]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: Remove unnecessary RCU exclusion
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5
IM
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
ac086bc2
PZ
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
ada3fa15 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
b9bf3121 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
e9036b36
CG
312#ifdef CONFIG_FAIR_GROUP_SCHED
313
57310a98
PZ
314#ifdef CONFIG_SMP
315static int root_task_group_empty(void)
316{
317 return list_empty(&root_task_group.children);
318}
319#endif
320
052f1dc7
PZ
321#ifdef CONFIG_USER_SCHED
322# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 323#else /* !CONFIG_USER_SCHED */
052f1dc7 324# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 325#endif /* CONFIG_USER_SCHED */
052f1dc7 326
cb4ad1ff 327/*
2e084786
LJ
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
cb4ad1ff
MX
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
334 */
18d95a28 335#define MIN_SHARES 2
2e084786 336#define MAX_SHARES (1UL << 18)
18d95a28 337
052f1dc7
PZ
338static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339#endif
340
29f59db3 341/* Default task group.
3a252015 342 * Every task in system belong to this group at bootup.
29f59db3 343 */
434d53b0 344struct task_group init_task_group;
29f59db3
SV
345
346/* return group to which a task belongs */
4cf86d77 347static inline struct task_group *task_group(struct task_struct *p)
29f59db3 348{
4cf86d77 349 struct task_group *tg;
9b5b7751 350
052f1dc7 351#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
052f1dc7 355#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
24e377a8 358#else
41a2d6cf 359 tg = &init_task_group;
24e377a8 360#endif
9b5b7751 361 return tg;
29f59db3
SV
362}
363
364/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 366{
052f1dc7 367#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
052f1dc7 370#endif
6f505b16 371
052f1dc7 372#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 375#endif
29f59db3
SV
376}
377
378#else
379
6f505b16 380static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
381static inline struct task_group *task_group(struct task_struct *p)
382{
383 return NULL;
384}
29f59db3 385
052f1dc7 386#endif /* CONFIG_GROUP_SCHED */
29f59db3 387
6aa645ea
IM
388/* CFS-related fields in a runqueue */
389struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
6aa645ea 393 u64 exec_clock;
e9acbff6 394 u64 min_vruntime;
6aa645ea
IM
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
4a55bd5e
PZ
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
4793241b 406 struct sched_entity *curr, *next, *last;
ddc97297 407
5ac5c4d6 408 unsigned int nr_spread_over;
ddc97297 409
62160e3f 410#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
41a2d6cf
IM
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
41a2d6cf
IM
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
423
424#ifdef CONFIG_SMP
c09595f6 425 /*
c8cba857 426 * the part of load.weight contributed by tasks
c09595f6 427 */
c8cba857 428 unsigned long task_weight;
c09595f6 429
c8cba857
PZ
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
c09595f6 437
c8cba857
PZ
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
f1d239f7
PZ
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
c09595f6 447#endif
6aa645ea
IM
448#endif
449};
1da177e4 450
6aa645ea
IM
451/* Real-Time classes' related field in a runqueue: */
452struct rt_rq {
453 struct rt_prio_array active;
63489e45 454 unsigned long rt_nr_running;
052f1dc7 455#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
456 struct {
457 int curr; /* highest queued rt task prio */
398a153b 458#ifdef CONFIG_SMP
e864c499 459 int next; /* next highest */
398a153b 460#endif
e864c499 461 } highest_prio;
6f505b16 462#endif
fa85ae24 463#ifdef CONFIG_SMP
73fe6aae 464 unsigned long rt_nr_migratory;
a1ba4d8b 465 unsigned long rt_nr_total;
a22d7fc1 466 int overloaded;
917b627d 467 struct plist_head pushable_tasks;
fa85ae24 468#endif
6f505b16 469 int rt_throttled;
fa85ae24 470 u64 rt_time;
ac086bc2 471 u64 rt_runtime;
ea736ed5 472 /* Nests inside the rq lock: */
ac086bc2 473 spinlock_t rt_runtime_lock;
6f505b16 474
052f1dc7 475#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
476 unsigned long rt_nr_boosted;
477
6f505b16
PZ
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482#endif
6aa645ea
IM
483};
484
57d885fe
GH
485#ifdef CONFIG_SMP
486
487/*
488 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
493 *
57d885fe
GH
494 */
495struct root_domain {
496 atomic_t refcount;
c6c4927b
RR
497 cpumask_var_t span;
498 cpumask_var_t online;
637f5085 499
0eab9146 500 /*
637f5085
GH
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
c6c4927b 504 cpumask_var_t rto_mask;
0eab9146 505 atomic_t rto_count;
6e0534f2
GH
506#ifdef CONFIG_SMP
507 struct cpupri cpupri;
508#endif
57d885fe
GH
509};
510
dc938520
GH
511/*
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
514 */
57d885fe
GH
515static struct root_domain def_root_domain;
516
517#endif
518
1da177e4
LT
519/*
520 * This is the main, per-CPU runqueue data structure.
521 *
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
525 */
70b97a7f 526struct rq {
d8016491
IM
527 /* runqueue lock: */
528 spinlock_t lock;
1da177e4
LT
529
530 /*
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
533 */
534 unsigned long nr_running;
6aa645ea
IM
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
537#ifdef CONFIG_NO_HZ
538 unsigned char in_nohz_recently;
539#endif
d8016491
IM
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
6aa645ea
IM
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544
545 struct cfs_rq cfs;
6f505b16 546 struct rt_rq rt;
6f505b16 547
6aa645ea 548#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
551#endif
552#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 553 struct list_head leaf_rt_rq_list;
1da177e4 554#endif
1da177e4
LT
555
556 /*
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
561 */
562 unsigned long nr_uninterruptible;
563
36c8b586 564 struct task_struct *curr, *idle;
c9819f45 565 unsigned long next_balance;
1da177e4 566 struct mm_struct *prev_mm;
6aa645ea 567
3e51f33f 568 u64 clock;
6aa645ea 569
1da177e4
LT
570 atomic_t nr_iowait;
571
572#ifdef CONFIG_SMP
0eab9146 573 struct root_domain *rd;
1da177e4
LT
574 struct sched_domain *sd;
575
a0a522ce 576 unsigned char idle_at_tick;
1da177e4 577 /* For active balancing */
3f029d3c 578 int post_schedule;
1da177e4
LT
579 int active_balance;
580 int push_cpu;
d8016491
IM
581 /* cpu of this runqueue: */
582 int cpu;
1f11eb6a 583 int online;
1da177e4 584
a8a51d5e 585 unsigned long avg_load_per_task;
1da177e4 586
36c8b586 587 struct task_struct *migration_thread;
1da177e4 588 struct list_head migration_queue;
e9e9250b
PZ
589
590 u64 rt_avg;
591 u64 age_stamp;
1b9508f6
MG
592 u64 idle_stamp;
593 u64 avg_idle;
1da177e4
LT
594#endif
595
dce48a84
TG
596 /* calc_load related fields */
597 unsigned long calc_load_update;
598 long calc_load_active;
599
8f4d37ec 600#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
601#ifdef CONFIG_SMP
602 int hrtick_csd_pending;
603 struct call_single_data hrtick_csd;
604#endif
8f4d37ec
PZ
605 struct hrtimer hrtick_timer;
606#endif
607
1da177e4
LT
608#ifdef CONFIG_SCHEDSTATS
609 /* latency stats */
610 struct sched_info rq_sched_info;
9c2c4802
KC
611 unsigned long long rq_cpu_time;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
613
614 /* sys_sched_yield() stats */
480b9434 615 unsigned int yld_count;
1da177e4
LT
616
617 /* schedule() stats */
480b9434
KC
618 unsigned int sched_switch;
619 unsigned int sched_count;
620 unsigned int sched_goidle;
1da177e4
LT
621
622 /* try_to_wake_up() stats */
480b9434
KC
623 unsigned int ttwu_count;
624 unsigned int ttwu_local;
b8efb561
IM
625
626 /* BKL stats */
480b9434 627 unsigned int bkl_count;
1da177e4
LT
628#endif
629};
630
f34e3b61 631static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 632
7d478721
PZ
633static inline
634void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 635{
7d478721 636 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
637}
638
0a2966b4
CL
639static inline int cpu_of(struct rq *rq)
640{
641#ifdef CONFIG_SMP
642 return rq->cpu;
643#else
644 return 0;
645#endif
646}
647
674311d5
NP
648/*
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 650 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
651 *
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
654 */
48f24c4d
IM
655#define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
657
658#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659#define this_rq() (&__get_cpu_var(runqueues))
660#define task_rq(p) cpu_rq(task_cpu(p))
661#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 662#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 663
aa9c4c0f 664inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
665{
666 rq->clock = sched_clock_cpu(cpu_of(rq));
667}
668
bf5c91ba
IM
669/*
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 */
672#ifdef CONFIG_SCHED_DEBUG
673# define const_debug __read_mostly
674#else
675# define const_debug static const
676#endif
677
017730c1
IM
678/**
679 * runqueue_is_locked
e17b38bf 680 * @cpu: the processor in question.
017730c1
IM
681 *
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
685 */
89f19f04 686int runqueue_is_locked(int cpu)
017730c1 687{
89f19f04 688 return spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
689}
690
bf5c91ba
IM
691/*
692 * Debugging: various feature bits
693 */
f00b45c1
PZ
694
695#define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
697
bf5c91ba 698enum {
f00b45c1 699#include "sched_features.h"
bf5c91ba
IM
700};
701
f00b45c1
PZ
702#undef SCHED_FEAT
703
704#define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
706
bf5c91ba 707const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
708#include "sched_features.h"
709 0;
710
711#undef SCHED_FEAT
712
713#ifdef CONFIG_SCHED_DEBUG
714#define SCHED_FEAT(name, enabled) \
715 #name ,
716
983ed7a6 717static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
718#include "sched_features.h"
719 NULL
720};
721
722#undef SCHED_FEAT
723
34f3a814 724static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 725{
f00b45c1
PZ
726 int i;
727
728 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
729 if (!(sysctl_sched_features & (1UL << i)))
730 seq_puts(m, "NO_");
731 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 732 }
34f3a814 733 seq_puts(m, "\n");
f00b45c1 734
34f3a814 735 return 0;
f00b45c1
PZ
736}
737
738static ssize_t
739sched_feat_write(struct file *filp, const char __user *ubuf,
740 size_t cnt, loff_t *ppos)
741{
742 char buf[64];
743 char *cmp = buf;
744 int neg = 0;
745 int i;
746
747 if (cnt > 63)
748 cnt = 63;
749
750 if (copy_from_user(&buf, ubuf, cnt))
751 return -EFAULT;
752
753 buf[cnt] = 0;
754
c24b7c52 755 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
756 neg = 1;
757 cmp += 3;
758 }
759
760 for (i = 0; sched_feat_names[i]; i++) {
761 int len = strlen(sched_feat_names[i]);
762
763 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
764 if (neg)
765 sysctl_sched_features &= ~(1UL << i);
766 else
767 sysctl_sched_features |= (1UL << i);
768 break;
769 }
770 }
771
772 if (!sched_feat_names[i])
773 return -EINVAL;
774
42994724 775 *ppos += cnt;
f00b45c1
PZ
776
777 return cnt;
778}
779
34f3a814
LZ
780static int sched_feat_open(struct inode *inode, struct file *filp)
781{
782 return single_open(filp, sched_feat_show, NULL);
783}
784
828c0950 785static const struct file_operations sched_feat_fops = {
34f3a814
LZ
786 .open = sched_feat_open,
787 .write = sched_feat_write,
788 .read = seq_read,
789 .llseek = seq_lseek,
790 .release = single_release,
f00b45c1
PZ
791};
792
793static __init int sched_init_debug(void)
794{
f00b45c1
PZ
795 debugfs_create_file("sched_features", 0644, NULL, NULL,
796 &sched_feat_fops);
797
798 return 0;
799}
800late_initcall(sched_init_debug);
801
802#endif
803
804#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 805
b82d9fdd
PZ
806/*
807 * Number of tasks to iterate in a single balance run.
808 * Limited because this is done with IRQs disabled.
809 */
810const_debug unsigned int sysctl_sched_nr_migrate = 32;
811
2398f2c6
PZ
812/*
813 * ratelimit for updating the group shares.
55cd5340 814 * default: 0.25ms
2398f2c6 815 */
55cd5340 816unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 817
ffda12a1
PZ
818/*
819 * Inject some fuzzyness into changing the per-cpu group shares
820 * this avoids remote rq-locks at the expense of fairness.
821 * default: 4
822 */
823unsigned int sysctl_sched_shares_thresh = 4;
824
e9e9250b
PZ
825/*
826 * period over which we average the RT time consumption, measured
827 * in ms.
828 *
829 * default: 1s
830 */
831const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
832
fa85ae24 833/*
9f0c1e56 834 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
835 * default: 1s
836 */
9f0c1e56 837unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 838
6892b75e
IM
839static __read_mostly int scheduler_running;
840
9f0c1e56
PZ
841/*
842 * part of the period that we allow rt tasks to run in us.
843 * default: 0.95s
844 */
845int sysctl_sched_rt_runtime = 950000;
fa85ae24 846
d0b27fa7
PZ
847static inline u64 global_rt_period(void)
848{
849 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
850}
851
852static inline u64 global_rt_runtime(void)
853{
e26873bb 854 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
855 return RUNTIME_INF;
856
857 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
858}
fa85ae24 859
1da177e4 860#ifndef prepare_arch_switch
4866cde0
NP
861# define prepare_arch_switch(next) do { } while (0)
862#endif
863#ifndef finish_arch_switch
864# define finish_arch_switch(prev) do { } while (0)
865#endif
866
051a1d1a
DA
867static inline int task_current(struct rq *rq, struct task_struct *p)
868{
869 return rq->curr == p;
870}
871
4866cde0 872#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 874{
051a1d1a 875 return task_current(rq, p);
4866cde0
NP
876}
877
70b97a7f 878static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
879{
880}
881
70b97a7f 882static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 883{
da04c035
IM
884#ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq->lock.owner = current;
887#endif
8a25d5de
IM
888 /*
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
891 * prev into current:
892 */
893 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
894
4866cde0
NP
895 spin_unlock_irq(&rq->lock);
896}
897
898#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 899static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 return p->oncpu;
903#else
051a1d1a 904 return task_current(rq, p);
4866cde0
NP
905#endif
906}
907
70b97a7f 908static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
909{
910#ifdef CONFIG_SMP
911 /*
912 * We can optimise this out completely for !SMP, because the
913 * SMP rebalancing from interrupt is the only thing that cares
914 * here.
915 */
916 next->oncpu = 1;
917#endif
918#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 spin_unlock_irq(&rq->lock);
920#else
921 spin_unlock(&rq->lock);
922#endif
923}
924
70b97a7f 925static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
926{
927#ifdef CONFIG_SMP
928 /*
929 * After ->oncpu is cleared, the task can be moved to a different CPU.
930 * We must ensure this doesn't happen until the switch is completely
931 * finished.
932 */
933 smp_wmb();
934 prev->oncpu = 0;
935#endif
936#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
937 local_irq_enable();
1da177e4 938#endif
4866cde0
NP
939}
940#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 941
b29739f9
IM
942/*
943 * __task_rq_lock - lock the runqueue a given task resides on.
944 * Must be called interrupts disabled.
945 */
70b97a7f 946static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
947 __acquires(rq->lock)
948{
3a5c359a
AK
949 for (;;) {
950 struct rq *rq = task_rq(p);
951 spin_lock(&rq->lock);
952 if (likely(rq == task_rq(p)))
953 return rq;
b29739f9 954 spin_unlock(&rq->lock);
b29739f9 955 }
b29739f9
IM
956}
957
1da177e4
LT
958/*
959 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 960 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
961 * explicitly disabling preemption.
962 */
70b97a7f 963static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
964 __acquires(rq->lock)
965{
70b97a7f 966 struct rq *rq;
1da177e4 967
3a5c359a
AK
968 for (;;) {
969 local_irq_save(*flags);
970 rq = task_rq(p);
971 spin_lock(&rq->lock);
972 if (likely(rq == task_rq(p)))
973 return rq;
1da177e4 974 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 975 }
1da177e4
LT
976}
977
ad474cac
ON
978void task_rq_unlock_wait(struct task_struct *p)
979{
980 struct rq *rq = task_rq(p);
981
982 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
983 spin_unlock_wait(&rq->lock);
984}
985
a9957449 986static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
987 __releases(rq->lock)
988{
989 spin_unlock(&rq->lock);
990}
991
70b97a7f 992static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
993 __releases(rq->lock)
994{
995 spin_unlock_irqrestore(&rq->lock, *flags);
996}
997
1da177e4 998/*
cc2a73b5 999 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1000 */
a9957449 1001static struct rq *this_rq_lock(void)
1da177e4
LT
1002 __acquires(rq->lock)
1003{
70b97a7f 1004 struct rq *rq;
1da177e4
LT
1005
1006 local_irq_disable();
1007 rq = this_rq();
1008 spin_lock(&rq->lock);
1009
1010 return rq;
1011}
1012
8f4d37ec
PZ
1013#ifdef CONFIG_SCHED_HRTICK
1014/*
1015 * Use HR-timers to deliver accurate preemption points.
1016 *
1017 * Its all a bit involved since we cannot program an hrt while holding the
1018 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1019 * reschedule event.
1020 *
1021 * When we get rescheduled we reprogram the hrtick_timer outside of the
1022 * rq->lock.
1023 */
8f4d37ec
PZ
1024
1025/*
1026 * Use hrtick when:
1027 * - enabled by features
1028 * - hrtimer is actually high res
1029 */
1030static inline int hrtick_enabled(struct rq *rq)
1031{
1032 if (!sched_feat(HRTICK))
1033 return 0;
ba42059f 1034 if (!cpu_active(cpu_of(rq)))
b328ca18 1035 return 0;
8f4d37ec
PZ
1036 return hrtimer_is_hres_active(&rq->hrtick_timer);
1037}
1038
8f4d37ec
PZ
1039static void hrtick_clear(struct rq *rq)
1040{
1041 if (hrtimer_active(&rq->hrtick_timer))
1042 hrtimer_cancel(&rq->hrtick_timer);
1043}
1044
8f4d37ec
PZ
1045/*
1046 * High-resolution timer tick.
1047 * Runs from hardirq context with interrupts disabled.
1048 */
1049static enum hrtimer_restart hrtick(struct hrtimer *timer)
1050{
1051 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1052
1053 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1054
1055 spin_lock(&rq->lock);
3e51f33f 1056 update_rq_clock(rq);
8f4d37ec
PZ
1057 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1058 spin_unlock(&rq->lock);
1059
1060 return HRTIMER_NORESTART;
1061}
1062
95e904c7 1063#ifdef CONFIG_SMP
31656519
PZ
1064/*
1065 * called from hardirq (IPI) context
1066 */
1067static void __hrtick_start(void *arg)
b328ca18 1068{
31656519 1069 struct rq *rq = arg;
b328ca18 1070
31656519
PZ
1071 spin_lock(&rq->lock);
1072 hrtimer_restart(&rq->hrtick_timer);
1073 rq->hrtick_csd_pending = 0;
1074 spin_unlock(&rq->lock);
b328ca18
PZ
1075}
1076
31656519
PZ
1077/*
1078 * Called to set the hrtick timer state.
1079 *
1080 * called with rq->lock held and irqs disabled
1081 */
1082static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1083{
31656519
PZ
1084 struct hrtimer *timer = &rq->hrtick_timer;
1085 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1086
cc584b21 1087 hrtimer_set_expires(timer, time);
31656519
PZ
1088
1089 if (rq == this_rq()) {
1090 hrtimer_restart(timer);
1091 } else if (!rq->hrtick_csd_pending) {
6e275637 1092 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1093 rq->hrtick_csd_pending = 1;
1094 }
b328ca18
PZ
1095}
1096
1097static int
1098hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1099{
1100 int cpu = (int)(long)hcpu;
1101
1102 switch (action) {
1103 case CPU_UP_CANCELED:
1104 case CPU_UP_CANCELED_FROZEN:
1105 case CPU_DOWN_PREPARE:
1106 case CPU_DOWN_PREPARE_FROZEN:
1107 case CPU_DEAD:
1108 case CPU_DEAD_FROZEN:
31656519 1109 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1110 return NOTIFY_OK;
1111 }
1112
1113 return NOTIFY_DONE;
1114}
1115
fa748203 1116static __init void init_hrtick(void)
b328ca18
PZ
1117{
1118 hotcpu_notifier(hotplug_hrtick, 0);
1119}
31656519
PZ
1120#else
1121/*
1122 * Called to set the hrtick timer state.
1123 *
1124 * called with rq->lock held and irqs disabled
1125 */
1126static void hrtick_start(struct rq *rq, u64 delay)
1127{
7f1e2ca9 1128 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1129 HRTIMER_MODE_REL_PINNED, 0);
31656519 1130}
b328ca18 1131
006c75f1 1132static inline void init_hrtick(void)
8f4d37ec 1133{
8f4d37ec 1134}
31656519 1135#endif /* CONFIG_SMP */
8f4d37ec 1136
31656519 1137static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1138{
31656519
PZ
1139#ifdef CONFIG_SMP
1140 rq->hrtick_csd_pending = 0;
8f4d37ec 1141
31656519
PZ
1142 rq->hrtick_csd.flags = 0;
1143 rq->hrtick_csd.func = __hrtick_start;
1144 rq->hrtick_csd.info = rq;
1145#endif
8f4d37ec 1146
31656519
PZ
1147 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1148 rq->hrtick_timer.function = hrtick;
8f4d37ec 1149}
006c75f1 1150#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1151static inline void hrtick_clear(struct rq *rq)
1152{
1153}
1154
8f4d37ec
PZ
1155static inline void init_rq_hrtick(struct rq *rq)
1156{
1157}
1158
b328ca18
PZ
1159static inline void init_hrtick(void)
1160{
1161}
006c75f1 1162#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1163
c24d20db
IM
1164/*
1165 * resched_task - mark a task 'to be rescheduled now'.
1166 *
1167 * On UP this means the setting of the need_resched flag, on SMP it
1168 * might also involve a cross-CPU call to trigger the scheduler on
1169 * the target CPU.
1170 */
1171#ifdef CONFIG_SMP
1172
1173#ifndef tsk_is_polling
1174#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1175#endif
1176
31656519 1177static void resched_task(struct task_struct *p)
c24d20db
IM
1178{
1179 int cpu;
1180
1181 assert_spin_locked(&task_rq(p)->lock);
1182
5ed0cec0 1183 if (test_tsk_need_resched(p))
c24d20db
IM
1184 return;
1185
5ed0cec0 1186 set_tsk_need_resched(p);
c24d20db
IM
1187
1188 cpu = task_cpu(p);
1189 if (cpu == smp_processor_id())
1190 return;
1191
1192 /* NEED_RESCHED must be visible before we test polling */
1193 smp_mb();
1194 if (!tsk_is_polling(p))
1195 smp_send_reschedule(cpu);
1196}
1197
1198static void resched_cpu(int cpu)
1199{
1200 struct rq *rq = cpu_rq(cpu);
1201 unsigned long flags;
1202
1203 if (!spin_trylock_irqsave(&rq->lock, flags))
1204 return;
1205 resched_task(cpu_curr(cpu));
1206 spin_unlock_irqrestore(&rq->lock, flags);
1207}
06d8308c
TG
1208
1209#ifdef CONFIG_NO_HZ
1210/*
1211 * When add_timer_on() enqueues a timer into the timer wheel of an
1212 * idle CPU then this timer might expire before the next timer event
1213 * which is scheduled to wake up that CPU. In case of a completely
1214 * idle system the next event might even be infinite time into the
1215 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1216 * leaves the inner idle loop so the newly added timer is taken into
1217 * account when the CPU goes back to idle and evaluates the timer
1218 * wheel for the next timer event.
1219 */
1220void wake_up_idle_cpu(int cpu)
1221{
1222 struct rq *rq = cpu_rq(cpu);
1223
1224 if (cpu == smp_processor_id())
1225 return;
1226
1227 /*
1228 * This is safe, as this function is called with the timer
1229 * wheel base lock of (cpu) held. When the CPU is on the way
1230 * to idle and has not yet set rq->curr to idle then it will
1231 * be serialized on the timer wheel base lock and take the new
1232 * timer into account automatically.
1233 */
1234 if (rq->curr != rq->idle)
1235 return;
1236
1237 /*
1238 * We can set TIF_RESCHED on the idle task of the other CPU
1239 * lockless. The worst case is that the other CPU runs the
1240 * idle task through an additional NOOP schedule()
1241 */
5ed0cec0 1242 set_tsk_need_resched(rq->idle);
06d8308c
TG
1243
1244 /* NEED_RESCHED must be visible before we test polling */
1245 smp_mb();
1246 if (!tsk_is_polling(rq->idle))
1247 smp_send_reschedule(cpu);
1248}
6d6bc0ad 1249#endif /* CONFIG_NO_HZ */
06d8308c 1250
e9e9250b
PZ
1251static u64 sched_avg_period(void)
1252{
1253 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1254}
1255
1256static void sched_avg_update(struct rq *rq)
1257{
1258 s64 period = sched_avg_period();
1259
1260 while ((s64)(rq->clock - rq->age_stamp) > period) {
1261 rq->age_stamp += period;
1262 rq->rt_avg /= 2;
1263 }
1264}
1265
1266static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1267{
1268 rq->rt_avg += rt_delta;
1269 sched_avg_update(rq);
1270}
1271
6d6bc0ad 1272#else /* !CONFIG_SMP */
31656519 1273static void resched_task(struct task_struct *p)
c24d20db
IM
1274{
1275 assert_spin_locked(&task_rq(p)->lock);
31656519 1276 set_tsk_need_resched(p);
c24d20db 1277}
e9e9250b
PZ
1278
1279static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1280{
1281}
6d6bc0ad 1282#endif /* CONFIG_SMP */
c24d20db 1283
45bf76df
IM
1284#if BITS_PER_LONG == 32
1285# define WMULT_CONST (~0UL)
1286#else
1287# define WMULT_CONST (1UL << 32)
1288#endif
1289
1290#define WMULT_SHIFT 32
1291
194081eb
IM
1292/*
1293 * Shift right and round:
1294 */
cf2ab469 1295#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1296
a7be37ac
PZ
1297/*
1298 * delta *= weight / lw
1299 */
cb1c4fc9 1300static unsigned long
45bf76df
IM
1301calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1302 struct load_weight *lw)
1303{
1304 u64 tmp;
1305
7a232e03
LJ
1306 if (!lw->inv_weight) {
1307 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1308 lw->inv_weight = 1;
1309 else
1310 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1311 / (lw->weight+1);
1312 }
45bf76df
IM
1313
1314 tmp = (u64)delta_exec * weight;
1315 /*
1316 * Check whether we'd overflow the 64-bit multiplication:
1317 */
194081eb 1318 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1319 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1320 WMULT_SHIFT/2);
1321 else
cf2ab469 1322 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1323
ecf691da 1324 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1325}
1326
1091985b 1327static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1328{
1329 lw->weight += inc;
e89996ae 1330 lw->inv_weight = 0;
45bf76df
IM
1331}
1332
1091985b 1333static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1334{
1335 lw->weight -= dec;
e89996ae 1336 lw->inv_weight = 0;
45bf76df
IM
1337}
1338
2dd73a4f
PW
1339/*
1340 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1341 * of tasks with abnormal "nice" values across CPUs the contribution that
1342 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1343 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1344 * scaled version of the new time slice allocation that they receive on time
1345 * slice expiry etc.
1346 */
1347
cce7ade8
PZ
1348#define WEIGHT_IDLEPRIO 3
1349#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1350
1351/*
1352 * Nice levels are multiplicative, with a gentle 10% change for every
1353 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1354 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1355 * that remained on nice 0.
1356 *
1357 * The "10% effect" is relative and cumulative: from _any_ nice level,
1358 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1359 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1360 * If a task goes up by ~10% and another task goes down by ~10% then
1361 * the relative distance between them is ~25%.)
dd41f596
IM
1362 */
1363static const int prio_to_weight[40] = {
254753dc
IM
1364 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1365 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1366 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1367 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1368 /* 0 */ 1024, 820, 655, 526, 423,
1369 /* 5 */ 335, 272, 215, 172, 137,
1370 /* 10 */ 110, 87, 70, 56, 45,
1371 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1372};
1373
5714d2de
IM
1374/*
1375 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1376 *
1377 * In cases where the weight does not change often, we can use the
1378 * precalculated inverse to speed up arithmetics by turning divisions
1379 * into multiplications:
1380 */
dd41f596 1381static const u32 prio_to_wmult[40] = {
254753dc
IM
1382 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1383 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1384 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1385 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1386 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1387 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1388 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1389 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1390};
2dd73a4f 1391
dd41f596
IM
1392static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1393
1394/*
1395 * runqueue iterator, to support SMP load-balancing between different
1396 * scheduling classes, without having to expose their internal data
1397 * structures to the load-balancing proper:
1398 */
1399struct rq_iterator {
1400 void *arg;
1401 struct task_struct *(*start)(void *);
1402 struct task_struct *(*next)(void *);
1403};
1404
e1d1484f
PW
1405#ifdef CONFIG_SMP
1406static unsigned long
1407balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1408 unsigned long max_load_move, struct sched_domain *sd,
1409 enum cpu_idle_type idle, int *all_pinned,
1410 int *this_best_prio, struct rq_iterator *iterator);
1411
1412static int
1413iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1414 struct sched_domain *sd, enum cpu_idle_type idle,
1415 struct rq_iterator *iterator);
e1d1484f 1416#endif
dd41f596 1417
ef12fefa
BR
1418/* Time spent by the tasks of the cpu accounting group executing in ... */
1419enum cpuacct_stat_index {
1420 CPUACCT_STAT_USER, /* ... user mode */
1421 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1422
1423 CPUACCT_STAT_NSTATS,
1424};
1425
d842de87
SV
1426#ifdef CONFIG_CGROUP_CPUACCT
1427static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1428static void cpuacct_update_stats(struct task_struct *tsk,
1429 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1430#else
1431static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1432static inline void cpuacct_update_stats(struct task_struct *tsk,
1433 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1434#endif
1435
18d95a28
PZ
1436static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1437{
1438 update_load_add(&rq->load, load);
1439}
1440
1441static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1442{
1443 update_load_sub(&rq->load, load);
1444}
1445
7940ca36 1446#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1447typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1448
1449/*
1450 * Iterate the full tree, calling @down when first entering a node and @up when
1451 * leaving it for the final time.
1452 */
eb755805 1453static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1454{
1455 struct task_group *parent, *child;
eb755805 1456 int ret;
c09595f6
PZ
1457
1458 rcu_read_lock();
1459 parent = &root_task_group;
1460down:
eb755805
PZ
1461 ret = (*down)(parent, data);
1462 if (ret)
1463 goto out_unlock;
c09595f6
PZ
1464 list_for_each_entry_rcu(child, &parent->children, siblings) {
1465 parent = child;
1466 goto down;
1467
1468up:
1469 continue;
1470 }
eb755805
PZ
1471 ret = (*up)(parent, data);
1472 if (ret)
1473 goto out_unlock;
c09595f6
PZ
1474
1475 child = parent;
1476 parent = parent->parent;
1477 if (parent)
1478 goto up;
eb755805 1479out_unlock:
c09595f6 1480 rcu_read_unlock();
eb755805
PZ
1481
1482 return ret;
c09595f6
PZ
1483}
1484
eb755805
PZ
1485static int tg_nop(struct task_group *tg, void *data)
1486{
1487 return 0;
c09595f6 1488}
eb755805
PZ
1489#endif
1490
1491#ifdef CONFIG_SMP
f5f08f39
PZ
1492/* Used instead of source_load when we know the type == 0 */
1493static unsigned long weighted_cpuload(const int cpu)
1494{
1495 return cpu_rq(cpu)->load.weight;
1496}
1497
1498/*
1499 * Return a low guess at the load of a migration-source cpu weighted
1500 * according to the scheduling class and "nice" value.
1501 *
1502 * We want to under-estimate the load of migration sources, to
1503 * balance conservatively.
1504 */
1505static unsigned long source_load(int cpu, int type)
1506{
1507 struct rq *rq = cpu_rq(cpu);
1508 unsigned long total = weighted_cpuload(cpu);
1509
1510 if (type == 0 || !sched_feat(LB_BIAS))
1511 return total;
1512
1513 return min(rq->cpu_load[type-1], total);
1514}
1515
1516/*
1517 * Return a high guess at the load of a migration-target cpu weighted
1518 * according to the scheduling class and "nice" value.
1519 */
1520static unsigned long target_load(int cpu, int type)
1521{
1522 struct rq *rq = cpu_rq(cpu);
1523 unsigned long total = weighted_cpuload(cpu);
1524
1525 if (type == 0 || !sched_feat(LB_BIAS))
1526 return total;
1527
1528 return max(rq->cpu_load[type-1], total);
1529}
1530
ae154be1
PZ
1531static struct sched_group *group_of(int cpu)
1532{
1533 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1534
1535 if (!sd)
1536 return NULL;
1537
1538 return sd->groups;
1539}
1540
1541static unsigned long power_of(int cpu)
1542{
1543 struct sched_group *group = group_of(cpu);
1544
1545 if (!group)
1546 return SCHED_LOAD_SCALE;
1547
1548 return group->cpu_power;
1549}
1550
eb755805
PZ
1551static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1552
1553static unsigned long cpu_avg_load_per_task(int cpu)
1554{
1555 struct rq *rq = cpu_rq(cpu);
af6d596f 1556 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1557
4cd42620
SR
1558 if (nr_running)
1559 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1560 else
1561 rq->avg_load_per_task = 0;
eb755805
PZ
1562
1563 return rq->avg_load_per_task;
1564}
1565
1566#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1567
4a6cc4bd 1568static __read_mostly unsigned long *update_shares_data;
34d76c41 1569
c09595f6
PZ
1570static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1571
1572/*
1573 * Calculate and set the cpu's group shares.
1574 */
34d76c41
PZ
1575static void update_group_shares_cpu(struct task_group *tg, int cpu,
1576 unsigned long sd_shares,
1577 unsigned long sd_rq_weight,
4a6cc4bd 1578 unsigned long *usd_rq_weight)
18d95a28 1579{
34d76c41 1580 unsigned long shares, rq_weight;
a5004278 1581 int boost = 0;
c09595f6 1582
4a6cc4bd 1583 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1584 if (!rq_weight) {
1585 boost = 1;
1586 rq_weight = NICE_0_LOAD;
1587 }
c8cba857 1588
c09595f6 1589 /*
a8af7246
PZ
1590 * \Sum_j shares_j * rq_weight_i
1591 * shares_i = -----------------------------
1592 * \Sum_j rq_weight_j
c09595f6 1593 */
ec4e0e2f 1594 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1595 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1596
ffda12a1
PZ
1597 if (abs(shares - tg->se[cpu]->load.weight) >
1598 sysctl_sched_shares_thresh) {
1599 struct rq *rq = cpu_rq(cpu);
1600 unsigned long flags;
c09595f6 1601
ffda12a1 1602 spin_lock_irqsave(&rq->lock, flags);
34d76c41 1603 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1604 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1605 __set_se_shares(tg->se[cpu], shares);
1606 spin_unlock_irqrestore(&rq->lock, flags);
1607 }
18d95a28 1608}
c09595f6
PZ
1609
1610/*
c8cba857
PZ
1611 * Re-compute the task group their per cpu shares over the given domain.
1612 * This needs to be done in a bottom-up fashion because the rq weight of a
1613 * parent group depends on the shares of its child groups.
c09595f6 1614 */
eb755805 1615static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1616{
34d76c41 1617 unsigned long weight, rq_weight = 0, shares = 0;
4a6cc4bd 1618 unsigned long *usd_rq_weight;
eb755805 1619 struct sched_domain *sd = data;
34d76c41 1620 unsigned long flags;
c8cba857 1621 int i;
c09595f6 1622
34d76c41
PZ
1623 if (!tg->se[0])
1624 return 0;
1625
1626 local_irq_save(flags);
4a6cc4bd 1627 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1628
758b2cdc 1629 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1630 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1631 usd_rq_weight[i] = weight;
34d76c41 1632
ec4e0e2f
KC
1633 /*
1634 * If there are currently no tasks on the cpu pretend there
1635 * is one of average load so that when a new task gets to
1636 * run here it will not get delayed by group starvation.
1637 */
ec4e0e2f
KC
1638 if (!weight)
1639 weight = NICE_0_LOAD;
1640
ec4e0e2f 1641 rq_weight += weight;
c8cba857 1642 shares += tg->cfs_rq[i]->shares;
c09595f6 1643 }
c09595f6 1644
c8cba857
PZ
1645 if ((!shares && rq_weight) || shares > tg->shares)
1646 shares = tg->shares;
1647
1648 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1649 shares = tg->shares;
c09595f6 1650
758b2cdc 1651 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1652 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1653
1654 local_irq_restore(flags);
eb755805
PZ
1655
1656 return 0;
c09595f6
PZ
1657}
1658
1659/*
c8cba857
PZ
1660 * Compute the cpu's hierarchical load factor for each task group.
1661 * This needs to be done in a top-down fashion because the load of a child
1662 * group is a fraction of its parents load.
c09595f6 1663 */
eb755805 1664static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1665{
c8cba857 1666 unsigned long load;
eb755805 1667 long cpu = (long)data;
c09595f6 1668
c8cba857
PZ
1669 if (!tg->parent) {
1670 load = cpu_rq(cpu)->load.weight;
1671 } else {
1672 load = tg->parent->cfs_rq[cpu]->h_load;
1673 load *= tg->cfs_rq[cpu]->shares;
1674 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1675 }
c09595f6 1676
c8cba857 1677 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1678
eb755805 1679 return 0;
c09595f6
PZ
1680}
1681
c8cba857 1682static void update_shares(struct sched_domain *sd)
4d8d595d 1683{
e7097159
PZ
1684 s64 elapsed;
1685 u64 now;
1686
1687 if (root_task_group_empty())
1688 return;
1689
1690 now = cpu_clock(raw_smp_processor_id());
1691 elapsed = now - sd->last_update;
2398f2c6
PZ
1692
1693 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1694 sd->last_update = now;
eb755805 1695 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1696 }
4d8d595d
PZ
1697}
1698
3e5459b4
PZ
1699static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1700{
e7097159
PZ
1701 if (root_task_group_empty())
1702 return;
1703
3e5459b4
PZ
1704 spin_unlock(&rq->lock);
1705 update_shares(sd);
1706 spin_lock(&rq->lock);
1707}
1708
eb755805 1709static void update_h_load(long cpu)
c09595f6 1710{
e7097159
PZ
1711 if (root_task_group_empty())
1712 return;
1713
eb755805 1714 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1715}
1716
c09595f6
PZ
1717#else
1718
c8cba857 1719static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1720{
1721}
1722
3e5459b4
PZ
1723static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1724{
1725}
1726
18d95a28
PZ
1727#endif
1728
8f45e2b5
GH
1729#ifdef CONFIG_PREEMPT
1730
b78bb868
PZ
1731static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1732
70574a99 1733/*
8f45e2b5
GH
1734 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1735 * way at the expense of forcing extra atomic operations in all
1736 * invocations. This assures that the double_lock is acquired using the
1737 * same underlying policy as the spinlock_t on this architecture, which
1738 * reduces latency compared to the unfair variant below. However, it
1739 * also adds more overhead and therefore may reduce throughput.
70574a99 1740 */
8f45e2b5
GH
1741static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1742 __releases(this_rq->lock)
1743 __acquires(busiest->lock)
1744 __acquires(this_rq->lock)
1745{
1746 spin_unlock(&this_rq->lock);
1747 double_rq_lock(this_rq, busiest);
1748
1749 return 1;
1750}
1751
1752#else
1753/*
1754 * Unfair double_lock_balance: Optimizes throughput at the expense of
1755 * latency by eliminating extra atomic operations when the locks are
1756 * already in proper order on entry. This favors lower cpu-ids and will
1757 * grant the double lock to lower cpus over higher ids under contention,
1758 * regardless of entry order into the function.
1759 */
1760static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1761 __releases(this_rq->lock)
1762 __acquires(busiest->lock)
1763 __acquires(this_rq->lock)
1764{
1765 int ret = 0;
1766
70574a99
AD
1767 if (unlikely(!spin_trylock(&busiest->lock))) {
1768 if (busiest < this_rq) {
1769 spin_unlock(&this_rq->lock);
1770 spin_lock(&busiest->lock);
1771 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1772 ret = 1;
1773 } else
1774 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1775 }
1776 return ret;
1777}
1778
8f45e2b5
GH
1779#endif /* CONFIG_PREEMPT */
1780
1781/*
1782 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1783 */
1784static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1785{
1786 if (unlikely(!irqs_disabled())) {
1787 /* printk() doesn't work good under rq->lock */
1788 spin_unlock(&this_rq->lock);
1789 BUG_ON(1);
1790 }
1791
1792 return _double_lock_balance(this_rq, busiest);
1793}
1794
70574a99
AD
1795static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1796 __releases(busiest->lock)
1797{
1798 spin_unlock(&busiest->lock);
1799 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1800}
18d95a28
PZ
1801#endif
1802
30432094 1803#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1804static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1805{
30432094 1806#ifdef CONFIG_SMP
34e83e85
IM
1807 cfs_rq->shares = shares;
1808#endif
1809}
30432094 1810#endif
e7693a36 1811
dce48a84
TG
1812static void calc_load_account_active(struct rq *this_rq);
1813
cd29fe6f
PZ
1814static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1815{
1816 set_task_rq(p, cpu);
1817#ifdef CONFIG_SMP
1818 /*
1819 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1820 * successfuly executed on another CPU. We must ensure that updates of
1821 * per-task data have been completed by this moment.
1822 */
1823 smp_wmb();
1824 task_thread_info(p)->cpu = cpu;
1825#endif
1826}
1827
dd41f596 1828#include "sched_stats.h"
dd41f596 1829#include "sched_idletask.c"
5522d5d5
IM
1830#include "sched_fair.c"
1831#include "sched_rt.c"
dd41f596
IM
1832#ifdef CONFIG_SCHED_DEBUG
1833# include "sched_debug.c"
1834#endif
1835
1836#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1837#define for_each_class(class) \
1838 for (class = sched_class_highest; class; class = class->next)
dd41f596 1839
c09595f6 1840static void inc_nr_running(struct rq *rq)
9c217245
IM
1841{
1842 rq->nr_running++;
9c217245
IM
1843}
1844
c09595f6 1845static void dec_nr_running(struct rq *rq)
9c217245
IM
1846{
1847 rq->nr_running--;
9c217245
IM
1848}
1849
45bf76df
IM
1850static void set_load_weight(struct task_struct *p)
1851{
1852 if (task_has_rt_policy(p)) {
dd41f596
IM
1853 p->se.load.weight = prio_to_weight[0] * 2;
1854 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1855 return;
1856 }
45bf76df 1857
dd41f596
IM
1858 /*
1859 * SCHED_IDLE tasks get minimal weight:
1860 */
1861 if (p->policy == SCHED_IDLE) {
1862 p->se.load.weight = WEIGHT_IDLEPRIO;
1863 p->se.load.inv_weight = WMULT_IDLEPRIO;
1864 return;
1865 }
71f8bd46 1866
dd41f596
IM
1867 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1868 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1869}
1870
2087a1ad
GH
1871static void update_avg(u64 *avg, u64 sample)
1872{
1873 s64 diff = sample - *avg;
1874 *avg += diff >> 3;
1875}
1876
8159f87e 1877static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1878{
831451ac
PZ
1879 if (wakeup)
1880 p->se.start_runtime = p->se.sum_exec_runtime;
1881
dd41f596 1882 sched_info_queued(p);
fd390f6a 1883 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1884 p->se.on_rq = 1;
71f8bd46
IM
1885}
1886
69be72c1 1887static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1888{
831451ac
PZ
1889 if (sleep) {
1890 if (p->se.last_wakeup) {
1891 update_avg(&p->se.avg_overlap,
1892 p->se.sum_exec_runtime - p->se.last_wakeup);
1893 p->se.last_wakeup = 0;
1894 } else {
1895 update_avg(&p->se.avg_wakeup,
1896 sysctl_sched_wakeup_granularity);
1897 }
2087a1ad
GH
1898 }
1899
46ac22ba 1900 sched_info_dequeued(p);
f02231e5 1901 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1902 p->se.on_rq = 0;
71f8bd46
IM
1903}
1904
14531189 1905/*
dd41f596 1906 * __normal_prio - return the priority that is based on the static prio
14531189 1907 */
14531189
IM
1908static inline int __normal_prio(struct task_struct *p)
1909{
dd41f596 1910 return p->static_prio;
14531189
IM
1911}
1912
b29739f9
IM
1913/*
1914 * Calculate the expected normal priority: i.e. priority
1915 * without taking RT-inheritance into account. Might be
1916 * boosted by interactivity modifiers. Changes upon fork,
1917 * setprio syscalls, and whenever the interactivity
1918 * estimator recalculates.
1919 */
36c8b586 1920static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1921{
1922 int prio;
1923
e05606d3 1924 if (task_has_rt_policy(p))
b29739f9
IM
1925 prio = MAX_RT_PRIO-1 - p->rt_priority;
1926 else
1927 prio = __normal_prio(p);
1928 return prio;
1929}
1930
1931/*
1932 * Calculate the current priority, i.e. the priority
1933 * taken into account by the scheduler. This value might
1934 * be boosted by RT tasks, or might be boosted by
1935 * interactivity modifiers. Will be RT if the task got
1936 * RT-boosted. If not then it returns p->normal_prio.
1937 */
36c8b586 1938static int effective_prio(struct task_struct *p)
b29739f9
IM
1939{
1940 p->normal_prio = normal_prio(p);
1941 /*
1942 * If we are RT tasks or we were boosted to RT priority,
1943 * keep the priority unchanged. Otherwise, update priority
1944 * to the normal priority:
1945 */
1946 if (!rt_prio(p->prio))
1947 return p->normal_prio;
1948 return p->prio;
1949}
1950
1da177e4 1951/*
dd41f596 1952 * activate_task - move a task to the runqueue.
1da177e4 1953 */
dd41f596 1954static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1955{
d9514f6c 1956 if (task_contributes_to_load(p))
dd41f596 1957 rq->nr_uninterruptible--;
1da177e4 1958
8159f87e 1959 enqueue_task(rq, p, wakeup);
c09595f6 1960 inc_nr_running(rq);
1da177e4
LT
1961}
1962
1da177e4
LT
1963/*
1964 * deactivate_task - remove a task from the runqueue.
1965 */
2e1cb74a 1966static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1967{
d9514f6c 1968 if (task_contributes_to_load(p))
dd41f596
IM
1969 rq->nr_uninterruptible++;
1970
69be72c1 1971 dequeue_task(rq, p, sleep);
c09595f6 1972 dec_nr_running(rq);
1da177e4
LT
1973}
1974
1da177e4
LT
1975/**
1976 * task_curr - is this task currently executing on a CPU?
1977 * @p: the task in question.
1978 */
36c8b586 1979inline int task_curr(const struct task_struct *p)
1da177e4
LT
1980{
1981 return cpu_curr(task_cpu(p)) == p;
1982}
1983
cb469845
SR
1984static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1985 const struct sched_class *prev_class,
1986 int oldprio, int running)
1987{
1988 if (prev_class != p->sched_class) {
1989 if (prev_class->switched_from)
1990 prev_class->switched_from(rq, p, running);
1991 p->sched_class->switched_to(rq, p, running);
1992 } else
1993 p->sched_class->prio_changed(rq, p, oldprio, running);
1994}
1995
b84ff7d6
MG
1996/**
1997 * kthread_bind - bind a just-created kthread to a cpu.
968c8645 1998 * @p: thread created by kthread_create().
b84ff7d6
MG
1999 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2000 *
2001 * Description: This function is equivalent to set_cpus_allowed(),
2002 * except that @cpu doesn't need to be online, and the thread must be
2003 * stopped (i.e., just returned from kthread_create()).
2004 *
2005 * Function lives here instead of kthread.c because it messes with
2006 * scheduler internals which require locking.
2007 */
2008void kthread_bind(struct task_struct *p, unsigned int cpu)
2009{
2010 struct rq *rq = cpu_rq(cpu);
2011 unsigned long flags;
2012
2013 /* Must have done schedule() in kthread() before we set_task_cpu */
2014 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2015 WARN_ON(1);
2016 return;
2017 }
2018
2019 spin_lock_irqsave(&rq->lock, flags);
055a0086 2020 update_rq_clock(rq);
b84ff7d6
MG
2021 set_task_cpu(p, cpu);
2022 p->cpus_allowed = cpumask_of_cpu(cpu);
2023 p->rt.nr_cpus_allowed = 1;
2024 p->flags |= PF_THREAD_BOUND;
2025 spin_unlock_irqrestore(&rq->lock, flags);
2026}
2027EXPORT_SYMBOL(kthread_bind);
2028
1da177e4 2029#ifdef CONFIG_SMP
cc367732
IM
2030/*
2031 * Is this task likely cache-hot:
2032 */
e7693a36 2033static int
cc367732
IM
2034task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2035{
2036 s64 delta;
2037
f540a608
IM
2038 /*
2039 * Buddy candidates are cache hot:
2040 */
f685ceac 2041 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2042 (&p->se == cfs_rq_of(&p->se)->next ||
2043 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2044 return 1;
2045
cc367732
IM
2046 if (p->sched_class != &fair_sched_class)
2047 return 0;
2048
6bc1665b
IM
2049 if (sysctl_sched_migration_cost == -1)
2050 return 1;
2051 if (sysctl_sched_migration_cost == 0)
2052 return 0;
2053
cc367732
IM
2054 delta = now - p->se.exec_start;
2055
2056 return delta < (s64)sysctl_sched_migration_cost;
2057}
2058
2059
dd41f596 2060void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2061{
dd41f596 2062 int old_cpu = task_cpu(p);
5afcdab7 2063 struct rq *old_rq = cpu_rq(old_cpu);
2830cf8c
SV
2064 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2065 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
6cfb0d5d 2066
de1d7286 2067 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2068
cc367732 2069 if (old_cpu != new_cpu) {
6c594c21
IM
2070 p->se.nr_migrations++;
2071#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2072 if (task_hot(p, old_rq->clock, NULL))
2073 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2074#endif
cdd6c482 2075 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
e5289d4a 2076 1, 1, NULL, 0);
6c594c21 2077 }
2830cf8c
SV
2078 p->se.vruntime -= old_cfsrq->min_vruntime -
2079 new_cfsrq->min_vruntime;
dd41f596
IM
2080
2081 __set_task_cpu(p, new_cpu);
c65cc870
IM
2082}
2083
70b97a7f 2084struct migration_req {
1da177e4 2085 struct list_head list;
1da177e4 2086
36c8b586 2087 struct task_struct *task;
1da177e4
LT
2088 int dest_cpu;
2089
1da177e4 2090 struct completion done;
70b97a7f 2091};
1da177e4
LT
2092
2093/*
2094 * The task's runqueue lock must be held.
2095 * Returns true if you have to wait for migration thread.
2096 */
36c8b586 2097static int
70b97a7f 2098migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2099{
70b97a7f 2100 struct rq *rq = task_rq(p);
1da177e4
LT
2101
2102 /*
2103 * If the task is not on a runqueue (and not running), then
2104 * it is sufficient to simply update the task's cpu field.
2105 */
dd41f596 2106 if (!p->se.on_rq && !task_running(rq, p)) {
055a0086 2107 update_rq_clock(rq);
1da177e4
LT
2108 set_task_cpu(p, dest_cpu);
2109 return 0;
2110 }
2111
2112 init_completion(&req->done);
1da177e4
LT
2113 req->task = p;
2114 req->dest_cpu = dest_cpu;
2115 list_add(&req->list, &rq->migration_queue);
48f24c4d 2116
1da177e4
LT
2117 return 1;
2118}
2119
a26b89f0
MM
2120/*
2121 * wait_task_context_switch - wait for a thread to complete at least one
2122 * context switch.
2123 *
2124 * @p must not be current.
2125 */
2126void wait_task_context_switch(struct task_struct *p)
2127{
2128 unsigned long nvcsw, nivcsw, flags;
2129 int running;
2130 struct rq *rq;
2131
2132 nvcsw = p->nvcsw;
2133 nivcsw = p->nivcsw;
2134 for (;;) {
2135 /*
2136 * The runqueue is assigned before the actual context
2137 * switch. We need to take the runqueue lock.
2138 *
2139 * We could check initially without the lock but it is
2140 * very likely that we need to take the lock in every
2141 * iteration.
2142 */
2143 rq = task_rq_lock(p, &flags);
2144 running = task_running(rq, p);
2145 task_rq_unlock(rq, &flags);
2146
2147 if (likely(!running))
2148 break;
2149 /*
2150 * The switch count is incremented before the actual
2151 * context switch. We thus wait for two switches to be
2152 * sure at least one completed.
2153 */
2154 if ((p->nvcsw - nvcsw) > 1)
2155 break;
2156 if ((p->nivcsw - nivcsw) > 1)
2157 break;
2158
2159 cpu_relax();
2160 }
2161}
2162
1da177e4
LT
2163/*
2164 * wait_task_inactive - wait for a thread to unschedule.
2165 *
85ba2d86
RM
2166 * If @match_state is nonzero, it's the @p->state value just checked and
2167 * not expected to change. If it changes, i.e. @p might have woken up,
2168 * then return zero. When we succeed in waiting for @p to be off its CPU,
2169 * we return a positive number (its total switch count). If a second call
2170 * a short while later returns the same number, the caller can be sure that
2171 * @p has remained unscheduled the whole time.
2172 *
1da177e4
LT
2173 * The caller must ensure that the task *will* unschedule sometime soon,
2174 * else this function might spin for a *long* time. This function can't
2175 * be called with interrupts off, or it may introduce deadlock with
2176 * smp_call_function() if an IPI is sent by the same process we are
2177 * waiting to become inactive.
2178 */
85ba2d86 2179unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2180{
2181 unsigned long flags;
dd41f596 2182 int running, on_rq;
85ba2d86 2183 unsigned long ncsw;
70b97a7f 2184 struct rq *rq;
1da177e4 2185
3a5c359a
AK
2186 for (;;) {
2187 /*
2188 * We do the initial early heuristics without holding
2189 * any task-queue locks at all. We'll only try to get
2190 * the runqueue lock when things look like they will
2191 * work out!
2192 */
2193 rq = task_rq(p);
fa490cfd 2194
3a5c359a
AK
2195 /*
2196 * If the task is actively running on another CPU
2197 * still, just relax and busy-wait without holding
2198 * any locks.
2199 *
2200 * NOTE! Since we don't hold any locks, it's not
2201 * even sure that "rq" stays as the right runqueue!
2202 * But we don't care, since "task_running()" will
2203 * return false if the runqueue has changed and p
2204 * is actually now running somewhere else!
2205 */
85ba2d86
RM
2206 while (task_running(rq, p)) {
2207 if (match_state && unlikely(p->state != match_state))
2208 return 0;
3a5c359a 2209 cpu_relax();
85ba2d86 2210 }
fa490cfd 2211
3a5c359a
AK
2212 /*
2213 * Ok, time to look more closely! We need the rq
2214 * lock now, to be *sure*. If we're wrong, we'll
2215 * just go back and repeat.
2216 */
2217 rq = task_rq_lock(p, &flags);
0a16b607 2218 trace_sched_wait_task(rq, p);
3a5c359a
AK
2219 running = task_running(rq, p);
2220 on_rq = p->se.on_rq;
85ba2d86 2221 ncsw = 0;
f31e11d8 2222 if (!match_state || p->state == match_state)
93dcf55f 2223 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2224 task_rq_unlock(rq, &flags);
fa490cfd 2225
85ba2d86
RM
2226 /*
2227 * If it changed from the expected state, bail out now.
2228 */
2229 if (unlikely(!ncsw))
2230 break;
2231
3a5c359a
AK
2232 /*
2233 * Was it really running after all now that we
2234 * checked with the proper locks actually held?
2235 *
2236 * Oops. Go back and try again..
2237 */
2238 if (unlikely(running)) {
2239 cpu_relax();
2240 continue;
2241 }
fa490cfd 2242
3a5c359a
AK
2243 /*
2244 * It's not enough that it's not actively running,
2245 * it must be off the runqueue _entirely_, and not
2246 * preempted!
2247 *
80dd99b3 2248 * So if it was still runnable (but just not actively
3a5c359a
AK
2249 * running right now), it's preempted, and we should
2250 * yield - it could be a while.
2251 */
2252 if (unlikely(on_rq)) {
2253 schedule_timeout_uninterruptible(1);
2254 continue;
2255 }
fa490cfd 2256
3a5c359a
AK
2257 /*
2258 * Ahh, all good. It wasn't running, and it wasn't
2259 * runnable, which means that it will never become
2260 * running in the future either. We're all done!
2261 */
2262 break;
2263 }
85ba2d86
RM
2264
2265 return ncsw;
1da177e4
LT
2266}
2267
2268/***
2269 * kick_process - kick a running thread to enter/exit the kernel
2270 * @p: the to-be-kicked thread
2271 *
2272 * Cause a process which is running on another CPU to enter
2273 * kernel-mode, without any delay. (to get signals handled.)
2274 *
2275 * NOTE: this function doesnt have to take the runqueue lock,
2276 * because all it wants to ensure is that the remote task enters
2277 * the kernel. If the IPI races and the task has been migrated
2278 * to another CPU then no harm is done and the purpose has been
2279 * achieved as well.
2280 */
36c8b586 2281void kick_process(struct task_struct *p)
1da177e4
LT
2282{
2283 int cpu;
2284
2285 preempt_disable();
2286 cpu = task_cpu(p);
2287 if ((cpu != smp_processor_id()) && task_curr(p))
2288 smp_send_reschedule(cpu);
2289 preempt_enable();
2290}
b43e3521 2291EXPORT_SYMBOL_GPL(kick_process);
476d139c 2292#endif /* CONFIG_SMP */
1da177e4 2293
0793a61d
TG
2294/**
2295 * task_oncpu_function_call - call a function on the cpu on which a task runs
2296 * @p: the task to evaluate
2297 * @func: the function to be called
2298 * @info: the function call argument
2299 *
2300 * Calls the function @func when the task is currently running. This might
2301 * be on the current CPU, which just calls the function directly
2302 */
2303void task_oncpu_function_call(struct task_struct *p,
2304 void (*func) (void *info), void *info)
2305{
2306 int cpu;
2307
2308 preempt_disable();
2309 cpu = task_cpu(p);
2310 if (task_curr(p))
2311 smp_call_function_single(cpu, func, info, 1);
2312 preempt_enable();
2313}
2314
970b13ba
PZ
2315#ifdef CONFIG_SMP
2316static inline
2317int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2318{
2319 return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2320}
2321#endif
2322
1da177e4
LT
2323/***
2324 * try_to_wake_up - wake up a thread
2325 * @p: the to-be-woken-up thread
2326 * @state: the mask of task states that can be woken
2327 * @sync: do a synchronous wakeup?
2328 *
2329 * Put it on the run-queue if it's not already there. The "current"
2330 * thread is always on the run-queue (except when the actual
2331 * re-schedule is in progress), and as such you're allowed to do
2332 * the simpler "current->state = TASK_RUNNING" to mark yourself
2333 * runnable without the overhead of this.
2334 *
2335 * returns failure only if the task is already active.
2336 */
7d478721
PZ
2337static int try_to_wake_up(struct task_struct *p, unsigned int state,
2338 int wake_flags)
1da177e4 2339{
cc367732 2340 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2341 unsigned long flags;
f5dc3753 2342 struct rq *rq, *orig_rq;
1da177e4 2343
b85d0667 2344 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2345 wake_flags &= ~WF_SYNC;
2398f2c6 2346
e9c84311 2347 this_cpu = get_cpu();
2398f2c6 2348
04e2f174 2349 smp_wmb();
f5dc3753 2350 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2351 update_rq_clock(rq);
e9c84311 2352 if (!(p->state & state))
1da177e4
LT
2353 goto out;
2354
dd41f596 2355 if (p->se.on_rq)
1da177e4
LT
2356 goto out_running;
2357
2358 cpu = task_cpu(p);
cc367732 2359 orig_cpu = cpu;
1da177e4
LT
2360
2361#ifdef CONFIG_SMP
2362 if (unlikely(task_running(rq, p)))
2363 goto out_activate;
2364
e9c84311
PZ
2365 /*
2366 * In order to handle concurrent wakeups and release the rq->lock
2367 * we put the task in TASK_WAKING state.
eb24073b
IM
2368 *
2369 * First fix up the nr_uninterruptible count:
e9c84311 2370 */
eb24073b
IM
2371 if (task_contributes_to_load(p))
2372 rq->nr_uninterruptible--;
e9c84311 2373 p->state = TASK_WAKING;
ab19cb23 2374 __task_rq_unlock(rq);
e9c84311 2375
970b13ba 2376 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
ab19cb23 2377 if (cpu != orig_cpu)
5d2f5a61 2378 set_task_cpu(p, cpu);
ab19cb23
PZ
2379
2380 rq = __task_rq_lock(p);
2381 update_rq_clock(rq);
f5dc3753 2382
e9c84311
PZ
2383 WARN_ON(p->state != TASK_WAKING);
2384 cpu = task_cpu(p);
1da177e4 2385
e7693a36
GH
2386#ifdef CONFIG_SCHEDSTATS
2387 schedstat_inc(rq, ttwu_count);
2388 if (cpu == this_cpu)
2389 schedstat_inc(rq, ttwu_local);
2390 else {
2391 struct sched_domain *sd;
2392 for_each_domain(this_cpu, sd) {
758b2cdc 2393 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2394 schedstat_inc(sd, ttwu_wake_remote);
2395 break;
2396 }
2397 }
2398 }
6d6bc0ad 2399#endif /* CONFIG_SCHEDSTATS */
e7693a36 2400
1da177e4
LT
2401out_activate:
2402#endif /* CONFIG_SMP */
cc367732 2403 schedstat_inc(p, se.nr_wakeups);
7d478721 2404 if (wake_flags & WF_SYNC)
cc367732
IM
2405 schedstat_inc(p, se.nr_wakeups_sync);
2406 if (orig_cpu != cpu)
2407 schedstat_inc(p, se.nr_wakeups_migrate);
2408 if (cpu == this_cpu)
2409 schedstat_inc(p, se.nr_wakeups_local);
2410 else
2411 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2412 activate_task(rq, p, 1);
1da177e4
LT
2413 success = 1;
2414
831451ac
PZ
2415 /*
2416 * Only attribute actual wakeups done by this task.
2417 */
2418 if (!in_interrupt()) {
2419 struct sched_entity *se = &current->se;
2420 u64 sample = se->sum_exec_runtime;
2421
2422 if (se->last_wakeup)
2423 sample -= se->last_wakeup;
2424 else
2425 sample -= se->start_runtime;
2426 update_avg(&se->avg_wakeup, sample);
2427
2428 se->last_wakeup = se->sum_exec_runtime;
2429 }
2430
1da177e4 2431out_running:
468a15bb 2432 trace_sched_wakeup(rq, p, success);
7d478721 2433 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2434
1da177e4 2435 p->state = TASK_RUNNING;
9a897c5a
SR
2436#ifdef CONFIG_SMP
2437 if (p->sched_class->task_wake_up)
2438 p->sched_class->task_wake_up(rq, p);
eae0c9df
MG
2439
2440 if (unlikely(rq->idle_stamp)) {
2441 u64 delta = rq->clock - rq->idle_stamp;
2442 u64 max = 2*sysctl_sched_migration_cost;
2443
2444 if (delta > max)
2445 rq->avg_idle = max;
2446 else
2447 update_avg(&rq->avg_idle, delta);
2448 rq->idle_stamp = 0;
2449 }
9a897c5a 2450#endif
1da177e4
LT
2451out:
2452 task_rq_unlock(rq, &flags);
e9c84311 2453 put_cpu();
1da177e4
LT
2454
2455 return success;
2456}
2457
50fa610a
DH
2458/**
2459 * wake_up_process - Wake up a specific process
2460 * @p: The process to be woken up.
2461 *
2462 * Attempt to wake up the nominated process and move it to the set of runnable
2463 * processes. Returns 1 if the process was woken up, 0 if it was already
2464 * running.
2465 *
2466 * It may be assumed that this function implies a write memory barrier before
2467 * changing the task state if and only if any tasks are woken up.
2468 */
7ad5b3a5 2469int wake_up_process(struct task_struct *p)
1da177e4 2470{
d9514f6c 2471 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2472}
1da177e4
LT
2473EXPORT_SYMBOL(wake_up_process);
2474
7ad5b3a5 2475int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2476{
2477 return try_to_wake_up(p, state, 0);
2478}
2479
1da177e4
LT
2480/*
2481 * Perform scheduler related setup for a newly forked process p.
2482 * p is forked by current.
dd41f596
IM
2483 *
2484 * __sched_fork() is basic setup used by init_idle() too:
2485 */
2486static void __sched_fork(struct task_struct *p)
2487{
dd41f596
IM
2488 p->se.exec_start = 0;
2489 p->se.sum_exec_runtime = 0;
f6cf891c 2490 p->se.prev_sum_exec_runtime = 0;
6c594c21 2491 p->se.nr_migrations = 0;
4ae7d5ce
IM
2492 p->se.last_wakeup = 0;
2493 p->se.avg_overlap = 0;
831451ac
PZ
2494 p->se.start_runtime = 0;
2495 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2496
2497#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2498 p->se.wait_start = 0;
2499 p->se.wait_max = 0;
2500 p->se.wait_count = 0;
2501 p->se.wait_sum = 0;
2502
2503 p->se.sleep_start = 0;
2504 p->se.sleep_max = 0;
2505 p->se.sum_sleep_runtime = 0;
2506
2507 p->se.block_start = 0;
2508 p->se.block_max = 0;
2509 p->se.exec_max = 0;
2510 p->se.slice_max = 0;
2511
2512 p->se.nr_migrations_cold = 0;
2513 p->se.nr_failed_migrations_affine = 0;
2514 p->se.nr_failed_migrations_running = 0;
2515 p->se.nr_failed_migrations_hot = 0;
2516 p->se.nr_forced_migrations = 0;
2517 p->se.nr_forced2_migrations = 0;
2518
2519 p->se.nr_wakeups = 0;
2520 p->se.nr_wakeups_sync = 0;
2521 p->se.nr_wakeups_migrate = 0;
2522 p->se.nr_wakeups_local = 0;
2523 p->se.nr_wakeups_remote = 0;
2524 p->se.nr_wakeups_affine = 0;
2525 p->se.nr_wakeups_affine_attempts = 0;
2526 p->se.nr_wakeups_passive = 0;
2527 p->se.nr_wakeups_idle = 0;
2528
6cfb0d5d 2529#endif
476d139c 2530
fa717060 2531 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2532 p->se.on_rq = 0;
4a55bd5e 2533 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2534
e107be36
AK
2535#ifdef CONFIG_PREEMPT_NOTIFIERS
2536 INIT_HLIST_HEAD(&p->preempt_notifiers);
2537#endif
2538
1da177e4
LT
2539 /*
2540 * We mark the process as running here, but have not actually
2541 * inserted it onto the runqueue yet. This guarantees that
2542 * nobody will actually run it, and a signal or other external
2543 * event cannot wake it up and insert it on the runqueue either.
2544 */
2545 p->state = TASK_RUNNING;
dd41f596
IM
2546}
2547
2548/*
2549 * fork()/clone()-time setup:
2550 */
2551void sched_fork(struct task_struct *p, int clone_flags)
2552{
2553 int cpu = get_cpu();
2554
2555 __sched_fork(p);
2556
b9dc29e7
MG
2557 /*
2558 * Revert to default priority/policy on fork if requested.
2559 */
2560 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2561 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2562 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2563 p->normal_prio = p->static_prio;
2564 }
b9dc29e7 2565
6c697bdf
MG
2566 if (PRIO_TO_NICE(p->static_prio) < 0) {
2567 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2568 p->normal_prio = p->static_prio;
6c697bdf
MG
2569 set_load_weight(p);
2570 }
2571
b9dc29e7
MG
2572 /*
2573 * We don't need the reset flag anymore after the fork. It has
2574 * fulfilled its duty:
2575 */
2576 p->sched_reset_on_fork = 0;
2577 }
ca94c442 2578
f83f9ac2
PW
2579 /*
2580 * Make sure we do not leak PI boosting priority to the child.
2581 */
2582 p->prio = current->normal_prio;
2583
2ddbf952
HS
2584 if (!rt_prio(p->prio))
2585 p->sched_class = &fair_sched_class;
b29739f9 2586
cd29fe6f
PZ
2587 if (p->sched_class->task_fork)
2588 p->sched_class->task_fork(p);
2589
5f3edc1b 2590#ifdef CONFIG_SMP
970b13ba 2591 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
5f3edc1b
PZ
2592#endif
2593 set_task_cpu(p, cpu);
2594
52f17b6c 2595#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2596 if (likely(sched_info_on()))
52f17b6c 2597 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2598#endif
d6077cb8 2599#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2600 p->oncpu = 0;
2601#endif
1da177e4 2602#ifdef CONFIG_PREEMPT
4866cde0 2603 /* Want to start with kernel preemption disabled. */
a1261f54 2604 task_thread_info(p)->preempt_count = 1;
1da177e4 2605#endif
917b627d
GH
2606 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2607
476d139c 2608 put_cpu();
1da177e4
LT
2609}
2610
2611/*
2612 * wake_up_new_task - wake up a newly created task for the first time.
2613 *
2614 * This function will do some initial scheduler statistics housekeeping
2615 * that must be done for every newly created context, then puts the task
2616 * on the runqueue and wakes it.
2617 */
7ad5b3a5 2618void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2619{
2620 unsigned long flags;
dd41f596 2621 struct rq *rq;
1da177e4
LT
2622
2623 rq = task_rq_lock(p, &flags);
147cbb4b 2624 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2625 update_rq_clock(rq);
cd29fe6f 2626 activate_task(rq, p, 0);
c71dd42d 2627 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2628 check_preempt_curr(rq, p, WF_FORK);
9a897c5a
SR
2629#ifdef CONFIG_SMP
2630 if (p->sched_class->task_wake_up)
2631 p->sched_class->task_wake_up(rq, p);
2632#endif
dd41f596 2633 task_rq_unlock(rq, &flags);
1da177e4
LT
2634}
2635
e107be36
AK
2636#ifdef CONFIG_PREEMPT_NOTIFIERS
2637
2638/**
80dd99b3 2639 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2640 * @notifier: notifier struct to register
e107be36
AK
2641 */
2642void preempt_notifier_register(struct preempt_notifier *notifier)
2643{
2644 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2645}
2646EXPORT_SYMBOL_GPL(preempt_notifier_register);
2647
2648/**
2649 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2650 * @notifier: notifier struct to unregister
e107be36
AK
2651 *
2652 * This is safe to call from within a preemption notifier.
2653 */
2654void preempt_notifier_unregister(struct preempt_notifier *notifier)
2655{
2656 hlist_del(&notifier->link);
2657}
2658EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2659
2660static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2661{
2662 struct preempt_notifier *notifier;
2663 struct hlist_node *node;
2664
2665 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2666 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2667}
2668
2669static void
2670fire_sched_out_preempt_notifiers(struct task_struct *curr,
2671 struct task_struct *next)
2672{
2673 struct preempt_notifier *notifier;
2674 struct hlist_node *node;
2675
2676 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2677 notifier->ops->sched_out(notifier, next);
2678}
2679
6d6bc0ad 2680#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2681
2682static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2683{
2684}
2685
2686static void
2687fire_sched_out_preempt_notifiers(struct task_struct *curr,
2688 struct task_struct *next)
2689{
2690}
2691
6d6bc0ad 2692#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2693
4866cde0
NP
2694/**
2695 * prepare_task_switch - prepare to switch tasks
2696 * @rq: the runqueue preparing to switch
421cee29 2697 * @prev: the current task that is being switched out
4866cde0
NP
2698 * @next: the task we are going to switch to.
2699 *
2700 * This is called with the rq lock held and interrupts off. It must
2701 * be paired with a subsequent finish_task_switch after the context
2702 * switch.
2703 *
2704 * prepare_task_switch sets up locking and calls architecture specific
2705 * hooks.
2706 */
e107be36
AK
2707static inline void
2708prepare_task_switch(struct rq *rq, struct task_struct *prev,
2709 struct task_struct *next)
4866cde0 2710{
e107be36 2711 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2712 prepare_lock_switch(rq, next);
2713 prepare_arch_switch(next);
2714}
2715
1da177e4
LT
2716/**
2717 * finish_task_switch - clean up after a task-switch
344babaa 2718 * @rq: runqueue associated with task-switch
1da177e4
LT
2719 * @prev: the thread we just switched away from.
2720 *
4866cde0
NP
2721 * finish_task_switch must be called after the context switch, paired
2722 * with a prepare_task_switch call before the context switch.
2723 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2724 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2725 *
2726 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2727 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2728 * with the lock held can cause deadlocks; see schedule() for
2729 * details.)
2730 */
a9957449 2731static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2732 __releases(rq->lock)
2733{
1da177e4 2734 struct mm_struct *mm = rq->prev_mm;
55a101f8 2735 long prev_state;
1da177e4
LT
2736
2737 rq->prev_mm = NULL;
2738
2739 /*
2740 * A task struct has one reference for the use as "current".
c394cc9f 2741 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2742 * schedule one last time. The schedule call will never return, and
2743 * the scheduled task must drop that reference.
c394cc9f 2744 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2745 * still held, otherwise prev could be scheduled on another cpu, die
2746 * there before we look at prev->state, and then the reference would
2747 * be dropped twice.
2748 * Manfred Spraul <manfred@colorfullife.com>
2749 */
55a101f8 2750 prev_state = prev->state;
4866cde0 2751 finish_arch_switch(prev);
cdd6c482 2752 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2753 finish_lock_switch(rq, prev);
e8fa1362 2754
e107be36 2755 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2756 if (mm)
2757 mmdrop(mm);
c394cc9f 2758 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2759 /*
2760 * Remove function-return probe instances associated with this
2761 * task and put them back on the free list.
9761eea8 2762 */
c6fd91f0 2763 kprobe_flush_task(prev);
1da177e4 2764 put_task_struct(prev);
c6fd91f0 2765 }
1da177e4
LT
2766}
2767
3f029d3c
GH
2768#ifdef CONFIG_SMP
2769
2770/* assumes rq->lock is held */
2771static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2772{
2773 if (prev->sched_class->pre_schedule)
2774 prev->sched_class->pre_schedule(rq, prev);
2775}
2776
2777/* rq->lock is NOT held, but preemption is disabled */
2778static inline void post_schedule(struct rq *rq)
2779{
2780 if (rq->post_schedule) {
2781 unsigned long flags;
2782
2783 spin_lock_irqsave(&rq->lock, flags);
2784 if (rq->curr->sched_class->post_schedule)
2785 rq->curr->sched_class->post_schedule(rq);
2786 spin_unlock_irqrestore(&rq->lock, flags);
2787
2788 rq->post_schedule = 0;
2789 }
2790}
2791
2792#else
da19ab51 2793
3f029d3c
GH
2794static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2795{
2796}
2797
2798static inline void post_schedule(struct rq *rq)
2799{
1da177e4
LT
2800}
2801
3f029d3c
GH
2802#endif
2803
1da177e4
LT
2804/**
2805 * schedule_tail - first thing a freshly forked thread must call.
2806 * @prev: the thread we just switched away from.
2807 */
36c8b586 2808asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2809 __releases(rq->lock)
2810{
70b97a7f
IM
2811 struct rq *rq = this_rq();
2812
4866cde0 2813 finish_task_switch(rq, prev);
da19ab51 2814
3f029d3c
GH
2815 /*
2816 * FIXME: do we need to worry about rq being invalidated by the
2817 * task_switch?
2818 */
2819 post_schedule(rq);
70b97a7f 2820
4866cde0
NP
2821#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2822 /* In this case, finish_task_switch does not reenable preemption */
2823 preempt_enable();
2824#endif
1da177e4 2825 if (current->set_child_tid)
b488893a 2826 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2827}
2828
2829/*
2830 * context_switch - switch to the new MM and the new
2831 * thread's register state.
2832 */
dd41f596 2833static inline void
70b97a7f 2834context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2835 struct task_struct *next)
1da177e4 2836{
dd41f596 2837 struct mm_struct *mm, *oldmm;
1da177e4 2838
e107be36 2839 prepare_task_switch(rq, prev, next);
0a16b607 2840 trace_sched_switch(rq, prev, next);
dd41f596
IM
2841 mm = next->mm;
2842 oldmm = prev->active_mm;
9226d125
ZA
2843 /*
2844 * For paravirt, this is coupled with an exit in switch_to to
2845 * combine the page table reload and the switch backend into
2846 * one hypercall.
2847 */
224101ed 2848 arch_start_context_switch(prev);
9226d125 2849
710390d9 2850 if (likely(!mm)) {
1da177e4
LT
2851 next->active_mm = oldmm;
2852 atomic_inc(&oldmm->mm_count);
2853 enter_lazy_tlb(oldmm, next);
2854 } else
2855 switch_mm(oldmm, mm, next);
2856
710390d9 2857 if (likely(!prev->mm)) {
1da177e4 2858 prev->active_mm = NULL;
1da177e4
LT
2859 rq->prev_mm = oldmm;
2860 }
3a5f5e48
IM
2861 /*
2862 * Since the runqueue lock will be released by the next
2863 * task (which is an invalid locking op but in the case
2864 * of the scheduler it's an obvious special-case), so we
2865 * do an early lockdep release here:
2866 */
2867#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2868 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2869#endif
1da177e4
LT
2870
2871 /* Here we just switch the register state and the stack. */
2872 switch_to(prev, next, prev);
2873
dd41f596
IM
2874 barrier();
2875 /*
2876 * this_rq must be evaluated again because prev may have moved
2877 * CPUs since it called schedule(), thus the 'rq' on its stack
2878 * frame will be invalid.
2879 */
2880 finish_task_switch(this_rq(), prev);
1da177e4
LT
2881}
2882
2883/*
2884 * nr_running, nr_uninterruptible and nr_context_switches:
2885 *
2886 * externally visible scheduler statistics: current number of runnable
2887 * threads, current number of uninterruptible-sleeping threads, total
2888 * number of context switches performed since bootup.
2889 */
2890unsigned long nr_running(void)
2891{
2892 unsigned long i, sum = 0;
2893
2894 for_each_online_cpu(i)
2895 sum += cpu_rq(i)->nr_running;
2896
2897 return sum;
2898}
2899
2900unsigned long nr_uninterruptible(void)
2901{
2902 unsigned long i, sum = 0;
2903
0a945022 2904 for_each_possible_cpu(i)
1da177e4
LT
2905 sum += cpu_rq(i)->nr_uninterruptible;
2906
2907 /*
2908 * Since we read the counters lockless, it might be slightly
2909 * inaccurate. Do not allow it to go below zero though:
2910 */
2911 if (unlikely((long)sum < 0))
2912 sum = 0;
2913
2914 return sum;
2915}
2916
2917unsigned long long nr_context_switches(void)
2918{
cc94abfc
SR
2919 int i;
2920 unsigned long long sum = 0;
1da177e4 2921
0a945022 2922 for_each_possible_cpu(i)
1da177e4
LT
2923 sum += cpu_rq(i)->nr_switches;
2924
2925 return sum;
2926}
2927
2928unsigned long nr_iowait(void)
2929{
2930 unsigned long i, sum = 0;
2931
0a945022 2932 for_each_possible_cpu(i)
1da177e4
LT
2933 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2934
2935 return sum;
2936}
2937
69d25870
AV
2938unsigned long nr_iowait_cpu(void)
2939{
2940 struct rq *this = this_rq();
2941 return atomic_read(&this->nr_iowait);
2942}
2943
2944unsigned long this_cpu_load(void)
2945{
2946 struct rq *this = this_rq();
2947 return this->cpu_load[0];
2948}
2949
2950
dce48a84
TG
2951/* Variables and functions for calc_load */
2952static atomic_long_t calc_load_tasks;
2953static unsigned long calc_load_update;
2954unsigned long avenrun[3];
2955EXPORT_SYMBOL(avenrun);
2956
2d02494f
TG
2957/**
2958 * get_avenrun - get the load average array
2959 * @loads: pointer to dest load array
2960 * @offset: offset to add
2961 * @shift: shift count to shift the result left
2962 *
2963 * These values are estimates at best, so no need for locking.
2964 */
2965void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2966{
2967 loads[0] = (avenrun[0] + offset) << shift;
2968 loads[1] = (avenrun[1] + offset) << shift;
2969 loads[2] = (avenrun[2] + offset) << shift;
2970}
2971
dce48a84
TG
2972static unsigned long
2973calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2974{
dce48a84
TG
2975 load *= exp;
2976 load += active * (FIXED_1 - exp);
2977 return load >> FSHIFT;
2978}
db1b1fef 2979
dce48a84
TG
2980/*
2981 * calc_load - update the avenrun load estimates 10 ticks after the
2982 * CPUs have updated calc_load_tasks.
2983 */
2984void calc_global_load(void)
2985{
2986 unsigned long upd = calc_load_update + 10;
2987 long active;
2988
2989 if (time_before(jiffies, upd))
2990 return;
db1b1fef 2991
dce48a84
TG
2992 active = atomic_long_read(&calc_load_tasks);
2993 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 2994
dce48a84
TG
2995 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2996 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2997 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2998
2999 calc_load_update += LOAD_FREQ;
3000}
3001
3002/*
3003 * Either called from update_cpu_load() or from a cpu going idle
3004 */
3005static void calc_load_account_active(struct rq *this_rq)
3006{
3007 long nr_active, delta;
3008
3009 nr_active = this_rq->nr_running;
3010 nr_active += (long) this_rq->nr_uninterruptible;
3011
3012 if (nr_active != this_rq->calc_load_active) {
3013 delta = nr_active - this_rq->calc_load_active;
3014 this_rq->calc_load_active = nr_active;
3015 atomic_long_add(delta, &calc_load_tasks);
3016 }
db1b1fef
JS
3017}
3018
48f24c4d 3019/*
dd41f596
IM
3020 * Update rq->cpu_load[] statistics. This function is usually called every
3021 * scheduler tick (TICK_NSEC).
48f24c4d 3022 */
dd41f596 3023static void update_cpu_load(struct rq *this_rq)
48f24c4d 3024{
495eca49 3025 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3026 int i, scale;
3027
3028 this_rq->nr_load_updates++;
dd41f596
IM
3029
3030 /* Update our load: */
3031 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3032 unsigned long old_load, new_load;
3033
3034 /* scale is effectively 1 << i now, and >> i divides by scale */
3035
3036 old_load = this_rq->cpu_load[i];
3037 new_load = this_load;
a25707f3
IM
3038 /*
3039 * Round up the averaging division if load is increasing. This
3040 * prevents us from getting stuck on 9 if the load is 10, for
3041 * example.
3042 */
3043 if (new_load > old_load)
3044 new_load += scale-1;
dd41f596
IM
3045 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3046 }
dce48a84
TG
3047
3048 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3049 this_rq->calc_load_update += LOAD_FREQ;
3050 calc_load_account_active(this_rq);
3051 }
48f24c4d
IM
3052}
3053
dd41f596
IM
3054#ifdef CONFIG_SMP
3055
1da177e4
LT
3056/*
3057 * double_rq_lock - safely lock two runqueues
3058 *
3059 * Note this does not disable interrupts like task_rq_lock,
3060 * you need to do so manually before calling.
3061 */
70b97a7f 3062static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3063 __acquires(rq1->lock)
3064 __acquires(rq2->lock)
3065{
054b9108 3066 BUG_ON(!irqs_disabled());
1da177e4
LT
3067 if (rq1 == rq2) {
3068 spin_lock(&rq1->lock);
3069 __acquire(rq2->lock); /* Fake it out ;) */
3070 } else {
c96d145e 3071 if (rq1 < rq2) {
1da177e4 3072 spin_lock(&rq1->lock);
5e710e37 3073 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3074 } else {
3075 spin_lock(&rq2->lock);
5e710e37 3076 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3077 }
3078 }
6e82a3be
IM
3079 update_rq_clock(rq1);
3080 update_rq_clock(rq2);
1da177e4
LT
3081}
3082
3083/*
3084 * double_rq_unlock - safely unlock two runqueues
3085 *
3086 * Note this does not restore interrupts like task_rq_unlock,
3087 * you need to do so manually after calling.
3088 */
70b97a7f 3089static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3090 __releases(rq1->lock)
3091 __releases(rq2->lock)
3092{
3093 spin_unlock(&rq1->lock);
3094 if (rq1 != rq2)
3095 spin_unlock(&rq2->lock);
3096 else
3097 __release(rq2->lock);
3098}
3099
1da177e4
LT
3100/*
3101 * If dest_cpu is allowed for this process, migrate the task to it.
3102 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3103 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3104 * the cpu_allowed mask is restored.
3105 */
36c8b586 3106static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3107{
70b97a7f 3108 struct migration_req req;
1da177e4 3109 unsigned long flags;
70b97a7f 3110 struct rq *rq;
1da177e4
LT
3111
3112 rq = task_rq_lock(p, &flags);
96f874e2 3113 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3114 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3115 goto out;
3116
3117 /* force the process onto the specified CPU */
3118 if (migrate_task(p, dest_cpu, &req)) {
3119 /* Need to wait for migration thread (might exit: take ref). */
3120 struct task_struct *mt = rq->migration_thread;
36c8b586 3121
1da177e4
LT
3122 get_task_struct(mt);
3123 task_rq_unlock(rq, &flags);
3124 wake_up_process(mt);
3125 put_task_struct(mt);
3126 wait_for_completion(&req.done);
36c8b586 3127
1da177e4
LT
3128 return;
3129 }
3130out:
3131 task_rq_unlock(rq, &flags);
3132}
3133
3134/*
476d139c
NP
3135 * sched_exec - execve() is a valuable balancing opportunity, because at
3136 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3137 */
3138void sched_exec(void)
3139{
1da177e4 3140 int new_cpu, this_cpu = get_cpu();
970b13ba 3141 new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
1da177e4 3142 put_cpu();
476d139c
NP
3143 if (new_cpu != this_cpu)
3144 sched_migrate_task(current, new_cpu);
1da177e4
LT
3145}
3146
3147/*
3148 * pull_task - move a task from a remote runqueue to the local runqueue.
3149 * Both runqueues must be locked.
3150 */
dd41f596
IM
3151static void pull_task(struct rq *src_rq, struct task_struct *p,
3152 struct rq *this_rq, int this_cpu)
1da177e4 3153{
2e1cb74a 3154 deactivate_task(src_rq, p, 0);
1da177e4 3155 set_task_cpu(p, this_cpu);
dd41f596 3156 activate_task(this_rq, p, 0);
1da177e4
LT
3157 /*
3158 * Note that idle threads have a prio of MAX_PRIO, for this test
3159 * to be always true for them.
3160 */
15afe09b 3161 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3162}
3163
3164/*
3165 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3166 */
858119e1 3167static
70b97a7f 3168int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3169 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3170 int *all_pinned)
1da177e4 3171{
708dc512 3172 int tsk_cache_hot = 0;
1da177e4
LT
3173 /*
3174 * We do not migrate tasks that are:
3175 * 1) running (obviously), or
3176 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3177 * 3) are cache-hot on their current CPU.
3178 */
96f874e2 3179 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3180 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3181 return 0;
cc367732 3182 }
81026794
NP
3183 *all_pinned = 0;
3184
cc367732
IM
3185 if (task_running(rq, p)) {
3186 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3187 return 0;
cc367732 3188 }
1da177e4 3189
da84d961
IM
3190 /*
3191 * Aggressive migration if:
3192 * 1) task is cache cold, or
3193 * 2) too many balance attempts have failed.
3194 */
3195
708dc512
LH
3196 tsk_cache_hot = task_hot(p, rq->clock, sd);
3197 if (!tsk_cache_hot ||
3198 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3199#ifdef CONFIG_SCHEDSTATS
708dc512 3200 if (tsk_cache_hot) {
da84d961 3201 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3202 schedstat_inc(p, se.nr_forced_migrations);
3203 }
da84d961
IM
3204#endif
3205 return 1;
3206 }
3207
708dc512 3208 if (tsk_cache_hot) {
cc367732 3209 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3210 return 0;
cc367732 3211 }
1da177e4
LT
3212 return 1;
3213}
3214
e1d1484f
PW
3215static unsigned long
3216balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3217 unsigned long max_load_move, struct sched_domain *sd,
3218 enum cpu_idle_type idle, int *all_pinned,
3219 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3220{
051c6764 3221 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3222 struct task_struct *p;
3223 long rem_load_move = max_load_move;
1da177e4 3224
e1d1484f 3225 if (max_load_move == 0)
1da177e4
LT
3226 goto out;
3227
81026794
NP
3228 pinned = 1;
3229
1da177e4 3230 /*
dd41f596 3231 * Start the load-balancing iterator:
1da177e4 3232 */
dd41f596
IM
3233 p = iterator->start(iterator->arg);
3234next:
b82d9fdd 3235 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3236 goto out;
051c6764
PZ
3237
3238 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3239 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3240 p = iterator->next(iterator->arg);
3241 goto next;
1da177e4
LT
3242 }
3243
dd41f596 3244 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3245 pulled++;
dd41f596 3246 rem_load_move -= p->se.load.weight;
1da177e4 3247
7e96fa58
GH
3248#ifdef CONFIG_PREEMPT
3249 /*
3250 * NEWIDLE balancing is a source of latency, so preemptible kernels
3251 * will stop after the first task is pulled to minimize the critical
3252 * section.
3253 */
3254 if (idle == CPU_NEWLY_IDLE)
3255 goto out;
3256#endif
3257
2dd73a4f 3258 /*
b82d9fdd 3259 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3260 */
e1d1484f 3261 if (rem_load_move > 0) {
a4ac01c3
PW
3262 if (p->prio < *this_best_prio)
3263 *this_best_prio = p->prio;
dd41f596
IM
3264 p = iterator->next(iterator->arg);
3265 goto next;
1da177e4
LT
3266 }
3267out:
3268 /*
e1d1484f 3269 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3270 * so we can safely collect pull_task() stats here rather than
3271 * inside pull_task().
3272 */
3273 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3274
3275 if (all_pinned)
3276 *all_pinned = pinned;
e1d1484f
PW
3277
3278 return max_load_move - rem_load_move;
1da177e4
LT
3279}
3280
dd41f596 3281/*
43010659
PW
3282 * move_tasks tries to move up to max_load_move weighted load from busiest to
3283 * this_rq, as part of a balancing operation within domain "sd".
3284 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3285 *
3286 * Called with both runqueues locked.
3287 */
3288static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3289 unsigned long max_load_move,
dd41f596
IM
3290 struct sched_domain *sd, enum cpu_idle_type idle,
3291 int *all_pinned)
3292{
5522d5d5 3293 const struct sched_class *class = sched_class_highest;
43010659 3294 unsigned long total_load_moved = 0;
a4ac01c3 3295 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3296
3297 do {
43010659
PW
3298 total_load_moved +=
3299 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3300 max_load_move - total_load_moved,
a4ac01c3 3301 sd, idle, all_pinned, &this_best_prio);
dd41f596 3302 class = class->next;
c4acb2c0 3303
7e96fa58
GH
3304#ifdef CONFIG_PREEMPT
3305 /*
3306 * NEWIDLE balancing is a source of latency, so preemptible
3307 * kernels will stop after the first task is pulled to minimize
3308 * the critical section.
3309 */
c4acb2c0
GH
3310 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3311 break;
7e96fa58 3312#endif
43010659 3313 } while (class && max_load_move > total_load_moved);
dd41f596 3314
43010659
PW
3315 return total_load_moved > 0;
3316}
3317
e1d1484f
PW
3318static int
3319iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3320 struct sched_domain *sd, enum cpu_idle_type idle,
3321 struct rq_iterator *iterator)
3322{
3323 struct task_struct *p = iterator->start(iterator->arg);
3324 int pinned = 0;
3325
3326 while (p) {
3327 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3328 pull_task(busiest, p, this_rq, this_cpu);
3329 /*
3330 * Right now, this is only the second place pull_task()
3331 * is called, so we can safely collect pull_task()
3332 * stats here rather than inside pull_task().
3333 */
3334 schedstat_inc(sd, lb_gained[idle]);
3335
3336 return 1;
3337 }
3338 p = iterator->next(iterator->arg);
3339 }
3340
3341 return 0;
3342}
3343
43010659
PW
3344/*
3345 * move_one_task tries to move exactly one task from busiest to this_rq, as
3346 * part of active balancing operations within "domain".
3347 * Returns 1 if successful and 0 otherwise.
3348 *
3349 * Called with both runqueues locked.
3350 */
3351static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3352 struct sched_domain *sd, enum cpu_idle_type idle)
3353{
5522d5d5 3354 const struct sched_class *class;
43010659 3355
cde7e5ca 3356 for_each_class(class) {
e1d1484f 3357 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3358 return 1;
cde7e5ca 3359 }
43010659
PW
3360
3361 return 0;
dd41f596 3362}
67bb6c03 3363/********** Helpers for find_busiest_group ************************/
1da177e4 3364/*
222d656d
GS
3365 * sd_lb_stats - Structure to store the statistics of a sched_domain
3366 * during load balancing.
1da177e4 3367 */
222d656d
GS
3368struct sd_lb_stats {
3369 struct sched_group *busiest; /* Busiest group in this sd */
3370 struct sched_group *this; /* Local group in this sd */
3371 unsigned long total_load; /* Total load of all groups in sd */
3372 unsigned long total_pwr; /* Total power of all groups in sd */
3373 unsigned long avg_load; /* Average load across all groups in sd */
3374
3375 /** Statistics of this group */
3376 unsigned long this_load;
3377 unsigned long this_load_per_task;
3378 unsigned long this_nr_running;
3379
3380 /* Statistics of the busiest group */
3381 unsigned long max_load;
3382 unsigned long busiest_load_per_task;
3383 unsigned long busiest_nr_running;
3384
3385 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3386#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3387 int power_savings_balance; /* Is powersave balance needed for this sd */
3388 struct sched_group *group_min; /* Least loaded group in sd */
3389 struct sched_group *group_leader; /* Group which relieves group_min */
3390 unsigned long min_load_per_task; /* load_per_task in group_min */
3391 unsigned long leader_nr_running; /* Nr running of group_leader */
3392 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3393#endif
222d656d 3394};
1da177e4 3395
d5ac537e 3396/*
381be78f
GS
3397 * sg_lb_stats - stats of a sched_group required for load_balancing
3398 */
3399struct sg_lb_stats {
3400 unsigned long avg_load; /*Avg load across the CPUs of the group */
3401 unsigned long group_load; /* Total load over the CPUs of the group */
3402 unsigned long sum_nr_running; /* Nr tasks running in the group */
3403 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3404 unsigned long group_capacity;
3405 int group_imb; /* Is there an imbalance in the group ? */
3406};
408ed066 3407
67bb6c03
GS
3408/**
3409 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3410 * @group: The group whose first cpu is to be returned.
3411 */
3412static inline unsigned int group_first_cpu(struct sched_group *group)
3413{
3414 return cpumask_first(sched_group_cpus(group));
3415}
3416
3417/**
3418 * get_sd_load_idx - Obtain the load index for a given sched domain.
3419 * @sd: The sched_domain whose load_idx is to be obtained.
3420 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3421 */
3422static inline int get_sd_load_idx(struct sched_domain *sd,
3423 enum cpu_idle_type idle)
3424{
3425 int load_idx;
3426
3427 switch (idle) {
3428 case CPU_NOT_IDLE:
7897986b 3429 load_idx = sd->busy_idx;
67bb6c03
GS
3430 break;
3431
3432 case CPU_NEWLY_IDLE:
7897986b 3433 load_idx = sd->newidle_idx;
67bb6c03
GS
3434 break;
3435 default:
7897986b 3436 load_idx = sd->idle_idx;
67bb6c03
GS
3437 break;
3438 }
1da177e4 3439
67bb6c03
GS
3440 return load_idx;
3441}
1da177e4 3442
1da177e4 3443
c071df18
GS
3444#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3445/**
3446 * init_sd_power_savings_stats - Initialize power savings statistics for
3447 * the given sched_domain, during load balancing.
3448 *
3449 * @sd: Sched domain whose power-savings statistics are to be initialized.
3450 * @sds: Variable containing the statistics for sd.
3451 * @idle: Idle status of the CPU at which we're performing load-balancing.
3452 */
3453static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3454 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3455{
3456 /*
3457 * Busy processors will not participate in power savings
3458 * balance.
3459 */
3460 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3461 sds->power_savings_balance = 0;
3462 else {
3463 sds->power_savings_balance = 1;
3464 sds->min_nr_running = ULONG_MAX;
3465 sds->leader_nr_running = 0;
3466 }
3467}
783609c6 3468
c071df18
GS
3469/**
3470 * update_sd_power_savings_stats - Update the power saving stats for a
3471 * sched_domain while performing load balancing.
3472 *
3473 * @group: sched_group belonging to the sched_domain under consideration.
3474 * @sds: Variable containing the statistics of the sched_domain
3475 * @local_group: Does group contain the CPU for which we're performing
3476 * load balancing ?
3477 * @sgs: Variable containing the statistics of the group.
3478 */
3479static inline void update_sd_power_savings_stats(struct sched_group *group,
3480 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3481{
408ed066 3482
c071df18
GS
3483 if (!sds->power_savings_balance)
3484 return;
1da177e4 3485
c071df18
GS
3486 /*
3487 * If the local group is idle or completely loaded
3488 * no need to do power savings balance at this domain
3489 */
3490 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3491 !sds->this_nr_running))
3492 sds->power_savings_balance = 0;
2dd73a4f 3493
c071df18
GS
3494 /*
3495 * If a group is already running at full capacity or idle,
3496 * don't include that group in power savings calculations
3497 */
3498 if (!sds->power_savings_balance ||
3499 sgs->sum_nr_running >= sgs->group_capacity ||
3500 !sgs->sum_nr_running)
3501 return;
5969fe06 3502
c071df18
GS
3503 /*
3504 * Calculate the group which has the least non-idle load.
3505 * This is the group from where we need to pick up the load
3506 * for saving power
3507 */
3508 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3509 (sgs->sum_nr_running == sds->min_nr_running &&
3510 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3511 sds->group_min = group;
3512 sds->min_nr_running = sgs->sum_nr_running;
3513 sds->min_load_per_task = sgs->sum_weighted_load /
3514 sgs->sum_nr_running;
3515 }
783609c6 3516
c071df18
GS
3517 /*
3518 * Calculate the group which is almost near its
3519 * capacity but still has some space to pick up some load
3520 * from other group and save more power
3521 */
d899a789 3522 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3523 return;
1da177e4 3524
c071df18
GS
3525 if (sgs->sum_nr_running > sds->leader_nr_running ||
3526 (sgs->sum_nr_running == sds->leader_nr_running &&
3527 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3528 sds->group_leader = group;
3529 sds->leader_nr_running = sgs->sum_nr_running;
3530 }
3531}
408ed066 3532
c071df18 3533/**
d5ac537e 3534 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3535 * @sds: Variable containing the statistics of the sched_domain
3536 * under consideration.
3537 * @this_cpu: Cpu at which we're currently performing load-balancing.
3538 * @imbalance: Variable to store the imbalance.
3539 *
d5ac537e
RD
3540 * Description:
3541 * Check if we have potential to perform some power-savings balance.
3542 * If yes, set the busiest group to be the least loaded group in the
3543 * sched_domain, so that it's CPUs can be put to idle.
3544 *
c071df18
GS
3545 * Returns 1 if there is potential to perform power-savings balance.
3546 * Else returns 0.
3547 */
3548static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3549 int this_cpu, unsigned long *imbalance)
3550{
3551 if (!sds->power_savings_balance)
3552 return 0;
1da177e4 3553
c071df18
GS
3554 if (sds->this != sds->group_leader ||
3555 sds->group_leader == sds->group_min)
3556 return 0;
783609c6 3557
c071df18
GS
3558 *imbalance = sds->min_load_per_task;
3559 sds->busiest = sds->group_min;
1da177e4 3560
c071df18 3561 return 1;
1da177e4 3562
c071df18
GS
3563}
3564#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3565static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3566 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3567{
3568 return;
3569}
408ed066 3570
c071df18
GS
3571static inline void update_sd_power_savings_stats(struct sched_group *group,
3572 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3573{
3574 return;
3575}
3576
3577static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3578 int this_cpu, unsigned long *imbalance)
3579{
3580 return 0;
3581}
3582#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3583
d6a59aa3
PZ
3584
3585unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3586{
3587 return SCHED_LOAD_SCALE;
3588}
3589
3590unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3591{
3592 return default_scale_freq_power(sd, cpu);
3593}
3594
3595unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3596{
3597 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3598 unsigned long smt_gain = sd->smt_gain;
3599
3600 smt_gain /= weight;
3601
3602 return smt_gain;
3603}
3604
d6a59aa3
PZ
3605unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3606{
3607 return default_scale_smt_power(sd, cpu);
3608}
3609
e9e9250b
PZ
3610unsigned long scale_rt_power(int cpu)
3611{
3612 struct rq *rq = cpu_rq(cpu);
3613 u64 total, available;
3614
3615 sched_avg_update(rq);
3616
3617 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3618 available = total - rq->rt_avg;
3619
3620 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3621 total = SCHED_LOAD_SCALE;
3622
3623 total >>= SCHED_LOAD_SHIFT;
3624
3625 return div_u64(available, total);
3626}
3627
ab29230e
PZ
3628static void update_cpu_power(struct sched_domain *sd, int cpu)
3629{
3630 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3631 unsigned long power = SCHED_LOAD_SCALE;
3632 struct sched_group *sdg = sd->groups;
ab29230e 3633
8e6598af
PZ
3634 if (sched_feat(ARCH_POWER))
3635 power *= arch_scale_freq_power(sd, cpu);
3636 else
3637 power *= default_scale_freq_power(sd, cpu);
3638
d6a59aa3 3639 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3640
3641 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3642 if (sched_feat(ARCH_POWER))
3643 power *= arch_scale_smt_power(sd, cpu);
3644 else
3645 power *= default_scale_smt_power(sd, cpu);
3646
ab29230e
PZ
3647 power >>= SCHED_LOAD_SHIFT;
3648 }
3649
e9e9250b
PZ
3650 power *= scale_rt_power(cpu);
3651 power >>= SCHED_LOAD_SHIFT;
3652
3653 if (!power)
3654 power = 1;
ab29230e 3655
18a3885f 3656 sdg->cpu_power = power;
ab29230e
PZ
3657}
3658
3659static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3660{
3661 struct sched_domain *child = sd->child;
3662 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3663 unsigned long power;
cc9fba7d
PZ
3664
3665 if (!child) {
ab29230e 3666 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3667 return;
3668 }
3669
d7ea17a7 3670 power = 0;
cc9fba7d
PZ
3671
3672 group = child->groups;
3673 do {
d7ea17a7 3674 power += group->cpu_power;
cc9fba7d
PZ
3675 group = group->next;
3676 } while (group != child->groups);
d7ea17a7
IM
3677
3678 sdg->cpu_power = power;
cc9fba7d 3679}
c071df18 3680
1f8c553d
GS
3681/**
3682 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3683 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3684 * @group: sched_group whose statistics are to be updated.
3685 * @this_cpu: Cpu for which load balance is currently performed.
3686 * @idle: Idle status of this_cpu
3687 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3688 * @sd_idle: Idle status of the sched_domain containing group.
3689 * @local_group: Does group contain this_cpu.
3690 * @cpus: Set of cpus considered for load balancing.
3691 * @balance: Should we balance.
3692 * @sgs: variable to hold the statistics for this group.
3693 */
cc9fba7d
PZ
3694static inline void update_sg_lb_stats(struct sched_domain *sd,
3695 struct sched_group *group, int this_cpu,
1f8c553d
GS
3696 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3697 int local_group, const struct cpumask *cpus,
3698 int *balance, struct sg_lb_stats *sgs)
3699{
3700 unsigned long load, max_cpu_load, min_cpu_load;
3701 int i;
3702 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3703 unsigned long sum_avg_load_per_task;
3704 unsigned long avg_load_per_task;
3705
cc9fba7d 3706 if (local_group) {
1f8c553d 3707 balance_cpu = group_first_cpu(group);
cc9fba7d 3708 if (balance_cpu == this_cpu)
ab29230e 3709 update_group_power(sd, this_cpu);
cc9fba7d 3710 }
1f8c553d
GS
3711
3712 /* Tally up the load of all CPUs in the group */
3713 sum_avg_load_per_task = avg_load_per_task = 0;
3714 max_cpu_load = 0;
3715 min_cpu_load = ~0UL;
408ed066 3716
1f8c553d
GS
3717 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3718 struct rq *rq = cpu_rq(i);
908a7c1b 3719
1f8c553d
GS
3720 if (*sd_idle && rq->nr_running)
3721 *sd_idle = 0;
5c45bf27 3722
1f8c553d 3723 /* Bias balancing toward cpus of our domain */
1da177e4 3724 if (local_group) {
1f8c553d
GS
3725 if (idle_cpu(i) && !first_idle_cpu) {
3726 first_idle_cpu = 1;
3727 balance_cpu = i;
3728 }
3729
3730 load = target_load(i, load_idx);
3731 } else {
3732 load = source_load(i, load_idx);
3733 if (load > max_cpu_load)
3734 max_cpu_load = load;
3735 if (min_cpu_load > load)
3736 min_cpu_load = load;
1da177e4 3737 }
5c45bf27 3738
1f8c553d
GS
3739 sgs->group_load += load;
3740 sgs->sum_nr_running += rq->nr_running;
3741 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3742
1f8c553d
GS
3743 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3744 }
5c45bf27 3745
1f8c553d
GS
3746 /*
3747 * First idle cpu or the first cpu(busiest) in this sched group
3748 * is eligible for doing load balancing at this and above
3749 * domains. In the newly idle case, we will allow all the cpu's
3750 * to do the newly idle load balance.
3751 */
3752 if (idle != CPU_NEWLY_IDLE && local_group &&
3753 balance_cpu != this_cpu && balance) {
3754 *balance = 0;
3755 return;
3756 }
5c45bf27 3757
1f8c553d 3758 /* Adjust by relative CPU power of the group */
18a3885f 3759 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3760
1f8c553d
GS
3761
3762 /*
3763 * Consider the group unbalanced when the imbalance is larger
3764 * than the average weight of two tasks.
3765 *
3766 * APZ: with cgroup the avg task weight can vary wildly and
3767 * might not be a suitable number - should we keep a
3768 * normalized nr_running number somewhere that negates
3769 * the hierarchy?
3770 */
18a3885f
PZ
3771 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3772 group->cpu_power;
1f8c553d
GS
3773
3774 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3775 sgs->group_imb = 1;
3776
bdb94aa5 3777 sgs->group_capacity =
18a3885f 3778 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3779}
dd41f596 3780
37abe198
GS
3781/**
3782 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3783 * @sd: sched_domain whose statistics are to be updated.
3784 * @this_cpu: Cpu for which load balance is currently performed.
3785 * @idle: Idle status of this_cpu
3786 * @sd_idle: Idle status of the sched_domain containing group.
3787 * @cpus: Set of cpus considered for load balancing.
3788 * @balance: Should we balance.
3789 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3790 */
37abe198
GS
3791static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3792 enum cpu_idle_type idle, int *sd_idle,
3793 const struct cpumask *cpus, int *balance,
3794 struct sd_lb_stats *sds)
1da177e4 3795{
b5d978e0 3796 struct sched_domain *child = sd->child;
222d656d 3797 struct sched_group *group = sd->groups;
37abe198 3798 struct sg_lb_stats sgs;
b5d978e0
PZ
3799 int load_idx, prefer_sibling = 0;
3800
3801 if (child && child->flags & SD_PREFER_SIBLING)
3802 prefer_sibling = 1;
222d656d 3803
c071df18 3804 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3805 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3806
3807 do {
1da177e4 3808 int local_group;
1da177e4 3809
758b2cdc
RR
3810 local_group = cpumask_test_cpu(this_cpu,
3811 sched_group_cpus(group));
381be78f 3812 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3813 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3814 local_group, cpus, balance, &sgs);
1da177e4 3815
37abe198
GS
3816 if (local_group && balance && !(*balance))
3817 return;
783609c6 3818
37abe198 3819 sds->total_load += sgs.group_load;
18a3885f 3820 sds->total_pwr += group->cpu_power;
1da177e4 3821
b5d978e0
PZ
3822 /*
3823 * In case the child domain prefers tasks go to siblings
3824 * first, lower the group capacity to one so that we'll try
3825 * and move all the excess tasks away.
3826 */
3827 if (prefer_sibling)
bdb94aa5 3828 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3829
1da177e4 3830 if (local_group) {
37abe198
GS
3831 sds->this_load = sgs.avg_load;
3832 sds->this = group;
3833 sds->this_nr_running = sgs.sum_nr_running;
3834 sds->this_load_per_task = sgs.sum_weighted_load;
3835 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3836 (sgs.sum_nr_running > sgs.group_capacity ||
3837 sgs.group_imb)) {
37abe198
GS
3838 sds->max_load = sgs.avg_load;
3839 sds->busiest = group;
3840 sds->busiest_nr_running = sgs.sum_nr_running;
3841 sds->busiest_load_per_task = sgs.sum_weighted_load;
3842 sds->group_imb = sgs.group_imb;
48f24c4d 3843 }
5c45bf27 3844
c071df18 3845 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3846 group = group->next;
3847 } while (group != sd->groups);
37abe198 3848}
1da177e4 3849
2e6f44ae
GS
3850/**
3851 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3852 * amongst the groups of a sched_domain, during
3853 * load balancing.
2e6f44ae
GS
3854 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3855 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3856 * @imbalance: Variable to store the imbalance.
3857 */
3858static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3859 int this_cpu, unsigned long *imbalance)
3860{
3861 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3862 unsigned int imbn = 2;
3863
3864 if (sds->this_nr_running) {
3865 sds->this_load_per_task /= sds->this_nr_running;
3866 if (sds->busiest_load_per_task >
3867 sds->this_load_per_task)
3868 imbn = 1;
3869 } else
3870 sds->this_load_per_task =
3871 cpu_avg_load_per_task(this_cpu);
1da177e4 3872
2e6f44ae
GS
3873 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3874 sds->busiest_load_per_task * imbn) {
3875 *imbalance = sds->busiest_load_per_task;
3876 return;
3877 }
908a7c1b 3878
1da177e4 3879 /*
2e6f44ae
GS
3880 * OK, we don't have enough imbalance to justify moving tasks,
3881 * however we may be able to increase total CPU power used by
3882 * moving them.
1da177e4 3883 */
2dd73a4f 3884
18a3885f 3885 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3886 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3887 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3888 min(sds->this_load_per_task, sds->this_load);
3889 pwr_now /= SCHED_LOAD_SCALE;
3890
3891 /* Amount of load we'd subtract */
18a3885f
PZ
3892 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3893 sds->busiest->cpu_power;
2e6f44ae 3894 if (sds->max_load > tmp)
18a3885f 3895 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3896 min(sds->busiest_load_per_task, sds->max_load - tmp);
3897
3898 /* Amount of load we'd add */
18a3885f 3899 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3900 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3901 tmp = (sds->max_load * sds->busiest->cpu_power) /
3902 sds->this->cpu_power;
2e6f44ae 3903 else
18a3885f
PZ
3904 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3905 sds->this->cpu_power;
3906 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3907 min(sds->this_load_per_task, sds->this_load + tmp);
3908 pwr_move /= SCHED_LOAD_SCALE;
3909
3910 /* Move if we gain throughput */
3911 if (pwr_move > pwr_now)
3912 *imbalance = sds->busiest_load_per_task;
3913}
dbc523a3
GS
3914
3915/**
3916 * calculate_imbalance - Calculate the amount of imbalance present within the
3917 * groups of a given sched_domain during load balance.
3918 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3919 * @this_cpu: Cpu for which currently load balance is being performed.
3920 * @imbalance: The variable to store the imbalance.
3921 */
3922static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3923 unsigned long *imbalance)
3924{
3925 unsigned long max_pull;
2dd73a4f
PW
3926 /*
3927 * In the presence of smp nice balancing, certain scenarios can have
3928 * max load less than avg load(as we skip the groups at or below
3929 * its cpu_power, while calculating max_load..)
3930 */
dbc523a3 3931 if (sds->max_load < sds->avg_load) {
2dd73a4f 3932 *imbalance = 0;
dbc523a3 3933 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3934 }
0c117f1b
SS
3935
3936 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3937 max_pull = min(sds->max_load - sds->avg_load,
3938 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3939
1da177e4 3940 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3941 *imbalance = min(max_pull * sds->busiest->cpu_power,
3942 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3943 / SCHED_LOAD_SCALE;
3944
2dd73a4f
PW
3945 /*
3946 * if *imbalance is less than the average load per runnable task
3947 * there is no gaurantee that any tasks will be moved so we'll have
3948 * a think about bumping its value to force at least one task to be
3949 * moved
3950 */
dbc523a3
GS
3951 if (*imbalance < sds->busiest_load_per_task)
3952 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3953
dbc523a3 3954}
37abe198 3955/******* find_busiest_group() helpers end here *********************/
1da177e4 3956
b7bb4c9b
GS
3957/**
3958 * find_busiest_group - Returns the busiest group within the sched_domain
3959 * if there is an imbalance. If there isn't an imbalance, and
3960 * the user has opted for power-savings, it returns a group whose
3961 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3962 * such a group exists.
3963 *
3964 * Also calculates the amount of weighted load which should be moved
3965 * to restore balance.
3966 *
3967 * @sd: The sched_domain whose busiest group is to be returned.
3968 * @this_cpu: The cpu for which load balancing is currently being performed.
3969 * @imbalance: Variable which stores amount of weighted load which should
3970 * be moved to restore balance/put a group to idle.
3971 * @idle: The idle status of this_cpu.
3972 * @sd_idle: The idleness of sd
3973 * @cpus: The set of CPUs under consideration for load-balancing.
3974 * @balance: Pointer to a variable indicating if this_cpu
3975 * is the appropriate cpu to perform load balancing at this_level.
3976 *
3977 * Returns: - the busiest group if imbalance exists.
3978 * - If no imbalance and user has opted for power-savings balance,
3979 * return the least loaded group whose CPUs can be
3980 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3981 */
3982static struct sched_group *
3983find_busiest_group(struct sched_domain *sd, int this_cpu,
3984 unsigned long *imbalance, enum cpu_idle_type idle,
3985 int *sd_idle, const struct cpumask *cpus, int *balance)
3986{
3987 struct sd_lb_stats sds;
1da177e4 3988
37abe198 3989 memset(&sds, 0, sizeof(sds));
1da177e4 3990
37abe198
GS
3991 /*
3992 * Compute the various statistics relavent for load balancing at
3993 * this level.
3994 */
3995 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3996 balance, &sds);
3997
b7bb4c9b
GS
3998 /* Cases where imbalance does not exist from POV of this_cpu */
3999 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4000 * at this level.
4001 * 2) There is no busy sibling group to pull from.
4002 * 3) This group is the busiest group.
4003 * 4) This group is more busy than the avg busieness at this
4004 * sched_domain.
4005 * 5) The imbalance is within the specified limit.
4006 * 6) Any rebalance would lead to ping-pong
4007 */
37abe198
GS
4008 if (balance && !(*balance))
4009 goto ret;
1da177e4 4010
b7bb4c9b
GS
4011 if (!sds.busiest || sds.busiest_nr_running == 0)
4012 goto out_balanced;
1da177e4 4013
b7bb4c9b 4014 if (sds.this_load >= sds.max_load)
1da177e4 4015 goto out_balanced;
1da177e4 4016
222d656d 4017 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4018
b7bb4c9b
GS
4019 if (sds.this_load >= sds.avg_load)
4020 goto out_balanced;
4021
4022 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4023 goto out_balanced;
4024
222d656d
GS
4025 sds.busiest_load_per_task /= sds.busiest_nr_running;
4026 if (sds.group_imb)
4027 sds.busiest_load_per_task =
4028 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4029
1da177e4
LT
4030 /*
4031 * We're trying to get all the cpus to the average_load, so we don't
4032 * want to push ourselves above the average load, nor do we wish to
4033 * reduce the max loaded cpu below the average load, as either of these
4034 * actions would just result in more rebalancing later, and ping-pong
4035 * tasks around. Thus we look for the minimum possible imbalance.
4036 * Negative imbalances (*we* are more loaded than anyone else) will
4037 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4038 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4039 * appear as very large values with unsigned longs.
4040 */
222d656d 4041 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4042 goto out_balanced;
4043
dbc523a3
GS
4044 /* Looks like there is an imbalance. Compute it */
4045 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4046 return sds.busiest;
1da177e4
LT
4047
4048out_balanced:
c071df18
GS
4049 /*
4050 * There is no obvious imbalance. But check if we can do some balancing
4051 * to save power.
4052 */
4053 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4054 return sds.busiest;
783609c6 4055ret:
1da177e4
LT
4056 *imbalance = 0;
4057 return NULL;
4058}
4059
4060/*
4061 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4062 */
70b97a7f 4063static struct rq *
d15bcfdb 4064find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4065 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4066{
70b97a7f 4067 struct rq *busiest = NULL, *rq;
2dd73a4f 4068 unsigned long max_load = 0;
1da177e4
LT
4069 int i;
4070
758b2cdc 4071 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4072 unsigned long power = power_of(i);
4073 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4074 unsigned long wl;
0a2966b4 4075
96f874e2 4076 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4077 continue;
4078
48f24c4d 4079 rq = cpu_rq(i);
bdb94aa5
PZ
4080 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4081 wl /= power;
2dd73a4f 4082
bdb94aa5 4083 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4084 continue;
1da177e4 4085
dd41f596
IM
4086 if (wl > max_load) {
4087 max_load = wl;
48f24c4d 4088 busiest = rq;
1da177e4
LT
4089 }
4090 }
4091
4092 return busiest;
4093}
4094
77391d71
NP
4095/*
4096 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4097 * so long as it is large enough.
4098 */
4099#define MAX_PINNED_INTERVAL 512
4100
df7c8e84
RR
4101/* Working cpumask for load_balance and load_balance_newidle. */
4102static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4103
1da177e4
LT
4104/*
4105 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4106 * tasks if there is an imbalance.
1da177e4 4107 */
70b97a7f 4108static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4109 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4110 int *balance)
1da177e4 4111{
43010659 4112 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4113 struct sched_group *group;
1da177e4 4114 unsigned long imbalance;
70b97a7f 4115 struct rq *busiest;
fe2eea3f 4116 unsigned long flags;
df7c8e84 4117 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4118
6ad4c188 4119 cpumask_copy(cpus, cpu_active_mask);
7c16ec58 4120
89c4710e
SS
4121 /*
4122 * When power savings policy is enabled for the parent domain, idle
4123 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4124 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4125 * portraying it as CPU_NOT_IDLE.
89c4710e 4126 */
d15bcfdb 4127 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4128 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4129 sd_idle = 1;
1da177e4 4130
2d72376b 4131 schedstat_inc(sd, lb_count[idle]);
1da177e4 4132
0a2966b4 4133redo:
c8cba857 4134 update_shares(sd);
0a2966b4 4135 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4136 cpus, balance);
783609c6 4137
06066714 4138 if (*balance == 0)
783609c6 4139 goto out_balanced;
783609c6 4140
1da177e4
LT
4141 if (!group) {
4142 schedstat_inc(sd, lb_nobusyg[idle]);
4143 goto out_balanced;
4144 }
4145
7c16ec58 4146 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4147 if (!busiest) {
4148 schedstat_inc(sd, lb_nobusyq[idle]);
4149 goto out_balanced;
4150 }
4151
db935dbd 4152 BUG_ON(busiest == this_rq);
1da177e4
LT
4153
4154 schedstat_add(sd, lb_imbalance[idle], imbalance);
4155
43010659 4156 ld_moved = 0;
1da177e4
LT
4157 if (busiest->nr_running > 1) {
4158 /*
4159 * Attempt to move tasks. If find_busiest_group has found
4160 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4161 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4162 * correctly treated as an imbalance.
4163 */
fe2eea3f 4164 local_irq_save(flags);
e17224bf 4165 double_rq_lock(this_rq, busiest);
43010659 4166 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4167 imbalance, sd, idle, &all_pinned);
e17224bf 4168 double_rq_unlock(this_rq, busiest);
fe2eea3f 4169 local_irq_restore(flags);
81026794 4170
46cb4b7c
SS
4171 /*
4172 * some other cpu did the load balance for us.
4173 */
43010659 4174 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4175 resched_cpu(this_cpu);
4176
81026794 4177 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4178 if (unlikely(all_pinned)) {
96f874e2
RR
4179 cpumask_clear_cpu(cpu_of(busiest), cpus);
4180 if (!cpumask_empty(cpus))
0a2966b4 4181 goto redo;
81026794 4182 goto out_balanced;
0a2966b4 4183 }
1da177e4 4184 }
81026794 4185
43010659 4186 if (!ld_moved) {
1da177e4
LT
4187 schedstat_inc(sd, lb_failed[idle]);
4188 sd->nr_balance_failed++;
4189
4190 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4191
fe2eea3f 4192 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4193
4194 /* don't kick the migration_thread, if the curr
4195 * task on busiest cpu can't be moved to this_cpu
4196 */
96f874e2
RR
4197 if (!cpumask_test_cpu(this_cpu,
4198 &busiest->curr->cpus_allowed)) {
fe2eea3f 4199 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4200 all_pinned = 1;
4201 goto out_one_pinned;
4202 }
4203
1da177e4
LT
4204 if (!busiest->active_balance) {
4205 busiest->active_balance = 1;
4206 busiest->push_cpu = this_cpu;
81026794 4207 active_balance = 1;
1da177e4 4208 }
fe2eea3f 4209 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4210 if (active_balance)
1da177e4
LT
4211 wake_up_process(busiest->migration_thread);
4212
4213 /*
4214 * We've kicked active balancing, reset the failure
4215 * counter.
4216 */
39507451 4217 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4218 }
81026794 4219 } else
1da177e4
LT
4220 sd->nr_balance_failed = 0;
4221
81026794 4222 if (likely(!active_balance)) {
1da177e4
LT
4223 /* We were unbalanced, so reset the balancing interval */
4224 sd->balance_interval = sd->min_interval;
81026794
NP
4225 } else {
4226 /*
4227 * If we've begun active balancing, start to back off. This
4228 * case may not be covered by the all_pinned logic if there
4229 * is only 1 task on the busy runqueue (because we don't call
4230 * move_tasks).
4231 */
4232 if (sd->balance_interval < sd->max_interval)
4233 sd->balance_interval *= 2;
1da177e4
LT
4234 }
4235
43010659 4236 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4237 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4238 ld_moved = -1;
4239
4240 goto out;
1da177e4
LT
4241
4242out_balanced:
1da177e4
LT
4243 schedstat_inc(sd, lb_balanced[idle]);
4244
16cfb1c0 4245 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4246
4247out_one_pinned:
1da177e4 4248 /* tune up the balancing interval */
77391d71
NP
4249 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4250 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4251 sd->balance_interval *= 2;
4252
48f24c4d 4253 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4254 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4255 ld_moved = -1;
4256 else
4257 ld_moved = 0;
4258out:
c8cba857
PZ
4259 if (ld_moved)
4260 update_shares(sd);
c09595f6 4261 return ld_moved;
1da177e4
LT
4262}
4263
4264/*
4265 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4266 * tasks if there is an imbalance.
4267 *
d15bcfdb 4268 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4269 * this_rq is locked.
4270 */
48f24c4d 4271static int
df7c8e84 4272load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4273{
4274 struct sched_group *group;
70b97a7f 4275 struct rq *busiest = NULL;
1da177e4 4276 unsigned long imbalance;
43010659 4277 int ld_moved = 0;
5969fe06 4278 int sd_idle = 0;
969bb4e4 4279 int all_pinned = 0;
df7c8e84 4280 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4281
6ad4c188 4282 cpumask_copy(cpus, cpu_active_mask);
5969fe06 4283
89c4710e
SS
4284 /*
4285 * When power savings policy is enabled for the parent domain, idle
4286 * sibling can pick up load irrespective of busy siblings. In this case,
4287 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4288 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4289 */
4290 if (sd->flags & SD_SHARE_CPUPOWER &&
4291 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4292 sd_idle = 1;
1da177e4 4293
2d72376b 4294 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4295redo:
3e5459b4 4296 update_shares_locked(this_rq, sd);
d15bcfdb 4297 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4298 &sd_idle, cpus, NULL);
1da177e4 4299 if (!group) {
d15bcfdb 4300 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4301 goto out_balanced;
1da177e4
LT
4302 }
4303
7c16ec58 4304 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4305 if (!busiest) {
d15bcfdb 4306 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4307 goto out_balanced;
1da177e4
LT
4308 }
4309
db935dbd
NP
4310 BUG_ON(busiest == this_rq);
4311
d15bcfdb 4312 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4313
43010659 4314 ld_moved = 0;
d6d5cfaf
NP
4315 if (busiest->nr_running > 1) {
4316 /* Attempt to move tasks */
4317 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4318 /* this_rq->clock is already updated */
4319 update_rq_clock(busiest);
43010659 4320 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4321 imbalance, sd, CPU_NEWLY_IDLE,
4322 &all_pinned);
1b12bbc7 4323 double_unlock_balance(this_rq, busiest);
0a2966b4 4324
969bb4e4 4325 if (unlikely(all_pinned)) {
96f874e2
RR
4326 cpumask_clear_cpu(cpu_of(busiest), cpus);
4327 if (!cpumask_empty(cpus))
0a2966b4
CL
4328 goto redo;
4329 }
d6d5cfaf
NP
4330 }
4331
43010659 4332 if (!ld_moved) {
36dffab6 4333 int active_balance = 0;
ad273b32 4334
d15bcfdb 4335 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4336 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4337 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4338 return -1;
ad273b32
VS
4339
4340 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4341 return -1;
4342
4343 if (sd->nr_balance_failed++ < 2)
4344 return -1;
4345
4346 /*
4347 * The only task running in a non-idle cpu can be moved to this
4348 * cpu in an attempt to completely freeup the other CPU
4349 * package. The same method used to move task in load_balance()
4350 * have been extended for load_balance_newidle() to speedup
4351 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4352 *
4353 * The package power saving logic comes from
4354 * find_busiest_group(). If there are no imbalance, then
4355 * f_b_g() will return NULL. However when sched_mc={1,2} then
4356 * f_b_g() will select a group from which a running task may be
4357 * pulled to this cpu in order to make the other package idle.
4358 * If there is no opportunity to make a package idle and if
4359 * there are no imbalance, then f_b_g() will return NULL and no
4360 * action will be taken in load_balance_newidle().
4361 *
4362 * Under normal task pull operation due to imbalance, there
4363 * will be more than one task in the source run queue and
4364 * move_tasks() will succeed. ld_moved will be true and this
4365 * active balance code will not be triggered.
4366 */
4367
4368 /* Lock busiest in correct order while this_rq is held */
4369 double_lock_balance(this_rq, busiest);
4370
4371 /*
4372 * don't kick the migration_thread, if the curr
4373 * task on busiest cpu can't be moved to this_cpu
4374 */
6ca09dfc 4375 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4376 double_unlock_balance(this_rq, busiest);
4377 all_pinned = 1;
4378 return ld_moved;
4379 }
4380
4381 if (!busiest->active_balance) {
4382 busiest->active_balance = 1;
4383 busiest->push_cpu = this_cpu;
4384 active_balance = 1;
4385 }
4386
4387 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4388 /*
4389 * Should not call ttwu while holding a rq->lock
4390 */
4391 spin_unlock(&this_rq->lock);
ad273b32
VS
4392 if (active_balance)
4393 wake_up_process(busiest->migration_thread);
da8d5089 4394 spin_lock(&this_rq->lock);
ad273b32 4395
5969fe06 4396 } else
16cfb1c0 4397 sd->nr_balance_failed = 0;
1da177e4 4398
3e5459b4 4399 update_shares_locked(this_rq, sd);
43010659 4400 return ld_moved;
16cfb1c0
NP
4401
4402out_balanced:
d15bcfdb 4403 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4404 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4405 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4406 return -1;
16cfb1c0 4407 sd->nr_balance_failed = 0;
48f24c4d 4408
16cfb1c0 4409 return 0;
1da177e4
LT
4410}
4411
4412/*
4413 * idle_balance is called by schedule() if this_cpu is about to become
4414 * idle. Attempts to pull tasks from other CPUs.
4415 */
70b97a7f 4416static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4417{
4418 struct sched_domain *sd;
efbe027e 4419 int pulled_task = 0;
dd41f596 4420 unsigned long next_balance = jiffies + HZ;
1da177e4 4421
1b9508f6
MG
4422 this_rq->idle_stamp = this_rq->clock;
4423
4424 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4425 return;
4426
1da177e4 4427 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4428 unsigned long interval;
4429
4430 if (!(sd->flags & SD_LOAD_BALANCE))
4431 continue;
4432
4433 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4434 /* If we've pulled tasks over stop searching: */
7c16ec58 4435 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4436 sd);
92c4ca5c
CL
4437
4438 interval = msecs_to_jiffies(sd->balance_interval);
4439 if (time_after(next_balance, sd->last_balance + interval))
4440 next_balance = sd->last_balance + interval;
1b9508f6
MG
4441 if (pulled_task) {
4442 this_rq->idle_stamp = 0;
92c4ca5c 4443 break;
1b9508f6 4444 }
1da177e4 4445 }
dd41f596 4446 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4447 /*
4448 * We are going idle. next_balance may be set based on
4449 * a busy processor. So reset next_balance.
4450 */
4451 this_rq->next_balance = next_balance;
dd41f596 4452 }
1da177e4
LT
4453}
4454
4455/*
4456 * active_load_balance is run by migration threads. It pushes running tasks
4457 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4458 * running on each physical CPU where possible, and avoids physical /
4459 * logical imbalances.
4460 *
4461 * Called with busiest_rq locked.
4462 */
70b97a7f 4463static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4464{
39507451 4465 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4466 struct sched_domain *sd;
4467 struct rq *target_rq;
39507451 4468
48f24c4d 4469 /* Is there any task to move? */
39507451 4470 if (busiest_rq->nr_running <= 1)
39507451
NP
4471 return;
4472
4473 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4474
4475 /*
39507451 4476 * This condition is "impossible", if it occurs
41a2d6cf 4477 * we need to fix it. Originally reported by
39507451 4478 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4479 */
39507451 4480 BUG_ON(busiest_rq == target_rq);
1da177e4 4481
39507451
NP
4482 /* move a task from busiest_rq to target_rq */
4483 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4484 update_rq_clock(busiest_rq);
4485 update_rq_clock(target_rq);
39507451
NP
4486
4487 /* Search for an sd spanning us and the target CPU. */
c96d145e 4488 for_each_domain(target_cpu, sd) {
39507451 4489 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4490 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4491 break;
c96d145e 4492 }
39507451 4493
48f24c4d 4494 if (likely(sd)) {
2d72376b 4495 schedstat_inc(sd, alb_count);
39507451 4496
43010659
PW
4497 if (move_one_task(target_rq, target_cpu, busiest_rq,
4498 sd, CPU_IDLE))
48f24c4d
IM
4499 schedstat_inc(sd, alb_pushed);
4500 else
4501 schedstat_inc(sd, alb_failed);
4502 }
1b12bbc7 4503 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4504}
4505
46cb4b7c
SS
4506#ifdef CONFIG_NO_HZ
4507static struct {
4508 atomic_t load_balancer;
7d1e6a9b 4509 cpumask_var_t cpu_mask;
f711f609 4510 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4511} nohz ____cacheline_aligned = {
4512 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4513};
4514
eea08f32
AB
4515int get_nohz_load_balancer(void)
4516{
4517 return atomic_read(&nohz.load_balancer);
4518}
4519
f711f609
GS
4520#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4521/**
4522 * lowest_flag_domain - Return lowest sched_domain containing flag.
4523 * @cpu: The cpu whose lowest level of sched domain is to
4524 * be returned.
4525 * @flag: The flag to check for the lowest sched_domain
4526 * for the given cpu.
4527 *
4528 * Returns the lowest sched_domain of a cpu which contains the given flag.
4529 */
4530static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4531{
4532 struct sched_domain *sd;
4533
4534 for_each_domain(cpu, sd)
4535 if (sd && (sd->flags & flag))
4536 break;
4537
4538 return sd;
4539}
4540
4541/**
4542 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4543 * @cpu: The cpu whose domains we're iterating over.
4544 * @sd: variable holding the value of the power_savings_sd
4545 * for cpu.
4546 * @flag: The flag to filter the sched_domains to be iterated.
4547 *
4548 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4549 * set, starting from the lowest sched_domain to the highest.
4550 */
4551#define for_each_flag_domain(cpu, sd, flag) \
4552 for (sd = lowest_flag_domain(cpu, flag); \
4553 (sd && (sd->flags & flag)); sd = sd->parent)
4554
4555/**
4556 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4557 * @ilb_group: group to be checked for semi-idleness
4558 *
4559 * Returns: 1 if the group is semi-idle. 0 otherwise.
4560 *
4561 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4562 * and atleast one non-idle CPU. This helper function checks if the given
4563 * sched_group is semi-idle or not.
4564 */
4565static inline int is_semi_idle_group(struct sched_group *ilb_group)
4566{
4567 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4568 sched_group_cpus(ilb_group));
4569
4570 /*
4571 * A sched_group is semi-idle when it has atleast one busy cpu
4572 * and atleast one idle cpu.
4573 */
4574 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4575 return 0;
4576
4577 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4578 return 0;
4579
4580 return 1;
4581}
4582/**
4583 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4584 * @cpu: The cpu which is nominating a new idle_load_balancer.
4585 *
4586 * Returns: Returns the id of the idle load balancer if it exists,
4587 * Else, returns >= nr_cpu_ids.
4588 *
4589 * This algorithm picks the idle load balancer such that it belongs to a
4590 * semi-idle powersavings sched_domain. The idea is to try and avoid
4591 * completely idle packages/cores just for the purpose of idle load balancing
4592 * when there are other idle cpu's which are better suited for that job.
4593 */
4594static int find_new_ilb(int cpu)
4595{
4596 struct sched_domain *sd;
4597 struct sched_group *ilb_group;
4598
4599 /*
4600 * Have idle load balancer selection from semi-idle packages only
4601 * when power-aware load balancing is enabled
4602 */
4603 if (!(sched_smt_power_savings || sched_mc_power_savings))
4604 goto out_done;
4605
4606 /*
4607 * Optimize for the case when we have no idle CPUs or only one
4608 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4609 */
4610 if (cpumask_weight(nohz.cpu_mask) < 2)
4611 goto out_done;
4612
4613 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4614 ilb_group = sd->groups;
4615
4616 do {
4617 if (is_semi_idle_group(ilb_group))
4618 return cpumask_first(nohz.ilb_grp_nohz_mask);
4619
4620 ilb_group = ilb_group->next;
4621
4622 } while (ilb_group != sd->groups);
4623 }
4624
4625out_done:
4626 return cpumask_first(nohz.cpu_mask);
4627}
4628#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4629static inline int find_new_ilb(int call_cpu)
4630{
6e29ec57 4631 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4632}
4633#endif
4634
7835b98b 4635/*
46cb4b7c
SS
4636 * This routine will try to nominate the ilb (idle load balancing)
4637 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4638 * load balancing on behalf of all those cpus. If all the cpus in the system
4639 * go into this tickless mode, then there will be no ilb owner (as there is
4640 * no need for one) and all the cpus will sleep till the next wakeup event
4641 * arrives...
4642 *
4643 * For the ilb owner, tick is not stopped. And this tick will be used
4644 * for idle load balancing. ilb owner will still be part of
4645 * nohz.cpu_mask..
7835b98b 4646 *
46cb4b7c
SS
4647 * While stopping the tick, this cpu will become the ilb owner if there
4648 * is no other owner. And will be the owner till that cpu becomes busy
4649 * or if all cpus in the system stop their ticks at which point
4650 * there is no need for ilb owner.
4651 *
4652 * When the ilb owner becomes busy, it nominates another owner, during the
4653 * next busy scheduler_tick()
4654 */
4655int select_nohz_load_balancer(int stop_tick)
4656{
4657 int cpu = smp_processor_id();
4658
4659 if (stop_tick) {
46cb4b7c
SS
4660 cpu_rq(cpu)->in_nohz_recently = 1;
4661
483b4ee6
SS
4662 if (!cpu_active(cpu)) {
4663 if (atomic_read(&nohz.load_balancer) != cpu)
4664 return 0;
4665
4666 /*
4667 * If we are going offline and still the leader,
4668 * give up!
4669 */
46cb4b7c
SS
4670 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4671 BUG();
483b4ee6 4672
46cb4b7c
SS
4673 return 0;
4674 }
4675
483b4ee6
SS
4676 cpumask_set_cpu(cpu, nohz.cpu_mask);
4677
46cb4b7c 4678 /* time for ilb owner also to sleep */
6ad4c188 4679 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
46cb4b7c
SS
4680 if (atomic_read(&nohz.load_balancer) == cpu)
4681 atomic_set(&nohz.load_balancer, -1);
4682 return 0;
4683 }
4684
4685 if (atomic_read(&nohz.load_balancer) == -1) {
4686 /* make me the ilb owner */
4687 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4688 return 1;
e790fb0b
GS
4689 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4690 int new_ilb;
4691
4692 if (!(sched_smt_power_savings ||
4693 sched_mc_power_savings))
4694 return 1;
4695 /*
4696 * Check to see if there is a more power-efficient
4697 * ilb.
4698 */
4699 new_ilb = find_new_ilb(cpu);
4700 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4701 atomic_set(&nohz.load_balancer, -1);
4702 resched_cpu(new_ilb);
4703 return 0;
4704 }
46cb4b7c 4705 return 1;
e790fb0b 4706 }
46cb4b7c 4707 } else {
7d1e6a9b 4708 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4709 return 0;
4710
7d1e6a9b 4711 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4712
4713 if (atomic_read(&nohz.load_balancer) == cpu)
4714 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4715 BUG();
4716 }
4717 return 0;
4718}
4719#endif
4720
4721static DEFINE_SPINLOCK(balancing);
4722
4723/*
7835b98b
CL
4724 * It checks each scheduling domain to see if it is due to be balanced,
4725 * and initiates a balancing operation if so.
4726 *
4727 * Balancing parameters are set up in arch_init_sched_domains.
4728 */
a9957449 4729static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4730{
46cb4b7c
SS
4731 int balance = 1;
4732 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4733 unsigned long interval;
4734 struct sched_domain *sd;
46cb4b7c 4735 /* Earliest time when we have to do rebalance again */
c9819f45 4736 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4737 int update_next_balance = 0;
d07355f5 4738 int need_serialize;
1da177e4 4739
46cb4b7c 4740 for_each_domain(cpu, sd) {
1da177e4
LT
4741 if (!(sd->flags & SD_LOAD_BALANCE))
4742 continue;
4743
4744 interval = sd->balance_interval;
d15bcfdb 4745 if (idle != CPU_IDLE)
1da177e4
LT
4746 interval *= sd->busy_factor;
4747
4748 /* scale ms to jiffies */
4749 interval = msecs_to_jiffies(interval);
4750 if (unlikely(!interval))
4751 interval = 1;
dd41f596
IM
4752 if (interval > HZ*NR_CPUS/10)
4753 interval = HZ*NR_CPUS/10;
4754
d07355f5 4755 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4756
d07355f5 4757 if (need_serialize) {
08c183f3
CL
4758 if (!spin_trylock(&balancing))
4759 goto out;
4760 }
4761
c9819f45 4762 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4763 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4764 /*
4765 * We've pulled tasks over so either we're no
5969fe06
NP
4766 * longer idle, or one of our SMT siblings is
4767 * not idle.
4768 */
d15bcfdb 4769 idle = CPU_NOT_IDLE;
1da177e4 4770 }
1bd77f2d 4771 sd->last_balance = jiffies;
1da177e4 4772 }
d07355f5 4773 if (need_serialize)
08c183f3
CL
4774 spin_unlock(&balancing);
4775out:
f549da84 4776 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4777 next_balance = sd->last_balance + interval;
f549da84
SS
4778 update_next_balance = 1;
4779 }
783609c6
SS
4780
4781 /*
4782 * Stop the load balance at this level. There is another
4783 * CPU in our sched group which is doing load balancing more
4784 * actively.
4785 */
4786 if (!balance)
4787 break;
1da177e4 4788 }
f549da84
SS
4789
4790 /*
4791 * next_balance will be updated only when there is a need.
4792 * When the cpu is attached to null domain for ex, it will not be
4793 * updated.
4794 */
4795 if (likely(update_next_balance))
4796 rq->next_balance = next_balance;
46cb4b7c
SS
4797}
4798
4799/*
4800 * run_rebalance_domains is triggered when needed from the scheduler tick.
4801 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4802 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4803 */
4804static void run_rebalance_domains(struct softirq_action *h)
4805{
dd41f596
IM
4806 int this_cpu = smp_processor_id();
4807 struct rq *this_rq = cpu_rq(this_cpu);
4808 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4809 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4810
dd41f596 4811 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4812
4813#ifdef CONFIG_NO_HZ
4814 /*
4815 * If this cpu is the owner for idle load balancing, then do the
4816 * balancing on behalf of the other idle cpus whose ticks are
4817 * stopped.
4818 */
dd41f596
IM
4819 if (this_rq->idle_at_tick &&
4820 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4821 struct rq *rq;
4822 int balance_cpu;
4823
7d1e6a9b
RR
4824 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4825 if (balance_cpu == this_cpu)
4826 continue;
4827
46cb4b7c
SS
4828 /*
4829 * If this cpu gets work to do, stop the load balancing
4830 * work being done for other cpus. Next load
4831 * balancing owner will pick it up.
4832 */
4833 if (need_resched())
4834 break;
4835
de0cf899 4836 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4837
4838 rq = cpu_rq(balance_cpu);
dd41f596
IM
4839 if (time_after(this_rq->next_balance, rq->next_balance))
4840 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4841 }
4842 }
4843#endif
4844}
4845
8a0be9ef
FW
4846static inline int on_null_domain(int cpu)
4847{
4848 return !rcu_dereference(cpu_rq(cpu)->sd);
4849}
4850
46cb4b7c
SS
4851/*
4852 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4853 *
4854 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4855 * idle load balancing owner or decide to stop the periodic load balancing,
4856 * if the whole system is idle.
4857 */
dd41f596 4858static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4859{
46cb4b7c
SS
4860#ifdef CONFIG_NO_HZ
4861 /*
4862 * If we were in the nohz mode recently and busy at the current
4863 * scheduler tick, then check if we need to nominate new idle
4864 * load balancer.
4865 */
4866 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4867 rq->in_nohz_recently = 0;
4868
4869 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4870 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4871 atomic_set(&nohz.load_balancer, -1);
4872 }
4873
4874 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4875 int ilb = find_new_ilb(cpu);
46cb4b7c 4876
434d53b0 4877 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4878 resched_cpu(ilb);
4879 }
4880 }
4881
4882 /*
4883 * If this cpu is idle and doing idle load balancing for all the
4884 * cpus with ticks stopped, is it time for that to stop?
4885 */
4886 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4887 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4888 resched_cpu(cpu);
4889 return;
4890 }
4891
4892 /*
4893 * If this cpu is idle and the idle load balancing is done by
4894 * someone else, then no need raise the SCHED_SOFTIRQ
4895 */
4896 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4897 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4898 return;
4899#endif
8a0be9ef
FW
4900 /* Don't need to rebalance while attached to NULL domain */
4901 if (time_after_eq(jiffies, rq->next_balance) &&
4902 likely(!on_null_domain(cpu)))
46cb4b7c 4903 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4904}
dd41f596
IM
4905
4906#else /* CONFIG_SMP */
4907
1da177e4
LT
4908/*
4909 * on UP we do not need to balance between CPUs:
4910 */
70b97a7f 4911static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4912{
4913}
dd41f596 4914
1da177e4
LT
4915#endif
4916
1da177e4
LT
4917DEFINE_PER_CPU(struct kernel_stat, kstat);
4918
4919EXPORT_PER_CPU_SYMBOL(kstat);
4920
4921/*
c5f8d995 4922 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4923 * @p in case that task is currently running.
c5f8d995
HS
4924 *
4925 * Called with task_rq_lock() held on @rq.
1da177e4 4926 */
c5f8d995
HS
4927static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4928{
4929 u64 ns = 0;
4930
4931 if (task_current(rq, p)) {
4932 update_rq_clock(rq);
4933 ns = rq->clock - p->se.exec_start;
4934 if ((s64)ns < 0)
4935 ns = 0;
4936 }
4937
4938 return ns;
4939}
4940
bb34d92f 4941unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4942{
1da177e4 4943 unsigned long flags;
41b86e9c 4944 struct rq *rq;
bb34d92f 4945 u64 ns = 0;
48f24c4d 4946
41b86e9c 4947 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4948 ns = do_task_delta_exec(p, rq);
4949 task_rq_unlock(rq, &flags);
1508487e 4950
c5f8d995
HS
4951 return ns;
4952}
f06febc9 4953
c5f8d995
HS
4954/*
4955 * Return accounted runtime for the task.
4956 * In case the task is currently running, return the runtime plus current's
4957 * pending runtime that have not been accounted yet.
4958 */
4959unsigned long long task_sched_runtime(struct task_struct *p)
4960{
4961 unsigned long flags;
4962 struct rq *rq;
4963 u64 ns = 0;
4964
4965 rq = task_rq_lock(p, &flags);
4966 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4967 task_rq_unlock(rq, &flags);
4968
4969 return ns;
4970}
48f24c4d 4971
c5f8d995
HS
4972/*
4973 * Return sum_exec_runtime for the thread group.
4974 * In case the task is currently running, return the sum plus current's
4975 * pending runtime that have not been accounted yet.
4976 *
4977 * Note that the thread group might have other running tasks as well,
4978 * so the return value not includes other pending runtime that other
4979 * running tasks might have.
4980 */
4981unsigned long long thread_group_sched_runtime(struct task_struct *p)
4982{
4983 struct task_cputime totals;
4984 unsigned long flags;
4985 struct rq *rq;
4986 u64 ns;
4987
4988 rq = task_rq_lock(p, &flags);
4989 thread_group_cputime(p, &totals);
4990 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4991 task_rq_unlock(rq, &flags);
48f24c4d 4992
1da177e4
LT
4993 return ns;
4994}
4995
1da177e4
LT
4996/*
4997 * Account user cpu time to a process.
4998 * @p: the process that the cpu time gets accounted to
1da177e4 4999 * @cputime: the cpu time spent in user space since the last update
457533a7 5000 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 5001 */
457533a7
MS
5002void account_user_time(struct task_struct *p, cputime_t cputime,
5003 cputime_t cputime_scaled)
1da177e4
LT
5004{
5005 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5006 cputime64_t tmp;
5007
457533a7 5008 /* Add user time to process. */
1da177e4 5009 p->utime = cputime_add(p->utime, cputime);
457533a7 5010 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5011 account_group_user_time(p, cputime);
1da177e4
LT
5012
5013 /* Add user time to cpustat. */
5014 tmp = cputime_to_cputime64(cputime);
5015 if (TASK_NICE(p) > 0)
5016 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5017 else
5018 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5019
5020 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5021 /* Account for user time used */
5022 acct_update_integrals(p);
1da177e4
LT
5023}
5024
94886b84
LV
5025/*
5026 * Account guest cpu time to a process.
5027 * @p: the process that the cpu time gets accounted to
5028 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5029 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5030 */
457533a7
MS
5031static void account_guest_time(struct task_struct *p, cputime_t cputime,
5032 cputime_t cputime_scaled)
94886b84
LV
5033{
5034 cputime64_t tmp;
5035 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5036
5037 tmp = cputime_to_cputime64(cputime);
5038
457533a7 5039 /* Add guest time to process. */
94886b84 5040 p->utime = cputime_add(p->utime, cputime);
457533a7 5041 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5042 account_group_user_time(p, cputime);
94886b84
LV
5043 p->gtime = cputime_add(p->gtime, cputime);
5044
457533a7 5045 /* Add guest time to cpustat. */
ce0e7b28
RO
5046 if (TASK_NICE(p) > 0) {
5047 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5048 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5049 } else {
5050 cpustat->user = cputime64_add(cpustat->user, tmp);
5051 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5052 }
94886b84
LV
5053}
5054
1da177e4
LT
5055/*
5056 * Account system cpu time to a process.
5057 * @p: the process that the cpu time gets accounted to
5058 * @hardirq_offset: the offset to subtract from hardirq_count()
5059 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5060 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5061 */
5062void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5063 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5064{
5065 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5066 cputime64_t tmp;
5067
983ed7a6 5068 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5069 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5070 return;
5071 }
94886b84 5072
457533a7 5073 /* Add system time to process. */
1da177e4 5074 p->stime = cputime_add(p->stime, cputime);
457533a7 5075 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5076 account_group_system_time(p, cputime);
1da177e4
LT
5077
5078 /* Add system time to cpustat. */
5079 tmp = cputime_to_cputime64(cputime);
5080 if (hardirq_count() - hardirq_offset)
5081 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5082 else if (softirq_count())
5083 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5084 else
79741dd3
MS
5085 cpustat->system = cputime64_add(cpustat->system, tmp);
5086
ef12fefa
BR
5087 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5088
1da177e4
LT
5089 /* Account for system time used */
5090 acct_update_integrals(p);
1da177e4
LT
5091}
5092
c66f08be 5093/*
1da177e4 5094 * Account for involuntary wait time.
1da177e4 5095 * @steal: the cpu time spent in involuntary wait
c66f08be 5096 */
79741dd3 5097void account_steal_time(cputime_t cputime)
c66f08be 5098{
79741dd3
MS
5099 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5100 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5101
5102 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5103}
5104
1da177e4 5105/*
79741dd3
MS
5106 * Account for idle time.
5107 * @cputime: the cpu time spent in idle wait
1da177e4 5108 */
79741dd3 5109void account_idle_time(cputime_t cputime)
1da177e4
LT
5110{
5111 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5112 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5113 struct rq *rq = this_rq();
1da177e4 5114
79741dd3
MS
5115 if (atomic_read(&rq->nr_iowait) > 0)
5116 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5117 else
5118 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5119}
5120
79741dd3
MS
5121#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5122
5123/*
5124 * Account a single tick of cpu time.
5125 * @p: the process that the cpu time gets accounted to
5126 * @user_tick: indicates if the tick is a user or a system tick
5127 */
5128void account_process_tick(struct task_struct *p, int user_tick)
5129{
a42548a1 5130 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5131 struct rq *rq = this_rq();
5132
5133 if (user_tick)
a42548a1 5134 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5135 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5136 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5137 one_jiffy_scaled);
5138 else
a42548a1 5139 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5140}
5141
5142/*
5143 * Account multiple ticks of steal time.
5144 * @p: the process from which the cpu time has been stolen
5145 * @ticks: number of stolen ticks
5146 */
5147void account_steal_ticks(unsigned long ticks)
5148{
5149 account_steal_time(jiffies_to_cputime(ticks));
5150}
5151
5152/*
5153 * Account multiple ticks of idle time.
5154 * @ticks: number of stolen ticks
5155 */
5156void account_idle_ticks(unsigned long ticks)
5157{
5158 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5159}
5160
79741dd3
MS
5161#endif
5162
49048622
BS
5163/*
5164 * Use precise platform statistics if available:
5165 */
5166#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 5167void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5168{
d99ca3b9
HS
5169 *ut = p->utime;
5170 *st = p->stime;
49048622
BS
5171}
5172
0cf55e1e 5173void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5174{
0cf55e1e
HS
5175 struct task_cputime cputime;
5176
5177 thread_group_cputime(p, &cputime);
5178
5179 *ut = cputime.utime;
5180 *st = cputime.stime;
49048622
BS
5181}
5182#else
761b1d26
HS
5183
5184#ifndef nsecs_to_cputime
b7b20df9 5185# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
5186#endif
5187
d180c5bc 5188void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5189{
d99ca3b9 5190 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
5191
5192 /*
5193 * Use CFS's precise accounting:
5194 */
d180c5bc 5195 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
5196
5197 if (total) {
d180c5bc
HS
5198 u64 temp;
5199
5200 temp = (u64)(rtime * utime);
49048622 5201 do_div(temp, total);
d180c5bc
HS
5202 utime = (cputime_t)temp;
5203 } else
5204 utime = rtime;
49048622 5205
d180c5bc
HS
5206 /*
5207 * Compare with previous values, to keep monotonicity:
5208 */
761b1d26 5209 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 5210 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 5211
d99ca3b9
HS
5212 *ut = p->prev_utime;
5213 *st = p->prev_stime;
49048622
BS
5214}
5215
0cf55e1e
HS
5216/*
5217 * Must be called with siglock held.
5218 */
5219void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5220{
0cf55e1e
HS
5221 struct signal_struct *sig = p->signal;
5222 struct task_cputime cputime;
5223 cputime_t rtime, utime, total;
49048622 5224
0cf55e1e 5225 thread_group_cputime(p, &cputime);
49048622 5226
0cf55e1e
HS
5227 total = cputime_add(cputime.utime, cputime.stime);
5228 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 5229
0cf55e1e
HS
5230 if (total) {
5231 u64 temp;
49048622 5232
0cf55e1e
HS
5233 temp = (u64)(rtime * cputime.utime);
5234 do_div(temp, total);
5235 utime = (cputime_t)temp;
5236 } else
5237 utime = rtime;
5238
5239 sig->prev_utime = max(sig->prev_utime, utime);
5240 sig->prev_stime = max(sig->prev_stime,
5241 cputime_sub(rtime, sig->prev_utime));
5242
5243 *ut = sig->prev_utime;
5244 *st = sig->prev_stime;
49048622 5245}
49048622 5246#endif
49048622 5247
7835b98b
CL
5248/*
5249 * This function gets called by the timer code, with HZ frequency.
5250 * We call it with interrupts disabled.
5251 *
5252 * It also gets called by the fork code, when changing the parent's
5253 * timeslices.
5254 */
5255void scheduler_tick(void)
5256{
7835b98b
CL
5257 int cpu = smp_processor_id();
5258 struct rq *rq = cpu_rq(cpu);
dd41f596 5259 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5260
5261 sched_clock_tick();
dd41f596
IM
5262
5263 spin_lock(&rq->lock);
3e51f33f 5264 update_rq_clock(rq);
f1a438d8 5265 update_cpu_load(rq);
fa85ae24 5266 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5267 spin_unlock(&rq->lock);
7835b98b 5268
cdd6c482 5269 perf_event_task_tick(curr, cpu);
e220d2dc 5270
e418e1c2 5271#ifdef CONFIG_SMP
dd41f596
IM
5272 rq->idle_at_tick = idle_cpu(cpu);
5273 trigger_load_balance(rq, cpu);
e418e1c2 5274#endif
1da177e4
LT
5275}
5276
132380a0 5277notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5278{
5279 if (in_lock_functions(addr)) {
5280 addr = CALLER_ADDR2;
5281 if (in_lock_functions(addr))
5282 addr = CALLER_ADDR3;
5283 }
5284 return addr;
5285}
1da177e4 5286
7e49fcce
SR
5287#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5288 defined(CONFIG_PREEMPT_TRACER))
5289
43627582 5290void __kprobes add_preempt_count(int val)
1da177e4 5291{
6cd8a4bb 5292#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5293 /*
5294 * Underflow?
5295 */
9a11b49a
IM
5296 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5297 return;
6cd8a4bb 5298#endif
1da177e4 5299 preempt_count() += val;
6cd8a4bb 5300#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5301 /*
5302 * Spinlock count overflowing soon?
5303 */
33859f7f
MOS
5304 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5305 PREEMPT_MASK - 10);
6cd8a4bb
SR
5306#endif
5307 if (preempt_count() == val)
5308 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5309}
5310EXPORT_SYMBOL(add_preempt_count);
5311
43627582 5312void __kprobes sub_preempt_count(int val)
1da177e4 5313{
6cd8a4bb 5314#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5315 /*
5316 * Underflow?
5317 */
01e3eb82 5318 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5319 return;
1da177e4
LT
5320 /*
5321 * Is the spinlock portion underflowing?
5322 */
9a11b49a
IM
5323 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5324 !(preempt_count() & PREEMPT_MASK)))
5325 return;
6cd8a4bb 5326#endif
9a11b49a 5327
6cd8a4bb
SR
5328 if (preempt_count() == val)
5329 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5330 preempt_count() -= val;
5331}
5332EXPORT_SYMBOL(sub_preempt_count);
5333
5334#endif
5335
5336/*
dd41f596 5337 * Print scheduling while atomic bug:
1da177e4 5338 */
dd41f596 5339static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5340{
838225b4
SS
5341 struct pt_regs *regs = get_irq_regs();
5342
5343 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5344 prev->comm, prev->pid, preempt_count());
5345
dd41f596 5346 debug_show_held_locks(prev);
e21f5b15 5347 print_modules();
dd41f596
IM
5348 if (irqs_disabled())
5349 print_irqtrace_events(prev);
838225b4
SS
5350
5351 if (regs)
5352 show_regs(regs);
5353 else
5354 dump_stack();
dd41f596 5355}
1da177e4 5356
dd41f596
IM
5357/*
5358 * Various schedule()-time debugging checks and statistics:
5359 */
5360static inline void schedule_debug(struct task_struct *prev)
5361{
1da177e4 5362 /*
41a2d6cf 5363 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5364 * schedule() atomically, we ignore that path for now.
5365 * Otherwise, whine if we are scheduling when we should not be.
5366 */
3f33a7ce 5367 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5368 __schedule_bug(prev);
5369
1da177e4
LT
5370 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5371
2d72376b 5372 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5373#ifdef CONFIG_SCHEDSTATS
5374 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5375 schedstat_inc(this_rq(), bkl_count);
5376 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5377 }
5378#endif
dd41f596
IM
5379}
5380
6cecd084 5381static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 5382{
6cecd084
PZ
5383 if (prev->state == TASK_RUNNING) {
5384 u64 runtime = prev->se.sum_exec_runtime;
df1c99d4 5385
6cecd084
PZ
5386 runtime -= prev->se.prev_sum_exec_runtime;
5387 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
df1c99d4
MG
5388
5389 /*
5390 * In order to avoid avg_overlap growing stale when we are
5391 * indeed overlapping and hence not getting put to sleep, grow
5392 * the avg_overlap on preemption.
5393 *
5394 * We use the average preemption runtime because that
5395 * correlates to the amount of cache footprint a task can
5396 * build up.
5397 */
6cecd084 5398 update_avg(&prev->se.avg_overlap, runtime);
df1c99d4 5399 }
6cecd084 5400 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
5401}
5402
dd41f596
IM
5403/*
5404 * Pick up the highest-prio task:
5405 */
5406static inline struct task_struct *
b67802ea 5407pick_next_task(struct rq *rq)
dd41f596 5408{
5522d5d5 5409 const struct sched_class *class;
dd41f596 5410 struct task_struct *p;
1da177e4
LT
5411
5412 /*
dd41f596
IM
5413 * Optimization: we know that if all tasks are in
5414 * the fair class we can call that function directly:
1da177e4 5415 */
dd41f596 5416 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5417 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5418 if (likely(p))
5419 return p;
1da177e4
LT
5420 }
5421
dd41f596
IM
5422 class = sched_class_highest;
5423 for ( ; ; ) {
fb8d4724 5424 p = class->pick_next_task(rq);
dd41f596
IM
5425 if (p)
5426 return p;
5427 /*
5428 * Will never be NULL as the idle class always
5429 * returns a non-NULL p:
5430 */
5431 class = class->next;
5432 }
5433}
1da177e4 5434
dd41f596
IM
5435/*
5436 * schedule() is the main scheduler function.
5437 */
ff743345 5438asmlinkage void __sched schedule(void)
dd41f596
IM
5439{
5440 struct task_struct *prev, *next;
67ca7bde 5441 unsigned long *switch_count;
dd41f596 5442 struct rq *rq;
31656519 5443 int cpu;
dd41f596 5444
ff743345
PZ
5445need_resched:
5446 preempt_disable();
dd41f596
IM
5447 cpu = smp_processor_id();
5448 rq = cpu_rq(cpu);
d6714c22 5449 rcu_sched_qs(cpu);
dd41f596
IM
5450 prev = rq->curr;
5451 switch_count = &prev->nivcsw;
5452
5453 release_kernel_lock(prev);
5454need_resched_nonpreemptible:
5455
5456 schedule_debug(prev);
1da177e4 5457
31656519 5458 if (sched_feat(HRTICK))
f333fdc9 5459 hrtick_clear(rq);
8f4d37ec 5460
8cd162ce 5461 spin_lock_irq(&rq->lock);
3e51f33f 5462 update_rq_clock(rq);
1e819950 5463 clear_tsk_need_resched(prev);
1da177e4 5464
1da177e4 5465 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5466 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5467 prev->state = TASK_RUNNING;
16882c1e 5468 else
2e1cb74a 5469 deactivate_task(rq, prev, 1);
dd41f596 5470 switch_count = &prev->nvcsw;
1da177e4
LT
5471 }
5472
3f029d3c 5473 pre_schedule(rq, prev);
f65eda4f 5474
dd41f596 5475 if (unlikely(!rq->nr_running))
1da177e4 5476 idle_balance(cpu, rq);
1da177e4 5477
df1c99d4 5478 put_prev_task(rq, prev);
b67802ea 5479 next = pick_next_task(rq);
1da177e4 5480
1da177e4 5481 if (likely(prev != next)) {
673a90a1 5482 sched_info_switch(prev, next);
cdd6c482 5483 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5484
1da177e4
LT
5485 rq->nr_switches++;
5486 rq->curr = next;
5487 ++*switch_count;
5488
dd41f596 5489 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5490 /*
5491 * the context switch might have flipped the stack from under
5492 * us, hence refresh the local variables.
5493 */
5494 cpu = smp_processor_id();
5495 rq = cpu_rq(cpu);
1da177e4
LT
5496 } else
5497 spin_unlock_irq(&rq->lock);
5498
3f029d3c 5499 post_schedule(rq);
1da177e4 5500
8f4d37ec 5501 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5502 goto need_resched_nonpreemptible;
8f4d37ec 5503
1da177e4 5504 preempt_enable_no_resched();
ff743345 5505 if (need_resched())
1da177e4
LT
5506 goto need_resched;
5507}
1da177e4
LT
5508EXPORT_SYMBOL(schedule);
5509
c08f7829 5510#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
5511/*
5512 * Look out! "owner" is an entirely speculative pointer
5513 * access and not reliable.
5514 */
5515int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5516{
5517 unsigned int cpu;
5518 struct rq *rq;
5519
5520 if (!sched_feat(OWNER_SPIN))
5521 return 0;
5522
5523#ifdef CONFIG_DEBUG_PAGEALLOC
5524 /*
5525 * Need to access the cpu field knowing that
5526 * DEBUG_PAGEALLOC could have unmapped it if
5527 * the mutex owner just released it and exited.
5528 */
5529 if (probe_kernel_address(&owner->cpu, cpu))
5530 goto out;
5531#else
5532 cpu = owner->cpu;
5533#endif
5534
5535 /*
5536 * Even if the access succeeded (likely case),
5537 * the cpu field may no longer be valid.
5538 */
5539 if (cpu >= nr_cpumask_bits)
5540 goto out;
5541
5542 /*
5543 * We need to validate that we can do a
5544 * get_cpu() and that we have the percpu area.
5545 */
5546 if (!cpu_online(cpu))
5547 goto out;
5548
5549 rq = cpu_rq(cpu);
5550
5551 for (;;) {
5552 /*
5553 * Owner changed, break to re-assess state.
5554 */
5555 if (lock->owner != owner)
5556 break;
5557
5558 /*
5559 * Is that owner really running on that cpu?
5560 */
5561 if (task_thread_info(rq->curr) != owner || need_resched())
5562 return 0;
5563
5564 cpu_relax();
5565 }
5566out:
5567 return 1;
5568}
5569#endif
5570
1da177e4
LT
5571#ifdef CONFIG_PREEMPT
5572/*
2ed6e34f 5573 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5574 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5575 * occur there and call schedule directly.
5576 */
5577asmlinkage void __sched preempt_schedule(void)
5578{
5579 struct thread_info *ti = current_thread_info();
6478d880 5580
1da177e4
LT
5581 /*
5582 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5583 * we do not want to preempt the current task. Just return..
1da177e4 5584 */
beed33a8 5585 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5586 return;
5587
3a5c359a
AK
5588 do {
5589 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5590 schedule();
3a5c359a 5591 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5592
3a5c359a
AK
5593 /*
5594 * Check again in case we missed a preemption opportunity
5595 * between schedule and now.
5596 */
5597 barrier();
5ed0cec0 5598 } while (need_resched());
1da177e4 5599}
1da177e4
LT
5600EXPORT_SYMBOL(preempt_schedule);
5601
5602/*
2ed6e34f 5603 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5604 * off of irq context.
5605 * Note, that this is called and return with irqs disabled. This will
5606 * protect us against recursive calling from irq.
5607 */
5608asmlinkage void __sched preempt_schedule_irq(void)
5609{
5610 struct thread_info *ti = current_thread_info();
6478d880 5611
2ed6e34f 5612 /* Catch callers which need to be fixed */
1da177e4
LT
5613 BUG_ON(ti->preempt_count || !irqs_disabled());
5614
3a5c359a
AK
5615 do {
5616 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5617 local_irq_enable();
5618 schedule();
5619 local_irq_disable();
3a5c359a 5620 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5621
3a5c359a
AK
5622 /*
5623 * Check again in case we missed a preemption opportunity
5624 * between schedule and now.
5625 */
5626 barrier();
5ed0cec0 5627 } while (need_resched());
1da177e4
LT
5628}
5629
5630#endif /* CONFIG_PREEMPT */
5631
63859d4f 5632int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5633 void *key)
1da177e4 5634{
63859d4f 5635 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5636}
1da177e4
LT
5637EXPORT_SYMBOL(default_wake_function);
5638
5639/*
41a2d6cf
IM
5640 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5641 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5642 * number) then we wake all the non-exclusive tasks and one exclusive task.
5643 *
5644 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5645 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5646 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5647 */
78ddb08f 5648static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5649 int nr_exclusive, int wake_flags, void *key)
1da177e4 5650{
2e45874c 5651 wait_queue_t *curr, *next;
1da177e4 5652
2e45874c 5653 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5654 unsigned flags = curr->flags;
5655
63859d4f 5656 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5657 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5658 break;
5659 }
5660}
5661
5662/**
5663 * __wake_up - wake up threads blocked on a waitqueue.
5664 * @q: the waitqueue
5665 * @mode: which threads
5666 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5667 * @key: is directly passed to the wakeup function
50fa610a
DH
5668 *
5669 * It may be assumed that this function implies a write memory barrier before
5670 * changing the task state if and only if any tasks are woken up.
1da177e4 5671 */
7ad5b3a5 5672void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5673 int nr_exclusive, void *key)
1da177e4
LT
5674{
5675 unsigned long flags;
5676
5677 spin_lock_irqsave(&q->lock, flags);
5678 __wake_up_common(q, mode, nr_exclusive, 0, key);
5679 spin_unlock_irqrestore(&q->lock, flags);
5680}
1da177e4
LT
5681EXPORT_SYMBOL(__wake_up);
5682
5683/*
5684 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5685 */
7ad5b3a5 5686void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5687{
5688 __wake_up_common(q, mode, 1, 0, NULL);
5689}
5690
4ede816a
DL
5691void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5692{
5693 __wake_up_common(q, mode, 1, 0, key);
5694}
5695
1da177e4 5696/**
4ede816a 5697 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5698 * @q: the waitqueue
5699 * @mode: which threads
5700 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5701 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5702 *
5703 * The sync wakeup differs that the waker knows that it will schedule
5704 * away soon, so while the target thread will be woken up, it will not
5705 * be migrated to another CPU - ie. the two threads are 'synchronized'
5706 * with each other. This can prevent needless bouncing between CPUs.
5707 *
5708 * On UP it can prevent extra preemption.
50fa610a
DH
5709 *
5710 * It may be assumed that this function implies a write memory barrier before
5711 * changing the task state if and only if any tasks are woken up.
1da177e4 5712 */
4ede816a
DL
5713void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5714 int nr_exclusive, void *key)
1da177e4
LT
5715{
5716 unsigned long flags;
7d478721 5717 int wake_flags = WF_SYNC;
1da177e4
LT
5718
5719 if (unlikely(!q))
5720 return;
5721
5722 if (unlikely(!nr_exclusive))
7d478721 5723 wake_flags = 0;
1da177e4
LT
5724
5725 spin_lock_irqsave(&q->lock, flags);
7d478721 5726 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5727 spin_unlock_irqrestore(&q->lock, flags);
5728}
4ede816a
DL
5729EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5730
5731/*
5732 * __wake_up_sync - see __wake_up_sync_key()
5733 */
5734void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5735{
5736 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5737}
1da177e4
LT
5738EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5739
65eb3dc6
KD
5740/**
5741 * complete: - signals a single thread waiting on this completion
5742 * @x: holds the state of this particular completion
5743 *
5744 * This will wake up a single thread waiting on this completion. Threads will be
5745 * awakened in the same order in which they were queued.
5746 *
5747 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5748 *
5749 * It may be assumed that this function implies a write memory barrier before
5750 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5751 */
b15136e9 5752void complete(struct completion *x)
1da177e4
LT
5753{
5754 unsigned long flags;
5755
5756 spin_lock_irqsave(&x->wait.lock, flags);
5757 x->done++;
d9514f6c 5758 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5759 spin_unlock_irqrestore(&x->wait.lock, flags);
5760}
5761EXPORT_SYMBOL(complete);
5762
65eb3dc6
KD
5763/**
5764 * complete_all: - signals all threads waiting on this completion
5765 * @x: holds the state of this particular completion
5766 *
5767 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5768 *
5769 * It may be assumed that this function implies a write memory barrier before
5770 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5771 */
b15136e9 5772void complete_all(struct completion *x)
1da177e4
LT
5773{
5774 unsigned long flags;
5775
5776 spin_lock_irqsave(&x->wait.lock, flags);
5777 x->done += UINT_MAX/2;
d9514f6c 5778 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5779 spin_unlock_irqrestore(&x->wait.lock, flags);
5780}
5781EXPORT_SYMBOL(complete_all);
5782
8cbbe86d
AK
5783static inline long __sched
5784do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5785{
1da177e4
LT
5786 if (!x->done) {
5787 DECLARE_WAITQUEUE(wait, current);
5788
5789 wait.flags |= WQ_FLAG_EXCLUSIVE;
5790 __add_wait_queue_tail(&x->wait, &wait);
5791 do {
94d3d824 5792 if (signal_pending_state(state, current)) {
ea71a546
ON
5793 timeout = -ERESTARTSYS;
5794 break;
8cbbe86d
AK
5795 }
5796 __set_current_state(state);
1da177e4
LT
5797 spin_unlock_irq(&x->wait.lock);
5798 timeout = schedule_timeout(timeout);
5799 spin_lock_irq(&x->wait.lock);
ea71a546 5800 } while (!x->done && timeout);
1da177e4 5801 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5802 if (!x->done)
5803 return timeout;
1da177e4
LT
5804 }
5805 x->done--;
ea71a546 5806 return timeout ?: 1;
1da177e4 5807}
1da177e4 5808
8cbbe86d
AK
5809static long __sched
5810wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5811{
1da177e4
LT
5812 might_sleep();
5813
5814 spin_lock_irq(&x->wait.lock);
8cbbe86d 5815 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5816 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5817 return timeout;
5818}
1da177e4 5819
65eb3dc6
KD
5820/**
5821 * wait_for_completion: - waits for completion of a task
5822 * @x: holds the state of this particular completion
5823 *
5824 * This waits to be signaled for completion of a specific task. It is NOT
5825 * interruptible and there is no timeout.
5826 *
5827 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5828 * and interrupt capability. Also see complete().
5829 */
b15136e9 5830void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5831{
5832 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5833}
8cbbe86d 5834EXPORT_SYMBOL(wait_for_completion);
1da177e4 5835
65eb3dc6
KD
5836/**
5837 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5838 * @x: holds the state of this particular completion
5839 * @timeout: timeout value in jiffies
5840 *
5841 * This waits for either a completion of a specific task to be signaled or for a
5842 * specified timeout to expire. The timeout is in jiffies. It is not
5843 * interruptible.
5844 */
b15136e9 5845unsigned long __sched
8cbbe86d 5846wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5847{
8cbbe86d 5848 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5849}
8cbbe86d 5850EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5851
65eb3dc6
KD
5852/**
5853 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5854 * @x: holds the state of this particular completion
5855 *
5856 * This waits for completion of a specific task to be signaled. It is
5857 * interruptible.
5858 */
8cbbe86d 5859int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5860{
51e97990
AK
5861 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5862 if (t == -ERESTARTSYS)
5863 return t;
5864 return 0;
0fec171c 5865}
8cbbe86d 5866EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5867
65eb3dc6
KD
5868/**
5869 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5870 * @x: holds the state of this particular completion
5871 * @timeout: timeout value in jiffies
5872 *
5873 * This waits for either a completion of a specific task to be signaled or for a
5874 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5875 */
b15136e9 5876unsigned long __sched
8cbbe86d
AK
5877wait_for_completion_interruptible_timeout(struct completion *x,
5878 unsigned long timeout)
0fec171c 5879{
8cbbe86d 5880 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5881}
8cbbe86d 5882EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5883
65eb3dc6
KD
5884/**
5885 * wait_for_completion_killable: - waits for completion of a task (killable)
5886 * @x: holds the state of this particular completion
5887 *
5888 * This waits to be signaled for completion of a specific task. It can be
5889 * interrupted by a kill signal.
5890 */
009e577e
MW
5891int __sched wait_for_completion_killable(struct completion *x)
5892{
5893 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5894 if (t == -ERESTARTSYS)
5895 return t;
5896 return 0;
5897}
5898EXPORT_SYMBOL(wait_for_completion_killable);
5899
be4de352
DC
5900/**
5901 * try_wait_for_completion - try to decrement a completion without blocking
5902 * @x: completion structure
5903 *
5904 * Returns: 0 if a decrement cannot be done without blocking
5905 * 1 if a decrement succeeded.
5906 *
5907 * If a completion is being used as a counting completion,
5908 * attempt to decrement the counter without blocking. This
5909 * enables us to avoid waiting if the resource the completion
5910 * is protecting is not available.
5911 */
5912bool try_wait_for_completion(struct completion *x)
5913{
5914 int ret = 1;
5915
5916 spin_lock_irq(&x->wait.lock);
5917 if (!x->done)
5918 ret = 0;
5919 else
5920 x->done--;
5921 spin_unlock_irq(&x->wait.lock);
5922 return ret;
5923}
5924EXPORT_SYMBOL(try_wait_for_completion);
5925
5926/**
5927 * completion_done - Test to see if a completion has any waiters
5928 * @x: completion structure
5929 *
5930 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5931 * 1 if there are no waiters.
5932 *
5933 */
5934bool completion_done(struct completion *x)
5935{
5936 int ret = 1;
5937
5938 spin_lock_irq(&x->wait.lock);
5939 if (!x->done)
5940 ret = 0;
5941 spin_unlock_irq(&x->wait.lock);
5942 return ret;
5943}
5944EXPORT_SYMBOL(completion_done);
5945
8cbbe86d
AK
5946static long __sched
5947sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5948{
0fec171c
IM
5949 unsigned long flags;
5950 wait_queue_t wait;
5951
5952 init_waitqueue_entry(&wait, current);
1da177e4 5953
8cbbe86d 5954 __set_current_state(state);
1da177e4 5955
8cbbe86d
AK
5956 spin_lock_irqsave(&q->lock, flags);
5957 __add_wait_queue(q, &wait);
5958 spin_unlock(&q->lock);
5959 timeout = schedule_timeout(timeout);
5960 spin_lock_irq(&q->lock);
5961 __remove_wait_queue(q, &wait);
5962 spin_unlock_irqrestore(&q->lock, flags);
5963
5964 return timeout;
5965}
5966
5967void __sched interruptible_sleep_on(wait_queue_head_t *q)
5968{
5969 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5970}
1da177e4
LT
5971EXPORT_SYMBOL(interruptible_sleep_on);
5972
0fec171c 5973long __sched
95cdf3b7 5974interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5975{
8cbbe86d 5976 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5977}
1da177e4
LT
5978EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5979
0fec171c 5980void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5981{
8cbbe86d 5982 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5983}
1da177e4
LT
5984EXPORT_SYMBOL(sleep_on);
5985
0fec171c 5986long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5987{
8cbbe86d 5988 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5989}
1da177e4
LT
5990EXPORT_SYMBOL(sleep_on_timeout);
5991
b29739f9
IM
5992#ifdef CONFIG_RT_MUTEXES
5993
5994/*
5995 * rt_mutex_setprio - set the current priority of a task
5996 * @p: task
5997 * @prio: prio value (kernel-internal form)
5998 *
5999 * This function changes the 'effective' priority of a task. It does
6000 * not touch ->normal_prio like __setscheduler().
6001 *
6002 * Used by the rt_mutex code to implement priority inheritance logic.
6003 */
36c8b586 6004void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
6005{
6006 unsigned long flags;
83b699ed 6007 int oldprio, on_rq, running;
70b97a7f 6008 struct rq *rq;
cb469845 6009 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
6010
6011 BUG_ON(prio < 0 || prio > MAX_PRIO);
6012
6013 rq = task_rq_lock(p, &flags);
a8e504d2 6014 update_rq_clock(rq);
b29739f9 6015
d5f9f942 6016 oldprio = p->prio;
dd41f596 6017 on_rq = p->se.on_rq;
051a1d1a 6018 running = task_current(rq, p);
0e1f3483 6019 if (on_rq)
69be72c1 6020 dequeue_task(rq, p, 0);
0e1f3483
HS
6021 if (running)
6022 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
6023
6024 if (rt_prio(prio))
6025 p->sched_class = &rt_sched_class;
6026 else
6027 p->sched_class = &fair_sched_class;
6028
b29739f9
IM
6029 p->prio = prio;
6030
0e1f3483
HS
6031 if (running)
6032 p->sched_class->set_curr_task(rq);
dd41f596 6033 if (on_rq) {
8159f87e 6034 enqueue_task(rq, p, 0);
cb469845
SR
6035
6036 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6037 }
6038 task_rq_unlock(rq, &flags);
6039}
6040
6041#endif
6042
36c8b586 6043void set_user_nice(struct task_struct *p, long nice)
1da177e4 6044{
dd41f596 6045 int old_prio, delta, on_rq;
1da177e4 6046 unsigned long flags;
70b97a7f 6047 struct rq *rq;
1da177e4
LT
6048
6049 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6050 return;
6051 /*
6052 * We have to be careful, if called from sys_setpriority(),
6053 * the task might be in the middle of scheduling on another CPU.
6054 */
6055 rq = task_rq_lock(p, &flags);
a8e504d2 6056 update_rq_clock(rq);
1da177e4
LT
6057 /*
6058 * The RT priorities are set via sched_setscheduler(), but we still
6059 * allow the 'normal' nice value to be set - but as expected
6060 * it wont have any effect on scheduling until the task is
dd41f596 6061 * SCHED_FIFO/SCHED_RR:
1da177e4 6062 */
e05606d3 6063 if (task_has_rt_policy(p)) {
1da177e4
LT
6064 p->static_prio = NICE_TO_PRIO(nice);
6065 goto out_unlock;
6066 }
dd41f596 6067 on_rq = p->se.on_rq;
c09595f6 6068 if (on_rq)
69be72c1 6069 dequeue_task(rq, p, 0);
1da177e4 6070
1da177e4 6071 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6072 set_load_weight(p);
b29739f9
IM
6073 old_prio = p->prio;
6074 p->prio = effective_prio(p);
6075 delta = p->prio - old_prio;
1da177e4 6076
dd41f596 6077 if (on_rq) {
8159f87e 6078 enqueue_task(rq, p, 0);
1da177e4 6079 /*
d5f9f942
AM
6080 * If the task increased its priority or is running and
6081 * lowered its priority, then reschedule its CPU:
1da177e4 6082 */
d5f9f942 6083 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6084 resched_task(rq->curr);
6085 }
6086out_unlock:
6087 task_rq_unlock(rq, &flags);
6088}
1da177e4
LT
6089EXPORT_SYMBOL(set_user_nice);
6090
e43379f1
MM
6091/*
6092 * can_nice - check if a task can reduce its nice value
6093 * @p: task
6094 * @nice: nice value
6095 */
36c8b586 6096int can_nice(const struct task_struct *p, const int nice)
e43379f1 6097{
024f4747
MM
6098 /* convert nice value [19,-20] to rlimit style value [1,40] */
6099 int nice_rlim = 20 - nice;
48f24c4d 6100
e43379f1
MM
6101 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6102 capable(CAP_SYS_NICE));
6103}
6104
1da177e4
LT
6105#ifdef __ARCH_WANT_SYS_NICE
6106
6107/*
6108 * sys_nice - change the priority of the current process.
6109 * @increment: priority increment
6110 *
6111 * sys_setpriority is a more generic, but much slower function that
6112 * does similar things.
6113 */
5add95d4 6114SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6115{
48f24c4d 6116 long nice, retval;
1da177e4
LT
6117
6118 /*
6119 * Setpriority might change our priority at the same moment.
6120 * We don't have to worry. Conceptually one call occurs first
6121 * and we have a single winner.
6122 */
e43379f1
MM
6123 if (increment < -40)
6124 increment = -40;
1da177e4
LT
6125 if (increment > 40)
6126 increment = 40;
6127
2b8f836f 6128 nice = TASK_NICE(current) + increment;
1da177e4
LT
6129 if (nice < -20)
6130 nice = -20;
6131 if (nice > 19)
6132 nice = 19;
6133
e43379f1
MM
6134 if (increment < 0 && !can_nice(current, nice))
6135 return -EPERM;
6136
1da177e4
LT
6137 retval = security_task_setnice(current, nice);
6138 if (retval)
6139 return retval;
6140
6141 set_user_nice(current, nice);
6142 return 0;
6143}
6144
6145#endif
6146
6147/**
6148 * task_prio - return the priority value of a given task.
6149 * @p: the task in question.
6150 *
6151 * This is the priority value as seen by users in /proc.
6152 * RT tasks are offset by -200. Normal tasks are centered
6153 * around 0, value goes from -16 to +15.
6154 */
36c8b586 6155int task_prio(const struct task_struct *p)
1da177e4
LT
6156{
6157 return p->prio - MAX_RT_PRIO;
6158}
6159
6160/**
6161 * task_nice - return the nice value of a given task.
6162 * @p: the task in question.
6163 */
36c8b586 6164int task_nice(const struct task_struct *p)
1da177e4
LT
6165{
6166 return TASK_NICE(p);
6167}
150d8bed 6168EXPORT_SYMBOL(task_nice);
1da177e4
LT
6169
6170/**
6171 * idle_cpu - is a given cpu idle currently?
6172 * @cpu: the processor in question.
6173 */
6174int idle_cpu(int cpu)
6175{
6176 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6177}
6178
1da177e4
LT
6179/**
6180 * idle_task - return the idle task for a given cpu.
6181 * @cpu: the processor in question.
6182 */
36c8b586 6183struct task_struct *idle_task(int cpu)
1da177e4
LT
6184{
6185 return cpu_rq(cpu)->idle;
6186}
6187
6188/**
6189 * find_process_by_pid - find a process with a matching PID value.
6190 * @pid: the pid in question.
6191 */
a9957449 6192static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6193{
228ebcbe 6194 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6195}
6196
6197/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6198static void
6199__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6200{
dd41f596 6201 BUG_ON(p->se.on_rq);
48f24c4d 6202
1da177e4
LT
6203 p->policy = policy;
6204 p->rt_priority = prio;
b29739f9
IM
6205 p->normal_prio = normal_prio(p);
6206 /* we are holding p->pi_lock already */
6207 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
6208 if (rt_prio(p->prio))
6209 p->sched_class = &rt_sched_class;
6210 else
6211 p->sched_class = &fair_sched_class;
2dd73a4f 6212 set_load_weight(p);
1da177e4
LT
6213}
6214
c69e8d9c
DH
6215/*
6216 * check the target process has a UID that matches the current process's
6217 */
6218static bool check_same_owner(struct task_struct *p)
6219{
6220 const struct cred *cred = current_cred(), *pcred;
6221 bool match;
6222
6223 rcu_read_lock();
6224 pcred = __task_cred(p);
6225 match = (cred->euid == pcred->euid ||
6226 cred->euid == pcred->uid);
6227 rcu_read_unlock();
6228 return match;
6229}
6230
961ccddd
RR
6231static int __sched_setscheduler(struct task_struct *p, int policy,
6232 struct sched_param *param, bool user)
1da177e4 6233{
83b699ed 6234 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6235 unsigned long flags;
cb469845 6236 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6237 struct rq *rq;
ca94c442 6238 int reset_on_fork;
1da177e4 6239
66e5393a
SR
6240 /* may grab non-irq protected spin_locks */
6241 BUG_ON(in_interrupt());
1da177e4
LT
6242recheck:
6243 /* double check policy once rq lock held */
ca94c442
LP
6244 if (policy < 0) {
6245 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6246 policy = oldpolicy = p->policy;
ca94c442
LP
6247 } else {
6248 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6249 policy &= ~SCHED_RESET_ON_FORK;
6250
6251 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6252 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6253 policy != SCHED_IDLE)
6254 return -EINVAL;
6255 }
6256
1da177e4
LT
6257 /*
6258 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6259 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6260 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6261 */
6262 if (param->sched_priority < 0 ||
95cdf3b7 6263 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6264 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6265 return -EINVAL;
e05606d3 6266 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6267 return -EINVAL;
6268
37e4ab3f
OC
6269 /*
6270 * Allow unprivileged RT tasks to decrease priority:
6271 */
961ccddd 6272 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6273 if (rt_policy(policy)) {
8dc3e909 6274 unsigned long rlim_rtprio;
8dc3e909
ON
6275
6276 if (!lock_task_sighand(p, &flags))
6277 return -ESRCH;
6278 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6279 unlock_task_sighand(p, &flags);
6280
6281 /* can't set/change the rt policy */
6282 if (policy != p->policy && !rlim_rtprio)
6283 return -EPERM;
6284
6285 /* can't increase priority */
6286 if (param->sched_priority > p->rt_priority &&
6287 param->sched_priority > rlim_rtprio)
6288 return -EPERM;
6289 }
dd41f596
IM
6290 /*
6291 * Like positive nice levels, dont allow tasks to
6292 * move out of SCHED_IDLE either:
6293 */
6294 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6295 return -EPERM;
5fe1d75f 6296
37e4ab3f 6297 /* can't change other user's priorities */
c69e8d9c 6298 if (!check_same_owner(p))
37e4ab3f 6299 return -EPERM;
ca94c442
LP
6300
6301 /* Normal users shall not reset the sched_reset_on_fork flag */
6302 if (p->sched_reset_on_fork && !reset_on_fork)
6303 return -EPERM;
37e4ab3f 6304 }
1da177e4 6305
725aad24 6306 if (user) {
b68aa230 6307#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6308 /*
6309 * Do not allow realtime tasks into groups that have no runtime
6310 * assigned.
6311 */
9a7e0b18
PZ
6312 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6313 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6314 return -EPERM;
b68aa230
PZ
6315#endif
6316
725aad24
JF
6317 retval = security_task_setscheduler(p, policy, param);
6318 if (retval)
6319 return retval;
6320 }
6321
b29739f9
IM
6322 /*
6323 * make sure no PI-waiters arrive (or leave) while we are
6324 * changing the priority of the task:
6325 */
6326 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6327 /*
6328 * To be able to change p->policy safely, the apropriate
6329 * runqueue lock must be held.
6330 */
b29739f9 6331 rq = __task_rq_lock(p);
1da177e4
LT
6332 /* recheck policy now with rq lock held */
6333 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6334 policy = oldpolicy = -1;
b29739f9
IM
6335 __task_rq_unlock(rq);
6336 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6337 goto recheck;
6338 }
2daa3577 6339 update_rq_clock(rq);
dd41f596 6340 on_rq = p->se.on_rq;
051a1d1a 6341 running = task_current(rq, p);
0e1f3483 6342 if (on_rq)
2e1cb74a 6343 deactivate_task(rq, p, 0);
0e1f3483
HS
6344 if (running)
6345 p->sched_class->put_prev_task(rq, p);
f6b53205 6346
ca94c442
LP
6347 p->sched_reset_on_fork = reset_on_fork;
6348
1da177e4 6349 oldprio = p->prio;
dd41f596 6350 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6351
0e1f3483
HS
6352 if (running)
6353 p->sched_class->set_curr_task(rq);
dd41f596
IM
6354 if (on_rq) {
6355 activate_task(rq, p, 0);
cb469845
SR
6356
6357 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6358 }
b29739f9
IM
6359 __task_rq_unlock(rq);
6360 spin_unlock_irqrestore(&p->pi_lock, flags);
6361
95e02ca9
TG
6362 rt_mutex_adjust_pi(p);
6363
1da177e4
LT
6364 return 0;
6365}
961ccddd
RR
6366
6367/**
6368 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6369 * @p: the task in question.
6370 * @policy: new policy.
6371 * @param: structure containing the new RT priority.
6372 *
6373 * NOTE that the task may be already dead.
6374 */
6375int sched_setscheduler(struct task_struct *p, int policy,
6376 struct sched_param *param)
6377{
6378 return __sched_setscheduler(p, policy, param, true);
6379}
1da177e4
LT
6380EXPORT_SYMBOL_GPL(sched_setscheduler);
6381
961ccddd
RR
6382/**
6383 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6384 * @p: the task in question.
6385 * @policy: new policy.
6386 * @param: structure containing the new RT priority.
6387 *
6388 * Just like sched_setscheduler, only don't bother checking if the
6389 * current context has permission. For example, this is needed in
6390 * stop_machine(): we create temporary high priority worker threads,
6391 * but our caller might not have that capability.
6392 */
6393int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6394 struct sched_param *param)
6395{
6396 return __sched_setscheduler(p, policy, param, false);
6397}
6398
95cdf3b7
IM
6399static int
6400do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6401{
1da177e4
LT
6402 struct sched_param lparam;
6403 struct task_struct *p;
36c8b586 6404 int retval;
1da177e4
LT
6405
6406 if (!param || pid < 0)
6407 return -EINVAL;
6408 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6409 return -EFAULT;
5fe1d75f
ON
6410
6411 rcu_read_lock();
6412 retval = -ESRCH;
1da177e4 6413 p = find_process_by_pid(pid);
5fe1d75f
ON
6414 if (p != NULL)
6415 retval = sched_setscheduler(p, policy, &lparam);
6416 rcu_read_unlock();
36c8b586 6417
1da177e4
LT
6418 return retval;
6419}
6420
6421/**
6422 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6423 * @pid: the pid in question.
6424 * @policy: new policy.
6425 * @param: structure containing the new RT priority.
6426 */
5add95d4
HC
6427SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6428 struct sched_param __user *, param)
1da177e4 6429{
c21761f1
JB
6430 /* negative values for policy are not valid */
6431 if (policy < 0)
6432 return -EINVAL;
6433
1da177e4
LT
6434 return do_sched_setscheduler(pid, policy, param);
6435}
6436
6437/**
6438 * sys_sched_setparam - set/change the RT priority of a thread
6439 * @pid: the pid in question.
6440 * @param: structure containing the new RT priority.
6441 */
5add95d4 6442SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6443{
6444 return do_sched_setscheduler(pid, -1, param);
6445}
6446
6447/**
6448 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6449 * @pid: the pid in question.
6450 */
5add95d4 6451SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6452{
36c8b586 6453 struct task_struct *p;
3a5c359a 6454 int retval;
1da177e4
LT
6455
6456 if (pid < 0)
3a5c359a 6457 return -EINVAL;
1da177e4
LT
6458
6459 retval = -ESRCH;
6460 read_lock(&tasklist_lock);
6461 p = find_process_by_pid(pid);
6462 if (p) {
6463 retval = security_task_getscheduler(p);
6464 if (!retval)
ca94c442
LP
6465 retval = p->policy
6466 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6467 }
6468 read_unlock(&tasklist_lock);
1da177e4
LT
6469 return retval;
6470}
6471
6472/**
ca94c442 6473 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6474 * @pid: the pid in question.
6475 * @param: structure containing the RT priority.
6476 */
5add95d4 6477SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6478{
6479 struct sched_param lp;
36c8b586 6480 struct task_struct *p;
3a5c359a 6481 int retval;
1da177e4
LT
6482
6483 if (!param || pid < 0)
3a5c359a 6484 return -EINVAL;
1da177e4
LT
6485
6486 read_lock(&tasklist_lock);
6487 p = find_process_by_pid(pid);
6488 retval = -ESRCH;
6489 if (!p)
6490 goto out_unlock;
6491
6492 retval = security_task_getscheduler(p);
6493 if (retval)
6494 goto out_unlock;
6495
6496 lp.sched_priority = p->rt_priority;
6497 read_unlock(&tasklist_lock);
6498
6499 /*
6500 * This one might sleep, we cannot do it with a spinlock held ...
6501 */
6502 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6503
1da177e4
LT
6504 return retval;
6505
6506out_unlock:
6507 read_unlock(&tasklist_lock);
6508 return retval;
6509}
6510
96f874e2 6511long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6512{
5a16f3d3 6513 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6514 struct task_struct *p;
6515 int retval;
1da177e4 6516
95402b38 6517 get_online_cpus();
1da177e4
LT
6518 read_lock(&tasklist_lock);
6519
6520 p = find_process_by_pid(pid);
6521 if (!p) {
6522 read_unlock(&tasklist_lock);
95402b38 6523 put_online_cpus();
1da177e4
LT
6524 return -ESRCH;
6525 }
6526
6527 /*
6528 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6529 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6530 * usage count and then drop tasklist_lock.
6531 */
6532 get_task_struct(p);
6533 read_unlock(&tasklist_lock);
6534
5a16f3d3
RR
6535 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6536 retval = -ENOMEM;
6537 goto out_put_task;
6538 }
6539 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6540 retval = -ENOMEM;
6541 goto out_free_cpus_allowed;
6542 }
1da177e4 6543 retval = -EPERM;
c69e8d9c 6544 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6545 goto out_unlock;
6546
e7834f8f
DQ
6547 retval = security_task_setscheduler(p, 0, NULL);
6548 if (retval)
6549 goto out_unlock;
6550
5a16f3d3
RR
6551 cpuset_cpus_allowed(p, cpus_allowed);
6552 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6553 again:
5a16f3d3 6554 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6555
8707d8b8 6556 if (!retval) {
5a16f3d3
RR
6557 cpuset_cpus_allowed(p, cpus_allowed);
6558 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6559 /*
6560 * We must have raced with a concurrent cpuset
6561 * update. Just reset the cpus_allowed to the
6562 * cpuset's cpus_allowed
6563 */
5a16f3d3 6564 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6565 goto again;
6566 }
6567 }
1da177e4 6568out_unlock:
5a16f3d3
RR
6569 free_cpumask_var(new_mask);
6570out_free_cpus_allowed:
6571 free_cpumask_var(cpus_allowed);
6572out_put_task:
1da177e4 6573 put_task_struct(p);
95402b38 6574 put_online_cpus();
1da177e4
LT
6575 return retval;
6576}
6577
6578static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6579 struct cpumask *new_mask)
1da177e4 6580{
96f874e2
RR
6581 if (len < cpumask_size())
6582 cpumask_clear(new_mask);
6583 else if (len > cpumask_size())
6584 len = cpumask_size();
6585
1da177e4
LT
6586 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6587}
6588
6589/**
6590 * sys_sched_setaffinity - set the cpu affinity of a process
6591 * @pid: pid of the process
6592 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6593 * @user_mask_ptr: user-space pointer to the new cpu mask
6594 */
5add95d4
HC
6595SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6596 unsigned long __user *, user_mask_ptr)
1da177e4 6597{
5a16f3d3 6598 cpumask_var_t new_mask;
1da177e4
LT
6599 int retval;
6600
5a16f3d3
RR
6601 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6602 return -ENOMEM;
1da177e4 6603
5a16f3d3
RR
6604 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6605 if (retval == 0)
6606 retval = sched_setaffinity(pid, new_mask);
6607 free_cpumask_var(new_mask);
6608 return retval;
1da177e4
LT
6609}
6610
96f874e2 6611long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6612{
36c8b586 6613 struct task_struct *p;
31605683
TG
6614 unsigned long flags;
6615 struct rq *rq;
1da177e4 6616 int retval;
1da177e4 6617
95402b38 6618 get_online_cpus();
1da177e4
LT
6619 read_lock(&tasklist_lock);
6620
6621 retval = -ESRCH;
6622 p = find_process_by_pid(pid);
6623 if (!p)
6624 goto out_unlock;
6625
e7834f8f
DQ
6626 retval = security_task_getscheduler(p);
6627 if (retval)
6628 goto out_unlock;
6629
31605683 6630 rq = task_rq_lock(p, &flags);
96f874e2 6631 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 6632 task_rq_unlock(rq, &flags);
1da177e4
LT
6633
6634out_unlock:
6635 read_unlock(&tasklist_lock);
95402b38 6636 put_online_cpus();
1da177e4 6637
9531b62f 6638 return retval;
1da177e4
LT
6639}
6640
6641/**
6642 * sys_sched_getaffinity - get the cpu affinity of a process
6643 * @pid: pid of the process
6644 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6645 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6646 */
5add95d4
HC
6647SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6648 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6649{
6650 int ret;
f17c8607 6651 cpumask_var_t mask;
1da177e4 6652
f17c8607 6653 if (len < cpumask_size())
1da177e4
LT
6654 return -EINVAL;
6655
f17c8607
RR
6656 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6657 return -ENOMEM;
1da177e4 6658
f17c8607
RR
6659 ret = sched_getaffinity(pid, mask);
6660 if (ret == 0) {
6661 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6662 ret = -EFAULT;
6663 else
6664 ret = cpumask_size();
6665 }
6666 free_cpumask_var(mask);
1da177e4 6667
f17c8607 6668 return ret;
1da177e4
LT
6669}
6670
6671/**
6672 * sys_sched_yield - yield the current processor to other threads.
6673 *
dd41f596
IM
6674 * This function yields the current CPU to other tasks. If there are no
6675 * other threads running on this CPU then this function will return.
1da177e4 6676 */
5add95d4 6677SYSCALL_DEFINE0(sched_yield)
1da177e4 6678{
70b97a7f 6679 struct rq *rq = this_rq_lock();
1da177e4 6680
2d72376b 6681 schedstat_inc(rq, yld_count);
4530d7ab 6682 current->sched_class->yield_task(rq);
1da177e4
LT
6683
6684 /*
6685 * Since we are going to call schedule() anyway, there's
6686 * no need to preempt or enable interrupts:
6687 */
6688 __release(rq->lock);
8a25d5de 6689 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6690 _raw_spin_unlock(&rq->lock);
6691 preempt_enable_no_resched();
6692
6693 schedule();
6694
6695 return 0;
6696}
6697
d86ee480
PZ
6698static inline int should_resched(void)
6699{
6700 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6701}
6702
e7b38404 6703static void __cond_resched(void)
1da177e4 6704{
e7aaaa69
FW
6705 add_preempt_count(PREEMPT_ACTIVE);
6706 schedule();
6707 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6708}
6709
02b67cc3 6710int __sched _cond_resched(void)
1da177e4 6711{
d86ee480 6712 if (should_resched()) {
1da177e4
LT
6713 __cond_resched();
6714 return 1;
6715 }
6716 return 0;
6717}
02b67cc3 6718EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6719
6720/*
613afbf8 6721 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6722 * call schedule, and on return reacquire the lock.
6723 *
41a2d6cf 6724 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6725 * operations here to prevent schedule() from being called twice (once via
6726 * spin_unlock(), once by hand).
6727 */
613afbf8 6728int __cond_resched_lock(spinlock_t *lock)
1da177e4 6729{
d86ee480 6730 int resched = should_resched();
6df3cecb
JK
6731 int ret = 0;
6732
f607c668
PZ
6733 lockdep_assert_held(lock);
6734
95c354fe 6735 if (spin_needbreak(lock) || resched) {
1da177e4 6736 spin_unlock(lock);
d86ee480 6737 if (resched)
95c354fe
NP
6738 __cond_resched();
6739 else
6740 cpu_relax();
6df3cecb 6741 ret = 1;
1da177e4 6742 spin_lock(lock);
1da177e4 6743 }
6df3cecb 6744 return ret;
1da177e4 6745}
613afbf8 6746EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6747
613afbf8 6748int __sched __cond_resched_softirq(void)
1da177e4
LT
6749{
6750 BUG_ON(!in_softirq());
6751
d86ee480 6752 if (should_resched()) {
98d82567 6753 local_bh_enable();
1da177e4
LT
6754 __cond_resched();
6755 local_bh_disable();
6756 return 1;
6757 }
6758 return 0;
6759}
613afbf8 6760EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6761
1da177e4
LT
6762/**
6763 * yield - yield the current processor to other threads.
6764 *
72fd4a35 6765 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6766 * thread runnable and calls sys_sched_yield().
6767 */
6768void __sched yield(void)
6769{
6770 set_current_state(TASK_RUNNING);
6771 sys_sched_yield();
6772}
1da177e4
LT
6773EXPORT_SYMBOL(yield);
6774
6775/*
41a2d6cf 6776 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6777 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6778 */
6779void __sched io_schedule(void)
6780{
54d35f29 6781 struct rq *rq = raw_rq();
1da177e4 6782
0ff92245 6783 delayacct_blkio_start();
1da177e4 6784 atomic_inc(&rq->nr_iowait);
8f0dfc34 6785 current->in_iowait = 1;
1da177e4 6786 schedule();
8f0dfc34 6787 current->in_iowait = 0;
1da177e4 6788 atomic_dec(&rq->nr_iowait);
0ff92245 6789 delayacct_blkio_end();
1da177e4 6790}
1da177e4
LT
6791EXPORT_SYMBOL(io_schedule);
6792
6793long __sched io_schedule_timeout(long timeout)
6794{
54d35f29 6795 struct rq *rq = raw_rq();
1da177e4
LT
6796 long ret;
6797
0ff92245 6798 delayacct_blkio_start();
1da177e4 6799 atomic_inc(&rq->nr_iowait);
8f0dfc34 6800 current->in_iowait = 1;
1da177e4 6801 ret = schedule_timeout(timeout);
8f0dfc34 6802 current->in_iowait = 0;
1da177e4 6803 atomic_dec(&rq->nr_iowait);
0ff92245 6804 delayacct_blkio_end();
1da177e4
LT
6805 return ret;
6806}
6807
6808/**
6809 * sys_sched_get_priority_max - return maximum RT priority.
6810 * @policy: scheduling class.
6811 *
6812 * this syscall returns the maximum rt_priority that can be used
6813 * by a given scheduling class.
6814 */
5add95d4 6815SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6816{
6817 int ret = -EINVAL;
6818
6819 switch (policy) {
6820 case SCHED_FIFO:
6821 case SCHED_RR:
6822 ret = MAX_USER_RT_PRIO-1;
6823 break;
6824 case SCHED_NORMAL:
b0a9499c 6825 case SCHED_BATCH:
dd41f596 6826 case SCHED_IDLE:
1da177e4
LT
6827 ret = 0;
6828 break;
6829 }
6830 return ret;
6831}
6832
6833/**
6834 * sys_sched_get_priority_min - return minimum RT priority.
6835 * @policy: scheduling class.
6836 *
6837 * this syscall returns the minimum rt_priority that can be used
6838 * by a given scheduling class.
6839 */
5add95d4 6840SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6841{
6842 int ret = -EINVAL;
6843
6844 switch (policy) {
6845 case SCHED_FIFO:
6846 case SCHED_RR:
6847 ret = 1;
6848 break;
6849 case SCHED_NORMAL:
b0a9499c 6850 case SCHED_BATCH:
dd41f596 6851 case SCHED_IDLE:
1da177e4
LT
6852 ret = 0;
6853 }
6854 return ret;
6855}
6856
6857/**
6858 * sys_sched_rr_get_interval - return the default timeslice of a process.
6859 * @pid: pid of the process.
6860 * @interval: userspace pointer to the timeslice value.
6861 *
6862 * this syscall writes the default timeslice value of a given process
6863 * into the user-space timespec buffer. A value of '0' means infinity.
6864 */
17da2bd9 6865SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6866 struct timespec __user *, interval)
1da177e4 6867{
36c8b586 6868 struct task_struct *p;
a4ec24b4 6869 unsigned int time_slice;
dba091b9
TG
6870 unsigned long flags;
6871 struct rq *rq;
3a5c359a 6872 int retval;
1da177e4 6873 struct timespec t;
1da177e4
LT
6874
6875 if (pid < 0)
3a5c359a 6876 return -EINVAL;
1da177e4
LT
6877
6878 retval = -ESRCH;
6879 read_lock(&tasklist_lock);
6880 p = find_process_by_pid(pid);
6881 if (!p)
6882 goto out_unlock;
6883
6884 retval = security_task_getscheduler(p);
6885 if (retval)
6886 goto out_unlock;
6887
dba091b9
TG
6888 rq = task_rq_lock(p, &flags);
6889 time_slice = p->sched_class->get_rr_interval(rq, p);
6890 task_rq_unlock(rq, &flags);
a4ec24b4 6891
1da177e4 6892 read_unlock(&tasklist_lock);
a4ec24b4 6893 jiffies_to_timespec(time_slice, &t);
1da177e4 6894 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6895 return retval;
3a5c359a 6896
1da177e4
LT
6897out_unlock:
6898 read_unlock(&tasklist_lock);
6899 return retval;
6900}
6901
7c731e0a 6902static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6903
82a1fcb9 6904void sched_show_task(struct task_struct *p)
1da177e4 6905{
1da177e4 6906 unsigned long free = 0;
36c8b586 6907 unsigned state;
1da177e4 6908
1da177e4 6909 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6910 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6911 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6912#if BITS_PER_LONG == 32
1da177e4 6913 if (state == TASK_RUNNING)
cc4ea795 6914 printk(KERN_CONT " running ");
1da177e4 6915 else
cc4ea795 6916 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6917#else
6918 if (state == TASK_RUNNING)
cc4ea795 6919 printk(KERN_CONT " running task ");
1da177e4 6920 else
cc4ea795 6921 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6922#endif
6923#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6924 free = stack_not_used(p);
1da177e4 6925#endif
aa47b7e0
DR
6926 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6927 task_pid_nr(p), task_pid_nr(p->real_parent),
6928 (unsigned long)task_thread_info(p)->flags);
1da177e4 6929
5fb5e6de 6930 show_stack(p, NULL);
1da177e4
LT
6931}
6932
e59e2ae2 6933void show_state_filter(unsigned long state_filter)
1da177e4 6934{
36c8b586 6935 struct task_struct *g, *p;
1da177e4 6936
4bd77321
IM
6937#if BITS_PER_LONG == 32
6938 printk(KERN_INFO
6939 " task PC stack pid father\n");
1da177e4 6940#else
4bd77321
IM
6941 printk(KERN_INFO
6942 " task PC stack pid father\n");
1da177e4
LT
6943#endif
6944 read_lock(&tasklist_lock);
6945 do_each_thread(g, p) {
6946 /*
6947 * reset the NMI-timeout, listing all files on a slow
6948 * console might take alot of time:
6949 */
6950 touch_nmi_watchdog();
39bc89fd 6951 if (!state_filter || (p->state & state_filter))
82a1fcb9 6952 sched_show_task(p);
1da177e4
LT
6953 } while_each_thread(g, p);
6954
04c9167f
JF
6955 touch_all_softlockup_watchdogs();
6956
dd41f596
IM
6957#ifdef CONFIG_SCHED_DEBUG
6958 sysrq_sched_debug_show();
6959#endif
1da177e4 6960 read_unlock(&tasklist_lock);
e59e2ae2
IM
6961 /*
6962 * Only show locks if all tasks are dumped:
6963 */
93335a21 6964 if (!state_filter)
e59e2ae2 6965 debug_show_all_locks();
1da177e4
LT
6966}
6967
1df21055
IM
6968void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6969{
dd41f596 6970 idle->sched_class = &idle_sched_class;
1df21055
IM
6971}
6972
f340c0d1
IM
6973/**
6974 * init_idle - set up an idle thread for a given CPU
6975 * @idle: task in question
6976 * @cpu: cpu the idle task belongs to
6977 *
6978 * NOTE: this function does not set the idle thread's NEED_RESCHED
6979 * flag, to make booting more robust.
6980 */
5c1e1767 6981void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6982{
70b97a7f 6983 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6984 unsigned long flags;
6985
5cbd54ef
IM
6986 spin_lock_irqsave(&rq->lock, flags);
6987
dd41f596
IM
6988 __sched_fork(idle);
6989 idle->se.exec_start = sched_clock();
6990
b29739f9 6991 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6992 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6993 __set_task_cpu(idle, cpu);
1da177e4 6994
1da177e4 6995 rq->curr = rq->idle = idle;
4866cde0
NP
6996#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6997 idle->oncpu = 1;
6998#endif
1da177e4
LT
6999 spin_unlock_irqrestore(&rq->lock, flags);
7000
7001 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
7002#if defined(CONFIG_PREEMPT)
7003 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7004#else
a1261f54 7005 task_thread_info(idle)->preempt_count = 0;
8e3e076c 7006#endif
dd41f596
IM
7007 /*
7008 * The idle tasks have their own, simple scheduling class:
7009 */
7010 idle->sched_class = &idle_sched_class;
fb52607a 7011 ftrace_graph_init_task(idle);
1da177e4
LT
7012}
7013
7014/*
7015 * In a system that switches off the HZ timer nohz_cpu_mask
7016 * indicates which cpus entered this state. This is used
7017 * in the rcu update to wait only for active cpus. For system
7018 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 7019 * always be CPU_BITS_NONE.
1da177e4 7020 */
6a7b3dc3 7021cpumask_var_t nohz_cpu_mask;
1da177e4 7022
19978ca6
IM
7023/*
7024 * Increase the granularity value when there are more CPUs,
7025 * because with more CPUs the 'effective latency' as visible
7026 * to users decreases. But the relationship is not linear,
7027 * so pick a second-best guess by going with the log2 of the
7028 * number of CPUs.
7029 *
7030 * This idea comes from the SD scheduler of Con Kolivas:
7031 */
7032static inline void sched_init_granularity(void)
7033{
7034 unsigned int factor = 1 + ilog2(num_online_cpus());
7035 const unsigned long limit = 200000000;
7036
7037 sysctl_sched_min_granularity *= factor;
7038 if (sysctl_sched_min_granularity > limit)
7039 sysctl_sched_min_granularity = limit;
7040
7041 sysctl_sched_latency *= factor;
7042 if (sysctl_sched_latency > limit)
7043 sysctl_sched_latency = limit;
7044
7045 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
7046
7047 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
7048}
7049
1da177e4
LT
7050#ifdef CONFIG_SMP
7051/*
7052 * This is how migration works:
7053 *
70b97a7f 7054 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7055 * runqueue and wake up that CPU's migration thread.
7056 * 2) we down() the locked semaphore => thread blocks.
7057 * 3) migration thread wakes up (implicitly it forces the migrated
7058 * thread off the CPU)
7059 * 4) it gets the migration request and checks whether the migrated
7060 * task is still in the wrong runqueue.
7061 * 5) if it's in the wrong runqueue then the migration thread removes
7062 * it and puts it into the right queue.
7063 * 6) migration thread up()s the semaphore.
7064 * 7) we wake up and the migration is done.
7065 */
7066
7067/*
7068 * Change a given task's CPU affinity. Migrate the thread to a
7069 * proper CPU and schedule it away if the CPU it's executing on
7070 * is removed from the allowed bitmask.
7071 *
7072 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7073 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7074 * call is not atomic; no spinlocks may be held.
7075 */
96f874e2 7076int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7077{
70b97a7f 7078 struct migration_req req;
1da177e4 7079 unsigned long flags;
70b97a7f 7080 struct rq *rq;
48f24c4d 7081 int ret = 0;
1da177e4
LT
7082
7083 rq = task_rq_lock(p, &flags);
6ad4c188 7084 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
7085 ret = -EINVAL;
7086 goto out;
7087 }
7088
9985b0ba 7089 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7090 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7091 ret = -EINVAL;
7092 goto out;
7093 }
7094
73fe6aae 7095 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7096 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7097 else {
96f874e2
RR
7098 cpumask_copy(&p->cpus_allowed, new_mask);
7099 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7100 }
7101
1da177e4 7102 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7103 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7104 goto out;
7105
6ad4c188 7106 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 7107 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7108 struct task_struct *mt = rq->migration_thread;
7109
7110 get_task_struct(mt);
1da177e4
LT
7111 task_rq_unlock(rq, &flags);
7112 wake_up_process(rq->migration_thread);
693525e3 7113 put_task_struct(mt);
1da177e4
LT
7114 wait_for_completion(&req.done);
7115 tlb_migrate_finish(p->mm);
7116 return 0;
7117 }
7118out:
7119 task_rq_unlock(rq, &flags);
48f24c4d 7120
1da177e4
LT
7121 return ret;
7122}
cd8ba7cd 7123EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7124
7125/*
41a2d6cf 7126 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7127 * this because either it can't run here any more (set_cpus_allowed()
7128 * away from this CPU, or CPU going down), or because we're
7129 * attempting to rebalance this task on exec (sched_exec).
7130 *
7131 * So we race with normal scheduler movements, but that's OK, as long
7132 * as the task is no longer on this CPU.
efc30814
KK
7133 *
7134 * Returns non-zero if task was successfully migrated.
1da177e4 7135 */
efc30814 7136static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7137{
70b97a7f 7138 struct rq *rq_dest, *rq_src;
dd41f596 7139 int ret = 0, on_rq;
1da177e4 7140
e761b772 7141 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7142 return ret;
1da177e4
LT
7143
7144 rq_src = cpu_rq(src_cpu);
7145 rq_dest = cpu_rq(dest_cpu);
7146
7147 double_rq_lock(rq_src, rq_dest);
7148 /* Already moved. */
7149 if (task_cpu(p) != src_cpu)
b1e38734 7150 goto done;
1da177e4 7151 /* Affinity changed (again). */
96f874e2 7152 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7153 goto fail;
1da177e4 7154
dd41f596 7155 on_rq = p->se.on_rq;
6e82a3be 7156 if (on_rq)
2e1cb74a 7157 deactivate_task(rq_src, p, 0);
6e82a3be 7158
1da177e4 7159 set_task_cpu(p, dest_cpu);
dd41f596
IM
7160 if (on_rq) {
7161 activate_task(rq_dest, p, 0);
15afe09b 7162 check_preempt_curr(rq_dest, p, 0);
1da177e4 7163 }
b1e38734 7164done:
efc30814 7165 ret = 1;
b1e38734 7166fail:
1da177e4 7167 double_rq_unlock(rq_src, rq_dest);
efc30814 7168 return ret;
1da177e4
LT
7169}
7170
03b042bf
PM
7171#define RCU_MIGRATION_IDLE 0
7172#define RCU_MIGRATION_NEED_QS 1
7173#define RCU_MIGRATION_GOT_QS 2
7174#define RCU_MIGRATION_MUST_SYNC 3
7175
1da177e4
LT
7176/*
7177 * migration_thread - this is a highprio system thread that performs
7178 * thread migration by bumping thread off CPU then 'pushing' onto
7179 * another runqueue.
7180 */
95cdf3b7 7181static int migration_thread(void *data)
1da177e4 7182{
03b042bf 7183 int badcpu;
1da177e4 7184 int cpu = (long)data;
70b97a7f 7185 struct rq *rq;
1da177e4
LT
7186
7187 rq = cpu_rq(cpu);
7188 BUG_ON(rq->migration_thread != current);
7189
7190 set_current_state(TASK_INTERRUPTIBLE);
7191 while (!kthread_should_stop()) {
70b97a7f 7192 struct migration_req *req;
1da177e4 7193 struct list_head *head;
1da177e4 7194
1da177e4
LT
7195 spin_lock_irq(&rq->lock);
7196
7197 if (cpu_is_offline(cpu)) {
7198 spin_unlock_irq(&rq->lock);
371cbb38 7199 break;
1da177e4
LT
7200 }
7201
7202 if (rq->active_balance) {
7203 active_load_balance(rq, cpu);
7204 rq->active_balance = 0;
7205 }
7206
7207 head = &rq->migration_queue;
7208
7209 if (list_empty(head)) {
7210 spin_unlock_irq(&rq->lock);
7211 schedule();
7212 set_current_state(TASK_INTERRUPTIBLE);
7213 continue;
7214 }
70b97a7f 7215 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7216 list_del_init(head->next);
7217
03b042bf
PM
7218 if (req->task != NULL) {
7219 spin_unlock(&rq->lock);
7220 __migrate_task(req->task, cpu, req->dest_cpu);
7221 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7222 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7223 spin_unlock(&rq->lock);
7224 } else {
7225 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7226 spin_unlock(&rq->lock);
7227 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7228 }
674311d5 7229 local_irq_enable();
1da177e4
LT
7230
7231 complete(&req->done);
7232 }
7233 __set_current_state(TASK_RUNNING);
1da177e4 7234
1da177e4
LT
7235 return 0;
7236}
7237
7238#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7239
7240static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7241{
7242 int ret;
7243
7244 local_irq_disable();
7245 ret = __migrate_task(p, src_cpu, dest_cpu);
7246 local_irq_enable();
7247 return ret;
7248}
7249
054b9108 7250/*
3a4fa0a2 7251 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7252 */
48f24c4d 7253static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7254{
70b97a7f 7255 int dest_cpu;
6ca09dfc 7256 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7257
7258again:
7259 /* Look for allowed, online CPU in same node. */
6ad4c188 7260 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
e76bd8d9
RR
7261 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7262 goto move;
7263
7264 /* Any allowed, online CPU? */
6ad4c188 7265 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
e76bd8d9
RR
7266 if (dest_cpu < nr_cpu_ids)
7267 goto move;
7268
7269 /* No more Mr. Nice Guy. */
7270 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9 7271 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6ad4c188 7272 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
1da177e4 7273
e76bd8d9
RR
7274 /*
7275 * Don't tell them about moving exiting tasks or
7276 * kernel threads (both mm NULL), since they never
7277 * leave kernel.
7278 */
7279 if (p->mm && printk_ratelimit()) {
7280 printk(KERN_INFO "process %d (%s) no "
7281 "longer affine to cpu%d\n",
7282 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7283 }
e76bd8d9
RR
7284 }
7285
7286move:
7287 /* It can have affinity changed while we were choosing. */
7288 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7289 goto again;
1da177e4
LT
7290}
7291
7292/*
7293 * While a dead CPU has no uninterruptible tasks queued at this point,
7294 * it might still have a nonzero ->nr_uninterruptible counter, because
7295 * for performance reasons the counter is not stricly tracking tasks to
7296 * their home CPUs. So we just add the counter to another CPU's counter,
7297 * to keep the global sum constant after CPU-down:
7298 */
70b97a7f 7299static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7300{
6ad4c188 7301 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
7302 unsigned long flags;
7303
7304 local_irq_save(flags);
7305 double_rq_lock(rq_src, rq_dest);
7306 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7307 rq_src->nr_uninterruptible = 0;
7308 double_rq_unlock(rq_src, rq_dest);
7309 local_irq_restore(flags);
7310}
7311
7312/* Run through task list and migrate tasks from the dead cpu. */
7313static void migrate_live_tasks(int src_cpu)
7314{
48f24c4d 7315 struct task_struct *p, *t;
1da177e4 7316
f7b4cddc 7317 read_lock(&tasklist_lock);
1da177e4 7318
48f24c4d
IM
7319 do_each_thread(t, p) {
7320 if (p == current)
1da177e4
LT
7321 continue;
7322
48f24c4d
IM
7323 if (task_cpu(p) == src_cpu)
7324 move_task_off_dead_cpu(src_cpu, p);
7325 } while_each_thread(t, p);
1da177e4 7326
f7b4cddc 7327 read_unlock(&tasklist_lock);
1da177e4
LT
7328}
7329
dd41f596
IM
7330/*
7331 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7332 * It does so by boosting its priority to highest possible.
7333 * Used by CPU offline code.
1da177e4
LT
7334 */
7335void sched_idle_next(void)
7336{
48f24c4d 7337 int this_cpu = smp_processor_id();
70b97a7f 7338 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7339 struct task_struct *p = rq->idle;
7340 unsigned long flags;
7341
7342 /* cpu has to be offline */
48f24c4d 7343 BUG_ON(cpu_online(this_cpu));
1da177e4 7344
48f24c4d
IM
7345 /*
7346 * Strictly not necessary since rest of the CPUs are stopped by now
7347 * and interrupts disabled on the current cpu.
1da177e4
LT
7348 */
7349 spin_lock_irqsave(&rq->lock, flags);
7350
dd41f596 7351 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7352
94bc9a7b
DA
7353 update_rq_clock(rq);
7354 activate_task(rq, p, 0);
1da177e4
LT
7355
7356 spin_unlock_irqrestore(&rq->lock, flags);
7357}
7358
48f24c4d
IM
7359/*
7360 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7361 * offline.
7362 */
7363void idle_task_exit(void)
7364{
7365 struct mm_struct *mm = current->active_mm;
7366
7367 BUG_ON(cpu_online(smp_processor_id()));
7368
7369 if (mm != &init_mm)
7370 switch_mm(mm, &init_mm, current);
7371 mmdrop(mm);
7372}
7373
054b9108 7374/* called under rq->lock with disabled interrupts */
36c8b586 7375static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7376{
70b97a7f 7377 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7378
7379 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7380 BUG_ON(!p->exit_state);
1da177e4
LT
7381
7382 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7383 BUG_ON(p->state == TASK_DEAD);
1da177e4 7384
48f24c4d 7385 get_task_struct(p);
1da177e4
LT
7386
7387 /*
7388 * Drop lock around migration; if someone else moves it,
41a2d6cf 7389 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7390 * fine.
7391 */
f7b4cddc 7392 spin_unlock_irq(&rq->lock);
48f24c4d 7393 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7394 spin_lock_irq(&rq->lock);
1da177e4 7395
48f24c4d 7396 put_task_struct(p);
1da177e4
LT
7397}
7398
7399/* release_task() removes task from tasklist, so we won't find dead tasks. */
7400static void migrate_dead_tasks(unsigned int dead_cpu)
7401{
70b97a7f 7402 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7403 struct task_struct *next;
48f24c4d 7404
dd41f596
IM
7405 for ( ; ; ) {
7406 if (!rq->nr_running)
7407 break;
a8e504d2 7408 update_rq_clock(rq);
b67802ea 7409 next = pick_next_task(rq);
dd41f596
IM
7410 if (!next)
7411 break;
79c53799 7412 next->sched_class->put_prev_task(rq, next);
dd41f596 7413 migrate_dead(dead_cpu, next);
e692ab53 7414
1da177e4
LT
7415 }
7416}
dce48a84
TG
7417
7418/*
7419 * remove the tasks which were accounted by rq from calc_load_tasks.
7420 */
7421static void calc_global_load_remove(struct rq *rq)
7422{
7423 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7424 rq->calc_load_active = 0;
dce48a84 7425}
1da177e4
LT
7426#endif /* CONFIG_HOTPLUG_CPU */
7427
e692ab53
NP
7428#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7429
7430static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7431 {
7432 .procname = "sched_domain",
c57baf1e 7433 .mode = 0555,
e0361851 7434 },
38605cae 7435 {0, },
e692ab53
NP
7436};
7437
7438static struct ctl_table sd_ctl_root[] = {
e0361851 7439 {
c57baf1e 7440 .ctl_name = CTL_KERN,
e0361851 7441 .procname = "kernel",
c57baf1e 7442 .mode = 0555,
e0361851
AD
7443 .child = sd_ctl_dir,
7444 },
38605cae 7445 {0, },
e692ab53
NP
7446};
7447
7448static struct ctl_table *sd_alloc_ctl_entry(int n)
7449{
7450 struct ctl_table *entry =
5cf9f062 7451 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7452
e692ab53
NP
7453 return entry;
7454}
7455
6382bc90
MM
7456static void sd_free_ctl_entry(struct ctl_table **tablep)
7457{
cd790076 7458 struct ctl_table *entry;
6382bc90 7459
cd790076
MM
7460 /*
7461 * In the intermediate directories, both the child directory and
7462 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7463 * will always be set. In the lowest directory the names are
cd790076
MM
7464 * static strings and all have proc handlers.
7465 */
7466 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7467 if (entry->child)
7468 sd_free_ctl_entry(&entry->child);
cd790076
MM
7469 if (entry->proc_handler == NULL)
7470 kfree(entry->procname);
7471 }
6382bc90
MM
7472
7473 kfree(*tablep);
7474 *tablep = NULL;
7475}
7476
e692ab53 7477static void
e0361851 7478set_table_entry(struct ctl_table *entry,
e692ab53
NP
7479 const char *procname, void *data, int maxlen,
7480 mode_t mode, proc_handler *proc_handler)
7481{
e692ab53
NP
7482 entry->procname = procname;
7483 entry->data = data;
7484 entry->maxlen = maxlen;
7485 entry->mode = mode;
7486 entry->proc_handler = proc_handler;
7487}
7488
7489static struct ctl_table *
7490sd_alloc_ctl_domain_table(struct sched_domain *sd)
7491{
a5d8c348 7492 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7493
ad1cdc1d
MM
7494 if (table == NULL)
7495 return NULL;
7496
e0361851 7497 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7498 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7499 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7500 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7501 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7502 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7503 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7504 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7505 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7506 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7507 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7508 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7509 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7510 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7511 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7512 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7513 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7514 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7515 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7516 &sd->cache_nice_tries,
7517 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7518 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7519 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7520 set_table_entry(&table[11], "name", sd->name,
7521 CORENAME_MAX_SIZE, 0444, proc_dostring);
7522 /* &table[12] is terminator */
e692ab53
NP
7523
7524 return table;
7525}
7526
9a4e7159 7527static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7528{
7529 struct ctl_table *entry, *table;
7530 struct sched_domain *sd;
7531 int domain_num = 0, i;
7532 char buf[32];
7533
7534 for_each_domain(cpu, sd)
7535 domain_num++;
7536 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7537 if (table == NULL)
7538 return NULL;
e692ab53
NP
7539
7540 i = 0;
7541 for_each_domain(cpu, sd) {
7542 snprintf(buf, 32, "domain%d", i);
e692ab53 7543 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7544 entry->mode = 0555;
e692ab53
NP
7545 entry->child = sd_alloc_ctl_domain_table(sd);
7546 entry++;
7547 i++;
7548 }
7549 return table;
7550}
7551
7552static struct ctl_table_header *sd_sysctl_header;
6382bc90 7553static void register_sched_domain_sysctl(void)
e692ab53 7554{
6ad4c188 7555 int i, cpu_num = num_possible_cpus();
e692ab53
NP
7556 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7557 char buf[32];
7558
7378547f
MM
7559 WARN_ON(sd_ctl_dir[0].child);
7560 sd_ctl_dir[0].child = entry;
7561
ad1cdc1d
MM
7562 if (entry == NULL)
7563 return;
7564
6ad4c188 7565 for_each_possible_cpu(i) {
e692ab53 7566 snprintf(buf, 32, "cpu%d", i);
e692ab53 7567 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7568 entry->mode = 0555;
e692ab53 7569 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7570 entry++;
e692ab53 7571 }
7378547f
MM
7572
7573 WARN_ON(sd_sysctl_header);
e692ab53
NP
7574 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7575}
6382bc90 7576
7378547f 7577/* may be called multiple times per register */
6382bc90
MM
7578static void unregister_sched_domain_sysctl(void)
7579{
7378547f
MM
7580 if (sd_sysctl_header)
7581 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7582 sd_sysctl_header = NULL;
7378547f
MM
7583 if (sd_ctl_dir[0].child)
7584 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7585}
e692ab53 7586#else
6382bc90
MM
7587static void register_sched_domain_sysctl(void)
7588{
7589}
7590static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7591{
7592}
7593#endif
7594
1f11eb6a
GH
7595static void set_rq_online(struct rq *rq)
7596{
7597 if (!rq->online) {
7598 const struct sched_class *class;
7599
c6c4927b 7600 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7601 rq->online = 1;
7602
7603 for_each_class(class) {
7604 if (class->rq_online)
7605 class->rq_online(rq);
7606 }
7607 }
7608}
7609
7610static void set_rq_offline(struct rq *rq)
7611{
7612 if (rq->online) {
7613 const struct sched_class *class;
7614
7615 for_each_class(class) {
7616 if (class->rq_offline)
7617 class->rq_offline(rq);
7618 }
7619
c6c4927b 7620 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7621 rq->online = 0;
7622 }
7623}
7624
1da177e4
LT
7625/*
7626 * migration_call - callback that gets triggered when a CPU is added.
7627 * Here we can start up the necessary migration thread for the new CPU.
7628 */
48f24c4d
IM
7629static int __cpuinit
7630migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7631{
1da177e4 7632 struct task_struct *p;
48f24c4d 7633 int cpu = (long)hcpu;
1da177e4 7634 unsigned long flags;
70b97a7f 7635 struct rq *rq;
1da177e4
LT
7636
7637 switch (action) {
5be9361c 7638
1da177e4 7639 case CPU_UP_PREPARE:
8bb78442 7640 case CPU_UP_PREPARE_FROZEN:
dd41f596 7641 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7642 if (IS_ERR(p))
7643 return NOTIFY_BAD;
1da177e4
LT
7644 kthread_bind(p, cpu);
7645 /* Must be high prio: stop_machine expects to yield to it. */
7646 rq = task_rq_lock(p, &flags);
dd41f596 7647 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7648 task_rq_unlock(rq, &flags);
371cbb38 7649 get_task_struct(p);
1da177e4 7650 cpu_rq(cpu)->migration_thread = p;
a468d389 7651 rq->calc_load_update = calc_load_update;
1da177e4 7652 break;
48f24c4d 7653
1da177e4 7654 case CPU_ONLINE:
8bb78442 7655 case CPU_ONLINE_FROZEN:
3a4fa0a2 7656 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7657 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7658
7659 /* Update our root-domain */
7660 rq = cpu_rq(cpu);
7661 spin_lock_irqsave(&rq->lock, flags);
7662 if (rq->rd) {
c6c4927b 7663 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7664
7665 set_rq_online(rq);
1f94ef59
GH
7666 }
7667 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7668 break;
48f24c4d 7669
1da177e4
LT
7670#ifdef CONFIG_HOTPLUG_CPU
7671 case CPU_UP_CANCELED:
8bb78442 7672 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7673 if (!cpu_rq(cpu)->migration_thread)
7674 break;
41a2d6cf 7675 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7676 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7677 cpumask_any(cpu_online_mask));
1da177e4 7678 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7679 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7680 cpu_rq(cpu)->migration_thread = NULL;
7681 break;
48f24c4d 7682
1da177e4 7683 case CPU_DEAD:
8bb78442 7684 case CPU_DEAD_FROZEN:
470fd646 7685 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7686 migrate_live_tasks(cpu);
7687 rq = cpu_rq(cpu);
7688 kthread_stop(rq->migration_thread);
371cbb38 7689 put_task_struct(rq->migration_thread);
1da177e4
LT
7690 rq->migration_thread = NULL;
7691 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7692 spin_lock_irq(&rq->lock);
a8e504d2 7693 update_rq_clock(rq);
2e1cb74a 7694 deactivate_task(rq, rq->idle, 0);
1da177e4 7695 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7696 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7697 rq->idle->sched_class = &idle_sched_class;
1da177e4 7698 migrate_dead_tasks(cpu);
d2da272a 7699 spin_unlock_irq(&rq->lock);
470fd646 7700 cpuset_unlock();
1da177e4
LT
7701 migrate_nr_uninterruptible(rq);
7702 BUG_ON(rq->nr_running != 0);
dce48a84 7703 calc_global_load_remove(rq);
41a2d6cf
IM
7704 /*
7705 * No need to migrate the tasks: it was best-effort if
7706 * they didn't take sched_hotcpu_mutex. Just wake up
7707 * the requestors.
7708 */
1da177e4
LT
7709 spin_lock_irq(&rq->lock);
7710 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7711 struct migration_req *req;
7712
1da177e4 7713 req = list_entry(rq->migration_queue.next,
70b97a7f 7714 struct migration_req, list);
1da177e4 7715 list_del_init(&req->list);
9a2bd244 7716 spin_unlock_irq(&rq->lock);
1da177e4 7717 complete(&req->done);
9a2bd244 7718 spin_lock_irq(&rq->lock);
1da177e4
LT
7719 }
7720 spin_unlock_irq(&rq->lock);
7721 break;
57d885fe 7722
08f503b0
GH
7723 case CPU_DYING:
7724 case CPU_DYING_FROZEN:
57d885fe
GH
7725 /* Update our root-domain */
7726 rq = cpu_rq(cpu);
7727 spin_lock_irqsave(&rq->lock, flags);
7728 if (rq->rd) {
c6c4927b 7729 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7730 set_rq_offline(rq);
57d885fe
GH
7731 }
7732 spin_unlock_irqrestore(&rq->lock, flags);
7733 break;
1da177e4
LT
7734#endif
7735 }
7736 return NOTIFY_OK;
7737}
7738
f38b0820
PM
7739/*
7740 * Register at high priority so that task migration (migrate_all_tasks)
7741 * happens before everything else. This has to be lower priority than
cdd6c482 7742 * the notifier in the perf_event subsystem, though.
1da177e4 7743 */
26c2143b 7744static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7745 .notifier_call = migration_call,
7746 .priority = 10
7747};
7748
7babe8db 7749static int __init migration_init(void)
1da177e4
LT
7750{
7751 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7752 int err;
48f24c4d
IM
7753
7754 /* Start one for the boot CPU: */
07dccf33
AM
7755 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7756 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7757 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7758 register_cpu_notifier(&migration_notifier);
7babe8db 7759
a004cd42 7760 return 0;
1da177e4 7761}
7babe8db 7762early_initcall(migration_init);
1da177e4
LT
7763#endif
7764
7765#ifdef CONFIG_SMP
476f3534 7766
3e9830dc 7767#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7768
f6630114
MT
7769static __read_mostly int sched_domain_debug_enabled;
7770
7771static int __init sched_domain_debug_setup(char *str)
7772{
7773 sched_domain_debug_enabled = 1;
7774
7775 return 0;
7776}
7777early_param("sched_debug", sched_domain_debug_setup);
7778
7c16ec58 7779static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7780 struct cpumask *groupmask)
1da177e4 7781{
4dcf6aff 7782 struct sched_group *group = sd->groups;
434d53b0 7783 char str[256];
1da177e4 7784
968ea6d8 7785 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7786 cpumask_clear(groupmask);
4dcf6aff
IM
7787
7788 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7789
7790 if (!(sd->flags & SD_LOAD_BALANCE)) {
7791 printk("does not load-balance\n");
7792 if (sd->parent)
7793 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7794 " has parent");
7795 return -1;
41c7ce9a
NP
7796 }
7797
eefd796a 7798 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7799
758b2cdc 7800 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7801 printk(KERN_ERR "ERROR: domain->span does not contain "
7802 "CPU%d\n", cpu);
7803 }
758b2cdc 7804 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7805 printk(KERN_ERR "ERROR: domain->groups does not contain"
7806 " CPU%d\n", cpu);
7807 }
1da177e4 7808
4dcf6aff 7809 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7810 do {
4dcf6aff
IM
7811 if (!group) {
7812 printk("\n");
7813 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7814 break;
7815 }
7816
18a3885f 7817 if (!group->cpu_power) {
4dcf6aff
IM
7818 printk(KERN_CONT "\n");
7819 printk(KERN_ERR "ERROR: domain->cpu_power not "
7820 "set\n");
7821 break;
7822 }
1da177e4 7823
758b2cdc 7824 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7825 printk(KERN_CONT "\n");
7826 printk(KERN_ERR "ERROR: empty group\n");
7827 break;
7828 }
1da177e4 7829
758b2cdc 7830 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7831 printk(KERN_CONT "\n");
7832 printk(KERN_ERR "ERROR: repeated CPUs\n");
7833 break;
7834 }
1da177e4 7835
758b2cdc 7836 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7837
968ea6d8 7838 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7839
7840 printk(KERN_CONT " %s", str);
18a3885f
PZ
7841 if (group->cpu_power != SCHED_LOAD_SCALE) {
7842 printk(KERN_CONT " (cpu_power = %d)",
7843 group->cpu_power);
381512cf 7844 }
1da177e4 7845
4dcf6aff
IM
7846 group = group->next;
7847 } while (group != sd->groups);
7848 printk(KERN_CONT "\n");
1da177e4 7849
758b2cdc 7850 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7851 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7852
758b2cdc
RR
7853 if (sd->parent &&
7854 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7855 printk(KERN_ERR "ERROR: parent span is not a superset "
7856 "of domain->span\n");
7857 return 0;
7858}
1da177e4 7859
4dcf6aff
IM
7860static void sched_domain_debug(struct sched_domain *sd, int cpu)
7861{
d5dd3db1 7862 cpumask_var_t groupmask;
4dcf6aff 7863 int level = 0;
1da177e4 7864
f6630114
MT
7865 if (!sched_domain_debug_enabled)
7866 return;
7867
4dcf6aff
IM
7868 if (!sd) {
7869 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7870 return;
7871 }
1da177e4 7872
4dcf6aff
IM
7873 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7874
d5dd3db1 7875 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7876 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7877 return;
7878 }
7879
4dcf6aff 7880 for (;;) {
7c16ec58 7881 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7882 break;
1da177e4
LT
7883 level++;
7884 sd = sd->parent;
33859f7f 7885 if (!sd)
4dcf6aff
IM
7886 break;
7887 }
d5dd3db1 7888 free_cpumask_var(groupmask);
1da177e4 7889}
6d6bc0ad 7890#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7891# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7892#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7893
1a20ff27 7894static int sd_degenerate(struct sched_domain *sd)
245af2c7 7895{
758b2cdc 7896 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7897 return 1;
7898
7899 /* Following flags need at least 2 groups */
7900 if (sd->flags & (SD_LOAD_BALANCE |
7901 SD_BALANCE_NEWIDLE |
7902 SD_BALANCE_FORK |
89c4710e
SS
7903 SD_BALANCE_EXEC |
7904 SD_SHARE_CPUPOWER |
7905 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7906 if (sd->groups != sd->groups->next)
7907 return 0;
7908 }
7909
7910 /* Following flags don't use groups */
c88d5910 7911 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7912 return 0;
7913
7914 return 1;
7915}
7916
48f24c4d
IM
7917static int
7918sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7919{
7920 unsigned long cflags = sd->flags, pflags = parent->flags;
7921
7922 if (sd_degenerate(parent))
7923 return 1;
7924
758b2cdc 7925 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7926 return 0;
7927
245af2c7
SS
7928 /* Flags needing groups don't count if only 1 group in parent */
7929 if (parent->groups == parent->groups->next) {
7930 pflags &= ~(SD_LOAD_BALANCE |
7931 SD_BALANCE_NEWIDLE |
7932 SD_BALANCE_FORK |
89c4710e
SS
7933 SD_BALANCE_EXEC |
7934 SD_SHARE_CPUPOWER |
7935 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7936 if (nr_node_ids == 1)
7937 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7938 }
7939 if (~cflags & pflags)
7940 return 0;
7941
7942 return 1;
7943}
7944
c6c4927b
RR
7945static void free_rootdomain(struct root_domain *rd)
7946{
047106ad
PZ
7947 synchronize_sched();
7948
68e74568
RR
7949 cpupri_cleanup(&rd->cpupri);
7950
c6c4927b
RR
7951 free_cpumask_var(rd->rto_mask);
7952 free_cpumask_var(rd->online);
7953 free_cpumask_var(rd->span);
7954 kfree(rd);
7955}
7956
57d885fe
GH
7957static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7958{
a0490fa3 7959 struct root_domain *old_rd = NULL;
57d885fe 7960 unsigned long flags;
57d885fe
GH
7961
7962 spin_lock_irqsave(&rq->lock, flags);
7963
7964 if (rq->rd) {
a0490fa3 7965 old_rd = rq->rd;
57d885fe 7966
c6c4927b 7967 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7968 set_rq_offline(rq);
57d885fe 7969
c6c4927b 7970 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7971
a0490fa3
IM
7972 /*
7973 * If we dont want to free the old_rt yet then
7974 * set old_rd to NULL to skip the freeing later
7975 * in this function:
7976 */
7977 if (!atomic_dec_and_test(&old_rd->refcount))
7978 old_rd = NULL;
57d885fe
GH
7979 }
7980
7981 atomic_inc(&rd->refcount);
7982 rq->rd = rd;
7983
c6c4927b 7984 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 7985 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 7986 set_rq_online(rq);
57d885fe
GH
7987
7988 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7989
7990 if (old_rd)
7991 free_rootdomain(old_rd);
57d885fe
GH
7992}
7993
fd5e1b5d 7994static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7995{
36b7b6d4
PE
7996 gfp_t gfp = GFP_KERNEL;
7997
57d885fe
GH
7998 memset(rd, 0, sizeof(*rd));
7999
36b7b6d4
PE
8000 if (bootmem)
8001 gfp = GFP_NOWAIT;
c6c4927b 8002
36b7b6d4 8003 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 8004 goto out;
36b7b6d4 8005 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 8006 goto free_span;
36b7b6d4 8007 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 8008 goto free_online;
6e0534f2 8009
0fb53029 8010 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 8011 goto free_rto_mask;
c6c4927b 8012 return 0;
6e0534f2 8013
68e74568
RR
8014free_rto_mask:
8015 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
8016free_online:
8017 free_cpumask_var(rd->online);
8018free_span:
8019 free_cpumask_var(rd->span);
0c910d28 8020out:
c6c4927b 8021 return -ENOMEM;
57d885fe
GH
8022}
8023
8024static void init_defrootdomain(void)
8025{
c6c4927b
RR
8026 init_rootdomain(&def_root_domain, true);
8027
57d885fe
GH
8028 atomic_set(&def_root_domain.refcount, 1);
8029}
8030
dc938520 8031static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
8032{
8033 struct root_domain *rd;
8034
8035 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8036 if (!rd)
8037 return NULL;
8038
c6c4927b
RR
8039 if (init_rootdomain(rd, false) != 0) {
8040 kfree(rd);
8041 return NULL;
8042 }
57d885fe
GH
8043
8044 return rd;
8045}
8046
1da177e4 8047/*
0eab9146 8048 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8049 * hold the hotplug lock.
8050 */
0eab9146
IM
8051static void
8052cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8053{
70b97a7f 8054 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8055 struct sched_domain *tmp;
8056
8057 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8058 for (tmp = sd; tmp; ) {
245af2c7
SS
8059 struct sched_domain *parent = tmp->parent;
8060 if (!parent)
8061 break;
f29c9b1c 8062
1a848870 8063 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8064 tmp->parent = parent->parent;
1a848870
SS
8065 if (parent->parent)
8066 parent->parent->child = tmp;
f29c9b1c
LZ
8067 } else
8068 tmp = tmp->parent;
245af2c7
SS
8069 }
8070
1a848870 8071 if (sd && sd_degenerate(sd)) {
245af2c7 8072 sd = sd->parent;
1a848870
SS
8073 if (sd)
8074 sd->child = NULL;
8075 }
1da177e4
LT
8076
8077 sched_domain_debug(sd, cpu);
8078
57d885fe 8079 rq_attach_root(rq, rd);
674311d5 8080 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8081}
8082
8083/* cpus with isolated domains */
dcc30a35 8084static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8085
8086/* Setup the mask of cpus configured for isolated domains */
8087static int __init isolated_cpu_setup(char *str)
8088{
bdddd296 8089 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 8090 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8091 return 1;
8092}
8093
8927f494 8094__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8095
8096/*
6711cab4
SS
8097 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8098 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8099 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8100 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8101 *
8102 * init_sched_build_groups will build a circular linked list of the groups
8103 * covered by the given span, and will set each group's ->cpumask correctly,
8104 * and ->cpu_power to 0.
8105 */
a616058b 8106static void
96f874e2
RR
8107init_sched_build_groups(const struct cpumask *span,
8108 const struct cpumask *cpu_map,
8109 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8110 struct sched_group **sg,
96f874e2
RR
8111 struct cpumask *tmpmask),
8112 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8113{
8114 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8115 int i;
8116
96f874e2 8117 cpumask_clear(covered);
7c16ec58 8118
abcd083a 8119 for_each_cpu(i, span) {
6711cab4 8120 struct sched_group *sg;
7c16ec58 8121 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8122 int j;
8123
758b2cdc 8124 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8125 continue;
8126
758b2cdc 8127 cpumask_clear(sched_group_cpus(sg));
18a3885f 8128 sg->cpu_power = 0;
1da177e4 8129
abcd083a 8130 for_each_cpu(j, span) {
7c16ec58 8131 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8132 continue;
8133
96f874e2 8134 cpumask_set_cpu(j, covered);
758b2cdc 8135 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8136 }
8137 if (!first)
8138 first = sg;
8139 if (last)
8140 last->next = sg;
8141 last = sg;
8142 }
8143 last->next = first;
8144}
8145
9c1cfda2 8146#define SD_NODES_PER_DOMAIN 16
1da177e4 8147
9c1cfda2 8148#ifdef CONFIG_NUMA
198e2f18 8149
9c1cfda2
JH
8150/**
8151 * find_next_best_node - find the next node to include in a sched_domain
8152 * @node: node whose sched_domain we're building
8153 * @used_nodes: nodes already in the sched_domain
8154 *
41a2d6cf 8155 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8156 * finds the closest node not already in the @used_nodes map.
8157 *
8158 * Should use nodemask_t.
8159 */
c5f59f08 8160static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8161{
8162 int i, n, val, min_val, best_node = 0;
8163
8164 min_val = INT_MAX;
8165
076ac2af 8166 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8167 /* Start at @node */
076ac2af 8168 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8169
8170 if (!nr_cpus_node(n))
8171 continue;
8172
8173 /* Skip already used nodes */
c5f59f08 8174 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8175 continue;
8176
8177 /* Simple min distance search */
8178 val = node_distance(node, n);
8179
8180 if (val < min_val) {
8181 min_val = val;
8182 best_node = n;
8183 }
8184 }
8185
c5f59f08 8186 node_set(best_node, *used_nodes);
9c1cfda2
JH
8187 return best_node;
8188}
8189
8190/**
8191 * sched_domain_node_span - get a cpumask for a node's sched_domain
8192 * @node: node whose cpumask we're constructing
73486722 8193 * @span: resulting cpumask
9c1cfda2 8194 *
41a2d6cf 8195 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8196 * should be one that prevents unnecessary balancing, but also spreads tasks
8197 * out optimally.
8198 */
96f874e2 8199static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8200{
c5f59f08 8201 nodemask_t used_nodes;
48f24c4d 8202 int i;
9c1cfda2 8203
6ca09dfc 8204 cpumask_clear(span);
c5f59f08 8205 nodes_clear(used_nodes);
9c1cfda2 8206
6ca09dfc 8207 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8208 node_set(node, used_nodes);
9c1cfda2
JH
8209
8210 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8211 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8212
6ca09dfc 8213 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8214 }
9c1cfda2 8215}
6d6bc0ad 8216#endif /* CONFIG_NUMA */
9c1cfda2 8217
5c45bf27 8218int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8219
6c99e9ad
RR
8220/*
8221 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8222 *
8223 * ( See the the comments in include/linux/sched.h:struct sched_group
8224 * and struct sched_domain. )
6c99e9ad
RR
8225 */
8226struct static_sched_group {
8227 struct sched_group sg;
8228 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8229};
8230
8231struct static_sched_domain {
8232 struct sched_domain sd;
8233 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8234};
8235
49a02c51
AH
8236struct s_data {
8237#ifdef CONFIG_NUMA
8238 int sd_allnodes;
8239 cpumask_var_t domainspan;
8240 cpumask_var_t covered;
8241 cpumask_var_t notcovered;
8242#endif
8243 cpumask_var_t nodemask;
8244 cpumask_var_t this_sibling_map;
8245 cpumask_var_t this_core_map;
8246 cpumask_var_t send_covered;
8247 cpumask_var_t tmpmask;
8248 struct sched_group **sched_group_nodes;
8249 struct root_domain *rd;
8250};
8251
2109b99e
AH
8252enum s_alloc {
8253 sa_sched_groups = 0,
8254 sa_rootdomain,
8255 sa_tmpmask,
8256 sa_send_covered,
8257 sa_this_core_map,
8258 sa_this_sibling_map,
8259 sa_nodemask,
8260 sa_sched_group_nodes,
8261#ifdef CONFIG_NUMA
8262 sa_notcovered,
8263 sa_covered,
8264 sa_domainspan,
8265#endif
8266 sa_none,
8267};
8268
9c1cfda2 8269/*
48f24c4d 8270 * SMT sched-domains:
9c1cfda2 8271 */
1da177e4 8272#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8273static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8274static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8275
41a2d6cf 8276static int
96f874e2
RR
8277cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8278 struct sched_group **sg, struct cpumask *unused)
1da177e4 8279{
6711cab4 8280 if (sg)
6c99e9ad 8281 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8282 return cpu;
8283}
6d6bc0ad 8284#endif /* CONFIG_SCHED_SMT */
1da177e4 8285
48f24c4d
IM
8286/*
8287 * multi-core sched-domains:
8288 */
1e9f28fa 8289#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8290static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8291static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8292#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8293
8294#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8295static int
96f874e2
RR
8296cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8297 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8298{
6711cab4 8299 int group;
7c16ec58 8300
c69fc56d 8301 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8302 group = cpumask_first(mask);
6711cab4 8303 if (sg)
6c99e9ad 8304 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8305 return group;
1e9f28fa
SS
8306}
8307#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8308static int
96f874e2
RR
8309cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8310 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8311{
6711cab4 8312 if (sg)
6c99e9ad 8313 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8314 return cpu;
8315}
8316#endif
8317
6c99e9ad
RR
8318static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8319static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8320
41a2d6cf 8321static int
96f874e2
RR
8322cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8323 struct sched_group **sg, struct cpumask *mask)
1da177e4 8324{
6711cab4 8325 int group;
48f24c4d 8326#ifdef CONFIG_SCHED_MC
6ca09dfc 8327 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8328 group = cpumask_first(mask);
1e9f28fa 8329#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8330 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8331 group = cpumask_first(mask);
1da177e4 8332#else
6711cab4 8333 group = cpu;
1da177e4 8334#endif
6711cab4 8335 if (sg)
6c99e9ad 8336 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8337 return group;
1da177e4
LT
8338}
8339
8340#ifdef CONFIG_NUMA
1da177e4 8341/*
9c1cfda2
JH
8342 * The init_sched_build_groups can't handle what we want to do with node
8343 * groups, so roll our own. Now each node has its own list of groups which
8344 * gets dynamically allocated.
1da177e4 8345 */
62ea9ceb 8346static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8347static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8348
62ea9ceb 8349static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8350static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8351
96f874e2
RR
8352static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8353 struct sched_group **sg,
8354 struct cpumask *nodemask)
9c1cfda2 8355{
6711cab4
SS
8356 int group;
8357
6ca09dfc 8358 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8359 group = cpumask_first(nodemask);
6711cab4
SS
8360
8361 if (sg)
6c99e9ad 8362 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8363 return group;
1da177e4 8364}
6711cab4 8365
08069033
SS
8366static void init_numa_sched_groups_power(struct sched_group *group_head)
8367{
8368 struct sched_group *sg = group_head;
8369 int j;
8370
8371 if (!sg)
8372 return;
3a5c359a 8373 do {
758b2cdc 8374 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8375 struct sched_domain *sd;
08069033 8376
6c99e9ad 8377 sd = &per_cpu(phys_domains, j).sd;
13318a71 8378 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8379 /*
8380 * Only add "power" once for each
8381 * physical package.
8382 */
8383 continue;
8384 }
08069033 8385
18a3885f 8386 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8387 }
8388 sg = sg->next;
8389 } while (sg != group_head);
08069033 8390}
0601a88d
AH
8391
8392static int build_numa_sched_groups(struct s_data *d,
8393 const struct cpumask *cpu_map, int num)
8394{
8395 struct sched_domain *sd;
8396 struct sched_group *sg, *prev;
8397 int n, j;
8398
8399 cpumask_clear(d->covered);
8400 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8401 if (cpumask_empty(d->nodemask)) {
8402 d->sched_group_nodes[num] = NULL;
8403 goto out;
8404 }
8405
8406 sched_domain_node_span(num, d->domainspan);
8407 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8408
8409 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8410 GFP_KERNEL, num);
8411 if (!sg) {
8412 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8413 num);
8414 return -ENOMEM;
8415 }
8416 d->sched_group_nodes[num] = sg;
8417
8418 for_each_cpu(j, d->nodemask) {
8419 sd = &per_cpu(node_domains, j).sd;
8420 sd->groups = sg;
8421 }
8422
18a3885f 8423 sg->cpu_power = 0;
0601a88d
AH
8424 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8425 sg->next = sg;
8426 cpumask_or(d->covered, d->covered, d->nodemask);
8427
8428 prev = sg;
8429 for (j = 0; j < nr_node_ids; j++) {
8430 n = (num + j) % nr_node_ids;
8431 cpumask_complement(d->notcovered, d->covered);
8432 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8433 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8434 if (cpumask_empty(d->tmpmask))
8435 break;
8436 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8437 if (cpumask_empty(d->tmpmask))
8438 continue;
8439 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8440 GFP_KERNEL, num);
8441 if (!sg) {
8442 printk(KERN_WARNING
8443 "Can not alloc domain group for node %d\n", j);
8444 return -ENOMEM;
8445 }
18a3885f 8446 sg->cpu_power = 0;
0601a88d
AH
8447 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8448 sg->next = prev->next;
8449 cpumask_or(d->covered, d->covered, d->tmpmask);
8450 prev->next = sg;
8451 prev = sg;
8452 }
8453out:
8454 return 0;
8455}
6d6bc0ad 8456#endif /* CONFIG_NUMA */
1da177e4 8457
a616058b 8458#ifdef CONFIG_NUMA
51888ca2 8459/* Free memory allocated for various sched_group structures */
96f874e2
RR
8460static void free_sched_groups(const struct cpumask *cpu_map,
8461 struct cpumask *nodemask)
51888ca2 8462{
a616058b 8463 int cpu, i;
51888ca2 8464
abcd083a 8465 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8466 struct sched_group **sched_group_nodes
8467 = sched_group_nodes_bycpu[cpu];
8468
51888ca2
SV
8469 if (!sched_group_nodes)
8470 continue;
8471
076ac2af 8472 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8473 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8474
6ca09dfc 8475 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8476 if (cpumask_empty(nodemask))
51888ca2
SV
8477 continue;
8478
8479 if (sg == NULL)
8480 continue;
8481 sg = sg->next;
8482next_sg:
8483 oldsg = sg;
8484 sg = sg->next;
8485 kfree(oldsg);
8486 if (oldsg != sched_group_nodes[i])
8487 goto next_sg;
8488 }
8489 kfree(sched_group_nodes);
8490 sched_group_nodes_bycpu[cpu] = NULL;
8491 }
51888ca2 8492}
6d6bc0ad 8493#else /* !CONFIG_NUMA */
96f874e2
RR
8494static void free_sched_groups(const struct cpumask *cpu_map,
8495 struct cpumask *nodemask)
a616058b
SS
8496{
8497}
6d6bc0ad 8498#endif /* CONFIG_NUMA */
51888ca2 8499
89c4710e
SS
8500/*
8501 * Initialize sched groups cpu_power.
8502 *
8503 * cpu_power indicates the capacity of sched group, which is used while
8504 * distributing the load between different sched groups in a sched domain.
8505 * Typically cpu_power for all the groups in a sched domain will be same unless
8506 * there are asymmetries in the topology. If there are asymmetries, group
8507 * having more cpu_power will pickup more load compared to the group having
8508 * less cpu_power.
89c4710e
SS
8509 */
8510static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8511{
8512 struct sched_domain *child;
8513 struct sched_group *group;
f93e65c1
PZ
8514 long power;
8515 int weight;
89c4710e
SS
8516
8517 WARN_ON(!sd || !sd->groups);
8518
13318a71 8519 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8520 return;
8521
8522 child = sd->child;
8523
18a3885f 8524 sd->groups->cpu_power = 0;
5517d86b 8525
f93e65c1
PZ
8526 if (!child) {
8527 power = SCHED_LOAD_SCALE;
8528 weight = cpumask_weight(sched_domain_span(sd));
8529 /*
8530 * SMT siblings share the power of a single core.
a52bfd73
PZ
8531 * Usually multiple threads get a better yield out of
8532 * that one core than a single thread would have,
8533 * reflect that in sd->smt_gain.
f93e65c1 8534 */
a52bfd73
PZ
8535 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8536 power *= sd->smt_gain;
f93e65c1 8537 power /= weight;
a52bfd73
PZ
8538 power >>= SCHED_LOAD_SHIFT;
8539 }
18a3885f 8540 sd->groups->cpu_power += power;
89c4710e
SS
8541 return;
8542 }
8543
89c4710e 8544 /*
f93e65c1 8545 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8546 */
8547 group = child->groups;
8548 do {
18a3885f 8549 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8550 group = group->next;
8551 } while (group != child->groups);
8552}
8553
7c16ec58
MT
8554/*
8555 * Initializers for schedule domains
8556 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8557 */
8558
a5d8c348
IM
8559#ifdef CONFIG_SCHED_DEBUG
8560# define SD_INIT_NAME(sd, type) sd->name = #type
8561#else
8562# define SD_INIT_NAME(sd, type) do { } while (0)
8563#endif
8564
7c16ec58 8565#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8566
7c16ec58
MT
8567#define SD_INIT_FUNC(type) \
8568static noinline void sd_init_##type(struct sched_domain *sd) \
8569{ \
8570 memset(sd, 0, sizeof(*sd)); \
8571 *sd = SD_##type##_INIT; \
1d3504fc 8572 sd->level = SD_LV_##type; \
a5d8c348 8573 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8574}
8575
8576SD_INIT_FUNC(CPU)
8577#ifdef CONFIG_NUMA
8578 SD_INIT_FUNC(ALLNODES)
8579 SD_INIT_FUNC(NODE)
8580#endif
8581#ifdef CONFIG_SCHED_SMT
8582 SD_INIT_FUNC(SIBLING)
8583#endif
8584#ifdef CONFIG_SCHED_MC
8585 SD_INIT_FUNC(MC)
8586#endif
8587
1d3504fc
HS
8588static int default_relax_domain_level = -1;
8589
8590static int __init setup_relax_domain_level(char *str)
8591{
30e0e178
LZ
8592 unsigned long val;
8593
8594 val = simple_strtoul(str, NULL, 0);
8595 if (val < SD_LV_MAX)
8596 default_relax_domain_level = val;
8597
1d3504fc
HS
8598 return 1;
8599}
8600__setup("relax_domain_level=", setup_relax_domain_level);
8601
8602static void set_domain_attribute(struct sched_domain *sd,
8603 struct sched_domain_attr *attr)
8604{
8605 int request;
8606
8607 if (!attr || attr->relax_domain_level < 0) {
8608 if (default_relax_domain_level < 0)
8609 return;
8610 else
8611 request = default_relax_domain_level;
8612 } else
8613 request = attr->relax_domain_level;
8614 if (request < sd->level) {
8615 /* turn off idle balance on this domain */
c88d5910 8616 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8617 } else {
8618 /* turn on idle balance on this domain */
c88d5910 8619 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8620 }
8621}
8622
2109b99e
AH
8623static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8624 const struct cpumask *cpu_map)
8625{
8626 switch (what) {
8627 case sa_sched_groups:
8628 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8629 d->sched_group_nodes = NULL;
8630 case sa_rootdomain:
8631 free_rootdomain(d->rd); /* fall through */
8632 case sa_tmpmask:
8633 free_cpumask_var(d->tmpmask); /* fall through */
8634 case sa_send_covered:
8635 free_cpumask_var(d->send_covered); /* fall through */
8636 case sa_this_core_map:
8637 free_cpumask_var(d->this_core_map); /* fall through */
8638 case sa_this_sibling_map:
8639 free_cpumask_var(d->this_sibling_map); /* fall through */
8640 case sa_nodemask:
8641 free_cpumask_var(d->nodemask); /* fall through */
8642 case sa_sched_group_nodes:
d1b55138 8643#ifdef CONFIG_NUMA
2109b99e
AH
8644 kfree(d->sched_group_nodes); /* fall through */
8645 case sa_notcovered:
8646 free_cpumask_var(d->notcovered); /* fall through */
8647 case sa_covered:
8648 free_cpumask_var(d->covered); /* fall through */
8649 case sa_domainspan:
8650 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8651#endif
2109b99e
AH
8652 case sa_none:
8653 break;
8654 }
8655}
3404c8d9 8656
2109b99e
AH
8657static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8658 const struct cpumask *cpu_map)
8659{
3404c8d9 8660#ifdef CONFIG_NUMA
2109b99e
AH
8661 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8662 return sa_none;
8663 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8664 return sa_domainspan;
8665 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8666 return sa_covered;
8667 /* Allocate the per-node list of sched groups */
8668 d->sched_group_nodes = kcalloc(nr_node_ids,
8669 sizeof(struct sched_group *), GFP_KERNEL);
8670 if (!d->sched_group_nodes) {
d1b55138 8671 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8672 return sa_notcovered;
d1b55138 8673 }
2109b99e 8674 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8675#endif
2109b99e
AH
8676 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8677 return sa_sched_group_nodes;
8678 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8679 return sa_nodemask;
8680 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8681 return sa_this_sibling_map;
8682 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8683 return sa_this_core_map;
8684 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8685 return sa_send_covered;
8686 d->rd = alloc_rootdomain();
8687 if (!d->rd) {
57d885fe 8688 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8689 return sa_tmpmask;
57d885fe 8690 }
2109b99e
AH
8691 return sa_rootdomain;
8692}
57d885fe 8693
7f4588f3
AH
8694static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8695 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8696{
8697 struct sched_domain *sd = NULL;
7c16ec58 8698#ifdef CONFIG_NUMA
7f4588f3 8699 struct sched_domain *parent;
1da177e4 8700
7f4588f3
AH
8701 d->sd_allnodes = 0;
8702 if (cpumask_weight(cpu_map) >
8703 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8704 sd = &per_cpu(allnodes_domains, i).sd;
8705 SD_INIT(sd, ALLNODES);
1d3504fc 8706 set_domain_attribute(sd, attr);
7f4588f3
AH
8707 cpumask_copy(sched_domain_span(sd), cpu_map);
8708 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8709 d->sd_allnodes = 1;
8710 }
8711 parent = sd;
8712
8713 sd = &per_cpu(node_domains, i).sd;
8714 SD_INIT(sd, NODE);
8715 set_domain_attribute(sd, attr);
8716 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8717 sd->parent = parent;
8718 if (parent)
8719 parent->child = sd;
8720 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8721#endif
7f4588f3
AH
8722 return sd;
8723}
1da177e4 8724
87cce662
AH
8725static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8726 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8727 struct sched_domain *parent, int i)
8728{
8729 struct sched_domain *sd;
8730 sd = &per_cpu(phys_domains, i).sd;
8731 SD_INIT(sd, CPU);
8732 set_domain_attribute(sd, attr);
8733 cpumask_copy(sched_domain_span(sd), d->nodemask);
8734 sd->parent = parent;
8735 if (parent)
8736 parent->child = sd;
8737 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8738 return sd;
8739}
1da177e4 8740
410c4081
AH
8741static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8742 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8743 struct sched_domain *parent, int i)
8744{
8745 struct sched_domain *sd = parent;
1e9f28fa 8746#ifdef CONFIG_SCHED_MC
410c4081
AH
8747 sd = &per_cpu(core_domains, i).sd;
8748 SD_INIT(sd, MC);
8749 set_domain_attribute(sd, attr);
8750 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8751 sd->parent = parent;
8752 parent->child = sd;
8753 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8754#endif
410c4081
AH
8755 return sd;
8756}
1e9f28fa 8757
d8173535
AH
8758static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8759 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8760 struct sched_domain *parent, int i)
8761{
8762 struct sched_domain *sd = parent;
1da177e4 8763#ifdef CONFIG_SCHED_SMT
d8173535
AH
8764 sd = &per_cpu(cpu_domains, i).sd;
8765 SD_INIT(sd, SIBLING);
8766 set_domain_attribute(sd, attr);
8767 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8768 sd->parent = parent;
8769 parent->child = sd;
8770 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8771#endif
d8173535
AH
8772 return sd;
8773}
1da177e4 8774
0e8e85c9
AH
8775static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8776 const struct cpumask *cpu_map, int cpu)
8777{
8778 switch (l) {
1da177e4 8779#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8780 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8781 cpumask_and(d->this_sibling_map, cpu_map,
8782 topology_thread_cpumask(cpu));
8783 if (cpu == cpumask_first(d->this_sibling_map))
8784 init_sched_build_groups(d->this_sibling_map, cpu_map,
8785 &cpu_to_cpu_group,
8786 d->send_covered, d->tmpmask);
8787 break;
1da177e4 8788#endif
1e9f28fa 8789#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8790 case SD_LV_MC: /* set up multi-core groups */
8791 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8792 if (cpu == cpumask_first(d->this_core_map))
8793 init_sched_build_groups(d->this_core_map, cpu_map,
8794 &cpu_to_core_group,
8795 d->send_covered, d->tmpmask);
8796 break;
1e9f28fa 8797#endif
86548096
AH
8798 case SD_LV_CPU: /* set up physical groups */
8799 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8800 if (!cpumask_empty(d->nodemask))
8801 init_sched_build_groups(d->nodemask, cpu_map,
8802 &cpu_to_phys_group,
8803 d->send_covered, d->tmpmask);
8804 break;
1da177e4 8805#ifdef CONFIG_NUMA
de616e36
AH
8806 case SD_LV_ALLNODES:
8807 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8808 d->send_covered, d->tmpmask);
8809 break;
8810#endif
0e8e85c9
AH
8811 default:
8812 break;
7c16ec58 8813 }
0e8e85c9 8814}
9c1cfda2 8815
2109b99e
AH
8816/*
8817 * Build sched domains for a given set of cpus and attach the sched domains
8818 * to the individual cpus
8819 */
8820static int __build_sched_domains(const struct cpumask *cpu_map,
8821 struct sched_domain_attr *attr)
8822{
8823 enum s_alloc alloc_state = sa_none;
8824 struct s_data d;
294b0c96 8825 struct sched_domain *sd;
2109b99e 8826 int i;
7c16ec58 8827#ifdef CONFIG_NUMA
2109b99e 8828 d.sd_allnodes = 0;
7c16ec58 8829#endif
9c1cfda2 8830
2109b99e
AH
8831 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8832 if (alloc_state != sa_rootdomain)
8833 goto error;
8834 alloc_state = sa_sched_groups;
9c1cfda2 8835
1da177e4 8836 /*
1a20ff27 8837 * Set up domains for cpus specified by the cpu_map.
1da177e4 8838 */
abcd083a 8839 for_each_cpu(i, cpu_map) {
49a02c51
AH
8840 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8841 cpu_map);
9761eea8 8842
7f4588f3 8843 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8844 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8845 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8846 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8847 }
9c1cfda2 8848
abcd083a 8849 for_each_cpu(i, cpu_map) {
0e8e85c9 8850 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8851 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8852 }
9c1cfda2 8853
1da177e4 8854 /* Set up physical groups */
86548096
AH
8855 for (i = 0; i < nr_node_ids; i++)
8856 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8857
1da177e4
LT
8858#ifdef CONFIG_NUMA
8859 /* Set up node groups */
de616e36
AH
8860 if (d.sd_allnodes)
8861 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8862
0601a88d
AH
8863 for (i = 0; i < nr_node_ids; i++)
8864 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8865 goto error;
1da177e4
LT
8866#endif
8867
8868 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8869#ifdef CONFIG_SCHED_SMT
abcd083a 8870 for_each_cpu(i, cpu_map) {
294b0c96 8871 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8872 init_sched_groups_power(i, sd);
5c45bf27 8873 }
1da177e4 8874#endif
1e9f28fa 8875#ifdef CONFIG_SCHED_MC
abcd083a 8876 for_each_cpu(i, cpu_map) {
294b0c96 8877 sd = &per_cpu(core_domains, i).sd;
89c4710e 8878 init_sched_groups_power(i, sd);
5c45bf27
SS
8879 }
8880#endif
1e9f28fa 8881
abcd083a 8882 for_each_cpu(i, cpu_map) {
294b0c96 8883 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8884 init_sched_groups_power(i, sd);
1da177e4
LT
8885 }
8886
9c1cfda2 8887#ifdef CONFIG_NUMA
076ac2af 8888 for (i = 0; i < nr_node_ids; i++)
49a02c51 8889 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8890
49a02c51 8891 if (d.sd_allnodes) {
6711cab4 8892 struct sched_group *sg;
f712c0c7 8893
96f874e2 8894 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8895 d.tmpmask);
f712c0c7
SS
8896 init_numa_sched_groups_power(sg);
8897 }
9c1cfda2
JH
8898#endif
8899
1da177e4 8900 /* Attach the domains */
abcd083a 8901 for_each_cpu(i, cpu_map) {
1da177e4 8902#ifdef CONFIG_SCHED_SMT
6c99e9ad 8903 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8904#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8905 sd = &per_cpu(core_domains, i).sd;
1da177e4 8906#else
6c99e9ad 8907 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8908#endif
49a02c51 8909 cpu_attach_domain(sd, d.rd, i);
1da177e4 8910 }
51888ca2 8911
2109b99e
AH
8912 d.sched_group_nodes = NULL; /* don't free this we still need it */
8913 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8914 return 0;
51888ca2 8915
51888ca2 8916error:
2109b99e
AH
8917 __free_domain_allocs(&d, alloc_state, cpu_map);
8918 return -ENOMEM;
1da177e4 8919}
029190c5 8920
96f874e2 8921static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8922{
8923 return __build_sched_domains(cpu_map, NULL);
8924}
8925
acc3f5d7 8926static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 8927static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8928static struct sched_domain_attr *dattr_cur;
8929 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8930
8931/*
8932 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8933 * cpumask) fails, then fallback to a single sched domain,
8934 * as determined by the single cpumask fallback_doms.
029190c5 8935 */
4212823f 8936static cpumask_var_t fallback_doms;
029190c5 8937
ee79d1bd
HC
8938/*
8939 * arch_update_cpu_topology lets virtualized architectures update the
8940 * cpu core maps. It is supposed to return 1 if the topology changed
8941 * or 0 if it stayed the same.
8942 */
8943int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8944{
ee79d1bd 8945 return 0;
22e52b07
HC
8946}
8947
acc3f5d7
RR
8948cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8949{
8950 int i;
8951 cpumask_var_t *doms;
8952
8953 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8954 if (!doms)
8955 return NULL;
8956 for (i = 0; i < ndoms; i++) {
8957 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8958 free_sched_domains(doms, i);
8959 return NULL;
8960 }
8961 }
8962 return doms;
8963}
8964
8965void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
8966{
8967 unsigned int i;
8968 for (i = 0; i < ndoms; i++)
8969 free_cpumask_var(doms[i]);
8970 kfree(doms);
8971}
8972
1a20ff27 8973/*
41a2d6cf 8974 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8975 * For now this just excludes isolated cpus, but could be used to
8976 * exclude other special cases in the future.
1a20ff27 8977 */
96f874e2 8978static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8979{
7378547f
MM
8980 int err;
8981
22e52b07 8982 arch_update_cpu_topology();
029190c5 8983 ndoms_cur = 1;
acc3f5d7 8984 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 8985 if (!doms_cur)
acc3f5d7
RR
8986 doms_cur = &fallback_doms;
8987 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 8988 dattr_cur = NULL;
acc3f5d7 8989 err = build_sched_domains(doms_cur[0]);
6382bc90 8990 register_sched_domain_sysctl();
7378547f
MM
8991
8992 return err;
1a20ff27
DG
8993}
8994
96f874e2
RR
8995static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8996 struct cpumask *tmpmask)
1da177e4 8997{
7c16ec58 8998 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8999}
1da177e4 9000
1a20ff27
DG
9001/*
9002 * Detach sched domains from a group of cpus specified in cpu_map
9003 * These cpus will now be attached to the NULL domain
9004 */
96f874e2 9005static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 9006{
96f874e2
RR
9007 /* Save because hotplug lock held. */
9008 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
9009 int i;
9010
abcd083a 9011 for_each_cpu(i, cpu_map)
57d885fe 9012 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 9013 synchronize_sched();
96f874e2 9014 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
9015}
9016
1d3504fc
HS
9017/* handle null as "default" */
9018static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9019 struct sched_domain_attr *new, int idx_new)
9020{
9021 struct sched_domain_attr tmp;
9022
9023 /* fast path */
9024 if (!new && !cur)
9025 return 1;
9026
9027 tmp = SD_ATTR_INIT;
9028 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9029 new ? (new + idx_new) : &tmp,
9030 sizeof(struct sched_domain_attr));
9031}
9032
029190c5
PJ
9033/*
9034 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 9035 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
9036 * doms_new[] to the current sched domain partitioning, doms_cur[].
9037 * It destroys each deleted domain and builds each new domain.
9038 *
acc3f5d7 9039 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
9040 * The masks don't intersect (don't overlap.) We should setup one
9041 * sched domain for each mask. CPUs not in any of the cpumasks will
9042 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
9043 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9044 * it as it is.
9045 *
acc3f5d7
RR
9046 * The passed in 'doms_new' should be allocated using
9047 * alloc_sched_domains. This routine takes ownership of it and will
9048 * free_sched_domains it when done with it. If the caller failed the
9049 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9050 * and partition_sched_domains() will fallback to the single partition
9051 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 9052 *
96f874e2 9053 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
9054 * ndoms_new == 0 is a special case for destroying existing domains,
9055 * and it will not create the default domain.
dfb512ec 9056 *
029190c5
PJ
9057 * Call with hotplug lock held
9058 */
acc3f5d7 9059void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 9060 struct sched_domain_attr *dattr_new)
029190c5 9061{
dfb512ec 9062 int i, j, n;
d65bd5ec 9063 int new_topology;
029190c5 9064
712555ee 9065 mutex_lock(&sched_domains_mutex);
a1835615 9066
7378547f
MM
9067 /* always unregister in case we don't destroy any domains */
9068 unregister_sched_domain_sysctl();
9069
d65bd5ec
HC
9070 /* Let architecture update cpu core mappings. */
9071 new_topology = arch_update_cpu_topology();
9072
dfb512ec 9073 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9074
9075 /* Destroy deleted domains */
9076 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9077 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 9078 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 9079 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9080 goto match1;
9081 }
9082 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 9083 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
9084match1:
9085 ;
9086 }
9087
e761b772
MK
9088 if (doms_new == NULL) {
9089 ndoms_cur = 0;
acc3f5d7 9090 doms_new = &fallback_doms;
6ad4c188 9091 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 9092 WARN_ON_ONCE(dattr_new);
e761b772
MK
9093 }
9094
029190c5
PJ
9095 /* Build new domains */
9096 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9097 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 9098 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 9099 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9100 goto match2;
9101 }
9102 /* no match - add a new doms_new */
acc3f5d7 9103 __build_sched_domains(doms_new[i],
1d3504fc 9104 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9105match2:
9106 ;
9107 }
9108
9109 /* Remember the new sched domains */
acc3f5d7
RR
9110 if (doms_cur != &fallback_doms)
9111 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 9112 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9113 doms_cur = doms_new;
1d3504fc 9114 dattr_cur = dattr_new;
029190c5 9115 ndoms_cur = ndoms_new;
7378547f
MM
9116
9117 register_sched_domain_sysctl();
a1835615 9118
712555ee 9119 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9120}
9121
5c45bf27 9122#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9123static void arch_reinit_sched_domains(void)
5c45bf27 9124{
95402b38 9125 get_online_cpus();
dfb512ec
MK
9126
9127 /* Destroy domains first to force the rebuild */
9128 partition_sched_domains(0, NULL, NULL);
9129
e761b772 9130 rebuild_sched_domains();
95402b38 9131 put_online_cpus();
5c45bf27
SS
9132}
9133
9134static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9135{
afb8a9b7 9136 unsigned int level = 0;
5c45bf27 9137
afb8a9b7
GS
9138 if (sscanf(buf, "%u", &level) != 1)
9139 return -EINVAL;
9140
9141 /*
9142 * level is always be positive so don't check for
9143 * level < POWERSAVINGS_BALANCE_NONE which is 0
9144 * What happens on 0 or 1 byte write,
9145 * need to check for count as well?
9146 */
9147
9148 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9149 return -EINVAL;
9150
9151 if (smt)
afb8a9b7 9152 sched_smt_power_savings = level;
5c45bf27 9153 else
afb8a9b7 9154 sched_mc_power_savings = level;
5c45bf27 9155
c70f22d2 9156 arch_reinit_sched_domains();
5c45bf27 9157
c70f22d2 9158 return count;
5c45bf27
SS
9159}
9160
5c45bf27 9161#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9162static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9163 char *page)
5c45bf27
SS
9164{
9165 return sprintf(page, "%u\n", sched_mc_power_savings);
9166}
f718cd4a 9167static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9168 const char *buf, size_t count)
5c45bf27
SS
9169{
9170 return sched_power_savings_store(buf, count, 0);
9171}
f718cd4a
AK
9172static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9173 sched_mc_power_savings_show,
9174 sched_mc_power_savings_store);
5c45bf27
SS
9175#endif
9176
9177#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9178static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9179 char *page)
5c45bf27
SS
9180{
9181 return sprintf(page, "%u\n", sched_smt_power_savings);
9182}
f718cd4a 9183static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9184 const char *buf, size_t count)
5c45bf27
SS
9185{
9186 return sched_power_savings_store(buf, count, 1);
9187}
f718cd4a
AK
9188static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9189 sched_smt_power_savings_show,
6707de00
AB
9190 sched_smt_power_savings_store);
9191#endif
9192
39aac648 9193int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9194{
9195 int err = 0;
9196
9197#ifdef CONFIG_SCHED_SMT
9198 if (smt_capable())
9199 err = sysfs_create_file(&cls->kset.kobj,
9200 &attr_sched_smt_power_savings.attr);
9201#endif
9202#ifdef CONFIG_SCHED_MC
9203 if (!err && mc_capable())
9204 err = sysfs_create_file(&cls->kset.kobj,
9205 &attr_sched_mc_power_savings.attr);
9206#endif
9207 return err;
9208}
6d6bc0ad 9209#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9210
e761b772 9211#ifndef CONFIG_CPUSETS
1da177e4 9212/*
e761b772
MK
9213 * Add online and remove offline CPUs from the scheduler domains.
9214 * When cpusets are enabled they take over this function.
1da177e4
LT
9215 */
9216static int update_sched_domains(struct notifier_block *nfb,
9217 unsigned long action, void *hcpu)
e761b772
MK
9218{
9219 switch (action) {
9220 case CPU_ONLINE:
9221 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
9222 case CPU_DOWN_PREPARE:
9223 case CPU_DOWN_PREPARE_FROZEN:
9224 case CPU_DOWN_FAILED:
9225 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 9226 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9227 return NOTIFY_OK;
9228
9229 default:
9230 return NOTIFY_DONE;
9231 }
9232}
9233#endif
9234
9235static int update_runtime(struct notifier_block *nfb,
9236 unsigned long action, void *hcpu)
1da177e4 9237{
7def2be1
PZ
9238 int cpu = (int)(long)hcpu;
9239
1da177e4 9240 switch (action) {
1da177e4 9241 case CPU_DOWN_PREPARE:
8bb78442 9242 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9243 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9244 return NOTIFY_OK;
9245
1da177e4 9246 case CPU_DOWN_FAILED:
8bb78442 9247 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9248 case CPU_ONLINE:
8bb78442 9249 case CPU_ONLINE_FROZEN:
7def2be1 9250 enable_runtime(cpu_rq(cpu));
e761b772
MK
9251 return NOTIFY_OK;
9252
1da177e4
LT
9253 default:
9254 return NOTIFY_DONE;
9255 }
1da177e4 9256}
1da177e4
LT
9257
9258void __init sched_init_smp(void)
9259{
dcc30a35
RR
9260 cpumask_var_t non_isolated_cpus;
9261
9262 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9263 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9264
434d53b0
MT
9265#if defined(CONFIG_NUMA)
9266 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9267 GFP_KERNEL);
9268 BUG_ON(sched_group_nodes_bycpu == NULL);
9269#endif
95402b38 9270 get_online_cpus();
712555ee 9271 mutex_lock(&sched_domains_mutex);
6ad4c188 9272 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
9273 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9274 if (cpumask_empty(non_isolated_cpus))
9275 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9276 mutex_unlock(&sched_domains_mutex);
95402b38 9277 put_online_cpus();
e761b772
MK
9278
9279#ifndef CONFIG_CPUSETS
1da177e4
LT
9280 /* XXX: Theoretical race here - CPU may be hotplugged now */
9281 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9282#endif
9283
9284 /* RT runtime code needs to handle some hotplug events */
9285 hotcpu_notifier(update_runtime, 0);
9286
b328ca18 9287 init_hrtick();
5c1e1767
NP
9288
9289 /* Move init over to a non-isolated CPU */
dcc30a35 9290 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9291 BUG();
19978ca6 9292 sched_init_granularity();
dcc30a35 9293 free_cpumask_var(non_isolated_cpus);
4212823f 9294
0e3900e6 9295 init_sched_rt_class();
1da177e4
LT
9296}
9297#else
9298void __init sched_init_smp(void)
9299{
19978ca6 9300 sched_init_granularity();
1da177e4
LT
9301}
9302#endif /* CONFIG_SMP */
9303
cd1bb94b
AB
9304const_debug unsigned int sysctl_timer_migration = 1;
9305
1da177e4
LT
9306int in_sched_functions(unsigned long addr)
9307{
1da177e4
LT
9308 return in_lock_functions(addr) ||
9309 (addr >= (unsigned long)__sched_text_start
9310 && addr < (unsigned long)__sched_text_end);
9311}
9312
a9957449 9313static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9314{
9315 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9316 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9317#ifdef CONFIG_FAIR_GROUP_SCHED
9318 cfs_rq->rq = rq;
9319#endif
67e9fb2a 9320 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9321}
9322
fa85ae24
PZ
9323static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9324{
9325 struct rt_prio_array *array;
9326 int i;
9327
9328 array = &rt_rq->active;
9329 for (i = 0; i < MAX_RT_PRIO; i++) {
9330 INIT_LIST_HEAD(array->queue + i);
9331 __clear_bit(i, array->bitmap);
9332 }
9333 /* delimiter for bitsearch: */
9334 __set_bit(MAX_RT_PRIO, array->bitmap);
9335
052f1dc7 9336#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9337 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9338#ifdef CONFIG_SMP
e864c499 9339 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9340#endif
48d5e258 9341#endif
fa85ae24
PZ
9342#ifdef CONFIG_SMP
9343 rt_rq->rt_nr_migratory = 0;
fa85ae24 9344 rt_rq->overloaded = 0;
c20b08e3 9345 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9346#endif
9347
9348 rt_rq->rt_time = 0;
9349 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9350 rt_rq->rt_runtime = 0;
9351 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9352
052f1dc7 9353#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9354 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9355 rt_rq->rq = rq;
9356#endif
fa85ae24
PZ
9357}
9358
6f505b16 9359#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9360static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9361 struct sched_entity *se, int cpu, int add,
9362 struct sched_entity *parent)
6f505b16 9363{
ec7dc8ac 9364 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9365 tg->cfs_rq[cpu] = cfs_rq;
9366 init_cfs_rq(cfs_rq, rq);
9367 cfs_rq->tg = tg;
9368 if (add)
9369 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9370
9371 tg->se[cpu] = se;
354d60c2
DG
9372 /* se could be NULL for init_task_group */
9373 if (!se)
9374 return;
9375
ec7dc8ac
DG
9376 if (!parent)
9377 se->cfs_rq = &rq->cfs;
9378 else
9379 se->cfs_rq = parent->my_q;
9380
6f505b16
PZ
9381 se->my_q = cfs_rq;
9382 se->load.weight = tg->shares;
e05510d0 9383 se->load.inv_weight = 0;
ec7dc8ac 9384 se->parent = parent;
6f505b16 9385}
052f1dc7 9386#endif
6f505b16 9387
052f1dc7 9388#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9389static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9390 struct sched_rt_entity *rt_se, int cpu, int add,
9391 struct sched_rt_entity *parent)
6f505b16 9392{
ec7dc8ac
DG
9393 struct rq *rq = cpu_rq(cpu);
9394
6f505b16
PZ
9395 tg->rt_rq[cpu] = rt_rq;
9396 init_rt_rq(rt_rq, rq);
9397 rt_rq->tg = tg;
9398 rt_rq->rt_se = rt_se;
ac086bc2 9399 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9400 if (add)
9401 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9402
9403 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9404 if (!rt_se)
9405 return;
9406
ec7dc8ac
DG
9407 if (!parent)
9408 rt_se->rt_rq = &rq->rt;
9409 else
9410 rt_se->rt_rq = parent->my_q;
9411
6f505b16 9412 rt_se->my_q = rt_rq;
ec7dc8ac 9413 rt_se->parent = parent;
6f505b16
PZ
9414 INIT_LIST_HEAD(&rt_se->run_list);
9415}
9416#endif
9417
1da177e4
LT
9418void __init sched_init(void)
9419{
dd41f596 9420 int i, j;
434d53b0
MT
9421 unsigned long alloc_size = 0, ptr;
9422
9423#ifdef CONFIG_FAIR_GROUP_SCHED
9424 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9425#endif
9426#ifdef CONFIG_RT_GROUP_SCHED
9427 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9428#endif
9429#ifdef CONFIG_USER_SCHED
9430 alloc_size *= 2;
df7c8e84
RR
9431#endif
9432#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9433 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 9434#endif
434d53b0 9435 if (alloc_size) {
36b7b6d4 9436 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9437
9438#ifdef CONFIG_FAIR_GROUP_SCHED
9439 init_task_group.se = (struct sched_entity **)ptr;
9440 ptr += nr_cpu_ids * sizeof(void **);
9441
9442 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9443 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9444
9445#ifdef CONFIG_USER_SCHED
9446 root_task_group.se = (struct sched_entity **)ptr;
9447 ptr += nr_cpu_ids * sizeof(void **);
9448
9449 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9450 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9451#endif /* CONFIG_USER_SCHED */
9452#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9453#ifdef CONFIG_RT_GROUP_SCHED
9454 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9455 ptr += nr_cpu_ids * sizeof(void **);
9456
9457 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9458 ptr += nr_cpu_ids * sizeof(void **);
9459
9460#ifdef CONFIG_USER_SCHED
9461 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9462 ptr += nr_cpu_ids * sizeof(void **);
9463
9464 root_task_group.rt_rq = (struct rt_rq **)ptr;
9465 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9466#endif /* CONFIG_USER_SCHED */
9467#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9468#ifdef CONFIG_CPUMASK_OFFSTACK
9469 for_each_possible_cpu(i) {
9470 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9471 ptr += cpumask_size();
9472 }
9473#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9474 }
dd41f596 9475
57d885fe
GH
9476#ifdef CONFIG_SMP
9477 init_defrootdomain();
9478#endif
9479
d0b27fa7
PZ
9480 init_rt_bandwidth(&def_rt_bandwidth,
9481 global_rt_period(), global_rt_runtime());
9482
9483#ifdef CONFIG_RT_GROUP_SCHED
9484 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9485 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9486#ifdef CONFIG_USER_SCHED
9487 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9488 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9489#endif /* CONFIG_USER_SCHED */
9490#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9491
052f1dc7 9492#ifdef CONFIG_GROUP_SCHED
6f505b16 9493 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9494 INIT_LIST_HEAD(&init_task_group.children);
9495
9496#ifdef CONFIG_USER_SCHED
9497 INIT_LIST_HEAD(&root_task_group.children);
9498 init_task_group.parent = &root_task_group;
9499 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9500#endif /* CONFIG_USER_SCHED */
9501#endif /* CONFIG_GROUP_SCHED */
6f505b16 9502
4a6cc4bd
JK
9503#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9504 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9505 __alignof__(unsigned long));
9506#endif
0a945022 9507 for_each_possible_cpu(i) {
70b97a7f 9508 struct rq *rq;
1da177e4
LT
9509
9510 rq = cpu_rq(i);
9511 spin_lock_init(&rq->lock);
7897986b 9512 rq->nr_running = 0;
dce48a84
TG
9513 rq->calc_load_active = 0;
9514 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9515 init_cfs_rq(&rq->cfs, rq);
6f505b16 9516 init_rt_rq(&rq->rt, rq);
dd41f596 9517#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9518 init_task_group.shares = init_task_group_load;
6f505b16 9519 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9520#ifdef CONFIG_CGROUP_SCHED
9521 /*
9522 * How much cpu bandwidth does init_task_group get?
9523 *
9524 * In case of task-groups formed thr' the cgroup filesystem, it
9525 * gets 100% of the cpu resources in the system. This overall
9526 * system cpu resource is divided among the tasks of
9527 * init_task_group and its child task-groups in a fair manner,
9528 * based on each entity's (task or task-group's) weight
9529 * (se->load.weight).
9530 *
9531 * In other words, if init_task_group has 10 tasks of weight
9532 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9533 * then A0's share of the cpu resource is:
9534 *
0d905bca 9535 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9536 *
9537 * We achieve this by letting init_task_group's tasks sit
9538 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9539 */
ec7dc8ac 9540 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9541#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9542 root_task_group.shares = NICE_0_LOAD;
9543 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9544 /*
9545 * In case of task-groups formed thr' the user id of tasks,
9546 * init_task_group represents tasks belonging to root user.
9547 * Hence it forms a sibling of all subsequent groups formed.
9548 * In this case, init_task_group gets only a fraction of overall
9549 * system cpu resource, based on the weight assigned to root
9550 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9551 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9552 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9553 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9554 */
ec7dc8ac 9555 init_tg_cfs_entry(&init_task_group,
84e9dabf 9556 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9557 &per_cpu(init_sched_entity, i), i, 1,
9558 root_task_group.se[i]);
6f505b16 9559
052f1dc7 9560#endif
354d60c2
DG
9561#endif /* CONFIG_FAIR_GROUP_SCHED */
9562
9563 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9564#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9565 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9566#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9567 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9568#elif defined CONFIG_USER_SCHED
eff766a6 9569 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9570 init_tg_rt_entry(&init_task_group,
6f505b16 9571 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9572 &per_cpu(init_sched_rt_entity, i), i, 1,
9573 root_task_group.rt_se[i]);
354d60c2 9574#endif
dd41f596 9575#endif
1da177e4 9576
dd41f596
IM
9577 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9578 rq->cpu_load[j] = 0;
1da177e4 9579#ifdef CONFIG_SMP
41c7ce9a 9580 rq->sd = NULL;
57d885fe 9581 rq->rd = NULL;
3f029d3c 9582 rq->post_schedule = 0;
1da177e4 9583 rq->active_balance = 0;
dd41f596 9584 rq->next_balance = jiffies;
1da177e4 9585 rq->push_cpu = 0;
0a2966b4 9586 rq->cpu = i;
1f11eb6a 9587 rq->online = 0;
1da177e4 9588 rq->migration_thread = NULL;
eae0c9df
MG
9589 rq->idle_stamp = 0;
9590 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 9591 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9592 rq_attach_root(rq, &def_root_domain);
1da177e4 9593#endif
8f4d37ec 9594 init_rq_hrtick(rq);
1da177e4 9595 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9596 }
9597
2dd73a4f 9598 set_load_weight(&init_task);
b50f60ce 9599
e107be36
AK
9600#ifdef CONFIG_PREEMPT_NOTIFIERS
9601 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9602#endif
9603
c9819f45 9604#ifdef CONFIG_SMP
962cf36c 9605 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9606#endif
9607
b50f60ce
HC
9608#ifdef CONFIG_RT_MUTEXES
9609 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9610#endif
9611
1da177e4
LT
9612 /*
9613 * The boot idle thread does lazy MMU switching as well:
9614 */
9615 atomic_inc(&init_mm.mm_count);
9616 enter_lazy_tlb(&init_mm, current);
9617
9618 /*
9619 * Make us the idle thread. Technically, schedule() should not be
9620 * called from this thread, however somewhere below it might be,
9621 * but because we are the idle thread, we just pick up running again
9622 * when this runqueue becomes "idle".
9623 */
9624 init_idle(current, smp_processor_id());
dce48a84
TG
9625
9626 calc_load_update = jiffies + LOAD_FREQ;
9627
dd41f596
IM
9628 /*
9629 * During early bootup we pretend to be a normal task:
9630 */
9631 current->sched_class = &fair_sched_class;
6892b75e 9632
6a7b3dc3 9633 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 9634 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9635#ifdef CONFIG_SMP
7d1e6a9b 9636#ifdef CONFIG_NO_HZ
49557e62 9637 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 9638 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9639#endif
bdddd296
RR
9640 /* May be allocated at isolcpus cmdline parse time */
9641 if (cpu_isolated_map == NULL)
9642 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9643#endif /* SMP */
6a7b3dc3 9644
cdd6c482 9645 perf_event_init();
0d905bca 9646
6892b75e 9647 scheduler_running = 1;
1da177e4
LT
9648}
9649
9650#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9651static inline int preempt_count_equals(int preempt_offset)
9652{
9653 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9654
9655 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9656}
9657
9658void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9659{
48f24c4d 9660#ifdef in_atomic
1da177e4
LT
9661 static unsigned long prev_jiffy; /* ratelimiting */
9662
e4aafea2
FW
9663 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9664 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9665 return;
9666 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9667 return;
9668 prev_jiffy = jiffies;
9669
9670 printk(KERN_ERR
9671 "BUG: sleeping function called from invalid context at %s:%d\n",
9672 file, line);
9673 printk(KERN_ERR
9674 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9675 in_atomic(), irqs_disabled(),
9676 current->pid, current->comm);
9677
9678 debug_show_held_locks(current);
9679 if (irqs_disabled())
9680 print_irqtrace_events(current);
9681 dump_stack();
1da177e4
LT
9682#endif
9683}
9684EXPORT_SYMBOL(__might_sleep);
9685#endif
9686
9687#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9688static void normalize_task(struct rq *rq, struct task_struct *p)
9689{
9690 int on_rq;
3e51f33f 9691
3a5e4dc1
AK
9692 update_rq_clock(rq);
9693 on_rq = p->se.on_rq;
9694 if (on_rq)
9695 deactivate_task(rq, p, 0);
9696 __setscheduler(rq, p, SCHED_NORMAL, 0);
9697 if (on_rq) {
9698 activate_task(rq, p, 0);
9699 resched_task(rq->curr);
9700 }
9701}
9702
1da177e4
LT
9703void normalize_rt_tasks(void)
9704{
a0f98a1c 9705 struct task_struct *g, *p;
1da177e4 9706 unsigned long flags;
70b97a7f 9707 struct rq *rq;
1da177e4 9708
4cf5d77a 9709 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9710 do_each_thread(g, p) {
178be793
IM
9711 /*
9712 * Only normalize user tasks:
9713 */
9714 if (!p->mm)
9715 continue;
9716
6cfb0d5d 9717 p->se.exec_start = 0;
6cfb0d5d 9718#ifdef CONFIG_SCHEDSTATS
dd41f596 9719 p->se.wait_start = 0;
dd41f596 9720 p->se.sleep_start = 0;
dd41f596 9721 p->se.block_start = 0;
6cfb0d5d 9722#endif
dd41f596
IM
9723
9724 if (!rt_task(p)) {
9725 /*
9726 * Renice negative nice level userspace
9727 * tasks back to 0:
9728 */
9729 if (TASK_NICE(p) < 0 && p->mm)
9730 set_user_nice(p, 0);
1da177e4 9731 continue;
dd41f596 9732 }
1da177e4 9733
4cf5d77a 9734 spin_lock(&p->pi_lock);
b29739f9 9735 rq = __task_rq_lock(p);
1da177e4 9736
178be793 9737 normalize_task(rq, p);
3a5e4dc1 9738
b29739f9 9739 __task_rq_unlock(rq);
4cf5d77a 9740 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9741 } while_each_thread(g, p);
9742
4cf5d77a 9743 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9744}
9745
9746#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9747
9748#ifdef CONFIG_IA64
9749/*
9750 * These functions are only useful for the IA64 MCA handling.
9751 *
9752 * They can only be called when the whole system has been
9753 * stopped - every CPU needs to be quiescent, and no scheduling
9754 * activity can take place. Using them for anything else would
9755 * be a serious bug, and as a result, they aren't even visible
9756 * under any other configuration.
9757 */
9758
9759/**
9760 * curr_task - return the current task for a given cpu.
9761 * @cpu: the processor in question.
9762 *
9763 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9764 */
36c8b586 9765struct task_struct *curr_task(int cpu)
1df5c10a
LT
9766{
9767 return cpu_curr(cpu);
9768}
9769
9770/**
9771 * set_curr_task - set the current task for a given cpu.
9772 * @cpu: the processor in question.
9773 * @p: the task pointer to set.
9774 *
9775 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9776 * are serviced on a separate stack. It allows the architecture to switch the
9777 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9778 * must be called with all CPU's synchronized, and interrupts disabled, the
9779 * and caller must save the original value of the current task (see
9780 * curr_task() above) and restore that value before reenabling interrupts and
9781 * re-starting the system.
9782 *
9783 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9784 */
36c8b586 9785void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9786{
9787 cpu_curr(cpu) = p;
9788}
9789
9790#endif
29f59db3 9791
bccbe08a
PZ
9792#ifdef CONFIG_FAIR_GROUP_SCHED
9793static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9794{
9795 int i;
9796
9797 for_each_possible_cpu(i) {
9798 if (tg->cfs_rq)
9799 kfree(tg->cfs_rq[i]);
9800 if (tg->se)
9801 kfree(tg->se[i]);
6f505b16
PZ
9802 }
9803
9804 kfree(tg->cfs_rq);
9805 kfree(tg->se);
6f505b16
PZ
9806}
9807
ec7dc8ac
DG
9808static
9809int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9810{
29f59db3 9811 struct cfs_rq *cfs_rq;
eab17229 9812 struct sched_entity *se;
9b5b7751 9813 struct rq *rq;
29f59db3
SV
9814 int i;
9815
434d53b0 9816 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9817 if (!tg->cfs_rq)
9818 goto err;
434d53b0 9819 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9820 if (!tg->se)
9821 goto err;
052f1dc7
PZ
9822
9823 tg->shares = NICE_0_LOAD;
29f59db3
SV
9824
9825 for_each_possible_cpu(i) {
9b5b7751 9826 rq = cpu_rq(i);
29f59db3 9827
eab17229
LZ
9828 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9829 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9830 if (!cfs_rq)
9831 goto err;
9832
eab17229
LZ
9833 se = kzalloc_node(sizeof(struct sched_entity),
9834 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9835 if (!se)
9836 goto err;
9837
eab17229 9838 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9839 }
9840
9841 return 1;
9842
9843 err:
9844 return 0;
9845}
9846
9847static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9848{
9849 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9850 &cpu_rq(cpu)->leaf_cfs_rq_list);
9851}
9852
9853static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9854{
9855 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9856}
6d6bc0ad 9857#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9858static inline void free_fair_sched_group(struct task_group *tg)
9859{
9860}
9861
ec7dc8ac
DG
9862static inline
9863int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9864{
9865 return 1;
9866}
9867
9868static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9869{
9870}
9871
9872static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9873{
9874}
6d6bc0ad 9875#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9876
9877#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9878static void free_rt_sched_group(struct task_group *tg)
9879{
9880 int i;
9881
d0b27fa7
PZ
9882 destroy_rt_bandwidth(&tg->rt_bandwidth);
9883
bccbe08a
PZ
9884 for_each_possible_cpu(i) {
9885 if (tg->rt_rq)
9886 kfree(tg->rt_rq[i]);
9887 if (tg->rt_se)
9888 kfree(tg->rt_se[i]);
9889 }
9890
9891 kfree(tg->rt_rq);
9892 kfree(tg->rt_se);
9893}
9894
ec7dc8ac
DG
9895static
9896int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9897{
9898 struct rt_rq *rt_rq;
eab17229 9899 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9900 struct rq *rq;
9901 int i;
9902
434d53b0 9903 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9904 if (!tg->rt_rq)
9905 goto err;
434d53b0 9906 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9907 if (!tg->rt_se)
9908 goto err;
9909
d0b27fa7
PZ
9910 init_rt_bandwidth(&tg->rt_bandwidth,
9911 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9912
9913 for_each_possible_cpu(i) {
9914 rq = cpu_rq(i);
9915
eab17229
LZ
9916 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9917 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9918 if (!rt_rq)
9919 goto err;
29f59db3 9920
eab17229
LZ
9921 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9922 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9923 if (!rt_se)
9924 goto err;
29f59db3 9925
eab17229 9926 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9927 }
9928
bccbe08a
PZ
9929 return 1;
9930
9931 err:
9932 return 0;
9933}
9934
9935static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9936{
9937 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9938 &cpu_rq(cpu)->leaf_rt_rq_list);
9939}
9940
9941static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9942{
9943 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9944}
6d6bc0ad 9945#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9946static inline void free_rt_sched_group(struct task_group *tg)
9947{
9948}
9949
ec7dc8ac
DG
9950static inline
9951int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9952{
9953 return 1;
9954}
9955
9956static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9957{
9958}
9959
9960static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9961{
9962}
6d6bc0ad 9963#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9964
d0b27fa7 9965#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9966static void free_sched_group(struct task_group *tg)
9967{
9968 free_fair_sched_group(tg);
9969 free_rt_sched_group(tg);
9970 kfree(tg);
9971}
9972
9973/* allocate runqueue etc for a new task group */
ec7dc8ac 9974struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9975{
9976 struct task_group *tg;
9977 unsigned long flags;
9978 int i;
9979
9980 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9981 if (!tg)
9982 return ERR_PTR(-ENOMEM);
9983
ec7dc8ac 9984 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9985 goto err;
9986
ec7dc8ac 9987 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9988 goto err;
9989
8ed36996 9990 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9991 for_each_possible_cpu(i) {
bccbe08a
PZ
9992 register_fair_sched_group(tg, i);
9993 register_rt_sched_group(tg, i);
9b5b7751 9994 }
6f505b16 9995 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9996
9997 WARN_ON(!parent); /* root should already exist */
9998
9999 tg->parent = parent;
f473aa5e 10000 INIT_LIST_HEAD(&tg->children);
09f2724a 10001 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10002 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 10003
9b5b7751 10004 return tg;
29f59db3
SV
10005
10006err:
6f505b16 10007 free_sched_group(tg);
29f59db3
SV
10008 return ERR_PTR(-ENOMEM);
10009}
10010
9b5b7751 10011/* rcu callback to free various structures associated with a task group */
6f505b16 10012static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 10013{
29f59db3 10014 /* now it should be safe to free those cfs_rqs */
6f505b16 10015 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10016}
10017
9b5b7751 10018/* Destroy runqueue etc associated with a task group */
4cf86d77 10019void sched_destroy_group(struct task_group *tg)
29f59db3 10020{
8ed36996 10021 unsigned long flags;
9b5b7751 10022 int i;
29f59db3 10023
8ed36996 10024 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10025 for_each_possible_cpu(i) {
bccbe08a
PZ
10026 unregister_fair_sched_group(tg, i);
10027 unregister_rt_sched_group(tg, i);
9b5b7751 10028 }
6f505b16 10029 list_del_rcu(&tg->list);
f473aa5e 10030 list_del_rcu(&tg->siblings);
8ed36996 10031 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 10032
9b5b7751 10033 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 10034 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
10035}
10036
9b5b7751 10037/* change task's runqueue when it moves between groups.
3a252015
IM
10038 * The caller of this function should have put the task in its new group
10039 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10040 * reflect its new group.
9b5b7751
SV
10041 */
10042void sched_move_task(struct task_struct *tsk)
29f59db3
SV
10043{
10044 int on_rq, running;
10045 unsigned long flags;
10046 struct rq *rq;
10047
10048 rq = task_rq_lock(tsk, &flags);
10049
29f59db3
SV
10050 update_rq_clock(rq);
10051
051a1d1a 10052 running = task_current(rq, tsk);
29f59db3
SV
10053 on_rq = tsk->se.on_rq;
10054
0e1f3483 10055 if (on_rq)
29f59db3 10056 dequeue_task(rq, tsk, 0);
0e1f3483
HS
10057 if (unlikely(running))
10058 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 10059
6f505b16 10060 set_task_rq(tsk, task_cpu(tsk));
29f59db3 10061
810b3817
PZ
10062#ifdef CONFIG_FAIR_GROUP_SCHED
10063 if (tsk->sched_class->moved_group)
10064 tsk->sched_class->moved_group(tsk);
10065#endif
10066
0e1f3483
HS
10067 if (unlikely(running))
10068 tsk->sched_class->set_curr_task(rq);
10069 if (on_rq)
7074badb 10070 enqueue_task(rq, tsk, 0);
29f59db3 10071
29f59db3
SV
10072 task_rq_unlock(rq, &flags);
10073}
6d6bc0ad 10074#endif /* CONFIG_GROUP_SCHED */
29f59db3 10075
052f1dc7 10076#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10077static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10078{
10079 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10080 int on_rq;
10081
29f59db3 10082 on_rq = se->on_rq;
62fb1851 10083 if (on_rq)
29f59db3
SV
10084 dequeue_entity(cfs_rq, se, 0);
10085
10086 se->load.weight = shares;
e05510d0 10087 se->load.inv_weight = 0;
29f59db3 10088
62fb1851 10089 if (on_rq)
29f59db3 10090 enqueue_entity(cfs_rq, se, 0);
c09595f6 10091}
62fb1851 10092
c09595f6
PZ
10093static void set_se_shares(struct sched_entity *se, unsigned long shares)
10094{
10095 struct cfs_rq *cfs_rq = se->cfs_rq;
10096 struct rq *rq = cfs_rq->rq;
10097 unsigned long flags;
10098
10099 spin_lock_irqsave(&rq->lock, flags);
10100 __set_se_shares(se, shares);
10101 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10102}
10103
8ed36996
PZ
10104static DEFINE_MUTEX(shares_mutex);
10105
4cf86d77 10106int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10107{
10108 int i;
8ed36996 10109 unsigned long flags;
c61935fd 10110
ec7dc8ac
DG
10111 /*
10112 * We can't change the weight of the root cgroup.
10113 */
10114 if (!tg->se[0])
10115 return -EINVAL;
10116
18d95a28
PZ
10117 if (shares < MIN_SHARES)
10118 shares = MIN_SHARES;
cb4ad1ff
MX
10119 else if (shares > MAX_SHARES)
10120 shares = MAX_SHARES;
62fb1851 10121
8ed36996 10122 mutex_lock(&shares_mutex);
9b5b7751 10123 if (tg->shares == shares)
5cb350ba 10124 goto done;
29f59db3 10125
8ed36996 10126 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10127 for_each_possible_cpu(i)
10128 unregister_fair_sched_group(tg, i);
f473aa5e 10129 list_del_rcu(&tg->siblings);
8ed36996 10130 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10131
10132 /* wait for any ongoing reference to this group to finish */
10133 synchronize_sched();
10134
10135 /*
10136 * Now we are free to modify the group's share on each cpu
10137 * w/o tripping rebalance_share or load_balance_fair.
10138 */
9b5b7751 10139 tg->shares = shares;
c09595f6
PZ
10140 for_each_possible_cpu(i) {
10141 /*
10142 * force a rebalance
10143 */
10144 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10145 set_se_shares(tg->se[i], shares);
c09595f6 10146 }
29f59db3 10147
6b2d7700
SV
10148 /*
10149 * Enable load balance activity on this group, by inserting it back on
10150 * each cpu's rq->leaf_cfs_rq_list.
10151 */
8ed36996 10152 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10153 for_each_possible_cpu(i)
10154 register_fair_sched_group(tg, i);
f473aa5e 10155 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10156 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10157done:
8ed36996 10158 mutex_unlock(&shares_mutex);
9b5b7751 10159 return 0;
29f59db3
SV
10160}
10161
5cb350ba
DG
10162unsigned long sched_group_shares(struct task_group *tg)
10163{
10164 return tg->shares;
10165}
052f1dc7 10166#endif
5cb350ba 10167
052f1dc7 10168#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10169/*
9f0c1e56 10170 * Ensure that the real time constraints are schedulable.
6f505b16 10171 */
9f0c1e56
PZ
10172static DEFINE_MUTEX(rt_constraints_mutex);
10173
10174static unsigned long to_ratio(u64 period, u64 runtime)
10175{
10176 if (runtime == RUNTIME_INF)
9a7e0b18 10177 return 1ULL << 20;
9f0c1e56 10178
9a7e0b18 10179 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10180}
10181
9a7e0b18
PZ
10182/* Must be called with tasklist_lock held */
10183static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10184{
9a7e0b18 10185 struct task_struct *g, *p;
b40b2e8e 10186
9a7e0b18
PZ
10187 do_each_thread(g, p) {
10188 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10189 return 1;
10190 } while_each_thread(g, p);
b40b2e8e 10191
9a7e0b18
PZ
10192 return 0;
10193}
b40b2e8e 10194
9a7e0b18
PZ
10195struct rt_schedulable_data {
10196 struct task_group *tg;
10197 u64 rt_period;
10198 u64 rt_runtime;
10199};
b40b2e8e 10200
9a7e0b18
PZ
10201static int tg_schedulable(struct task_group *tg, void *data)
10202{
10203 struct rt_schedulable_data *d = data;
10204 struct task_group *child;
10205 unsigned long total, sum = 0;
10206 u64 period, runtime;
b40b2e8e 10207
9a7e0b18
PZ
10208 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10209 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10210
9a7e0b18
PZ
10211 if (tg == d->tg) {
10212 period = d->rt_period;
10213 runtime = d->rt_runtime;
b40b2e8e 10214 }
b40b2e8e 10215
98a4826b
PZ
10216#ifdef CONFIG_USER_SCHED
10217 if (tg == &root_task_group) {
10218 period = global_rt_period();
10219 runtime = global_rt_runtime();
10220 }
10221#endif
10222
4653f803
PZ
10223 /*
10224 * Cannot have more runtime than the period.
10225 */
10226 if (runtime > period && runtime != RUNTIME_INF)
10227 return -EINVAL;
6f505b16 10228
4653f803
PZ
10229 /*
10230 * Ensure we don't starve existing RT tasks.
10231 */
9a7e0b18
PZ
10232 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10233 return -EBUSY;
6f505b16 10234
9a7e0b18 10235 total = to_ratio(period, runtime);
6f505b16 10236
4653f803
PZ
10237 /*
10238 * Nobody can have more than the global setting allows.
10239 */
10240 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10241 return -EINVAL;
6f505b16 10242
4653f803
PZ
10243 /*
10244 * The sum of our children's runtime should not exceed our own.
10245 */
9a7e0b18
PZ
10246 list_for_each_entry_rcu(child, &tg->children, siblings) {
10247 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10248 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10249
9a7e0b18
PZ
10250 if (child == d->tg) {
10251 period = d->rt_period;
10252 runtime = d->rt_runtime;
10253 }
6f505b16 10254
9a7e0b18 10255 sum += to_ratio(period, runtime);
9f0c1e56 10256 }
6f505b16 10257
9a7e0b18
PZ
10258 if (sum > total)
10259 return -EINVAL;
10260
10261 return 0;
6f505b16
PZ
10262}
10263
9a7e0b18 10264static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10265{
9a7e0b18
PZ
10266 struct rt_schedulable_data data = {
10267 .tg = tg,
10268 .rt_period = period,
10269 .rt_runtime = runtime,
10270 };
10271
10272 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10273}
10274
d0b27fa7
PZ
10275static int tg_set_bandwidth(struct task_group *tg,
10276 u64 rt_period, u64 rt_runtime)
6f505b16 10277{
ac086bc2 10278 int i, err = 0;
9f0c1e56 10279
9f0c1e56 10280 mutex_lock(&rt_constraints_mutex);
521f1a24 10281 read_lock(&tasklist_lock);
9a7e0b18
PZ
10282 err = __rt_schedulable(tg, rt_period, rt_runtime);
10283 if (err)
9f0c1e56 10284 goto unlock;
ac086bc2
PZ
10285
10286 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10287 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10288 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10289
10290 for_each_possible_cpu(i) {
10291 struct rt_rq *rt_rq = tg->rt_rq[i];
10292
10293 spin_lock(&rt_rq->rt_runtime_lock);
10294 rt_rq->rt_runtime = rt_runtime;
10295 spin_unlock(&rt_rq->rt_runtime_lock);
10296 }
10297 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10298 unlock:
521f1a24 10299 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10300 mutex_unlock(&rt_constraints_mutex);
10301
10302 return err;
6f505b16
PZ
10303}
10304
d0b27fa7
PZ
10305int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10306{
10307 u64 rt_runtime, rt_period;
10308
10309 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10310 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10311 if (rt_runtime_us < 0)
10312 rt_runtime = RUNTIME_INF;
10313
10314 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10315}
10316
9f0c1e56
PZ
10317long sched_group_rt_runtime(struct task_group *tg)
10318{
10319 u64 rt_runtime_us;
10320
d0b27fa7 10321 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10322 return -1;
10323
d0b27fa7 10324 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10325 do_div(rt_runtime_us, NSEC_PER_USEC);
10326 return rt_runtime_us;
10327}
d0b27fa7
PZ
10328
10329int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10330{
10331 u64 rt_runtime, rt_period;
10332
10333 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10334 rt_runtime = tg->rt_bandwidth.rt_runtime;
10335
619b0488
R
10336 if (rt_period == 0)
10337 return -EINVAL;
10338
d0b27fa7
PZ
10339 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10340}
10341
10342long sched_group_rt_period(struct task_group *tg)
10343{
10344 u64 rt_period_us;
10345
10346 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10347 do_div(rt_period_us, NSEC_PER_USEC);
10348 return rt_period_us;
10349}
10350
10351static int sched_rt_global_constraints(void)
10352{
4653f803 10353 u64 runtime, period;
d0b27fa7
PZ
10354 int ret = 0;
10355
ec5d4989
HS
10356 if (sysctl_sched_rt_period <= 0)
10357 return -EINVAL;
10358
4653f803
PZ
10359 runtime = global_rt_runtime();
10360 period = global_rt_period();
10361
10362 /*
10363 * Sanity check on the sysctl variables.
10364 */
10365 if (runtime > period && runtime != RUNTIME_INF)
10366 return -EINVAL;
10b612f4 10367
d0b27fa7 10368 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10369 read_lock(&tasklist_lock);
4653f803 10370 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10371 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10372 mutex_unlock(&rt_constraints_mutex);
10373
10374 return ret;
10375}
54e99124
DG
10376
10377int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10378{
10379 /* Don't accept realtime tasks when there is no way for them to run */
10380 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10381 return 0;
10382
10383 return 1;
10384}
10385
6d6bc0ad 10386#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10387static int sched_rt_global_constraints(void)
10388{
ac086bc2
PZ
10389 unsigned long flags;
10390 int i;
10391
ec5d4989
HS
10392 if (sysctl_sched_rt_period <= 0)
10393 return -EINVAL;
10394
60aa605d
PZ
10395 /*
10396 * There's always some RT tasks in the root group
10397 * -- migration, kstopmachine etc..
10398 */
10399 if (sysctl_sched_rt_runtime == 0)
10400 return -EBUSY;
10401
ac086bc2
PZ
10402 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10403 for_each_possible_cpu(i) {
10404 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10405
10406 spin_lock(&rt_rq->rt_runtime_lock);
10407 rt_rq->rt_runtime = global_rt_runtime();
10408 spin_unlock(&rt_rq->rt_runtime_lock);
10409 }
10410 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10411
d0b27fa7
PZ
10412 return 0;
10413}
6d6bc0ad 10414#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10415
10416int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10417 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10418 loff_t *ppos)
10419{
10420 int ret;
10421 int old_period, old_runtime;
10422 static DEFINE_MUTEX(mutex);
10423
10424 mutex_lock(&mutex);
10425 old_period = sysctl_sched_rt_period;
10426 old_runtime = sysctl_sched_rt_runtime;
10427
8d65af78 10428 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10429
10430 if (!ret && write) {
10431 ret = sched_rt_global_constraints();
10432 if (ret) {
10433 sysctl_sched_rt_period = old_period;
10434 sysctl_sched_rt_runtime = old_runtime;
10435 } else {
10436 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10437 def_rt_bandwidth.rt_period =
10438 ns_to_ktime(global_rt_period());
10439 }
10440 }
10441 mutex_unlock(&mutex);
10442
10443 return ret;
10444}
68318b8e 10445
052f1dc7 10446#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10447
10448/* return corresponding task_group object of a cgroup */
2b01dfe3 10449static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10450{
2b01dfe3
PM
10451 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10452 struct task_group, css);
68318b8e
SV
10453}
10454
10455static struct cgroup_subsys_state *
2b01dfe3 10456cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10457{
ec7dc8ac 10458 struct task_group *tg, *parent;
68318b8e 10459
2b01dfe3 10460 if (!cgrp->parent) {
68318b8e 10461 /* This is early initialization for the top cgroup */
68318b8e
SV
10462 return &init_task_group.css;
10463 }
10464
ec7dc8ac
DG
10465 parent = cgroup_tg(cgrp->parent);
10466 tg = sched_create_group(parent);
68318b8e
SV
10467 if (IS_ERR(tg))
10468 return ERR_PTR(-ENOMEM);
10469
68318b8e
SV
10470 return &tg->css;
10471}
10472
41a2d6cf
IM
10473static void
10474cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10475{
2b01dfe3 10476 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10477
10478 sched_destroy_group(tg);
10479}
10480
41a2d6cf 10481static int
be367d09 10482cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10483{
b68aa230 10484#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10485 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10486 return -EINVAL;
10487#else
68318b8e
SV
10488 /* We don't support RT-tasks being in separate groups */
10489 if (tsk->sched_class != &fair_sched_class)
10490 return -EINVAL;
b68aa230 10491#endif
be367d09
BB
10492 return 0;
10493}
68318b8e 10494
be367d09
BB
10495static int
10496cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10497 struct task_struct *tsk, bool threadgroup)
10498{
10499 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10500 if (retval)
10501 return retval;
10502 if (threadgroup) {
10503 struct task_struct *c;
10504 rcu_read_lock();
10505 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10506 retval = cpu_cgroup_can_attach_task(cgrp, c);
10507 if (retval) {
10508 rcu_read_unlock();
10509 return retval;
10510 }
10511 }
10512 rcu_read_unlock();
10513 }
68318b8e
SV
10514 return 0;
10515}
10516
10517static void
2b01dfe3 10518cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10519 struct cgroup *old_cont, struct task_struct *tsk,
10520 bool threadgroup)
68318b8e
SV
10521{
10522 sched_move_task(tsk);
be367d09
BB
10523 if (threadgroup) {
10524 struct task_struct *c;
10525 rcu_read_lock();
10526 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10527 sched_move_task(c);
10528 }
10529 rcu_read_unlock();
10530 }
68318b8e
SV
10531}
10532
052f1dc7 10533#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10534static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10535 u64 shareval)
68318b8e 10536{
2b01dfe3 10537 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10538}
10539
f4c753b7 10540static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10541{
2b01dfe3 10542 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10543
10544 return (u64) tg->shares;
10545}
6d6bc0ad 10546#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10547
052f1dc7 10548#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10549static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10550 s64 val)
6f505b16 10551{
06ecb27c 10552 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10553}
10554
06ecb27c 10555static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10556{
06ecb27c 10557 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10558}
d0b27fa7
PZ
10559
10560static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10561 u64 rt_period_us)
10562{
10563 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10564}
10565
10566static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10567{
10568 return sched_group_rt_period(cgroup_tg(cgrp));
10569}
6d6bc0ad 10570#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10571
fe5c7cc2 10572static struct cftype cpu_files[] = {
052f1dc7 10573#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10574 {
10575 .name = "shares",
f4c753b7
PM
10576 .read_u64 = cpu_shares_read_u64,
10577 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10578 },
052f1dc7
PZ
10579#endif
10580#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10581 {
9f0c1e56 10582 .name = "rt_runtime_us",
06ecb27c
PM
10583 .read_s64 = cpu_rt_runtime_read,
10584 .write_s64 = cpu_rt_runtime_write,
6f505b16 10585 },
d0b27fa7
PZ
10586 {
10587 .name = "rt_period_us",
f4c753b7
PM
10588 .read_u64 = cpu_rt_period_read_uint,
10589 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10590 },
052f1dc7 10591#endif
68318b8e
SV
10592};
10593
10594static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10595{
fe5c7cc2 10596 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10597}
10598
10599struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10600 .name = "cpu",
10601 .create = cpu_cgroup_create,
10602 .destroy = cpu_cgroup_destroy,
10603 .can_attach = cpu_cgroup_can_attach,
10604 .attach = cpu_cgroup_attach,
10605 .populate = cpu_cgroup_populate,
10606 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10607 .early_init = 1,
10608};
10609
052f1dc7 10610#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10611
10612#ifdef CONFIG_CGROUP_CPUACCT
10613
10614/*
10615 * CPU accounting code for task groups.
10616 *
10617 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10618 * (balbir@in.ibm.com).
10619 */
10620
934352f2 10621/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10622struct cpuacct {
10623 struct cgroup_subsys_state css;
10624 /* cpuusage holds pointer to a u64-type object on every cpu */
10625 u64 *cpuusage;
ef12fefa 10626 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10627 struct cpuacct *parent;
d842de87
SV
10628};
10629
10630struct cgroup_subsys cpuacct_subsys;
10631
10632/* return cpu accounting group corresponding to this container */
32cd756a 10633static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10634{
32cd756a 10635 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10636 struct cpuacct, css);
10637}
10638
10639/* return cpu accounting group to which this task belongs */
10640static inline struct cpuacct *task_ca(struct task_struct *tsk)
10641{
10642 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10643 struct cpuacct, css);
10644}
10645
10646/* create a new cpu accounting group */
10647static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10648 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10649{
10650 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10651 int i;
d842de87
SV
10652
10653 if (!ca)
ef12fefa 10654 goto out;
d842de87
SV
10655
10656 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10657 if (!ca->cpuusage)
10658 goto out_free_ca;
10659
10660 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10661 if (percpu_counter_init(&ca->cpustat[i], 0))
10662 goto out_free_counters;
d842de87 10663
934352f2
BR
10664 if (cgrp->parent)
10665 ca->parent = cgroup_ca(cgrp->parent);
10666
d842de87 10667 return &ca->css;
ef12fefa
BR
10668
10669out_free_counters:
10670 while (--i >= 0)
10671 percpu_counter_destroy(&ca->cpustat[i]);
10672 free_percpu(ca->cpuusage);
10673out_free_ca:
10674 kfree(ca);
10675out:
10676 return ERR_PTR(-ENOMEM);
d842de87
SV
10677}
10678
10679/* destroy an existing cpu accounting group */
41a2d6cf 10680static void
32cd756a 10681cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10682{
32cd756a 10683 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10684 int i;
d842de87 10685
ef12fefa
BR
10686 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10687 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10688 free_percpu(ca->cpuusage);
10689 kfree(ca);
10690}
10691
720f5498
KC
10692static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10693{
b36128c8 10694 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10695 u64 data;
10696
10697#ifndef CONFIG_64BIT
10698 /*
10699 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10700 */
10701 spin_lock_irq(&cpu_rq(cpu)->lock);
10702 data = *cpuusage;
10703 spin_unlock_irq(&cpu_rq(cpu)->lock);
10704#else
10705 data = *cpuusage;
10706#endif
10707
10708 return data;
10709}
10710
10711static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10712{
b36128c8 10713 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10714
10715#ifndef CONFIG_64BIT
10716 /*
10717 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10718 */
10719 spin_lock_irq(&cpu_rq(cpu)->lock);
10720 *cpuusage = val;
10721 spin_unlock_irq(&cpu_rq(cpu)->lock);
10722#else
10723 *cpuusage = val;
10724#endif
10725}
10726
d842de87 10727/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10728static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10729{
32cd756a 10730 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10731 u64 totalcpuusage = 0;
10732 int i;
10733
720f5498
KC
10734 for_each_present_cpu(i)
10735 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10736
10737 return totalcpuusage;
10738}
10739
0297b803
DG
10740static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10741 u64 reset)
10742{
10743 struct cpuacct *ca = cgroup_ca(cgrp);
10744 int err = 0;
10745 int i;
10746
10747 if (reset) {
10748 err = -EINVAL;
10749 goto out;
10750 }
10751
720f5498
KC
10752 for_each_present_cpu(i)
10753 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10754
0297b803
DG
10755out:
10756 return err;
10757}
10758
e9515c3c
KC
10759static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10760 struct seq_file *m)
10761{
10762 struct cpuacct *ca = cgroup_ca(cgroup);
10763 u64 percpu;
10764 int i;
10765
10766 for_each_present_cpu(i) {
10767 percpu = cpuacct_cpuusage_read(ca, i);
10768 seq_printf(m, "%llu ", (unsigned long long) percpu);
10769 }
10770 seq_printf(m, "\n");
10771 return 0;
10772}
10773
ef12fefa
BR
10774static const char *cpuacct_stat_desc[] = {
10775 [CPUACCT_STAT_USER] = "user",
10776 [CPUACCT_STAT_SYSTEM] = "system",
10777};
10778
10779static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10780 struct cgroup_map_cb *cb)
10781{
10782 struct cpuacct *ca = cgroup_ca(cgrp);
10783 int i;
10784
10785 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10786 s64 val = percpu_counter_read(&ca->cpustat[i]);
10787 val = cputime64_to_clock_t(val);
10788 cb->fill(cb, cpuacct_stat_desc[i], val);
10789 }
10790 return 0;
10791}
10792
d842de87
SV
10793static struct cftype files[] = {
10794 {
10795 .name = "usage",
f4c753b7
PM
10796 .read_u64 = cpuusage_read,
10797 .write_u64 = cpuusage_write,
d842de87 10798 },
e9515c3c
KC
10799 {
10800 .name = "usage_percpu",
10801 .read_seq_string = cpuacct_percpu_seq_read,
10802 },
ef12fefa
BR
10803 {
10804 .name = "stat",
10805 .read_map = cpuacct_stats_show,
10806 },
d842de87
SV
10807};
10808
32cd756a 10809static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10810{
32cd756a 10811 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10812}
10813
10814/*
10815 * charge this task's execution time to its accounting group.
10816 *
10817 * called with rq->lock held.
10818 */
10819static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10820{
10821 struct cpuacct *ca;
934352f2 10822 int cpu;
d842de87 10823
c40c6f85 10824 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10825 return;
10826
934352f2 10827 cpu = task_cpu(tsk);
a18b83b7
BR
10828
10829 rcu_read_lock();
10830
d842de87 10831 ca = task_ca(tsk);
d842de87 10832
934352f2 10833 for (; ca; ca = ca->parent) {
b36128c8 10834 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10835 *cpuusage += cputime;
10836 }
a18b83b7
BR
10837
10838 rcu_read_unlock();
d842de87
SV
10839}
10840
ef12fefa
BR
10841/*
10842 * Charge the system/user time to the task's accounting group.
10843 */
10844static void cpuacct_update_stats(struct task_struct *tsk,
10845 enum cpuacct_stat_index idx, cputime_t val)
10846{
10847 struct cpuacct *ca;
10848
10849 if (unlikely(!cpuacct_subsys.active))
10850 return;
10851
10852 rcu_read_lock();
10853 ca = task_ca(tsk);
10854
10855 do {
10856 percpu_counter_add(&ca->cpustat[idx], val);
10857 ca = ca->parent;
10858 } while (ca);
10859 rcu_read_unlock();
10860}
10861
d842de87
SV
10862struct cgroup_subsys cpuacct_subsys = {
10863 .name = "cpuacct",
10864 .create = cpuacct_create,
10865 .destroy = cpuacct_destroy,
10866 .populate = cpuacct_populate,
10867 .subsys_id = cpuacct_subsys_id,
10868};
10869#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10870
10871#ifndef CONFIG_SMP
10872
10873int rcu_expedited_torture_stats(char *page)
10874{
10875 return 0;
10876}
10877EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10878
10879void synchronize_sched_expedited(void)
10880{
10881}
10882EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10883
10884#else /* #ifndef CONFIG_SMP */
10885
10886static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10887static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10888
10889#define RCU_EXPEDITED_STATE_POST -2
10890#define RCU_EXPEDITED_STATE_IDLE -1
10891
10892static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10893
10894int rcu_expedited_torture_stats(char *page)
10895{
10896 int cnt = 0;
10897 int cpu;
10898
10899 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10900 for_each_online_cpu(cpu) {
10901 cnt += sprintf(&page[cnt], " %d:%d",
10902 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10903 }
10904 cnt += sprintf(&page[cnt], "\n");
10905 return cnt;
10906}
10907EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10908
10909static long synchronize_sched_expedited_count;
10910
10911/*
10912 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10913 * approach to force grace period to end quickly. This consumes
10914 * significant time on all CPUs, and is thus not recommended for
10915 * any sort of common-case code.
10916 *
10917 * Note that it is illegal to call this function while holding any
10918 * lock that is acquired by a CPU-hotplug notifier. Failing to
10919 * observe this restriction will result in deadlock.
10920 */
10921void synchronize_sched_expedited(void)
10922{
10923 int cpu;
10924 unsigned long flags;
10925 bool need_full_sync = 0;
10926 struct rq *rq;
10927 struct migration_req *req;
10928 long snap;
10929 int trycount = 0;
10930
10931 smp_mb(); /* ensure prior mod happens before capturing snap. */
10932 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10933 get_online_cpus();
10934 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10935 put_online_cpus();
10936 if (trycount++ < 10)
10937 udelay(trycount * num_online_cpus());
10938 else {
10939 synchronize_sched();
10940 return;
10941 }
10942 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10943 smp_mb(); /* ensure test happens before caller kfree */
10944 return;
10945 }
10946 get_online_cpus();
10947 }
10948 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10949 for_each_online_cpu(cpu) {
10950 rq = cpu_rq(cpu);
10951 req = &per_cpu(rcu_migration_req, cpu);
10952 init_completion(&req->done);
10953 req->task = NULL;
10954 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10955 spin_lock_irqsave(&rq->lock, flags);
10956 list_add(&req->list, &rq->migration_queue);
10957 spin_unlock_irqrestore(&rq->lock, flags);
10958 wake_up_process(rq->migration_thread);
10959 }
10960 for_each_online_cpu(cpu) {
10961 rcu_expedited_state = cpu;
10962 req = &per_cpu(rcu_migration_req, cpu);
10963 rq = cpu_rq(cpu);
10964 wait_for_completion(&req->done);
10965 spin_lock_irqsave(&rq->lock, flags);
10966 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10967 need_full_sync = 1;
10968 req->dest_cpu = RCU_MIGRATION_IDLE;
10969 spin_unlock_irqrestore(&rq->lock, flags);
10970 }
10971 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 10972 synchronize_sched_expedited_count++;
03b042bf
PM
10973 mutex_unlock(&rcu_sched_expedited_mutex);
10974 put_online_cpus();
10975 if (need_full_sync)
10976 synchronize_sched();
10977}
10978EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10979
10980#endif /* #else #ifndef CONFIG_SMP */