return NULL;
1708
1709}
1710
1711static void *s_next(struct seq_file *m, void *p, loff_t *pos)
1712{
1713 struct vm_struct *v = p;
1714
1715 ++*pos;
1716 return v->next;
1717}
1718
1719static void s_stop(struct seq_file *m, void *p)
1720{
1721 read_unlock(&vmlist_lock);
1722}
1723
a47a126a
ED
1724static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1725{
1726 if (NUMA_BUILD) {
1727 unsigned int nr, *counters = m->private;
1728
1729 if (!counters)
1730 return;
1731
1732 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1733
1734 for (nr = 0; nr < v->nr_pages; nr++)
1735 counters[page_to_nid(v->pages[nr])]++;
1736
1737 for_each_node_state(nr, N_HIGH_MEMORY)
1738 if (counters[nr])
1739 seq_printf(m, " N%u=%u", nr, counters[nr]);
1740 }
1741}
1742
a10aa579
CL
1743static int s_show(struct seq_file *m, void *p)
1744{
1745 struct vm_struct *v = p;
1746
1747 seq_printf(m, "0x%p-0x%p %7ld",
1748 v->addr, v->addr + v->size, v->size);
1749
23016969 1750 if (v->caller) {
9c246247 1751 char buff[KSYM_SYMBOL_LEN];
23016969
CL
1752
1753 seq_putc(m, ' ');
1754 sprint_symbol(buff, (unsigned long)v->caller);
1755 seq_puts(m, buff);
1756 }
1757
a10aa579
CL
1758 if (v->nr_pages)
1759 seq_printf(m, " pages=%d", v->nr_pages);
1760
1761 if (v->phys_addr)
1762 seq_printf(m, " phys=%lx", v->phys_addr);
1763
1764 if (v->flags & VM_IOREMAP)
1765 seq_printf(m, " ioremap");
1766
1767 if (v->flags & VM_ALLOC)
1768 seq_printf(m, " vmalloc");
1769
1770 if (v->flags & VM_MAP)
1771 seq_printf(m, " vmap");
1772
1773 if (v->flags & VM_USERMAP)
1774 seq_printf(m, " user");
1775
1776 if (v->flags & VM_VPAGES)
1777 seq_printf(m, " vpages");
1778
a47a126a 1779 show_numa_info(m, v);
a10aa579
CL
1780 seq_putc(m, '\n');
1781 return 0;
1782}
1783
5f6a6a9c 1784static const struct seq_operations vmalloc_op = {
a10aa579
CL
1785 .start = s_start,
1786 .next = s_next,
1787 .stop = s_stop,
1788 .show = s_show,
1789};
5f6a6a9c
AD
1790
1791static int vmalloc_open(struct inode *inode, struct file *file)
1792{
1793 unsigned int *ptr = NULL;
1794 int ret;
1795
1796 if (NUMA_BUILD)
1797 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
1798 ret = seq_open(file, &vmalloc_op);
1799 if (!ret) {
1800 struct seq_file *m = file->private_data;
1801 m->private = ptr;
1802 } else
1803 kfree(ptr);
1804 return ret;
1805}
1806
1807static const struct file_operations proc_vmalloc_operations = {
1808 .open = vmalloc_open,
1809 .read = seq_read,
1810 .llseek = seq_lseek,
1811 .release = seq_release_private,
1812};
1813
1814static int __init proc_vmalloc_init(void)
1815{
1816 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
1817 return 0;
1818}
1819module_init(proc_vmalloc_init);
a10aa579
CL
1820#endif
1821