]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/vmalloc.c
mm: vmalloc use mutex for purge
[net-next-2.6.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/slab.h>
16#include <linux/spinlock.h>
e97a630e 17#include <linux/mutex.h>
1da177e4 18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
3ac7fe5a 21#include <linux/debugobjects.h>
23016969 22#include <linux/kallsyms.h>
db64fe02
NP
23#include <linux/list.h>
24#include <linux/rbtree.h>
25#include <linux/radix-tree.h>
26#include <linux/rcupdate.h>
1da177e4 27
db64fe02 28#include <asm/atomic.h>
1da177e4
LT
29#include <asm/uaccess.h>
30#include <asm/tlbflush.h>
31
32
db64fe02 33/*** Page table manipulation functions ***/
b221385b 34
1da177e4
LT
35static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
36{
37 pte_t *pte;
38
39 pte = pte_offset_kernel(pmd, addr);
40 do {
41 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
42 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
43 } while (pte++, addr += PAGE_SIZE, addr != end);
44}
45
db64fe02 46static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
47{
48 pmd_t *pmd;
49 unsigned long next;
50
51 pmd = pmd_offset(pud, addr);
52 do {
53 next = pmd_addr_end(addr, end);
54 if (pmd_none_or_clear_bad(pmd))
55 continue;
56 vunmap_pte_range(pmd, addr, next);
57 } while (pmd++, addr = next, addr != end);
58}
59
db64fe02 60static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
1da177e4
LT
61{
62 pud_t *pud;
63 unsigned long next;
64
65 pud = pud_offset(pgd, addr);
66 do {
67 next = pud_addr_end(addr, end);
68 if (pud_none_or_clear_bad(pud))
69 continue;
70 vunmap_pmd_range(pud, addr, next);
71 } while (pud++, addr = next, addr != end);
72}
73
db64fe02 74static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
75{
76 pgd_t *pgd;
77 unsigned long next;
1da177e4
LT
78
79 BUG_ON(addr >= end);
80 pgd = pgd_offset_k(addr);
1da177e4
LT
81 do {
82 next = pgd_addr_end(addr, end);
83 if (pgd_none_or_clear_bad(pgd))
84 continue;
85 vunmap_pud_range(pgd, addr, next);
86 } while (pgd++, addr = next, addr != end);
1da177e4
LT
87}
88
89static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 90 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
91{
92 pte_t *pte;
93
db64fe02
NP
94 /*
95 * nr is a running index into the array which helps higher level
96 * callers keep track of where we're up to.
97 */
98
872fec16 99 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
100 if (!pte)
101 return -ENOMEM;
102 do {
db64fe02
NP
103 struct page *page = pages[*nr];
104
105 if (WARN_ON(!pte_none(*pte)))
106 return -EBUSY;
107 if (WARN_ON(!page))
1da177e4
LT
108 return -ENOMEM;
109 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 110 (*nr)++;
1da177e4
LT
111 } while (pte++, addr += PAGE_SIZE, addr != end);
112 return 0;
113}
114
db64fe02
NP
115static int vmap_pmd_range(pud_t *pud, unsigned long addr,
116 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
117{
118 pmd_t *pmd;
119 unsigned long next;
120
121 pmd = pmd_alloc(&init_mm, pud, addr);
122 if (!pmd)
123 return -ENOMEM;
124 do {
125 next = pmd_addr_end(addr, end);
db64fe02 126 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
127 return -ENOMEM;
128 } while (pmd++, addr = next, addr != end);
129 return 0;
130}
131
db64fe02
NP
132static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
133 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
134{
135 pud_t *pud;
136 unsigned long next;
137
138 pud = pud_alloc(&init_mm, pgd, addr);
139 if (!pud)
140 return -ENOMEM;
141 do {
142 next = pud_addr_end(addr, end);
db64fe02 143 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
144 return -ENOMEM;
145 } while (pud++, addr = next, addr != end);
146 return 0;
147}
148
db64fe02
NP
149/*
150 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
151 * will have pfns corresponding to the "pages" array.
152 *
153 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
154 */
2e4e27c7 155static int vmap_page_range(unsigned long start, unsigned long end,
db64fe02 156 pgprot_t prot, struct page **pages)
1da177e4
LT
157{
158 pgd_t *pgd;
159 unsigned long next;
2e4e27c7 160 unsigned long addr = start;
db64fe02
NP
161 int err = 0;
162 int nr = 0;
1da177e4
LT
163
164 BUG_ON(addr >= end);
165 pgd = pgd_offset_k(addr);
1da177e4
LT
166 do {
167 next = pgd_addr_end(addr, end);
db64fe02 168 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
1da177e4
LT
169 if (err)
170 break;
171 } while (pgd++, addr = next, addr != end);
2e4e27c7 172 flush_cache_vmap(start, end);
db64fe02
NP
173
174 if (unlikely(err))
175 return err;
176 return nr;
1da177e4
LT
177}
178
73bdf0a6
LT
179static inline int is_vmalloc_or_module_addr(const void *x)
180{
181 /*
ab4f2ee1 182 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
183 * and fall back on vmalloc() if that fails. Others
184 * just put it in the vmalloc space.
185 */
186#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
187 unsigned long addr = (unsigned long)x;
188 if (addr >= MODULES_VADDR && addr < MODULES_END)
189 return 1;
190#endif
191 return is_vmalloc_addr(x);
192}
193
48667e7a 194/*
db64fe02 195 * Walk a vmap address to the struct page it maps.
48667e7a 196 */
b3bdda02 197struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
198{
199 unsigned long addr = (unsigned long) vmalloc_addr;
200 struct page *page = NULL;
201 pgd_t *pgd = pgd_offset_k(addr);
48667e7a 202
7aa413de
IM
203 /*
204 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
205 * architectures that do not vmalloc module space
206 */
73bdf0a6 207 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 208
48667e7a 209 if (!pgd_none(*pgd)) {
db64fe02 210 pud_t *pud = pud_offset(pgd, addr);
48667e7a 211 if (!pud_none(*pud)) {
db64fe02 212 pmd_t *pmd = pmd_offset(pud, addr);
48667e7a 213 if (!pmd_none(*pmd)) {
db64fe02
NP
214 pte_t *ptep, pte;
215
48667e7a
CL
216 ptep = pte_offset_map(pmd, addr);
217 pte = *ptep;
218 if (pte_present(pte))
219 page = pte_page(pte);
220 pte_unmap(ptep);
221 }
222 }
223 }
224 return page;
225}
226EXPORT_SYMBOL(vmalloc_to_page);
227
228/*
229 * Map a vmalloc()-space virtual address to the physical page frame number.
230 */
b3bdda02 231unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a
CL
232{
233 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
234}
235EXPORT_SYMBOL(vmalloc_to_pfn);
236
db64fe02
NP
237
238/*** Global kva allocator ***/
239
240#define VM_LAZY_FREE 0x01
241#define VM_LAZY_FREEING 0x02
242#define VM_VM_AREA 0x04
243
244struct vmap_area {
245 unsigned long va_start;
246 unsigned long va_end;
247 unsigned long flags;
248 struct rb_node rb_node; /* address sorted rbtree */
249 struct list_head list; /* address sorted list */
250 struct list_head purge_list; /* "lazy purge" list */
251 void *private;
252 struct rcu_head rcu_head;
253};
254
255static DEFINE_SPINLOCK(vmap_area_lock);
256static struct rb_root vmap_area_root = RB_ROOT;
257static LIST_HEAD(vmap_area_list);
258
259static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 260{
db64fe02
NP
261 struct rb_node *n = vmap_area_root.rb_node;
262
263 while (n) {
264 struct vmap_area *va;
265
266 va = rb_entry(n, struct vmap_area, rb_node);
267 if (addr < va->va_start)
268 n = n->rb_left;
269 else if (addr > va->va_start)
270 n = n->rb_right;
271 else
272 return va;
273 }
274
275 return NULL;
276}
277
278static void __insert_vmap_area(struct vmap_area *va)
279{
280 struct rb_node **p = &vmap_area_root.rb_node;
281 struct rb_node *parent = NULL;
282 struct rb_node *tmp;
283
284 while (*p) {
285 struct vmap_area *tmp;
286
287 parent = *p;
288 tmp = rb_entry(parent, struct vmap_area, rb_node);
289 if (va->va_start < tmp->va_end)
290 p = &(*p)->rb_left;
291 else if (va->va_end > tmp->va_start)
292 p = &(*p)->rb_right;
293 else
294 BUG();
295 }
296
297 rb_link_node(&va->rb_node, parent, p);
298 rb_insert_color(&va->rb_node, &vmap_area_root);
299
300 /* address-sort this list so it is usable like the vmlist */
301 tmp = rb_prev(&va->rb_node);
302 if (tmp) {
303 struct vmap_area *prev;
304 prev = rb_entry(tmp, struct vmap_area, rb_node);
305 list_add_rcu(&va->list, &prev->list);
306 } else
307 list_add_rcu(&va->list, &vmap_area_list);
308}
309
310static void purge_vmap_area_lazy(void);
311
312/*
313 * Allocate a region of KVA of the specified size and alignment, within the
314 * vstart and vend.
315 */
316static struct vmap_area *alloc_vmap_area(unsigned long size,
317 unsigned long align,
318 unsigned long vstart, unsigned long vend,
319 int node, gfp_t gfp_mask)
320{
321 struct vmap_area *va;
322 struct rb_node *n;
1da177e4 323 unsigned long addr;
db64fe02
NP
324 int purged = 0;
325
326 BUG_ON(size & ~PAGE_MASK);
327
db64fe02
NP
328 va = kmalloc_node(sizeof(struct vmap_area),
329 gfp_mask & GFP_RECLAIM_MASK, node);
330 if (unlikely(!va))
331 return ERR_PTR(-ENOMEM);
332
333retry:
0ae15132
GC
334 addr = ALIGN(vstart, align);
335
db64fe02
NP
336 spin_lock(&vmap_area_lock);
337 /* XXX: could have a last_hole cache */
338 n = vmap_area_root.rb_node;
339 if (n) {
340 struct vmap_area *first = NULL;
341
342 do {
343 struct vmap_area *tmp;
344 tmp = rb_entry(n, struct vmap_area, rb_node);
345 if (tmp->va_end >= addr) {
346 if (!first && tmp->va_start < addr + size)
347 first = tmp;
348 n = n->rb_left;
349 } else {
350 first = tmp;
351 n = n->rb_right;
352 }
353 } while (n);
354
355 if (!first)
356 goto found;
357
358 if (first->va_end < addr) {
359 n = rb_next(&first->rb_node);
360 if (n)
361 first = rb_entry(n, struct vmap_area, rb_node);
362 else
363 goto found;
364 }
365
f011c2da 366 while (addr + size > first->va_start && addr + size <= vend) {
db64fe02
NP
367 addr = ALIGN(first->va_end + PAGE_SIZE, align);
368
369 n = rb_next(&first->rb_node);
370 if (n)
371 first = rb_entry(n, struct vmap_area, rb_node);
372 else
373 goto found;
374 }
375 }
376found:
377 if (addr + size > vend) {
378 spin_unlock(&vmap_area_lock);
379 if (!purged) {
380 purge_vmap_area_lazy();
381 purged = 1;
382 goto retry;
383 }
384 if (printk_ratelimit())
c1279c4e
GC
385 printk(KERN_WARNING
386 "vmap allocation for size %lu failed: "
387 "use vmalloc=<size> to increase size.\n", size);
db64fe02
NP
388 return ERR_PTR(-EBUSY);
389 }
390
391 BUG_ON(addr & (align-1));
392
393 va->va_start = addr;
394 va->va_end = addr + size;
395 va->flags = 0;
396 __insert_vmap_area(va);
397 spin_unlock(&vmap_area_lock);
398
399 return va;
400}
401
402static void rcu_free_va(struct rcu_head *head)
403{
404 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
405
406 kfree(va);
407}
408
409static void __free_vmap_area(struct vmap_area *va)
410{
411 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
412 rb_erase(&va->rb_node, &vmap_area_root);
413 RB_CLEAR_NODE(&va->rb_node);
414 list_del_rcu(&va->list);
415
416 call_rcu(&va->rcu_head, rcu_free_va);
417}
418
419/*
420 * Free a region of KVA allocated by alloc_vmap_area
421 */
422static void free_vmap_area(struct vmap_area *va)
423{
424 spin_lock(&vmap_area_lock);
425 __free_vmap_area(va);
426 spin_unlock(&vmap_area_lock);
427}
428
429/*
430 * Clear the pagetable entries of a given vmap_area
431 */
432static void unmap_vmap_area(struct vmap_area *va)
433{
434 vunmap_page_range(va->va_start, va->va_end);
435}
436
437/*
438 * lazy_max_pages is the maximum amount of virtual address space we gather up
439 * before attempting to purge with a TLB flush.
440 *
441 * There is a tradeoff here: a larger number will cover more kernel page tables
442 * and take slightly longer to purge, but it will linearly reduce the number of
443 * global TLB flushes that must be performed. It would seem natural to scale
444 * this number up linearly with the number of CPUs (because vmapping activity
445 * could also scale linearly with the number of CPUs), however it is likely
446 * that in practice, workloads might be constrained in other ways that mean
447 * vmap activity will not scale linearly with CPUs. Also, I want to be
448 * conservative and not introduce a big latency on huge systems, so go with
449 * a less aggressive log scale. It will still be an improvement over the old
450 * code, and it will be simple to change the scale factor if we find that it
451 * becomes a problem on bigger systems.
452 */
453static unsigned long lazy_max_pages(void)
454{
455 unsigned int log;
456
457 log = fls(num_online_cpus());
458
459 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
460}
461
462static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
463
464/*
465 * Purges all lazily-freed vmap areas.
466 *
467 * If sync is 0 then don't purge if there is already a purge in progress.
468 * If force_flush is 1, then flush kernel TLBs between *start and *end even
469 * if we found no lazy vmap areas to unmap (callers can use this to optimise
470 * their own TLB flushing).
471 * Returns with *start = min(*start, lowest purged address)
472 * *end = max(*end, highest purged address)
473 */
474static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
475 int sync, int force_flush)
476{
e97a630e 477 static DEFINE_MUTEX(purge_lock);
db64fe02
NP
478 LIST_HEAD(valist);
479 struct vmap_area *va;
480 int nr = 0;
481
482 /*
483 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
484 * should not expect such behaviour. This just simplifies locking for
485 * the case that isn't actually used at the moment anyway.
486 */
487 if (!sync && !force_flush) {
e97a630e 488 if (!mutex_trylock(&purge_lock))
db64fe02
NP
489 return;
490 } else
e97a630e 491 mutex_lock(&purge_lock);
db64fe02
NP
492
493 rcu_read_lock();
494 list_for_each_entry_rcu(va, &vmap_area_list, list) {
495 if (va->flags & VM_LAZY_FREE) {
496 if (va->va_start < *start)
497 *start = va->va_start;
498 if (va->va_end > *end)
499 *end = va->va_end;
500 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
501 unmap_vmap_area(va);
502 list_add_tail(&va->purge_list, &valist);
503 va->flags |= VM_LAZY_FREEING;
504 va->flags &= ~VM_LAZY_FREE;
505 }
506 }
507 rcu_read_unlock();
508
509 if (nr) {
510 BUG_ON(nr > atomic_read(&vmap_lazy_nr));
511 atomic_sub(nr, &vmap_lazy_nr);
512 }
513
514 if (nr || force_flush)
515 flush_tlb_kernel_range(*start, *end);
516
517 if (nr) {
518 spin_lock(&vmap_area_lock);
519 list_for_each_entry(va, &valist, purge_list)
520 __free_vmap_area(va);
521 spin_unlock(&vmap_area_lock);
522 }
e97a630e 523 mutex_unlock(&purge_lock);
db64fe02
NP
524}
525
496850e5
NP
526/*
527 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
528 * is already purging.
529 */
530static void try_purge_vmap_area_lazy(void)
531{
532 unsigned long start = ULONG_MAX, end = 0;
533
534 __purge_vmap_area_lazy(&start, &end, 0, 0);
535}
536
db64fe02
NP
537/*
538 * Kick off a purge of the outstanding lazy areas.
539 */
540static void purge_vmap_area_lazy(void)
541{
542 unsigned long start = ULONG_MAX, end = 0;
543
496850e5 544 __purge_vmap_area_lazy(&start, &end, 1, 0);
db64fe02
NP
545}
546
547/*
b29acbdc
NP
548 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
549 * called for the correct range previously.
db64fe02 550 */
b29acbdc 551static void free_unmap_vmap_area_noflush(struct vmap_area *va)
db64fe02
NP
552{
553 va->flags |= VM_LAZY_FREE;
554 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
555 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
496850e5 556 try_purge_vmap_area_lazy();
db64fe02
NP
557}
558
b29acbdc
NP
559/*
560 * Free and unmap a vmap area
561 */
562static void free_unmap_vmap_area(struct vmap_area *va)
563{
564 flush_cache_vunmap(va->va_start, va->va_end);
565 free_unmap_vmap_area_noflush(va);
566}
567
db64fe02
NP
568static struct vmap_area *find_vmap_area(unsigned long addr)
569{
570 struct vmap_area *va;
571
572 spin_lock(&vmap_area_lock);
573 va = __find_vmap_area(addr);
574 spin_unlock(&vmap_area_lock);
575
576 return va;
577}
578
579static void free_unmap_vmap_area_addr(unsigned long addr)
580{
581 struct vmap_area *va;
582
583 va = find_vmap_area(addr);
584 BUG_ON(!va);
585 free_unmap_vmap_area(va);
586}
587
588
589/*** Per cpu kva allocator ***/
590
591/*
592 * vmap space is limited especially on 32 bit architectures. Ensure there is
593 * room for at least 16 percpu vmap blocks per CPU.
594 */
595/*
596 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
597 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
598 * instead (we just need a rough idea)
599 */
600#if BITS_PER_LONG == 32
601#define VMALLOC_SPACE (128UL*1024*1024)
602#else
603#define VMALLOC_SPACE (128UL*1024*1024*1024)
604#endif
605
606#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
607#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
608#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
609#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
610#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
611#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
612#define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
613 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
614 VMALLOC_PAGES / NR_CPUS / 16))
615
616#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
617
9b463334
JF
618static bool vmap_initialized __read_mostly = false;
619
db64fe02
NP
620struct vmap_block_queue {
621 spinlock_t lock;
622 struct list_head free;
623 struct list_head dirty;
624 unsigned int nr_dirty;
625};
626
627struct vmap_block {
628 spinlock_t lock;
629 struct vmap_area *va;
630 struct vmap_block_queue *vbq;
631 unsigned long free, dirty;
632 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
633 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
634 union {
635 struct {
636 struct list_head free_list;
637 struct list_head dirty_list;
638 };
639 struct rcu_head rcu_head;
640 };
641};
642
643/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
644static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
645
646/*
647 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
648 * in the free path. Could get rid of this if we change the API to return a
649 * "cookie" from alloc, to be passed to free. But no big deal yet.
650 */
651static DEFINE_SPINLOCK(vmap_block_tree_lock);
652static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
653
654/*
655 * We should probably have a fallback mechanism to allocate virtual memory
656 * out of partially filled vmap blocks. However vmap block sizing should be
657 * fairly reasonable according to the vmalloc size, so it shouldn't be a
658 * big problem.
659 */
660
661static unsigned long addr_to_vb_idx(unsigned long addr)
662{
663 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
664 addr /= VMAP_BLOCK_SIZE;
665 return addr;
666}
667
668static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
669{
670 struct vmap_block_queue *vbq;
671 struct vmap_block *vb;
672 struct vmap_area *va;
673 unsigned long vb_idx;
674 int node, err;
675
676 node = numa_node_id();
677
678 vb = kmalloc_node(sizeof(struct vmap_block),
679 gfp_mask & GFP_RECLAIM_MASK, node);
680 if (unlikely(!vb))
681 return ERR_PTR(-ENOMEM);
682
683 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
684 VMALLOC_START, VMALLOC_END,
685 node, gfp_mask);
686 if (unlikely(IS_ERR(va))) {
687 kfree(vb);
688 return ERR_PTR(PTR_ERR(va));
689 }
690
691 err = radix_tree_preload(gfp_mask);
692 if (unlikely(err)) {
693 kfree(vb);
694 free_vmap_area(va);
695 return ERR_PTR(err);
696 }
697
698 spin_lock_init(&vb->lock);
699 vb->va = va;
700 vb->free = VMAP_BBMAP_BITS;
701 vb->dirty = 0;
702 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
703 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
704 INIT_LIST_HEAD(&vb->free_list);
705 INIT_LIST_HEAD(&vb->dirty_list);
706
707 vb_idx = addr_to_vb_idx(va->va_start);
708 spin_lock(&vmap_block_tree_lock);
709 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
710 spin_unlock(&vmap_block_tree_lock);
711 BUG_ON(err);
712 radix_tree_preload_end();
713
714 vbq = &get_cpu_var(vmap_block_queue);
715 vb->vbq = vbq;
716 spin_lock(&vbq->lock);
717 list_add(&vb->free_list, &vbq->free);
718 spin_unlock(&vbq->lock);
719 put_cpu_var(vmap_cpu_blocks);
720
721 return vb;
722}
723
724static void rcu_free_vb(struct rcu_head *head)
725{
726 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
727
728 kfree(vb);
729}
730
731static void free_vmap_block(struct vmap_block *vb)
732{
733 struct vmap_block *tmp;
734 unsigned long vb_idx;
735
736 spin_lock(&vb->vbq->lock);
737 if (!list_empty(&vb->free_list))
738 list_del(&vb->free_list);
739 if (!list_empty(&vb->dirty_list))
740 list_del(&vb->dirty_list);
741 spin_unlock(&vb->vbq->lock);
742
743 vb_idx = addr_to_vb_idx(vb->va->va_start);
744 spin_lock(&vmap_block_tree_lock);
745 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
746 spin_unlock(&vmap_block_tree_lock);
747 BUG_ON(tmp != vb);
748
b29acbdc 749 free_unmap_vmap_area_noflush(vb->va);
db64fe02
NP
750 call_rcu(&vb->rcu_head, rcu_free_vb);
751}
752
753static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
754{
755 struct vmap_block_queue *vbq;
756 struct vmap_block *vb;
757 unsigned long addr = 0;
758 unsigned int order;
759
760 BUG_ON(size & ~PAGE_MASK);
761 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
762 order = get_order(size);
763
764again:
765 rcu_read_lock();
766 vbq = &get_cpu_var(vmap_block_queue);
767 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
768 int i;
769
770 spin_lock(&vb->lock);
771 i = bitmap_find_free_region(vb->alloc_map,
772 VMAP_BBMAP_BITS, order);
773
774 if (i >= 0) {
775 addr = vb->va->va_start + (i << PAGE_SHIFT);
776 BUG_ON(addr_to_vb_idx(addr) !=
777 addr_to_vb_idx(vb->va->va_start));
778 vb->free -= 1UL << order;
779 if (vb->free == 0) {
780 spin_lock(&vbq->lock);
781 list_del_init(&vb->free_list);
782 spin_unlock(&vbq->lock);
783 }
784 spin_unlock(&vb->lock);
785 break;
786 }
787 spin_unlock(&vb->lock);
788 }
789 put_cpu_var(vmap_cpu_blocks);
790 rcu_read_unlock();
791
792 if (!addr) {
793 vb = new_vmap_block(gfp_mask);
794 if (IS_ERR(vb))
795 return vb;
796 goto again;
797 }
798
799 return (void *)addr;
800}
801
802static void vb_free(const void *addr, unsigned long size)
803{
804 unsigned long offset;
805 unsigned long vb_idx;
806 unsigned int order;
807 struct vmap_block *vb;
808
809 BUG_ON(size & ~PAGE_MASK);
810 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
811
812 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
813
db64fe02
NP
814 order = get_order(size);
815
816 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
817
818 vb_idx = addr_to_vb_idx((unsigned long)addr);
819 rcu_read_lock();
820 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
821 rcu_read_unlock();
822 BUG_ON(!vb);
823
824 spin_lock(&vb->lock);
825 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
826 if (!vb->dirty) {
827 spin_lock(&vb->vbq->lock);
828 list_add(&vb->dirty_list, &vb->vbq->dirty);
829 spin_unlock(&vb->vbq->lock);
830 }
831 vb->dirty += 1UL << order;
832 if (vb->dirty == VMAP_BBMAP_BITS) {
833 BUG_ON(vb->free || !list_empty(&vb->free_list));
834 spin_unlock(&vb->lock);
835 free_vmap_block(vb);
836 } else
837 spin_unlock(&vb->lock);
838}
839
840/**
841 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
842 *
843 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
844 * to amortize TLB flushing overheads. What this means is that any page you
845 * have now, may, in a former life, have been mapped into kernel virtual
846 * address by the vmap layer and so there might be some CPUs with TLB entries
847 * still referencing that page (additional to the regular 1:1 kernel mapping).
848 *
849 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
850 * be sure that none of the pages we have control over will have any aliases
851 * from the vmap layer.
852 */
853void vm_unmap_aliases(void)
854{
855 unsigned long start = ULONG_MAX, end = 0;
856 int cpu;
857 int flush = 0;
858
9b463334
JF
859 if (unlikely(!vmap_initialized))
860 return;
861
db64fe02
NP
862 for_each_possible_cpu(cpu) {
863 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
864 struct vmap_block *vb;
865
866 rcu_read_lock();
867 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
868 int i;
869
870 spin_lock(&vb->lock);
871 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
872 while (i < VMAP_BBMAP_BITS) {
873 unsigned long s, e;
874 int j;
875 j = find_next_zero_bit(vb->dirty_map,
876 VMAP_BBMAP_BITS, i);
877
878 s = vb->va->va_start + (i << PAGE_SHIFT);
879 e = vb->va->va_start + (j << PAGE_SHIFT);
880 vunmap_page_range(s, e);
881 flush = 1;
882
883 if (s < start)
884 start = s;
885 if (e > end)
886 end = e;
887
888 i = j;
889 i = find_next_bit(vb->dirty_map,
890 VMAP_BBMAP_BITS, i);
891 }
892 spin_unlock(&vb->lock);
893 }
894 rcu_read_unlock();
895 }
896
897 __purge_vmap_area_lazy(&start, &end, 1, flush);
898}
899EXPORT_SYMBOL_GPL(vm_unmap_aliases);
900
901/**
902 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
903 * @mem: the pointer returned by vm_map_ram
904 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
905 */
906void vm_unmap_ram(const void *mem, unsigned int count)
907{
908 unsigned long size = count << PAGE_SHIFT;
909 unsigned long addr = (unsigned long)mem;
910
911 BUG_ON(!addr);
912 BUG_ON(addr < VMALLOC_START);
913 BUG_ON(addr > VMALLOC_END);
914 BUG_ON(addr & (PAGE_SIZE-1));
915
916 debug_check_no_locks_freed(mem, size);
917
918 if (likely(count <= VMAP_MAX_ALLOC))
919 vb_free(mem, size);
920 else
921 free_unmap_vmap_area_addr(addr);
922}
923EXPORT_SYMBOL(vm_unmap_ram);
924
925/**
926 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
927 * @pages: an array of pointers to the pages to be mapped
928 * @count: number of pages
929 * @node: prefer to allocate data structures on this node
930 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad
RD
931 *
932 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
933 */
934void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
935{
936 unsigned long size = count << PAGE_SHIFT;
937 unsigned long addr;
938 void *mem;
939
940 if (likely(count <= VMAP_MAX_ALLOC)) {
941 mem = vb_alloc(size, GFP_KERNEL);
942 if (IS_ERR(mem))
943 return NULL;
944 addr = (unsigned long)mem;
945 } else {
946 struct vmap_area *va;
947 va = alloc_vmap_area(size, PAGE_SIZE,
948 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
949 if (IS_ERR(va))
950 return NULL;
951
952 addr = va->va_start;
953 mem = (void *)addr;
954 }
955 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
956 vm_unmap_ram(mem, count);
957 return NULL;
958 }
959 return mem;
960}
961EXPORT_SYMBOL(vm_map_ram);
962
963void __init vmalloc_init(void)
964{
965 int i;
966
967 for_each_possible_cpu(i) {
968 struct vmap_block_queue *vbq;
969
970 vbq = &per_cpu(vmap_block_queue, i);
971 spin_lock_init(&vbq->lock);
972 INIT_LIST_HEAD(&vbq->free);
973 INIT_LIST_HEAD(&vbq->dirty);
974 vbq->nr_dirty = 0;
975 }
9b463334
JF
976
977 vmap_initialized = true;
db64fe02
NP
978}
979
980void unmap_kernel_range(unsigned long addr, unsigned long size)
981{
982 unsigned long end = addr + size;
983 vunmap_page_range(addr, end);
984 flush_tlb_kernel_range(addr, end);
985}
986
987int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
988{
989 unsigned long addr = (unsigned long)area->addr;
990 unsigned long end = addr + area->size - PAGE_SIZE;
991 int err;
992
993 err = vmap_page_range(addr, end, prot, *pages);
994 if (err > 0) {
995 *pages += err;
996 err = 0;
997 }
998
999 return err;
1000}
1001EXPORT_SYMBOL_GPL(map_vm_area);
1002
1003/*** Old vmalloc interfaces ***/
1004DEFINE_RWLOCK(vmlist_lock);
1005struct vm_struct *vmlist;
1006
1007static struct vm_struct *__get_vm_area_node(unsigned long size,
1008 unsigned long flags, unsigned long start, unsigned long end,
1009 int node, gfp_t gfp_mask, void *caller)
1010{
1011 static struct vmap_area *va;
1012 struct vm_struct *area;
1013 struct vm_struct *tmp, **p;
1014 unsigned long align = 1;
1da177e4 1015
52fd24ca 1016 BUG_ON(in_interrupt());
1da177e4
LT
1017 if (flags & VM_IOREMAP) {
1018 int bit = fls(size);
1019
1020 if (bit > IOREMAP_MAX_ORDER)
1021 bit = IOREMAP_MAX_ORDER;
1022 else if (bit < PAGE_SHIFT)
1023 bit = PAGE_SHIFT;
1024
1025 align = 1ul << bit;
1026 }
db64fe02 1027
1da177e4 1028 size = PAGE_ALIGN(size);
31be8309
OH
1029 if (unlikely(!size))
1030 return NULL;
1da177e4 1031
6cb06229 1032 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1033 if (unlikely(!area))
1034 return NULL;
1035
1da177e4
LT
1036 /*
1037 * We always allocate a guard page.
1038 */
1039 size += PAGE_SIZE;
1040
db64fe02
NP
1041 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1042 if (IS_ERR(va)) {
1043 kfree(area);
1044 return NULL;
1da177e4 1045 }
1da177e4
LT
1046
1047 area->flags = flags;
db64fe02 1048 area->addr = (void *)va->va_start;
1da177e4
LT
1049 area->size = size;
1050 area->pages = NULL;
1051 area->nr_pages = 0;
1052 area->phys_addr = 0;
23016969 1053 area->caller = caller;
db64fe02
NP
1054 va->private = area;
1055 va->flags |= VM_VM_AREA;
1056
1057 write_lock(&vmlist_lock);
1058 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1059 if (tmp->addr >= area->addr)
1060 break;
1061 }
1062 area->next = *p;
1063 *p = area;
1da177e4
LT
1064 write_unlock(&vmlist_lock);
1065
1066 return area;
1da177e4
LT
1067}
1068
930fc45a
CL
1069struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1070 unsigned long start, unsigned long end)
1071{
23016969
CL
1072 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1073 __builtin_return_address(0));
930fc45a 1074}
5992b6da 1075EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1076
1da177e4 1077/**
183ff22b 1078 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
1079 * @size: size of the area
1080 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1081 *
1082 * Search an area of @size in the kernel virtual mapping area,
1083 * and reserved it for out purposes. Returns the area descriptor
1084 * on success or %NULL on failure.
1085 */
1086struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1087{
23016969
CL
1088 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1089 -1, GFP_KERNEL, __builtin_return_address(0));
1090}
1091
1092struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1093 void *caller)
1094{
1095 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1096 -1, GFP_KERNEL, caller);
1da177e4
LT
1097}
1098
52fd24ca
GP
1099struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1100 int node, gfp_t gfp_mask)
930fc45a 1101{
52fd24ca 1102 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
23016969 1103 gfp_mask, __builtin_return_address(0));
930fc45a
CL
1104}
1105
db64fe02 1106static struct vm_struct *find_vm_area(const void *addr)
83342314 1107{
db64fe02 1108 struct vmap_area *va;
83342314 1109
db64fe02
NP
1110 va = find_vmap_area((unsigned long)addr);
1111 if (va && va->flags & VM_VM_AREA)
1112 return va->private;
1da177e4 1113
1da177e4 1114 return NULL;
1da177e4
LT
1115}
1116
7856dfeb 1117/**
183ff22b 1118 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
1119 * @addr: base address
1120 *
1121 * Search for the kernel VM area starting at @addr, and remove it.
1122 * This function returns the found VM area, but using it is NOT safe
1123 * on SMP machines, except for its size or flags.
1124 */
b3bdda02 1125struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1126{
db64fe02
NP
1127 struct vmap_area *va;
1128
1129 va = find_vmap_area((unsigned long)addr);
1130 if (va && va->flags & VM_VM_AREA) {
1131 struct vm_struct *vm = va->private;
1132 struct vm_struct *tmp, **p;
1133 free_unmap_vmap_area(va);
1134 vm->size -= PAGE_SIZE;
1135
1136 write_lock(&vmlist_lock);
1137 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1138 ;
1139 *p = tmp->next;
1140 write_unlock(&vmlist_lock);
1141
1142 return vm;
1143 }
1144 return NULL;
7856dfeb
AK
1145}
1146
b3bdda02 1147static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1148{
1149 struct vm_struct *area;
1150
1151 if (!addr)
1152 return;
1153
1154 if ((PAGE_SIZE-1) & (unsigned long)addr) {
4c8573e2 1155 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1da177e4
LT
1156 return;
1157 }
1158
1159 area = remove_vm_area(addr);
1160 if (unlikely(!area)) {
4c8573e2 1161 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1162 addr);
1da177e4
LT
1163 return;
1164 }
1165
9a11b49a 1166 debug_check_no_locks_freed(addr, area->size);
3ac7fe5a 1167 debug_check_no_obj_freed(addr, area->size);
9a11b49a 1168
1da177e4
LT
1169 if (deallocate_pages) {
1170 int i;
1171
1172 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1173 struct page *page = area->pages[i];
1174
1175 BUG_ON(!page);
1176 __free_page(page);
1da177e4
LT
1177 }
1178
8757d5fa 1179 if (area->flags & VM_VPAGES)
1da177e4
LT
1180 vfree(area->pages);
1181 else
1182 kfree(area->pages);
1183 }
1184
1185 kfree(area);
1186 return;
1187}
1188
1189/**
1190 * vfree - release memory allocated by vmalloc()
1da177e4
LT
1191 * @addr: memory base address
1192 *
183ff22b 1193 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
1194 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1195 * NULL, no operation is performed.
1da177e4 1196 *
80e93eff 1197 * Must not be called in interrupt context.
1da177e4 1198 */
b3bdda02 1199void vfree(const void *addr)
1da177e4
LT
1200{
1201 BUG_ON(in_interrupt());
1202 __vunmap(addr, 1);
1203}
1da177e4
LT
1204EXPORT_SYMBOL(vfree);
1205
1206/**
1207 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
1208 * @addr: memory base address
1209 *
1210 * Free the virtually contiguous memory area starting at @addr,
1211 * which was created from the page array passed to vmap().
1212 *
80e93eff 1213 * Must not be called in interrupt context.
1da177e4 1214 */
b3bdda02 1215void vunmap(const void *addr)
1da177e4
LT
1216{
1217 BUG_ON(in_interrupt());
1218 __vunmap(addr, 0);
1219}
1da177e4
LT
1220EXPORT_SYMBOL(vunmap);
1221
1222/**
1223 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
1224 * @pages: array of page pointers
1225 * @count: number of pages to map
1226 * @flags: vm_area->flags
1227 * @prot: page protection for the mapping
1228 *
1229 * Maps @count pages from @pages into contiguous kernel virtual
1230 * space.
1231 */
1232void *vmap(struct page **pages, unsigned int count,
1233 unsigned long flags, pgprot_t prot)
1234{
1235 struct vm_struct *area;
1236
1237 if (count > num_physpages)
1238 return NULL;
1239
23016969
CL
1240 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1241 __builtin_return_address(0));
1da177e4
LT
1242 if (!area)
1243 return NULL;
23016969 1244
1da177e4
LT
1245 if (map_vm_area(area, prot, &pages)) {
1246 vunmap(area->addr);
1247 return NULL;
1248 }
1249
1250 return area->addr;
1251}
1da177e4
LT
1252EXPORT_SYMBOL(vmap);
1253
db64fe02
NP
1254static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1255 int node, void *caller);
e31d9eb5 1256static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
23016969 1257 pgprot_t prot, int node, void *caller)
1da177e4
LT
1258{
1259 struct page **pages;
1260 unsigned int nr_pages, array_size, i;
1261
1262 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1263 array_size = (nr_pages * sizeof(struct page *));
1264
1265 area->nr_pages = nr_pages;
1266 /* Please note that the recursion is strictly bounded. */
8757d5fa 1267 if (array_size > PAGE_SIZE) {
94f6030c 1268 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
23016969 1269 PAGE_KERNEL, node, caller);
8757d5fa 1270 area->flags |= VM_VPAGES;
286e1ea3
AM
1271 } else {
1272 pages = kmalloc_node(array_size,
6cb06229 1273 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
286e1ea3
AM
1274 node);
1275 }
1da177e4 1276 area->pages = pages;
23016969 1277 area->caller = caller;
1da177e4
LT
1278 if (!area->pages) {
1279 remove_vm_area(area->addr);
1280 kfree(area);
1281 return NULL;
1282 }
1da177e4
LT
1283
1284 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1285 struct page *page;
1286
930fc45a 1287 if (node < 0)
bf53d6f8 1288 page = alloc_page(gfp_mask);
930fc45a 1289 else
bf53d6f8
CL
1290 page = alloc_pages_node(node, gfp_mask, 0);
1291
1292 if (unlikely(!page)) {
1da177e4
LT
1293 /* Successfully allocated i pages, free them in __vunmap() */
1294 area->nr_pages = i;
1295 goto fail;
1296 }
bf53d6f8 1297 area->pages[i] = page;
1da177e4
LT
1298 }
1299
1300 if (map_vm_area(area, prot, &pages))
1301 goto fail;
1302 return area->addr;
1303
1304fail:
1305 vfree(area->addr);
1306 return NULL;
1307}
1308
930fc45a
CL
1309void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1310{
23016969
CL
1311 return __vmalloc_area_node(area, gfp_mask, prot, -1,
1312 __builtin_return_address(0));
930fc45a
CL
1313}
1314
1da177e4 1315/**
930fc45a 1316 * __vmalloc_node - allocate virtually contiguous memory
1da177e4
LT
1317 * @size: allocation size
1318 * @gfp_mask: flags for the page level allocator
1319 * @prot: protection mask for the allocated pages
d44e0780 1320 * @node: node to use for allocation or -1
c85d194b 1321 * @caller: caller's return address
1da177e4
LT
1322 *
1323 * Allocate enough pages to cover @size from the page level
1324 * allocator with @gfp_mask flags. Map them into contiguous
1325 * kernel virtual space, using a pagetable protection of @prot.
1326 */
b221385b 1327static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
23016969 1328 int node, void *caller)
1da177e4
LT
1329{
1330 struct vm_struct *area;
1331
1332 size = PAGE_ALIGN(size);
1333 if (!size || (size >> PAGE_SHIFT) > num_physpages)
1334 return NULL;
1335
23016969
CL
1336 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1337 node, gfp_mask, caller);
1338
1da177e4
LT
1339 if (!area)
1340 return NULL;
1341
23016969 1342 return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1da177e4
LT
1343}
1344
930fc45a
CL
1345void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1346{
23016969
CL
1347 return __vmalloc_node(size, gfp_mask, prot, -1,
1348 __builtin_return_address(0));
930fc45a 1349}
1da177e4
LT
1350EXPORT_SYMBOL(__vmalloc);
1351
1352/**
1353 * vmalloc - allocate virtually contiguous memory
1da177e4 1354 * @size: allocation size
1da177e4
LT
1355 * Allocate enough pages to cover @size from the page level
1356 * allocator and map them into contiguous kernel virtual space.
1357 *
c1c8897f 1358 * For tight control over page level allocator and protection flags
1da177e4
LT
1359 * use __vmalloc() instead.
1360 */
1361void *vmalloc(unsigned long size)
1362{
23016969
CL
1363 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1364 -1, __builtin_return_address(0));
1da177e4 1365}
1da177e4
LT
1366EXPORT_SYMBOL(vmalloc);
1367
83342314 1368/**
ead04089
REB
1369 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1370 * @size: allocation size
83342314 1371 *
ead04089
REB
1372 * The resulting memory area is zeroed so it can be mapped to userspace
1373 * without leaking data.
83342314
NP
1374 */
1375void *vmalloc_user(unsigned long size)
1376{
1377 struct vm_struct *area;
1378 void *ret;
1379
84877848
GC
1380 ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1381 PAGE_KERNEL, -1, __builtin_return_address(0));
2b4ac44e 1382 if (ret) {
db64fe02 1383 area = find_vm_area(ret);
2b4ac44e 1384 area->flags |= VM_USERMAP;
2b4ac44e 1385 }
83342314
NP
1386 return ret;
1387}
1388EXPORT_SYMBOL(vmalloc_user);
1389
930fc45a
CL
1390/**
1391 * vmalloc_node - allocate memory on a specific node
930fc45a 1392 * @size: allocation size
d44e0780 1393 * @node: numa node
930fc45a
CL
1394 *
1395 * Allocate enough pages to cover @size from the page level
1396 * allocator and map them into contiguous kernel virtual space.
1397 *
c1c8897f 1398 * For tight control over page level allocator and protection flags
930fc45a
CL
1399 * use __vmalloc() instead.
1400 */
1401void *vmalloc_node(unsigned long size, int node)
1402{
23016969
CL
1403 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1404 node, __builtin_return_address(0));
930fc45a
CL
1405}
1406EXPORT_SYMBOL(vmalloc_node);
1407
4dc3b16b
PP
1408#ifndef PAGE_KERNEL_EXEC
1409# define PAGE_KERNEL_EXEC PAGE_KERNEL
1410#endif
1411
1da177e4
LT
1412/**
1413 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
1414 * @size: allocation size
1415 *
1416 * Kernel-internal function to allocate enough pages to cover @size
1417 * the page level allocator and map them into contiguous and
1418 * executable kernel virtual space.
1419 *
c1c8897f 1420 * For tight control over page level allocator and protection flags
1da177e4
LT
1421 * use __vmalloc() instead.
1422 */
1423
1da177e4
LT
1424void *vmalloc_exec(unsigned long size)
1425{
84877848
GC
1426 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1427 -1, __builtin_return_address(0));
1da177e4
LT
1428}
1429
0d08e0d3 1430#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
7ac674f5 1431#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3 1432#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
7ac674f5 1433#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
0d08e0d3
AK
1434#else
1435#define GFP_VMALLOC32 GFP_KERNEL
1436#endif
1437
1da177e4
LT
1438/**
1439 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
1440 * @size: allocation size
1441 *
1442 * Allocate enough 32bit PA addressable pages to cover @size from the
1443 * page level allocator and map them into contiguous kernel virtual space.
1444 */
1445void *vmalloc_32(unsigned long size)
1446{
84877848
GC
1447 return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL,
1448 -1, __builtin_return_address(0));
1da177e4 1449}
1da177e4
LT
1450EXPORT_SYMBOL(vmalloc_32);
1451
83342314 1452/**
ead04089 1453 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 1454 * @size: allocation size
ead04089
REB
1455 *
1456 * The resulting memory area is 32bit addressable and zeroed so it can be
1457 * mapped to userspace without leaking data.
83342314
NP
1458 */
1459void *vmalloc_32_user(unsigned long size)
1460{
1461 struct vm_struct *area;
1462 void *ret;
1463
84877848
GC
1464 ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1465 -1, __builtin_return_address(0));
2b4ac44e 1466 if (ret) {
db64fe02 1467 area = find_vm_area(ret);
2b4ac44e 1468 area->flags |= VM_USERMAP;
2b4ac44e 1469 }
83342314
NP
1470 return ret;
1471}
1472EXPORT_SYMBOL(vmalloc_32_user);
1473
1da177e4
LT
1474long vread(char *buf, char *addr, unsigned long count)
1475{
1476 struct vm_struct *tmp;
1477 char *vaddr, *buf_start = buf;
1478 unsigned long n;
1479
1480 /* Don't allow overflow */
1481 if ((unsigned long) addr + count < count)
1482 count = -(unsigned long) addr;
1483
1484 read_lock(&vmlist_lock);
1485 for (tmp = vmlist; tmp; tmp = tmp->next) {
1486 vaddr = (char *) tmp->addr;
1487 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1488 continue;
1489 while (addr < vaddr) {
1490 if (count == 0)
1491 goto finished;
1492 *buf = '\0';
1493 buf++;
1494 addr++;
1495 count--;
1496 }
1497 n = vaddr + tmp->size - PAGE_SIZE - addr;
1498 do {
1499 if (count == 0)
1500 goto finished;
1501 *buf = *addr;
1502 buf++;
1503 addr++;
1504 count--;
1505 } while (--n > 0);
1506 }
1507finished:
1508 read_unlock(&vmlist_lock);
1509 return buf - buf_start;
1510}
1511
1512long vwrite(char *buf, char *addr, unsigned long count)
1513{
1514 struct vm_struct *tmp;
1515 char *vaddr, *buf_start = buf;
1516 unsigned long n;
1517
1518 /* Don't allow overflow */
1519 if ((unsigned long) addr + count < count)
1520 count = -(unsigned long) addr;
1521
1522 read_lock(&vmlist_lock);
1523 for (tmp = vmlist; tmp; tmp = tmp->next) {
1524 vaddr = (char *) tmp->addr;
1525 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1526 continue;
1527 while (addr < vaddr) {
1528 if (count == 0)
1529 goto finished;
1530 buf++;
1531 addr++;
1532 count--;
1533 }
1534 n = vaddr + tmp->size - PAGE_SIZE - addr;
1535 do {
1536 if (count == 0)
1537 goto finished;
1538 *addr = *buf;
1539 buf++;
1540 addr++;
1541 count--;
1542 } while (--n > 0);
1543 }
1544finished:
1545 read_unlock(&vmlist_lock);
1546 return buf - buf_start;
1547}
83342314
NP
1548
1549/**
1550 * remap_vmalloc_range - map vmalloc pages to userspace
83342314
NP
1551 * @vma: vma to cover (map full range of vma)
1552 * @addr: vmalloc memory
1553 * @pgoff: number of pages into addr before first page to map
7682486b
RD
1554 *
1555 * Returns: 0 for success, -Exxx on failure
83342314
NP
1556 *
1557 * This function checks that addr is a valid vmalloc'ed area, and
1558 * that it is big enough to cover the vma. Will return failure if
1559 * that criteria isn't met.
1560 *
72fd4a35 1561 * Similar to remap_pfn_range() (see mm/memory.c)
83342314
NP
1562 */
1563int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1564 unsigned long pgoff)
1565{
1566 struct vm_struct *area;
1567 unsigned long uaddr = vma->vm_start;
1568 unsigned long usize = vma->vm_end - vma->vm_start;
83342314
NP
1569
1570 if ((PAGE_SIZE-1) & (unsigned long)addr)
1571 return -EINVAL;
1572
db64fe02 1573 area = find_vm_area(addr);
83342314 1574 if (!area)
db64fe02 1575 return -EINVAL;
83342314
NP
1576
1577 if (!(area->flags & VM_USERMAP))
db64fe02 1578 return -EINVAL;
83342314
NP
1579
1580 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
db64fe02 1581 return -EINVAL;
83342314
NP
1582
1583 addr += pgoff << PAGE_SHIFT;
1584 do {
1585 struct page *page = vmalloc_to_page(addr);
db64fe02
NP
1586 int ret;
1587
83342314
NP
1588 ret = vm_insert_page(vma, uaddr, page);
1589 if (ret)
1590 return ret;
1591
1592 uaddr += PAGE_SIZE;
1593 addr += PAGE_SIZE;
1594 usize -= PAGE_SIZE;
1595 } while (usize > 0);
1596
1597 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1598 vma->vm_flags |= VM_RESERVED;
1599
db64fe02 1600 return 0;
83342314
NP
1601}
1602EXPORT_SYMBOL(remap_vmalloc_range);
1603
1eeb66a1
CH
1604/*
1605 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1606 * have one.
1607 */
1608void __attribute__((weak)) vmalloc_sync_all(void)
1609{
1610}
5f4352fb
JF
1611
1612
2f569afd 1613static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb
JF
1614{
1615 /* apply_to_page_range() does all the hard work. */
1616 return 0;
1617}
1618
1619/**
1620 * alloc_vm_area - allocate a range of kernel address space
1621 * @size: size of the area
7682486b
RD
1622 *
1623 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
1624 *
1625 * This function reserves a range of kernel address space, and
1626 * allocates pagetables to map that range. No actual mappings
1627 * are created. If the kernel address space is not shared
1628 * between processes, it syncs the pagetable across all
1629 * processes.
1630 */
1631struct vm_struct *alloc_vm_area(size_t size)
1632{
1633 struct vm_struct *area;
1634
23016969
CL
1635 area = get_vm_area_caller(size, VM_IOREMAP,
1636 __builtin_return_address(0));
5f4352fb
JF
1637 if (area == NULL)
1638 return NULL;
1639
1640 /*
1641 * This ensures that page tables are constructed for this region
1642 * of kernel virtual address space and mapped into init_mm.
1643 */
1644 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1645 area->size, f, NULL)) {
1646 free_vm_area(area);
1647 return NULL;
1648 }
1649
1650 /* Make sure the pagetables are constructed in process kernel
1651 mappings */
1652 vmalloc_sync_all();
1653
1654 return area;
1655}
1656EXPORT_SYMBOL_GPL(alloc_vm_area);
1657
1658void free_vm_area(struct vm_struct *area)
1659{
1660 struct vm_struct *ret;
1661 ret = remove_vm_area(area->addr);
1662 BUG_ON(ret != area);
1663 kfree(area);
1664}
1665EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579
CL
1666
1667
1668#ifdef CONFIG_PROC_FS
1669static void *s_start(struct seq_file *m, loff_t *pos)
1670{
1671 loff_t n = *pos;
1672 struct vm_struct *v;
1673
1674 read_lock(&vmlist_lock);
1675 v = vmlist;
1676 while (n > 0 && v) {
1677 n--;
1678 v = v->next;
1679 }
1680 if (!n)
1681 return v;
1682
1683 return NULL;
1684
1685}
1686
1687static void *s_next(struct seq_file *m, void *p, loff_t *pos)
1688{
1689 struct vm_struct *v = p;
1690
1691 ++*pos;
1692 return v->next;
1693}
1694
1695static void s_stop(struct seq_file *m, void *p)
1696{
1697 read_unlock(&vmlist_lock);
1698}
1699
a47a126a
ED
1700static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1701{
1702 if (NUMA_BUILD) {
1703 unsigned int nr, *counters = m->private;
1704
1705 if (!counters)
1706 return;
1707
1708 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1709
1710 for (nr = 0; nr < v->nr_pages; nr++)
1711 counters[page_to_nid(v->pages[nr])]++;
1712
1713 for_each_node_state(nr, N_HIGH_MEMORY)
1714 if (counters[nr])
1715 seq_printf(m, " N%u=%u", nr, counters[nr]);
1716 }
1717}
1718
a10aa579
CL
1719static int s_show(struct seq_file *m, void *p)
1720{
1721 struct vm_struct *v = p;
1722
1723 seq_printf(m, "0x%p-0x%p %7ld",
1724 v->addr, v->addr + v->size, v->size);
1725
23016969 1726 if (v->caller) {
9c246247 1727 char buff[KSYM_SYMBOL_LEN];
23016969
CL
1728
1729 seq_putc(m, ' ');
1730 sprint_symbol(buff, (unsigned long)v->caller);
1731 seq_puts(m, buff);
1732 }
1733
a10aa579
CL
1734 if (v->nr_pages)
1735 seq_printf(m, " pages=%d", v->nr_pages);
1736
1737 if (v->phys_addr)
1738 seq_printf(m, " phys=%lx", v->phys_addr);
1739
1740 if (v->flags & VM_IOREMAP)
1741 seq_printf(m, " ioremap");
1742
1743 if (v->flags & VM_ALLOC)
1744 seq_printf(m, " vmalloc");
1745
1746 if (v->flags & VM_MAP)
1747 seq_printf(m, " vmap");
1748
1749 if (v->flags & VM_USERMAP)
1750 seq_printf(m, " user");
1751
1752 if (v->flags & VM_VPAGES)
1753 seq_printf(m, " vpages");
1754
a47a126a 1755 show_numa_info(m, v);
a10aa579
CL
1756 seq_putc(m, '\n');
1757 return 0;
1758}
1759
5f6a6a9c 1760static const struct seq_operations vmalloc_op = {
a10aa579
CL
1761 .start = s_start,
1762 .next = s_next,
1763 .stop = s_stop,
1764 .show = s_show,
1765};
5f6a6a9c
AD
1766
1767static int vmalloc_open(struct inode *inode, struct file *file)
1768{
1769 unsigned int *ptr = NULL;
1770 int ret;
1771
1772 if (NUMA_BUILD)
1773 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
1774 ret = seq_open(file, &vmalloc_op);
1775 if (!ret) {
1776 struct seq_file *m = file->private_data;
1777 m->private = ptr;
1778 } else
1779 kfree(ptr);
1780 return ret;
1781}
1782
1783static const struct file_operations proc_vmalloc_operations = {
1784 .open = vmalloc_open,
1785 .read = seq_read,
1786 .llseek = seq_lseek,
1787 .release = seq_release_private,
1788};
1789
1790static int __init proc_vmalloc_init(void)
1791{
1792 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
1793 return 0;
1794}
1795module_init(proc_vmalloc_init);
a10aa579
CL
1796#endif
1797