]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/vmalloc.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[net-next-2.6.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
d43c36dc 15#include <linux/sched.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
3ac7fe5a 21#include <linux/debugobjects.h>
23016969 22#include <linux/kallsyms.h>
db64fe02
NP
23#include <linux/list.h>
24#include <linux/rbtree.h>
25#include <linux/radix-tree.h>
26#include <linux/rcupdate.h>
f0aa6617 27#include <linux/pfn.h>
89219d37 28#include <linux/kmemleak.h>
db64fe02 29#include <asm/atomic.h>
1da177e4
LT
30#include <asm/uaccess.h>
31#include <asm/tlbflush.h>
2dca6999 32#include <asm/shmparam.h>
1da177e4
LT
33
34
db64fe02 35/*** Page table manipulation functions ***/
b221385b 36
1da177e4
LT
37static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
38{
39 pte_t *pte;
40
41 pte = pte_offset_kernel(pmd, addr);
42 do {
43 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
44 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
45 } while (pte++, addr += PAGE_SIZE, addr != end);
46}
47
db64fe02 48static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
49{
50 pmd_t *pmd;
51 unsigned long next;
52
53 pmd = pmd_offset(pud, addr);
54 do {
55 next = pmd_addr_end(addr, end);
56 if (pmd_none_or_clear_bad(pmd))
57 continue;
58 vunmap_pte_range(pmd, addr, next);
59 } while (pmd++, addr = next, addr != end);
60}
61
db64fe02 62static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
1da177e4
LT
63{
64 pud_t *pud;
65 unsigned long next;
66
67 pud = pud_offset(pgd, addr);
68 do {
69 next = pud_addr_end(addr, end);
70 if (pud_none_or_clear_bad(pud))
71 continue;
72 vunmap_pmd_range(pud, addr, next);
73 } while (pud++, addr = next, addr != end);
74}
75
db64fe02 76static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
77{
78 pgd_t *pgd;
79 unsigned long next;
1da177e4
LT
80
81 BUG_ON(addr >= end);
82 pgd = pgd_offset_k(addr);
1da177e4
LT
83 do {
84 next = pgd_addr_end(addr, end);
85 if (pgd_none_or_clear_bad(pgd))
86 continue;
87 vunmap_pud_range(pgd, addr, next);
88 } while (pgd++, addr = next, addr != end);
1da177e4
LT
89}
90
91static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 92 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
93{
94 pte_t *pte;
95
db64fe02
NP
96 /*
97 * nr is a running index into the array which helps higher level
98 * callers keep track of where we're up to.
99 */
100
872fec16 101 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
102 if (!pte)
103 return -ENOMEM;
104 do {
db64fe02
NP
105 struct page *page = pages[*nr];
106
107 if (WARN_ON(!pte_none(*pte)))
108 return -EBUSY;
109 if (WARN_ON(!page))
1da177e4
LT
110 return -ENOMEM;
111 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 112 (*nr)++;
1da177e4
LT
113 } while (pte++, addr += PAGE_SIZE, addr != end);
114 return 0;
115}
116
db64fe02
NP
117static int vmap_pmd_range(pud_t *pud, unsigned long addr,
118 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
119{
120 pmd_t *pmd;
121 unsigned long next;
122
123 pmd = pmd_alloc(&init_mm, pud, addr);
124 if (!pmd)
125 return -ENOMEM;
126 do {
127 next = pmd_addr_end(addr, end);
db64fe02 128 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
129 return -ENOMEM;
130 } while (pmd++, addr = next, addr != end);
131 return 0;
132}
133
db64fe02
NP
134static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
135 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
136{
137 pud_t *pud;
138 unsigned long next;
139
140 pud = pud_alloc(&init_mm, pgd, addr);
141 if (!pud)
142 return -ENOMEM;
143 do {
144 next = pud_addr_end(addr, end);
db64fe02 145 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
146 return -ENOMEM;
147 } while (pud++, addr = next, addr != end);
148 return 0;
149}
150
db64fe02
NP
151/*
152 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
153 * will have pfns corresponding to the "pages" array.
154 *
155 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
156 */
8fc48985
TH
157static int vmap_page_range_noflush(unsigned long start, unsigned long end,
158 pgprot_t prot, struct page **pages)
1da177e4
LT
159{
160 pgd_t *pgd;
161 unsigned long next;
2e4e27c7 162 unsigned long addr = start;
db64fe02
NP
163 int err = 0;
164 int nr = 0;
1da177e4
LT
165
166 BUG_ON(addr >= end);
167 pgd = pgd_offset_k(addr);
1da177e4
LT
168 do {
169 next = pgd_addr_end(addr, end);
db64fe02 170 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
1da177e4 171 if (err)
bf88c8c8 172 return err;
1da177e4 173 } while (pgd++, addr = next, addr != end);
db64fe02 174
db64fe02 175 return nr;
1da177e4
LT
176}
177
8fc48985
TH
178static int vmap_page_range(unsigned long start, unsigned long end,
179 pgprot_t prot, struct page **pages)
180{
181 int ret;
182
183 ret = vmap_page_range_noflush(start, end, prot, pages);
184 flush_cache_vmap(start, end);
185 return ret;
186}
187
81ac3ad9 188int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
189{
190 /*
ab4f2ee1 191 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
192 * and fall back on vmalloc() if that fails. Others
193 * just put it in the vmalloc space.
194 */
195#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
196 unsigned long addr = (unsigned long)x;
197 if (addr >= MODULES_VADDR && addr < MODULES_END)
198 return 1;
199#endif
200 return is_vmalloc_addr(x);
201}
202
48667e7a 203/*
db64fe02 204 * Walk a vmap address to the struct page it maps.
48667e7a 205 */
b3bdda02 206struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
207{
208 unsigned long addr = (unsigned long) vmalloc_addr;
209 struct page *page = NULL;
210 pgd_t *pgd = pgd_offset_k(addr);
48667e7a 211
7aa413de
IM
212 /*
213 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
214 * architectures that do not vmalloc module space
215 */
73bdf0a6 216 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 217
48667e7a 218 if (!pgd_none(*pgd)) {
db64fe02 219 pud_t *pud = pud_offset(pgd, addr);
48667e7a 220 if (!pud_none(*pud)) {
db64fe02 221 pmd_t *pmd = pmd_offset(pud, addr);
48667e7a 222 if (!pmd_none(*pmd)) {
db64fe02
NP
223 pte_t *ptep, pte;
224
48667e7a
CL
225 ptep = pte_offset_map(pmd, addr);
226 pte = *ptep;
227 if (pte_present(pte))
228 page = pte_page(pte);
229 pte_unmap(ptep);
230 }
231 }
232 }
233 return page;
234}
235EXPORT_SYMBOL(vmalloc_to_page);
236
237/*
238 * Map a vmalloc()-space virtual address to the physical page frame number.
239 */
b3bdda02 240unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a
CL
241{
242 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
243}
244EXPORT_SYMBOL(vmalloc_to_pfn);
245
db64fe02
NP
246
247/*** Global kva allocator ***/
248
249#define VM_LAZY_FREE 0x01
250#define VM_LAZY_FREEING 0x02
251#define VM_VM_AREA 0x04
252
253struct vmap_area {
254 unsigned long va_start;
255 unsigned long va_end;
256 unsigned long flags;
257 struct rb_node rb_node; /* address sorted rbtree */
258 struct list_head list; /* address sorted list */
259 struct list_head purge_list; /* "lazy purge" list */
260 void *private;
261 struct rcu_head rcu_head;
262};
263
264static DEFINE_SPINLOCK(vmap_area_lock);
265static struct rb_root vmap_area_root = RB_ROOT;
266static LIST_HEAD(vmap_area_list);
ca23e405 267static unsigned long vmap_area_pcpu_hole;
db64fe02
NP
268
269static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 270{
db64fe02
NP
271 struct rb_node *n = vmap_area_root.rb_node;
272
273 while (n) {
274 struct vmap_area *va;
275
276 va = rb_entry(n, struct vmap_area, rb_node);
277 if (addr < va->va_start)
278 n = n->rb_left;
279 else if (addr > va->va_start)
280 n = n->rb_right;
281 else
282 return va;
283 }
284
285 return NULL;
286}
287
288static void __insert_vmap_area(struct vmap_area *va)
289{
290 struct rb_node **p = &vmap_area_root.rb_node;
291 struct rb_node *parent = NULL;
292 struct rb_node *tmp;
293
294 while (*p) {
295 struct vmap_area *tmp;
296
297 parent = *p;
298 tmp = rb_entry(parent, struct vmap_area, rb_node);
299 if (va->va_start < tmp->va_end)
300 p = &(*p)->rb_left;
301 else if (va->va_end > tmp->va_start)
302 p = &(*p)->rb_right;
303 else
304 BUG();
305 }
306
307 rb_link_node(&va->rb_node, parent, p);
308 rb_insert_color(&va->rb_node, &vmap_area_root);
309
310 /* address-sort this list so it is usable like the vmlist */
311 tmp = rb_prev(&va->rb_node);
312 if (tmp) {
313 struct vmap_area *prev;
314 prev = rb_entry(tmp, struct vmap_area, rb_node);
315 list_add_rcu(&va->list, &prev->list);
316 } else
317 list_add_rcu(&va->list, &vmap_area_list);
318}
319
320static void purge_vmap_area_lazy(void);
321
322/*
323 * Allocate a region of KVA of the specified size and alignment, within the
324 * vstart and vend.
325 */
326static struct vmap_area *alloc_vmap_area(unsigned long size,
327 unsigned long align,
328 unsigned long vstart, unsigned long vend,
329 int node, gfp_t gfp_mask)
330{
331 struct vmap_area *va;
332 struct rb_node *n;
1da177e4 333 unsigned long addr;
db64fe02
NP
334 int purged = 0;
335
7766970c 336 BUG_ON(!size);
db64fe02
NP
337 BUG_ON(size & ~PAGE_MASK);
338
db64fe02
NP
339 va = kmalloc_node(sizeof(struct vmap_area),
340 gfp_mask & GFP_RECLAIM_MASK, node);
341 if (unlikely(!va))
342 return ERR_PTR(-ENOMEM);
343
344retry:
0ae15132
GC
345 addr = ALIGN(vstart, align);
346
db64fe02 347 spin_lock(&vmap_area_lock);
7766970c
NP
348 if (addr + size - 1 < addr)
349 goto overflow;
350
db64fe02
NP
351 /* XXX: could have a last_hole cache */
352 n = vmap_area_root.rb_node;
353 if (n) {
354 struct vmap_area *first = NULL;
355
356 do {
357 struct vmap_area *tmp;
358 tmp = rb_entry(n, struct vmap_area, rb_node);
359 if (tmp->va_end >= addr) {
360 if (!first && tmp->va_start < addr + size)
361 first = tmp;
362 n = n->rb_left;
363 } else {
364 first = tmp;
365 n = n->rb_right;
366 }
367 } while (n);
368
369 if (!first)
370 goto found;
371
372 if (first->va_end < addr) {
373 n = rb_next(&first->rb_node);
374 if (n)
375 first = rb_entry(n, struct vmap_area, rb_node);
376 else
377 goto found;
378 }
379
f011c2da 380 while (addr + size > first->va_start && addr + size <= vend) {
db64fe02 381 addr = ALIGN(first->va_end + PAGE_SIZE, align);
7766970c
NP
382 if (addr + size - 1 < addr)
383 goto overflow;
db64fe02
NP
384
385 n = rb_next(&first->rb_node);
386 if (n)
387 first = rb_entry(n, struct vmap_area, rb_node);
388 else
389 goto found;
390 }
391 }
392found:
393 if (addr + size > vend) {
7766970c 394overflow:
db64fe02
NP
395 spin_unlock(&vmap_area_lock);
396 if (!purged) {
397 purge_vmap_area_lazy();
398 purged = 1;
399 goto retry;
400 }
401 if (printk_ratelimit())
c1279c4e
GC
402 printk(KERN_WARNING
403 "vmap allocation for size %lu failed: "
404 "use vmalloc=<size> to increase size.\n", size);
2498ce42 405 kfree(va);
db64fe02
NP
406 return ERR_PTR(-EBUSY);
407 }
408
409 BUG_ON(addr & (align-1));
410
411 va->va_start = addr;
412 va->va_end = addr + size;
413 va->flags = 0;
414 __insert_vmap_area(va);
415 spin_unlock(&vmap_area_lock);
416
417 return va;
418}
419
420static void rcu_free_va(struct rcu_head *head)
421{
422 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
423
424 kfree(va);
425}
426
427static void __free_vmap_area(struct vmap_area *va)
428{
429 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
430 rb_erase(&va->rb_node, &vmap_area_root);
431 RB_CLEAR_NODE(&va->rb_node);
432 list_del_rcu(&va->list);
433
ca23e405
TH
434 /*
435 * Track the highest possible candidate for pcpu area
436 * allocation. Areas outside of vmalloc area can be returned
437 * here too, consider only end addresses which fall inside
438 * vmalloc area proper.
439 */
440 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
441 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
442
db64fe02
NP
443 call_rcu(&va->rcu_head, rcu_free_va);
444}
445
446/*
447 * Free a region of KVA allocated by alloc_vmap_area
448 */
449static void free_vmap_area(struct vmap_area *va)
450{
451 spin_lock(&vmap_area_lock);
452 __free_vmap_area(va);
453 spin_unlock(&vmap_area_lock);
454}
455
456/*
457 * Clear the pagetable entries of a given vmap_area
458 */
459static void unmap_vmap_area(struct vmap_area *va)
460{
461 vunmap_page_range(va->va_start, va->va_end);
462}
463
cd52858c
NP
464static void vmap_debug_free_range(unsigned long start, unsigned long end)
465{
466 /*
467 * Unmap page tables and force a TLB flush immediately if
468 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
469 * bugs similarly to those in linear kernel virtual address
470 * space after a page has been freed.
471 *
472 * All the lazy freeing logic is still retained, in order to
473 * minimise intrusiveness of this debugging feature.
474 *
475 * This is going to be *slow* (linear kernel virtual address
476 * debugging doesn't do a broadcast TLB flush so it is a lot
477 * faster).
478 */
479#ifdef CONFIG_DEBUG_PAGEALLOC
480 vunmap_page_range(start, end);
481 flush_tlb_kernel_range(start, end);
482#endif
483}
484
db64fe02
NP
485/*
486 * lazy_max_pages is the maximum amount of virtual address space we gather up
487 * before attempting to purge with a TLB flush.
488 *
489 * There is a tradeoff here: a larger number will cover more kernel page tables
490 * and take slightly longer to purge, but it will linearly reduce the number of
491 * global TLB flushes that must be performed. It would seem natural to scale
492 * this number up linearly with the number of CPUs (because vmapping activity
493 * could also scale linearly with the number of CPUs), however it is likely
494 * that in practice, workloads might be constrained in other ways that mean
495 * vmap activity will not scale linearly with CPUs. Also, I want to be
496 * conservative and not introduce a big latency on huge systems, so go with
497 * a less aggressive log scale. It will still be an improvement over the old
498 * code, and it will be simple to change the scale factor if we find that it
499 * becomes a problem on bigger systems.
500 */
501static unsigned long lazy_max_pages(void)
502{
503 unsigned int log;
504
505 log = fls(num_online_cpus());
506
507 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
508}
509
510static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
511
512/*
513 * Purges all lazily-freed vmap areas.
514 *
515 * If sync is 0 then don't purge if there is already a purge in progress.
516 * If force_flush is 1, then flush kernel TLBs between *start and *end even
517 * if we found no lazy vmap areas to unmap (callers can use this to optimise
518 * their own TLB flushing).
519 * Returns with *start = min(*start, lowest purged address)
520 * *end = max(*end, highest purged address)
521 */
522static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
523 int sync, int force_flush)
524{
46666d8a 525 static DEFINE_SPINLOCK(purge_lock);
db64fe02
NP
526 LIST_HEAD(valist);
527 struct vmap_area *va;
cbb76676 528 struct vmap_area *n_va;
db64fe02
NP
529 int nr = 0;
530
531 /*
532 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
533 * should not expect such behaviour. This just simplifies locking for
534 * the case that isn't actually used at the moment anyway.
535 */
536 if (!sync && !force_flush) {
46666d8a 537 if (!spin_trylock(&purge_lock))
db64fe02
NP
538 return;
539 } else
46666d8a 540 spin_lock(&purge_lock);
db64fe02
NP
541
542 rcu_read_lock();
543 list_for_each_entry_rcu(va, &vmap_area_list, list) {
544 if (va->flags & VM_LAZY_FREE) {
545 if (va->va_start < *start)
546 *start = va->va_start;
547 if (va->va_end > *end)
548 *end = va->va_end;
549 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
550 unmap_vmap_area(va);
551 list_add_tail(&va->purge_list, &valist);
552 va->flags |= VM_LAZY_FREEING;
553 va->flags &= ~VM_LAZY_FREE;
554 }
555 }
556 rcu_read_unlock();
557
88f50044 558 if (nr)
db64fe02 559 atomic_sub(nr, &vmap_lazy_nr);
db64fe02
NP
560
561 if (nr || force_flush)
562 flush_tlb_kernel_range(*start, *end);
563
564 if (nr) {
565 spin_lock(&vmap_area_lock);
cbb76676 566 list_for_each_entry_safe(va, n_va, &valist, purge_list)
db64fe02
NP
567 __free_vmap_area(va);
568 spin_unlock(&vmap_area_lock);
569 }
46666d8a 570 spin_unlock(&purge_lock);
db64fe02
NP
571}
572
496850e5
NP
573/*
574 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
575 * is already purging.
576 */
577static void try_purge_vmap_area_lazy(void)
578{
579 unsigned long start = ULONG_MAX, end = 0;
580
581 __purge_vmap_area_lazy(&start, &end, 0, 0);
582}
583
db64fe02
NP
584/*
585 * Kick off a purge of the outstanding lazy areas.
586 */
587static void purge_vmap_area_lazy(void)
588{
589 unsigned long start = ULONG_MAX, end = 0;
590
496850e5 591 __purge_vmap_area_lazy(&start, &end, 1, 0);
db64fe02
NP
592}
593
594/*
b29acbdc
NP
595 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
596 * called for the correct range previously.
db64fe02 597 */
b29acbdc 598static void free_unmap_vmap_area_noflush(struct vmap_area *va)
db64fe02
NP
599{
600 va->flags |= VM_LAZY_FREE;
601 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
602 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
496850e5 603 try_purge_vmap_area_lazy();
db64fe02
NP
604}
605
b29acbdc
NP
606/*
607 * Free and unmap a vmap area
608 */
609static void free_unmap_vmap_area(struct vmap_area *va)
610{
611 flush_cache_vunmap(va->va_start, va->va_end);
612 free_unmap_vmap_area_noflush(va);
613}
614
db64fe02
NP
615static struct vmap_area *find_vmap_area(unsigned long addr)
616{
617 struct vmap_area *va;
618
619 spin_lock(&vmap_area_lock);
620 va = __find_vmap_area(addr);
621 spin_unlock(&vmap_area_lock);
622
623 return va;
624}
625
626static void free_unmap_vmap_area_addr(unsigned long addr)
627{
628 struct vmap_area *va;
629
630 va = find_vmap_area(addr);
631 BUG_ON(!va);
632 free_unmap_vmap_area(va);
633}
634
635
636/*** Per cpu kva allocator ***/
637
638/*
639 * vmap space is limited especially on 32 bit architectures. Ensure there is
640 * room for at least 16 percpu vmap blocks per CPU.
641 */
642/*
643 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
644 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
645 * instead (we just need a rough idea)
646 */
647#if BITS_PER_LONG == 32
648#define VMALLOC_SPACE (128UL*1024*1024)
649#else
650#define VMALLOC_SPACE (128UL*1024*1024*1024)
651#endif
652
653#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
654#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
655#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
656#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
657#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
658#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
659#define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
660 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
661 VMALLOC_PAGES / NR_CPUS / 16))
662
663#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
664
9b463334
JF
665static bool vmap_initialized __read_mostly = false;
666
db64fe02
NP
667struct vmap_block_queue {
668 spinlock_t lock;
669 struct list_head free;
670 struct list_head dirty;
671 unsigned int nr_dirty;
672};
673
674struct vmap_block {
675 spinlock_t lock;
676 struct vmap_area *va;
677 struct vmap_block_queue *vbq;
678 unsigned long free, dirty;
679 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
680 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
681 union {
d086817d 682 struct list_head free_list;
db64fe02
NP
683 struct rcu_head rcu_head;
684 };
685};
686
687/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
688static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
689
690/*
691 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
692 * in the free path. Could get rid of this if we change the API to return a
693 * "cookie" from alloc, to be passed to free. But no big deal yet.
694 */
695static DEFINE_SPINLOCK(vmap_block_tree_lock);
696static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
697
698/*
699 * We should probably have a fallback mechanism to allocate virtual memory
700 * out of partially filled vmap blocks. However vmap block sizing should be
701 * fairly reasonable according to the vmalloc size, so it shouldn't be a
702 * big problem.
703 */
704
705static unsigned long addr_to_vb_idx(unsigned long addr)
706{
707 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
708 addr /= VMAP_BLOCK_SIZE;
709 return addr;
710}
711
712static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
713{
714 struct vmap_block_queue *vbq;
715 struct vmap_block *vb;
716 struct vmap_area *va;
717 unsigned long vb_idx;
718 int node, err;
719
720 node = numa_node_id();
721
722 vb = kmalloc_node(sizeof(struct vmap_block),
723 gfp_mask & GFP_RECLAIM_MASK, node);
724 if (unlikely(!vb))
725 return ERR_PTR(-ENOMEM);
726
727 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
728 VMALLOC_START, VMALLOC_END,
729 node, gfp_mask);
730 if (unlikely(IS_ERR(va))) {
731 kfree(vb);
732 return ERR_PTR(PTR_ERR(va));
733 }
734
735 err = radix_tree_preload(gfp_mask);
736 if (unlikely(err)) {
737 kfree(vb);
738 free_vmap_area(va);
739 return ERR_PTR(err);
740 }
741
742 spin_lock_init(&vb->lock);
743 vb->va = va;
744 vb->free = VMAP_BBMAP_BITS;
745 vb->dirty = 0;
746 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
747 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
748 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
749
750 vb_idx = addr_to_vb_idx(va->va_start);
751 spin_lock(&vmap_block_tree_lock);
752 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
753 spin_unlock(&vmap_block_tree_lock);
754 BUG_ON(err);
755 radix_tree_preload_end();
756
757 vbq = &get_cpu_var(vmap_block_queue);
758 vb->vbq = vbq;
759 spin_lock(&vbq->lock);
760 list_add(&vb->free_list, &vbq->free);
761 spin_unlock(&vbq->lock);
3f04ba85 762 put_cpu_var(vmap_block_queue);
db64fe02
NP
763
764 return vb;
765}
766
767static void rcu_free_vb(struct rcu_head *head)
768{
769 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
770
771 kfree(vb);
772}
773
774static void free_vmap_block(struct vmap_block *vb)
775{
776 struct vmap_block *tmp;
777 unsigned long vb_idx;
778
d086817d 779 BUG_ON(!list_empty(&vb->free_list));
db64fe02
NP
780
781 vb_idx = addr_to_vb_idx(vb->va->va_start);
782 spin_lock(&vmap_block_tree_lock);
783 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
784 spin_unlock(&vmap_block_tree_lock);
785 BUG_ON(tmp != vb);
786
b29acbdc 787 free_unmap_vmap_area_noflush(vb->va);
db64fe02
NP
788 call_rcu(&vb->rcu_head, rcu_free_vb);
789}
790
791static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
792{
793 struct vmap_block_queue *vbq;
794 struct vmap_block *vb;
795 unsigned long addr = 0;
796 unsigned int order;
797
798 BUG_ON(size & ~PAGE_MASK);
799 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
800 order = get_order(size);
801
802again:
803 rcu_read_lock();
804 vbq = &get_cpu_var(vmap_block_queue);
805 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
806 int i;
807
808 spin_lock(&vb->lock);
809 i = bitmap_find_free_region(vb->alloc_map,
810 VMAP_BBMAP_BITS, order);
811
812 if (i >= 0) {
813 addr = vb->va->va_start + (i << PAGE_SHIFT);
814 BUG_ON(addr_to_vb_idx(addr) !=
815 addr_to_vb_idx(vb->va->va_start));
816 vb->free -= 1UL << order;
817 if (vb->free == 0) {
818 spin_lock(&vbq->lock);
819 list_del_init(&vb->free_list);
820 spin_unlock(&vbq->lock);
821 }
822 spin_unlock(&vb->lock);
823 break;
824 }
825 spin_unlock(&vb->lock);
826 }
3f04ba85 827 put_cpu_var(vmap_block_queue);
db64fe02
NP
828 rcu_read_unlock();
829
830 if (!addr) {
831 vb = new_vmap_block(gfp_mask);
832 if (IS_ERR(vb))
833 return vb;
834 goto again;
835 }
836
837 return (void *)addr;
838}
839
840static void vb_free(const void *addr, unsigned long size)
841{
842 unsigned long offset;
843 unsigned long vb_idx;
844 unsigned int order;
845 struct vmap_block *vb;
846
847 BUG_ON(size & ~PAGE_MASK);
848 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
849
850 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
851
db64fe02
NP
852 order = get_order(size);
853
854 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
855
856 vb_idx = addr_to_vb_idx((unsigned long)addr);
857 rcu_read_lock();
858 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
859 rcu_read_unlock();
860 BUG_ON(!vb);
861
862 spin_lock(&vb->lock);
863 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
d086817d 864
db64fe02
NP
865 vb->dirty += 1UL << order;
866 if (vb->dirty == VMAP_BBMAP_BITS) {
867 BUG_ON(vb->free || !list_empty(&vb->free_list));
868 spin_unlock(&vb->lock);
869 free_vmap_block(vb);
870 } else
871 spin_unlock(&vb->lock);
872}
873
874/**
875 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
876 *
877 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
878 * to amortize TLB flushing overheads. What this means is that any page you
879 * have now, may, in a former life, have been mapped into kernel virtual
880 * address by the vmap layer and so there might be some CPUs with TLB entries
881 * still referencing that page (additional to the regular 1:1 kernel mapping).
882 *
883 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
884 * be sure that none of the pages we have control over will have any aliases
885 * from the vmap layer.
886 */
887void vm_unmap_aliases(void)
888{
889 unsigned long start = ULONG_MAX, end = 0;
890 int cpu;
891 int flush = 0;
892
9b463334
JF
893 if (unlikely(!vmap_initialized))
894 return;
895
db64fe02
NP
896 for_each_possible_cpu(cpu) {
897 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
898 struct vmap_block *vb;
899
900 rcu_read_lock();
901 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
902 int i;
903
904 spin_lock(&vb->lock);
905 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
906 while (i < VMAP_BBMAP_BITS) {
907 unsigned long s, e;
908 int j;
909 j = find_next_zero_bit(vb->dirty_map,
910 VMAP_BBMAP_BITS, i);
911
912 s = vb->va->va_start + (i << PAGE_SHIFT);
913 e = vb->va->va_start + (j << PAGE_SHIFT);
914 vunmap_page_range(s, e);
915 flush = 1;
916
917 if (s < start)
918 start = s;
919 if (e > end)
920 end = e;
921
922 i = j;
923 i = find_next_bit(vb->dirty_map,
924 VMAP_BBMAP_BITS, i);
925 }
926 spin_unlock(&vb->lock);
927 }
928 rcu_read_unlock();
929 }
930
931 __purge_vmap_area_lazy(&start, &end, 1, flush);
932}
933EXPORT_SYMBOL_GPL(vm_unmap_aliases);
934
935/**
936 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
937 * @mem: the pointer returned by vm_map_ram
938 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
939 */
940void vm_unmap_ram(const void *mem, unsigned int count)
941{
942 unsigned long size = count << PAGE_SHIFT;
943 unsigned long addr = (unsigned long)mem;
944
945 BUG_ON(!addr);
946 BUG_ON(addr < VMALLOC_START);
947 BUG_ON(addr > VMALLOC_END);
948 BUG_ON(addr & (PAGE_SIZE-1));
949
950 debug_check_no_locks_freed(mem, size);
cd52858c 951 vmap_debug_free_range(addr, addr+size);
db64fe02
NP
952
953 if (likely(count <= VMAP_MAX_ALLOC))
954 vb_free(mem, size);
955 else
956 free_unmap_vmap_area_addr(addr);
957}
958EXPORT_SYMBOL(vm_unmap_ram);
959
960/**
961 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
962 * @pages: an array of pointers to the pages to be mapped
963 * @count: number of pages
964 * @node: prefer to allocate data structures on this node
965 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad
RD
966 *
967 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
968 */
969void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
970{
971 unsigned long size = count << PAGE_SHIFT;
972 unsigned long addr;
973 void *mem;
974
975 if (likely(count <= VMAP_MAX_ALLOC)) {
976 mem = vb_alloc(size, GFP_KERNEL);
977 if (IS_ERR(mem))
978 return NULL;
979 addr = (unsigned long)mem;
980 } else {
981 struct vmap_area *va;
982 va = alloc_vmap_area(size, PAGE_SIZE,
983 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
984 if (IS_ERR(va))
985 return NULL;
986
987 addr = va->va_start;
988 mem = (void *)addr;
989 }
990 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
991 vm_unmap_ram(mem, count);
992 return NULL;
993 }
994 return mem;
995}
996EXPORT_SYMBOL(vm_map_ram);
997
f0aa6617
TH
998/**
999 * vm_area_register_early - register vmap area early during boot
1000 * @vm: vm_struct to register
c0c0a293 1001 * @align: requested alignment
f0aa6617
TH
1002 *
1003 * This function is used to register kernel vm area before
1004 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1005 * proper values on entry and other fields should be zero. On return,
1006 * vm->addr contains the allocated address.
1007 *
1008 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1009 */
c0c0a293 1010void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1011{
1012 static size_t vm_init_off __initdata;
c0c0a293
TH
1013 unsigned long addr;
1014
1015 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1016 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1017
c0c0a293 1018 vm->addr = (void *)addr;
f0aa6617
TH
1019
1020 vm->next = vmlist;
1021 vmlist = vm;
1022}
1023
db64fe02
NP
1024void __init vmalloc_init(void)
1025{
822c18f2
IK
1026 struct vmap_area *va;
1027 struct vm_struct *tmp;
db64fe02
NP
1028 int i;
1029
1030 for_each_possible_cpu(i) {
1031 struct vmap_block_queue *vbq;
1032
1033 vbq = &per_cpu(vmap_block_queue, i);
1034 spin_lock_init(&vbq->lock);
1035 INIT_LIST_HEAD(&vbq->free);
1036 INIT_LIST_HEAD(&vbq->dirty);
1037 vbq->nr_dirty = 0;
1038 }
9b463334 1039
822c18f2
IK
1040 /* Import existing vmlist entries. */
1041 for (tmp = vmlist; tmp; tmp = tmp->next) {
43ebdac4 1042 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
822c18f2
IK
1043 va->flags = tmp->flags | VM_VM_AREA;
1044 va->va_start = (unsigned long)tmp->addr;
1045 va->va_end = va->va_start + tmp->size;
1046 __insert_vmap_area(va);
1047 }
ca23e405
TH
1048
1049 vmap_area_pcpu_hole = VMALLOC_END;
1050
9b463334 1051 vmap_initialized = true;
db64fe02
NP
1052}
1053
8fc48985
TH
1054/**
1055 * map_kernel_range_noflush - map kernel VM area with the specified pages
1056 * @addr: start of the VM area to map
1057 * @size: size of the VM area to map
1058 * @prot: page protection flags to use
1059 * @pages: pages to map
1060 *
1061 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1062 * specify should have been allocated using get_vm_area() and its
1063 * friends.
1064 *
1065 * NOTE:
1066 * This function does NOT do any cache flushing. The caller is
1067 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1068 * before calling this function.
1069 *
1070 * RETURNS:
1071 * The number of pages mapped on success, -errno on failure.
1072 */
1073int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1074 pgprot_t prot, struct page **pages)
1075{
1076 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1077}
1078
1079/**
1080 * unmap_kernel_range_noflush - unmap kernel VM area
1081 * @addr: start of the VM area to unmap
1082 * @size: size of the VM area to unmap
1083 *
1084 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1085 * specify should have been allocated using get_vm_area() and its
1086 * friends.
1087 *
1088 * NOTE:
1089 * This function does NOT do any cache flushing. The caller is
1090 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1091 * before calling this function and flush_tlb_kernel_range() after.
1092 */
1093void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1094{
1095 vunmap_page_range(addr, addr + size);
1096}
1097
1098/**
1099 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1100 * @addr: start of the VM area to unmap
1101 * @size: size of the VM area to unmap
1102 *
1103 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1104 * the unmapping and tlb after.
1105 */
db64fe02
NP
1106void unmap_kernel_range(unsigned long addr, unsigned long size)
1107{
1108 unsigned long end = addr + size;
f6fcba70
TH
1109
1110 flush_cache_vunmap(addr, end);
db64fe02
NP
1111 vunmap_page_range(addr, end);
1112 flush_tlb_kernel_range(addr, end);
1113}
1114
1115int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1116{
1117 unsigned long addr = (unsigned long)area->addr;
1118 unsigned long end = addr + area->size - PAGE_SIZE;
1119 int err;
1120
1121 err = vmap_page_range(addr, end, prot, *pages);
1122 if (err > 0) {
1123 *pages += err;
1124 err = 0;
1125 }
1126
1127 return err;
1128}
1129EXPORT_SYMBOL_GPL(map_vm_area);
1130
1131/*** Old vmalloc interfaces ***/
1132DEFINE_RWLOCK(vmlist_lock);
1133struct vm_struct *vmlist;
1134
cf88c790
TH
1135static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1136 unsigned long flags, void *caller)
1137{
1138 struct vm_struct *tmp, **p;
1139
1140 vm->flags = flags;
1141 vm->addr = (void *)va->va_start;
1142 vm->size = va->va_end - va->va_start;
1143 vm->caller = caller;
1144 va->private = vm;
1145 va->flags |= VM_VM_AREA;
1146
1147 write_lock(&vmlist_lock);
1148 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1149 if (tmp->addr >= vm->addr)
1150 break;
1151 }
1152 vm->next = *p;
1153 *p = vm;
1154 write_unlock(&vmlist_lock);
1155}
1156
db64fe02 1157static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999
DM
1158 unsigned long align, unsigned long flags, unsigned long start,
1159 unsigned long end, int node, gfp_t gfp_mask, void *caller)
db64fe02
NP
1160{
1161 static struct vmap_area *va;
1162 struct vm_struct *area;
1da177e4 1163
52fd24ca 1164 BUG_ON(in_interrupt());
1da177e4
LT
1165 if (flags & VM_IOREMAP) {
1166 int bit = fls(size);
1167
1168 if (bit > IOREMAP_MAX_ORDER)
1169 bit = IOREMAP_MAX_ORDER;
1170 else if (bit < PAGE_SHIFT)
1171 bit = PAGE_SHIFT;
1172
1173 align = 1ul << bit;
1174 }
db64fe02 1175
1da177e4 1176 size = PAGE_ALIGN(size);
31be8309
OH
1177 if (unlikely(!size))
1178 return NULL;
1da177e4 1179
cf88c790 1180 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1181 if (unlikely(!area))
1182 return NULL;
1183
1da177e4
LT
1184 /*
1185 * We always allocate a guard page.
1186 */
1187 size += PAGE_SIZE;
1188
db64fe02
NP
1189 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1190 if (IS_ERR(va)) {
1191 kfree(area);
1192 return NULL;
1da177e4 1193 }
1da177e4 1194
cf88c790 1195 insert_vmalloc_vm(area, va, flags, caller);
1da177e4 1196 return area;
1da177e4
LT
1197}
1198
930fc45a
CL
1199struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1200 unsigned long start, unsigned long end)
1201{
2dca6999 1202 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
23016969 1203 __builtin_return_address(0));
930fc45a 1204}
5992b6da 1205EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1206
c2968612
BH
1207struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1208 unsigned long start, unsigned long end,
1209 void *caller)
1210{
2dca6999 1211 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
c2968612
BH
1212 caller);
1213}
1214
1da177e4 1215/**
183ff22b 1216 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
1217 * @size: size of the area
1218 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1219 *
1220 * Search an area of @size in the kernel virtual mapping area,
1221 * and reserved it for out purposes. Returns the area descriptor
1222 * on success or %NULL on failure.
1223 */
1224struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1225{
2dca6999 1226 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
23016969
CL
1227 -1, GFP_KERNEL, __builtin_return_address(0));
1228}
1229
1230struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1231 void *caller)
1232{
2dca6999 1233 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
23016969 1234 -1, GFP_KERNEL, caller);
1da177e4
LT
1235}
1236
52fd24ca
GP
1237struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1238 int node, gfp_t gfp_mask)
930fc45a 1239{
2dca6999
DM
1240 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1241 node, gfp_mask, __builtin_return_address(0));
930fc45a
CL
1242}
1243
db64fe02 1244static struct vm_struct *find_vm_area(const void *addr)
83342314 1245{
db64fe02 1246 struct vmap_area *va;
83342314 1247
db64fe02
NP
1248 va = find_vmap_area((unsigned long)addr);
1249 if (va && va->flags & VM_VM_AREA)
1250 return va->private;
1da177e4 1251
1da177e4 1252 return NULL;
1da177e4
LT
1253}
1254
7856dfeb 1255/**
183ff22b 1256 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
1257 * @addr: base address
1258 *
1259 * Search for the kernel VM area starting at @addr, and remove it.
1260 * This function returns the found VM area, but using it is NOT safe
1261 * on SMP machines, except for its size or flags.
1262 */
b3bdda02 1263struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1264{
db64fe02
NP
1265 struct vmap_area *va;
1266
1267 va = find_vmap_area((unsigned long)addr);
1268 if (va && va->flags & VM_VM_AREA) {
1269 struct vm_struct *vm = va->private;
1270 struct vm_struct *tmp, **p;
dd32c279
KH
1271 /*
1272 * remove from list and disallow access to this vm_struct
1273 * before unmap. (address range confliction is maintained by
1274 * vmap.)
1275 */
db64fe02
NP
1276 write_lock(&vmlist_lock);
1277 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1278 ;
1279 *p = tmp->next;
1280 write_unlock(&vmlist_lock);
1281
dd32c279
KH
1282 vmap_debug_free_range(va->va_start, va->va_end);
1283 free_unmap_vmap_area(va);
1284 vm->size -= PAGE_SIZE;
1285
db64fe02
NP
1286 return vm;
1287 }
1288 return NULL;
7856dfeb
AK
1289}
1290
b3bdda02 1291static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1292{
1293 struct vm_struct *area;
1294
1295 if (!addr)
1296 return;
1297
1298 if ((PAGE_SIZE-1) & (unsigned long)addr) {
4c8573e2 1299 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1da177e4
LT
1300 return;
1301 }
1302
1303 area = remove_vm_area(addr);
1304 if (unlikely(!area)) {
4c8573e2 1305 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1306 addr);
1da177e4
LT
1307 return;
1308 }
1309
9a11b49a 1310 debug_check_no_locks_freed(addr, area->size);
3ac7fe5a 1311 debug_check_no_obj_freed(addr, area->size);
9a11b49a 1312
1da177e4
LT
1313 if (deallocate_pages) {
1314 int i;
1315
1316 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1317 struct page *page = area->pages[i];
1318
1319 BUG_ON(!page);
1320 __free_page(page);
1da177e4
LT
1321 }
1322
8757d5fa 1323 if (area->flags & VM_VPAGES)
1da177e4
LT
1324 vfree(area->pages);
1325 else
1326 kfree(area->pages);
1327 }
1328
1329 kfree(area);
1330 return;
1331}
1332
1333/**
1334 * vfree - release memory allocated by vmalloc()
1da177e4
LT
1335 * @addr: memory base address
1336 *
183ff22b 1337 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
1338 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1339 * NULL, no operation is performed.
1da177e4 1340 *
80e93eff 1341 * Must not be called in interrupt context.
1da177e4 1342 */
b3bdda02 1343void vfree(const void *addr)
1da177e4
LT
1344{
1345 BUG_ON(in_interrupt());
89219d37
CM
1346
1347 kmemleak_free(addr);
1348
1da177e4
LT
1349 __vunmap(addr, 1);
1350}
1da177e4
LT
1351EXPORT_SYMBOL(vfree);
1352
1353/**
1354 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
1355 * @addr: memory base address
1356 *
1357 * Free the virtually contiguous memory area starting at @addr,
1358 * which was created from the page array passed to vmap().
1359 *
80e93eff 1360 * Must not be called in interrupt context.
1da177e4 1361 */
b3bdda02 1362void vunmap(const void *addr)
1da177e4
LT
1363{
1364 BUG_ON(in_interrupt());
34754b69 1365 might_sleep();
1da177e4
LT
1366 __vunmap(addr, 0);
1367}
1da177e4
LT
1368EXPORT_SYMBOL(vunmap);
1369
1370/**
1371 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
1372 * @pages: array of page pointers
1373 * @count: number of pages to map
1374 * @flags: vm_area->flags
1375 * @prot: page protection for the mapping
1376 *
1377 * Maps @count pages from @pages into contiguous kernel virtual
1378 * space.
1379 */
1380void *vmap(struct page **pages, unsigned int count,
1381 unsigned long flags, pgprot_t prot)
1382{
1383 struct vm_struct *area;
1384
34754b69
PZ
1385 might_sleep();
1386
4481374c 1387 if (count > totalram_pages)
1da177e4
LT
1388 return NULL;
1389
23016969
CL
1390 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1391 __builtin_return_address(0));
1da177e4
LT
1392 if (!area)
1393 return NULL;
23016969 1394
1da177e4
LT
1395 if (map_vm_area(area, prot, &pages)) {
1396 vunmap(area->addr);
1397 return NULL;
1398 }
1399
1400 return area->addr;
1401}
1da177e4
LT
1402EXPORT_SYMBOL(vmap);
1403
2dca6999
DM
1404static void *__vmalloc_node(unsigned long size, unsigned long align,
1405 gfp_t gfp_mask, pgprot_t prot,
db64fe02 1406 int node, void *caller);
e31d9eb5 1407static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
23016969 1408 pgprot_t prot, int node, void *caller)
1da177e4
LT
1409{
1410 struct page **pages;
1411 unsigned int nr_pages, array_size, i;
976d6dfb 1412 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1da177e4
LT
1413
1414 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1415 array_size = (nr_pages * sizeof(struct page *));
1416
1417 area->nr_pages = nr_pages;
1418 /* Please note that the recursion is strictly bounded. */
8757d5fa 1419 if (array_size > PAGE_SIZE) {
976d6dfb 1420 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
23016969 1421 PAGE_KERNEL, node, caller);
8757d5fa 1422 area->flags |= VM_VPAGES;
286e1ea3 1423 } else {
976d6dfb 1424 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 1425 }
1da177e4 1426 area->pages = pages;
23016969 1427 area->caller = caller;
1da177e4
LT
1428 if (!area->pages) {
1429 remove_vm_area(area->addr);
1430 kfree(area);
1431 return NULL;
1432 }
1da177e4
LT
1433
1434 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1435 struct page *page;
1436
930fc45a 1437 if (node < 0)
bf53d6f8 1438 page = alloc_page(gfp_mask);
930fc45a 1439 else
bf53d6f8
CL
1440 page = alloc_pages_node(node, gfp_mask, 0);
1441
1442 if (unlikely(!page)) {
1da177e4
LT
1443 /* Successfully allocated i pages, free them in __vunmap() */
1444 area->nr_pages = i;
1445 goto fail;
1446 }
bf53d6f8 1447 area->pages[i] = page;
1da177e4
LT
1448 }
1449
1450 if (map_vm_area(area, prot, &pages))
1451 goto fail;
1452 return area->addr;
1453
1454fail:
1455 vfree(area->addr);
1456 return NULL;
1457}
1458
930fc45a
CL
1459void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1460{
89219d37
CM
1461 void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
1462 __builtin_return_address(0));
1463
1464 /*
1465 * A ref_count = 3 is needed because the vm_struct and vmap_area
1466 * structures allocated in the __get_vm_area_node() function contain
1467 * references to the virtual address of the vmalloc'ed block.
1468 */
1469 kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
1470
1471 return addr;
930fc45a
CL
1472}
1473
1da177e4 1474/**
930fc45a 1475 * __vmalloc_node - allocate virtually contiguous memory
1da177e4 1476 * @size: allocation size
2dca6999 1477 * @align: desired alignment
1da177e4
LT
1478 * @gfp_mask: flags for the page level allocator
1479 * @prot: protection mask for the allocated pages
d44e0780 1480 * @node: node to use for allocation or -1
c85d194b 1481 * @caller: caller's return address
1da177e4
LT
1482 *
1483 * Allocate enough pages to cover @size from the page level
1484 * allocator with @gfp_mask flags. Map them into contiguous
1485 * kernel virtual space, using a pagetable protection of @prot.
1486 */
2dca6999
DM
1487static void *__vmalloc_node(unsigned long size, unsigned long align,
1488 gfp_t gfp_mask, pgprot_t prot,
1489 int node, void *caller)
1da177e4
LT
1490{
1491 struct vm_struct *area;
89219d37
CM
1492 void *addr;
1493 unsigned long real_size = size;
1da177e4
LT
1494
1495 size = PAGE_ALIGN(size);
4481374c 1496 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1da177e4
LT
1497 return NULL;
1498
2dca6999
DM
1499 area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START,
1500 VMALLOC_END, node, gfp_mask, caller);
23016969 1501
1da177e4
LT
1502 if (!area)
1503 return NULL;
1504
89219d37
CM
1505 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1506
1507 /*
1508 * A ref_count = 3 is needed because the vm_struct and vmap_area
1509 * structures allocated in the __get_vm_area_node() function contain
1510 * references to the virtual address of the vmalloc'ed block.
1511 */
1512 kmemleak_alloc(addr, real_size, 3, gfp_mask);
1513
1514 return addr;
1da177e4
LT
1515}
1516
930fc45a
CL
1517void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1518{
2dca6999 1519 return __vmalloc_node(size, 1, gfp_mask, prot, -1,
23016969 1520 __builtin_return_address(0));
930fc45a 1521}
1da177e4
LT
1522EXPORT_SYMBOL(__vmalloc);
1523
1524/**
1525 * vmalloc - allocate virtually contiguous memory
1da177e4 1526 * @size: allocation size
1da177e4
LT
1527 * Allocate enough pages to cover @size from the page level
1528 * allocator and map them into contiguous kernel virtual space.
1529 *
c1c8897f 1530 * For tight control over page level allocator and protection flags
1da177e4
LT
1531 * use __vmalloc() instead.
1532 */
1533void *vmalloc(unsigned long size)
1534{
2dca6999 1535 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
23016969 1536 -1, __builtin_return_address(0));
1da177e4 1537}
1da177e4
LT
1538EXPORT_SYMBOL(vmalloc);
1539
83342314 1540/**
ead04089
REB
1541 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1542 * @size: allocation size
83342314 1543 *
ead04089
REB
1544 * The resulting memory area is zeroed so it can be mapped to userspace
1545 * without leaking data.
83342314
NP
1546 */
1547void *vmalloc_user(unsigned long size)
1548{
1549 struct vm_struct *area;
1550 void *ret;
1551
2dca6999
DM
1552 ret = __vmalloc_node(size, SHMLBA,
1553 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
84877848 1554 PAGE_KERNEL, -1, __builtin_return_address(0));
2b4ac44e 1555 if (ret) {
db64fe02 1556 area = find_vm_area(ret);
2b4ac44e 1557 area->flags |= VM_USERMAP;
2b4ac44e 1558 }
83342314
NP
1559 return ret;
1560}
1561EXPORT_SYMBOL(vmalloc_user);
1562
930fc45a
CL
1563/**
1564 * vmalloc_node - allocate memory on a specific node
930fc45a 1565 * @size: allocation size
d44e0780 1566 * @node: numa node
930fc45a
CL
1567 *
1568 * Allocate enough pages to cover @size from the page level
1569 * allocator and map them into contiguous kernel virtual space.
1570 *
c1c8897f 1571 * For tight control over page level allocator and protection flags
930fc45a
CL
1572 * use __vmalloc() instead.
1573 */
1574void *vmalloc_node(unsigned long size, int node)
1575{
2dca6999 1576 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
23016969 1577 node, __builtin_return_address(0));
930fc45a
CL
1578}
1579EXPORT_SYMBOL(vmalloc_node);
1580
4dc3b16b
PP
1581#ifndef PAGE_KERNEL_EXEC
1582# define PAGE_KERNEL_EXEC PAGE_KERNEL
1583#endif
1584
1da177e4
LT
1585/**
1586 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
1587 * @size: allocation size
1588 *
1589 * Kernel-internal function to allocate enough pages to cover @size
1590 * the page level allocator and map them into contiguous and
1591 * executable kernel virtual space.
1592 *
c1c8897f 1593 * For tight control over page level allocator and protection flags
1da177e4
LT
1594 * use __vmalloc() instead.
1595 */
1596
1da177e4
LT
1597void *vmalloc_exec(unsigned long size)
1598{
2dca6999 1599 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
84877848 1600 -1, __builtin_return_address(0));
1da177e4
LT
1601}
1602
0d08e0d3 1603#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
7ac674f5 1604#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3 1605#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
7ac674f5 1606#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
0d08e0d3
AK
1607#else
1608#define GFP_VMALLOC32 GFP_KERNEL
1609#endif
1610
1da177e4
LT
1611/**
1612 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
1613 * @size: allocation size
1614 *
1615 * Allocate enough 32bit PA addressable pages to cover @size from the
1616 * page level allocator and map them into contiguous kernel virtual space.
1617 */
1618void *vmalloc_32(unsigned long size)
1619{
2dca6999 1620 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
84877848 1621 -1, __builtin_return_address(0));
1da177e4 1622}
1da177e4
LT
1623EXPORT_SYMBOL(vmalloc_32);
1624
83342314 1625/**
ead04089 1626 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 1627 * @size: allocation size
ead04089
REB
1628 *
1629 * The resulting memory area is 32bit addressable and zeroed so it can be
1630 * mapped to userspace without leaking data.
83342314
NP
1631 */
1632void *vmalloc_32_user(unsigned long size)
1633{
1634 struct vm_struct *area;
1635 void *ret;
1636
2dca6999 1637 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
84877848 1638 -1, __builtin_return_address(0));
2b4ac44e 1639 if (ret) {
db64fe02 1640 area = find_vm_area(ret);
2b4ac44e 1641 area->flags |= VM_USERMAP;
2b4ac44e 1642 }
83342314
NP
1643 return ret;
1644}
1645EXPORT_SYMBOL(vmalloc_32_user);
1646
d0107eb0
KH
1647/*
1648 * small helper routine , copy contents to buf from addr.
1649 * If the page is not present, fill zero.
1650 */
1651
1652static int aligned_vread(char *buf, char *addr, unsigned long count)
1653{
1654 struct page *p;
1655 int copied = 0;
1656
1657 while (count) {
1658 unsigned long offset, length;
1659
1660 offset = (unsigned long)addr & ~PAGE_MASK;
1661 length = PAGE_SIZE - offset;
1662 if (length > count)
1663 length = count;
1664 p = vmalloc_to_page(addr);
1665 /*
1666 * To do safe access to this _mapped_ area, we need
1667 * lock. But adding lock here means that we need to add
1668 * overhead of vmalloc()/vfree() calles for this _debug_
1669 * interface, rarely used. Instead of that, we'll use
1670 * kmap() and get small overhead in this access function.
1671 */
1672 if (p) {
1673 /*
1674 * we can expect USER0 is not used (see vread/vwrite's
1675 * function description)
1676 */
1677 void *map = kmap_atomic(p, KM_USER0);
1678 memcpy(buf, map + offset, length);
1679 kunmap_atomic(map, KM_USER0);
1680 } else
1681 memset(buf, 0, length);
1682
1683 addr += length;
1684 buf += length;
1685 copied += length;
1686 count -= length;
1687 }
1688 return copied;
1689}
1690
1691static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1692{
1693 struct page *p;
1694 int copied = 0;
1695
1696 while (count) {
1697 unsigned long offset, length;
1698
1699 offset = (unsigned long)addr & ~PAGE_MASK;
1700 length = PAGE_SIZE - offset;
1701 if (length > count)
1702 length = count;
1703 p = vmalloc_to_page(addr);
1704 /*
1705 * To do safe access to this _mapped_ area, we need
1706 * lock. But adding lock here means that we need to add
1707 * overhead of vmalloc()/vfree() calles for this _debug_
1708 * interface, rarely used. Instead of that, we'll use
1709 * kmap() and get small overhead in this access function.
1710 */
1711 if (p) {
1712 /*
1713 * we can expect USER0 is not used (see vread/vwrite's
1714 * function description)
1715 */
1716 void *map = kmap_atomic(p, KM_USER0);
1717 memcpy(map + offset, buf, length);
1718 kunmap_atomic(map, KM_USER0);
1719 }
1720 addr += length;
1721 buf += length;
1722 copied += length;
1723 count -= length;
1724 }
1725 return copied;
1726}
1727
1728/**
1729 * vread() - read vmalloc area in a safe way.
1730 * @buf: buffer for reading data
1731 * @addr: vm address.
1732 * @count: number of bytes to be read.
1733 *
1734 * Returns # of bytes which addr and buf should be increased.
1735 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1736 * includes any intersect with alive vmalloc area.
1737 *
1738 * This function checks that addr is a valid vmalloc'ed area, and
1739 * copy data from that area to a given buffer. If the given memory range
1740 * of [addr...addr+count) includes some valid address, data is copied to
1741 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1742 * IOREMAP area is treated as memory hole and no copy is done.
1743 *
1744 * If [addr...addr+count) doesn't includes any intersects with alive
1745 * vm_struct area, returns 0.
1746 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1747 * the caller should guarantee KM_USER0 is not used.
1748 *
1749 * Note: In usual ops, vread() is never necessary because the caller
1750 * should know vmalloc() area is valid and can use memcpy().
1751 * This is for routines which have to access vmalloc area without
1752 * any informaion, as /dev/kmem.
1753 *
1754 */
1755
1da177e4
LT
1756long vread(char *buf, char *addr, unsigned long count)
1757{
1758 struct vm_struct *tmp;
1759 char *vaddr, *buf_start = buf;
d0107eb0 1760 unsigned long buflen = count;
1da177e4
LT
1761 unsigned long n;
1762
1763 /* Don't allow overflow */
1764 if ((unsigned long) addr + count < count)
1765 count = -(unsigned long) addr;
1766
1767 read_lock(&vmlist_lock);
d0107eb0 1768 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1da177e4
LT
1769 vaddr = (char *) tmp->addr;
1770 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1771 continue;
1772 while (addr < vaddr) {
1773 if (count == 0)
1774 goto finished;
1775 *buf = '\0';
1776 buf++;
1777 addr++;
1778 count--;
1779 }
1780 n = vaddr + tmp->size - PAGE_SIZE - addr;
d0107eb0
KH
1781 if (n > count)
1782 n = count;
1783 if (!(tmp->flags & VM_IOREMAP))
1784 aligned_vread(buf, addr, n);
1785 else /* IOREMAP area is treated as memory hole */
1786 memset(buf, 0, n);
1787 buf += n;
1788 addr += n;
1789 count -= n;
1da177e4
LT
1790 }
1791finished:
1792 read_unlock(&vmlist_lock);
d0107eb0
KH
1793
1794 if (buf == buf_start)
1795 return 0;
1796 /* zero-fill memory holes */
1797 if (buf != buf_start + buflen)
1798 memset(buf, 0, buflen - (buf - buf_start));
1799
1800 return buflen;
1da177e4
LT
1801}
1802
d0107eb0
KH
1803/**
1804 * vwrite() - write vmalloc area in a safe way.
1805 * @buf: buffer for source data
1806 * @addr: vm address.
1807 * @count: number of bytes to be read.
1808 *
1809 * Returns # of bytes which addr and buf should be incresed.
1810 * (same number to @count).
1811 * If [addr...addr+count) doesn't includes any intersect with valid
1812 * vmalloc area, returns 0.
1813 *
1814 * This function checks that addr is a valid vmalloc'ed area, and
1815 * copy data from a buffer to the given addr. If specified range of
1816 * [addr...addr+count) includes some valid address, data is copied from
1817 * proper area of @buf. If there are memory holes, no copy to hole.
1818 * IOREMAP area is treated as memory hole and no copy is done.
1819 *
1820 * If [addr...addr+count) doesn't includes any intersects with alive
1821 * vm_struct area, returns 0.
1822 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1823 * the caller should guarantee KM_USER0 is not used.
1824 *
1825 * Note: In usual ops, vwrite() is never necessary because the caller
1826 * should know vmalloc() area is valid and can use memcpy().
1827 * This is for routines which have to access vmalloc area without
1828 * any informaion, as /dev/kmem.
1829 *
1830 * The caller should guarantee KM_USER1 is not used.
1831 */
1832
1da177e4
LT
1833long vwrite(char *buf, char *addr, unsigned long count)
1834{
1835 struct vm_struct *tmp;
d0107eb0
KH
1836 char *vaddr;
1837 unsigned long n, buflen;
1838 int copied = 0;
1da177e4
LT
1839
1840 /* Don't allow overflow */
1841 if ((unsigned long) addr + count < count)
1842 count = -(unsigned long) addr;
d0107eb0 1843 buflen = count;
1da177e4
LT
1844
1845 read_lock(&vmlist_lock);
d0107eb0 1846 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1da177e4
LT
1847 vaddr = (char *) tmp->addr;
1848 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1849 continue;
1850 while (addr < vaddr) {
1851 if (count == 0)
1852 goto finished;
1853 buf++;
1854 addr++;
1855 count--;
1856 }
1857 n = vaddr + tmp->size - PAGE_SIZE - addr;
d0107eb0
KH
1858 if (n > count)
1859 n = count;
1860 if (!(tmp->flags & VM_IOREMAP)) {
1861 aligned_vwrite(buf, addr, n);
1862 copied++;
1863 }
1864 buf += n;
1865 addr += n;
1866 count -= n;
1da177e4
LT
1867 }
1868finished:
1869 read_unlock(&vmlist_lock);
d0107eb0
KH
1870 if (!copied)
1871 return 0;
1872 return buflen;
1da177e4 1873}
83342314
NP
1874
1875/**
1876 * remap_vmalloc_range - map vmalloc pages to userspace
83342314
NP
1877 * @vma: vma to cover (map full range of vma)
1878 * @addr: vmalloc memory
1879 * @pgoff: number of pages into addr before first page to map
7682486b
RD
1880 *
1881 * Returns: 0 for success, -Exxx on failure
83342314
NP
1882 *
1883 * This function checks that addr is a valid vmalloc'ed area, and
1884 * that it is big enough to cover the vma. Will return failure if
1885 * that criteria isn't met.
1886 *
72fd4a35 1887 * Similar to remap_pfn_range() (see mm/memory.c)
83342314
NP
1888 */
1889int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1890 unsigned long pgoff)
1891{
1892 struct vm_struct *area;
1893 unsigned long uaddr = vma->vm_start;
1894 unsigned long usize = vma->vm_end - vma->vm_start;
83342314
NP
1895
1896 if ((PAGE_SIZE-1) & (unsigned long)addr)
1897 return -EINVAL;
1898
db64fe02 1899 area = find_vm_area(addr);
83342314 1900 if (!area)
db64fe02 1901 return -EINVAL;
83342314
NP
1902
1903 if (!(area->flags & VM_USERMAP))
db64fe02 1904 return -EINVAL;
83342314
NP
1905
1906 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
db64fe02 1907 return -EINVAL;
83342314
NP
1908
1909 addr += pgoff << PAGE_SHIFT;
1910 do {
1911 struct page *page = vmalloc_to_page(addr);
db64fe02
NP
1912 int ret;
1913
83342314
NP
1914 ret = vm_insert_page(vma, uaddr, page);
1915 if (ret)
1916 return ret;
1917
1918 uaddr += PAGE_SIZE;
1919 addr += PAGE_SIZE;
1920 usize -= PAGE_SIZE;
1921 } while (usize > 0);
1922
1923 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1924 vma->vm_flags |= VM_RESERVED;
1925
db64fe02 1926 return 0;
83342314
NP
1927}
1928EXPORT_SYMBOL(remap_vmalloc_range);
1929
1eeb66a1
CH
1930/*
1931 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1932 * have one.
1933 */
1934void __attribute__((weak)) vmalloc_sync_all(void)
1935{
1936}
5f4352fb
JF
1937
1938
2f569afd 1939static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb
JF
1940{
1941 /* apply_to_page_range() does all the hard work. */
1942 return 0;
1943}
1944
1945/**
1946 * alloc_vm_area - allocate a range of kernel address space
1947 * @size: size of the area
7682486b
RD
1948 *
1949 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
1950 *
1951 * This function reserves a range of kernel address space, and
1952 * allocates pagetables to map that range. No actual mappings
1953 * are created. If the kernel address space is not shared
1954 * between processes, it syncs the pagetable across all
1955 * processes.
1956 */
1957struct vm_struct *alloc_vm_area(size_t size)
1958{
1959 struct vm_struct *area;
1960
23016969
CL
1961 area = get_vm_area_caller(size, VM_IOREMAP,
1962 __builtin_return_address(0));
5f4352fb
JF
1963 if (area == NULL)
1964 return NULL;
1965
1966 /*
1967 * This ensures that page tables are constructed for this region
1968 * of kernel virtual address space and mapped into init_mm.
1969 */
1970 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1971 area->size, f, NULL)) {
1972 free_vm_area(area);
1973 return NULL;
1974 }
1975
1976 /* Make sure the pagetables are constructed in process kernel
1977 mappings */
1978 vmalloc_sync_all();
1979
1980 return area;
1981}
1982EXPORT_SYMBOL_GPL(alloc_vm_area);
1983
1984void free_vm_area(struct vm_struct *area)
1985{
1986 struct vm_struct *ret;
1987 ret = remove_vm_area(area->addr);
1988 BUG_ON(ret != area);
1989 kfree(area);
1990}
1991EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 1992
ca23e405
TH
1993static struct vmap_area *node_to_va(struct rb_node *n)
1994{
1995 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
1996}
1997
1998/**
1999 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2000 * @end: target address
2001 * @pnext: out arg for the next vmap_area
2002 * @pprev: out arg for the previous vmap_area
2003 *
2004 * Returns: %true if either or both of next and prev are found,
2005 * %false if no vmap_area exists
2006 *
2007 * Find vmap_areas end addresses of which enclose @end. ie. if not
2008 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2009 */
2010static bool pvm_find_next_prev(unsigned long end,
2011 struct vmap_area **pnext,
2012 struct vmap_area **pprev)
2013{
2014 struct rb_node *n = vmap_area_root.rb_node;
2015 struct vmap_area *va = NULL;
2016
2017 while (n) {
2018 va = rb_entry(n, struct vmap_area, rb_node);
2019 if (end < va->va_end)
2020 n = n->rb_left;
2021 else if (end > va->va_end)
2022 n = n->rb_right;
2023 else
2024 break;
2025 }
2026
2027 if (!va)
2028 return false;
2029
2030 if (va->va_end > end) {
2031 *pnext = va;
2032 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2033 } else {
2034 *pprev = va;
2035 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2036 }
2037 return true;
2038}
2039
2040/**
2041 * pvm_determine_end - find the highest aligned address between two vmap_areas
2042 * @pnext: in/out arg for the next vmap_area
2043 * @pprev: in/out arg for the previous vmap_area
2044 * @align: alignment
2045 *
2046 * Returns: determined end address
2047 *
2048 * Find the highest aligned address between *@pnext and *@pprev below
2049 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2050 * down address is between the end addresses of the two vmap_areas.
2051 *
2052 * Please note that the address returned by this function may fall
2053 * inside *@pnext vmap_area. The caller is responsible for checking
2054 * that.
2055 */
2056static unsigned long pvm_determine_end(struct vmap_area **pnext,
2057 struct vmap_area **pprev,
2058 unsigned long align)
2059{
2060 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2061 unsigned long addr;
2062
2063 if (*pnext)
2064 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2065 else
2066 addr = vmalloc_end;
2067
2068 while (*pprev && (*pprev)->va_end > addr) {
2069 *pnext = *pprev;
2070 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2071 }
2072
2073 return addr;
2074}
2075
2076/**
2077 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2078 * @offsets: array containing offset of each area
2079 * @sizes: array containing size of each area
2080 * @nr_vms: the number of areas to allocate
2081 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2082 * @gfp_mask: allocation mask
2083 *
2084 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2085 * vm_structs on success, %NULL on failure
2086 *
2087 * Percpu allocator wants to use congruent vm areas so that it can
2088 * maintain the offsets among percpu areas. This function allocates
2089 * congruent vmalloc areas for it. These areas tend to be scattered
2090 * pretty far, distance between two areas easily going up to
2091 * gigabytes. To avoid interacting with regular vmallocs, these areas
2092 * are allocated from top.
2093 *
2094 * Despite its complicated look, this allocator is rather simple. It
2095 * does everything top-down and scans areas from the end looking for
2096 * matching slot. While scanning, if any of the areas overlaps with
2097 * existing vmap_area, the base address is pulled down to fit the
2098 * area. Scanning is repeated till all the areas fit and then all
2099 * necessary data structres are inserted and the result is returned.
2100 */
2101struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2102 const size_t *sizes, int nr_vms,
2103 size_t align, gfp_t gfp_mask)
2104{
2105 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2106 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2107 struct vmap_area **vas, *prev, *next;
2108 struct vm_struct **vms;
2109 int area, area2, last_area, term_area;
2110 unsigned long base, start, end, last_end;
2111 bool purged = false;
2112
2113 gfp_mask &= GFP_RECLAIM_MASK;
2114
2115 /* verify parameters and allocate data structures */
2116 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2117 for (last_area = 0, area = 0; area < nr_vms; area++) {
2118 start = offsets[area];
2119 end = start + sizes[area];
2120
2121 /* is everything aligned properly? */
2122 BUG_ON(!IS_ALIGNED(offsets[area], align));
2123 BUG_ON(!IS_ALIGNED(sizes[area], align));
2124
2125 /* detect the area with the highest address */
2126 if (start > offsets[last_area])
2127 last_area = area;
2128
2129 for (area2 = 0; area2 < nr_vms; area2++) {
2130 unsigned long start2 = offsets[area2];
2131 unsigned long end2 = start2 + sizes[area2];
2132
2133 if (area2 == area)
2134 continue;
2135
2136 BUG_ON(start2 >= start && start2 < end);
2137 BUG_ON(end2 <= end && end2 > start);
2138 }
2139 }
2140 last_end = offsets[last_area] + sizes[last_area];
2141
2142 if (vmalloc_end - vmalloc_start < last_end) {
2143 WARN_ON(true);
2144 return NULL;
2145 }
2146
2147 vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask);
2148 vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask);
2149 if (!vas || !vms)
2150 goto err_free;
2151
2152 for (area = 0; area < nr_vms; area++) {
2153 vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask);
2154 vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask);
2155 if (!vas[area] || !vms[area])
2156 goto err_free;
2157 }
2158retry:
2159 spin_lock(&vmap_area_lock);
2160
2161 /* start scanning - we scan from the top, begin with the last area */
2162 area = term_area = last_area;
2163 start = offsets[area];
2164 end = start + sizes[area];
2165
2166 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2167 base = vmalloc_end - last_end;
2168 goto found;
2169 }
2170 base = pvm_determine_end(&next, &prev, align) - end;
2171
2172 while (true) {
2173 BUG_ON(next && next->va_end <= base + end);
2174 BUG_ON(prev && prev->va_end > base + end);
2175
2176 /*
2177 * base might have underflowed, add last_end before
2178 * comparing.
2179 */
2180 if (base + last_end < vmalloc_start + last_end) {
2181 spin_unlock(&vmap_area_lock);
2182 if (!purged) {
2183 purge_vmap_area_lazy();
2184 purged = true;
2185 goto retry;
2186 }
2187 goto err_free;
2188 }
2189
2190 /*
2191 * If next overlaps, move base downwards so that it's
2192 * right below next and then recheck.
2193 */
2194 if (next && next->va_start < base + end) {
2195 base = pvm_determine_end(&next, &prev, align) - end;
2196 term_area = area;
2197 continue;
2198 }
2199
2200 /*
2201 * If prev overlaps, shift down next and prev and move
2202 * base so that it's right below new next and then
2203 * recheck.
2204 */
2205 if (prev && prev->va_end > base + start) {
2206 next = prev;
2207 prev = node_to_va(rb_prev(&next->rb_node));
2208 base = pvm_determine_end(&next, &prev, align) - end;
2209 term_area = area;
2210 continue;
2211 }
2212
2213 /*
2214 * This area fits, move on to the previous one. If
2215 * the previous one is the terminal one, we're done.
2216 */
2217 area = (area + nr_vms - 1) % nr_vms;
2218 if (area == term_area)
2219 break;
2220 start = offsets[area];
2221 end = start + sizes[area];
2222 pvm_find_next_prev(base + end, &next, &prev);
2223 }
2224found:
2225 /* we've found a fitting base, insert all va's */
2226 for (area = 0; area < nr_vms; area++) {
2227 struct vmap_area *va = vas[area];
2228
2229 va->va_start = base + offsets[area];
2230 va->va_end = va->va_start + sizes[area];
2231 __insert_vmap_area(va);
2232 }
2233
2234 vmap_area_pcpu_hole = base + offsets[last_area];
2235
2236 spin_unlock(&vmap_area_lock);
2237
2238 /* insert all vm's */
2239 for (area = 0; area < nr_vms; area++)
2240 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2241 pcpu_get_vm_areas);
2242
2243 kfree(vas);
2244 return vms;
2245
2246err_free:
2247 for (area = 0; area < nr_vms; area++) {
2248 if (vas)
2249 kfree(vas[area]);
2250 if (vms)
2251 kfree(vms[area]);
2252 }
2253 kfree(vas);
2254 kfree(vms);
2255 return NULL;
2256}
2257
2258/**
2259 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2260 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2261 * @nr_vms: the number of allocated areas
2262 *
2263 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2264 */
2265void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2266{
2267 int i;
2268
2269 for (i = 0; i < nr_vms; i++)
2270 free_vm_area(vms[i]);
2271 kfree(vms);
2272}
a10aa579
CL
2273
2274#ifdef CONFIG_PROC_FS
2275static void *s_start(struct seq_file *m, loff_t *pos)
2276{
2277 loff_t n = *pos;
2278 struct vm_struct *v;
2279
2280 read_lock(&vmlist_lock);
2281 v = vmlist;
2282 while (n > 0 && v) {
2283 n--;
2284 v = v->next;
2285 }
2286 if (!n)
2287 return v;
2288
2289 return NULL;
2290
2291}
2292
2293static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2294{
2295 struct vm_struct *v = p;
2296
2297 ++*pos;
2298 return v->next;
2299}
2300
2301static void s_stop(struct seq_file *m, void *p)
2302{
2303 read_unlock(&vmlist_lock);
2304}
2305
a47a126a
ED
2306static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2307{
2308 if (NUMA_BUILD) {
2309 unsigned int nr, *counters = m->private;
2310
2311 if (!counters)
2312 return;
2313
2314 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2315
2316 for (nr = 0; nr < v->nr_pages; nr++)
2317 counters[page_to_nid(v->pages[nr])]++;
2318
2319 for_each_node_state(nr, N_HIGH_MEMORY)
2320 if (counters[nr])
2321 seq_printf(m, " N%u=%u", nr, counters[nr]);
2322 }
2323}
2324
a10aa579
CL
2325static int s_show(struct seq_file *m, void *p)
2326{
2327 struct vm_struct *v = p;
2328
2329 seq_printf(m, "0x%p-0x%p %7ld",
2330 v->addr, v->addr + v->size, v->size);
2331
23016969 2332 if (v->caller) {
9c246247 2333 char buff[KSYM_SYMBOL_LEN];
23016969
CL
2334
2335 seq_putc(m, ' ');
2336 sprint_symbol(buff, (unsigned long)v->caller);
2337 seq_puts(m, buff);
2338 }
2339
a10aa579
CL
2340 if (v->nr_pages)
2341 seq_printf(m, " pages=%d", v->nr_pages);
2342
2343 if (v->phys_addr)
2344 seq_printf(m, " phys=%lx", v->phys_addr);
2345
2346 if (v->flags & VM_IOREMAP)
2347 seq_printf(m, " ioremap");
2348
2349 if (v->flags & VM_ALLOC)
2350 seq_printf(m, " vmalloc");
2351
2352 if (v->flags & VM_MAP)
2353 seq_printf(m, " vmap");
2354
2355 if (v->flags & VM_USERMAP)
2356 seq_printf(m, " user");
2357
2358 if (v->flags & VM_VPAGES)
2359 seq_printf(m, " vpages");
2360
a47a126a 2361 show_numa_info(m, v);
a10aa579
CL
2362 seq_putc(m, '\n');
2363 return 0;
2364}
2365
5f6a6a9c 2366static const struct seq_operations vmalloc_op = {
a10aa579
CL
2367 .start = s_start,
2368 .next = s_next,
2369 .stop = s_stop,
2370 .show = s_show,
2371};
5f6a6a9c
AD
2372
2373static int vmalloc_open(struct inode *inode, struct file *file)
2374{
2375 unsigned int *ptr = NULL;
2376 int ret;
2377
2378 if (NUMA_BUILD)
2379 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2380 ret = seq_open(file, &vmalloc_op);
2381 if (!ret) {
2382 struct seq_file *m = file->private_data;
2383 m->private = ptr;
2384 } else
2385 kfree(ptr);
2386 return ret;
2387}
2388
2389static const struct file_operations proc_vmalloc_operations = {
2390 .open = vmalloc_open,
2391 .read = seq_read,
2392 .llseek = seq_lseek,
2393 .release = seq_release_private,
2394};
2395
2396static int __init proc_vmalloc_init(void)
2397{
2398 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2399 return 0;
2400}
2401module_init(proc_vmalloc_init);
a10aa579
CL
2402#endif
2403