]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/vmalloc.c
mm: mminit_validate_memmodel_limits(): remove redundant test
[net-next-2.6.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/slab.h>
16#include <linux/spinlock.h>
17#include <linux/interrupt.h>
5f6a6a9c 18#include <linux/proc_fs.h>
a10aa579 19#include <linux/seq_file.h>
3ac7fe5a 20#include <linux/debugobjects.h>
23016969 21#include <linux/kallsyms.h>
db64fe02
NP
22#include <linux/list.h>
23#include <linux/rbtree.h>
24#include <linux/radix-tree.h>
25#include <linux/rcupdate.h>
822c18f2 26#include <linux/bootmem.h>
f0aa6617 27#include <linux/pfn.h>
1da177e4 28
db64fe02 29#include <asm/atomic.h>
1da177e4
LT
30#include <asm/uaccess.h>
31#include <asm/tlbflush.h>
32
33
db64fe02 34/*** Page table manipulation functions ***/
b221385b 35
1da177e4
LT
36static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
37{
38 pte_t *pte;
39
40 pte = pte_offset_kernel(pmd, addr);
41 do {
42 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
43 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
44 } while (pte++, addr += PAGE_SIZE, addr != end);
45}
46
db64fe02 47static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
48{
49 pmd_t *pmd;
50 unsigned long next;
51
52 pmd = pmd_offset(pud, addr);
53 do {
54 next = pmd_addr_end(addr, end);
55 if (pmd_none_or_clear_bad(pmd))
56 continue;
57 vunmap_pte_range(pmd, addr, next);
58 } while (pmd++, addr = next, addr != end);
59}
60
db64fe02 61static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
1da177e4
LT
62{
63 pud_t *pud;
64 unsigned long next;
65
66 pud = pud_offset(pgd, addr);
67 do {
68 next = pud_addr_end(addr, end);
69 if (pud_none_or_clear_bad(pud))
70 continue;
71 vunmap_pmd_range(pud, addr, next);
72 } while (pud++, addr = next, addr != end);
73}
74
db64fe02 75static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
76{
77 pgd_t *pgd;
78 unsigned long next;
1da177e4
LT
79
80 BUG_ON(addr >= end);
81 pgd = pgd_offset_k(addr);
1da177e4
LT
82 do {
83 next = pgd_addr_end(addr, end);
84 if (pgd_none_or_clear_bad(pgd))
85 continue;
86 vunmap_pud_range(pgd, addr, next);
87 } while (pgd++, addr = next, addr != end);
1da177e4
LT
88}
89
90static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 91 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
92{
93 pte_t *pte;
94
db64fe02
NP
95 /*
96 * nr is a running index into the array which helps higher level
97 * callers keep track of where we're up to.
98 */
99
872fec16 100 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
101 if (!pte)
102 return -ENOMEM;
103 do {
db64fe02
NP
104 struct page *page = pages[*nr];
105
106 if (WARN_ON(!pte_none(*pte)))
107 return -EBUSY;
108 if (WARN_ON(!page))
1da177e4
LT
109 return -ENOMEM;
110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 111 (*nr)++;
1da177e4
LT
112 } while (pte++, addr += PAGE_SIZE, addr != end);
113 return 0;
114}
115
db64fe02
NP
116static int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
118{
119 pmd_t *pmd;
120 unsigned long next;
121
122 pmd = pmd_alloc(&init_mm, pud, addr);
123 if (!pmd)
124 return -ENOMEM;
125 do {
126 next = pmd_addr_end(addr, end);
db64fe02 127 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
128 return -ENOMEM;
129 } while (pmd++, addr = next, addr != end);
130 return 0;
131}
132
db64fe02
NP
133static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
135{
136 pud_t *pud;
137 unsigned long next;
138
139 pud = pud_alloc(&init_mm, pgd, addr);
140 if (!pud)
141 return -ENOMEM;
142 do {
143 next = pud_addr_end(addr, end);
db64fe02 144 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
145 return -ENOMEM;
146 } while (pud++, addr = next, addr != end);
147 return 0;
148}
149
db64fe02
NP
150/*
151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152 * will have pfns corresponding to the "pages" array.
153 *
154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
155 */
8fc48985
TH
156static int vmap_page_range_noflush(unsigned long start, unsigned long end,
157 pgprot_t prot, struct page **pages)
1da177e4
LT
158{
159 pgd_t *pgd;
160 unsigned long next;
2e4e27c7 161 unsigned long addr = start;
db64fe02
NP
162 int err = 0;
163 int nr = 0;
1da177e4
LT
164
165 BUG_ON(addr >= end);
166 pgd = pgd_offset_k(addr);
1da177e4
LT
167 do {
168 next = pgd_addr_end(addr, end);
db64fe02 169 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
1da177e4
LT
170 if (err)
171 break;
172 } while (pgd++, addr = next, addr != end);
db64fe02
NP
173
174 if (unlikely(err))
175 return err;
176 return nr;
1da177e4
LT
177}
178
8fc48985
TH
179static int vmap_page_range(unsigned long start, unsigned long end,
180 pgprot_t prot, struct page **pages)
181{
182 int ret;
183
184 ret = vmap_page_range_noflush(start, end, prot, pages);
185 flush_cache_vmap(start, end);
186 return ret;
187}
188
73bdf0a6
LT
189static inline int is_vmalloc_or_module_addr(const void *x)
190{
191 /*
ab4f2ee1 192 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
193 * and fall back on vmalloc() if that fails. Others
194 * just put it in the vmalloc space.
195 */
196#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
197 unsigned long addr = (unsigned long)x;
198 if (addr >= MODULES_VADDR && addr < MODULES_END)
199 return 1;
200#endif
201 return is_vmalloc_addr(x);
202}
203
48667e7a 204/*
db64fe02 205 * Walk a vmap address to the struct page it maps.
48667e7a 206 */
b3bdda02 207struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
208{
209 unsigned long addr = (unsigned long) vmalloc_addr;
210 struct page *page = NULL;
211 pgd_t *pgd = pgd_offset_k(addr);
48667e7a 212
7aa413de
IM
213 /*
214 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
215 * architectures that do not vmalloc module space
216 */
73bdf0a6 217 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 218
48667e7a 219 if (!pgd_none(*pgd)) {
db64fe02 220 pud_t *pud = pud_offset(pgd, addr);
48667e7a 221 if (!pud_none(*pud)) {
db64fe02 222 pmd_t *pmd = pmd_offset(pud, addr);
48667e7a 223 if (!pmd_none(*pmd)) {
db64fe02
NP
224 pte_t *ptep, pte;
225
48667e7a
CL
226 ptep = pte_offset_map(pmd, addr);
227 pte = *ptep;
228 if (pte_present(pte))
229 page = pte_page(pte);
230 pte_unmap(ptep);
231 }
232 }
233 }
234 return page;
235}
236EXPORT_SYMBOL(vmalloc_to_page);
237
238/*
239 * Map a vmalloc()-space virtual address to the physical page frame number.
240 */
b3bdda02 241unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a
CL
242{
243 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
244}
245EXPORT_SYMBOL(vmalloc_to_pfn);
246
db64fe02
NP
247
248/*** Global kva allocator ***/
249
250#define VM_LAZY_FREE 0x01
251#define VM_LAZY_FREEING 0x02
252#define VM_VM_AREA 0x04
253
254struct vmap_area {
255 unsigned long va_start;
256 unsigned long va_end;
257 unsigned long flags;
258 struct rb_node rb_node; /* address sorted rbtree */
259 struct list_head list; /* address sorted list */
260 struct list_head purge_list; /* "lazy purge" list */
261 void *private;
262 struct rcu_head rcu_head;
263};
264
265static DEFINE_SPINLOCK(vmap_area_lock);
266static struct rb_root vmap_area_root = RB_ROOT;
267static LIST_HEAD(vmap_area_list);
268
269static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 270{
db64fe02
NP
271 struct rb_node *n = vmap_area_root.rb_node;
272
273 while (n) {
274 struct vmap_area *va;
275
276 va = rb_entry(n, struct vmap_area, rb_node);
277 if (addr < va->va_start)
278 n = n->rb_left;
279 else if (addr > va->va_start)
280 n = n->rb_right;
281 else
282 return va;
283 }
284
285 return NULL;
286}
287
288static void __insert_vmap_area(struct vmap_area *va)
289{
290 struct rb_node **p = &vmap_area_root.rb_node;
291 struct rb_node *parent = NULL;
292 struct rb_node *tmp;
293
294 while (*p) {
295 struct vmap_area *tmp;
296
297 parent = *p;
298 tmp = rb_entry(parent, struct vmap_area, rb_node);
299 if (va->va_start < tmp->va_end)
300 p = &(*p)->rb_left;
301 else if (va->va_end > tmp->va_start)
302 p = &(*p)->rb_right;
303 else
304 BUG();
305 }
306
307 rb_link_node(&va->rb_node, parent, p);
308 rb_insert_color(&va->rb_node, &vmap_area_root);
309
310 /* address-sort this list so it is usable like the vmlist */
311 tmp = rb_prev(&va->rb_node);
312 if (tmp) {
313 struct vmap_area *prev;
314 prev = rb_entry(tmp, struct vmap_area, rb_node);
315 list_add_rcu(&va->list, &prev->list);
316 } else
317 list_add_rcu(&va->list, &vmap_area_list);
318}
319
320static void purge_vmap_area_lazy(void);
321
322/*
323 * Allocate a region of KVA of the specified size and alignment, within the
324 * vstart and vend.
325 */
326static struct vmap_area *alloc_vmap_area(unsigned long size,
327 unsigned long align,
328 unsigned long vstart, unsigned long vend,
329 int node, gfp_t gfp_mask)
330{
331 struct vmap_area *va;
332 struct rb_node *n;
1da177e4 333 unsigned long addr;
db64fe02
NP
334 int purged = 0;
335
7766970c 336 BUG_ON(!size);
db64fe02
NP
337 BUG_ON(size & ~PAGE_MASK);
338
db64fe02
NP
339 va = kmalloc_node(sizeof(struct vmap_area),
340 gfp_mask & GFP_RECLAIM_MASK, node);
341 if (unlikely(!va))
342 return ERR_PTR(-ENOMEM);
343
344retry:
0ae15132
GC
345 addr = ALIGN(vstart, align);
346
db64fe02 347 spin_lock(&vmap_area_lock);
7766970c
NP
348 if (addr + size - 1 < addr)
349 goto overflow;
350
db64fe02
NP
351 /* XXX: could have a last_hole cache */
352 n = vmap_area_root.rb_node;
353 if (n) {
354 struct vmap_area *first = NULL;
355
356 do {
357 struct vmap_area *tmp;
358 tmp = rb_entry(n, struct vmap_area, rb_node);
359 if (tmp->va_end >= addr) {
360 if (!first && tmp->va_start < addr + size)
361 first = tmp;
362 n = n->rb_left;
363 } else {
364 first = tmp;
365 n = n->rb_right;
366 }
367 } while (n);
368
369 if (!first)
370 goto found;
371
372 if (first->va_end < addr) {
373 n = rb_next(&first->rb_node);
374 if (n)
375 first = rb_entry(n, struct vmap_area, rb_node);
376 else
377 goto found;
378 }
379
f011c2da 380 while (addr + size > first->va_start && addr + size <= vend) {
db64fe02 381 addr = ALIGN(first->va_end + PAGE_SIZE, align);
7766970c
NP
382 if (addr + size - 1 < addr)
383 goto overflow;
db64fe02
NP
384
385 n = rb_next(&first->rb_node);
386 if (n)
387 first = rb_entry(n, struct vmap_area, rb_node);
388 else
389 goto found;
390 }
391 }
392found:
393 if (addr + size > vend) {
7766970c 394overflow:
db64fe02
NP
395 spin_unlock(&vmap_area_lock);
396 if (!purged) {
397 purge_vmap_area_lazy();
398 purged = 1;
399 goto retry;
400 }
401 if (printk_ratelimit())
c1279c4e
GC
402 printk(KERN_WARNING
403 "vmap allocation for size %lu failed: "
404 "use vmalloc=<size> to increase size.\n", size);
db64fe02
NP
405 return ERR_PTR(-EBUSY);
406 }
407
408 BUG_ON(addr & (align-1));
409
410 va->va_start = addr;
411 va->va_end = addr + size;
412 va->flags = 0;
413 __insert_vmap_area(va);
414 spin_unlock(&vmap_area_lock);
415
416 return va;
417}
418
419static void rcu_free_va(struct rcu_head *head)
420{
421 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
422
423 kfree(va);
424}
425
426static void __free_vmap_area(struct vmap_area *va)
427{
428 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
429 rb_erase(&va->rb_node, &vmap_area_root);
430 RB_CLEAR_NODE(&va->rb_node);
431 list_del_rcu(&va->list);
432
433 call_rcu(&va->rcu_head, rcu_free_va);
434}
435
436/*
437 * Free a region of KVA allocated by alloc_vmap_area
438 */
439static void free_vmap_area(struct vmap_area *va)
440{
441 spin_lock(&vmap_area_lock);
442 __free_vmap_area(va);
443 spin_unlock(&vmap_area_lock);
444}
445
446/*
447 * Clear the pagetable entries of a given vmap_area
448 */
449static void unmap_vmap_area(struct vmap_area *va)
450{
451 vunmap_page_range(va->va_start, va->va_end);
452}
453
cd52858c
NP
454static void vmap_debug_free_range(unsigned long start, unsigned long end)
455{
456 /*
457 * Unmap page tables and force a TLB flush immediately if
458 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
459 * bugs similarly to those in linear kernel virtual address
460 * space after a page has been freed.
461 *
462 * All the lazy freeing logic is still retained, in order to
463 * minimise intrusiveness of this debugging feature.
464 *
465 * This is going to be *slow* (linear kernel virtual address
466 * debugging doesn't do a broadcast TLB flush so it is a lot
467 * faster).
468 */
469#ifdef CONFIG_DEBUG_PAGEALLOC
470 vunmap_page_range(start, end);
471 flush_tlb_kernel_range(start, end);
472#endif
473}
474
db64fe02
NP
475/*
476 * lazy_max_pages is the maximum amount of virtual address space we gather up
477 * before attempting to purge with a TLB flush.
478 *
479 * There is a tradeoff here: a larger number will cover more kernel page tables
480 * and take slightly longer to purge, but it will linearly reduce the number of
481 * global TLB flushes that must be performed. It would seem natural to scale
482 * this number up linearly with the number of CPUs (because vmapping activity
483 * could also scale linearly with the number of CPUs), however it is likely
484 * that in practice, workloads might be constrained in other ways that mean
485 * vmap activity will not scale linearly with CPUs. Also, I want to be
486 * conservative and not introduce a big latency on huge systems, so go with
487 * a less aggressive log scale. It will still be an improvement over the old
488 * code, and it will be simple to change the scale factor if we find that it
489 * becomes a problem on bigger systems.
490 */
491static unsigned long lazy_max_pages(void)
492{
493 unsigned int log;
494
495 log = fls(num_online_cpus());
496
497 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
498}
499
500static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
501
502/*
503 * Purges all lazily-freed vmap areas.
504 *
505 * If sync is 0 then don't purge if there is already a purge in progress.
506 * If force_flush is 1, then flush kernel TLBs between *start and *end even
507 * if we found no lazy vmap areas to unmap (callers can use this to optimise
508 * their own TLB flushing).
509 * Returns with *start = min(*start, lowest purged address)
510 * *end = max(*end, highest purged address)
511 */
512static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
513 int sync, int force_flush)
514{
46666d8a 515 static DEFINE_SPINLOCK(purge_lock);
db64fe02
NP
516 LIST_HEAD(valist);
517 struct vmap_area *va;
cbb76676 518 struct vmap_area *n_va;
db64fe02
NP
519 int nr = 0;
520
521 /*
522 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
523 * should not expect such behaviour. This just simplifies locking for
524 * the case that isn't actually used at the moment anyway.
525 */
526 if (!sync && !force_flush) {
46666d8a 527 if (!spin_trylock(&purge_lock))
db64fe02
NP
528 return;
529 } else
46666d8a 530 spin_lock(&purge_lock);
db64fe02
NP
531
532 rcu_read_lock();
533 list_for_each_entry_rcu(va, &vmap_area_list, list) {
534 if (va->flags & VM_LAZY_FREE) {
535 if (va->va_start < *start)
536 *start = va->va_start;
537 if (va->va_end > *end)
538 *end = va->va_end;
539 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
540 unmap_vmap_area(va);
541 list_add_tail(&va->purge_list, &valist);
542 va->flags |= VM_LAZY_FREEING;
543 va->flags &= ~VM_LAZY_FREE;
544 }
545 }
546 rcu_read_unlock();
547
548 if (nr) {
549 BUG_ON(nr > atomic_read(&vmap_lazy_nr));
550 atomic_sub(nr, &vmap_lazy_nr);
551 }
552
553 if (nr || force_flush)
554 flush_tlb_kernel_range(*start, *end);
555
556 if (nr) {
557 spin_lock(&vmap_area_lock);
cbb76676 558 list_for_each_entry_safe(va, n_va, &valist, purge_list)
db64fe02
NP
559 __free_vmap_area(va);
560 spin_unlock(&vmap_area_lock);
561 }
46666d8a 562 spin_unlock(&purge_lock);
db64fe02
NP
563}
564
496850e5
NP
565/*
566 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
567 * is already purging.
568 */
569static void try_purge_vmap_area_lazy(void)
570{
571 unsigned long start = ULONG_MAX, end = 0;
572
573 __purge_vmap_area_lazy(&start, &end, 0, 0);
574}
575
db64fe02
NP
576/*
577 * Kick off a purge of the outstanding lazy areas.
578 */
579static void purge_vmap_area_lazy(void)
580{
581 unsigned long start = ULONG_MAX, end = 0;
582
496850e5 583 __purge_vmap_area_lazy(&start, &end, 1, 0);
db64fe02
NP
584}
585
586/*
b29acbdc
NP
587 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
588 * called for the correct range previously.
db64fe02 589 */
b29acbdc 590static void free_unmap_vmap_area_noflush(struct vmap_area *va)
db64fe02
NP
591{
592 va->flags |= VM_LAZY_FREE;
593 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
594 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
496850e5 595 try_purge_vmap_area_lazy();
db64fe02
NP
596}
597
b29acbdc
NP
598/*
599 * Free and unmap a vmap area
600 */
601static void free_unmap_vmap_area(struct vmap_area *va)
602{
603 flush_cache_vunmap(va->va_start, va->va_end);
604 free_unmap_vmap_area_noflush(va);
605}
606
db64fe02
NP
607static struct vmap_area *find_vmap_area(unsigned long addr)
608{
609 struct vmap_area *va;
610
611 spin_lock(&vmap_area_lock);
612 va = __find_vmap_area(addr);
613 spin_unlock(&vmap_area_lock);
614
615 return va;
616}
617
618static void free_unmap_vmap_area_addr(unsigned long addr)
619{
620 struct vmap_area *va;
621
622 va = find_vmap_area(addr);
623 BUG_ON(!va);
624 free_unmap_vmap_area(va);
625}
626
627
628/*** Per cpu kva allocator ***/
629
630/*
631 * vmap space is limited especially on 32 bit architectures. Ensure there is
632 * room for at least 16 percpu vmap blocks per CPU.
633 */
634/*
635 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
636 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
637 * instead (we just need a rough idea)
638 */
639#if BITS_PER_LONG == 32
640#define VMALLOC_SPACE (128UL*1024*1024)
641#else
642#define VMALLOC_SPACE (128UL*1024*1024*1024)
643#endif
644
645#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
646#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
647#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
648#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
649#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
650#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
651#define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
652 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
653 VMALLOC_PAGES / NR_CPUS / 16))
654
655#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
656
9b463334
JF
657static bool vmap_initialized __read_mostly = false;
658
db64fe02
NP
659struct vmap_block_queue {
660 spinlock_t lock;
661 struct list_head free;
662 struct list_head dirty;
663 unsigned int nr_dirty;
664};
665
666struct vmap_block {
667 spinlock_t lock;
668 struct vmap_area *va;
669 struct vmap_block_queue *vbq;
670 unsigned long free, dirty;
671 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
672 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
673 union {
674 struct {
675 struct list_head free_list;
676 struct list_head dirty_list;
677 };
678 struct rcu_head rcu_head;
679 };
680};
681
682/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
683static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
684
685/*
686 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
687 * in the free path. Could get rid of this if we change the API to return a
688 * "cookie" from alloc, to be passed to free. But no big deal yet.
689 */
690static DEFINE_SPINLOCK(vmap_block_tree_lock);
691static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
692
693/*
694 * We should probably have a fallback mechanism to allocate virtual memory
695 * out of partially filled vmap blocks. However vmap block sizing should be
696 * fairly reasonable according to the vmalloc size, so it shouldn't be a
697 * big problem.
698 */
699
700static unsigned long addr_to_vb_idx(unsigned long addr)
701{
702 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
703 addr /= VMAP_BLOCK_SIZE;
704 return addr;
705}
706
707static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
708{
709 struct vmap_block_queue *vbq;
710 struct vmap_block *vb;
711 struct vmap_area *va;
712 unsigned long vb_idx;
713 int node, err;
714
715 node = numa_node_id();
716
717 vb = kmalloc_node(sizeof(struct vmap_block),
718 gfp_mask & GFP_RECLAIM_MASK, node);
719 if (unlikely(!vb))
720 return ERR_PTR(-ENOMEM);
721
722 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
723 VMALLOC_START, VMALLOC_END,
724 node, gfp_mask);
725 if (unlikely(IS_ERR(va))) {
726 kfree(vb);
727 return ERR_PTR(PTR_ERR(va));
728 }
729
730 err = radix_tree_preload(gfp_mask);
731 if (unlikely(err)) {
732 kfree(vb);
733 free_vmap_area(va);
734 return ERR_PTR(err);
735 }
736
737 spin_lock_init(&vb->lock);
738 vb->va = va;
739 vb->free = VMAP_BBMAP_BITS;
740 vb->dirty = 0;
741 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
742 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
743 INIT_LIST_HEAD(&vb->free_list);
744 INIT_LIST_HEAD(&vb->dirty_list);
745
746 vb_idx = addr_to_vb_idx(va->va_start);
747 spin_lock(&vmap_block_tree_lock);
748 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
749 spin_unlock(&vmap_block_tree_lock);
750 BUG_ON(err);
751 radix_tree_preload_end();
752
753 vbq = &get_cpu_var(vmap_block_queue);
754 vb->vbq = vbq;
755 spin_lock(&vbq->lock);
756 list_add(&vb->free_list, &vbq->free);
757 spin_unlock(&vbq->lock);
758 put_cpu_var(vmap_cpu_blocks);
759
760 return vb;
761}
762
763static void rcu_free_vb(struct rcu_head *head)
764{
765 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
766
767 kfree(vb);
768}
769
770static void free_vmap_block(struct vmap_block *vb)
771{
772 struct vmap_block *tmp;
773 unsigned long vb_idx;
774
775 spin_lock(&vb->vbq->lock);
776 if (!list_empty(&vb->free_list))
777 list_del(&vb->free_list);
778 if (!list_empty(&vb->dirty_list))
779 list_del(&vb->dirty_list);
780 spin_unlock(&vb->vbq->lock);
781
782 vb_idx = addr_to_vb_idx(vb->va->va_start);
783 spin_lock(&vmap_block_tree_lock);
784 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
785 spin_unlock(&vmap_block_tree_lock);
786 BUG_ON(tmp != vb);
787
b29acbdc 788 free_unmap_vmap_area_noflush(vb->va);
db64fe02
NP
789 call_rcu(&vb->rcu_head, rcu_free_vb);
790}
791
792static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
793{
794 struct vmap_block_queue *vbq;
795 struct vmap_block *vb;
796 unsigned long addr = 0;
797 unsigned int order;
798
799 BUG_ON(size & ~PAGE_MASK);
800 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
801 order = get_order(size);
802
803again:
804 rcu_read_lock();
805 vbq = &get_cpu_var(vmap_block_queue);
806 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
807 int i;
808
809 spin_lock(&vb->lock);
810 i = bitmap_find_free_region(vb->alloc_map,
811 VMAP_BBMAP_BITS, order);
812
813 if (i >= 0) {
814 addr = vb->va->va_start + (i << PAGE_SHIFT);
815 BUG_ON(addr_to_vb_idx(addr) !=
816 addr_to_vb_idx(vb->va->va_start));
817 vb->free -= 1UL << order;
818 if (vb->free == 0) {
819 spin_lock(&vbq->lock);
820 list_del_init(&vb->free_list);
821 spin_unlock(&vbq->lock);
822 }
823 spin_unlock(&vb->lock);
824 break;
825 }
826 spin_unlock(&vb->lock);
827 }
828 put_cpu_var(vmap_cpu_blocks);
829 rcu_read_unlock();
830
831 if (!addr) {
832 vb = new_vmap_block(gfp_mask);
833 if (IS_ERR(vb))
834 return vb;
835 goto again;
836 }
837
838 return (void *)addr;
839}
840
841static void vb_free(const void *addr, unsigned long size)
842{
843 unsigned long offset;
844 unsigned long vb_idx;
845 unsigned int order;
846 struct vmap_block *vb;
847
848 BUG_ON(size & ~PAGE_MASK);
849 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
850
851 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
852
db64fe02
NP
853 order = get_order(size);
854
855 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
856
857 vb_idx = addr_to_vb_idx((unsigned long)addr);
858 rcu_read_lock();
859 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
860 rcu_read_unlock();
861 BUG_ON(!vb);
862
863 spin_lock(&vb->lock);
864 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
865 if (!vb->dirty) {
866 spin_lock(&vb->vbq->lock);
867 list_add(&vb->dirty_list, &vb->vbq->dirty);
868 spin_unlock(&vb->vbq->lock);
869 }
870 vb->dirty += 1UL << order;
871 if (vb->dirty == VMAP_BBMAP_BITS) {
872 BUG_ON(vb->free || !list_empty(&vb->free_list));
873 spin_unlock(&vb->lock);
874 free_vmap_block(vb);
875 } else
876 spin_unlock(&vb->lock);
877}
878
879/**
880 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
881 *
882 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
883 * to amortize TLB flushing overheads. What this means is that any page you
884 * have now, may, in a former life, have been mapped into kernel virtual
885 * address by the vmap layer and so there might be some CPUs with TLB entries
886 * still referencing that page (additional to the regular 1:1 kernel mapping).
887 *
888 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
889 * be sure that none of the pages we have control over will have any aliases
890 * from the vmap layer.
891 */
892void vm_unmap_aliases(void)
893{
894 unsigned long start = ULONG_MAX, end = 0;
895 int cpu;
896 int flush = 0;
897
9b463334
JF
898 if (unlikely(!vmap_initialized))
899 return;
900
db64fe02
NP
901 for_each_possible_cpu(cpu) {
902 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
903 struct vmap_block *vb;
904
905 rcu_read_lock();
906 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
907 int i;
908
909 spin_lock(&vb->lock);
910 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
911 while (i < VMAP_BBMAP_BITS) {
912 unsigned long s, e;
913 int j;
914 j = find_next_zero_bit(vb->dirty_map,
915 VMAP_BBMAP_BITS, i);
916
917 s = vb->va->va_start + (i << PAGE_SHIFT);
918 e = vb->va->va_start + (j << PAGE_SHIFT);
919 vunmap_page_range(s, e);
920 flush = 1;
921
922 if (s < start)
923 start = s;
924 if (e > end)
925 end = e;
926
927 i = j;
928 i = find_next_bit(vb->dirty_map,
929 VMAP_BBMAP_BITS, i);
930 }
931 spin_unlock(&vb->lock);
932 }
933 rcu_read_unlock();
934 }
935
936 __purge_vmap_area_lazy(&start, &end, 1, flush);
937}
938EXPORT_SYMBOL_GPL(vm_unmap_aliases);
939
940/**
941 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
942 * @mem: the pointer returned by vm_map_ram
943 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
944 */
945void vm_unmap_ram(const void *mem, unsigned int count)
946{
947 unsigned long size = count << PAGE_SHIFT;
948 unsigned long addr = (unsigned long)mem;
949
950 BUG_ON(!addr);
951 BUG_ON(addr < VMALLOC_START);
952 BUG_ON(addr > VMALLOC_END);
953 BUG_ON(addr & (PAGE_SIZE-1));
954
955 debug_check_no_locks_freed(mem, size);
cd52858c 956 vmap_debug_free_range(addr, addr+size);
db64fe02
NP
957
958 if (likely(count <= VMAP_MAX_ALLOC))
959 vb_free(mem, size);
960 else
961 free_unmap_vmap_area_addr(addr);
962}
963EXPORT_SYMBOL(vm_unmap_ram);
964
965/**
966 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
967 * @pages: an array of pointers to the pages to be mapped
968 * @count: number of pages
969 * @node: prefer to allocate data structures on this node
970 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad
RD
971 *
972 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
973 */
974void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
975{
976 unsigned long size = count << PAGE_SHIFT;
977 unsigned long addr;
978 void *mem;
979
980 if (likely(count <= VMAP_MAX_ALLOC)) {
981 mem = vb_alloc(size, GFP_KERNEL);
982 if (IS_ERR(mem))
983 return NULL;
984 addr = (unsigned long)mem;
985 } else {
986 struct vmap_area *va;
987 va = alloc_vmap_area(size, PAGE_SIZE,
988 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
989 if (IS_ERR(va))
990 return NULL;
991
992 addr = va->va_start;
993 mem = (void *)addr;
994 }
995 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
996 vm_unmap_ram(mem, count);
997 return NULL;
998 }
999 return mem;
1000}
1001EXPORT_SYMBOL(vm_map_ram);
1002
f0aa6617
TH
1003/**
1004 * vm_area_register_early - register vmap area early during boot
1005 * @vm: vm_struct to register
c0c0a293 1006 * @align: requested alignment
f0aa6617
TH
1007 *
1008 * This function is used to register kernel vm area before
1009 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1010 * proper values on entry and other fields should be zero. On return,
1011 * vm->addr contains the allocated address.
1012 *
1013 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1014 */
c0c0a293 1015void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1016{
1017 static size_t vm_init_off __initdata;
c0c0a293
TH
1018 unsigned long addr;
1019
1020 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1021 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1022
c0c0a293 1023 vm->addr = (void *)addr;
f0aa6617
TH
1024
1025 vm->next = vmlist;
1026 vmlist = vm;
1027}
1028
db64fe02
NP
1029void __init vmalloc_init(void)
1030{
822c18f2
IK
1031 struct vmap_area *va;
1032 struct vm_struct *tmp;
db64fe02
NP
1033 int i;
1034
1035 for_each_possible_cpu(i) {
1036 struct vmap_block_queue *vbq;
1037
1038 vbq = &per_cpu(vmap_block_queue, i);
1039 spin_lock_init(&vbq->lock);
1040 INIT_LIST_HEAD(&vbq->free);
1041 INIT_LIST_HEAD(&vbq->dirty);
1042 vbq->nr_dirty = 0;
1043 }
9b463334 1044
822c18f2
IK
1045 /* Import existing vmlist entries. */
1046 for (tmp = vmlist; tmp; tmp = tmp->next) {
1047 va = alloc_bootmem(sizeof(struct vmap_area));
1048 va->flags = tmp->flags | VM_VM_AREA;
1049 va->va_start = (unsigned long)tmp->addr;
1050 va->va_end = va->va_start + tmp->size;
1051 __insert_vmap_area(va);
1052 }
9b463334 1053 vmap_initialized = true;
db64fe02
NP
1054}
1055
8fc48985
TH
1056/**
1057 * map_kernel_range_noflush - map kernel VM area with the specified pages
1058 * @addr: start of the VM area to map
1059 * @size: size of the VM area to map
1060 * @prot: page protection flags to use
1061 * @pages: pages to map
1062 *
1063 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1064 * specify should have been allocated using get_vm_area() and its
1065 * friends.
1066 *
1067 * NOTE:
1068 * This function does NOT do any cache flushing. The caller is
1069 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1070 * before calling this function.
1071 *
1072 * RETURNS:
1073 * The number of pages mapped on success, -errno on failure.
1074 */
1075int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1076 pgprot_t prot, struct page **pages)
1077{
1078 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1079}
1080
1081/**
1082 * unmap_kernel_range_noflush - unmap kernel VM area
1083 * @addr: start of the VM area to unmap
1084 * @size: size of the VM area to unmap
1085 *
1086 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1087 * specify should have been allocated using get_vm_area() and its
1088 * friends.
1089 *
1090 * NOTE:
1091 * This function does NOT do any cache flushing. The caller is
1092 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1093 * before calling this function and flush_tlb_kernel_range() after.
1094 */
1095void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1096{
1097 vunmap_page_range(addr, addr + size);
1098}
1099
1100/**
1101 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1102 * @addr: start of the VM area to unmap
1103 * @size: size of the VM area to unmap
1104 *
1105 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1106 * the unmapping and tlb after.
1107 */
db64fe02
NP
1108void unmap_kernel_range(unsigned long addr, unsigned long size)
1109{
1110 unsigned long end = addr + size;
f6fcba70
TH
1111
1112 flush_cache_vunmap(addr, end);
db64fe02
NP
1113 vunmap_page_range(addr, end);
1114 flush_tlb_kernel_range(addr, end);
1115}
1116
1117int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1118{
1119 unsigned long addr = (unsigned long)area->addr;
1120 unsigned long end = addr + area->size - PAGE_SIZE;
1121 int err;
1122
1123 err = vmap_page_range(addr, end, prot, *pages);
1124 if (err > 0) {
1125 *pages += err;
1126 err = 0;
1127 }
1128
1129 return err;
1130}
1131EXPORT_SYMBOL_GPL(map_vm_area);
1132
1133/*** Old vmalloc interfaces ***/
1134DEFINE_RWLOCK(vmlist_lock);
1135struct vm_struct *vmlist;
1136
1137static struct vm_struct *__get_vm_area_node(unsigned long size,
1138 unsigned long flags, unsigned long start, unsigned long end,
1139 int node, gfp_t gfp_mask, void *caller)
1140{
1141 static struct vmap_area *va;
1142 struct vm_struct *area;
1143 struct vm_struct *tmp, **p;
1144 unsigned long align = 1;
1da177e4 1145
52fd24ca 1146 BUG_ON(in_interrupt());
1da177e4
LT
1147 if (flags & VM_IOREMAP) {
1148 int bit = fls(size);
1149
1150 if (bit > IOREMAP_MAX_ORDER)
1151 bit = IOREMAP_MAX_ORDER;
1152 else if (bit < PAGE_SHIFT)
1153 bit = PAGE_SHIFT;
1154
1155 align = 1ul << bit;
1156 }
db64fe02 1157
1da177e4 1158 size = PAGE_ALIGN(size);
31be8309
OH
1159 if (unlikely(!size))
1160 return NULL;
1da177e4 1161
6cb06229 1162 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1163 if (unlikely(!area))
1164 return NULL;
1165
1da177e4
LT
1166 /*
1167 * We always allocate a guard page.
1168 */
1169 size += PAGE_SIZE;
1170
db64fe02
NP
1171 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1172 if (IS_ERR(va)) {
1173 kfree(area);
1174 return NULL;
1da177e4 1175 }
1da177e4
LT
1176
1177 area->flags = flags;
db64fe02 1178 area->addr = (void *)va->va_start;
1da177e4
LT
1179 area->size = size;
1180 area->pages = NULL;
1181 area->nr_pages = 0;
1182 area->phys_addr = 0;
23016969 1183 area->caller = caller;
db64fe02
NP
1184 va->private = area;
1185 va->flags |= VM_VM_AREA;
1186
1187 write_lock(&vmlist_lock);
1188 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1189 if (tmp->addr >= area->addr)
1190 break;
1191 }
1192 area->next = *p;
1193 *p = area;
1da177e4
LT
1194 write_unlock(&vmlist_lock);
1195
1196 return area;
1da177e4
LT
1197}
1198
930fc45a
CL
1199struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1200 unsigned long start, unsigned long end)
1201{
23016969
CL
1202 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1203 __builtin_return_address(0));
930fc45a 1204}
5992b6da 1205EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1206
c2968612
BH
1207struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1208 unsigned long start, unsigned long end,
1209 void *caller)
1210{
1211 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1212 caller);
1213}
1214
1da177e4 1215/**
183ff22b 1216 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
1217 * @size: size of the area
1218 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1219 *
1220 * Search an area of @size in the kernel virtual mapping area,
1221 * and reserved it for out purposes. Returns the area descriptor
1222 * on success or %NULL on failure.
1223 */
1224struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1225{
23016969
CL
1226 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1227 -1, GFP_KERNEL, __builtin_return_address(0));
1228}
1229
1230struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1231 void *caller)
1232{
1233 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1234 -1, GFP_KERNEL, caller);
1da177e4
LT
1235}
1236
52fd24ca
GP
1237struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1238 int node, gfp_t gfp_mask)
930fc45a 1239{
52fd24ca 1240 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
23016969 1241 gfp_mask, __builtin_return_address(0));
930fc45a
CL
1242}
1243
db64fe02 1244static struct vm_struct *find_vm_area(const void *addr)
83342314 1245{
db64fe02 1246 struct vmap_area *va;
83342314 1247
db64fe02
NP
1248 va = find_vmap_area((unsigned long)addr);
1249 if (va && va->flags & VM_VM_AREA)
1250 return va->private;
1da177e4 1251
1da177e4 1252 return NULL;
1da177e4
LT
1253}
1254
7856dfeb 1255/**
183ff22b 1256 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
1257 * @addr: base address
1258 *
1259 * Search for the kernel VM area starting at @addr, and remove it.
1260 * This function returns the found VM area, but using it is NOT safe
1261 * on SMP machines, except for its size or flags.
1262 */
b3bdda02 1263struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1264{
db64fe02
NP
1265 struct vmap_area *va;
1266
1267 va = find_vmap_area((unsigned long)addr);
1268 if (va && va->flags & VM_VM_AREA) {
1269 struct vm_struct *vm = va->private;
1270 struct vm_struct *tmp, **p;
cd52858c
NP
1271
1272 vmap_debug_free_range(va->va_start, va->va_end);
db64fe02
NP
1273 free_unmap_vmap_area(va);
1274 vm->size -= PAGE_SIZE;
1275
1276 write_lock(&vmlist_lock);
1277 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1278 ;
1279 *p = tmp->next;
1280 write_unlock(&vmlist_lock);
1281
1282 return vm;
1283 }
1284 return NULL;
7856dfeb
AK
1285}
1286
b3bdda02 1287static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1288{
1289 struct vm_struct *area;
1290
1291 if (!addr)
1292 return;
1293
1294 if ((PAGE_SIZE-1) & (unsigned long)addr) {
4c8573e2 1295 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1da177e4
LT
1296 return;
1297 }
1298
1299 area = remove_vm_area(addr);
1300 if (unlikely(!area)) {
4c8573e2 1301 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1302 addr);
1da177e4
LT
1303 return;
1304 }
1305
9a11b49a 1306 debug_check_no_locks_freed(addr, area->size);
3ac7fe5a 1307 debug_check_no_obj_freed(addr, area->size);
9a11b49a 1308
1da177e4
LT
1309 if (deallocate_pages) {
1310 int i;
1311
1312 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1313 struct page *page = area->pages[i];
1314
1315 BUG_ON(!page);
1316 __free_page(page);
1da177e4
LT
1317 }
1318
8757d5fa 1319 if (area->flags & VM_VPAGES)
1da177e4
LT
1320 vfree(area->pages);
1321 else
1322 kfree(area->pages);
1323 }
1324
1325 kfree(area);
1326 return;
1327}
1328
1329/**
1330 * vfree - release memory allocated by vmalloc()
1da177e4
LT
1331 * @addr: memory base address
1332 *
183ff22b 1333 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
1334 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1335 * NULL, no operation is performed.
1da177e4 1336 *
80e93eff 1337 * Must not be called in interrupt context.
1da177e4 1338 */
b3bdda02 1339void vfree(const void *addr)
1da177e4
LT
1340{
1341 BUG_ON(in_interrupt());
1342 __vunmap(addr, 1);
1343}
1da177e4
LT
1344EXPORT_SYMBOL(vfree);
1345
1346/**
1347 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
1348 * @addr: memory base address
1349 *
1350 * Free the virtually contiguous memory area starting at @addr,
1351 * which was created from the page array passed to vmap().
1352 *
80e93eff 1353 * Must not be called in interrupt context.
1da177e4 1354 */
b3bdda02 1355void vunmap(const void *addr)
1da177e4
LT
1356{
1357 BUG_ON(in_interrupt());
34754b69 1358 might_sleep();
1da177e4
LT
1359 __vunmap(addr, 0);
1360}
1da177e4
LT
1361EXPORT_SYMBOL(vunmap);
1362
1363/**
1364 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
1365 * @pages: array of page pointers
1366 * @count: number of pages to map
1367 * @flags: vm_area->flags
1368 * @prot: page protection for the mapping
1369 *
1370 * Maps @count pages from @pages into contiguous kernel virtual
1371 * space.
1372 */
1373void *vmap(struct page **pages, unsigned int count,
1374 unsigned long flags, pgprot_t prot)
1375{
1376 struct vm_struct *area;
1377
34754b69
PZ
1378 might_sleep();
1379
1da177e4
LT
1380 if (count > num_physpages)
1381 return NULL;
1382
23016969
CL
1383 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1384 __builtin_return_address(0));
1da177e4
LT
1385 if (!area)
1386 return NULL;
23016969 1387
1da177e4
LT
1388 if (map_vm_area(area, prot, &pages)) {
1389 vunmap(area->addr);
1390 return NULL;
1391 }
1392
1393 return area->addr;
1394}
1da177e4
LT
1395EXPORT_SYMBOL(vmap);
1396
db64fe02
NP
1397static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1398 int node, void *caller);
e31d9eb5 1399static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
23016969 1400 pgprot_t prot, int node, void *caller)
1da177e4
LT
1401{
1402 struct page **pages;
1403 unsigned int nr_pages, array_size, i;
1404
1405 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1406 array_size = (nr_pages * sizeof(struct page *));
1407
1408 area->nr_pages = nr_pages;
1409 /* Please note that the recursion is strictly bounded. */
8757d5fa 1410 if (array_size > PAGE_SIZE) {
94f6030c 1411 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
23016969 1412 PAGE_KERNEL, node, caller);
8757d5fa 1413 area->flags |= VM_VPAGES;
286e1ea3
AM
1414 } else {
1415 pages = kmalloc_node(array_size,
6cb06229 1416 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
286e1ea3
AM
1417 node);
1418 }
1da177e4 1419 area->pages = pages;
23016969 1420 area->caller = caller;
1da177e4
LT
1421 if (!area->pages) {
1422 remove_vm_area(area->addr);
1423 kfree(area);
1424 return NULL;
1425 }
1da177e4
LT
1426
1427 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1428 struct page *page;
1429
930fc45a 1430 if (node < 0)
bf53d6f8 1431 page = alloc_page(gfp_mask);
930fc45a 1432 else
bf53d6f8
CL
1433 page = alloc_pages_node(node, gfp_mask, 0);
1434
1435 if (unlikely(!page)) {
1da177e4
LT
1436 /* Successfully allocated i pages, free them in __vunmap() */
1437 area->nr_pages = i;
1438 goto fail;
1439 }
bf53d6f8 1440 area->pages[i] = page;
1da177e4
LT
1441 }
1442
1443 if (map_vm_area(area, prot, &pages))
1444 goto fail;
1445 return area->addr;
1446
1447fail:
1448 vfree(area->addr);
1449 return NULL;
1450}
1451
930fc45a
CL
1452void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1453{
23016969
CL
1454 return __vmalloc_area_node(area, gfp_mask, prot, -1,
1455 __builtin_return_address(0));
930fc45a
CL
1456}
1457
1da177e4 1458/**
930fc45a 1459 * __vmalloc_node - allocate virtually contiguous memory
1da177e4
LT
1460 * @size: allocation size
1461 * @gfp_mask: flags for the page level allocator
1462 * @prot: protection mask for the allocated pages
d44e0780 1463 * @node: node to use for allocation or -1
c85d194b 1464 * @caller: caller's return address
1da177e4
LT
1465 *
1466 * Allocate enough pages to cover @size from the page level
1467 * allocator with @gfp_mask flags. Map them into contiguous
1468 * kernel virtual space, using a pagetable protection of @prot.
1469 */
b221385b 1470static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
23016969 1471 int node, void *caller)
1da177e4
LT
1472{
1473 struct vm_struct *area;
1474
1475 size = PAGE_ALIGN(size);
1476 if (!size || (size >> PAGE_SHIFT) > num_physpages)
1477 return NULL;
1478
23016969
CL
1479 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1480 node, gfp_mask, caller);
1481
1da177e4
LT
1482 if (!area)
1483 return NULL;
1484
23016969 1485 return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1da177e4
LT
1486}
1487
930fc45a
CL
1488void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1489{
23016969
CL
1490 return __vmalloc_node(size, gfp_mask, prot, -1,
1491 __builtin_return_address(0));
930fc45a 1492}
1da177e4
LT
1493EXPORT_SYMBOL(__vmalloc);
1494
1495/**
1496 * vmalloc - allocate virtually contiguous memory
1da177e4 1497 * @size: allocation size
1da177e4
LT
1498 * Allocate enough pages to cover @size from the page level
1499 * allocator and map them into contiguous kernel virtual space.
1500 *
c1c8897f 1501 * For tight control over page level allocator and protection flags
1da177e4
LT
1502 * use __vmalloc() instead.
1503 */
1504void *vmalloc(unsigned long size)
1505{
23016969
CL
1506 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1507 -1, __builtin_return_address(0));
1da177e4 1508}
1da177e4
LT
1509EXPORT_SYMBOL(vmalloc);
1510
83342314 1511/**
ead04089
REB
1512 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1513 * @size: allocation size
83342314 1514 *
ead04089
REB
1515 * The resulting memory area is zeroed so it can be mapped to userspace
1516 * without leaking data.
83342314
NP
1517 */
1518void *vmalloc_user(unsigned long size)
1519{
1520 struct vm_struct *area;
1521 void *ret;
1522
84877848
GC
1523 ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1524 PAGE_KERNEL, -1, __builtin_return_address(0));
2b4ac44e 1525 if (ret) {
db64fe02 1526 area = find_vm_area(ret);
2b4ac44e 1527 area->flags |= VM_USERMAP;
2b4ac44e 1528 }
83342314
NP
1529 return ret;
1530}
1531EXPORT_SYMBOL(vmalloc_user);
1532
930fc45a
CL
1533/**
1534 * vmalloc_node - allocate memory on a specific node
930fc45a 1535 * @size: allocation size
d44e0780 1536 * @node: numa node
930fc45a
CL
1537 *
1538 * Allocate enough pages to cover @size from the page level
1539 * allocator and map them into contiguous kernel virtual space.
1540 *
c1c8897f 1541 * For tight control over page level allocator and protection flags
930fc45a
CL
1542 * use __vmalloc() instead.
1543 */
1544void *vmalloc_node(unsigned long size, int node)
1545{
23016969
CL
1546 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1547 node, __builtin_return_address(0));
930fc45a
CL
1548}
1549EXPORT_SYMBOL(vmalloc_node);
1550
4dc3b16b
PP
1551#ifndef PAGE_KERNEL_EXEC
1552# define PAGE_KERNEL_EXEC PAGE_KERNEL
1553#endif
1554
1da177e4
LT
1555/**
1556 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
1557 * @size: allocation size
1558 *
1559 * Kernel-internal function to allocate enough pages to cover @size
1560 * the page level allocator and map them into contiguous and
1561 * executable kernel virtual space.
1562 *
c1c8897f 1563 * For tight control over page level allocator and protection flags
1da177e4
LT
1564 * use __vmalloc() instead.
1565 */
1566
1da177e4
LT
1567void *vmalloc_exec(unsigned long size)
1568{
84877848
GC
1569 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1570 -1, __builtin_return_address(0));
1da177e4
LT
1571}
1572
0d08e0d3 1573#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
7ac674f5 1574#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3 1575#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
7ac674f5 1576#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
0d08e0d3
AK
1577#else
1578#define GFP_VMALLOC32 GFP_KERNEL
1579#endif
1580
1da177e4
LT
1581/**
1582 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
1583 * @size: allocation size
1584 *
1585 * Allocate enough 32bit PA addressable pages to cover @size from the
1586 * page level allocator and map them into contiguous kernel virtual space.
1587 */
1588void *vmalloc_32(unsigned long size)
1589{
84877848
GC
1590 return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL,
1591 -1, __builtin_return_address(0));
1da177e4 1592}
1da177e4
LT
1593EXPORT_SYMBOL(vmalloc_32);
1594
83342314 1595/**
ead04089 1596 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 1597 * @size: allocation size
ead04089
REB
1598 *
1599 * The resulting memory area is 32bit addressable and zeroed so it can be
1600 * mapped to userspace without leaking data.
83342314
NP
1601 */
1602void *vmalloc_32_user(unsigned long size)
1603{
1604 struct vm_struct *area;
1605 void *ret;
1606
84877848
GC
1607 ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1608 -1, __builtin_return_address(0));
2b4ac44e 1609 if (ret) {
db64fe02 1610 area = find_vm_area(ret);
2b4ac44e 1611 area->flags |= VM_USERMAP;
2b4ac44e 1612 }
83342314
NP
1613 return ret;
1614}
1615EXPORT_SYMBOL(vmalloc_32_user);
1616
1da177e4
LT
1617long vread(char *buf, char *addr, unsigned long count)
1618{
1619 struct vm_struct *tmp;
1620 char *vaddr, *buf_start = buf;
1621 unsigned long n;
1622
1623 /* Don't allow overflow */
1624 if ((unsigned long) addr + count < count)
1625 count = -(unsigned long) addr;
1626
1627 read_lock(&vmlist_lock);
1628 for (tmp = vmlist; tmp; tmp = tmp->next) {
1629 vaddr = (char *) tmp->addr;
1630 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1631 continue;
1632 while (addr < vaddr) {
1633 if (count == 0)
1634 goto finished;
1635 *buf = '\0';
1636 buf++;
1637 addr++;
1638 count--;
1639 }
1640 n = vaddr + tmp->size - PAGE_SIZE - addr;
1641 do {
1642 if (count == 0)
1643 goto finished;
1644 *buf = *addr;
1645 buf++;
1646 addr++;
1647 count--;
1648 } while (--n > 0);
1649 }
1650finished:
1651 read_unlock(&vmlist_lock);
1652 return buf - buf_start;
1653}
1654
1655long vwrite(char *buf, char *addr, unsigned long count)
1656{
1657 struct vm_struct *tmp;
1658 char *vaddr, *buf_start = buf;
1659 unsigned long n;
1660
1661 /* Don't allow overflow */
1662 if ((unsigned long) addr + count < count)
1663 count = -(unsigned long) addr;
1664
1665 read_lock(&vmlist_lock);
1666 for (tmp = vmlist; tmp; tmp = tmp->next) {
1667 vaddr = (char *) tmp->addr;
1668 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1669 continue;
1670 while (addr < vaddr) {
1671 if (count == 0)
1672 goto finished;
1673 buf++;
1674 addr++;
1675 count--;
1676 }
1677 n = vaddr + tmp->size - PAGE_SIZE - addr;
1678 do {
1679 if (count == 0)
1680 goto finished;
1681 *addr = *buf;
1682 buf++;
1683 addr++;
1684 count--;
1685 } while (--n > 0);
1686 }
1687finished:
1688 read_unlock(&vmlist_lock);
1689 return buf - buf_start;
1690}
83342314
NP
1691
1692/**
1693 * remap_vmalloc_range - map vmalloc pages to userspace
83342314
NP
1694 * @vma: vma to cover (map full range of vma)
1695 * @addr: vmalloc memory
1696 * @pgoff: number of pages into addr before first page to map
7682486b
RD
1697 *
1698 * Returns: 0 for success, -Exxx on failure
83342314
NP
1699 *
1700 * This function checks that addr is a valid vmalloc'ed area, and
1701 * that it is big enough to cover the vma. Will return failure if
1702 * that criteria isn't met.
1703 *
72fd4a35 1704 * Similar to remap_pfn_range() (see mm/memory.c)
83342314
NP
1705 */
1706int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1707 unsigned long pgoff)
1708{
1709 struct vm_struct *area;
1710 unsigned long uaddr = vma->vm_start;
1711 unsigned long usize = vma->vm_end - vma->vm_start;
83342314
NP
1712
1713 if ((PAGE_SIZE-1) & (unsigned long)addr)
1714 return -EINVAL;
1715
db64fe02 1716 area = find_vm_area(addr);
83342314 1717 if (!area)
db64fe02 1718 return -EINVAL;
83342314
NP
1719
1720 if (!(area->flags & VM_USERMAP))
db64fe02 1721 return -EINVAL;
83342314
NP
1722
1723 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
db64fe02 1724 return -EINVAL;
83342314
NP
1725
1726 addr += pgoff << PAGE_SHIFT;
1727 do {
1728 struct page *page = vmalloc_to_page(addr);
db64fe02
NP
1729 int ret;
1730
83342314
NP
1731 ret = vm_insert_page(vma, uaddr, page);
1732 if (ret)
1733 return ret;
1734
1735 uaddr += PAGE_SIZE;
1736 addr += PAGE_SIZE;
1737 usize -= PAGE_SIZE;
1738 } while (usize > 0);
1739
1740 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1741 vma->vm_flags |= VM_RESERVED;
1742
db64fe02 1743 return 0;
83342314
NP
1744}
1745EXPORT_SYMBOL(remap_vmalloc_range);
1746
1eeb66a1
CH
1747/*
1748 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1749 * have one.
1750 */
1751void __attribute__((weak)) vmalloc_sync_all(void)
1752{
1753}
5f4352fb
JF
1754
1755
2f569afd 1756static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb
JF
1757{
1758 /* apply_to_page_range() does all the hard work. */
1759 return 0;
1760}
1761
1762/**
1763 * alloc_vm_area - allocate a range of kernel address space
1764 * @size: size of the area
7682486b
RD
1765 *
1766 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
1767 *
1768 * This function reserves a range of kernel address space, and
1769 * allocates pagetables to map that range. No actual mappings
1770 * are created. If the kernel address space is not shared
1771 * between processes, it syncs the pagetable across all
1772 * processes.
1773 */
1774struct vm_struct *alloc_vm_area(size_t size)
1775{
1776 struct vm_struct *area;
1777
23016969
CL
1778 area = get_vm_area_caller(size, VM_IOREMAP,
1779 __builtin_return_address(0));
5f4352fb
JF
1780 if (area == NULL)
1781 return NULL;
1782
1783 /*
1784 * This ensures that page tables are constructed for this region
1785 * of kernel virtual address space and mapped into init_mm.
1786 */
1787 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1788 area->size, f, NULL)) {
1789 free_vm_area(area);
1790 return NULL;
1791 }
1792
1793 /* Make sure the pagetables are constructed in process kernel
1794 mappings */
1795 vmalloc_sync_all();
1796
1797 return area;
1798}
1799EXPORT_SYMBOL_GPL(alloc_vm_area);
1800
1801void free_vm_area(struct vm_struct *area)
1802{
1803 struct vm_struct *ret;
1804 ret = remove_vm_area(area->addr);
1805 BUG_ON(ret != area);
1806 kfree(area);
1807}
1808EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579
CL
1809
1810
1811#ifdef CONFIG_PROC_FS
1812static void *s_start(struct seq_file *m, loff_t *pos)
1813{
1814 loff_t n = *pos;
1815 struct vm_struct *v;
1816
1817 read_lock(&vmlist_lock);
1818 v = vmlist;
1819 while (n > 0 && v) {
1820 n--;
1821 v = v->next;
1822 }
1823 if (!n)
1824 return v;
1825
1826 return NULL;
1827
1828}
1829
1830static void *s_next(struct seq_file *m, void *p, loff_t *pos)
1831{
1832 struct vm_struct *v = p;
1833
1834 ++*pos;
1835 return v->next;
1836}
1837
1838static void s_stop(struct seq_file *m, void *p)
1839{
1840 read_unlock(&vmlist_lock);
1841}
1842
a47a126a
ED
1843static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1844{
1845 if (NUMA_BUILD) {
1846 unsigned int nr, *counters = m->private;
1847
1848 if (!counters)
1849 return;
1850
1851 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1852
1853 for (nr = 0; nr < v->nr_pages; nr++)
1854 counters[page_to_nid(v->pages[nr])]++;
1855
1856 for_each_node_state(nr, N_HIGH_MEMORY)
1857 if (counters[nr])
1858 seq_printf(m, " N%u=%u", nr, counters[nr]);
1859 }
1860}
1861
a10aa579
CL
1862static int s_show(struct seq_file *m, void *p)
1863{
1864 struct vm_struct *v = p;
1865
1866 seq_printf(m, "0x%p-0x%p %7ld",
1867 v->addr, v->addr + v->size, v->size);
1868
23016969 1869 if (v->caller) {
9c246247 1870 char buff[KSYM_SYMBOL_LEN];
23016969
CL
1871
1872 seq_putc(m, ' ');
1873 sprint_symbol(buff, (unsigned long)v->caller);
1874 seq_puts(m, buff);
1875 }
1876
a10aa579
CL
1877 if (v->nr_pages)
1878 seq_printf(m, " pages=%d", v->nr_pages);
1879
1880 if (v->phys_addr)
1881 seq_printf(m, " phys=%lx", v->phys_addr);
1882
1883 if (v->flags & VM_IOREMAP)
1884 seq_printf(m, " ioremap");
1885
1886 if (v->flags & VM_ALLOC)
1887 seq_printf(m, " vmalloc");
1888
1889 if (v->flags & VM_MAP)
1890 seq_printf(m, " vmap");
1891
1892 if (v->flags & VM_USERMAP)
1893 seq_printf(m, " user");
1894
1895 if (v->flags & VM_VPAGES)
1896 seq_printf(m, " vpages");
1897
a47a126a 1898 show_numa_info(m, v);
a10aa579
CL
1899 seq_putc(m, '\n');
1900 return 0;
1901}
1902
5f6a6a9c 1903static const struct seq_operations vmalloc_op = {
a10aa579
CL
1904 .start = s_start,
1905 .next = s_next,
1906 .stop = s_stop,
1907 .show = s_show,
1908};
5f6a6a9c
AD
1909
1910static int vmalloc_open(struct inode *inode, struct file *file)
1911{
1912 unsigned int *ptr = NULL;
1913 int ret;
1914
1915 if (NUMA_BUILD)
1916 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
1917 ret = seq_open(file, &vmalloc_op);
1918 if (!ret) {
1919 struct seq_file *m = file->private_data;
1920 m->private = ptr;
1921 } else
1922 kfree(ptr);
1923 return ret;
1924}
1925
1926static const struct file_operations proc_vmalloc_operations = {
1927 .open = vmalloc_open,
1928 .read = seq_read,
1929 .llseek = seq_lseek,
1930 .release = seq_release_private,
1931};
1932
1933static int __init proc_vmalloc_init(void)
1934{
1935 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
1936 return 0;
1937}
1938module_init(proc_vmalloc_init);
a10aa579
CL
1939#endif
1940