]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/vmalloc.c
vmalloc: implement vm_area_register_early()
[net-next-2.6.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/slab.h>
16#include <linux/spinlock.h>
17#include <linux/interrupt.h>
5f6a6a9c 18#include <linux/proc_fs.h>
a10aa579 19#include <linux/seq_file.h>
3ac7fe5a 20#include <linux/debugobjects.h>
23016969 21#include <linux/kallsyms.h>
db64fe02
NP
22#include <linux/list.h>
23#include <linux/rbtree.h>
24#include <linux/radix-tree.h>
25#include <linux/rcupdate.h>
822c18f2 26#include <linux/bootmem.h>
f0aa6617 27#include <linux/pfn.h>
1da177e4 28
db64fe02 29#include <asm/atomic.h>
1da177e4
LT
30#include <asm/uaccess.h>
31#include <asm/tlbflush.h>
32
33
db64fe02 34/*** Page table manipulation functions ***/
b221385b 35
1da177e4
LT
36static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
37{
38 pte_t *pte;
39
40 pte = pte_offset_kernel(pmd, addr);
41 do {
42 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
43 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
44 } while (pte++, addr += PAGE_SIZE, addr != end);
45}
46
db64fe02 47static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
48{
49 pmd_t *pmd;
50 unsigned long next;
51
52 pmd = pmd_offset(pud, addr);
53 do {
54 next = pmd_addr_end(addr, end);
55 if (pmd_none_or_clear_bad(pmd))
56 continue;
57 vunmap_pte_range(pmd, addr, next);
58 } while (pmd++, addr = next, addr != end);
59}
60
db64fe02 61static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
1da177e4
LT
62{
63 pud_t *pud;
64 unsigned long next;
65
66 pud = pud_offset(pgd, addr);
67 do {
68 next = pud_addr_end(addr, end);
69 if (pud_none_or_clear_bad(pud))
70 continue;
71 vunmap_pmd_range(pud, addr, next);
72 } while (pud++, addr = next, addr != end);
73}
74
db64fe02 75static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
76{
77 pgd_t *pgd;
78 unsigned long next;
1da177e4
LT
79
80 BUG_ON(addr >= end);
81 pgd = pgd_offset_k(addr);
1da177e4
LT
82 do {
83 next = pgd_addr_end(addr, end);
84 if (pgd_none_or_clear_bad(pgd))
85 continue;
86 vunmap_pud_range(pgd, addr, next);
87 } while (pgd++, addr = next, addr != end);
1da177e4
LT
88}
89
90static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 91 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
92{
93 pte_t *pte;
94
db64fe02
NP
95 /*
96 * nr is a running index into the array which helps higher level
97 * callers keep track of where we're up to.
98 */
99
872fec16 100 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
101 if (!pte)
102 return -ENOMEM;
103 do {
db64fe02
NP
104 struct page *page = pages[*nr];
105
106 if (WARN_ON(!pte_none(*pte)))
107 return -EBUSY;
108 if (WARN_ON(!page))
1da177e4
LT
109 return -ENOMEM;
110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 111 (*nr)++;
1da177e4
LT
112 } while (pte++, addr += PAGE_SIZE, addr != end);
113 return 0;
114}
115
db64fe02
NP
116static int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
118{
119 pmd_t *pmd;
120 unsigned long next;
121
122 pmd = pmd_alloc(&init_mm, pud, addr);
123 if (!pmd)
124 return -ENOMEM;
125 do {
126 next = pmd_addr_end(addr, end);
db64fe02 127 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
128 return -ENOMEM;
129 } while (pmd++, addr = next, addr != end);
130 return 0;
131}
132
db64fe02
NP
133static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
135{
136 pud_t *pud;
137 unsigned long next;
138
139 pud = pud_alloc(&init_mm, pgd, addr);
140 if (!pud)
141 return -ENOMEM;
142 do {
143 next = pud_addr_end(addr, end);
db64fe02 144 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
145 return -ENOMEM;
146 } while (pud++, addr = next, addr != end);
147 return 0;
148}
149
db64fe02
NP
150/*
151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152 * will have pfns corresponding to the "pages" array.
153 *
154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
155 */
2e4e27c7 156static int vmap_page_range(unsigned long start, unsigned long end,
db64fe02 157 pgprot_t prot, struct page **pages)
1da177e4
LT
158{
159 pgd_t *pgd;
160 unsigned long next;
2e4e27c7 161 unsigned long addr = start;
db64fe02
NP
162 int err = 0;
163 int nr = 0;
1da177e4
LT
164
165 BUG_ON(addr >= end);
166 pgd = pgd_offset_k(addr);
1da177e4
LT
167 do {
168 next = pgd_addr_end(addr, end);
db64fe02 169 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
1da177e4
LT
170 if (err)
171 break;
172 } while (pgd++, addr = next, addr != end);
2e4e27c7 173 flush_cache_vmap(start, end);
db64fe02
NP
174
175 if (unlikely(err))
176 return err;
177 return nr;
1da177e4
LT
178}
179
73bdf0a6
LT
180static inline int is_vmalloc_or_module_addr(const void *x)
181{
182 /*
ab4f2ee1 183 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
184 * and fall back on vmalloc() if that fails. Others
185 * just put it in the vmalloc space.
186 */
187#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
188 unsigned long addr = (unsigned long)x;
189 if (addr >= MODULES_VADDR && addr < MODULES_END)
190 return 1;
191#endif
192 return is_vmalloc_addr(x);
193}
194
48667e7a 195/*
db64fe02 196 * Walk a vmap address to the struct page it maps.
48667e7a 197 */
b3bdda02 198struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
199{
200 unsigned long addr = (unsigned long) vmalloc_addr;
201 struct page *page = NULL;
202 pgd_t *pgd = pgd_offset_k(addr);
48667e7a 203
7aa413de
IM
204 /*
205 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
206 * architectures that do not vmalloc module space
207 */
73bdf0a6 208 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 209
48667e7a 210 if (!pgd_none(*pgd)) {
db64fe02 211 pud_t *pud = pud_offset(pgd, addr);
48667e7a 212 if (!pud_none(*pud)) {
db64fe02 213 pmd_t *pmd = pmd_offset(pud, addr);
48667e7a 214 if (!pmd_none(*pmd)) {
db64fe02
NP
215 pte_t *ptep, pte;
216
48667e7a
CL
217 ptep = pte_offset_map(pmd, addr);
218 pte = *ptep;
219 if (pte_present(pte))
220 page = pte_page(pte);
221 pte_unmap(ptep);
222 }
223 }
224 }
225 return page;
226}
227EXPORT_SYMBOL(vmalloc_to_page);
228
229/*
230 * Map a vmalloc()-space virtual address to the physical page frame number.
231 */
b3bdda02 232unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a
CL
233{
234 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
235}
236EXPORT_SYMBOL(vmalloc_to_pfn);
237
db64fe02
NP
238
239/*** Global kva allocator ***/
240
241#define VM_LAZY_FREE 0x01
242#define VM_LAZY_FREEING 0x02
243#define VM_VM_AREA 0x04
244
245struct vmap_area {
246 unsigned long va_start;
247 unsigned long va_end;
248 unsigned long flags;
249 struct rb_node rb_node; /* address sorted rbtree */
250 struct list_head list; /* address sorted list */
251 struct list_head purge_list; /* "lazy purge" list */
252 void *private;
253 struct rcu_head rcu_head;
254};
255
256static DEFINE_SPINLOCK(vmap_area_lock);
257static struct rb_root vmap_area_root = RB_ROOT;
258static LIST_HEAD(vmap_area_list);
259
260static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 261{
db64fe02
NP
262 struct rb_node *n = vmap_area_root.rb_node;
263
264 while (n) {
265 struct vmap_area *va;
266
267 va = rb_entry(n, struct vmap_area, rb_node);
268 if (addr < va->va_start)
269 n = n->rb_left;
270 else if (addr > va->va_start)
271 n = n->rb_right;
272 else
273 return va;
274 }
275
276 return NULL;
277}
278
279static void __insert_vmap_area(struct vmap_area *va)
280{
281 struct rb_node **p = &vmap_area_root.rb_node;
282 struct rb_node *parent = NULL;
283 struct rb_node *tmp;
284
285 while (*p) {
286 struct vmap_area *tmp;
287
288 parent = *p;
289 tmp = rb_entry(parent, struct vmap_area, rb_node);
290 if (va->va_start < tmp->va_end)
291 p = &(*p)->rb_left;
292 else if (va->va_end > tmp->va_start)
293 p = &(*p)->rb_right;
294 else
295 BUG();
296 }
297
298 rb_link_node(&va->rb_node, parent, p);
299 rb_insert_color(&va->rb_node, &vmap_area_root);
300
301 /* address-sort this list so it is usable like the vmlist */
302 tmp = rb_prev(&va->rb_node);
303 if (tmp) {
304 struct vmap_area *prev;
305 prev = rb_entry(tmp, struct vmap_area, rb_node);
306 list_add_rcu(&va->list, &prev->list);
307 } else
308 list_add_rcu(&va->list, &vmap_area_list);
309}
310
311static void purge_vmap_area_lazy(void);
312
313/*
314 * Allocate a region of KVA of the specified size and alignment, within the
315 * vstart and vend.
316 */
317static struct vmap_area *alloc_vmap_area(unsigned long size,
318 unsigned long align,
319 unsigned long vstart, unsigned long vend,
320 int node, gfp_t gfp_mask)
321{
322 struct vmap_area *va;
323 struct rb_node *n;
1da177e4 324 unsigned long addr;
db64fe02
NP
325 int purged = 0;
326
327 BUG_ON(size & ~PAGE_MASK);
328
db64fe02
NP
329 va = kmalloc_node(sizeof(struct vmap_area),
330 gfp_mask & GFP_RECLAIM_MASK, node);
331 if (unlikely(!va))
332 return ERR_PTR(-ENOMEM);
333
334retry:
0ae15132
GC
335 addr = ALIGN(vstart, align);
336
db64fe02
NP
337 spin_lock(&vmap_area_lock);
338 /* XXX: could have a last_hole cache */
339 n = vmap_area_root.rb_node;
340 if (n) {
341 struct vmap_area *first = NULL;
342
343 do {
344 struct vmap_area *tmp;
345 tmp = rb_entry(n, struct vmap_area, rb_node);
346 if (tmp->va_end >= addr) {
347 if (!first && tmp->va_start < addr + size)
348 first = tmp;
349 n = n->rb_left;
350 } else {
351 first = tmp;
352 n = n->rb_right;
353 }
354 } while (n);
355
356 if (!first)
357 goto found;
358
359 if (first->va_end < addr) {
360 n = rb_next(&first->rb_node);
361 if (n)
362 first = rb_entry(n, struct vmap_area, rb_node);
363 else
364 goto found;
365 }
366
f011c2da 367 while (addr + size > first->va_start && addr + size <= vend) {
db64fe02
NP
368 addr = ALIGN(first->va_end + PAGE_SIZE, align);
369
370 n = rb_next(&first->rb_node);
371 if (n)
372 first = rb_entry(n, struct vmap_area, rb_node);
373 else
374 goto found;
375 }
376 }
377found:
378 if (addr + size > vend) {
379 spin_unlock(&vmap_area_lock);
380 if (!purged) {
381 purge_vmap_area_lazy();
382 purged = 1;
383 goto retry;
384 }
385 if (printk_ratelimit())
c1279c4e
GC
386 printk(KERN_WARNING
387 "vmap allocation for size %lu failed: "
388 "use vmalloc=<size> to increase size.\n", size);
db64fe02
NP
389 return ERR_PTR(-EBUSY);
390 }
391
392 BUG_ON(addr & (align-1));
393
394 va->va_start = addr;
395 va->va_end = addr + size;
396 va->flags = 0;
397 __insert_vmap_area(va);
398 spin_unlock(&vmap_area_lock);
399
400 return va;
401}
402
403static void rcu_free_va(struct rcu_head *head)
404{
405 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
406
407 kfree(va);
408}
409
410static void __free_vmap_area(struct vmap_area *va)
411{
412 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
413 rb_erase(&va->rb_node, &vmap_area_root);
414 RB_CLEAR_NODE(&va->rb_node);
415 list_del_rcu(&va->list);
416
417 call_rcu(&va->rcu_head, rcu_free_va);
418}
419
420/*
421 * Free a region of KVA allocated by alloc_vmap_area
422 */
423static void free_vmap_area(struct vmap_area *va)
424{
425 spin_lock(&vmap_area_lock);
426 __free_vmap_area(va);
427 spin_unlock(&vmap_area_lock);
428}
429
430/*
431 * Clear the pagetable entries of a given vmap_area
432 */
433static void unmap_vmap_area(struct vmap_area *va)
434{
435 vunmap_page_range(va->va_start, va->va_end);
436}
437
cd52858c
NP
438static void vmap_debug_free_range(unsigned long start, unsigned long end)
439{
440 /*
441 * Unmap page tables and force a TLB flush immediately if
442 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
443 * bugs similarly to those in linear kernel virtual address
444 * space after a page has been freed.
445 *
446 * All the lazy freeing logic is still retained, in order to
447 * minimise intrusiveness of this debugging feature.
448 *
449 * This is going to be *slow* (linear kernel virtual address
450 * debugging doesn't do a broadcast TLB flush so it is a lot
451 * faster).
452 */
453#ifdef CONFIG_DEBUG_PAGEALLOC
454 vunmap_page_range(start, end);
455 flush_tlb_kernel_range(start, end);
456#endif
457}
458
db64fe02
NP
459/*
460 * lazy_max_pages is the maximum amount of virtual address space we gather up
461 * before attempting to purge with a TLB flush.
462 *
463 * There is a tradeoff here: a larger number will cover more kernel page tables
464 * and take slightly longer to purge, but it will linearly reduce the number of
465 * global TLB flushes that must be performed. It would seem natural to scale
466 * this number up linearly with the number of CPUs (because vmapping activity
467 * could also scale linearly with the number of CPUs), however it is likely
468 * that in practice, workloads might be constrained in other ways that mean
469 * vmap activity will not scale linearly with CPUs. Also, I want to be
470 * conservative and not introduce a big latency on huge systems, so go with
471 * a less aggressive log scale. It will still be an improvement over the old
472 * code, and it will be simple to change the scale factor if we find that it
473 * becomes a problem on bigger systems.
474 */
475static unsigned long lazy_max_pages(void)
476{
477 unsigned int log;
478
479 log = fls(num_online_cpus());
480
481 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
482}
483
484static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
485
486/*
487 * Purges all lazily-freed vmap areas.
488 *
489 * If sync is 0 then don't purge if there is already a purge in progress.
490 * If force_flush is 1, then flush kernel TLBs between *start and *end even
491 * if we found no lazy vmap areas to unmap (callers can use this to optimise
492 * their own TLB flushing).
493 * Returns with *start = min(*start, lowest purged address)
494 * *end = max(*end, highest purged address)
495 */
496static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
497 int sync, int force_flush)
498{
46666d8a 499 static DEFINE_SPINLOCK(purge_lock);
db64fe02
NP
500 LIST_HEAD(valist);
501 struct vmap_area *va;
502 int nr = 0;
503
504 /*
505 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
506 * should not expect such behaviour. This just simplifies locking for
507 * the case that isn't actually used at the moment anyway.
508 */
509 if (!sync && !force_flush) {
46666d8a 510 if (!spin_trylock(&purge_lock))
db64fe02
NP
511 return;
512 } else
46666d8a 513 spin_lock(&purge_lock);
db64fe02
NP
514
515 rcu_read_lock();
516 list_for_each_entry_rcu(va, &vmap_area_list, list) {
517 if (va->flags & VM_LAZY_FREE) {
518 if (va->va_start < *start)
519 *start = va->va_start;
520 if (va->va_end > *end)
521 *end = va->va_end;
522 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
523 unmap_vmap_area(va);
524 list_add_tail(&va->purge_list, &valist);
525 va->flags |= VM_LAZY_FREEING;
526 va->flags &= ~VM_LAZY_FREE;
527 }
528 }
529 rcu_read_unlock();
530
531 if (nr) {
532 BUG_ON(nr > atomic_read(&vmap_lazy_nr));
533 atomic_sub(nr, &vmap_lazy_nr);
534 }
535
536 if (nr || force_flush)
537 flush_tlb_kernel_range(*start, *end);
538
539 if (nr) {
540 spin_lock(&vmap_area_lock);
541 list_for_each_entry(va, &valist, purge_list)
542 __free_vmap_area(va);
543 spin_unlock(&vmap_area_lock);
544 }
46666d8a 545 spin_unlock(&purge_lock);
db64fe02
NP
546}
547
496850e5
NP
548/*
549 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
550 * is already purging.
551 */
552static void try_purge_vmap_area_lazy(void)
553{
554 unsigned long start = ULONG_MAX, end = 0;
555
556 __purge_vmap_area_lazy(&start, &end, 0, 0);
557}
558
db64fe02
NP
559/*
560 * Kick off a purge of the outstanding lazy areas.
561 */
562static void purge_vmap_area_lazy(void)
563{
564 unsigned long start = ULONG_MAX, end = 0;
565
496850e5 566 __purge_vmap_area_lazy(&start, &end, 1, 0);
db64fe02
NP
567}
568
569/*
b29acbdc
NP
570 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
571 * called for the correct range previously.
db64fe02 572 */
b29acbdc 573static void free_unmap_vmap_area_noflush(struct vmap_area *va)
db64fe02
NP
574{
575 va->flags |= VM_LAZY_FREE;
576 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
577 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
496850e5 578 try_purge_vmap_area_lazy();
db64fe02
NP
579}
580
b29acbdc
NP
581/*
582 * Free and unmap a vmap area
583 */
584static void free_unmap_vmap_area(struct vmap_area *va)
585{
586 flush_cache_vunmap(va->va_start, va->va_end);
587 free_unmap_vmap_area_noflush(va);
588}
589
db64fe02
NP
590static struct vmap_area *find_vmap_area(unsigned long addr)
591{
592 struct vmap_area *va;
593
594 spin_lock(&vmap_area_lock);
595 va = __find_vmap_area(addr);
596 spin_unlock(&vmap_area_lock);
597
598 return va;
599}
600
601static void free_unmap_vmap_area_addr(unsigned long addr)
602{
603 struct vmap_area *va;
604
605 va = find_vmap_area(addr);
606 BUG_ON(!va);
607 free_unmap_vmap_area(va);
608}
609
610
611/*** Per cpu kva allocator ***/
612
613/*
614 * vmap space is limited especially on 32 bit architectures. Ensure there is
615 * room for at least 16 percpu vmap blocks per CPU.
616 */
617/*
618 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
619 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
620 * instead (we just need a rough idea)
621 */
622#if BITS_PER_LONG == 32
623#define VMALLOC_SPACE (128UL*1024*1024)
624#else
625#define VMALLOC_SPACE (128UL*1024*1024*1024)
626#endif
627
628#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
629#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
630#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
631#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
632#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
633#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
634#define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
635 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
636 VMALLOC_PAGES / NR_CPUS / 16))
637
638#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
639
9b463334
JF
640static bool vmap_initialized __read_mostly = false;
641
db64fe02
NP
642struct vmap_block_queue {
643 spinlock_t lock;
644 struct list_head free;
645 struct list_head dirty;
646 unsigned int nr_dirty;
647};
648
649struct vmap_block {
650 spinlock_t lock;
651 struct vmap_area *va;
652 struct vmap_block_queue *vbq;
653 unsigned long free, dirty;
654 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
655 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
656 union {
657 struct {
658 struct list_head free_list;
659 struct list_head dirty_list;
660 };
661 struct rcu_head rcu_head;
662 };
663};
664
665/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
666static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
667
668/*
669 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
670 * in the free path. Could get rid of this if we change the API to return a
671 * "cookie" from alloc, to be passed to free. But no big deal yet.
672 */
673static DEFINE_SPINLOCK(vmap_block_tree_lock);
674static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
675
676/*
677 * We should probably have a fallback mechanism to allocate virtual memory
678 * out of partially filled vmap blocks. However vmap block sizing should be
679 * fairly reasonable according to the vmalloc size, so it shouldn't be a
680 * big problem.
681 */
682
683static unsigned long addr_to_vb_idx(unsigned long addr)
684{
685 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
686 addr /= VMAP_BLOCK_SIZE;
687 return addr;
688}
689
690static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
691{
692 struct vmap_block_queue *vbq;
693 struct vmap_block *vb;
694 struct vmap_area *va;
695 unsigned long vb_idx;
696 int node, err;
697
698 node = numa_node_id();
699
700 vb = kmalloc_node(sizeof(struct vmap_block),
701 gfp_mask & GFP_RECLAIM_MASK, node);
702 if (unlikely(!vb))
703 return ERR_PTR(-ENOMEM);
704
705 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
706 VMALLOC_START, VMALLOC_END,
707 node, gfp_mask);
708 if (unlikely(IS_ERR(va))) {
709 kfree(vb);
710 return ERR_PTR(PTR_ERR(va));
711 }
712
713 err = radix_tree_preload(gfp_mask);
714 if (unlikely(err)) {
715 kfree(vb);
716 free_vmap_area(va);
717 return ERR_PTR(err);
718 }
719
720 spin_lock_init(&vb->lock);
721 vb->va = va;
722 vb->free = VMAP_BBMAP_BITS;
723 vb->dirty = 0;
724 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
725 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
726 INIT_LIST_HEAD(&vb->free_list);
727 INIT_LIST_HEAD(&vb->dirty_list);
728
729 vb_idx = addr_to_vb_idx(va->va_start);
730 spin_lock(&vmap_block_tree_lock);
731 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
732 spin_unlock(&vmap_block_tree_lock);
733 BUG_ON(err);
734 radix_tree_preload_end();
735
736 vbq = &get_cpu_var(vmap_block_queue);
737 vb->vbq = vbq;
738 spin_lock(&vbq->lock);
739 list_add(&vb->free_list, &vbq->free);
740 spin_unlock(&vbq->lock);
741 put_cpu_var(vmap_cpu_blocks);
742
743 return vb;
744}
745
746static void rcu_free_vb(struct rcu_head *head)
747{
748 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
749
750 kfree(vb);
751}
752
753static void free_vmap_block(struct vmap_block *vb)
754{
755 struct vmap_block *tmp;
756 unsigned long vb_idx;
757
758 spin_lock(&vb->vbq->lock);
759 if (!list_empty(&vb->free_list))
760 list_del(&vb->free_list);
761 if (!list_empty(&vb->dirty_list))
762 list_del(&vb->dirty_list);
763 spin_unlock(&vb->vbq->lock);
764
765 vb_idx = addr_to_vb_idx(vb->va->va_start);
766 spin_lock(&vmap_block_tree_lock);
767 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
768 spin_unlock(&vmap_block_tree_lock);
769 BUG_ON(tmp != vb);
770
b29acbdc 771 free_unmap_vmap_area_noflush(vb->va);
db64fe02
NP
772 call_rcu(&vb->rcu_head, rcu_free_vb);
773}
774
775static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
776{
777 struct vmap_block_queue *vbq;
778 struct vmap_block *vb;
779 unsigned long addr = 0;
780 unsigned int order;
781
782 BUG_ON(size & ~PAGE_MASK);
783 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
784 order = get_order(size);
785
786again:
787 rcu_read_lock();
788 vbq = &get_cpu_var(vmap_block_queue);
789 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
790 int i;
791
792 spin_lock(&vb->lock);
793 i = bitmap_find_free_region(vb->alloc_map,
794 VMAP_BBMAP_BITS, order);
795
796 if (i >= 0) {
797 addr = vb->va->va_start + (i << PAGE_SHIFT);
798 BUG_ON(addr_to_vb_idx(addr) !=
799 addr_to_vb_idx(vb->va->va_start));
800 vb->free -= 1UL << order;
801 if (vb->free == 0) {
802 spin_lock(&vbq->lock);
803 list_del_init(&vb->free_list);
804 spin_unlock(&vbq->lock);
805 }
806 spin_unlock(&vb->lock);
807 break;
808 }
809 spin_unlock(&vb->lock);
810 }
811 put_cpu_var(vmap_cpu_blocks);
812 rcu_read_unlock();
813
814 if (!addr) {
815 vb = new_vmap_block(gfp_mask);
816 if (IS_ERR(vb))
817 return vb;
818 goto again;
819 }
820
821 return (void *)addr;
822}
823
824static void vb_free(const void *addr, unsigned long size)
825{
826 unsigned long offset;
827 unsigned long vb_idx;
828 unsigned int order;
829 struct vmap_block *vb;
830
831 BUG_ON(size & ~PAGE_MASK);
832 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
833
834 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
835
db64fe02
NP
836 order = get_order(size);
837
838 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
839
840 vb_idx = addr_to_vb_idx((unsigned long)addr);
841 rcu_read_lock();
842 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
843 rcu_read_unlock();
844 BUG_ON(!vb);
845
846 spin_lock(&vb->lock);
847 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
848 if (!vb->dirty) {
849 spin_lock(&vb->vbq->lock);
850 list_add(&vb->dirty_list, &vb->vbq->dirty);
851 spin_unlock(&vb->vbq->lock);
852 }
853 vb->dirty += 1UL << order;
854 if (vb->dirty == VMAP_BBMAP_BITS) {
855 BUG_ON(vb->free || !list_empty(&vb->free_list));
856 spin_unlock(&vb->lock);
857 free_vmap_block(vb);
858 } else
859 spin_unlock(&vb->lock);
860}
861
862/**
863 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
864 *
865 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
866 * to amortize TLB flushing overheads. What this means is that any page you
867 * have now, may, in a former life, have been mapped into kernel virtual
868 * address by the vmap layer and so there might be some CPUs with TLB entries
869 * still referencing that page (additional to the regular 1:1 kernel mapping).
870 *
871 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
872 * be sure that none of the pages we have control over will have any aliases
873 * from the vmap layer.
874 */
875void vm_unmap_aliases(void)
876{
877 unsigned long start = ULONG_MAX, end = 0;
878 int cpu;
879 int flush = 0;
880
9b463334
JF
881 if (unlikely(!vmap_initialized))
882 return;
883
db64fe02
NP
884 for_each_possible_cpu(cpu) {
885 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
886 struct vmap_block *vb;
887
888 rcu_read_lock();
889 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
890 int i;
891
892 spin_lock(&vb->lock);
893 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
894 while (i < VMAP_BBMAP_BITS) {
895 unsigned long s, e;
896 int j;
897 j = find_next_zero_bit(vb->dirty_map,
898 VMAP_BBMAP_BITS, i);
899
900 s = vb->va->va_start + (i << PAGE_SHIFT);
901 e = vb->va->va_start + (j << PAGE_SHIFT);
902 vunmap_page_range(s, e);
903 flush = 1;
904
905 if (s < start)
906 start = s;
907 if (e > end)
908 end = e;
909
910 i = j;
911 i = find_next_bit(vb->dirty_map,
912 VMAP_BBMAP_BITS, i);
913 }
914 spin_unlock(&vb->lock);
915 }
916 rcu_read_unlock();
917 }
918
919 __purge_vmap_area_lazy(&start, &end, 1, flush);
920}
921EXPORT_SYMBOL_GPL(vm_unmap_aliases);
922
923/**
924 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
925 * @mem: the pointer returned by vm_map_ram
926 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
927 */
928void vm_unmap_ram(const void *mem, unsigned int count)
929{
930 unsigned long size = count << PAGE_SHIFT;
931 unsigned long addr = (unsigned long)mem;
932
933 BUG_ON(!addr);
934 BUG_ON(addr < VMALLOC_START);
935 BUG_ON(addr > VMALLOC_END);
936 BUG_ON(addr & (PAGE_SIZE-1));
937
938 debug_check_no_locks_freed(mem, size);
cd52858c 939 vmap_debug_free_range(addr, addr+size);
db64fe02
NP
940
941 if (likely(count <= VMAP_MAX_ALLOC))
942 vb_free(mem, size);
943 else
944 free_unmap_vmap_area_addr(addr);
945}
946EXPORT_SYMBOL(vm_unmap_ram);
947
948/**
949 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
950 * @pages: an array of pointers to the pages to be mapped
951 * @count: number of pages
952 * @node: prefer to allocate data structures on this node
953 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad
RD
954 *
955 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
956 */
957void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
958{
959 unsigned long size = count << PAGE_SHIFT;
960 unsigned long addr;
961 void *mem;
962
963 if (likely(count <= VMAP_MAX_ALLOC)) {
964 mem = vb_alloc(size, GFP_KERNEL);
965 if (IS_ERR(mem))
966 return NULL;
967 addr = (unsigned long)mem;
968 } else {
969 struct vmap_area *va;
970 va = alloc_vmap_area(size, PAGE_SIZE,
971 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
972 if (IS_ERR(va))
973 return NULL;
974
975 addr = va->va_start;
976 mem = (void *)addr;
977 }
978 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
979 vm_unmap_ram(mem, count);
980 return NULL;
981 }
982 return mem;
983}
984EXPORT_SYMBOL(vm_map_ram);
985
f0aa6617
TH
986/**
987 * vm_area_register_early - register vmap area early during boot
988 * @vm: vm_struct to register
989 * @size: size of area to register
990 *
991 * This function is used to register kernel vm area before
992 * vmalloc_init() is called. @vm->size and @vm->flags should contain
993 * proper values on entry and other fields should be zero. On return,
994 * vm->addr contains the allocated address.
995 *
996 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
997 */
998void __init vm_area_register_early(struct vm_struct *vm)
999{
1000 static size_t vm_init_off __initdata;
1001
1002 vm->addr = (void *)VMALLOC_START + vm_init_off;
1003 vm_init_off = PFN_ALIGN(vm_init_off + vm->size);
1004
1005 vm->next = vmlist;
1006 vmlist = vm;
1007}
1008
db64fe02
NP
1009void __init vmalloc_init(void)
1010{
822c18f2
IK
1011 struct vmap_area *va;
1012 struct vm_struct *tmp;
db64fe02
NP
1013 int i;
1014
1015 for_each_possible_cpu(i) {
1016 struct vmap_block_queue *vbq;
1017
1018 vbq = &per_cpu(vmap_block_queue, i);
1019 spin_lock_init(&vbq->lock);
1020 INIT_LIST_HEAD(&vbq->free);
1021 INIT_LIST_HEAD(&vbq->dirty);
1022 vbq->nr_dirty = 0;
1023 }
9b463334 1024
822c18f2
IK
1025 /* Import existing vmlist entries. */
1026 for (tmp = vmlist; tmp; tmp = tmp->next) {
1027 va = alloc_bootmem(sizeof(struct vmap_area));
1028 va->flags = tmp->flags | VM_VM_AREA;
1029 va->va_start = (unsigned long)tmp->addr;
1030 va->va_end = va->va_start + tmp->size;
1031 __insert_vmap_area(va);
1032 }
9b463334 1033 vmap_initialized = true;
db64fe02
NP
1034}
1035
1036void unmap_kernel_range(unsigned long addr, unsigned long size)
1037{
1038 unsigned long end = addr + size;
73426952
TH
1039
1040 flush_cache_vunmap(addr, end);
db64fe02
NP
1041 vunmap_page_range(addr, end);
1042 flush_tlb_kernel_range(addr, end);
1043}
1044
1045int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1046{
1047 unsigned long addr = (unsigned long)area->addr;
1048 unsigned long end = addr + area->size - PAGE_SIZE;
1049 int err;
1050
1051 err = vmap_page_range(addr, end, prot, *pages);
1052 if (err > 0) {
1053 *pages += err;
1054 err = 0;
1055 }
1056
1057 return err;
1058}
1059EXPORT_SYMBOL_GPL(map_vm_area);
1060
1061/*** Old vmalloc interfaces ***/
1062DEFINE_RWLOCK(vmlist_lock);
1063struct vm_struct *vmlist;
1064
1065static struct vm_struct *__get_vm_area_node(unsigned long size,
1066 unsigned long flags, unsigned long start, unsigned long end,
1067 int node, gfp_t gfp_mask, void *caller)
1068{
1069 static struct vmap_area *va;
1070 struct vm_struct *area;
1071 struct vm_struct *tmp, **p;
1072 unsigned long align = 1;
1da177e4 1073
52fd24ca 1074 BUG_ON(in_interrupt());
1da177e4
LT
1075 if (flags & VM_IOREMAP) {
1076 int bit = fls(size);
1077
1078 if (bit > IOREMAP_MAX_ORDER)
1079 bit = IOREMAP_MAX_ORDER;
1080 else if (bit < PAGE_SHIFT)
1081 bit = PAGE_SHIFT;
1082
1083 align = 1ul << bit;
1084 }
db64fe02 1085
1da177e4 1086 size = PAGE_ALIGN(size);
31be8309
OH
1087 if (unlikely(!size))
1088 return NULL;
1da177e4 1089
6cb06229 1090 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1091 if (unlikely(!area))
1092 return NULL;
1093
1da177e4
LT
1094 /*
1095 * We always allocate a guard page.
1096 */
1097 size += PAGE_SIZE;
1098
db64fe02
NP
1099 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1100 if (IS_ERR(va)) {
1101 kfree(area);
1102 return NULL;
1da177e4 1103 }
1da177e4
LT
1104
1105 area->flags = flags;
db64fe02 1106 area->addr = (void *)va->va_start;
1da177e4
LT
1107 area->size = size;
1108 area->pages = NULL;
1109 area->nr_pages = 0;
1110 area->phys_addr = 0;
23016969 1111 area->caller = caller;
db64fe02
NP
1112 va->private = area;
1113 va->flags |= VM_VM_AREA;
1114
1115 write_lock(&vmlist_lock);
1116 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1117 if (tmp->addr >= area->addr)
1118 break;
1119 }
1120 area->next = *p;
1121 *p = area;
1da177e4
LT
1122 write_unlock(&vmlist_lock);
1123
1124 return area;
1da177e4
LT
1125}
1126
930fc45a
CL
1127struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1128 unsigned long start, unsigned long end)
1129{
23016969
CL
1130 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1131 __builtin_return_address(0));
930fc45a 1132}
5992b6da 1133EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1134
1da177e4 1135/**
183ff22b 1136 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
1137 * @size: size of the area
1138 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1139 *
1140 * Search an area of @size in the kernel virtual mapping area,
1141 * and reserved it for out purposes. Returns the area descriptor
1142 * on success or %NULL on failure.
1143 */
1144struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1145{
23016969
CL
1146 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1147 -1, GFP_KERNEL, __builtin_return_address(0));
1148}
1149
1150struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1151 void *caller)
1152{
1153 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1154 -1, GFP_KERNEL, caller);
1da177e4
LT
1155}
1156
52fd24ca
GP
1157struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1158 int node, gfp_t gfp_mask)
930fc45a 1159{
52fd24ca 1160 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
23016969 1161 gfp_mask, __builtin_return_address(0));
930fc45a
CL
1162}
1163
db64fe02 1164static struct vm_struct *find_vm_area(const void *addr)
83342314 1165{
db64fe02 1166 struct vmap_area *va;
83342314 1167
db64fe02
NP
1168 va = find_vmap_area((unsigned long)addr);
1169 if (va && va->flags & VM_VM_AREA)
1170 return va->private;
1da177e4 1171
1da177e4 1172 return NULL;
1da177e4
LT
1173}
1174
7856dfeb 1175/**
183ff22b 1176 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
1177 * @addr: base address
1178 *
1179 * Search for the kernel VM area starting at @addr, and remove it.
1180 * This function returns the found VM area, but using it is NOT safe
1181 * on SMP machines, except for its size or flags.
1182 */
b3bdda02 1183struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1184{
db64fe02
NP
1185 struct vmap_area *va;
1186
1187 va = find_vmap_area((unsigned long)addr);
1188 if (va && va->flags & VM_VM_AREA) {
1189 struct vm_struct *vm = va->private;
1190 struct vm_struct *tmp, **p;
cd52858c
NP
1191
1192 vmap_debug_free_range(va->va_start, va->va_end);
db64fe02
NP
1193 free_unmap_vmap_area(va);
1194 vm->size -= PAGE_SIZE;
1195
1196 write_lock(&vmlist_lock);
1197 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1198 ;
1199 *p = tmp->next;
1200 write_unlock(&vmlist_lock);
1201
1202 return vm;
1203 }
1204 return NULL;
7856dfeb
AK
1205}
1206
b3bdda02 1207static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1208{
1209 struct vm_struct *area;
1210
1211 if (!addr)
1212 return;
1213
1214 if ((PAGE_SIZE-1) & (unsigned long)addr) {
4c8573e2 1215 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1da177e4
LT
1216 return;
1217 }
1218
1219 area = remove_vm_area(addr);
1220 if (unlikely(!area)) {
4c8573e2 1221 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1222 addr);
1da177e4
LT
1223 return;
1224 }
1225
9a11b49a 1226 debug_check_no_locks_freed(addr, area->size);
3ac7fe5a 1227 debug_check_no_obj_freed(addr, area->size);
9a11b49a 1228
1da177e4
LT
1229 if (deallocate_pages) {
1230 int i;
1231
1232 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1233 struct page *page = area->pages[i];
1234
1235 BUG_ON(!page);
1236 __free_page(page);
1da177e4
LT
1237 }
1238
8757d5fa 1239 if (area->flags & VM_VPAGES)
1da177e4
LT
1240 vfree(area->pages);
1241 else
1242 kfree(area->pages);
1243 }
1244
1245 kfree(area);
1246 return;
1247}
1248
1249/**
1250 * vfree - release memory allocated by vmalloc()
1da177e4
LT
1251 * @addr: memory base address
1252 *
183ff22b 1253 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
1254 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1255 * NULL, no operation is performed.
1da177e4 1256 *
80e93eff 1257 * Must not be called in interrupt context.
1da177e4 1258 */
b3bdda02 1259void vfree(const void *addr)
1da177e4
LT
1260{
1261 BUG_ON(in_interrupt());
1262 __vunmap(addr, 1);
1263}
1da177e4
LT
1264EXPORT_SYMBOL(vfree);
1265
1266/**
1267 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
1268 * @addr: memory base address
1269 *
1270 * Free the virtually contiguous memory area starting at @addr,
1271 * which was created from the page array passed to vmap().
1272 *
80e93eff 1273 * Must not be called in interrupt context.
1da177e4 1274 */
b3bdda02 1275void vunmap(const void *addr)
1da177e4
LT
1276{
1277 BUG_ON(in_interrupt());
1278 __vunmap(addr, 0);
1279}
1da177e4
LT
1280EXPORT_SYMBOL(vunmap);
1281
1282/**
1283 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
1284 * @pages: array of page pointers
1285 * @count: number of pages to map
1286 * @flags: vm_area->flags
1287 * @prot: page protection for the mapping
1288 *
1289 * Maps @count pages from @pages into contiguous kernel virtual
1290 * space.
1291 */
1292void *vmap(struct page **pages, unsigned int count,
1293 unsigned long flags, pgprot_t prot)
1294{
1295 struct vm_struct *area;
1296
1297 if (count > num_physpages)
1298 return NULL;
1299
23016969
CL
1300 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1301 __builtin_return_address(0));
1da177e4
LT
1302 if (!area)
1303 return NULL;
23016969 1304
1da177e4
LT
1305 if (map_vm_area(area, prot, &pages)) {
1306 vunmap(area->addr);
1307 return NULL;
1308 }
1309
1310 return area->addr;
1311}
1da177e4
LT
1312EXPORT_SYMBOL(vmap);
1313
db64fe02
NP
1314static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1315 int node, void *caller);
e31d9eb5 1316static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
23016969 1317 pgprot_t prot, int node, void *caller)
1da177e4
LT
1318{
1319 struct page **pages;
1320 unsigned int nr_pages, array_size, i;
1321
1322 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1323 array_size = (nr_pages * sizeof(struct page *));
1324
1325 area->nr_pages = nr_pages;
1326 /* Please note that the recursion is strictly bounded. */
8757d5fa 1327 if (array_size > PAGE_SIZE) {
94f6030c 1328 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
23016969 1329 PAGE_KERNEL, node, caller);
8757d5fa 1330 area->flags |= VM_VPAGES;
286e1ea3
AM
1331 } else {
1332 pages = kmalloc_node(array_size,
6cb06229 1333 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
286e1ea3
AM
1334 node);
1335 }
1da177e4 1336 area->pages = pages;
23016969 1337 area->caller = caller;
1da177e4
LT
1338 if (!area->pages) {
1339 remove_vm_area(area->addr);
1340 kfree(area);
1341 return NULL;
1342 }
1da177e4
LT
1343
1344 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1345 struct page *page;
1346
930fc45a 1347 if (node < 0)
bf53d6f8 1348 page = alloc_page(gfp_mask);
930fc45a 1349 else
bf53d6f8
CL
1350 page = alloc_pages_node(node, gfp_mask, 0);
1351
1352 if (unlikely(!page)) {
1da177e4
LT
1353 /* Successfully allocated i pages, free them in __vunmap() */
1354 area->nr_pages = i;
1355 goto fail;
1356 }
bf53d6f8 1357 area->pages[i] = page;
1da177e4
LT
1358 }
1359
1360 if (map_vm_area(area, prot, &pages))
1361 goto fail;
1362 return area->addr;
1363
1364fail:
1365 vfree(area->addr);
1366 return NULL;
1367}
1368
930fc45a
CL
1369void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1370{
23016969
CL
1371 return __vmalloc_area_node(area, gfp_mask, prot, -1,
1372 __builtin_return_address(0));
930fc45a
CL
1373}
1374
1da177e4 1375/**
930fc45a 1376 * __vmalloc_node - allocate virtually contiguous memory
1da177e4
LT
1377 * @size: allocation size
1378 * @gfp_mask: flags for the page level allocator
1379 * @prot: protection mask for the allocated pages
d44e0780 1380 * @node: node to use for allocation or -1
c85d194b 1381 * @caller: caller's return address
1da177e4
LT
1382 *
1383 * Allocate enough pages to cover @size from the page level
1384 * allocator with @gfp_mask flags. Map them into contiguous
1385 * kernel virtual space, using a pagetable protection of @prot.
1386 */
b221385b 1387static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
23016969 1388 int node, void *caller)
1da177e4
LT
1389{
1390 struct vm_struct *area;
1391
1392 size = PAGE_ALIGN(size);
1393 if (!size || (size >> PAGE_SHIFT) > num_physpages)
1394 return NULL;
1395
23016969
CL
1396 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1397 node, gfp_mask, caller);
1398
1da177e4
LT
1399 if (!area)
1400 return NULL;
1401
23016969 1402 return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1da177e4
LT
1403}
1404
930fc45a
CL
1405void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1406{
23016969
CL
1407 return __vmalloc_node(size, gfp_mask, prot, -1,
1408 __builtin_return_address(0));
930fc45a 1409}
1da177e4
LT
1410EXPORT_SYMBOL(__vmalloc);
1411
1412/**
1413 * vmalloc - allocate virtually contiguous memory
1da177e4 1414 * @size: allocation size
1da177e4
LT
1415 * Allocate enough pages to cover @size from the page level
1416 * allocator and map them into contiguous kernel virtual space.
1417 *
c1c8897f 1418 * For tight control over page level allocator and protection flags
1da177e4
LT
1419 * use __vmalloc() instead.
1420 */
1421void *vmalloc(unsigned long size)
1422{
23016969
CL
1423 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1424 -1, __builtin_return_address(0));
1da177e4 1425}
1da177e4
LT
1426EXPORT_SYMBOL(vmalloc);
1427
83342314 1428/**
ead04089
REB
1429 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1430 * @size: allocation size
83342314 1431 *
ead04089
REB
1432 * The resulting memory area is zeroed so it can be mapped to userspace
1433 * without leaking data.
83342314
NP
1434 */
1435void *vmalloc_user(unsigned long size)
1436{
1437 struct vm_struct *area;
1438 void *ret;
1439
84877848
GC
1440 ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1441 PAGE_KERNEL, -1, __builtin_return_address(0));
2b4ac44e 1442 if (ret) {
db64fe02 1443 area = find_vm_area(ret);
2b4ac44e 1444 area->flags |= VM_USERMAP;
2b4ac44e 1445 }
83342314
NP
1446 return ret;
1447}
1448EXPORT_SYMBOL(vmalloc_user);
1449
930fc45a
CL
1450/**
1451 * vmalloc_node - allocate memory on a specific node
930fc45a 1452 * @size: allocation size
d44e0780 1453 * @node: numa node
930fc45a
CL
1454 *
1455 * Allocate enough pages to cover @size from the page level
1456 * allocator and map them into contiguous kernel virtual space.
1457 *
c1c8897f 1458 * For tight control over page level allocator and protection flags
930fc45a
CL
1459 * use __vmalloc() instead.
1460 */
1461void *vmalloc_node(unsigned long size, int node)
1462{
23016969
CL
1463 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1464 node, __builtin_return_address(0));
930fc45a
CL
1465}
1466EXPORT_SYMBOL(vmalloc_node);
1467
4dc3b16b
PP
1468#ifndef PAGE_KERNEL_EXEC
1469# define PAGE_KERNEL_EXEC PAGE_KERNEL
1470#endif
1471
1da177e4
LT
1472/**
1473 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
1474 * @size: allocation size
1475 *
1476 * Kernel-internal function to allocate enough pages to cover @size
1477 * the page level allocator and map them into contiguous and
1478 * executable kernel virtual space.
1479 *
c1c8897f 1480 * For tight control over page level allocator and protection flags
1da177e4
LT
1481 * use __vmalloc() instead.
1482 */
1483
1da177e4
LT
1484void *vmalloc_exec(unsigned long size)
1485{
84877848
GC
1486 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1487 -1, __builtin_return_address(0));
1da177e4
LT
1488}
1489
0d08e0d3 1490#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
7ac674f5 1491#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3 1492#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
7ac674f5 1493#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
0d08e0d3
AK
1494#else
1495#define GFP_VMALLOC32 GFP_KERNEL
1496#endif
1497
1da177e4
LT
1498/**
1499 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
1500 * @size: allocation size
1501 *
1502 * Allocate enough 32bit PA addressable pages to cover @size from the
1503 * page level allocator and map them into contiguous kernel virtual space.
1504 */
1505void *vmalloc_32(unsigned long size)
1506{
84877848
GC
1507 return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL,
1508 -1, __builtin_return_address(0));
1da177e4 1509}
1da177e4
LT
1510EXPORT_SYMBOL(vmalloc_32);
1511
83342314 1512/**
ead04089 1513 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 1514 * @size: allocation size
ead04089
REB
1515 *
1516 * The resulting memory area is 32bit addressable and zeroed so it can be
1517 * mapped to userspace without leaking data.
83342314
NP
1518 */
1519void *vmalloc_32_user(unsigned long size)
1520{
1521 struct vm_struct *area;
1522 void *ret;
1523
84877848
GC
1524 ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1525 -1, __builtin_return_address(0));
2b4ac44e 1526 if (ret) {
db64fe02 1527 area = find_vm_area(ret);
2b4ac44e 1528 area->flags |= VM_USERMAP;
2b4ac44e 1529 }
83342314
NP
1530 return ret;
1531}
1532EXPORT_SYMBOL(vmalloc_32_user);
1533
1da177e4
LT
1534long vread(char *buf, char *addr, unsigned long count)
1535{
1536 struct vm_struct *tmp;
1537 char *vaddr, *buf_start = buf;
1538 unsigned long n;
1539
1540 /* Don't allow overflow */
1541 if ((unsigned long) addr + count < count)
1542 count = -(unsigned long) addr;
1543
1544 read_lock(&vmlist_lock);
1545 for (tmp = vmlist; tmp; tmp = tmp->next) {
1546 vaddr = (char *) tmp->addr;
1547 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1548 continue;
1549 while (addr < vaddr) {
1550 if (count == 0)
1551 goto finished;
1552 *buf = '\0';
1553 buf++;
1554 addr++;
1555 count--;
1556 }
1557 n = vaddr + tmp->size - PAGE_SIZE - addr;
1558 do {
1559 if (count == 0)
1560 goto finished;
1561 *buf = *addr;
1562 buf++;
1563 addr++;
1564 count--;
1565 } while (--n > 0);
1566 }
1567finished:
1568 read_unlock(&vmlist_lock);
1569 return buf - buf_start;
1570}
1571
1572long vwrite(char *buf, char *addr, unsigned long count)
1573{
1574 struct vm_struct *tmp;
1575 char *vaddr, *buf_start = buf;
1576 unsigned long n;
1577
1578 /* Don't allow overflow */
1579 if ((unsigned long) addr + count < count)
1580 count = -(unsigned long) addr;
1581
1582 read_lock(&vmlist_lock);
1583 for (tmp = vmlist; tmp; tmp = tmp->next) {
1584 vaddr = (char *) tmp->addr;
1585 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1586 continue;
1587 while (addr < vaddr) {
1588 if (count == 0)
1589 goto finished;
1590 buf++;
1591 addr++;
1592 count--;
1593 }
1594 n = vaddr + tmp->size - PAGE_SIZE - addr;
1595 do {
1596 if (count == 0)
1597 goto finished;
1598 *addr = *buf;
1599 buf++;
1600 addr++;
1601 count--;
1602 } while (--n > 0);
1603 }
1604finished:
1605 read_unlock(&vmlist_lock);
1606 return buf - buf_start;
1607}
83342314
NP
1608
1609/**
1610 * remap_vmalloc_range - map vmalloc pages to userspace
83342314
NP
1611 * @vma: vma to cover (map full range of vma)
1612 * @addr: vmalloc memory
1613 * @pgoff: number of pages into addr before first page to map
7682486b
RD
1614 *
1615 * Returns: 0 for success, -Exxx on failure
83342314
NP
1616 *
1617 * This function checks that addr is a valid vmalloc'ed area, and
1618 * that it is big enough to cover the vma. Will return failure if
1619 * that criteria isn't met.
1620 *
72fd4a35 1621 * Similar to remap_pfn_range() (see mm/memory.c)
83342314
NP
1622 */
1623int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1624 unsigned long pgoff)
1625{
1626 struct vm_struct *area;
1627 unsigned long uaddr = vma->vm_start;
1628 unsigned long usize = vma->vm_end - vma->vm_start;
83342314
NP
1629
1630 if ((PAGE_SIZE-1) & (unsigned long)addr)
1631 return -EINVAL;
1632
db64fe02 1633 area = find_vm_area(addr);
83342314 1634 if (!area)
db64fe02 1635 return -EINVAL;
83342314
NP
1636
1637 if (!(area->flags & VM_USERMAP))
db64fe02 1638 return -EINVAL;
83342314
NP
1639
1640 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
db64fe02 1641 return -EINVAL;
83342314
NP
1642
1643 addr += pgoff << PAGE_SHIFT;
1644 do {
1645 struct page *page = vmalloc_to_page(addr);
db64fe02
NP
1646 int ret;
1647
83342314
NP
1648 ret = vm_insert_page(vma, uaddr, page);
1649 if (ret)
1650 return ret;
1651
1652 uaddr += PAGE_SIZE;
1653 addr += PAGE_SIZE;
1654 usize -= PAGE_SIZE;
1655 } while (usize > 0);
1656
1657 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1658 vma->vm_flags |= VM_RESERVED;
1659
db64fe02 1660 return 0;
83342314
NP
1661}
1662EXPORT_SYMBOL(remap_vmalloc_range);
1663
1eeb66a1
CH
1664/*
1665 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1666 * have one.
1667 */
1668void __attribute__((weak)) vmalloc_sync_all(void)
1669{
1670}
5f4352fb
JF
1671
1672
2f569afd 1673static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb
JF
1674{
1675 /* apply_to_page_range() does all the hard work. */
1676 return 0;
1677}
1678
1679/**
1680 * alloc_vm_area - allocate a range of kernel address space
1681 * @size: size of the area
7682486b
RD
1682 *
1683 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
1684 *
1685 * This function reserves a range of kernel address space, and
1686 * allocates pagetables to map that range. No actual mappings
1687 * are created. If the kernel address space is not shared
1688 * between processes, it syncs the pagetable across all
1689 * processes.
1690 */
1691struct vm_struct *alloc_vm_area(size_t size)
1692{
1693 struct vm_struct *area;
1694
23016969
CL
1695 area = get_vm_area_caller(size, VM_IOREMAP,
1696 __builtin_return_address(0));
5f4352fb
JF
1697 if (area == NULL)
1698 return NULL;
1699
1700 /*
1701 * This ensures that page tables are constructed for this region
1702 * of kernel virtual address space and mapped into init_mm.
1703 */
1704 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1705 area->size, f, NULL)) {
1706 free_vm_area(area);
1707 return NULL;
1708 }
1709
1710 /* Make sure the pagetables are constructed in process kernel
1711 mappings */
1712 vmalloc_sync_all();
1713
1714 return area;
1715}
1716EXPORT_SYMBOL_GPL(alloc_vm_area);
1717
1718void free_vm_area(struct vm_struct *area)
1719{
1720 struct vm_struct *ret;
1721 ret = remove_vm_area(area->addr);
1722 BUG_ON(ret != area);
1723 kfree(area);
1724}
1725EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579
CL
1726
1727
1728#ifdef CONFIG_PROC_FS
1729static void *s_start(struct seq_file *m, loff_t *pos)
1730{
1731 loff_t n = *pos;
1732 struct vm_struct *v;
1733
1734 read_lock(&vmlist_lock);
1735 v = vmlist;
1736 while (n > 0 && v) {
1737 n--;
1738 v = v->next;
1739 }
1740 if (!n)
1741 return v;
1742
1743 return NULL;
1744
1745}
1746
1747static void *s_next(struct seq_file *m, void *p, loff_t *pos)
1748{
1749 struct vm_struct *v = p;
1750
1751 ++*pos;
1752 return v->next;
1753}
1754
1755static void s_stop(struct seq_file *m, void *p)
1756{
1757 read_unlock(&vmlist_lock);
1758}
1759
a47a126a
ED
1760static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1761{
1762 if (NUMA_BUILD) {
1763 unsigned int nr, *counters = m->private;
1764
1765 if (!counters)
1766 return;
1767
1768 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1769
1770 for (nr = 0; nr < v->nr_pages; nr++)
1771 counters[page_to_nid(v->pages[nr])]++;
1772
1773 for_each_node_state(nr, N_HIGH_MEMORY)
1774 if (counters[nr])
1775 seq_printf(m, " N%u=%u", nr, counters[nr]);
1776 }
1777}
1778
a10aa579
CL
1779static int s_show(struct seq_file *m, void *p)
1780{
1781 struct vm_struct *v = p;
1782
1783 seq_printf(m, "0x%p-0x%p %7ld",
1784 v->addr, v->addr + v->size, v->size);
1785
23016969 1786 if (v->caller) {
9c246247 1787 char buff[KSYM_SYMBOL_LEN];
23016969
CL
1788
1789 seq_putc(m, ' ');
1790 sprint_symbol(buff, (unsigned long)v->caller);
1791 seq_puts(m, buff);
1792 }
1793
a10aa579
CL
1794 if (v->nr_pages)
1795 seq_printf(m, " pages=%d", v->nr_pages);
1796
1797 if (v->phys_addr)
1798 seq_printf(m, " phys=%lx", v->phys_addr);
1799
1800 if (v->flags & VM_IOREMAP)
1801 seq_printf(m, " ioremap");
1802
1803 if (v->flags & VM_ALLOC)
1804 seq_printf(m, " vmalloc");
1805
1806 if (v->flags & VM_MAP)
1807 seq_printf(m, " vmap");
1808
1809 if (v->flags & VM_USERMAP)
1810 seq_printf(m, " user");
1811
1812 if (v->flags & VM_VPAGES)
1813 seq_printf(m, " vpages");
1814
a47a126a 1815 show_numa_info(m, v);
a10aa579
CL
1816 seq_putc(m, '\n');
1817 return 0;
1818}
1819
5f6a6a9c 1820static const struct seq_operations vmalloc_op = {
a10aa579
CL
1821 .start = s_start,
1822 .next = s_next,
1823 .stop = s_stop,
1824 .show = s_show,
1825};
5f6a6a9c
AD
1826
1827static int vmalloc_open(struct inode *inode, struct file *file)
1828{
1829 unsigned int *ptr = NULL;
1830 int ret;
1831
1832 if (NUMA_BUILD)
1833 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
1834 ret = seq_open(file, &vmalloc_op);
1835 if (!ret) {
1836 struct seq_file *m = file->private_data;
1837 m->private = ptr;
1838 } else
1839 kfree(ptr);
1840 return ret;
1841}
1842
1843static const struct file_operations proc_vmalloc_operations = {
1844 .open = vmalloc_open,
1845 .read = seq_read,
1846 .llseek = seq_lseek,
1847 .release = seq_release_private,
1848};
1849
1850static int __init proc_vmalloc_init(void)
1851{
1852 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
1853 return 0;
1854}
1855module_init(proc_vmalloc_init);
a10aa579
CL
1856#endif
1857