]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/vmalloc.c
mm: add gfp flags for NODEMASK_ALLOC slab allocations
[net-next-2.6.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
d43c36dc 15#include <linux/sched.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
3ac7fe5a 21#include <linux/debugobjects.h>
23016969 22#include <linux/kallsyms.h>
db64fe02
NP
23#include <linux/list.h>
24#include <linux/rbtree.h>
25#include <linux/radix-tree.h>
26#include <linux/rcupdate.h>
f0aa6617 27#include <linux/pfn.h>
89219d37 28#include <linux/kmemleak.h>
db64fe02 29#include <asm/atomic.h>
1da177e4
LT
30#include <asm/uaccess.h>
31#include <asm/tlbflush.h>
2dca6999 32#include <asm/shmparam.h>
1da177e4
LT
33
34
db64fe02 35/*** Page table manipulation functions ***/
b221385b 36
1da177e4
LT
37static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
38{
39 pte_t *pte;
40
41 pte = pte_offset_kernel(pmd, addr);
42 do {
43 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
44 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
45 } while (pte++, addr += PAGE_SIZE, addr != end);
46}
47
db64fe02 48static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
49{
50 pmd_t *pmd;
51 unsigned long next;
52
53 pmd = pmd_offset(pud, addr);
54 do {
55 next = pmd_addr_end(addr, end);
56 if (pmd_none_or_clear_bad(pmd))
57 continue;
58 vunmap_pte_range(pmd, addr, next);
59 } while (pmd++, addr = next, addr != end);
60}
61
db64fe02 62static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
1da177e4
LT
63{
64 pud_t *pud;
65 unsigned long next;
66
67 pud = pud_offset(pgd, addr);
68 do {
69 next = pud_addr_end(addr, end);
70 if (pud_none_or_clear_bad(pud))
71 continue;
72 vunmap_pmd_range(pud, addr, next);
73 } while (pud++, addr = next, addr != end);
74}
75
db64fe02 76static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
77{
78 pgd_t *pgd;
79 unsigned long next;
1da177e4
LT
80
81 BUG_ON(addr >= end);
82 pgd = pgd_offset_k(addr);
1da177e4
LT
83 do {
84 next = pgd_addr_end(addr, end);
85 if (pgd_none_or_clear_bad(pgd))
86 continue;
87 vunmap_pud_range(pgd, addr, next);
88 } while (pgd++, addr = next, addr != end);
1da177e4
LT
89}
90
91static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 92 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
93{
94 pte_t *pte;
95
db64fe02
NP
96 /*
97 * nr is a running index into the array which helps higher level
98 * callers keep track of where we're up to.
99 */
100
872fec16 101 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
102 if (!pte)
103 return -ENOMEM;
104 do {
db64fe02
NP
105 struct page *page = pages[*nr];
106
107 if (WARN_ON(!pte_none(*pte)))
108 return -EBUSY;
109 if (WARN_ON(!page))
1da177e4
LT
110 return -ENOMEM;
111 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 112 (*nr)++;
1da177e4
LT
113 } while (pte++, addr += PAGE_SIZE, addr != end);
114 return 0;
115}
116
db64fe02
NP
117static int vmap_pmd_range(pud_t *pud, unsigned long addr,
118 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
119{
120 pmd_t *pmd;
121 unsigned long next;
122
123 pmd = pmd_alloc(&init_mm, pud, addr);
124 if (!pmd)
125 return -ENOMEM;
126 do {
127 next = pmd_addr_end(addr, end);
db64fe02 128 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
129 return -ENOMEM;
130 } while (pmd++, addr = next, addr != end);
131 return 0;
132}
133
db64fe02
NP
134static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
135 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
136{
137 pud_t *pud;
138 unsigned long next;
139
140 pud = pud_alloc(&init_mm, pgd, addr);
141 if (!pud)
142 return -ENOMEM;
143 do {
144 next = pud_addr_end(addr, end);
db64fe02 145 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
146 return -ENOMEM;
147 } while (pud++, addr = next, addr != end);
148 return 0;
149}
150
db64fe02
NP
151/*
152 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
153 * will have pfns corresponding to the "pages" array.
154 *
155 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
156 */
8fc48985
TH
157static int vmap_page_range_noflush(unsigned long start, unsigned long end,
158 pgprot_t prot, struct page **pages)
1da177e4
LT
159{
160 pgd_t *pgd;
161 unsigned long next;
2e4e27c7 162 unsigned long addr = start;
db64fe02
NP
163 int err = 0;
164 int nr = 0;
1da177e4
LT
165
166 BUG_ON(addr >= end);
167 pgd = pgd_offset_k(addr);
1da177e4
LT
168 do {
169 next = pgd_addr_end(addr, end);
db64fe02 170 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
1da177e4 171 if (err)
bf88c8c8 172 return err;
1da177e4 173 } while (pgd++, addr = next, addr != end);
db64fe02 174
db64fe02 175 return nr;
1da177e4
LT
176}
177
8fc48985
TH
178static int vmap_page_range(unsigned long start, unsigned long end,
179 pgprot_t prot, struct page **pages)
180{
181 int ret;
182
183 ret = vmap_page_range_noflush(start, end, prot, pages);
184 flush_cache_vmap(start, end);
185 return ret;
186}
187
81ac3ad9 188int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
189{
190 /*
ab4f2ee1 191 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
192 * and fall back on vmalloc() if that fails. Others
193 * just put it in the vmalloc space.
194 */
195#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
196 unsigned long addr = (unsigned long)x;
197 if (addr >= MODULES_VADDR && addr < MODULES_END)
198 return 1;
199#endif
200 return is_vmalloc_addr(x);
201}
202
48667e7a 203/*
db64fe02 204 * Walk a vmap address to the struct page it maps.
48667e7a 205 */
b3bdda02 206struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
207{
208 unsigned long addr = (unsigned long) vmalloc_addr;
209 struct page *page = NULL;
210 pgd_t *pgd = pgd_offset_k(addr);
48667e7a 211
7aa413de
IM
212 /*
213 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
214 * architectures that do not vmalloc module space
215 */
73bdf0a6 216 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 217
48667e7a 218 if (!pgd_none(*pgd)) {
db64fe02 219 pud_t *pud = pud_offset(pgd, addr);
48667e7a 220 if (!pud_none(*pud)) {
db64fe02 221 pmd_t *pmd = pmd_offset(pud, addr);
48667e7a 222 if (!pmd_none(*pmd)) {
db64fe02
NP
223 pte_t *ptep, pte;
224
48667e7a
CL
225 ptep = pte_offset_map(pmd, addr);
226 pte = *ptep;
227 if (pte_present(pte))
228 page = pte_page(pte);
229 pte_unmap(ptep);
230 }
231 }
232 }
233 return page;
234}
235EXPORT_SYMBOL(vmalloc_to_page);
236
237/*
238 * Map a vmalloc()-space virtual address to the physical page frame number.
239 */
b3bdda02 240unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a
CL
241{
242 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
243}
244EXPORT_SYMBOL(vmalloc_to_pfn);
245
db64fe02
NP
246
247/*** Global kva allocator ***/
248
249#define VM_LAZY_FREE 0x01
250#define VM_LAZY_FREEING 0x02
251#define VM_VM_AREA 0x04
252
253struct vmap_area {
254 unsigned long va_start;
255 unsigned long va_end;
256 unsigned long flags;
257 struct rb_node rb_node; /* address sorted rbtree */
258 struct list_head list; /* address sorted list */
259 struct list_head purge_list; /* "lazy purge" list */
260 void *private;
261 struct rcu_head rcu_head;
262};
263
264static DEFINE_SPINLOCK(vmap_area_lock);
265static struct rb_root vmap_area_root = RB_ROOT;
266static LIST_HEAD(vmap_area_list);
ca23e405 267static unsigned long vmap_area_pcpu_hole;
db64fe02
NP
268
269static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 270{
db64fe02
NP
271 struct rb_node *n = vmap_area_root.rb_node;
272
273 while (n) {
274 struct vmap_area *va;
275
276 va = rb_entry(n, struct vmap_area, rb_node);
277 if (addr < va->va_start)
278 n = n->rb_left;
279 else if (addr > va->va_start)
280 n = n->rb_right;
281 else
282 return va;
283 }
284
285 return NULL;
286}
287
288static void __insert_vmap_area(struct vmap_area *va)
289{
290 struct rb_node **p = &vmap_area_root.rb_node;
291 struct rb_node *parent = NULL;
292 struct rb_node *tmp;
293
294 while (*p) {
295 struct vmap_area *tmp;
296
297 parent = *p;
298 tmp = rb_entry(parent, struct vmap_area, rb_node);
299 if (va->va_start < tmp->va_end)
300 p = &(*p)->rb_left;
301 else if (va->va_end > tmp->va_start)
302 p = &(*p)->rb_right;
303 else
304 BUG();
305 }
306
307 rb_link_node(&va->rb_node, parent, p);
308 rb_insert_color(&va->rb_node, &vmap_area_root);
309
310 /* address-sort this list so it is usable like the vmlist */
311 tmp = rb_prev(&va->rb_node);
312 if (tmp) {
313 struct vmap_area *prev;
314 prev = rb_entry(tmp, struct vmap_area, rb_node);
315 list_add_rcu(&va->list, &prev->list);
316 } else
317 list_add_rcu(&va->list, &vmap_area_list);
318}
319
320static void purge_vmap_area_lazy(void);
321
322/*
323 * Allocate a region of KVA of the specified size and alignment, within the
324 * vstart and vend.
325 */
326static struct vmap_area *alloc_vmap_area(unsigned long size,
327 unsigned long align,
328 unsigned long vstart, unsigned long vend,
329 int node, gfp_t gfp_mask)
330{
331 struct vmap_area *va;
332 struct rb_node *n;
1da177e4 333 unsigned long addr;
db64fe02
NP
334 int purged = 0;
335
7766970c 336 BUG_ON(!size);
db64fe02
NP
337 BUG_ON(size & ~PAGE_MASK);
338
db64fe02
NP
339 va = kmalloc_node(sizeof(struct vmap_area),
340 gfp_mask & GFP_RECLAIM_MASK, node);
341 if (unlikely(!va))
342 return ERR_PTR(-ENOMEM);
343
344retry:
0ae15132
GC
345 addr = ALIGN(vstart, align);
346
db64fe02 347 spin_lock(&vmap_area_lock);
7766970c
NP
348 if (addr + size - 1 < addr)
349 goto overflow;
350
db64fe02
NP
351 /* XXX: could have a last_hole cache */
352 n = vmap_area_root.rb_node;
353 if (n) {
354 struct vmap_area *first = NULL;
355
356 do {
357 struct vmap_area *tmp;
358 tmp = rb_entry(n, struct vmap_area, rb_node);
359 if (tmp->va_end >= addr) {
360 if (!first && tmp->va_start < addr + size)
361 first = tmp;
362 n = n->rb_left;
363 } else {
364 first = tmp;
365 n = n->rb_right;
366 }
367 } while (n);
368
369 if (!first)
370 goto found;
371
372 if (first->va_end < addr) {
373 n = rb_next(&first->rb_node);
374 if (n)
375 first = rb_entry(n, struct vmap_area, rb_node);
376 else
377 goto found;
378 }
379
f011c2da 380 while (addr + size > first->va_start && addr + size <= vend) {
db64fe02 381 addr = ALIGN(first->va_end + PAGE_SIZE, align);
7766970c
NP
382 if (addr + size - 1 < addr)
383 goto overflow;
db64fe02
NP
384
385 n = rb_next(&first->rb_node);
386 if (n)
387 first = rb_entry(n, struct vmap_area, rb_node);
388 else
389 goto found;
390 }
391 }
392found:
393 if (addr + size > vend) {
7766970c 394overflow:
db64fe02
NP
395 spin_unlock(&vmap_area_lock);
396 if (!purged) {
397 purge_vmap_area_lazy();
398 purged = 1;
399 goto retry;
400 }
401 if (printk_ratelimit())
c1279c4e
GC
402 printk(KERN_WARNING
403 "vmap allocation for size %lu failed: "
404 "use vmalloc=<size> to increase size.\n", size);
2498ce42 405 kfree(va);
db64fe02
NP
406 return ERR_PTR(-EBUSY);
407 }
408
409 BUG_ON(addr & (align-1));
410
411 va->va_start = addr;
412 va->va_end = addr + size;
413 va->flags = 0;
414 __insert_vmap_area(va);
415 spin_unlock(&vmap_area_lock);
416
417 return va;
418}
419
420static void rcu_free_va(struct rcu_head *head)
421{
422 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
423
424 kfree(va);
425}
426
427static void __free_vmap_area(struct vmap_area *va)
428{
429 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
430 rb_erase(&va->rb_node, &vmap_area_root);
431 RB_CLEAR_NODE(&va->rb_node);
432 list_del_rcu(&va->list);
433
ca23e405
TH
434 /*
435 * Track the highest possible candidate for pcpu area
436 * allocation. Areas outside of vmalloc area can be returned
437 * here too, consider only end addresses which fall inside
438 * vmalloc area proper.
439 */
440 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
441 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
442
db64fe02
NP
443 call_rcu(&va->rcu_head, rcu_free_va);
444}
445
446/*
447 * Free a region of KVA allocated by alloc_vmap_area
448 */
449static void free_vmap_area(struct vmap_area *va)
450{
451 spin_lock(&vmap_area_lock);
452 __free_vmap_area(va);
453 spin_unlock(&vmap_area_lock);
454}
455
456/*
457 * Clear the pagetable entries of a given vmap_area
458 */
459static void unmap_vmap_area(struct vmap_area *va)
460{
461 vunmap_page_range(va->va_start, va->va_end);
462}
463
cd52858c
NP
464static void vmap_debug_free_range(unsigned long start, unsigned long end)
465{
466 /*
467 * Unmap page tables and force a TLB flush immediately if
468 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
469 * bugs similarly to those in linear kernel virtual address
470 * space after a page has been freed.
471 *
472 * All the lazy freeing logic is still retained, in order to
473 * minimise intrusiveness of this debugging feature.
474 *
475 * This is going to be *slow* (linear kernel virtual address
476 * debugging doesn't do a broadcast TLB flush so it is a lot
477 * faster).
478 */
479#ifdef CONFIG_DEBUG_PAGEALLOC
480 vunmap_page_range(start, end);
481 flush_tlb_kernel_range(start, end);
482#endif
483}
484
db64fe02
NP
485/*
486 * lazy_max_pages is the maximum amount of virtual address space we gather up
487 * before attempting to purge with a TLB flush.
488 *
489 * There is a tradeoff here: a larger number will cover more kernel page tables
490 * and take slightly longer to purge, but it will linearly reduce the number of
491 * global TLB flushes that must be performed. It would seem natural to scale
492 * this number up linearly with the number of CPUs (because vmapping activity
493 * could also scale linearly with the number of CPUs), however it is likely
494 * that in practice, workloads might be constrained in other ways that mean
495 * vmap activity will not scale linearly with CPUs. Also, I want to be
496 * conservative and not introduce a big latency on huge systems, so go with
497 * a less aggressive log scale. It will still be an improvement over the old
498 * code, and it will be simple to change the scale factor if we find that it
499 * becomes a problem on bigger systems.
500 */
501static unsigned long lazy_max_pages(void)
502{
503 unsigned int log;
504
505 log = fls(num_online_cpus());
506
507 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
508}
509
510static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
511
512/*
513 * Purges all lazily-freed vmap areas.
514 *
515 * If sync is 0 then don't purge if there is already a purge in progress.
516 * If force_flush is 1, then flush kernel TLBs between *start and *end even
517 * if we found no lazy vmap areas to unmap (callers can use this to optimise
518 * their own TLB flushing).
519 * Returns with *start = min(*start, lowest purged address)
520 * *end = max(*end, highest purged address)
521 */
522static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
523 int sync, int force_flush)
524{
46666d8a 525 static DEFINE_SPINLOCK(purge_lock);
db64fe02
NP
526 LIST_HEAD(valist);
527 struct vmap_area *va;
cbb76676 528 struct vmap_area *n_va;
db64fe02
NP
529 int nr = 0;
530
531 /*
532 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
533 * should not expect such behaviour. This just simplifies locking for
534 * the case that isn't actually used at the moment anyway.
535 */
536 if (!sync && !force_flush) {
46666d8a 537 if (!spin_trylock(&purge_lock))
db64fe02
NP
538 return;
539 } else
46666d8a 540 spin_lock(&purge_lock);
db64fe02
NP
541
542 rcu_read_lock();
543 list_for_each_entry_rcu(va, &vmap_area_list, list) {
544 if (va->flags & VM_LAZY_FREE) {
545 if (va->va_start < *start)
546 *start = va->va_start;
547 if (va->va_end > *end)
548 *end = va->va_end;
549 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
550 unmap_vmap_area(va);
551 list_add_tail(&va->purge_list, &valist);
552 va->flags |= VM_LAZY_FREEING;
553 va->flags &= ~VM_LAZY_FREE;
554 }
555 }
556 rcu_read_unlock();
557
558 if (nr) {
559 BUG_ON(nr > atomic_read(&vmap_lazy_nr));
560 atomic_sub(nr, &vmap_lazy_nr);
561 }
562
563 if (nr || force_flush)
564 flush_tlb_kernel_range(*start, *end);
565
566 if (nr) {
567 spin_lock(&vmap_area_lock);
cbb76676 568 list_for_each_entry_safe(va, n_va, &valist, purge_list)
db64fe02
NP
569 __free_vmap_area(va);
570 spin_unlock(&vmap_area_lock);
571 }
46666d8a 572 spin_unlock(&purge_lock);
db64fe02
NP
573}
574
496850e5
NP
575/*
576 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
577 * is already purging.
578 */
579static void try_purge_vmap_area_lazy(void)
580{
581 unsigned long start = ULONG_MAX, end = 0;
582
583 __purge_vmap_area_lazy(&start, &end, 0, 0);
584}
585
db64fe02
NP
586/*
587 * Kick off a purge of the outstanding lazy areas.
588 */
589static void purge_vmap_area_lazy(void)
590{
591 unsigned long start = ULONG_MAX, end = 0;
592
496850e5 593 __purge_vmap_area_lazy(&start, &end, 1, 0);
db64fe02
NP
594}
595
596/*
b29acbdc
NP
597 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
598 * called for the correct range previously.
db64fe02 599 */
b29acbdc 600static void free_unmap_vmap_area_noflush(struct vmap_area *va)
db64fe02
NP
601{
602 va->flags |= VM_LAZY_FREE;
603 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
604 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
496850e5 605 try_purge_vmap_area_lazy();
db64fe02
NP
606}
607
b29acbdc
NP
608/*
609 * Free and unmap a vmap area
610 */
611static void free_unmap_vmap_area(struct vmap_area *va)
612{
613 flush_cache_vunmap(va->va_start, va->va_end);
614 free_unmap_vmap_area_noflush(va);
615}
616
db64fe02
NP
617static struct vmap_area *find_vmap_area(unsigned long addr)
618{
619 struct vmap_area *va;
620
621 spin_lock(&vmap_area_lock);
622 va = __find_vmap_area(addr);
623 spin_unlock(&vmap_area_lock);
624
625 return va;
626}
627
628static void free_unmap_vmap_area_addr(unsigned long addr)
629{
630 struct vmap_area *va;
631
632 va = find_vmap_area(addr);
633 BUG_ON(!va);
634 free_unmap_vmap_area(va);
635}
636
637
638/*** Per cpu kva allocator ***/
639
640/*
641 * vmap space is limited especially on 32 bit architectures. Ensure there is
642 * room for at least 16 percpu vmap blocks per CPU.
643 */
644/*
645 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
646 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
647 * instead (we just need a rough idea)
648 */
649#if BITS_PER_LONG == 32
650#define VMALLOC_SPACE (128UL*1024*1024)
651#else
652#define VMALLOC_SPACE (128UL*1024*1024*1024)
653#endif
654
655#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
656#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
657#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
658#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
659#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
660#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
661#define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
662 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
663 VMALLOC_PAGES / NR_CPUS / 16))
664
665#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
666
9b463334
JF
667static bool vmap_initialized __read_mostly = false;
668
db64fe02
NP
669struct vmap_block_queue {
670 spinlock_t lock;
671 struct list_head free;
672 struct list_head dirty;
673 unsigned int nr_dirty;
674};
675
676struct vmap_block {
677 spinlock_t lock;
678 struct vmap_area *va;
679 struct vmap_block_queue *vbq;
680 unsigned long free, dirty;
681 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
682 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
683 union {
d086817d 684 struct list_head free_list;
db64fe02
NP
685 struct rcu_head rcu_head;
686 };
687};
688
689/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
690static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
691
692/*
693 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
694 * in the free path. Could get rid of this if we change the API to return a
695 * "cookie" from alloc, to be passed to free. But no big deal yet.
696 */
697static DEFINE_SPINLOCK(vmap_block_tree_lock);
698static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
699
700/*
701 * We should probably have a fallback mechanism to allocate virtual memory
702 * out of partially filled vmap blocks. However vmap block sizing should be
703 * fairly reasonable according to the vmalloc size, so it shouldn't be a
704 * big problem.
705 */
706
707static unsigned long addr_to_vb_idx(unsigned long addr)
708{
709 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
710 addr /= VMAP_BLOCK_SIZE;
711 return addr;
712}
713
714static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
715{
716 struct vmap_block_queue *vbq;
717 struct vmap_block *vb;
718 struct vmap_area *va;
719 unsigned long vb_idx;
720 int node, err;
721
722 node = numa_node_id();
723
724 vb = kmalloc_node(sizeof(struct vmap_block),
725 gfp_mask & GFP_RECLAIM_MASK, node);
726 if (unlikely(!vb))
727 return ERR_PTR(-ENOMEM);
728
729 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
730 VMALLOC_START, VMALLOC_END,
731 node, gfp_mask);
732 if (unlikely(IS_ERR(va))) {
733 kfree(vb);
734 return ERR_PTR(PTR_ERR(va));
735 }
736
737 err = radix_tree_preload(gfp_mask);
738 if (unlikely(err)) {
739 kfree(vb);
740 free_vmap_area(va);
741 return ERR_PTR(err);
742 }
743
744 spin_lock_init(&vb->lock);
745 vb->va = va;
746 vb->free = VMAP_BBMAP_BITS;
747 vb->dirty = 0;
748 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
749 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
750 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
751
752 vb_idx = addr_to_vb_idx(va->va_start);
753 spin_lock(&vmap_block_tree_lock);
754 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
755 spin_unlock(&vmap_block_tree_lock);
756 BUG_ON(err);
757 radix_tree_preload_end();
758
759 vbq = &get_cpu_var(vmap_block_queue);
760 vb->vbq = vbq;
761 spin_lock(&vbq->lock);
762 list_add(&vb->free_list, &vbq->free);
763 spin_unlock(&vbq->lock);
3f04ba85 764 put_cpu_var(vmap_block_queue);
db64fe02
NP
765
766 return vb;
767}
768
769static void rcu_free_vb(struct rcu_head *head)
770{
771 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
772
773 kfree(vb);
774}
775
776static void free_vmap_block(struct vmap_block *vb)
777{
778 struct vmap_block *tmp;
779 unsigned long vb_idx;
780
d086817d 781 BUG_ON(!list_empty(&vb->free_list));
db64fe02
NP
782
783 vb_idx = addr_to_vb_idx(vb->va->va_start);
784 spin_lock(&vmap_block_tree_lock);
785 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
786 spin_unlock(&vmap_block_tree_lock);
787 BUG_ON(tmp != vb);
788
b29acbdc 789 free_unmap_vmap_area_noflush(vb->va);
db64fe02
NP
790 call_rcu(&vb->rcu_head, rcu_free_vb);
791}
792
793static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
794{
795 struct vmap_block_queue *vbq;
796 struct vmap_block *vb;
797 unsigned long addr = 0;
798 unsigned int order;
799
800 BUG_ON(size & ~PAGE_MASK);
801 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
802 order = get_order(size);
803
804again:
805 rcu_read_lock();
806 vbq = &get_cpu_var(vmap_block_queue);
807 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
808 int i;
809
810 spin_lock(&vb->lock);
811 i = bitmap_find_free_region(vb->alloc_map,
812 VMAP_BBMAP_BITS, order);
813
814 if (i >= 0) {
815 addr = vb->va->va_start + (i << PAGE_SHIFT);
816 BUG_ON(addr_to_vb_idx(addr) !=
817 addr_to_vb_idx(vb->va->va_start));
818 vb->free -= 1UL << order;
819 if (vb->free == 0) {
820 spin_lock(&vbq->lock);
821 list_del_init(&vb->free_list);
822 spin_unlock(&vbq->lock);
823 }
824 spin_unlock(&vb->lock);
825 break;
826 }
827 spin_unlock(&vb->lock);
828 }
3f04ba85 829 put_cpu_var(vmap_block_queue);
db64fe02
NP
830 rcu_read_unlock();
831
832 if (!addr) {
833 vb = new_vmap_block(gfp_mask);
834 if (IS_ERR(vb))
835 return vb;
836 goto again;
837 }
838
839 return (void *)addr;
840}
841
842static void vb_free(const void *addr, unsigned long size)
843{
844 unsigned long offset;
845 unsigned long vb_idx;
846 unsigned int order;
847 struct vmap_block *vb;
848
849 BUG_ON(size & ~PAGE_MASK);
850 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
851
852 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
853
db64fe02
NP
854 order = get_order(size);
855
856 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
857
858 vb_idx = addr_to_vb_idx((unsigned long)addr);
859 rcu_read_lock();
860 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
861 rcu_read_unlock();
862 BUG_ON(!vb);
863
864 spin_lock(&vb->lock);
865 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
d086817d 866
db64fe02
NP
867 vb->dirty += 1UL << order;
868 if (vb->dirty == VMAP_BBMAP_BITS) {
869 BUG_ON(vb->free || !list_empty(&vb->free_list));
870 spin_unlock(&vb->lock);
871 free_vmap_block(vb);
872 } else
873 spin_unlock(&vb->lock);
874}
875
876/**
877 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
878 *
879 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
880 * to amortize TLB flushing overheads. What this means is that any page you
881 * have now, may, in a former life, have been mapped into kernel virtual
882 * address by the vmap layer and so there might be some CPUs with TLB entries
883 * still referencing that page (additional to the regular 1:1 kernel mapping).
884 *
885 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
886 * be sure that none of the pages we have control over will have any aliases
887 * from the vmap layer.
888 */
889void vm_unmap_aliases(void)
890{
891 unsigned long start = ULONG_MAX, end = 0;
892 int cpu;
893 int flush = 0;
894
9b463334
JF
895 if (unlikely(!vmap_initialized))
896 return;
897
db64fe02
NP
898 for_each_possible_cpu(cpu) {
899 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
900 struct vmap_block *vb;
901
902 rcu_read_lock();
903 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
904 int i;
905
906 spin_lock(&vb->lock);
907 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
908 while (i < VMAP_BBMAP_BITS) {
909 unsigned long s, e;
910 int j;
911 j = find_next_zero_bit(vb->dirty_map,
912 VMAP_BBMAP_BITS, i);
913
914 s = vb->va->va_start + (i << PAGE_SHIFT);
915 e = vb->va->va_start + (j << PAGE_SHIFT);
916 vunmap_page_range(s, e);
917 flush = 1;
918
919 if (s < start)
920 start = s;
921 if (e > end)
922 end = e;
923
924 i = j;
925 i = find_next_bit(vb->dirty_map,
926 VMAP_BBMAP_BITS, i);
927 }
928 spin_unlock(&vb->lock);
929 }
930 rcu_read_unlock();
931 }
932
933 __purge_vmap_area_lazy(&start, &end, 1, flush);
934}
935EXPORT_SYMBOL_GPL(vm_unmap_aliases);
936
937/**
938 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
939 * @mem: the pointer returned by vm_map_ram
940 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
941 */
942void vm_unmap_ram(const void *mem, unsigned int count)
943{
944 unsigned long size = count << PAGE_SHIFT;
945 unsigned long addr = (unsigned long)mem;
946
947 BUG_ON(!addr);
948 BUG_ON(addr < VMALLOC_START);
949 BUG_ON(addr > VMALLOC_END);
950 BUG_ON(addr & (PAGE_SIZE-1));
951
952 debug_check_no_locks_freed(mem, size);
cd52858c 953 vmap_debug_free_range(addr, addr+size);
db64fe02
NP
954
955 if (likely(count <= VMAP_MAX_ALLOC))
956 vb_free(mem, size);
957 else
958 free_unmap_vmap_area_addr(addr);
959}
960EXPORT_SYMBOL(vm_unmap_ram);
961
962/**
963 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
964 * @pages: an array of pointers to the pages to be mapped
965 * @count: number of pages
966 * @node: prefer to allocate data structures on this node
967 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad
RD
968 *
969 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
970 */
971void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
972{
973 unsigned long size = count << PAGE_SHIFT;
974 unsigned long addr;
975 void *mem;
976
977 if (likely(count <= VMAP_MAX_ALLOC)) {
978 mem = vb_alloc(size, GFP_KERNEL);
979 if (IS_ERR(mem))
980 return NULL;
981 addr = (unsigned long)mem;
982 } else {
983 struct vmap_area *va;
984 va = alloc_vmap_area(size, PAGE_SIZE,
985 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
986 if (IS_ERR(va))
987 return NULL;
988
989 addr = va->va_start;
990 mem = (void *)addr;
991 }
992 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
993 vm_unmap_ram(mem, count);
994 return NULL;
995 }
996 return mem;
997}
998EXPORT_SYMBOL(vm_map_ram);
999
f0aa6617
TH
1000/**
1001 * vm_area_register_early - register vmap area early during boot
1002 * @vm: vm_struct to register
c0c0a293 1003 * @align: requested alignment
f0aa6617
TH
1004 *
1005 * This function is used to register kernel vm area before
1006 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1007 * proper values on entry and other fields should be zero. On return,
1008 * vm->addr contains the allocated address.
1009 *
1010 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1011 */
c0c0a293 1012void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1013{
1014 static size_t vm_init_off __initdata;
c0c0a293
TH
1015 unsigned long addr;
1016
1017 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1018 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1019
c0c0a293 1020 vm->addr = (void *)addr;
f0aa6617
TH
1021
1022 vm->next = vmlist;
1023 vmlist = vm;
1024}
1025
db64fe02
NP
1026void __init vmalloc_init(void)
1027{
822c18f2
IK
1028 struct vmap_area *va;
1029 struct vm_struct *tmp;
db64fe02
NP
1030 int i;
1031
1032 for_each_possible_cpu(i) {
1033 struct vmap_block_queue *vbq;
1034
1035 vbq = &per_cpu(vmap_block_queue, i);
1036 spin_lock_init(&vbq->lock);
1037 INIT_LIST_HEAD(&vbq->free);
1038 INIT_LIST_HEAD(&vbq->dirty);
1039 vbq->nr_dirty = 0;
1040 }
9b463334 1041
822c18f2
IK
1042 /* Import existing vmlist entries. */
1043 for (tmp = vmlist; tmp; tmp = tmp->next) {
43ebdac4 1044 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
822c18f2
IK
1045 va->flags = tmp->flags | VM_VM_AREA;
1046 va->va_start = (unsigned long)tmp->addr;
1047 va->va_end = va->va_start + tmp->size;
1048 __insert_vmap_area(va);
1049 }
ca23e405
TH
1050
1051 vmap_area_pcpu_hole = VMALLOC_END;
1052
9b463334 1053 vmap_initialized = true;
db64fe02
NP
1054}
1055
8fc48985
TH
1056/**
1057 * map_kernel_range_noflush - map kernel VM area with the specified pages
1058 * @addr: start of the VM area to map
1059 * @size: size of the VM area to map
1060 * @prot: page protection flags to use
1061 * @pages: pages to map
1062 *
1063 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1064 * specify should have been allocated using get_vm_area() and its
1065 * friends.
1066 *
1067 * NOTE:
1068 * This function does NOT do any cache flushing. The caller is
1069 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1070 * before calling this function.
1071 *
1072 * RETURNS:
1073 * The number of pages mapped on success, -errno on failure.
1074 */
1075int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1076 pgprot_t prot, struct page **pages)
1077{
1078 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1079}
1080
1081/**
1082 * unmap_kernel_range_noflush - unmap kernel VM area
1083 * @addr: start of the VM area to unmap
1084 * @size: size of the VM area to unmap
1085 *
1086 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1087 * specify should have been allocated using get_vm_area() and its
1088 * friends.
1089 *
1090 * NOTE:
1091 * This function does NOT do any cache flushing. The caller is
1092 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1093 * before calling this function and flush_tlb_kernel_range() after.
1094 */
1095void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1096{
1097 vunmap_page_range(addr, addr + size);
1098}
1099
1100/**
1101 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1102 * @addr: start of the VM area to unmap
1103 * @size: size of the VM area to unmap
1104 *
1105 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1106 * the unmapping and tlb after.
1107 */
db64fe02
NP
1108void unmap_kernel_range(unsigned long addr, unsigned long size)
1109{
1110 unsigned long end = addr + size;
f6fcba70
TH
1111
1112 flush_cache_vunmap(addr, end);
db64fe02
NP
1113 vunmap_page_range(addr, end);
1114 flush_tlb_kernel_range(addr, end);
1115}
1116
1117int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1118{
1119 unsigned long addr = (unsigned long)area->addr;
1120 unsigned long end = addr + area->size - PAGE_SIZE;
1121 int err;
1122
1123 err = vmap_page_range(addr, end, prot, *pages);
1124 if (err > 0) {
1125 *pages += err;
1126 err = 0;
1127 }
1128
1129 return err;
1130}
1131EXPORT_SYMBOL_GPL(map_vm_area);
1132
1133/*** Old vmalloc interfaces ***/
1134DEFINE_RWLOCK(vmlist_lock);
1135struct vm_struct *vmlist;
1136
cf88c790
TH
1137static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1138 unsigned long flags, void *caller)
1139{
1140 struct vm_struct *tmp, **p;
1141
1142 vm->flags = flags;
1143 vm->addr = (void *)va->va_start;
1144 vm->size = va->va_end - va->va_start;
1145 vm->caller = caller;
1146 va->private = vm;
1147 va->flags |= VM_VM_AREA;
1148
1149 write_lock(&vmlist_lock);
1150 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1151 if (tmp->addr >= vm->addr)
1152 break;
1153 }
1154 vm->next = *p;
1155 *p = vm;
1156 write_unlock(&vmlist_lock);
1157}
1158
db64fe02 1159static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999
DM
1160 unsigned long align, unsigned long flags, unsigned long start,
1161 unsigned long end, int node, gfp_t gfp_mask, void *caller)
db64fe02
NP
1162{
1163 static struct vmap_area *va;
1164 struct vm_struct *area;
1da177e4 1165
52fd24ca 1166 BUG_ON(in_interrupt());
1da177e4
LT
1167 if (flags & VM_IOREMAP) {
1168 int bit = fls(size);
1169
1170 if (bit > IOREMAP_MAX_ORDER)
1171 bit = IOREMAP_MAX_ORDER;
1172 else if (bit < PAGE_SHIFT)
1173 bit = PAGE_SHIFT;
1174
1175 align = 1ul << bit;
1176 }
db64fe02 1177
1da177e4 1178 size = PAGE_ALIGN(size);
31be8309
OH
1179 if (unlikely(!size))
1180 return NULL;
1da177e4 1181
cf88c790 1182 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1183 if (unlikely(!area))
1184 return NULL;
1185
1da177e4
LT
1186 /*
1187 * We always allocate a guard page.
1188 */
1189 size += PAGE_SIZE;
1190
db64fe02
NP
1191 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1192 if (IS_ERR(va)) {
1193 kfree(area);
1194 return NULL;
1da177e4 1195 }
1da177e4 1196
cf88c790 1197 insert_vmalloc_vm(area, va, flags, caller);
1da177e4 1198 return area;
1da177e4
LT
1199}
1200
930fc45a
CL
1201struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1202 unsigned long start, unsigned long end)
1203{
2dca6999 1204 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
23016969 1205 __builtin_return_address(0));
930fc45a 1206}
5992b6da 1207EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1208
c2968612
BH
1209struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1210 unsigned long start, unsigned long end,
1211 void *caller)
1212{
2dca6999 1213 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
c2968612
BH
1214 caller);
1215}
1216
1da177e4 1217/**
183ff22b 1218 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
1219 * @size: size of the area
1220 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1221 *
1222 * Search an area of @size in the kernel virtual mapping area,
1223 * and reserved it for out purposes. Returns the area descriptor
1224 * on success or %NULL on failure.
1225 */
1226struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1227{
2dca6999 1228 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
23016969
CL
1229 -1, GFP_KERNEL, __builtin_return_address(0));
1230}
1231
1232struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1233 void *caller)
1234{
2dca6999 1235 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
23016969 1236 -1, GFP_KERNEL, caller);
1da177e4
LT
1237}
1238
52fd24ca
GP
1239struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1240 int node, gfp_t gfp_mask)
930fc45a 1241{
2dca6999
DM
1242 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1243 node, gfp_mask, __builtin_return_address(0));
930fc45a
CL
1244}
1245
db64fe02 1246static struct vm_struct *find_vm_area(const void *addr)
83342314 1247{
db64fe02 1248 struct vmap_area *va;
83342314 1249
db64fe02
NP
1250 va = find_vmap_area((unsigned long)addr);
1251 if (va && va->flags & VM_VM_AREA)
1252 return va->private;
1da177e4 1253
1da177e4 1254 return NULL;
1da177e4
LT
1255}
1256
7856dfeb 1257/**
183ff22b 1258 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
1259 * @addr: base address
1260 *
1261 * Search for the kernel VM area starting at @addr, and remove it.
1262 * This function returns the found VM area, but using it is NOT safe
1263 * on SMP machines, except for its size or flags.
1264 */
b3bdda02 1265struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1266{
db64fe02
NP
1267 struct vmap_area *va;
1268
1269 va = find_vmap_area((unsigned long)addr);
1270 if (va && va->flags & VM_VM_AREA) {
1271 struct vm_struct *vm = va->private;
1272 struct vm_struct *tmp, **p;
dd32c279
KH
1273 /*
1274 * remove from list and disallow access to this vm_struct
1275 * before unmap. (address range confliction is maintained by
1276 * vmap.)
1277 */
db64fe02
NP
1278 write_lock(&vmlist_lock);
1279 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1280 ;
1281 *p = tmp->next;
1282 write_unlock(&vmlist_lock);
1283
dd32c279
KH
1284 vmap_debug_free_range(va->va_start, va->va_end);
1285 free_unmap_vmap_area(va);
1286 vm->size -= PAGE_SIZE;
1287
db64fe02
NP
1288 return vm;
1289 }
1290 return NULL;
7856dfeb
AK
1291}
1292
b3bdda02 1293static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1294{
1295 struct vm_struct *area;
1296
1297 if (!addr)
1298 return;
1299
1300 if ((PAGE_SIZE-1) & (unsigned long)addr) {
4c8573e2 1301 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1da177e4
LT
1302 return;
1303 }
1304
1305 area = remove_vm_area(addr);
1306 if (unlikely(!area)) {
4c8573e2 1307 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1308 addr);
1da177e4
LT
1309 return;
1310 }
1311
9a11b49a 1312 debug_check_no_locks_freed(addr, area->size);
3ac7fe5a 1313 debug_check_no_obj_freed(addr, area->size);
9a11b49a 1314
1da177e4
LT
1315 if (deallocate_pages) {
1316 int i;
1317
1318 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1319 struct page *page = area->pages[i];
1320
1321 BUG_ON(!page);
1322 __free_page(page);
1da177e4
LT
1323 }
1324
8757d5fa 1325 if (area->flags & VM_VPAGES)
1da177e4
LT
1326 vfree(area->pages);
1327 else
1328 kfree(area->pages);
1329 }
1330
1331 kfree(area);
1332 return;
1333}
1334
1335/**
1336 * vfree - release memory allocated by vmalloc()
1da177e4
LT
1337 * @addr: memory base address
1338 *
183ff22b 1339 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
1340 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1341 * NULL, no operation is performed.
1da177e4 1342 *
80e93eff 1343 * Must not be called in interrupt context.
1da177e4 1344 */
b3bdda02 1345void vfree(const void *addr)
1da177e4
LT
1346{
1347 BUG_ON(in_interrupt());
89219d37
CM
1348
1349 kmemleak_free(addr);
1350
1da177e4
LT
1351 __vunmap(addr, 1);
1352}
1da177e4
LT
1353EXPORT_SYMBOL(vfree);
1354
1355/**
1356 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
1357 * @addr: memory base address
1358 *
1359 * Free the virtually contiguous memory area starting at @addr,
1360 * which was created from the page array passed to vmap().
1361 *
80e93eff 1362 * Must not be called in interrupt context.
1da177e4 1363 */
b3bdda02 1364void vunmap(const void *addr)
1da177e4
LT
1365{
1366 BUG_ON(in_interrupt());
34754b69 1367 might_sleep();
1da177e4
LT
1368 __vunmap(addr, 0);
1369}
1da177e4
LT
1370EXPORT_SYMBOL(vunmap);
1371
1372/**
1373 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
1374 * @pages: array of page pointers
1375 * @count: number of pages to map
1376 * @flags: vm_area->flags
1377 * @prot: page protection for the mapping
1378 *
1379 * Maps @count pages from @pages into contiguous kernel virtual
1380 * space.
1381 */
1382void *vmap(struct page **pages, unsigned int count,
1383 unsigned long flags, pgprot_t prot)
1384{
1385 struct vm_struct *area;
1386
34754b69
PZ
1387 might_sleep();
1388
4481374c 1389 if (count > totalram_pages)
1da177e4
LT
1390 return NULL;
1391
23016969
CL
1392 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1393 __builtin_return_address(0));
1da177e4
LT
1394 if (!area)
1395 return NULL;
23016969 1396
1da177e4
LT
1397 if (map_vm_area(area, prot, &pages)) {
1398 vunmap(area->addr);
1399 return NULL;
1400 }
1401
1402 return area->addr;
1403}
1da177e4
LT
1404EXPORT_SYMBOL(vmap);
1405
2dca6999
DM
1406static void *__vmalloc_node(unsigned long size, unsigned long align,
1407 gfp_t gfp_mask, pgprot_t prot,
db64fe02 1408 int node, void *caller);
e31d9eb5 1409static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
23016969 1410 pgprot_t prot, int node, void *caller)
1da177e4
LT
1411{
1412 struct page **pages;
1413 unsigned int nr_pages, array_size, i;
1414
1415 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1416 array_size = (nr_pages * sizeof(struct page *));
1417
1418 area->nr_pages = nr_pages;
1419 /* Please note that the recursion is strictly bounded. */
8757d5fa 1420 if (array_size > PAGE_SIZE) {
2dca6999 1421 pages = __vmalloc_node(array_size, 1, gfp_mask | __GFP_ZERO,
23016969 1422 PAGE_KERNEL, node, caller);
8757d5fa 1423 area->flags |= VM_VPAGES;
286e1ea3
AM
1424 } else {
1425 pages = kmalloc_node(array_size,
6cb06229 1426 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
286e1ea3
AM
1427 node);
1428 }
1da177e4 1429 area->pages = pages;
23016969 1430 area->caller = caller;
1da177e4
LT
1431 if (!area->pages) {
1432 remove_vm_area(area->addr);
1433 kfree(area);
1434 return NULL;
1435 }
1da177e4
LT
1436
1437 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1438 struct page *page;
1439
930fc45a 1440 if (node < 0)
bf53d6f8 1441 page = alloc_page(gfp_mask);
930fc45a 1442 else
bf53d6f8
CL
1443 page = alloc_pages_node(node, gfp_mask, 0);
1444
1445 if (unlikely(!page)) {
1da177e4
LT
1446 /* Successfully allocated i pages, free them in __vunmap() */
1447 area->nr_pages = i;
1448 goto fail;
1449 }
bf53d6f8 1450 area->pages[i] = page;
1da177e4
LT
1451 }
1452
1453 if (map_vm_area(area, prot, &pages))
1454 goto fail;
1455 return area->addr;
1456
1457fail:
1458 vfree(area->addr);
1459 return NULL;
1460}
1461
930fc45a
CL
1462void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1463{
89219d37
CM
1464 void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
1465 __builtin_return_address(0));
1466
1467 /*
1468 * A ref_count = 3 is needed because the vm_struct and vmap_area
1469 * structures allocated in the __get_vm_area_node() function contain
1470 * references to the virtual address of the vmalloc'ed block.
1471 */
1472 kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
1473
1474 return addr;
930fc45a
CL
1475}
1476
1da177e4 1477/**
930fc45a 1478 * __vmalloc_node - allocate virtually contiguous memory
1da177e4 1479 * @size: allocation size
2dca6999 1480 * @align: desired alignment
1da177e4
LT
1481 * @gfp_mask: flags for the page level allocator
1482 * @prot: protection mask for the allocated pages
d44e0780 1483 * @node: node to use for allocation or -1
c85d194b 1484 * @caller: caller's return address
1da177e4
LT
1485 *
1486 * Allocate enough pages to cover @size from the page level
1487 * allocator with @gfp_mask flags. Map them into contiguous
1488 * kernel virtual space, using a pagetable protection of @prot.
1489 */
2dca6999
DM
1490static void *__vmalloc_node(unsigned long size, unsigned long align,
1491 gfp_t gfp_mask, pgprot_t prot,
1492 int node, void *caller)
1da177e4
LT
1493{
1494 struct vm_struct *area;
89219d37
CM
1495 void *addr;
1496 unsigned long real_size = size;
1da177e4
LT
1497
1498 size = PAGE_ALIGN(size);
4481374c 1499 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1da177e4
LT
1500 return NULL;
1501
2dca6999
DM
1502 area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START,
1503 VMALLOC_END, node, gfp_mask, caller);
23016969 1504
1da177e4
LT
1505 if (!area)
1506 return NULL;
1507
89219d37
CM
1508 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1509
1510 /*
1511 * A ref_count = 3 is needed because the vm_struct and vmap_area
1512 * structures allocated in the __get_vm_area_node() function contain
1513 * references to the virtual address of the vmalloc'ed block.
1514 */
1515 kmemleak_alloc(addr, real_size, 3, gfp_mask);
1516
1517 return addr;
1da177e4
LT
1518}
1519
930fc45a
CL
1520void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1521{
2dca6999 1522 return __vmalloc_node(size, 1, gfp_mask, prot, -1,
23016969 1523 __builtin_return_address(0));
930fc45a 1524}
1da177e4
LT
1525EXPORT_SYMBOL(__vmalloc);
1526
1527/**
1528 * vmalloc - allocate virtually contiguous memory
1da177e4 1529 * @size: allocation size
1da177e4
LT
1530 * Allocate enough pages to cover @size from the page level
1531 * allocator and map them into contiguous kernel virtual space.
1532 *
c1c8897f 1533 * For tight control over page level allocator and protection flags
1da177e4
LT
1534 * use __vmalloc() instead.
1535 */
1536void *vmalloc(unsigned long size)
1537{
2dca6999 1538 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
23016969 1539 -1, __builtin_return_address(0));
1da177e4 1540}
1da177e4
LT
1541EXPORT_SYMBOL(vmalloc);
1542
83342314 1543/**
ead04089
REB
1544 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1545 * @size: allocation size
83342314 1546 *
ead04089
REB
1547 * The resulting memory area is zeroed so it can be mapped to userspace
1548 * without leaking data.
83342314
NP
1549 */
1550void *vmalloc_user(unsigned long size)
1551{
1552 struct vm_struct *area;
1553 void *ret;
1554
2dca6999
DM
1555 ret = __vmalloc_node(size, SHMLBA,
1556 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
84877848 1557 PAGE_KERNEL, -1, __builtin_return_address(0));
2b4ac44e 1558 if (ret) {
db64fe02 1559 area = find_vm_area(ret);
2b4ac44e 1560 area->flags |= VM_USERMAP;
2b4ac44e 1561 }
83342314
NP
1562 return ret;
1563}
1564EXPORT_SYMBOL(vmalloc_user);
1565
930fc45a
CL
1566/**
1567 * vmalloc_node - allocate memory on a specific node
930fc45a 1568 * @size: allocation size
d44e0780 1569 * @node: numa node
930fc45a
CL
1570 *
1571 * Allocate enough pages to cover @size from the page level
1572 * allocator and map them into contiguous kernel virtual space.
1573 *
c1c8897f 1574 * For tight control over page level allocator and protection flags
930fc45a
CL
1575 * use __vmalloc() instead.
1576 */
1577void *vmalloc_node(unsigned long size, int node)
1578{
2dca6999 1579 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
23016969 1580 node, __builtin_return_address(0));
930fc45a
CL
1581}
1582EXPORT_SYMBOL(vmalloc_node);
1583
4dc3b16b
PP
1584#ifndef PAGE_KERNEL_EXEC
1585# define PAGE_KERNEL_EXEC PAGE_KERNEL
1586#endif
1587
1da177e4
LT
1588/**
1589 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
1590 * @size: allocation size
1591 *
1592 * Kernel-internal function to allocate enough pages to cover @size
1593 * the page level allocator and map them into contiguous and
1594 * executable kernel virtual space.
1595 *
c1c8897f 1596 * For tight control over page level allocator and protection flags
1da177e4
LT
1597 * use __vmalloc() instead.
1598 */
1599
1da177e4
LT
1600void *vmalloc_exec(unsigned long size)
1601{
2dca6999 1602 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
84877848 1603 -1, __builtin_return_address(0));
1da177e4
LT
1604}
1605
0d08e0d3 1606#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
7ac674f5 1607#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3 1608#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
7ac674f5 1609#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
0d08e0d3
AK
1610#else
1611#define GFP_VMALLOC32 GFP_KERNEL
1612#endif
1613
1da177e4
LT
1614/**
1615 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
1616 * @size: allocation size
1617 *
1618 * Allocate enough 32bit PA addressable pages to cover @size from the
1619 * page level allocator and map them into contiguous kernel virtual space.
1620 */
1621void *vmalloc_32(unsigned long size)
1622{
2dca6999 1623 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
84877848 1624 -1, __builtin_return_address(0));
1da177e4 1625}
1da177e4
LT
1626EXPORT_SYMBOL(vmalloc_32);
1627
83342314 1628/**
ead04089 1629 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 1630 * @size: allocation size
ead04089
REB
1631 *
1632 * The resulting memory area is 32bit addressable and zeroed so it can be
1633 * mapped to userspace without leaking data.
83342314
NP
1634 */
1635void *vmalloc_32_user(unsigned long size)
1636{
1637 struct vm_struct *area;
1638 void *ret;
1639
2dca6999 1640 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
84877848 1641 -1, __builtin_return_address(0));
2b4ac44e 1642 if (ret) {
db64fe02 1643 area = find_vm_area(ret);
2b4ac44e 1644 area->flags |= VM_USERMAP;
2b4ac44e 1645 }
83342314
NP
1646 return ret;
1647}
1648EXPORT_SYMBOL(vmalloc_32_user);
1649
d0107eb0
KH
1650/*
1651 * small helper routine , copy contents to buf from addr.
1652 * If the page is not present, fill zero.
1653 */
1654
1655static int aligned_vread(char *buf, char *addr, unsigned long count)
1656{
1657 struct page *p;
1658 int copied = 0;
1659
1660 while (count) {
1661 unsigned long offset, length;
1662
1663 offset = (unsigned long)addr & ~PAGE_MASK;
1664 length = PAGE_SIZE - offset;
1665 if (length > count)
1666 length = count;
1667 p = vmalloc_to_page(addr);
1668 /*
1669 * To do safe access to this _mapped_ area, we need
1670 * lock. But adding lock here means that we need to add
1671 * overhead of vmalloc()/vfree() calles for this _debug_
1672 * interface, rarely used. Instead of that, we'll use
1673 * kmap() and get small overhead in this access function.
1674 */
1675 if (p) {
1676 /*
1677 * we can expect USER0 is not used (see vread/vwrite's
1678 * function description)
1679 */
1680 void *map = kmap_atomic(p, KM_USER0);
1681 memcpy(buf, map + offset, length);
1682 kunmap_atomic(map, KM_USER0);
1683 } else
1684 memset(buf, 0, length);
1685
1686 addr += length;
1687 buf += length;
1688 copied += length;
1689 count -= length;
1690 }
1691 return copied;
1692}
1693
1694static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1695{
1696 struct page *p;
1697 int copied = 0;
1698
1699 while (count) {
1700 unsigned long offset, length;
1701
1702 offset = (unsigned long)addr & ~PAGE_MASK;
1703 length = PAGE_SIZE - offset;
1704 if (length > count)
1705 length = count;
1706 p = vmalloc_to_page(addr);
1707 /*
1708 * To do safe access to this _mapped_ area, we need
1709 * lock. But adding lock here means that we need to add
1710 * overhead of vmalloc()/vfree() calles for this _debug_
1711 * interface, rarely used. Instead of that, we'll use
1712 * kmap() and get small overhead in this access function.
1713 */
1714 if (p) {
1715 /*
1716 * we can expect USER0 is not used (see vread/vwrite's
1717 * function description)
1718 */
1719 void *map = kmap_atomic(p, KM_USER0);
1720 memcpy(map + offset, buf, length);
1721 kunmap_atomic(map, KM_USER0);
1722 }
1723 addr += length;
1724 buf += length;
1725 copied += length;
1726 count -= length;
1727 }
1728 return copied;
1729}
1730
1731/**
1732 * vread() - read vmalloc area in a safe way.
1733 * @buf: buffer for reading data
1734 * @addr: vm address.
1735 * @count: number of bytes to be read.
1736 *
1737 * Returns # of bytes which addr and buf should be increased.
1738 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1739 * includes any intersect with alive vmalloc area.
1740 *
1741 * This function checks that addr is a valid vmalloc'ed area, and
1742 * copy data from that area to a given buffer. If the given memory range
1743 * of [addr...addr+count) includes some valid address, data is copied to
1744 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1745 * IOREMAP area is treated as memory hole and no copy is done.
1746 *
1747 * If [addr...addr+count) doesn't includes any intersects with alive
1748 * vm_struct area, returns 0.
1749 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1750 * the caller should guarantee KM_USER0 is not used.
1751 *
1752 * Note: In usual ops, vread() is never necessary because the caller
1753 * should know vmalloc() area is valid and can use memcpy().
1754 * This is for routines which have to access vmalloc area without
1755 * any informaion, as /dev/kmem.
1756 *
1757 */
1758
1da177e4
LT
1759long vread(char *buf, char *addr, unsigned long count)
1760{
1761 struct vm_struct *tmp;
1762 char *vaddr, *buf_start = buf;
d0107eb0 1763 unsigned long buflen = count;
1da177e4
LT
1764 unsigned long n;
1765
1766 /* Don't allow overflow */
1767 if ((unsigned long) addr + count < count)
1768 count = -(unsigned long) addr;
1769
1770 read_lock(&vmlist_lock);
d0107eb0 1771 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1da177e4
LT
1772 vaddr = (char *) tmp->addr;
1773 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1774 continue;
1775 while (addr < vaddr) {
1776 if (count == 0)
1777 goto finished;
1778 *buf = '\0';
1779 buf++;
1780 addr++;
1781 count--;
1782 }
1783 n = vaddr + tmp->size - PAGE_SIZE - addr;
d0107eb0
KH
1784 if (n > count)
1785 n = count;
1786 if (!(tmp->flags & VM_IOREMAP))
1787 aligned_vread(buf, addr, n);
1788 else /* IOREMAP area is treated as memory hole */
1789 memset(buf, 0, n);
1790 buf += n;
1791 addr += n;
1792 count -= n;
1da177e4
LT
1793 }
1794finished:
1795 read_unlock(&vmlist_lock);
d0107eb0
KH
1796
1797 if (buf == buf_start)
1798 return 0;
1799 /* zero-fill memory holes */
1800 if (buf != buf_start + buflen)
1801 memset(buf, 0, buflen - (buf - buf_start));
1802
1803 return buflen;
1da177e4
LT
1804}
1805
d0107eb0
KH
1806/**
1807 * vwrite() - write vmalloc area in a safe way.
1808 * @buf: buffer for source data
1809 * @addr: vm address.
1810 * @count: number of bytes to be read.
1811 *
1812 * Returns # of bytes which addr and buf should be incresed.
1813 * (same number to @count).
1814 * If [addr...addr+count) doesn't includes any intersect with valid
1815 * vmalloc area, returns 0.
1816 *
1817 * This function checks that addr is a valid vmalloc'ed area, and
1818 * copy data from a buffer to the given addr. If specified range of
1819 * [addr...addr+count) includes some valid address, data is copied from
1820 * proper area of @buf. If there are memory holes, no copy to hole.
1821 * IOREMAP area is treated as memory hole and no copy is done.
1822 *
1823 * If [addr...addr+count) doesn't includes any intersects with alive
1824 * vm_struct area, returns 0.
1825 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1826 * the caller should guarantee KM_USER0 is not used.
1827 *
1828 * Note: In usual ops, vwrite() is never necessary because the caller
1829 * should know vmalloc() area is valid and can use memcpy().
1830 * This is for routines which have to access vmalloc area without
1831 * any informaion, as /dev/kmem.
1832 *
1833 * The caller should guarantee KM_USER1 is not used.
1834 */
1835
1da177e4
LT
1836long vwrite(char *buf, char *addr, unsigned long count)
1837{
1838 struct vm_struct *tmp;
d0107eb0
KH
1839 char *vaddr;
1840 unsigned long n, buflen;
1841 int copied = 0;
1da177e4
LT
1842
1843 /* Don't allow overflow */
1844 if ((unsigned long) addr + count < count)
1845 count = -(unsigned long) addr;
d0107eb0 1846 buflen = count;
1da177e4
LT
1847
1848 read_lock(&vmlist_lock);
d0107eb0 1849 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1da177e4
LT
1850 vaddr = (char *) tmp->addr;
1851 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1852 continue;
1853 while (addr < vaddr) {
1854 if (count == 0)
1855 goto finished;
1856 buf++;
1857 addr++;
1858 count--;
1859 }
1860 n = vaddr + tmp->size - PAGE_SIZE - addr;
d0107eb0
KH
1861 if (n > count)
1862 n = count;
1863 if (!(tmp->flags & VM_IOREMAP)) {
1864 aligned_vwrite(buf, addr, n);
1865 copied++;
1866 }
1867 buf += n;
1868 addr += n;
1869 count -= n;
1da177e4
LT
1870 }
1871finished:
1872 read_unlock(&vmlist_lock);
d0107eb0
KH
1873 if (!copied)
1874 return 0;
1875 return buflen;
1da177e4 1876}
83342314
NP
1877
1878/**
1879 * remap_vmalloc_range - map vmalloc pages to userspace
83342314
NP
1880 * @vma: vma to cover (map full range of vma)
1881 * @addr: vmalloc memory
1882 * @pgoff: number of pages into addr before first page to map
7682486b
RD
1883 *
1884 * Returns: 0 for success, -Exxx on failure
83342314
NP
1885 *
1886 * This function checks that addr is a valid vmalloc'ed area, and
1887 * that it is big enough to cover the vma. Will return failure if
1888 * that criteria isn't met.
1889 *
72fd4a35 1890 * Similar to remap_pfn_range() (see mm/memory.c)
83342314
NP
1891 */
1892int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1893 unsigned long pgoff)
1894{
1895 struct vm_struct *area;
1896 unsigned long uaddr = vma->vm_start;
1897 unsigned long usize = vma->vm_end - vma->vm_start;
83342314
NP
1898
1899 if ((PAGE_SIZE-1) & (unsigned long)addr)
1900 return -EINVAL;
1901
db64fe02 1902 area = find_vm_area(addr);
83342314 1903 if (!area)
db64fe02 1904 return -EINVAL;
83342314
NP
1905
1906 if (!(area->flags & VM_USERMAP))
db64fe02 1907 return -EINVAL;
83342314
NP
1908
1909 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
db64fe02 1910 return -EINVAL;
83342314
NP
1911
1912 addr += pgoff << PAGE_SHIFT;
1913 do {
1914 struct page *page = vmalloc_to_page(addr);
db64fe02
NP
1915 int ret;
1916
83342314
NP
1917 ret = vm_insert_page(vma, uaddr, page);
1918 if (ret)
1919 return ret;
1920
1921 uaddr += PAGE_SIZE;
1922 addr += PAGE_SIZE;
1923 usize -= PAGE_SIZE;
1924 } while (usize > 0);
1925
1926 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1927 vma->vm_flags |= VM_RESERVED;
1928
db64fe02 1929 return 0;
83342314
NP
1930}
1931EXPORT_SYMBOL(remap_vmalloc_range);
1932
1eeb66a1
CH
1933/*
1934 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1935 * have one.
1936 */
1937void __attribute__((weak)) vmalloc_sync_all(void)
1938{
1939}
5f4352fb
JF
1940
1941
2f569afd 1942static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb
JF
1943{
1944 /* apply_to_page_range() does all the hard work. */
1945 return 0;
1946}
1947
1948/**
1949 * alloc_vm_area - allocate a range of kernel address space
1950 * @size: size of the area
7682486b
RD
1951 *
1952 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
1953 *
1954 * This function reserves a range of kernel address space, and
1955 * allocates pagetables to map that range. No actual mappings
1956 * are created. If the kernel address space is not shared
1957 * between processes, it syncs the pagetable across all
1958 * processes.
1959 */
1960struct vm_struct *alloc_vm_area(size_t size)
1961{
1962 struct vm_struct *area;
1963
23016969
CL
1964 area = get_vm_area_caller(size, VM_IOREMAP,
1965 __builtin_return_address(0));
5f4352fb
JF
1966 if (area == NULL)
1967 return NULL;
1968
1969 /*
1970 * This ensures that page tables are constructed for this region
1971 * of kernel virtual address space and mapped into init_mm.
1972 */
1973 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1974 area->size, f, NULL)) {
1975 free_vm_area(area);
1976 return NULL;
1977 }
1978
1979 /* Make sure the pagetables are constructed in process kernel
1980 mappings */
1981 vmalloc_sync_all();
1982
1983 return area;
1984}
1985EXPORT_SYMBOL_GPL(alloc_vm_area);
1986
1987void free_vm_area(struct vm_struct *area)
1988{
1989 struct vm_struct *ret;
1990 ret = remove_vm_area(area->addr);
1991 BUG_ON(ret != area);
1992 kfree(area);
1993}
1994EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 1995
ca23e405
TH
1996static struct vmap_area *node_to_va(struct rb_node *n)
1997{
1998 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
1999}
2000
2001/**
2002 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2003 * @end: target address
2004 * @pnext: out arg for the next vmap_area
2005 * @pprev: out arg for the previous vmap_area
2006 *
2007 * Returns: %true if either or both of next and prev are found,
2008 * %false if no vmap_area exists
2009 *
2010 * Find vmap_areas end addresses of which enclose @end. ie. if not
2011 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2012 */
2013static bool pvm_find_next_prev(unsigned long end,
2014 struct vmap_area **pnext,
2015 struct vmap_area **pprev)
2016{
2017 struct rb_node *n = vmap_area_root.rb_node;
2018 struct vmap_area *va = NULL;
2019
2020 while (n) {
2021 va = rb_entry(n, struct vmap_area, rb_node);
2022 if (end < va->va_end)
2023 n = n->rb_left;
2024 else if (end > va->va_end)
2025 n = n->rb_right;
2026 else
2027 break;
2028 }
2029
2030 if (!va)
2031 return false;
2032
2033 if (va->va_end > end) {
2034 *pnext = va;
2035 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2036 } else {
2037 *pprev = va;
2038 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2039 }
2040 return true;
2041}
2042
2043/**
2044 * pvm_determine_end - find the highest aligned address between two vmap_areas
2045 * @pnext: in/out arg for the next vmap_area
2046 * @pprev: in/out arg for the previous vmap_area
2047 * @align: alignment
2048 *
2049 * Returns: determined end address
2050 *
2051 * Find the highest aligned address between *@pnext and *@pprev below
2052 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2053 * down address is between the end addresses of the two vmap_areas.
2054 *
2055 * Please note that the address returned by this function may fall
2056 * inside *@pnext vmap_area. The caller is responsible for checking
2057 * that.
2058 */
2059static unsigned long pvm_determine_end(struct vmap_area **pnext,
2060 struct vmap_area **pprev,
2061 unsigned long align)
2062{
2063 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2064 unsigned long addr;
2065
2066 if (*pnext)
2067 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2068 else
2069 addr = vmalloc_end;
2070
2071 while (*pprev && (*pprev)->va_end > addr) {
2072 *pnext = *pprev;
2073 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2074 }
2075
2076 return addr;
2077}
2078
2079/**
2080 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2081 * @offsets: array containing offset of each area
2082 * @sizes: array containing size of each area
2083 * @nr_vms: the number of areas to allocate
2084 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2085 * @gfp_mask: allocation mask
2086 *
2087 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2088 * vm_structs on success, %NULL on failure
2089 *
2090 * Percpu allocator wants to use congruent vm areas so that it can
2091 * maintain the offsets among percpu areas. This function allocates
2092 * congruent vmalloc areas for it. These areas tend to be scattered
2093 * pretty far, distance between two areas easily going up to
2094 * gigabytes. To avoid interacting with regular vmallocs, these areas
2095 * are allocated from top.
2096 *
2097 * Despite its complicated look, this allocator is rather simple. It
2098 * does everything top-down and scans areas from the end looking for
2099 * matching slot. While scanning, if any of the areas overlaps with
2100 * existing vmap_area, the base address is pulled down to fit the
2101 * area. Scanning is repeated till all the areas fit and then all
2102 * necessary data structres are inserted and the result is returned.
2103 */
2104struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2105 const size_t *sizes, int nr_vms,
2106 size_t align, gfp_t gfp_mask)
2107{
2108 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2109 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2110 struct vmap_area **vas, *prev, *next;
2111 struct vm_struct **vms;
2112 int area, area2, last_area, term_area;
2113 unsigned long base, start, end, last_end;
2114 bool purged = false;
2115
2116 gfp_mask &= GFP_RECLAIM_MASK;
2117
2118 /* verify parameters and allocate data structures */
2119 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2120 for (last_area = 0, area = 0; area < nr_vms; area++) {
2121 start = offsets[area];
2122 end = start + sizes[area];
2123
2124 /* is everything aligned properly? */
2125 BUG_ON(!IS_ALIGNED(offsets[area], align));
2126 BUG_ON(!IS_ALIGNED(sizes[area], align));
2127
2128 /* detect the area with the highest address */
2129 if (start > offsets[last_area])
2130 last_area = area;
2131
2132 for (area2 = 0; area2 < nr_vms; area2++) {
2133 unsigned long start2 = offsets[area2];
2134 unsigned long end2 = start2 + sizes[area2];
2135
2136 if (area2 == area)
2137 continue;
2138
2139 BUG_ON(start2 >= start && start2 < end);
2140 BUG_ON(end2 <= end && end2 > start);
2141 }
2142 }
2143 last_end = offsets[last_area] + sizes[last_area];
2144
2145 if (vmalloc_end - vmalloc_start < last_end) {
2146 WARN_ON(true);
2147 return NULL;
2148 }
2149
2150 vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask);
2151 vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask);
2152 if (!vas || !vms)
2153 goto err_free;
2154
2155 for (area = 0; area < nr_vms; area++) {
2156 vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask);
2157 vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask);
2158 if (!vas[area] || !vms[area])
2159 goto err_free;
2160 }
2161retry:
2162 spin_lock(&vmap_area_lock);
2163
2164 /* start scanning - we scan from the top, begin with the last area */
2165 area = term_area = last_area;
2166 start = offsets[area];
2167 end = start + sizes[area];
2168
2169 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2170 base = vmalloc_end - last_end;
2171 goto found;
2172 }
2173 base = pvm_determine_end(&next, &prev, align) - end;
2174
2175 while (true) {
2176 BUG_ON(next && next->va_end <= base + end);
2177 BUG_ON(prev && prev->va_end > base + end);
2178
2179 /*
2180 * base might have underflowed, add last_end before
2181 * comparing.
2182 */
2183 if (base + last_end < vmalloc_start + last_end) {
2184 spin_unlock(&vmap_area_lock);
2185 if (!purged) {
2186 purge_vmap_area_lazy();
2187 purged = true;
2188 goto retry;
2189 }
2190 goto err_free;
2191 }
2192
2193 /*
2194 * If next overlaps, move base downwards so that it's
2195 * right below next and then recheck.
2196 */
2197 if (next && next->va_start < base + end) {
2198 base = pvm_determine_end(&next, &prev, align) - end;
2199 term_area = area;
2200 continue;
2201 }
2202
2203 /*
2204 * If prev overlaps, shift down next and prev and move
2205 * base so that it's right below new next and then
2206 * recheck.
2207 */
2208 if (prev && prev->va_end > base + start) {
2209 next = prev;
2210 prev = node_to_va(rb_prev(&next->rb_node));
2211 base = pvm_determine_end(&next, &prev, align) - end;
2212 term_area = area;
2213 continue;
2214 }
2215
2216 /*
2217 * This area fits, move on to the previous one. If
2218 * the previous one is the terminal one, we're done.
2219 */
2220 area = (area + nr_vms - 1) % nr_vms;
2221 if (area == term_area)
2222 break;
2223 start = offsets[area];
2224 end = start + sizes[area];
2225 pvm_find_next_prev(base + end, &next, &prev);
2226 }
2227found:
2228 /* we've found a fitting base, insert all va's */
2229 for (area = 0; area < nr_vms; area++) {
2230 struct vmap_area *va = vas[area];
2231
2232 va->va_start = base + offsets[area];
2233 va->va_end = va->va_start + sizes[area];
2234 __insert_vmap_area(va);
2235 }
2236
2237 vmap_area_pcpu_hole = base + offsets[last_area];
2238
2239 spin_unlock(&vmap_area_lock);
2240
2241 /* insert all vm's */
2242 for (area = 0; area < nr_vms; area++)
2243 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2244 pcpu_get_vm_areas);
2245
2246 kfree(vas);
2247 return vms;
2248
2249err_free:
2250 for (area = 0; area < nr_vms; area++) {
2251 if (vas)
2252 kfree(vas[area]);
2253 if (vms)
2254 kfree(vms[area]);
2255 }
2256 kfree(vas);
2257 kfree(vms);
2258 return NULL;
2259}
2260
2261/**
2262 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2263 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2264 * @nr_vms: the number of allocated areas
2265 *
2266 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2267 */
2268void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2269{
2270 int i;
2271
2272 for (i = 0; i < nr_vms; i++)
2273 free_vm_area(vms[i]);
2274 kfree(vms);
2275}
a10aa579
CL
2276
2277#ifdef CONFIG_PROC_FS
2278static void *s_start(struct seq_file *m, loff_t *pos)
2279{
2280 loff_t n = *pos;
2281 struct vm_struct *v;
2282
2283 read_lock(&vmlist_lock);
2284 v = vmlist;
2285 while (n > 0 && v) {
2286 n--;
2287 v = v->next;
2288 }
2289 if (!n)
2290 return v;
2291
2292 return NULL;
2293
2294}
2295
2296static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2297{
2298 struct vm_struct *v = p;
2299
2300 ++*pos;
2301 return v->next;
2302}
2303
2304static void s_stop(struct seq_file *m, void *p)
2305{
2306 read_unlock(&vmlist_lock);
2307}
2308
a47a126a
ED
2309static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2310{
2311 if (NUMA_BUILD) {
2312 unsigned int nr, *counters = m->private;
2313
2314 if (!counters)
2315 return;
2316
2317 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2318
2319 for (nr = 0; nr < v->nr_pages; nr++)
2320 counters[page_to_nid(v->pages[nr])]++;
2321
2322 for_each_node_state(nr, N_HIGH_MEMORY)
2323 if (counters[nr])
2324 seq_printf(m, " N%u=%u", nr, counters[nr]);
2325 }
2326}
2327
a10aa579
CL
2328static int s_show(struct seq_file *m, void *p)
2329{
2330 struct vm_struct *v = p;
2331
2332 seq_printf(m, "0x%p-0x%p %7ld",
2333 v->addr, v->addr + v->size, v->size);
2334
23016969 2335 if (v->caller) {
9c246247 2336 char buff[KSYM_SYMBOL_LEN];
23016969
CL
2337
2338 seq_putc(m, ' ');
2339 sprint_symbol(buff, (unsigned long)v->caller);
2340 seq_puts(m, buff);
2341 }
2342
a10aa579
CL
2343 if (v->nr_pages)
2344 seq_printf(m, " pages=%d", v->nr_pages);
2345
2346 if (v->phys_addr)
2347 seq_printf(m, " phys=%lx", v->phys_addr);
2348
2349 if (v->flags & VM_IOREMAP)
2350 seq_printf(m, " ioremap");
2351
2352 if (v->flags & VM_ALLOC)
2353 seq_printf(m, " vmalloc");
2354
2355 if (v->flags & VM_MAP)
2356 seq_printf(m, " vmap");
2357
2358 if (v->flags & VM_USERMAP)
2359 seq_printf(m, " user");
2360
2361 if (v->flags & VM_VPAGES)
2362 seq_printf(m, " vpages");
2363
a47a126a 2364 show_numa_info(m, v);
a10aa579
CL
2365 seq_putc(m, '\n');
2366 return 0;
2367}
2368
5f6a6a9c 2369static const struct seq_operations vmalloc_op = {
a10aa579
CL
2370 .start = s_start,
2371 .next = s_next,
2372 .stop = s_stop,
2373 .show = s_show,
2374};
5f6a6a9c
AD
2375
2376static int vmalloc_open(struct inode *inode, struct file *file)
2377{
2378 unsigned int *ptr = NULL;
2379 int ret;
2380
2381 if (NUMA_BUILD)
2382 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2383 ret = seq_open(file, &vmalloc_op);
2384 if (!ret) {
2385 struct seq_file *m = file->private_data;
2386 m->private = ptr;
2387 } else
2388 kfree(ptr);
2389 return ret;
2390}
2391
2392static const struct file_operations proc_vmalloc_operations = {
2393 .open = vmalloc_open,
2394 .read = seq_read,
2395 .llseek = seq_lseek,
2396 .release = seq_release_private,
2397};
2398
2399static int __init proc_vmalloc_init(void)
2400{
2401 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2402 return 0;
2403}
2404module_init(proc_vmalloc_init);
a10aa579
CL
2405#endif
2406