]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/vmalloc.c
mm: vmap fix overflow
[net-next-2.6.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/slab.h>
16#include <linux/spinlock.h>
17#include <linux/interrupt.h>
5f6a6a9c 18#include <linux/proc_fs.h>
a10aa579 19#include <linux/seq_file.h>
3ac7fe5a 20#include <linux/debugobjects.h>
23016969 21#include <linux/kallsyms.h>
db64fe02
NP
22#include <linux/list.h>
23#include <linux/rbtree.h>
24#include <linux/radix-tree.h>
25#include <linux/rcupdate.h>
822c18f2 26#include <linux/bootmem.h>
1da177e4 27
db64fe02 28#include <asm/atomic.h>
1da177e4
LT
29#include <asm/uaccess.h>
30#include <asm/tlbflush.h>
31
32
db64fe02 33/*** Page table manipulation functions ***/
b221385b 34
1da177e4
LT
35static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
36{
37 pte_t *pte;
38
39 pte = pte_offset_kernel(pmd, addr);
40 do {
41 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
42 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
43 } while (pte++, addr += PAGE_SIZE, addr != end);
44}
45
db64fe02 46static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
47{
48 pmd_t *pmd;
49 unsigned long next;
50
51 pmd = pmd_offset(pud, addr);
52 do {
53 next = pmd_addr_end(addr, end);
54 if (pmd_none_or_clear_bad(pmd))
55 continue;
56 vunmap_pte_range(pmd, addr, next);
57 } while (pmd++, addr = next, addr != end);
58}
59
db64fe02 60static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
1da177e4
LT
61{
62 pud_t *pud;
63 unsigned long next;
64
65 pud = pud_offset(pgd, addr);
66 do {
67 next = pud_addr_end(addr, end);
68 if (pud_none_or_clear_bad(pud))
69 continue;
70 vunmap_pmd_range(pud, addr, next);
71 } while (pud++, addr = next, addr != end);
72}
73
db64fe02 74static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
75{
76 pgd_t *pgd;
77 unsigned long next;
1da177e4
LT
78
79 BUG_ON(addr >= end);
80 pgd = pgd_offset_k(addr);
1da177e4
LT
81 do {
82 next = pgd_addr_end(addr, end);
83 if (pgd_none_or_clear_bad(pgd))
84 continue;
85 vunmap_pud_range(pgd, addr, next);
86 } while (pgd++, addr = next, addr != end);
1da177e4
LT
87}
88
89static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 90 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
91{
92 pte_t *pte;
93
db64fe02
NP
94 /*
95 * nr is a running index into the array which helps higher level
96 * callers keep track of where we're up to.
97 */
98
872fec16 99 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
100 if (!pte)
101 return -ENOMEM;
102 do {
db64fe02
NP
103 struct page *page = pages[*nr];
104
105 if (WARN_ON(!pte_none(*pte)))
106 return -EBUSY;
107 if (WARN_ON(!page))
1da177e4
LT
108 return -ENOMEM;
109 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 110 (*nr)++;
1da177e4
LT
111 } while (pte++, addr += PAGE_SIZE, addr != end);
112 return 0;
113}
114
db64fe02
NP
115static int vmap_pmd_range(pud_t *pud, unsigned long addr,
116 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
117{
118 pmd_t *pmd;
119 unsigned long next;
120
121 pmd = pmd_alloc(&init_mm, pud, addr);
122 if (!pmd)
123 return -ENOMEM;
124 do {
125 next = pmd_addr_end(addr, end);
db64fe02 126 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
127 return -ENOMEM;
128 } while (pmd++, addr = next, addr != end);
129 return 0;
130}
131
db64fe02
NP
132static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
133 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
134{
135 pud_t *pud;
136 unsigned long next;
137
138 pud = pud_alloc(&init_mm, pgd, addr);
139 if (!pud)
140 return -ENOMEM;
141 do {
142 next = pud_addr_end(addr, end);
db64fe02 143 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
144 return -ENOMEM;
145 } while (pud++, addr = next, addr != end);
146 return 0;
147}
148
db64fe02
NP
149/*
150 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
151 * will have pfns corresponding to the "pages" array.
152 *
153 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
154 */
2e4e27c7 155static int vmap_page_range(unsigned long start, unsigned long end,
db64fe02 156 pgprot_t prot, struct page **pages)
1da177e4
LT
157{
158 pgd_t *pgd;
159 unsigned long next;
2e4e27c7 160 unsigned long addr = start;
db64fe02
NP
161 int err = 0;
162 int nr = 0;
1da177e4
LT
163
164 BUG_ON(addr >= end);
165 pgd = pgd_offset_k(addr);
1da177e4
LT
166 do {
167 next = pgd_addr_end(addr, end);
db64fe02 168 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
1da177e4
LT
169 if (err)
170 break;
171 } while (pgd++, addr = next, addr != end);
2e4e27c7 172 flush_cache_vmap(start, end);
db64fe02
NP
173
174 if (unlikely(err))
175 return err;
176 return nr;
1da177e4
LT
177}
178
73bdf0a6
LT
179static inline int is_vmalloc_or_module_addr(const void *x)
180{
181 /*
ab4f2ee1 182 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
183 * and fall back on vmalloc() if that fails. Others
184 * just put it in the vmalloc space.
185 */
186#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
187 unsigned long addr = (unsigned long)x;
188 if (addr >= MODULES_VADDR && addr < MODULES_END)
189 return 1;
190#endif
191 return is_vmalloc_addr(x);
192}
193
48667e7a 194/*
db64fe02 195 * Walk a vmap address to the struct page it maps.
48667e7a 196 */
b3bdda02 197struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
198{
199 unsigned long addr = (unsigned long) vmalloc_addr;
200 struct page *page = NULL;
201 pgd_t *pgd = pgd_offset_k(addr);
48667e7a 202
7aa413de
IM
203 /*
204 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
205 * architectures that do not vmalloc module space
206 */
73bdf0a6 207 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 208
48667e7a 209 if (!pgd_none(*pgd)) {
db64fe02 210 pud_t *pud = pud_offset(pgd, addr);
48667e7a 211 if (!pud_none(*pud)) {
db64fe02 212 pmd_t *pmd = pmd_offset(pud, addr);
48667e7a 213 if (!pmd_none(*pmd)) {
db64fe02
NP
214 pte_t *ptep, pte;
215
48667e7a
CL
216 ptep = pte_offset_map(pmd, addr);
217 pte = *ptep;
218 if (pte_present(pte))
219 page = pte_page(pte);
220 pte_unmap(ptep);
221 }
222 }
223 }
224 return page;
225}
226EXPORT_SYMBOL(vmalloc_to_page);
227
228/*
229 * Map a vmalloc()-space virtual address to the physical page frame number.
230 */
b3bdda02 231unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a
CL
232{
233 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
234}
235EXPORT_SYMBOL(vmalloc_to_pfn);
236
db64fe02
NP
237
238/*** Global kva allocator ***/
239
240#define VM_LAZY_FREE 0x01
241#define VM_LAZY_FREEING 0x02
242#define VM_VM_AREA 0x04
243
244struct vmap_area {
245 unsigned long va_start;
246 unsigned long va_end;
247 unsigned long flags;
248 struct rb_node rb_node; /* address sorted rbtree */
249 struct list_head list; /* address sorted list */
250 struct list_head purge_list; /* "lazy purge" list */
251 void *private;
252 struct rcu_head rcu_head;
253};
254
255static DEFINE_SPINLOCK(vmap_area_lock);
256static struct rb_root vmap_area_root = RB_ROOT;
257static LIST_HEAD(vmap_area_list);
258
259static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 260{
db64fe02
NP
261 struct rb_node *n = vmap_area_root.rb_node;
262
263 while (n) {
264 struct vmap_area *va;
265
266 va = rb_entry(n, struct vmap_area, rb_node);
267 if (addr < va->va_start)
268 n = n->rb_left;
269 else if (addr > va->va_start)
270 n = n->rb_right;
271 else
272 return va;
273 }
274
275 return NULL;
276}
277
278static void __insert_vmap_area(struct vmap_area *va)
279{
280 struct rb_node **p = &vmap_area_root.rb_node;
281 struct rb_node *parent = NULL;
282 struct rb_node *tmp;
283
284 while (*p) {
285 struct vmap_area *tmp;
286
287 parent = *p;
288 tmp = rb_entry(parent, struct vmap_area, rb_node);
289 if (va->va_start < tmp->va_end)
290 p = &(*p)->rb_left;
291 else if (va->va_end > tmp->va_start)
292 p = &(*p)->rb_right;
293 else
294 BUG();
295 }
296
297 rb_link_node(&va->rb_node, parent, p);
298 rb_insert_color(&va->rb_node, &vmap_area_root);
299
300 /* address-sort this list so it is usable like the vmlist */
301 tmp = rb_prev(&va->rb_node);
302 if (tmp) {
303 struct vmap_area *prev;
304 prev = rb_entry(tmp, struct vmap_area, rb_node);
305 list_add_rcu(&va->list, &prev->list);
306 } else
307 list_add_rcu(&va->list, &vmap_area_list);
308}
309
310static void purge_vmap_area_lazy(void);
311
312/*
313 * Allocate a region of KVA of the specified size and alignment, within the
314 * vstart and vend.
315 */
316static struct vmap_area *alloc_vmap_area(unsigned long size,
317 unsigned long align,
318 unsigned long vstart, unsigned long vend,
319 int node, gfp_t gfp_mask)
320{
321 struct vmap_area *va;
322 struct rb_node *n;
1da177e4 323 unsigned long addr;
db64fe02
NP
324 int purged = 0;
325
7766970c 326 BUG_ON(!size);
db64fe02
NP
327 BUG_ON(size & ~PAGE_MASK);
328
db64fe02
NP
329 va = kmalloc_node(sizeof(struct vmap_area),
330 gfp_mask & GFP_RECLAIM_MASK, node);
331 if (unlikely(!va))
332 return ERR_PTR(-ENOMEM);
333
334retry:
0ae15132
GC
335 addr = ALIGN(vstart, align);
336
db64fe02 337 spin_lock(&vmap_area_lock);
7766970c
NP
338 if (addr + size - 1 < addr)
339 goto overflow;
340
db64fe02
NP
341 /* XXX: could have a last_hole cache */
342 n = vmap_area_root.rb_node;
343 if (n) {
344 struct vmap_area *first = NULL;
345
346 do {
347 struct vmap_area *tmp;
348 tmp = rb_entry(n, struct vmap_area, rb_node);
349 if (tmp->va_end >= addr) {
350 if (!first && tmp->va_start < addr + size)
351 first = tmp;
352 n = n->rb_left;
353 } else {
354 first = tmp;
355 n = n->rb_right;
356 }
357 } while (n);
358
359 if (!first)
360 goto found;
361
362 if (first->va_end < addr) {
363 n = rb_next(&first->rb_node);
364 if (n)
365 first = rb_entry(n, struct vmap_area, rb_node);
366 else
367 goto found;
368 }
369
f011c2da 370 while (addr + size > first->va_start && addr + size <= vend) {
db64fe02 371 addr = ALIGN(first->va_end + PAGE_SIZE, align);
7766970c
NP
372 if (addr + size - 1 < addr)
373 goto overflow;
db64fe02
NP
374
375 n = rb_next(&first->rb_node);
376 if (n)
377 first = rb_entry(n, struct vmap_area, rb_node);
378 else
379 goto found;
380 }
381 }
382found:
383 if (addr + size > vend) {
7766970c 384overflow:
db64fe02
NP
385 spin_unlock(&vmap_area_lock);
386 if (!purged) {
387 purge_vmap_area_lazy();
388 purged = 1;
389 goto retry;
390 }
391 if (printk_ratelimit())
c1279c4e
GC
392 printk(KERN_WARNING
393 "vmap allocation for size %lu failed: "
394 "use vmalloc=<size> to increase size.\n", size);
db64fe02
NP
395 return ERR_PTR(-EBUSY);
396 }
397
398 BUG_ON(addr & (align-1));
399
400 va->va_start = addr;
401 va->va_end = addr + size;
402 va->flags = 0;
403 __insert_vmap_area(va);
404 spin_unlock(&vmap_area_lock);
405
406 return va;
407}
408
409static void rcu_free_va(struct rcu_head *head)
410{
411 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
412
413 kfree(va);
414}
415
416static void __free_vmap_area(struct vmap_area *va)
417{
418 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
419 rb_erase(&va->rb_node, &vmap_area_root);
420 RB_CLEAR_NODE(&va->rb_node);
421 list_del_rcu(&va->list);
422
423 call_rcu(&va->rcu_head, rcu_free_va);
424}
425
426/*
427 * Free a region of KVA allocated by alloc_vmap_area
428 */
429static void free_vmap_area(struct vmap_area *va)
430{
431 spin_lock(&vmap_area_lock);
432 __free_vmap_area(va);
433 spin_unlock(&vmap_area_lock);
434}
435
436/*
437 * Clear the pagetable entries of a given vmap_area
438 */
439static void unmap_vmap_area(struct vmap_area *va)
440{
441 vunmap_page_range(va->va_start, va->va_end);
442}
443
cd52858c
NP
444static void vmap_debug_free_range(unsigned long start, unsigned long end)
445{
446 /*
447 * Unmap page tables and force a TLB flush immediately if
448 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
449 * bugs similarly to those in linear kernel virtual address
450 * space after a page has been freed.
451 *
452 * All the lazy freeing logic is still retained, in order to
453 * minimise intrusiveness of this debugging feature.
454 *
455 * This is going to be *slow* (linear kernel virtual address
456 * debugging doesn't do a broadcast TLB flush so it is a lot
457 * faster).
458 */
459#ifdef CONFIG_DEBUG_PAGEALLOC
460 vunmap_page_range(start, end);
461 flush_tlb_kernel_range(start, end);
462#endif
463}
464
db64fe02
NP
465/*
466 * lazy_max_pages is the maximum amount of virtual address space we gather up
467 * before attempting to purge with a TLB flush.
468 *
469 * There is a tradeoff here: a larger number will cover more kernel page tables
470 * and take slightly longer to purge, but it will linearly reduce the number of
471 * global TLB flushes that must be performed. It would seem natural to scale
472 * this number up linearly with the number of CPUs (because vmapping activity
473 * could also scale linearly with the number of CPUs), however it is likely
474 * that in practice, workloads might be constrained in other ways that mean
475 * vmap activity will not scale linearly with CPUs. Also, I want to be
476 * conservative and not introduce a big latency on huge systems, so go with
477 * a less aggressive log scale. It will still be an improvement over the old
478 * code, and it will be simple to change the scale factor if we find that it
479 * becomes a problem on bigger systems.
480 */
481static unsigned long lazy_max_pages(void)
482{
483 unsigned int log;
484
485 log = fls(num_online_cpus());
486
487 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
488}
489
490static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
491
492/*
493 * Purges all lazily-freed vmap areas.
494 *
495 * If sync is 0 then don't purge if there is already a purge in progress.
496 * If force_flush is 1, then flush kernel TLBs between *start and *end even
497 * if we found no lazy vmap areas to unmap (callers can use this to optimise
498 * their own TLB flushing).
499 * Returns with *start = min(*start, lowest purged address)
500 * *end = max(*end, highest purged address)
501 */
502static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
503 int sync, int force_flush)
504{
46666d8a 505 static DEFINE_SPINLOCK(purge_lock);
db64fe02
NP
506 LIST_HEAD(valist);
507 struct vmap_area *va;
508 int nr = 0;
509
510 /*
511 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
512 * should not expect such behaviour. This just simplifies locking for
513 * the case that isn't actually used at the moment anyway.
514 */
515 if (!sync && !force_flush) {
46666d8a 516 if (!spin_trylock(&purge_lock))
db64fe02
NP
517 return;
518 } else
46666d8a 519 spin_lock(&purge_lock);
db64fe02
NP
520
521 rcu_read_lock();
522 list_for_each_entry_rcu(va, &vmap_area_list, list) {
523 if (va->flags & VM_LAZY_FREE) {
524 if (va->va_start < *start)
525 *start = va->va_start;
526 if (va->va_end > *end)
527 *end = va->va_end;
528 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
529 unmap_vmap_area(va);
530 list_add_tail(&va->purge_list, &valist);
531 va->flags |= VM_LAZY_FREEING;
532 va->flags &= ~VM_LAZY_FREE;
533 }
534 }
535 rcu_read_unlock();
536
537 if (nr) {
538 BUG_ON(nr > atomic_read(&vmap_lazy_nr));
539 atomic_sub(nr, &vmap_lazy_nr);
540 }
541
542 if (nr || force_flush)
543 flush_tlb_kernel_range(*start, *end);
544
545 if (nr) {
546 spin_lock(&vmap_area_lock);
547 list_for_each_entry(va, &valist, purge_list)
548 __free_vmap_area(va);
549 spin_unlock(&vmap_area_lock);
550 }
46666d8a 551 spin_unlock(&purge_lock);
db64fe02
NP
552}
553
496850e5
NP
554/*
555 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
556 * is already purging.
557 */
558static void try_purge_vmap_area_lazy(void)
559{
560 unsigned long start = ULONG_MAX, end = 0;
561
562 __purge_vmap_area_lazy(&start, &end, 0, 0);
563}
564
db64fe02
NP
565/*
566 * Kick off a purge of the outstanding lazy areas.
567 */
568static void purge_vmap_area_lazy(void)
569{
570 unsigned long start = ULONG_MAX, end = 0;
571
496850e5 572 __purge_vmap_area_lazy(&start, &end, 1, 0);
db64fe02
NP
573}
574
575/*
b29acbdc
NP
576 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
577 * called for the correct range previously.
db64fe02 578 */
b29acbdc 579static void free_unmap_vmap_area_noflush(struct vmap_area *va)
db64fe02
NP
580{
581 va->flags |= VM_LAZY_FREE;
582 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
583 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
496850e5 584 try_purge_vmap_area_lazy();
db64fe02
NP
585}
586
b29acbdc
NP
587/*
588 * Free and unmap a vmap area
589 */
590static void free_unmap_vmap_area(struct vmap_area *va)
591{
592 flush_cache_vunmap(va->va_start, va->va_end);
593 free_unmap_vmap_area_noflush(va);
594}
595
db64fe02
NP
596static struct vmap_area *find_vmap_area(unsigned long addr)
597{
598 struct vmap_area *va;
599
600 spin_lock(&vmap_area_lock);
601 va = __find_vmap_area(addr);
602 spin_unlock(&vmap_area_lock);
603
604 return va;
605}
606
607static void free_unmap_vmap_area_addr(unsigned long addr)
608{
609 struct vmap_area *va;
610
611 va = find_vmap_area(addr);
612 BUG_ON(!va);
613 free_unmap_vmap_area(va);
614}
615
616
617/*** Per cpu kva allocator ***/
618
619/*
620 * vmap space is limited especially on 32 bit architectures. Ensure there is
621 * room for at least 16 percpu vmap blocks per CPU.
622 */
623/*
624 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
625 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
626 * instead (we just need a rough idea)
627 */
628#if BITS_PER_LONG == 32
629#define VMALLOC_SPACE (128UL*1024*1024)
630#else
631#define VMALLOC_SPACE (128UL*1024*1024*1024)
632#endif
633
634#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
635#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
636#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
637#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
638#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
639#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
640#define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
641 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
642 VMALLOC_PAGES / NR_CPUS / 16))
643
644#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
645
9b463334
JF
646static bool vmap_initialized __read_mostly = false;
647
db64fe02
NP
648struct vmap_block_queue {
649 spinlock_t lock;
650 struct list_head free;
651 struct list_head dirty;
652 unsigned int nr_dirty;
653};
654
655struct vmap_block {
656 spinlock_t lock;
657 struct vmap_area *va;
658 struct vmap_block_queue *vbq;
659 unsigned long free, dirty;
660 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
661 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
662 union {
663 struct {
664 struct list_head free_list;
665 struct list_head dirty_list;
666 };
667 struct rcu_head rcu_head;
668 };
669};
670
671/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
672static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
673
674/*
675 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
676 * in the free path. Could get rid of this if we change the API to return a
677 * "cookie" from alloc, to be passed to free. But no big deal yet.
678 */
679static DEFINE_SPINLOCK(vmap_block_tree_lock);
680static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
681
682/*
683 * We should probably have a fallback mechanism to allocate virtual memory
684 * out of partially filled vmap blocks. However vmap block sizing should be
685 * fairly reasonable according to the vmalloc size, so it shouldn't be a
686 * big problem.
687 */
688
689static unsigned long addr_to_vb_idx(unsigned long addr)
690{
691 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
692 addr /= VMAP_BLOCK_SIZE;
693 return addr;
694}
695
696static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
697{
698 struct vmap_block_queue *vbq;
699 struct vmap_block *vb;
700 struct vmap_area *va;
701 unsigned long vb_idx;
702 int node, err;
703
704 node = numa_node_id();
705
706 vb = kmalloc_node(sizeof(struct vmap_block),
707 gfp_mask & GFP_RECLAIM_MASK, node);
708 if (unlikely(!vb))
709 return ERR_PTR(-ENOMEM);
710
711 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
712 VMALLOC_START, VMALLOC_END,
713 node, gfp_mask);
714 if (unlikely(IS_ERR(va))) {
715 kfree(vb);
716 return ERR_PTR(PTR_ERR(va));
717 }
718
719 err = radix_tree_preload(gfp_mask);
720 if (unlikely(err)) {
721 kfree(vb);
722 free_vmap_area(va);
723 return ERR_PTR(err);
724 }
725
726 spin_lock_init(&vb->lock);
727 vb->va = va;
728 vb->free = VMAP_BBMAP_BITS;
729 vb->dirty = 0;
730 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
731 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
732 INIT_LIST_HEAD(&vb->free_list);
733 INIT_LIST_HEAD(&vb->dirty_list);
734
735 vb_idx = addr_to_vb_idx(va->va_start);
736 spin_lock(&vmap_block_tree_lock);
737 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
738 spin_unlock(&vmap_block_tree_lock);
739 BUG_ON(err);
740 radix_tree_preload_end();
741
742 vbq = &get_cpu_var(vmap_block_queue);
743 vb->vbq = vbq;
744 spin_lock(&vbq->lock);
745 list_add(&vb->free_list, &vbq->free);
746 spin_unlock(&vbq->lock);
747 put_cpu_var(vmap_cpu_blocks);
748
749 return vb;
750}
751
752static void rcu_free_vb(struct rcu_head *head)
753{
754 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
755
756 kfree(vb);
757}
758
759static void free_vmap_block(struct vmap_block *vb)
760{
761 struct vmap_block *tmp;
762 unsigned long vb_idx;
763
764 spin_lock(&vb->vbq->lock);
765 if (!list_empty(&vb->free_list))
766 list_del(&vb->free_list);
767 if (!list_empty(&vb->dirty_list))
768 list_del(&vb->dirty_list);
769 spin_unlock(&vb->vbq->lock);
770
771 vb_idx = addr_to_vb_idx(vb->va->va_start);
772 spin_lock(&vmap_block_tree_lock);
773 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
774 spin_unlock(&vmap_block_tree_lock);
775 BUG_ON(tmp != vb);
776
b29acbdc 777 free_unmap_vmap_area_noflush(vb->va);
db64fe02
NP
778 call_rcu(&vb->rcu_head, rcu_free_vb);
779}
780
781static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
782{
783 struct vmap_block_queue *vbq;
784 struct vmap_block *vb;
785 unsigned long addr = 0;
786 unsigned int order;
787
788 BUG_ON(size & ~PAGE_MASK);
789 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
790 order = get_order(size);
791
792again:
793 rcu_read_lock();
794 vbq = &get_cpu_var(vmap_block_queue);
795 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
796 int i;
797
798 spin_lock(&vb->lock);
799 i = bitmap_find_free_region(vb->alloc_map,
800 VMAP_BBMAP_BITS, order);
801
802 if (i >= 0) {
803 addr = vb->va->va_start + (i << PAGE_SHIFT);
804 BUG_ON(addr_to_vb_idx(addr) !=
805 addr_to_vb_idx(vb->va->va_start));
806 vb->free -= 1UL << order;
807 if (vb->free == 0) {
808 spin_lock(&vbq->lock);
809 list_del_init(&vb->free_list);
810 spin_unlock(&vbq->lock);
811 }
812 spin_unlock(&vb->lock);
813 break;
814 }
815 spin_unlock(&vb->lock);
816 }
817 put_cpu_var(vmap_cpu_blocks);
818 rcu_read_unlock();
819
820 if (!addr) {
821 vb = new_vmap_block(gfp_mask);
822 if (IS_ERR(vb))
823 return vb;
824 goto again;
825 }
826
827 return (void *)addr;
828}
829
830static void vb_free(const void *addr, unsigned long size)
831{
832 unsigned long offset;
833 unsigned long vb_idx;
834 unsigned int order;
835 struct vmap_block *vb;
836
837 BUG_ON(size & ~PAGE_MASK);
838 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
839
840 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
841
db64fe02
NP
842 order = get_order(size);
843
844 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
845
846 vb_idx = addr_to_vb_idx((unsigned long)addr);
847 rcu_read_lock();
848 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
849 rcu_read_unlock();
850 BUG_ON(!vb);
851
852 spin_lock(&vb->lock);
853 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
854 if (!vb->dirty) {
855 spin_lock(&vb->vbq->lock);
856 list_add(&vb->dirty_list, &vb->vbq->dirty);
857 spin_unlock(&vb->vbq->lock);
858 }
859 vb->dirty += 1UL << order;
860 if (vb->dirty == VMAP_BBMAP_BITS) {
861 BUG_ON(vb->free || !list_empty(&vb->free_list));
862 spin_unlock(&vb->lock);
863 free_vmap_block(vb);
864 } else
865 spin_unlock(&vb->lock);
866}
867
868/**
869 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
870 *
871 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
872 * to amortize TLB flushing overheads. What this means is that any page you
873 * have now, may, in a former life, have been mapped into kernel virtual
874 * address by the vmap layer and so there might be some CPUs with TLB entries
875 * still referencing that page (additional to the regular 1:1 kernel mapping).
876 *
877 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
878 * be sure that none of the pages we have control over will have any aliases
879 * from the vmap layer.
880 */
881void vm_unmap_aliases(void)
882{
883 unsigned long start = ULONG_MAX, end = 0;
884 int cpu;
885 int flush = 0;
886
9b463334
JF
887 if (unlikely(!vmap_initialized))
888 return;
889
db64fe02
NP
890 for_each_possible_cpu(cpu) {
891 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
892 struct vmap_block *vb;
893
894 rcu_read_lock();
895 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
896 int i;
897
898 spin_lock(&vb->lock);
899 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
900 while (i < VMAP_BBMAP_BITS) {
901 unsigned long s, e;
902 int j;
903 j = find_next_zero_bit(vb->dirty_map,
904 VMAP_BBMAP_BITS, i);
905
906 s = vb->va->va_start + (i << PAGE_SHIFT);
907 e = vb->va->va_start + (j << PAGE_SHIFT);
908 vunmap_page_range(s, e);
909 flush = 1;
910
911 if (s < start)
912 start = s;
913 if (e > end)
914 end = e;
915
916 i = j;
917 i = find_next_bit(vb->dirty_map,
918 VMAP_BBMAP_BITS, i);
919 }
920 spin_unlock(&vb->lock);
921 }
922 rcu_read_unlock();
923 }
924
925 __purge_vmap_area_lazy(&start, &end, 1, flush);
926}
927EXPORT_SYMBOL_GPL(vm_unmap_aliases);
928
929/**
930 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
931 * @mem: the pointer returned by vm_map_ram
932 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
933 */
934void vm_unmap_ram(const void *mem, unsigned int count)
935{
936 unsigned long size = count << PAGE_SHIFT;
937 unsigned long addr = (unsigned long)mem;
938
939 BUG_ON(!addr);
940 BUG_ON(addr < VMALLOC_START);
941 BUG_ON(addr > VMALLOC_END);
942 BUG_ON(addr & (PAGE_SIZE-1));
943
944 debug_check_no_locks_freed(mem, size);
cd52858c 945 vmap_debug_free_range(addr, addr+size);
db64fe02
NP
946
947 if (likely(count <= VMAP_MAX_ALLOC))
948 vb_free(mem, size);
949 else
950 free_unmap_vmap_area_addr(addr);
951}
952EXPORT_SYMBOL(vm_unmap_ram);
953
954/**
955 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
956 * @pages: an array of pointers to the pages to be mapped
957 * @count: number of pages
958 * @node: prefer to allocate data structures on this node
959 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad
RD
960 *
961 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
962 */
963void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
964{
965 unsigned long size = count << PAGE_SHIFT;
966 unsigned long addr;
967 void *mem;
968
969 if (likely(count <= VMAP_MAX_ALLOC)) {
970 mem = vb_alloc(size, GFP_KERNEL);
971 if (IS_ERR(mem))
972 return NULL;
973 addr = (unsigned long)mem;
974 } else {
975 struct vmap_area *va;
976 va = alloc_vmap_area(size, PAGE_SIZE,
977 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
978 if (IS_ERR(va))
979 return NULL;
980
981 addr = va->va_start;
982 mem = (void *)addr;
983 }
984 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
985 vm_unmap_ram(mem, count);
986 return NULL;
987 }
988 return mem;
989}
990EXPORT_SYMBOL(vm_map_ram);
991
992void __init vmalloc_init(void)
993{
822c18f2
IK
994 struct vmap_area *va;
995 struct vm_struct *tmp;
db64fe02
NP
996 int i;
997
998 for_each_possible_cpu(i) {
999 struct vmap_block_queue *vbq;
1000
1001 vbq = &per_cpu(vmap_block_queue, i);
1002 spin_lock_init(&vbq->lock);
1003 INIT_LIST_HEAD(&vbq->free);
1004 INIT_LIST_HEAD(&vbq->dirty);
1005 vbq->nr_dirty = 0;
1006 }
9b463334 1007
822c18f2
IK
1008 /* Import existing vmlist entries. */
1009 for (tmp = vmlist; tmp; tmp = tmp->next) {
1010 va = alloc_bootmem(sizeof(struct vmap_area));
1011 va->flags = tmp->flags | VM_VM_AREA;
1012 va->va_start = (unsigned long)tmp->addr;
1013 va->va_end = va->va_start + tmp->size;
1014 __insert_vmap_area(va);
1015 }
9b463334 1016 vmap_initialized = true;
db64fe02
NP
1017}
1018
1019void unmap_kernel_range(unsigned long addr, unsigned long size)
1020{
1021 unsigned long end = addr + size;
f6fcba70
TH
1022
1023 flush_cache_vunmap(addr, end);
db64fe02
NP
1024 vunmap_page_range(addr, end);
1025 flush_tlb_kernel_range(addr, end);
1026}
1027
1028int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1029{
1030 unsigned long addr = (unsigned long)area->addr;
1031 unsigned long end = addr + area->size - PAGE_SIZE;
1032 int err;
1033
1034 err = vmap_page_range(addr, end, prot, *pages);
1035 if (err > 0) {
1036 *pages += err;
1037 err = 0;
1038 }
1039
1040 return err;
1041}
1042EXPORT_SYMBOL_GPL(map_vm_area);
1043
1044/*** Old vmalloc interfaces ***/
1045DEFINE_RWLOCK(vmlist_lock);
1046struct vm_struct *vmlist;
1047
1048static struct vm_struct *__get_vm_area_node(unsigned long size,
1049 unsigned long flags, unsigned long start, unsigned long end,
1050 int node, gfp_t gfp_mask, void *caller)
1051{
1052 static struct vmap_area *va;
1053 struct vm_struct *area;
1054 struct vm_struct *tmp, **p;
1055 unsigned long align = 1;
1da177e4 1056
52fd24ca 1057 BUG_ON(in_interrupt());
1da177e4
LT
1058 if (flags & VM_IOREMAP) {
1059 int bit = fls(size);
1060
1061 if (bit > IOREMAP_MAX_ORDER)
1062 bit = IOREMAP_MAX_ORDER;
1063 else if (bit < PAGE_SHIFT)
1064 bit = PAGE_SHIFT;
1065
1066 align = 1ul << bit;
1067 }
db64fe02 1068
1da177e4 1069 size = PAGE_ALIGN(size);
31be8309
OH
1070 if (unlikely(!size))
1071 return NULL;
1da177e4 1072
6cb06229 1073 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1074 if (unlikely(!area))
1075 return NULL;
1076
1da177e4
LT
1077 /*
1078 * We always allocate a guard page.
1079 */
1080 size += PAGE_SIZE;
1081
db64fe02
NP
1082 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1083 if (IS_ERR(va)) {
1084 kfree(area);
1085 return NULL;
1da177e4 1086 }
1da177e4
LT
1087
1088 area->flags = flags;
db64fe02 1089 area->addr = (void *)va->va_start;
1da177e4
LT
1090 area->size = size;
1091 area->pages = NULL;
1092 area->nr_pages = 0;
1093 area->phys_addr = 0;
23016969 1094 area->caller = caller;
db64fe02
NP
1095 va->private = area;
1096 va->flags |= VM_VM_AREA;
1097
1098 write_lock(&vmlist_lock);
1099 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1100 if (tmp->addr >= area->addr)
1101 break;
1102 }
1103 area->next = *p;
1104 *p = area;
1da177e4
LT
1105 write_unlock(&vmlist_lock);
1106
1107 return area;
1da177e4
LT
1108}
1109
930fc45a
CL
1110struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1111 unsigned long start, unsigned long end)
1112{
23016969
CL
1113 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1114 __builtin_return_address(0));
930fc45a 1115}
5992b6da 1116EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1117
c2968612
BH
1118struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1119 unsigned long start, unsigned long end,
1120 void *caller)
1121{
1122 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1123 caller);
1124}
1125
1da177e4 1126/**
183ff22b 1127 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
1128 * @size: size of the area
1129 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1130 *
1131 * Search an area of @size in the kernel virtual mapping area,
1132 * and reserved it for out purposes. Returns the area descriptor
1133 * on success or %NULL on failure.
1134 */
1135struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1136{
23016969
CL
1137 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1138 -1, GFP_KERNEL, __builtin_return_address(0));
1139}
1140
1141struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1142 void *caller)
1143{
1144 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1145 -1, GFP_KERNEL, caller);
1da177e4
LT
1146}
1147
52fd24ca
GP
1148struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1149 int node, gfp_t gfp_mask)
930fc45a 1150{
52fd24ca 1151 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
23016969 1152 gfp_mask, __builtin_return_address(0));
930fc45a
CL
1153}
1154
db64fe02 1155static struct vm_struct *find_vm_area(const void *addr)
83342314 1156{
db64fe02 1157 struct vmap_area *va;
83342314 1158
db64fe02
NP
1159 va = find_vmap_area((unsigned long)addr);
1160 if (va && va->flags & VM_VM_AREA)
1161 return va->private;
1da177e4 1162
1da177e4 1163 return NULL;
1da177e4
LT
1164}
1165
7856dfeb 1166/**
183ff22b 1167 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
1168 * @addr: base address
1169 *
1170 * Search for the kernel VM area starting at @addr, and remove it.
1171 * This function returns the found VM area, but using it is NOT safe
1172 * on SMP machines, except for its size or flags.
1173 */
b3bdda02 1174struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1175{
db64fe02
NP
1176 struct vmap_area *va;
1177
1178 va = find_vmap_area((unsigned long)addr);
1179 if (va && va->flags & VM_VM_AREA) {
1180 struct vm_struct *vm = va->private;
1181 struct vm_struct *tmp, **p;
cd52858c
NP
1182
1183 vmap_debug_free_range(va->va_start, va->va_end);
db64fe02
NP
1184 free_unmap_vmap_area(va);
1185 vm->size -= PAGE_SIZE;
1186
1187 write_lock(&vmlist_lock);
1188 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1189 ;
1190 *p = tmp->next;
1191 write_unlock(&vmlist_lock);
1192
1193 return vm;
1194 }
1195 return NULL;
7856dfeb
AK
1196}
1197
b3bdda02 1198static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1199{
1200 struct vm_struct *area;
1201
1202 if (!addr)
1203 return;
1204
1205 if ((PAGE_SIZE-1) & (unsigned long)addr) {
4c8573e2 1206 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1da177e4
LT
1207 return;
1208 }
1209
1210 area = remove_vm_area(addr);
1211 if (unlikely(!area)) {
4c8573e2 1212 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1213 addr);
1da177e4
LT
1214 return;
1215 }
1216
9a11b49a 1217 debug_check_no_locks_freed(addr, area->size);
3ac7fe5a 1218 debug_check_no_obj_freed(addr, area->size);
9a11b49a 1219
1da177e4
LT
1220 if (deallocate_pages) {
1221 int i;
1222
1223 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1224 struct page *page = area->pages[i];
1225
1226 BUG_ON(!page);
1227 __free_page(page);
1da177e4
LT
1228 }
1229
8757d5fa 1230 if (area->flags & VM_VPAGES)
1da177e4
LT
1231 vfree(area->pages);
1232 else
1233 kfree(area->pages);
1234 }
1235
1236 kfree(area);
1237 return;
1238}
1239
1240/**
1241 * vfree - release memory allocated by vmalloc()
1da177e4
LT
1242 * @addr: memory base address
1243 *
183ff22b 1244 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
1245 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1246 * NULL, no operation is performed.
1da177e4 1247 *
80e93eff 1248 * Must not be called in interrupt context.
1da177e4 1249 */
b3bdda02 1250void vfree(const void *addr)
1da177e4
LT
1251{
1252 BUG_ON(in_interrupt());
1253 __vunmap(addr, 1);
1254}
1da177e4
LT
1255EXPORT_SYMBOL(vfree);
1256
1257/**
1258 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
1259 * @addr: memory base address
1260 *
1261 * Free the virtually contiguous memory area starting at @addr,
1262 * which was created from the page array passed to vmap().
1263 *
80e93eff 1264 * Must not be called in interrupt context.
1da177e4 1265 */
b3bdda02 1266void vunmap(const void *addr)
1da177e4
LT
1267{
1268 BUG_ON(in_interrupt());
1269 __vunmap(addr, 0);
1270}
1da177e4
LT
1271EXPORT_SYMBOL(vunmap);
1272
1273/**
1274 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
1275 * @pages: array of page pointers
1276 * @count: number of pages to map
1277 * @flags: vm_area->flags
1278 * @prot: page protection for the mapping
1279 *
1280 * Maps @count pages from @pages into contiguous kernel virtual
1281 * space.
1282 */
1283void *vmap(struct page **pages, unsigned int count,
1284 unsigned long flags, pgprot_t prot)
1285{
1286 struct vm_struct *area;
1287
1288 if (count > num_physpages)
1289 return NULL;
1290
23016969
CL
1291 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1292 __builtin_return_address(0));
1da177e4
LT
1293 if (!area)
1294 return NULL;
23016969 1295
1da177e4
LT
1296 if (map_vm_area(area, prot, &pages)) {
1297 vunmap(area->addr);
1298 return NULL;
1299 }
1300
1301 return area->addr;
1302}
1da177e4
LT
1303EXPORT_SYMBOL(vmap);
1304
db64fe02
NP
1305static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1306 int node, void *caller);
e31d9eb5 1307static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
23016969 1308 pgprot_t prot, int node, void *caller)
1da177e4
LT
1309{
1310 struct page **pages;
1311 unsigned int nr_pages, array_size, i;
1312
1313 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1314 array_size = (nr_pages * sizeof(struct page *));
1315
1316 area->nr_pages = nr_pages;
1317 /* Please note that the recursion is strictly bounded. */
8757d5fa 1318 if (array_size > PAGE_SIZE) {
94f6030c 1319 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
23016969 1320 PAGE_KERNEL, node, caller);
8757d5fa 1321 area->flags |= VM_VPAGES;
286e1ea3
AM
1322 } else {
1323 pages = kmalloc_node(array_size,
6cb06229 1324 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
286e1ea3
AM
1325 node);
1326 }
1da177e4 1327 area->pages = pages;
23016969 1328 area->caller = caller;
1da177e4
LT
1329 if (!area->pages) {
1330 remove_vm_area(area->addr);
1331 kfree(area);
1332 return NULL;
1333 }
1da177e4
LT
1334
1335 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1336 struct page *page;
1337
930fc45a 1338 if (node < 0)
bf53d6f8 1339 page = alloc_page(gfp_mask);
930fc45a 1340 else
bf53d6f8
CL
1341 page = alloc_pages_node(node, gfp_mask, 0);
1342
1343 if (unlikely(!page)) {
1da177e4
LT
1344 /* Successfully allocated i pages, free them in __vunmap() */
1345 area->nr_pages = i;
1346 goto fail;
1347 }
bf53d6f8 1348 area->pages[i] = page;
1da177e4
LT
1349 }
1350
1351 if (map_vm_area(area, prot, &pages))
1352 goto fail;
1353 return area->addr;
1354
1355fail:
1356 vfree(area->addr);
1357 return NULL;
1358}
1359
930fc45a
CL
1360void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1361{
23016969
CL
1362 return __vmalloc_area_node(area, gfp_mask, prot, -1,
1363 __builtin_return_address(0));
930fc45a
CL
1364}
1365
1da177e4 1366/**
930fc45a 1367 * __vmalloc_node - allocate virtually contiguous memory
1da177e4
LT
1368 * @size: allocation size
1369 * @gfp_mask: flags for the page level allocator
1370 * @prot: protection mask for the allocated pages
d44e0780 1371 * @node: node to use for allocation or -1
c85d194b 1372 * @caller: caller's return address
1da177e4
LT
1373 *
1374 * Allocate enough pages to cover @size from the page level
1375 * allocator with @gfp_mask flags. Map them into contiguous
1376 * kernel virtual space, using a pagetable protection of @prot.
1377 */
b221385b 1378static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
23016969 1379 int node, void *caller)
1da177e4
LT
1380{
1381 struct vm_struct *area;
1382
1383 size = PAGE_ALIGN(size);
1384 if (!size || (size >> PAGE_SHIFT) > num_physpages)
1385 return NULL;
1386
23016969
CL
1387 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1388 node, gfp_mask, caller);
1389
1da177e4
LT
1390 if (!area)
1391 return NULL;
1392
23016969 1393 return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1da177e4
LT
1394}
1395
930fc45a
CL
1396void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1397{
23016969
CL
1398 return __vmalloc_node(size, gfp_mask, prot, -1,
1399 __builtin_return_address(0));
930fc45a 1400}
1da177e4
LT
1401EXPORT_SYMBOL(__vmalloc);
1402
1403/**
1404 * vmalloc - allocate virtually contiguous memory
1da177e4 1405 * @size: allocation size
1da177e4
LT
1406 * Allocate enough pages to cover @size from the page level
1407 * allocator and map them into contiguous kernel virtual space.
1408 *
c1c8897f 1409 * For tight control over page level allocator and protection flags
1da177e4
LT
1410 * use __vmalloc() instead.
1411 */
1412void *vmalloc(unsigned long size)
1413{
23016969
CL
1414 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1415 -1, __builtin_return_address(0));
1da177e4 1416}
1da177e4
LT
1417EXPORT_SYMBOL(vmalloc);
1418
83342314 1419/**
ead04089
REB
1420 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1421 * @size: allocation size
83342314 1422 *
ead04089
REB
1423 * The resulting memory area is zeroed so it can be mapped to userspace
1424 * without leaking data.
83342314
NP
1425 */
1426void *vmalloc_user(unsigned long size)
1427{
1428 struct vm_struct *area;
1429 void *ret;
1430
84877848
GC
1431 ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1432 PAGE_KERNEL, -1, __builtin_return_address(0));
2b4ac44e 1433 if (ret) {
db64fe02 1434 area = find_vm_area(ret);
2b4ac44e 1435 area->flags |= VM_USERMAP;
2b4ac44e 1436 }
83342314
NP
1437 return ret;
1438}
1439EXPORT_SYMBOL(vmalloc_user);
1440
930fc45a
CL
1441/**
1442 * vmalloc_node - allocate memory on a specific node
930fc45a 1443 * @size: allocation size
d44e0780 1444 * @node: numa node
930fc45a
CL
1445 *
1446 * Allocate enough pages to cover @size from the page level
1447 * allocator and map them into contiguous kernel virtual space.
1448 *
c1c8897f 1449 * For tight control over page level allocator and protection flags
930fc45a
CL
1450 * use __vmalloc() instead.
1451 */
1452void *vmalloc_node(unsigned long size, int node)
1453{
23016969
CL
1454 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1455 node, __builtin_return_address(0));
930fc45a
CL
1456}
1457EXPORT_SYMBOL(vmalloc_node);
1458
4dc3b16b
PP
1459#ifndef PAGE_KERNEL_EXEC
1460# define PAGE_KERNEL_EXEC PAGE_KERNEL
1461#endif
1462
1da177e4
LT
1463/**
1464 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
1465 * @size: allocation size
1466 *
1467 * Kernel-internal function to allocate enough pages to cover @size
1468 * the page level allocator and map them into contiguous and
1469 * executable kernel virtual space.
1470 *
c1c8897f 1471 * For tight control over page level allocator and protection flags
1da177e4
LT
1472 * use __vmalloc() instead.
1473 */
1474
1da177e4
LT
1475void *vmalloc_exec(unsigned long size)
1476{
84877848
GC
1477 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1478 -1, __builtin_return_address(0));
1da177e4
LT
1479}
1480
0d08e0d3 1481#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
7ac674f5 1482#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3 1483#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
7ac674f5 1484#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
0d08e0d3
AK
1485#else
1486#define GFP_VMALLOC32 GFP_KERNEL
1487#endif
1488
1da177e4
LT
1489/**
1490 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
1491 * @size: allocation size
1492 *
1493 * Allocate enough 32bit PA addressable pages to cover @size from the
1494 * page level allocator and map them into contiguous kernel virtual space.
1495 */
1496void *vmalloc_32(unsigned long size)
1497{
84877848
GC
1498 return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL,
1499 -1, __builtin_return_address(0));
1da177e4 1500}
1da177e4
LT
1501EXPORT_SYMBOL(vmalloc_32);
1502
83342314 1503/**
ead04089 1504 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 1505 * @size: allocation size
ead04089
REB
1506 *
1507 * The resulting memory area is 32bit addressable and zeroed so it can be
1508 * mapped to userspace without leaking data.
83342314
NP
1509 */
1510void *vmalloc_32_user(unsigned long size)
1511{
1512 struct vm_struct *area;
1513 void *ret;
1514
84877848
GC
1515 ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1516 -1, __builtin_return_address(0));
2b4ac44e 1517 if (ret) {
db64fe02 1518 area = find_vm_area(ret);
2b4ac44e 1519 area->flags |= VM_USERMAP;
2b4ac44e 1520 }
83342314
NP
1521 return ret;
1522}
1523EXPORT_SYMBOL(vmalloc_32_user);
1524
1da177e4
LT
1525long vread(char *buf, char *addr, unsigned long count)
1526{
1527 struct vm_struct *tmp;
1528 char *vaddr, *buf_start = buf;
1529 unsigned long n;
1530
1531 /* Don't allow overflow */
1532 if ((unsigned long) addr + count < count)
1533 count = -(unsigned long) addr;
1534
1535 read_lock(&vmlist_lock);
1536 for (tmp = vmlist; tmp; tmp = tmp->next) {
1537 vaddr = (char *) tmp->addr;
1538 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1539 continue;
1540 while (addr < vaddr) {
1541 if (count == 0)
1542 goto finished;
1543 *buf = '\0';
1544 buf++;
1545 addr++;
1546 count--;
1547 }
1548 n = vaddr + tmp->size - PAGE_SIZE - addr;
1549 do {
1550 if (count == 0)
1551 goto finished;
1552 *buf = *addr;
1553 buf++;
1554 addr++;
1555 count--;
1556 } while (--n > 0);
1557 }
1558finished:
1559 read_unlock(&vmlist_lock);
1560 return buf - buf_start;
1561}
1562
1563long vwrite(char *buf, char *addr, unsigned long count)
1564{
1565 struct vm_struct *tmp;
1566 char *vaddr, *buf_start = buf;
1567 unsigned long n;
1568
1569 /* Don't allow overflow */
1570 if ((unsigned long) addr + count < count)
1571 count = -(unsigned long) addr;
1572
1573 read_lock(&vmlist_lock);
1574 for (tmp = vmlist; tmp; tmp = tmp->next) {
1575 vaddr = (char *) tmp->addr;
1576 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1577 continue;
1578 while (addr < vaddr) {
1579 if (count == 0)
1580 goto finished;
1581 buf++;
1582 addr++;
1583 count--;
1584 }
1585 n = vaddr + tmp->size - PAGE_SIZE - addr;
1586 do {
1587 if (count == 0)
1588 goto finished;
1589 *addr = *buf;
1590 buf++;
1591 addr++;
1592 count--;
1593 } while (--n > 0);
1594 }
1595finished:
1596 read_unlock(&vmlist_lock);
1597 return buf - buf_start;
1598}
83342314
NP
1599
1600/**
1601 * remap_vmalloc_range - map vmalloc pages to userspace
83342314
NP
1602 * @vma: vma to cover (map full range of vma)
1603 * @addr: vmalloc memory
1604 * @pgoff: number of pages into addr before first page to map
7682486b
RD
1605 *
1606 * Returns: 0 for success, -Exxx on failure
83342314
NP
1607 *
1608 * This function checks that addr is a valid vmalloc'ed area, and
1609 * that it is big enough to cover the vma. Will return failure if
1610 * that criteria isn't met.
1611 *
72fd4a35 1612 * Similar to remap_pfn_range() (see mm/memory.c)
83342314
NP
1613 */
1614int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1615 unsigned long pgoff)
1616{
1617 struct vm_struct *area;
1618 unsigned long uaddr = vma->vm_start;
1619 unsigned long usize = vma->vm_end - vma->vm_start;
83342314
NP
1620
1621 if ((PAGE_SIZE-1) & (unsigned long)addr)
1622 return -EINVAL;
1623
db64fe02 1624 area = find_vm_area(addr);
83342314 1625 if (!area)
db64fe02 1626 return -EINVAL;
83342314
NP
1627
1628 if (!(area->flags & VM_USERMAP))
db64fe02 1629 return -EINVAL;
83342314
NP
1630
1631 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
db64fe02 1632 return -EINVAL;
83342314
NP
1633
1634 addr += pgoff << PAGE_SHIFT;
1635 do {
1636 struct page *page = vmalloc_to_page(addr);
db64fe02
NP
1637 int ret;
1638
83342314
NP
1639 ret = vm_insert_page(vma, uaddr, page);
1640 if (ret)
1641 return ret;
1642
1643 uaddr += PAGE_SIZE;
1644 addr += PAGE_SIZE;
1645 usize -= PAGE_SIZE;
1646 } while (usize > 0);
1647
1648 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1649 vma->vm_flags |= VM_RESERVED;
1650
db64fe02 1651 return 0;
83342314
NP
1652}
1653EXPORT_SYMBOL(remap_vmalloc_range);
1654
1eeb66a1
CH
1655/*
1656 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1657 * have one.
1658 */
1659void __attribute__((weak)) vmalloc_sync_all(void)
1660{
1661}
5f4352fb
JF
1662
1663
2f569afd 1664static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb
JF
1665{
1666 /* apply_to_page_range() does all the hard work. */
1667 return 0;
1668}
1669
1670/**
1671 * alloc_vm_area - allocate a range of kernel address space
1672 * @size: size of the area
7682486b
RD
1673 *
1674 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
1675 *
1676 * This function reserves a range of kernel address space, and
1677 * allocates pagetables to map that range. No actual mappings
1678 * are created. If the kernel address space is not shared
1679 * between processes, it syncs the pagetable across all
1680 * processes.
1681 */
1682struct vm_struct *alloc_vm_area(size_t size)
1683{
1684 struct vm_struct *area;
1685
23016969
CL
1686 area = get_vm_area_caller(size, VM_IOREMAP,
1687 __builtin_return_address(0));
5f4352fb
JF
1688 if (area == NULL)
1689 return NULL;
1690
1691 /*
1692 * This ensures that page tables are constructed for this region
1693 * of kernel virtual address space and mapped into init_mm.
1694 */
1695 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1696 area->size, f, NULL)) {
1697 free_vm_area(area);
1698 return NULL;
1699 }
1700
1701 /* Make sure the pagetables are constructed in process kernel
1702 mappings */
1703 vmalloc_sync_all();
1704
1705 return area;
1706}
1707EXPORT_SYMBOL_GPL(alloc_vm_area);
1708
1709void free_vm_area(struct vm_struct *area)
1710{
1711 struct vm_struct *ret;
1712 ret = remove_vm_area(area->addr);
1713 BUG_ON(ret != area);
1714 kfree(area);
1715}
1716EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579
CL
1717
1718
1719#ifdef CONFIG_PROC_FS
1720static void *s_start(struct seq_file *m, loff_t *pos)
1721{
1722 loff_t n = *pos;
1723 struct vm_struct *v;
1724
1725 read_lock(&vmlist_lock);
1726 v = vmlist;
1727 while (n > 0 && v) {
1728 n--;
1729 v = v->next;
1730 }
1731 if (!n)
1732 return v;
1733
1734 return NULL;
1735
1736}
1737
1738static void *s_next(struct seq_file *m, void *p, loff_t *pos)
1739{
1740 struct vm_struct *v = p;
1741
1742 ++*pos;
1743 return v->next;
1744}
1745
1746static void s_stop(struct seq_file *m, void *p)
1747{
1748 read_unlock(&vmlist_lock);
1749}
1750
a47a126a
ED
1751static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1752{
1753 if (NUMA_BUILD) {
1754 unsigned int nr, *counters = m->private;
1755
1756 if (!counters)
1757 return;
1758
1759 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1760
1761 for (nr = 0; nr < v->nr_pages; nr++)
1762 counters[page_to_nid(v->pages[nr])]++;
1763
1764 for_each_node_state(nr, N_HIGH_MEMORY)
1765 if (counters[nr])
1766 seq_printf(m, " N%u=%u", nr, counters[nr]);
1767 }
1768}
1769
a10aa579
CL
1770static int s_show(struct seq_file *m, void *p)
1771{
1772 struct vm_struct *v = p;
1773
1774 seq_printf(m, "0x%p-0x%p %7ld",
1775 v->addr, v->addr + v->size, v->size);
1776
23016969 1777 if (v->caller) {
9c246247 1778 char buff[KSYM_SYMBOL_LEN];
23016969
CL
1779
1780 seq_putc(m, ' ');
1781 sprint_symbol(buff, (unsigned long)v->caller);
1782 seq_puts(m, buff);
1783 }
1784
a10aa579
CL
1785 if (v->nr_pages)
1786 seq_printf(m, " pages=%d", v->nr_pages);
1787
1788 if (v->phys_addr)
1789 seq_printf(m, " phys=%lx", v->phys_addr);
1790
1791 if (v->flags & VM_IOREMAP)
1792 seq_printf(m, " ioremap");
1793
1794 if (v->flags & VM_ALLOC)
1795 seq_printf(m, " vmalloc");
1796
1797 if (v->flags & VM_MAP)
1798 seq_printf(m, " vmap");
1799
1800 if (v->flags & VM_USERMAP)
1801 seq_printf(m, " user");
1802
1803 if (v->flags & VM_VPAGES)
1804 seq_printf(m, " vpages");
1805
a47a126a 1806 show_numa_info(m, v);
a10aa579
CL
1807 seq_putc(m, '\n');
1808 return 0;
1809}
1810
5f6a6a9c 1811static const struct seq_operations vmalloc_op = {
a10aa579
CL
1812 .start = s_start,
1813 .next = s_next,
1814 .stop = s_stop,
1815 .show = s_show,
1816};
5f6a6a9c
AD
1817
1818static int vmalloc_open(struct inode *inode, struct file *file)
1819{
1820 unsigned int *ptr = NULL;
1821 int ret;
1822
1823 if (NUMA_BUILD)
1824 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
1825 ret = seq_open(file, &vmalloc_op);
1826 if (!ret) {
1827 struct seq_file *m = file->private_data;
1828 m->private = ptr;
1829 } else
1830 kfree(ptr);
1831 return ret;
1832}
1833
1834static const struct file_operations proc_vmalloc_operations = {
1835 .open = vmalloc_open,
1836 .read = seq_read,
1837 .llseek = seq_lseek,
1838 .release = seq_release_private,
1839};
1840
1841static int __init proc_vmalloc_init(void)
1842{
1843 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
1844 return 0;
1845}
1846module_init(proc_vmalloc_init);
a10aa579
CL
1847#endif
1848