]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: Ensure set_task_cpu() is never called on blocked tasks
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
663997d4
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
1da177e4
LT
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/nmi.h>
34#include <linux/init.h>
dff06c15 35#include <linux/uaccess.h>
1da177e4
LT
36#include <linux/highmem.h>
37#include <linux/smp_lock.h>
38#include <asm/mmu_context.h>
39#include <linux/interrupt.h>
c59ede7b 40#include <linux/capability.h>
1da177e4
LT
41#include <linux/completion.h>
42#include <linux/kernel_stat.h>
9a11b49a 43#include <linux/debug_locks.h>
cdd6c482 44#include <linux/perf_event.h>
1da177e4
LT
45#include <linux/security.h>
46#include <linux/notifier.h>
47#include <linux/profile.h>
7dfb7103 48#include <linux/freezer.h>
198e2f18 49#include <linux/vmalloc.h>
1da177e4
LT
50#include <linux/blkdev.h>
51#include <linux/delay.h>
b488893a 52#include <linux/pid_namespace.h>
1da177e4
LT
53#include <linux/smp.h>
54#include <linux/threads.h>
55#include <linux/timer.h>
56#include <linux/rcupdate.h>
57#include <linux/cpu.h>
58#include <linux/cpuset.h>
59#include <linux/percpu.h>
60#include <linux/kthread.h>
b5aadf7f 61#include <linux/proc_fs.h>
1da177e4 62#include <linux/seq_file.h>
e692ab53 63#include <linux/sysctl.h>
1da177e4
LT
64#include <linux/syscalls.h>
65#include <linux/times.h>
8f0ab514 66#include <linux/tsacct_kern.h>
c6fd91f0 67#include <linux/kprobes.h>
0ff92245 68#include <linux/delayacct.h>
dff06c15 69#include <linux/unistd.h>
f5ff8422 70#include <linux/pagemap.h>
8f4d37ec 71#include <linux/hrtimer.h>
30914a58 72#include <linux/tick.h>
f00b45c1
PZ
73#include <linux/debugfs.h>
74#include <linux/ctype.h>
6cd8a4bb 75#include <linux/ftrace.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
a8d154b0 82#define CREATE_TRACE_POINTS
ad8d75ff 83#include <trace/events/sched.h>
a8d154b0 84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
e05606d3
IM
124static inline int rt_policy(int policy)
125{
3f33a7ce 126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
127 return 1;
128 return 0;
129}
130
131static inline int task_has_rt_policy(struct task_struct *p)
132{
133 return rt_policy(p->policy);
134}
135
1da177e4 136/*
6aa645ea 137 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 138 */
6aa645ea
IM
139struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142};
143
d0b27fa7 144struct rt_bandwidth {
ea736ed5 145 /* nests inside the rq lock: */
0986b11b 146 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
d0b27fa7
PZ
150};
151
152static struct rt_bandwidth def_rt_bandwidth;
153
154static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157{
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175}
176
177static
178void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179{
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
0986b11b 183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 184
d0b27fa7
PZ
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
188}
189
c8bfff6d
KH
190static inline int rt_bandwidth_enabled(void)
191{
192 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
193}
194
195static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196{
197 ktime_t now;
198
cac64d00 199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
0986b11b 205 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 206 for (;;) {
7f1e2ca9
PZ
207 unsigned long delta;
208 ktime_t soft, hard;
209
d0b27fa7
PZ
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 220 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 221 }
0986b11b 222 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
223}
224
225#ifdef CONFIG_RT_GROUP_SCHED
226static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227{
228 hrtimer_cancel(&rt_b->rt_period_timer);
229}
230#endif
231
712555ee
HC
232/*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236static DEFINE_MUTEX(sched_domains_mutex);
237
052f1dc7 238#ifdef CONFIG_GROUP_SCHED
29f59db3 239
68318b8e
SV
240#include <linux/cgroup.h>
241
29f59db3
SV
242struct cfs_rq;
243
6f505b16
PZ
244static LIST_HEAD(task_groups);
245
29f59db3 246/* task group related information */
4cf86d77 247struct task_group {
052f1dc7 248#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
249 struct cgroup_subsys_state css;
250#endif
052f1dc7 251
6c415b92
AB
252#ifdef CONFIG_USER_SCHED
253 uid_t uid;
254#endif
255
052f1dc7 256#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
257 /* schedulable entities of this group on each cpu */
258 struct sched_entity **se;
259 /* runqueue "owned" by this group on each cpu */
260 struct cfs_rq **cfs_rq;
261 unsigned long shares;
052f1dc7
PZ
262#endif
263
264#ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity **rt_se;
266 struct rt_rq **rt_rq;
267
d0b27fa7 268 struct rt_bandwidth rt_bandwidth;
052f1dc7 269#endif
6b2d7700 270
ae8393e5 271 struct rcu_head rcu;
6f505b16 272 struct list_head list;
f473aa5e
PZ
273
274 struct task_group *parent;
275 struct list_head siblings;
276 struct list_head children;
29f59db3
SV
277};
278
354d60c2 279#ifdef CONFIG_USER_SCHED
eff766a6 280
6c415b92
AB
281/* Helper function to pass uid information to create_sched_user() */
282void set_tg_uid(struct user_struct *user)
283{
284 user->tg->uid = user->uid;
285}
286
eff766a6
PZ
287/*
288 * Root task group.
84e9dabf
AS
289 * Every UID task group (including init_task_group aka UID-0) will
290 * be a child to this group.
eff766a6
PZ
291 */
292struct task_group root_task_group;
293
052f1dc7 294#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
295/* Default task group's sched entity on each cpu */
296static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
297/* Default task group's cfs_rq on each cpu */
ada3fa15 298static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 299#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
300
301#ifdef CONFIG_RT_GROUP_SCHED
302static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
1871e52c 303static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
6d6bc0ad 304#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 305#else /* !CONFIG_USER_SCHED */
eff766a6 306#define root_task_group init_task_group
9a7e0b18 307#endif /* CONFIG_USER_SCHED */
6f505b16 308
8ed36996 309/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
310 * a task group's cpu shares.
311 */
8ed36996 312static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 313
e9036b36
CG
314#ifdef CONFIG_FAIR_GROUP_SCHED
315
57310a98
PZ
316#ifdef CONFIG_SMP
317static int root_task_group_empty(void)
318{
319 return list_empty(&root_task_group.children);
320}
321#endif
322
052f1dc7
PZ
323#ifdef CONFIG_USER_SCHED
324# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 325#else /* !CONFIG_USER_SCHED */
052f1dc7 326# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 327#endif /* CONFIG_USER_SCHED */
052f1dc7 328
cb4ad1ff 329/*
2e084786
LJ
330 * A weight of 0 or 1 can cause arithmetics problems.
331 * A weight of a cfs_rq is the sum of weights of which entities
332 * are queued on this cfs_rq, so a weight of a entity should not be
333 * too large, so as the shares value of a task group.
cb4ad1ff
MX
334 * (The default weight is 1024 - so there's no practical
335 * limitation from this.)
336 */
18d95a28 337#define MIN_SHARES 2
2e084786 338#define MAX_SHARES (1UL << 18)
18d95a28 339
052f1dc7
PZ
340static int init_task_group_load = INIT_TASK_GROUP_LOAD;
341#endif
342
29f59db3 343/* Default task group.
3a252015 344 * Every task in system belong to this group at bootup.
29f59db3 345 */
434d53b0 346struct task_group init_task_group;
29f59db3
SV
347
348/* return group to which a task belongs */
4cf86d77 349static inline struct task_group *task_group(struct task_struct *p)
29f59db3 350{
4cf86d77 351 struct task_group *tg;
9b5b7751 352
052f1dc7 353#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
354 rcu_read_lock();
355 tg = __task_cred(p)->user->tg;
356 rcu_read_unlock();
052f1dc7 357#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
358 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
359 struct task_group, css);
24e377a8 360#else
41a2d6cf 361 tg = &init_task_group;
24e377a8 362#endif
9b5b7751 363 return tg;
29f59db3
SV
364}
365
366/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 367static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 368{
052f1dc7 369#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
370 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
371 p->se.parent = task_group(p)->se[cpu];
052f1dc7 372#endif
6f505b16 373
052f1dc7 374#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
375 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
376 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 377#endif
29f59db3
SV
378}
379
380#else
381
6f505b16 382static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
383static inline struct task_group *task_group(struct task_struct *p)
384{
385 return NULL;
386}
29f59db3 387
052f1dc7 388#endif /* CONFIG_GROUP_SCHED */
29f59db3 389
6aa645ea
IM
390/* CFS-related fields in a runqueue */
391struct cfs_rq {
392 struct load_weight load;
393 unsigned long nr_running;
394
6aa645ea 395 u64 exec_clock;
e9acbff6 396 u64 min_vruntime;
6aa645ea
IM
397
398 struct rb_root tasks_timeline;
399 struct rb_node *rb_leftmost;
4a55bd5e
PZ
400
401 struct list_head tasks;
402 struct list_head *balance_iterator;
403
404 /*
405 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
406 * It is set to NULL otherwise (i.e when none are currently running).
407 */
4793241b 408 struct sched_entity *curr, *next, *last;
ddc97297 409
5ac5c4d6 410 unsigned int nr_spread_over;
ddc97297 411
62160e3f 412#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
413 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
414
41a2d6cf
IM
415 /*
416 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
417 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
418 * (like users, containers etc.)
419 *
420 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
421 * list is used during load balance.
422 */
41a2d6cf
IM
423 struct list_head leaf_cfs_rq_list;
424 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
425
426#ifdef CONFIG_SMP
c09595f6 427 /*
c8cba857 428 * the part of load.weight contributed by tasks
c09595f6 429 */
c8cba857 430 unsigned long task_weight;
c09595f6 431
c8cba857
PZ
432 /*
433 * h_load = weight * f(tg)
434 *
435 * Where f(tg) is the recursive weight fraction assigned to
436 * this group.
437 */
438 unsigned long h_load;
c09595f6 439
c8cba857
PZ
440 /*
441 * this cpu's part of tg->shares
442 */
443 unsigned long shares;
f1d239f7
PZ
444
445 /*
446 * load.weight at the time we set shares
447 */
448 unsigned long rq_weight;
c09595f6 449#endif
6aa645ea
IM
450#endif
451};
1da177e4 452
6aa645ea
IM
453/* Real-Time classes' related field in a runqueue: */
454struct rt_rq {
455 struct rt_prio_array active;
63489e45 456 unsigned long rt_nr_running;
052f1dc7 457#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
458 struct {
459 int curr; /* highest queued rt task prio */
398a153b 460#ifdef CONFIG_SMP
e864c499 461 int next; /* next highest */
398a153b 462#endif
e864c499 463 } highest_prio;
6f505b16 464#endif
fa85ae24 465#ifdef CONFIG_SMP
73fe6aae 466 unsigned long rt_nr_migratory;
a1ba4d8b 467 unsigned long rt_nr_total;
a22d7fc1 468 int overloaded;
917b627d 469 struct plist_head pushable_tasks;
fa85ae24 470#endif
6f505b16 471 int rt_throttled;
fa85ae24 472 u64 rt_time;
ac086bc2 473 u64 rt_runtime;
ea736ed5 474 /* Nests inside the rq lock: */
0986b11b 475 raw_spinlock_t rt_runtime_lock;
6f505b16 476
052f1dc7 477#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
478 unsigned long rt_nr_boosted;
479
6f505b16
PZ
480 struct rq *rq;
481 struct list_head leaf_rt_rq_list;
482 struct task_group *tg;
483 struct sched_rt_entity *rt_se;
484#endif
6aa645ea
IM
485};
486
57d885fe
GH
487#ifdef CONFIG_SMP
488
489/*
490 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
491 * variables. Each exclusive cpuset essentially defines an island domain by
492 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
493 * exclusive cpuset is created, we also create and attach a new root-domain
494 * object.
495 *
57d885fe
GH
496 */
497struct root_domain {
498 atomic_t refcount;
c6c4927b
RR
499 cpumask_var_t span;
500 cpumask_var_t online;
637f5085 501
0eab9146 502 /*
637f5085
GH
503 * The "RT overload" flag: it gets set if a CPU has more than
504 * one runnable RT task.
505 */
c6c4927b 506 cpumask_var_t rto_mask;
0eab9146 507 atomic_t rto_count;
6e0534f2
GH
508#ifdef CONFIG_SMP
509 struct cpupri cpupri;
510#endif
57d885fe
GH
511};
512
dc938520
GH
513/*
514 * By default the system creates a single root-domain with all cpus as
515 * members (mimicking the global state we have today).
516 */
57d885fe
GH
517static struct root_domain def_root_domain;
518
519#endif
520
1da177e4
LT
521/*
522 * This is the main, per-CPU runqueue data structure.
523 *
524 * Locking rule: those places that want to lock multiple runqueues
525 * (such as the load balancing or the thread migration code), lock
526 * acquire operations must be ordered by ascending &runqueue.
527 */
70b97a7f 528struct rq {
d8016491 529 /* runqueue lock: */
05fa785c 530 raw_spinlock_t lock;
1da177e4
LT
531
532 /*
533 * nr_running and cpu_load should be in the same cacheline because
534 * remote CPUs use both these fields when doing load calculation.
535 */
536 unsigned long nr_running;
6aa645ea
IM
537 #define CPU_LOAD_IDX_MAX 5
538 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
539#ifdef CONFIG_NO_HZ
540 unsigned char in_nohz_recently;
541#endif
d8016491
IM
542 /* capture load from *all* tasks on this cpu: */
543 struct load_weight load;
6aa645ea
IM
544 unsigned long nr_load_updates;
545 u64 nr_switches;
546
547 struct cfs_rq cfs;
6f505b16 548 struct rt_rq rt;
6f505b16 549
6aa645ea 550#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
551 /* list of leaf cfs_rq on this cpu: */
552 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
553#endif
554#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 555 struct list_head leaf_rt_rq_list;
1da177e4 556#endif
1da177e4
LT
557
558 /*
559 * This is part of a global counter where only the total sum
560 * over all CPUs matters. A task can increase this counter on
561 * one CPU and if it got migrated afterwards it may decrease
562 * it on another CPU. Always updated under the runqueue lock:
563 */
564 unsigned long nr_uninterruptible;
565
36c8b586 566 struct task_struct *curr, *idle;
c9819f45 567 unsigned long next_balance;
1da177e4 568 struct mm_struct *prev_mm;
6aa645ea 569
3e51f33f 570 u64 clock;
6aa645ea 571
1da177e4
LT
572 atomic_t nr_iowait;
573
574#ifdef CONFIG_SMP
0eab9146 575 struct root_domain *rd;
1da177e4
LT
576 struct sched_domain *sd;
577
a0a522ce 578 unsigned char idle_at_tick;
1da177e4 579 /* For active balancing */
3f029d3c 580 int post_schedule;
1da177e4
LT
581 int active_balance;
582 int push_cpu;
d8016491
IM
583 /* cpu of this runqueue: */
584 int cpu;
1f11eb6a 585 int online;
1da177e4 586
a8a51d5e 587 unsigned long avg_load_per_task;
1da177e4 588
36c8b586 589 struct task_struct *migration_thread;
1da177e4 590 struct list_head migration_queue;
e9e9250b
PZ
591
592 u64 rt_avg;
593 u64 age_stamp;
1b9508f6
MG
594 u64 idle_stamp;
595 u64 avg_idle;
1da177e4
LT
596#endif
597
dce48a84
TG
598 /* calc_load related fields */
599 unsigned long calc_load_update;
600 long calc_load_active;
601
8f4d37ec 602#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
603#ifdef CONFIG_SMP
604 int hrtick_csd_pending;
605 struct call_single_data hrtick_csd;
606#endif
8f4d37ec
PZ
607 struct hrtimer hrtick_timer;
608#endif
609
1da177e4
LT
610#ifdef CONFIG_SCHEDSTATS
611 /* latency stats */
612 struct sched_info rq_sched_info;
9c2c4802
KC
613 unsigned long long rq_cpu_time;
614 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
615
616 /* sys_sched_yield() stats */
480b9434 617 unsigned int yld_count;
1da177e4
LT
618
619 /* schedule() stats */
480b9434
KC
620 unsigned int sched_switch;
621 unsigned int sched_count;
622 unsigned int sched_goidle;
1da177e4
LT
623
624 /* try_to_wake_up() stats */
480b9434
KC
625 unsigned int ttwu_count;
626 unsigned int ttwu_local;
b8efb561
IM
627
628 /* BKL stats */
480b9434 629 unsigned int bkl_count;
1da177e4
LT
630#endif
631};
632
f34e3b61 633static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 634
7d478721
PZ
635static inline
636void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 637{
7d478721 638 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
639}
640
0a2966b4
CL
641static inline int cpu_of(struct rq *rq)
642{
643#ifdef CONFIG_SMP
644 return rq->cpu;
645#else
646 return 0;
647#endif
648}
649
674311d5
NP
650/*
651 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 652 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
653 *
654 * The domain tree of any CPU may only be accessed from within
655 * preempt-disabled sections.
656 */
48f24c4d
IM
657#define for_each_domain(cpu, __sd) \
658 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
659
660#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
661#define this_rq() (&__get_cpu_var(runqueues))
662#define task_rq(p) cpu_rq(task_cpu(p))
663#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 664#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 665
aa9c4c0f 666inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
667{
668 rq->clock = sched_clock_cpu(cpu_of(rq));
669}
670
bf5c91ba
IM
671/*
672 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
673 */
674#ifdef CONFIG_SCHED_DEBUG
675# define const_debug __read_mostly
676#else
677# define const_debug static const
678#endif
679
017730c1
IM
680/**
681 * runqueue_is_locked
e17b38bf 682 * @cpu: the processor in question.
017730c1
IM
683 *
684 * Returns true if the current cpu runqueue is locked.
685 * This interface allows printk to be called with the runqueue lock
686 * held and know whether or not it is OK to wake up the klogd.
687 */
89f19f04 688int runqueue_is_locked(int cpu)
017730c1 689{
05fa785c 690 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
691}
692
bf5c91ba
IM
693/*
694 * Debugging: various feature bits
695 */
f00b45c1
PZ
696
697#define SCHED_FEAT(name, enabled) \
698 __SCHED_FEAT_##name ,
699
bf5c91ba 700enum {
f00b45c1 701#include "sched_features.h"
bf5c91ba
IM
702};
703
f00b45c1
PZ
704#undef SCHED_FEAT
705
706#define SCHED_FEAT(name, enabled) \
707 (1UL << __SCHED_FEAT_##name) * enabled |
708
bf5c91ba 709const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
710#include "sched_features.h"
711 0;
712
713#undef SCHED_FEAT
714
715#ifdef CONFIG_SCHED_DEBUG
716#define SCHED_FEAT(name, enabled) \
717 #name ,
718
983ed7a6 719static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
720#include "sched_features.h"
721 NULL
722};
723
724#undef SCHED_FEAT
725
34f3a814 726static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 727{
f00b45c1
PZ
728 int i;
729
730 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
731 if (!(sysctl_sched_features & (1UL << i)))
732 seq_puts(m, "NO_");
733 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 734 }
34f3a814 735 seq_puts(m, "\n");
f00b45c1 736
34f3a814 737 return 0;
f00b45c1
PZ
738}
739
740static ssize_t
741sched_feat_write(struct file *filp, const char __user *ubuf,
742 size_t cnt, loff_t *ppos)
743{
744 char buf[64];
745 char *cmp = buf;
746 int neg = 0;
747 int i;
748
749 if (cnt > 63)
750 cnt = 63;
751
752 if (copy_from_user(&buf, ubuf, cnt))
753 return -EFAULT;
754
755 buf[cnt] = 0;
756
c24b7c52 757 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
758 neg = 1;
759 cmp += 3;
760 }
761
762 for (i = 0; sched_feat_names[i]; i++) {
763 int len = strlen(sched_feat_names[i]);
764
765 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
766 if (neg)
767 sysctl_sched_features &= ~(1UL << i);
768 else
769 sysctl_sched_features |= (1UL << i);
770 break;
771 }
772 }
773
774 if (!sched_feat_names[i])
775 return -EINVAL;
776
42994724 777 *ppos += cnt;
f00b45c1
PZ
778
779 return cnt;
780}
781
34f3a814
LZ
782static int sched_feat_open(struct inode *inode, struct file *filp)
783{
784 return single_open(filp, sched_feat_show, NULL);
785}
786
828c0950 787static const struct file_operations sched_feat_fops = {
34f3a814
LZ
788 .open = sched_feat_open,
789 .write = sched_feat_write,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
f00b45c1
PZ
793};
794
795static __init int sched_init_debug(void)
796{
f00b45c1
PZ
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
799
800 return 0;
801}
802late_initcall(sched_init_debug);
803
804#endif
805
806#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 807
b82d9fdd
PZ
808/*
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
811 */
812const_debug unsigned int sysctl_sched_nr_migrate = 32;
813
2398f2c6
PZ
814/*
815 * ratelimit for updating the group shares.
55cd5340 816 * default: 0.25ms
2398f2c6 817 */
55cd5340 818unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 819unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 820
ffda12a1
PZ
821/*
822 * Inject some fuzzyness into changing the per-cpu group shares
823 * this avoids remote rq-locks at the expense of fairness.
824 * default: 4
825 */
826unsigned int sysctl_sched_shares_thresh = 4;
827
e9e9250b
PZ
828/*
829 * period over which we average the RT time consumption, measured
830 * in ms.
831 *
832 * default: 1s
833 */
834const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
835
fa85ae24 836/*
9f0c1e56 837 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
838 * default: 1s
839 */
9f0c1e56 840unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 841
6892b75e
IM
842static __read_mostly int scheduler_running;
843
9f0c1e56
PZ
844/*
845 * part of the period that we allow rt tasks to run in us.
846 * default: 0.95s
847 */
848int sysctl_sched_rt_runtime = 950000;
fa85ae24 849
d0b27fa7
PZ
850static inline u64 global_rt_period(void)
851{
852 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
853}
854
855static inline u64 global_rt_runtime(void)
856{
e26873bb 857 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
858 return RUNTIME_INF;
859
860 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
861}
fa85ae24 862
1da177e4 863#ifndef prepare_arch_switch
4866cde0
NP
864# define prepare_arch_switch(next) do { } while (0)
865#endif
866#ifndef finish_arch_switch
867# define finish_arch_switch(prev) do { } while (0)
868#endif
869
051a1d1a
DA
870static inline int task_current(struct rq *rq, struct task_struct *p)
871{
872 return rq->curr == p;
873}
874
4866cde0 875#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 876static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 877{
051a1d1a 878 return task_current(rq, p);
4866cde0
NP
879}
880
70b97a7f 881static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
882{
883}
884
70b97a7f 885static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 886{
da04c035
IM
887#ifdef CONFIG_DEBUG_SPINLOCK
888 /* this is a valid case when another task releases the spinlock */
889 rq->lock.owner = current;
890#endif
8a25d5de
IM
891 /*
892 * If we are tracking spinlock dependencies then we have to
893 * fix up the runqueue lock - which gets 'carried over' from
894 * prev into current:
895 */
896 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
897
05fa785c 898 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
899}
900
901#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 902static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
903{
904#ifdef CONFIG_SMP
905 return p->oncpu;
906#else
051a1d1a 907 return task_current(rq, p);
4866cde0
NP
908#endif
909}
910
70b97a7f 911static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
912{
913#ifdef CONFIG_SMP
914 /*
915 * We can optimise this out completely for !SMP, because the
916 * SMP rebalancing from interrupt is the only thing that cares
917 * here.
918 */
919 next->oncpu = 1;
920#endif
921#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 922 raw_spin_unlock_irq(&rq->lock);
4866cde0 923#else
05fa785c 924 raw_spin_unlock(&rq->lock);
4866cde0
NP
925#endif
926}
927
70b97a7f 928static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
929{
930#ifdef CONFIG_SMP
931 /*
932 * After ->oncpu is cleared, the task can be moved to a different CPU.
933 * We must ensure this doesn't happen until the switch is completely
934 * finished.
935 */
936 smp_wmb();
937 prev->oncpu = 0;
938#endif
939#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 local_irq_enable();
1da177e4 941#endif
4866cde0
NP
942}
943#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 944
b29739f9
IM
945/*
946 * __task_rq_lock - lock the runqueue a given task resides on.
947 * Must be called interrupts disabled.
948 */
70b97a7f 949static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
950 __acquires(rq->lock)
951{
3a5c359a
AK
952 for (;;) {
953 struct rq *rq = task_rq(p);
05fa785c 954 raw_spin_lock(&rq->lock);
3a5c359a
AK
955 if (likely(rq == task_rq(p)))
956 return rq;
05fa785c 957 raw_spin_unlock(&rq->lock);
b29739f9 958 }
b29739f9
IM
959}
960
1da177e4
LT
961/*
962 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 963 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
964 * explicitly disabling preemption.
965 */
70b97a7f 966static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
967 __acquires(rq->lock)
968{
70b97a7f 969 struct rq *rq;
1da177e4 970
3a5c359a
AK
971 for (;;) {
972 local_irq_save(*flags);
973 rq = task_rq(p);
05fa785c 974 raw_spin_lock(&rq->lock);
3a5c359a
AK
975 if (likely(rq == task_rq(p)))
976 return rq;
05fa785c 977 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 978 }
1da177e4
LT
979}
980
ad474cac
ON
981void task_rq_unlock_wait(struct task_struct *p)
982{
983 struct rq *rq = task_rq(p);
984
985 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 986 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
987}
988
a9957449 989static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
990 __releases(rq->lock)
991{
05fa785c 992 raw_spin_unlock(&rq->lock);
b29739f9
IM
993}
994
70b97a7f 995static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
996 __releases(rq->lock)
997{
05fa785c 998 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
999}
1000
1da177e4 1001/*
cc2a73b5 1002 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1003 */
a9957449 1004static struct rq *this_rq_lock(void)
1da177e4
LT
1005 __acquires(rq->lock)
1006{
70b97a7f 1007 struct rq *rq;
1da177e4
LT
1008
1009 local_irq_disable();
1010 rq = this_rq();
05fa785c 1011 raw_spin_lock(&rq->lock);
1da177e4
LT
1012
1013 return rq;
1014}
1015
8f4d37ec
PZ
1016#ifdef CONFIG_SCHED_HRTICK
1017/*
1018 * Use HR-timers to deliver accurate preemption points.
1019 *
1020 * Its all a bit involved since we cannot program an hrt while holding the
1021 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1022 * reschedule event.
1023 *
1024 * When we get rescheduled we reprogram the hrtick_timer outside of the
1025 * rq->lock.
1026 */
8f4d37ec
PZ
1027
1028/*
1029 * Use hrtick when:
1030 * - enabled by features
1031 * - hrtimer is actually high res
1032 */
1033static inline int hrtick_enabled(struct rq *rq)
1034{
1035 if (!sched_feat(HRTICK))
1036 return 0;
ba42059f 1037 if (!cpu_active(cpu_of(rq)))
b328ca18 1038 return 0;
8f4d37ec
PZ
1039 return hrtimer_is_hres_active(&rq->hrtick_timer);
1040}
1041
8f4d37ec
PZ
1042static void hrtick_clear(struct rq *rq)
1043{
1044 if (hrtimer_active(&rq->hrtick_timer))
1045 hrtimer_cancel(&rq->hrtick_timer);
1046}
1047
8f4d37ec
PZ
1048/*
1049 * High-resolution timer tick.
1050 * Runs from hardirq context with interrupts disabled.
1051 */
1052static enum hrtimer_restart hrtick(struct hrtimer *timer)
1053{
1054 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1055
1056 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1057
05fa785c 1058 raw_spin_lock(&rq->lock);
3e51f33f 1059 update_rq_clock(rq);
8f4d37ec 1060 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1061 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1062
1063 return HRTIMER_NORESTART;
1064}
1065
95e904c7 1066#ifdef CONFIG_SMP
31656519
PZ
1067/*
1068 * called from hardirq (IPI) context
1069 */
1070static void __hrtick_start(void *arg)
b328ca18 1071{
31656519 1072 struct rq *rq = arg;
b328ca18 1073
05fa785c 1074 raw_spin_lock(&rq->lock);
31656519
PZ
1075 hrtimer_restart(&rq->hrtick_timer);
1076 rq->hrtick_csd_pending = 0;
05fa785c 1077 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1078}
1079
31656519
PZ
1080/*
1081 * Called to set the hrtick timer state.
1082 *
1083 * called with rq->lock held and irqs disabled
1084 */
1085static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1086{
31656519
PZ
1087 struct hrtimer *timer = &rq->hrtick_timer;
1088 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1089
cc584b21 1090 hrtimer_set_expires(timer, time);
31656519
PZ
1091
1092 if (rq == this_rq()) {
1093 hrtimer_restart(timer);
1094 } else if (!rq->hrtick_csd_pending) {
6e275637 1095 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1096 rq->hrtick_csd_pending = 1;
1097 }
b328ca18
PZ
1098}
1099
1100static int
1101hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1102{
1103 int cpu = (int)(long)hcpu;
1104
1105 switch (action) {
1106 case CPU_UP_CANCELED:
1107 case CPU_UP_CANCELED_FROZEN:
1108 case CPU_DOWN_PREPARE:
1109 case CPU_DOWN_PREPARE_FROZEN:
1110 case CPU_DEAD:
1111 case CPU_DEAD_FROZEN:
31656519 1112 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1113 return NOTIFY_OK;
1114 }
1115
1116 return NOTIFY_DONE;
1117}
1118
fa748203 1119static __init void init_hrtick(void)
b328ca18
PZ
1120{
1121 hotcpu_notifier(hotplug_hrtick, 0);
1122}
31656519
PZ
1123#else
1124/*
1125 * Called to set the hrtick timer state.
1126 *
1127 * called with rq->lock held and irqs disabled
1128 */
1129static void hrtick_start(struct rq *rq, u64 delay)
1130{
7f1e2ca9 1131 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1132 HRTIMER_MODE_REL_PINNED, 0);
31656519 1133}
b328ca18 1134
006c75f1 1135static inline void init_hrtick(void)
8f4d37ec 1136{
8f4d37ec 1137}
31656519 1138#endif /* CONFIG_SMP */
8f4d37ec 1139
31656519 1140static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1141{
31656519
PZ
1142#ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
8f4d37ec 1144
31656519
PZ
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148#endif
8f4d37ec 1149
31656519
PZ
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
8f4d37ec 1152}
006c75f1 1153#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1154static inline void hrtick_clear(struct rq *rq)
1155{
1156}
1157
8f4d37ec
PZ
1158static inline void init_rq_hrtick(struct rq *rq)
1159{
1160}
1161
b328ca18
PZ
1162static inline void init_hrtick(void)
1163{
1164}
006c75f1 1165#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1166
c24d20db
IM
1167/*
1168 * resched_task - mark a task 'to be rescheduled now'.
1169 *
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1173 */
1174#ifdef CONFIG_SMP
1175
1176#ifndef tsk_is_polling
1177#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178#endif
1179
31656519 1180static void resched_task(struct task_struct *p)
c24d20db
IM
1181{
1182 int cpu;
1183
05fa785c 1184 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1185
5ed0cec0 1186 if (test_tsk_need_resched(p))
c24d20db
IM
1187 return;
1188
5ed0cec0 1189 set_tsk_need_resched(p);
c24d20db
IM
1190
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1194
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1199}
1200
1201static void resched_cpu(int cpu)
1202{
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1205
05fa785c 1206 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1207 return;
1208 resched_task(cpu_curr(cpu));
05fa785c 1209 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1210}
06d8308c
TG
1211
1212#ifdef CONFIG_NO_HZ
1213/*
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1222 */
1223void wake_up_idle_cpu(int cpu)
1224{
1225 struct rq *rq = cpu_rq(cpu);
1226
1227 if (cpu == smp_processor_id())
1228 return;
1229
1230 /*
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1236 */
1237 if (rq->curr != rq->idle)
1238 return;
1239
1240 /*
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1244 */
5ed0cec0 1245 set_tsk_need_resched(rq->idle);
06d8308c
TG
1246
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1251}
6d6bc0ad 1252#endif /* CONFIG_NO_HZ */
06d8308c 1253
e9e9250b
PZ
1254static u64 sched_avg_period(void)
1255{
1256 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1257}
1258
1259static void sched_avg_update(struct rq *rq)
1260{
1261 s64 period = sched_avg_period();
1262
1263 while ((s64)(rq->clock - rq->age_stamp) > period) {
1264 rq->age_stamp += period;
1265 rq->rt_avg /= 2;
1266 }
1267}
1268
1269static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1270{
1271 rq->rt_avg += rt_delta;
1272 sched_avg_update(rq);
1273}
1274
6d6bc0ad 1275#else /* !CONFIG_SMP */
31656519 1276static void resched_task(struct task_struct *p)
c24d20db 1277{
05fa785c 1278 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1279 set_tsk_need_resched(p);
c24d20db 1280}
e9e9250b
PZ
1281
1282static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1283{
1284}
6d6bc0ad 1285#endif /* CONFIG_SMP */
c24d20db 1286
45bf76df
IM
1287#if BITS_PER_LONG == 32
1288# define WMULT_CONST (~0UL)
1289#else
1290# define WMULT_CONST (1UL << 32)
1291#endif
1292
1293#define WMULT_SHIFT 32
1294
194081eb
IM
1295/*
1296 * Shift right and round:
1297 */
cf2ab469 1298#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1299
a7be37ac
PZ
1300/*
1301 * delta *= weight / lw
1302 */
cb1c4fc9 1303static unsigned long
45bf76df
IM
1304calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305 struct load_weight *lw)
1306{
1307 u64 tmp;
1308
7a232e03
LJ
1309 if (!lw->inv_weight) {
1310 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1311 lw->inv_weight = 1;
1312 else
1313 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1314 / (lw->weight+1);
1315 }
45bf76df
IM
1316
1317 tmp = (u64)delta_exec * weight;
1318 /*
1319 * Check whether we'd overflow the 64-bit multiplication:
1320 */
194081eb 1321 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1322 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1323 WMULT_SHIFT/2);
1324 else
cf2ab469 1325 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1326
ecf691da 1327 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1328}
1329
1091985b 1330static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1331{
1332 lw->weight += inc;
e89996ae 1333 lw->inv_weight = 0;
45bf76df
IM
1334}
1335
1091985b 1336static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1337{
1338 lw->weight -= dec;
e89996ae 1339 lw->inv_weight = 0;
45bf76df
IM
1340}
1341
2dd73a4f
PW
1342/*
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1347 * scaled version of the new time slice allocation that they receive on time
1348 * slice expiry etc.
1349 */
1350
cce7ade8
PZ
1351#define WEIGHT_IDLEPRIO 3
1352#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1353
1354/*
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1359 *
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
dd41f596
IM
1365 */
1366static const int prio_to_weight[40] = {
254753dc
IM
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1375};
1376
5714d2de
IM
1377/*
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1379 *
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1383 */
dd41f596 1384static const u32 prio_to_wmult[40] = {
254753dc
IM
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1393};
2dd73a4f 1394
dd41f596
IM
1395static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1396
1397/*
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1401 */
1402struct rq_iterator {
1403 void *arg;
1404 struct task_struct *(*start)(void *);
1405 struct task_struct *(*next)(void *);
1406};
1407
e1d1484f
PW
1408#ifdef CONFIG_SMP
1409static unsigned long
1410balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411 unsigned long max_load_move, struct sched_domain *sd,
1412 enum cpu_idle_type idle, int *all_pinned,
1413 int *this_best_prio, struct rq_iterator *iterator);
1414
1415static int
1416iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle,
1418 struct rq_iterator *iterator);
e1d1484f 1419#endif
dd41f596 1420
ef12fefa
BR
1421/* Time spent by the tasks of the cpu accounting group executing in ... */
1422enum cpuacct_stat_index {
1423 CPUACCT_STAT_USER, /* ... user mode */
1424 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1425
1426 CPUACCT_STAT_NSTATS,
1427};
1428
d842de87
SV
1429#ifdef CONFIG_CGROUP_CPUACCT
1430static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1431static void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1433#else
1434static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1435static inline void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1437#endif
1438
18d95a28
PZ
1439static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1440{
1441 update_load_add(&rq->load, load);
1442}
1443
1444static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1445{
1446 update_load_sub(&rq->load, load);
1447}
1448
7940ca36 1449#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1450typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1451
1452/*
1453 * Iterate the full tree, calling @down when first entering a node and @up when
1454 * leaving it for the final time.
1455 */
eb755805 1456static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1457{
1458 struct task_group *parent, *child;
eb755805 1459 int ret;
c09595f6
PZ
1460
1461 rcu_read_lock();
1462 parent = &root_task_group;
1463down:
eb755805
PZ
1464 ret = (*down)(parent, data);
1465 if (ret)
1466 goto out_unlock;
c09595f6
PZ
1467 list_for_each_entry_rcu(child, &parent->children, siblings) {
1468 parent = child;
1469 goto down;
1470
1471up:
1472 continue;
1473 }
eb755805
PZ
1474 ret = (*up)(parent, data);
1475 if (ret)
1476 goto out_unlock;
c09595f6
PZ
1477
1478 child = parent;
1479 parent = parent->parent;
1480 if (parent)
1481 goto up;
eb755805 1482out_unlock:
c09595f6 1483 rcu_read_unlock();
eb755805
PZ
1484
1485 return ret;
c09595f6
PZ
1486}
1487
eb755805
PZ
1488static int tg_nop(struct task_group *tg, void *data)
1489{
1490 return 0;
c09595f6 1491}
eb755805
PZ
1492#endif
1493
1494#ifdef CONFIG_SMP
f5f08f39
PZ
1495/* Used instead of source_load when we know the type == 0 */
1496static unsigned long weighted_cpuload(const int cpu)
1497{
1498 return cpu_rq(cpu)->load.weight;
1499}
1500
1501/*
1502 * Return a low guess at the load of a migration-source cpu weighted
1503 * according to the scheduling class and "nice" value.
1504 *
1505 * We want to under-estimate the load of migration sources, to
1506 * balance conservatively.
1507 */
1508static unsigned long source_load(int cpu, int type)
1509{
1510 struct rq *rq = cpu_rq(cpu);
1511 unsigned long total = weighted_cpuload(cpu);
1512
1513 if (type == 0 || !sched_feat(LB_BIAS))
1514 return total;
1515
1516 return min(rq->cpu_load[type-1], total);
1517}
1518
1519/*
1520 * Return a high guess at the load of a migration-target cpu weighted
1521 * according to the scheduling class and "nice" value.
1522 */
1523static unsigned long target_load(int cpu, int type)
1524{
1525 struct rq *rq = cpu_rq(cpu);
1526 unsigned long total = weighted_cpuload(cpu);
1527
1528 if (type == 0 || !sched_feat(LB_BIAS))
1529 return total;
1530
1531 return max(rq->cpu_load[type-1], total);
1532}
1533
ae154be1
PZ
1534static struct sched_group *group_of(int cpu)
1535{
1536 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1537
1538 if (!sd)
1539 return NULL;
1540
1541 return sd->groups;
1542}
1543
1544static unsigned long power_of(int cpu)
1545{
1546 struct sched_group *group = group_of(cpu);
1547
1548 if (!group)
1549 return SCHED_LOAD_SCALE;
1550
1551 return group->cpu_power;
1552}
1553
eb755805
PZ
1554static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1555
1556static unsigned long cpu_avg_load_per_task(int cpu)
1557{
1558 struct rq *rq = cpu_rq(cpu);
af6d596f 1559 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1560
4cd42620
SR
1561 if (nr_running)
1562 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1563 else
1564 rq->avg_load_per_task = 0;
eb755805
PZ
1565
1566 return rq->avg_load_per_task;
1567}
1568
1569#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1570
4a6cc4bd 1571static __read_mostly unsigned long *update_shares_data;
34d76c41 1572
c09595f6
PZ
1573static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1574
1575/*
1576 * Calculate and set the cpu's group shares.
1577 */
34d76c41
PZ
1578static void update_group_shares_cpu(struct task_group *tg, int cpu,
1579 unsigned long sd_shares,
1580 unsigned long sd_rq_weight,
4a6cc4bd 1581 unsigned long *usd_rq_weight)
18d95a28 1582{
34d76c41 1583 unsigned long shares, rq_weight;
a5004278 1584 int boost = 0;
c09595f6 1585
4a6cc4bd 1586 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1587 if (!rq_weight) {
1588 boost = 1;
1589 rq_weight = NICE_0_LOAD;
1590 }
c8cba857 1591
c09595f6 1592 /*
a8af7246
PZ
1593 * \Sum_j shares_j * rq_weight_i
1594 * shares_i = -----------------------------
1595 * \Sum_j rq_weight_j
c09595f6 1596 */
ec4e0e2f 1597 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1598 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1599
ffda12a1
PZ
1600 if (abs(shares - tg->se[cpu]->load.weight) >
1601 sysctl_sched_shares_thresh) {
1602 struct rq *rq = cpu_rq(cpu);
1603 unsigned long flags;
c09595f6 1604
05fa785c 1605 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1606 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1607 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1608 __set_se_shares(tg->se[cpu], shares);
05fa785c 1609 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1610 }
18d95a28 1611}
c09595f6
PZ
1612
1613/*
c8cba857
PZ
1614 * Re-compute the task group their per cpu shares over the given domain.
1615 * This needs to be done in a bottom-up fashion because the rq weight of a
1616 * parent group depends on the shares of its child groups.
c09595f6 1617 */
eb755805 1618static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1619{
cd8ad40d 1620 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1621 unsigned long *usd_rq_weight;
eb755805 1622 struct sched_domain *sd = data;
34d76c41 1623 unsigned long flags;
c8cba857 1624 int i;
c09595f6 1625
34d76c41
PZ
1626 if (!tg->se[0])
1627 return 0;
1628
1629 local_irq_save(flags);
4a6cc4bd 1630 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1631
758b2cdc 1632 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1633 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1634 usd_rq_weight[i] = weight;
34d76c41 1635
cd8ad40d 1636 rq_weight += weight;
ec4e0e2f
KC
1637 /*
1638 * If there are currently no tasks on the cpu pretend there
1639 * is one of average load so that when a new task gets to
1640 * run here it will not get delayed by group starvation.
1641 */
ec4e0e2f
KC
1642 if (!weight)
1643 weight = NICE_0_LOAD;
1644
cd8ad40d 1645 sum_weight += weight;
c8cba857 1646 shares += tg->cfs_rq[i]->shares;
c09595f6 1647 }
c09595f6 1648
cd8ad40d
PZ
1649 if (!rq_weight)
1650 rq_weight = sum_weight;
1651
c8cba857
PZ
1652 if ((!shares && rq_weight) || shares > tg->shares)
1653 shares = tg->shares;
1654
1655 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1656 shares = tg->shares;
c09595f6 1657
758b2cdc 1658 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1659 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1660
1661 local_irq_restore(flags);
eb755805
PZ
1662
1663 return 0;
c09595f6
PZ
1664}
1665
1666/*
c8cba857
PZ
1667 * Compute the cpu's hierarchical load factor for each task group.
1668 * This needs to be done in a top-down fashion because the load of a child
1669 * group is a fraction of its parents load.
c09595f6 1670 */
eb755805 1671static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1672{
c8cba857 1673 unsigned long load;
eb755805 1674 long cpu = (long)data;
c09595f6 1675
c8cba857
PZ
1676 if (!tg->parent) {
1677 load = cpu_rq(cpu)->load.weight;
1678 } else {
1679 load = tg->parent->cfs_rq[cpu]->h_load;
1680 load *= tg->cfs_rq[cpu]->shares;
1681 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1682 }
c09595f6 1683
c8cba857 1684 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1685
eb755805 1686 return 0;
c09595f6
PZ
1687}
1688
c8cba857 1689static void update_shares(struct sched_domain *sd)
4d8d595d 1690{
e7097159
PZ
1691 s64 elapsed;
1692 u64 now;
1693
1694 if (root_task_group_empty())
1695 return;
1696
1697 now = cpu_clock(raw_smp_processor_id());
1698 elapsed = now - sd->last_update;
2398f2c6
PZ
1699
1700 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1701 sd->last_update = now;
eb755805 1702 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1703 }
4d8d595d
PZ
1704}
1705
3e5459b4
PZ
1706static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1707{
e7097159
PZ
1708 if (root_task_group_empty())
1709 return;
1710
05fa785c 1711 raw_spin_unlock(&rq->lock);
3e5459b4 1712 update_shares(sd);
05fa785c 1713 raw_spin_lock(&rq->lock);
3e5459b4
PZ
1714}
1715
eb755805 1716static void update_h_load(long cpu)
c09595f6 1717{
e7097159
PZ
1718 if (root_task_group_empty())
1719 return;
1720
eb755805 1721 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1722}
1723
c09595f6
PZ
1724#else
1725
c8cba857 1726static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1727{
1728}
1729
3e5459b4
PZ
1730static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1731{
1732}
1733
18d95a28
PZ
1734#endif
1735
8f45e2b5
GH
1736#ifdef CONFIG_PREEMPT
1737
b78bb868
PZ
1738static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1739
70574a99 1740/*
8f45e2b5
GH
1741 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1742 * way at the expense of forcing extra atomic operations in all
1743 * invocations. This assures that the double_lock is acquired using the
1744 * same underlying policy as the spinlock_t on this architecture, which
1745 * reduces latency compared to the unfair variant below. However, it
1746 * also adds more overhead and therefore may reduce throughput.
70574a99 1747 */
8f45e2b5
GH
1748static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1749 __releases(this_rq->lock)
1750 __acquires(busiest->lock)
1751 __acquires(this_rq->lock)
1752{
05fa785c 1753 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1754 double_rq_lock(this_rq, busiest);
1755
1756 return 1;
1757}
1758
1759#else
1760/*
1761 * Unfair double_lock_balance: Optimizes throughput at the expense of
1762 * latency by eliminating extra atomic operations when the locks are
1763 * already in proper order on entry. This favors lower cpu-ids and will
1764 * grant the double lock to lower cpus over higher ids under contention,
1765 * regardless of entry order into the function.
1766 */
1767static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1768 __releases(this_rq->lock)
1769 __acquires(busiest->lock)
1770 __acquires(this_rq->lock)
1771{
1772 int ret = 0;
1773
05fa785c 1774 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1775 if (busiest < this_rq) {
05fa785c
TG
1776 raw_spin_unlock(&this_rq->lock);
1777 raw_spin_lock(&busiest->lock);
1778 raw_spin_lock_nested(&this_rq->lock,
1779 SINGLE_DEPTH_NESTING);
70574a99
AD
1780 ret = 1;
1781 } else
05fa785c
TG
1782 raw_spin_lock_nested(&busiest->lock,
1783 SINGLE_DEPTH_NESTING);
70574a99
AD
1784 }
1785 return ret;
1786}
1787
8f45e2b5
GH
1788#endif /* CONFIG_PREEMPT */
1789
1790/*
1791 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1792 */
1793static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1794{
1795 if (unlikely(!irqs_disabled())) {
1796 /* printk() doesn't work good under rq->lock */
05fa785c 1797 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1798 BUG_ON(1);
1799 }
1800
1801 return _double_lock_balance(this_rq, busiest);
1802}
1803
70574a99
AD
1804static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1805 __releases(busiest->lock)
1806{
05fa785c 1807 raw_spin_unlock(&busiest->lock);
70574a99
AD
1808 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1809}
18d95a28
PZ
1810#endif
1811
30432094 1812#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1813static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1814{
30432094 1815#ifdef CONFIG_SMP
34e83e85
IM
1816 cfs_rq->shares = shares;
1817#endif
1818}
30432094 1819#endif
e7693a36 1820
dce48a84 1821static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1822static void update_sysctl(void);
acb4a848 1823static int get_update_sysctl_factor(void);
dce48a84 1824
cd29fe6f
PZ
1825static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1826{
1827 set_task_rq(p, cpu);
1828#ifdef CONFIG_SMP
1829 /*
1830 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1831 * successfuly executed on another CPU. We must ensure that updates of
1832 * per-task data have been completed by this moment.
1833 */
1834 smp_wmb();
1835 task_thread_info(p)->cpu = cpu;
1836#endif
1837}
dce48a84 1838
dd41f596 1839#include "sched_stats.h"
dd41f596 1840#include "sched_idletask.c"
5522d5d5
IM
1841#include "sched_fair.c"
1842#include "sched_rt.c"
dd41f596
IM
1843#ifdef CONFIG_SCHED_DEBUG
1844# include "sched_debug.c"
1845#endif
1846
1847#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1848#define for_each_class(class) \
1849 for (class = sched_class_highest; class; class = class->next)
dd41f596 1850
c09595f6 1851static void inc_nr_running(struct rq *rq)
9c217245
IM
1852{
1853 rq->nr_running++;
9c217245
IM
1854}
1855
c09595f6 1856static void dec_nr_running(struct rq *rq)
9c217245
IM
1857{
1858 rq->nr_running--;
9c217245
IM
1859}
1860
45bf76df
IM
1861static void set_load_weight(struct task_struct *p)
1862{
1863 if (task_has_rt_policy(p)) {
dd41f596
IM
1864 p->se.load.weight = prio_to_weight[0] * 2;
1865 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1866 return;
1867 }
45bf76df 1868
dd41f596
IM
1869 /*
1870 * SCHED_IDLE tasks get minimal weight:
1871 */
1872 if (p->policy == SCHED_IDLE) {
1873 p->se.load.weight = WEIGHT_IDLEPRIO;
1874 p->se.load.inv_weight = WMULT_IDLEPRIO;
1875 return;
1876 }
71f8bd46 1877
dd41f596
IM
1878 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1879 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1880}
1881
2087a1ad
GH
1882static void update_avg(u64 *avg, u64 sample)
1883{
1884 s64 diff = sample - *avg;
1885 *avg += diff >> 3;
1886}
1887
8159f87e 1888static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1889{
831451ac
PZ
1890 if (wakeup)
1891 p->se.start_runtime = p->se.sum_exec_runtime;
1892
dd41f596 1893 sched_info_queued(p);
fd390f6a 1894 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1895 p->se.on_rq = 1;
71f8bd46
IM
1896}
1897
69be72c1 1898static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1899{
831451ac
PZ
1900 if (sleep) {
1901 if (p->se.last_wakeup) {
1902 update_avg(&p->se.avg_overlap,
1903 p->se.sum_exec_runtime - p->se.last_wakeup);
1904 p->se.last_wakeup = 0;
1905 } else {
1906 update_avg(&p->se.avg_wakeup,
1907 sysctl_sched_wakeup_granularity);
1908 }
2087a1ad
GH
1909 }
1910
46ac22ba 1911 sched_info_dequeued(p);
f02231e5 1912 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1913 p->se.on_rq = 0;
71f8bd46
IM
1914}
1915
14531189 1916/*
dd41f596 1917 * __normal_prio - return the priority that is based on the static prio
14531189 1918 */
14531189
IM
1919static inline int __normal_prio(struct task_struct *p)
1920{
dd41f596 1921 return p->static_prio;
14531189
IM
1922}
1923
b29739f9
IM
1924/*
1925 * Calculate the expected normal priority: i.e. priority
1926 * without taking RT-inheritance into account. Might be
1927 * boosted by interactivity modifiers. Changes upon fork,
1928 * setprio syscalls, and whenever the interactivity
1929 * estimator recalculates.
1930 */
36c8b586 1931static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1932{
1933 int prio;
1934
e05606d3 1935 if (task_has_rt_policy(p))
b29739f9
IM
1936 prio = MAX_RT_PRIO-1 - p->rt_priority;
1937 else
1938 prio = __normal_prio(p);
1939 return prio;
1940}
1941
1942/*
1943 * Calculate the current priority, i.e. the priority
1944 * taken into account by the scheduler. This value might
1945 * be boosted by RT tasks, or might be boosted by
1946 * interactivity modifiers. Will be RT if the task got
1947 * RT-boosted. If not then it returns p->normal_prio.
1948 */
36c8b586 1949static int effective_prio(struct task_struct *p)
b29739f9
IM
1950{
1951 p->normal_prio = normal_prio(p);
1952 /*
1953 * If we are RT tasks or we were boosted to RT priority,
1954 * keep the priority unchanged. Otherwise, update priority
1955 * to the normal priority:
1956 */
1957 if (!rt_prio(p->prio))
1958 return p->normal_prio;
1959 return p->prio;
1960}
1961
1da177e4 1962/*
dd41f596 1963 * activate_task - move a task to the runqueue.
1da177e4 1964 */
dd41f596 1965static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1966{
d9514f6c 1967 if (task_contributes_to_load(p))
dd41f596 1968 rq->nr_uninterruptible--;
1da177e4 1969
8159f87e 1970 enqueue_task(rq, p, wakeup);
c09595f6 1971 inc_nr_running(rq);
1da177e4
LT
1972}
1973
1da177e4
LT
1974/*
1975 * deactivate_task - remove a task from the runqueue.
1976 */
2e1cb74a 1977static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1978{
d9514f6c 1979 if (task_contributes_to_load(p))
dd41f596
IM
1980 rq->nr_uninterruptible++;
1981
69be72c1 1982 dequeue_task(rq, p, sleep);
c09595f6 1983 dec_nr_running(rq);
1da177e4
LT
1984}
1985
1da177e4
LT
1986/**
1987 * task_curr - is this task currently executing on a CPU?
1988 * @p: the task in question.
1989 */
36c8b586 1990inline int task_curr(const struct task_struct *p)
1da177e4
LT
1991{
1992 return cpu_curr(task_cpu(p)) == p;
1993}
1994
cb469845
SR
1995static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1996 const struct sched_class *prev_class,
1997 int oldprio, int running)
1998{
1999 if (prev_class != p->sched_class) {
2000 if (prev_class->switched_from)
2001 prev_class->switched_from(rq, p, running);
2002 p->sched_class->switched_to(rq, p, running);
2003 } else
2004 p->sched_class->prio_changed(rq, p, oldprio, running);
2005}
2006
b84ff7d6
MG
2007/**
2008 * kthread_bind - bind a just-created kthread to a cpu.
968c8645 2009 * @p: thread created by kthread_create().
b84ff7d6
MG
2010 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2011 *
2012 * Description: This function is equivalent to set_cpus_allowed(),
2013 * except that @cpu doesn't need to be online, and the thread must be
2014 * stopped (i.e., just returned from kthread_create()).
2015 *
2016 * Function lives here instead of kthread.c because it messes with
2017 * scheduler internals which require locking.
2018 */
2019void kthread_bind(struct task_struct *p, unsigned int cpu)
2020{
b84ff7d6
MG
2021 /* Must have done schedule() in kthread() before we set_task_cpu */
2022 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2023 WARN_ON(1);
2024 return;
2025 }
2026
b84ff7d6
MG
2027 p->cpus_allowed = cpumask_of_cpu(cpu);
2028 p->rt.nr_cpus_allowed = 1;
2029 p->flags |= PF_THREAD_BOUND;
b84ff7d6
MG
2030}
2031EXPORT_SYMBOL(kthread_bind);
2032
1da177e4 2033#ifdef CONFIG_SMP
cc367732
IM
2034/*
2035 * Is this task likely cache-hot:
2036 */
e7693a36 2037static int
cc367732
IM
2038task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2039{
2040 s64 delta;
2041
e6c8fba7
PZ
2042 if (p->sched_class != &fair_sched_class)
2043 return 0;
2044
f540a608
IM
2045 /*
2046 * Buddy candidates are cache hot:
2047 */
f685ceac 2048 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2049 (&p->se == cfs_rq_of(&p->se)->next ||
2050 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2051 return 1;
2052
6bc1665b
IM
2053 if (sysctl_sched_migration_cost == -1)
2054 return 1;
2055 if (sysctl_sched_migration_cost == 0)
2056 return 0;
2057
cc367732
IM
2058 delta = now - p->se.exec_start;
2059
2060 return delta < (s64)sysctl_sched_migration_cost;
2061}
2062
2063
dd41f596 2064void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2065{
dd41f596 2066 int old_cpu = task_cpu(p);
2830cf8c
SV
2067 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2068 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
6cfb0d5d 2069
e2912009
PZ
2070#ifdef CONFIG_SCHED_DEBUG
2071 /*
2072 * We should never call set_task_cpu() on a blocked task,
2073 * ttwu() will sort out the placement.
2074 */
2075 WARN_ON(p->state != TASK_RUNNING && p->state != TASK_WAKING);
2076#endif
2077
de1d7286 2078 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2079
cc367732 2080 if (old_cpu != new_cpu) {
6c594c21 2081 p->se.nr_migrations++;
cdd6c482 2082 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
e5289d4a 2083 1, 1, NULL, 0);
6c594c21 2084 }
2830cf8c
SV
2085 p->se.vruntime -= old_cfsrq->min_vruntime -
2086 new_cfsrq->min_vruntime;
dd41f596
IM
2087
2088 __set_task_cpu(p, new_cpu);
c65cc870
IM
2089}
2090
70b97a7f 2091struct migration_req {
1da177e4 2092 struct list_head list;
1da177e4 2093
36c8b586 2094 struct task_struct *task;
1da177e4
LT
2095 int dest_cpu;
2096
1da177e4 2097 struct completion done;
70b97a7f 2098};
1da177e4
LT
2099
2100/*
2101 * The task's runqueue lock must be held.
2102 * Returns true if you have to wait for migration thread.
2103 */
36c8b586 2104static int
70b97a7f 2105migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2106{
70b97a7f 2107 struct rq *rq = task_rq(p);
1da177e4
LT
2108
2109 /*
2110 * If the task is not on a runqueue (and not running), then
e2912009 2111 * the next wake-up will properly place the task.
1da177e4 2112 */
e2912009 2113 if (!p->se.on_rq && !task_running(rq, p))
1da177e4 2114 return 0;
1da177e4
LT
2115
2116 init_completion(&req->done);
1da177e4
LT
2117 req->task = p;
2118 req->dest_cpu = dest_cpu;
2119 list_add(&req->list, &rq->migration_queue);
48f24c4d 2120
1da177e4
LT
2121 return 1;
2122}
2123
a26b89f0
MM
2124/*
2125 * wait_task_context_switch - wait for a thread to complete at least one
2126 * context switch.
2127 *
2128 * @p must not be current.
2129 */
2130void wait_task_context_switch(struct task_struct *p)
2131{
2132 unsigned long nvcsw, nivcsw, flags;
2133 int running;
2134 struct rq *rq;
2135
2136 nvcsw = p->nvcsw;
2137 nivcsw = p->nivcsw;
2138 for (;;) {
2139 /*
2140 * The runqueue is assigned before the actual context
2141 * switch. We need to take the runqueue lock.
2142 *
2143 * We could check initially without the lock but it is
2144 * very likely that we need to take the lock in every
2145 * iteration.
2146 */
2147 rq = task_rq_lock(p, &flags);
2148 running = task_running(rq, p);
2149 task_rq_unlock(rq, &flags);
2150
2151 if (likely(!running))
2152 break;
2153 /*
2154 * The switch count is incremented before the actual
2155 * context switch. We thus wait for two switches to be
2156 * sure at least one completed.
2157 */
2158 if ((p->nvcsw - nvcsw) > 1)
2159 break;
2160 if ((p->nivcsw - nivcsw) > 1)
2161 break;
2162
2163 cpu_relax();
2164 }
2165}
2166
1da177e4
LT
2167/*
2168 * wait_task_inactive - wait for a thread to unschedule.
2169 *
85ba2d86
RM
2170 * If @match_state is nonzero, it's the @p->state value just checked and
2171 * not expected to change. If it changes, i.e. @p might have woken up,
2172 * then return zero. When we succeed in waiting for @p to be off its CPU,
2173 * we return a positive number (its total switch count). If a second call
2174 * a short while later returns the same number, the caller can be sure that
2175 * @p has remained unscheduled the whole time.
2176 *
1da177e4
LT
2177 * The caller must ensure that the task *will* unschedule sometime soon,
2178 * else this function might spin for a *long* time. This function can't
2179 * be called with interrupts off, or it may introduce deadlock with
2180 * smp_call_function() if an IPI is sent by the same process we are
2181 * waiting to become inactive.
2182 */
85ba2d86 2183unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2184{
2185 unsigned long flags;
dd41f596 2186 int running, on_rq;
85ba2d86 2187 unsigned long ncsw;
70b97a7f 2188 struct rq *rq;
1da177e4 2189
3a5c359a
AK
2190 for (;;) {
2191 /*
2192 * We do the initial early heuristics without holding
2193 * any task-queue locks at all. We'll only try to get
2194 * the runqueue lock when things look like they will
2195 * work out!
2196 */
2197 rq = task_rq(p);
fa490cfd 2198
3a5c359a
AK
2199 /*
2200 * If the task is actively running on another CPU
2201 * still, just relax and busy-wait without holding
2202 * any locks.
2203 *
2204 * NOTE! Since we don't hold any locks, it's not
2205 * even sure that "rq" stays as the right runqueue!
2206 * But we don't care, since "task_running()" will
2207 * return false if the runqueue has changed and p
2208 * is actually now running somewhere else!
2209 */
85ba2d86
RM
2210 while (task_running(rq, p)) {
2211 if (match_state && unlikely(p->state != match_state))
2212 return 0;
3a5c359a 2213 cpu_relax();
85ba2d86 2214 }
fa490cfd 2215
3a5c359a
AK
2216 /*
2217 * Ok, time to look more closely! We need the rq
2218 * lock now, to be *sure*. If we're wrong, we'll
2219 * just go back and repeat.
2220 */
2221 rq = task_rq_lock(p, &flags);
0a16b607 2222 trace_sched_wait_task(rq, p);
3a5c359a
AK
2223 running = task_running(rq, p);
2224 on_rq = p->se.on_rq;
85ba2d86 2225 ncsw = 0;
f31e11d8 2226 if (!match_state || p->state == match_state)
93dcf55f 2227 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2228 task_rq_unlock(rq, &flags);
fa490cfd 2229
85ba2d86
RM
2230 /*
2231 * If it changed from the expected state, bail out now.
2232 */
2233 if (unlikely(!ncsw))
2234 break;
2235
3a5c359a
AK
2236 /*
2237 * Was it really running after all now that we
2238 * checked with the proper locks actually held?
2239 *
2240 * Oops. Go back and try again..
2241 */
2242 if (unlikely(running)) {
2243 cpu_relax();
2244 continue;
2245 }
fa490cfd 2246
3a5c359a
AK
2247 /*
2248 * It's not enough that it's not actively running,
2249 * it must be off the runqueue _entirely_, and not
2250 * preempted!
2251 *
80dd99b3 2252 * So if it was still runnable (but just not actively
3a5c359a
AK
2253 * running right now), it's preempted, and we should
2254 * yield - it could be a while.
2255 */
2256 if (unlikely(on_rq)) {
2257 schedule_timeout_uninterruptible(1);
2258 continue;
2259 }
fa490cfd 2260
3a5c359a
AK
2261 /*
2262 * Ahh, all good. It wasn't running, and it wasn't
2263 * runnable, which means that it will never become
2264 * running in the future either. We're all done!
2265 */
2266 break;
2267 }
85ba2d86
RM
2268
2269 return ncsw;
1da177e4
LT
2270}
2271
2272/***
2273 * kick_process - kick a running thread to enter/exit the kernel
2274 * @p: the to-be-kicked thread
2275 *
2276 * Cause a process which is running on another CPU to enter
2277 * kernel-mode, without any delay. (to get signals handled.)
2278 *
2279 * NOTE: this function doesnt have to take the runqueue lock,
2280 * because all it wants to ensure is that the remote task enters
2281 * the kernel. If the IPI races and the task has been migrated
2282 * to another CPU then no harm is done and the purpose has been
2283 * achieved as well.
2284 */
36c8b586 2285void kick_process(struct task_struct *p)
1da177e4
LT
2286{
2287 int cpu;
2288
2289 preempt_disable();
2290 cpu = task_cpu(p);
2291 if ((cpu != smp_processor_id()) && task_curr(p))
2292 smp_send_reschedule(cpu);
2293 preempt_enable();
2294}
b43e3521 2295EXPORT_SYMBOL_GPL(kick_process);
476d139c 2296#endif /* CONFIG_SMP */
1da177e4 2297
0793a61d
TG
2298/**
2299 * task_oncpu_function_call - call a function on the cpu on which a task runs
2300 * @p: the task to evaluate
2301 * @func: the function to be called
2302 * @info: the function call argument
2303 *
2304 * Calls the function @func when the task is currently running. This might
2305 * be on the current CPU, which just calls the function directly
2306 */
2307void task_oncpu_function_call(struct task_struct *p,
2308 void (*func) (void *info), void *info)
2309{
2310 int cpu;
2311
2312 preempt_disable();
2313 cpu = task_cpu(p);
2314 if (task_curr(p))
2315 smp_call_function_single(cpu, func, info, 1);
2316 preempt_enable();
2317}
2318
970b13ba 2319#ifdef CONFIG_SMP
e2912009
PZ
2320/*
2321 * Called from:
2322 *
2323 * - fork, @p is stable because it isn't on the tasklist yet
2324 *
2325 * - exec, @p is unstable XXX
2326 *
2327 * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
2328 * we should be good.
2329 */
970b13ba
PZ
2330static inline
2331int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2332{
e2912009
PZ
2333 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2334
2335 /*
2336 * In order not to call set_task_cpu() on a blocking task we need
2337 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2338 * cpu.
2339 *
2340 * Since this is common to all placement strategies, this lives here.
2341 *
2342 * [ this allows ->select_task() to simply return task_cpu(p) and
2343 * not worry about this generic constraint ]
2344 */
2345 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2346 !cpu_active(cpu))) {
2347
2348 cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2349 /*
2350 * XXX: race against hot-plug modifying cpu_active_mask
2351 */
2352 BUG_ON(cpu >= nr_cpu_ids);
2353 }
2354
2355 return cpu;
970b13ba
PZ
2356}
2357#endif
2358
1da177e4
LT
2359/***
2360 * try_to_wake_up - wake up a thread
2361 * @p: the to-be-woken-up thread
2362 * @state: the mask of task states that can be woken
2363 * @sync: do a synchronous wakeup?
2364 *
2365 * Put it on the run-queue if it's not already there. The "current"
2366 * thread is always on the run-queue (except when the actual
2367 * re-schedule is in progress), and as such you're allowed to do
2368 * the simpler "current->state = TASK_RUNNING" to mark yourself
2369 * runnable without the overhead of this.
2370 *
2371 * returns failure only if the task is already active.
2372 */
7d478721
PZ
2373static int try_to_wake_up(struct task_struct *p, unsigned int state,
2374 int wake_flags)
1da177e4 2375{
cc367732 2376 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2377 unsigned long flags;
f5dc3753 2378 struct rq *rq, *orig_rq;
1da177e4 2379
b85d0667 2380 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2381 wake_flags &= ~WF_SYNC;
2398f2c6 2382
e9c84311 2383 this_cpu = get_cpu();
2398f2c6 2384
04e2f174 2385 smp_wmb();
f5dc3753 2386 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2387 update_rq_clock(rq);
e9c84311 2388 if (!(p->state & state))
1da177e4
LT
2389 goto out;
2390
dd41f596 2391 if (p->se.on_rq)
1da177e4
LT
2392 goto out_running;
2393
2394 cpu = task_cpu(p);
cc367732 2395 orig_cpu = cpu;
1da177e4
LT
2396
2397#ifdef CONFIG_SMP
2398 if (unlikely(task_running(rq, p)))
2399 goto out_activate;
2400
e9c84311
PZ
2401 /*
2402 * In order to handle concurrent wakeups and release the rq->lock
2403 * we put the task in TASK_WAKING state.
eb24073b
IM
2404 *
2405 * First fix up the nr_uninterruptible count:
e9c84311 2406 */
eb24073b
IM
2407 if (task_contributes_to_load(p))
2408 rq->nr_uninterruptible--;
e9c84311 2409 p->state = TASK_WAKING;
ab19cb23 2410 __task_rq_unlock(rq);
e9c84311 2411
970b13ba 2412 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
ab19cb23 2413 if (cpu != orig_cpu)
5d2f5a61 2414 set_task_cpu(p, cpu);
ab19cb23
PZ
2415
2416 rq = __task_rq_lock(p);
2417 update_rq_clock(rq);
f5dc3753 2418
e9c84311
PZ
2419 WARN_ON(p->state != TASK_WAKING);
2420 cpu = task_cpu(p);
1da177e4 2421
e7693a36
GH
2422#ifdef CONFIG_SCHEDSTATS
2423 schedstat_inc(rq, ttwu_count);
2424 if (cpu == this_cpu)
2425 schedstat_inc(rq, ttwu_local);
2426 else {
2427 struct sched_domain *sd;
2428 for_each_domain(this_cpu, sd) {
758b2cdc 2429 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2430 schedstat_inc(sd, ttwu_wake_remote);
2431 break;
2432 }
2433 }
2434 }
6d6bc0ad 2435#endif /* CONFIG_SCHEDSTATS */
e7693a36 2436
1da177e4
LT
2437out_activate:
2438#endif /* CONFIG_SMP */
cc367732 2439 schedstat_inc(p, se.nr_wakeups);
7d478721 2440 if (wake_flags & WF_SYNC)
cc367732
IM
2441 schedstat_inc(p, se.nr_wakeups_sync);
2442 if (orig_cpu != cpu)
2443 schedstat_inc(p, se.nr_wakeups_migrate);
2444 if (cpu == this_cpu)
2445 schedstat_inc(p, se.nr_wakeups_local);
2446 else
2447 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2448 activate_task(rq, p, 1);
1da177e4
LT
2449 success = 1;
2450
831451ac
PZ
2451 /*
2452 * Only attribute actual wakeups done by this task.
2453 */
2454 if (!in_interrupt()) {
2455 struct sched_entity *se = &current->se;
2456 u64 sample = se->sum_exec_runtime;
2457
2458 if (se->last_wakeup)
2459 sample -= se->last_wakeup;
2460 else
2461 sample -= se->start_runtime;
2462 update_avg(&se->avg_wakeup, sample);
2463
2464 se->last_wakeup = se->sum_exec_runtime;
2465 }
2466
1da177e4 2467out_running:
468a15bb 2468 trace_sched_wakeup(rq, p, success);
7d478721 2469 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2470
1da177e4 2471 p->state = TASK_RUNNING;
9a897c5a
SR
2472#ifdef CONFIG_SMP
2473 if (p->sched_class->task_wake_up)
2474 p->sched_class->task_wake_up(rq, p);
eae0c9df
MG
2475
2476 if (unlikely(rq->idle_stamp)) {
2477 u64 delta = rq->clock - rq->idle_stamp;
2478 u64 max = 2*sysctl_sched_migration_cost;
2479
2480 if (delta > max)
2481 rq->avg_idle = max;
2482 else
2483 update_avg(&rq->avg_idle, delta);
2484 rq->idle_stamp = 0;
2485 }
9a897c5a 2486#endif
1da177e4
LT
2487out:
2488 task_rq_unlock(rq, &flags);
e9c84311 2489 put_cpu();
1da177e4
LT
2490
2491 return success;
2492}
2493
50fa610a
DH
2494/**
2495 * wake_up_process - Wake up a specific process
2496 * @p: The process to be woken up.
2497 *
2498 * Attempt to wake up the nominated process and move it to the set of runnable
2499 * processes. Returns 1 if the process was woken up, 0 if it was already
2500 * running.
2501 *
2502 * It may be assumed that this function implies a write memory barrier before
2503 * changing the task state if and only if any tasks are woken up.
2504 */
7ad5b3a5 2505int wake_up_process(struct task_struct *p)
1da177e4 2506{
d9514f6c 2507 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2508}
1da177e4
LT
2509EXPORT_SYMBOL(wake_up_process);
2510
7ad5b3a5 2511int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2512{
2513 return try_to_wake_up(p, state, 0);
2514}
2515
1da177e4
LT
2516/*
2517 * Perform scheduler related setup for a newly forked process p.
2518 * p is forked by current.
dd41f596
IM
2519 *
2520 * __sched_fork() is basic setup used by init_idle() too:
2521 */
2522static void __sched_fork(struct task_struct *p)
2523{
dd41f596
IM
2524 p->se.exec_start = 0;
2525 p->se.sum_exec_runtime = 0;
f6cf891c 2526 p->se.prev_sum_exec_runtime = 0;
6c594c21 2527 p->se.nr_migrations = 0;
4ae7d5ce
IM
2528 p->se.last_wakeup = 0;
2529 p->se.avg_overlap = 0;
831451ac
PZ
2530 p->se.start_runtime = 0;
2531 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2532
2533#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2534 p->se.wait_start = 0;
2535 p->se.wait_max = 0;
2536 p->se.wait_count = 0;
2537 p->se.wait_sum = 0;
2538
2539 p->se.sleep_start = 0;
2540 p->se.sleep_max = 0;
2541 p->se.sum_sleep_runtime = 0;
2542
2543 p->se.block_start = 0;
2544 p->se.block_max = 0;
2545 p->se.exec_max = 0;
2546 p->se.slice_max = 0;
2547
2548 p->se.nr_migrations_cold = 0;
2549 p->se.nr_failed_migrations_affine = 0;
2550 p->se.nr_failed_migrations_running = 0;
2551 p->se.nr_failed_migrations_hot = 0;
2552 p->se.nr_forced_migrations = 0;
7793527b
LDM
2553
2554 p->se.nr_wakeups = 0;
2555 p->se.nr_wakeups_sync = 0;
2556 p->se.nr_wakeups_migrate = 0;
2557 p->se.nr_wakeups_local = 0;
2558 p->se.nr_wakeups_remote = 0;
2559 p->se.nr_wakeups_affine = 0;
2560 p->se.nr_wakeups_affine_attempts = 0;
2561 p->se.nr_wakeups_passive = 0;
2562 p->se.nr_wakeups_idle = 0;
2563
6cfb0d5d 2564#endif
476d139c 2565
fa717060 2566 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2567 p->se.on_rq = 0;
4a55bd5e 2568 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2569
e107be36
AK
2570#ifdef CONFIG_PREEMPT_NOTIFIERS
2571 INIT_HLIST_HEAD(&p->preempt_notifiers);
2572#endif
dd41f596
IM
2573}
2574
2575/*
2576 * fork()/clone()-time setup:
2577 */
2578void sched_fork(struct task_struct *p, int clone_flags)
2579{
2580 int cpu = get_cpu();
2581
2582 __sched_fork(p);
06b83b5f
PZ
2583 /*
2584 * We mark the process as waking here. This guarantees that
2585 * nobody will actually run it, and a signal or other external
2586 * event cannot wake it up and insert it on the runqueue either.
2587 */
2588 p->state = TASK_WAKING;
dd41f596 2589
b9dc29e7
MG
2590 /*
2591 * Revert to default priority/policy on fork if requested.
2592 */
2593 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2594 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2595 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2596 p->normal_prio = p->static_prio;
2597 }
b9dc29e7 2598
6c697bdf
MG
2599 if (PRIO_TO_NICE(p->static_prio) < 0) {
2600 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2601 p->normal_prio = p->static_prio;
6c697bdf
MG
2602 set_load_weight(p);
2603 }
2604
b9dc29e7
MG
2605 /*
2606 * We don't need the reset flag anymore after the fork. It has
2607 * fulfilled its duty:
2608 */
2609 p->sched_reset_on_fork = 0;
2610 }
ca94c442 2611
f83f9ac2
PW
2612 /*
2613 * Make sure we do not leak PI boosting priority to the child.
2614 */
2615 p->prio = current->normal_prio;
2616
2ddbf952
HS
2617 if (!rt_prio(p->prio))
2618 p->sched_class = &fair_sched_class;
b29739f9 2619
cd29fe6f
PZ
2620 if (p->sched_class->task_fork)
2621 p->sched_class->task_fork(p);
2622
5f3edc1b 2623#ifdef CONFIG_SMP
970b13ba 2624 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
5f3edc1b
PZ
2625#endif
2626 set_task_cpu(p, cpu);
2627
52f17b6c 2628#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2629 if (likely(sched_info_on()))
52f17b6c 2630 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2631#endif
d6077cb8 2632#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2633 p->oncpu = 0;
2634#endif
1da177e4 2635#ifdef CONFIG_PREEMPT
4866cde0 2636 /* Want to start with kernel preemption disabled. */
a1261f54 2637 task_thread_info(p)->preempt_count = 1;
1da177e4 2638#endif
917b627d
GH
2639 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2640
476d139c 2641 put_cpu();
1da177e4
LT
2642}
2643
2644/*
2645 * wake_up_new_task - wake up a newly created task for the first time.
2646 *
2647 * This function will do some initial scheduler statistics housekeeping
2648 * that must be done for every newly created context, then puts the task
2649 * on the runqueue and wakes it.
2650 */
7ad5b3a5 2651void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2652{
2653 unsigned long flags;
dd41f596 2654 struct rq *rq;
1da177e4
LT
2655
2656 rq = task_rq_lock(p, &flags);
06b83b5f
PZ
2657 BUG_ON(p->state != TASK_WAKING);
2658 p->state = TASK_RUNNING;
a8e504d2 2659 update_rq_clock(rq);
cd29fe6f 2660 activate_task(rq, p, 0);
c71dd42d 2661 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2662 check_preempt_curr(rq, p, WF_FORK);
9a897c5a
SR
2663#ifdef CONFIG_SMP
2664 if (p->sched_class->task_wake_up)
2665 p->sched_class->task_wake_up(rq, p);
2666#endif
dd41f596 2667 task_rq_unlock(rq, &flags);
1da177e4
LT
2668}
2669
e107be36
AK
2670#ifdef CONFIG_PREEMPT_NOTIFIERS
2671
2672/**
80dd99b3 2673 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2674 * @notifier: notifier struct to register
e107be36
AK
2675 */
2676void preempt_notifier_register(struct preempt_notifier *notifier)
2677{
2678 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2679}
2680EXPORT_SYMBOL_GPL(preempt_notifier_register);
2681
2682/**
2683 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2684 * @notifier: notifier struct to unregister
e107be36
AK
2685 *
2686 * This is safe to call from within a preemption notifier.
2687 */
2688void preempt_notifier_unregister(struct preempt_notifier *notifier)
2689{
2690 hlist_del(&notifier->link);
2691}
2692EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2693
2694static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2695{
2696 struct preempt_notifier *notifier;
2697 struct hlist_node *node;
2698
2699 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2700 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2701}
2702
2703static void
2704fire_sched_out_preempt_notifiers(struct task_struct *curr,
2705 struct task_struct *next)
2706{
2707 struct preempt_notifier *notifier;
2708 struct hlist_node *node;
2709
2710 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2711 notifier->ops->sched_out(notifier, next);
2712}
2713
6d6bc0ad 2714#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2715
2716static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2717{
2718}
2719
2720static void
2721fire_sched_out_preempt_notifiers(struct task_struct *curr,
2722 struct task_struct *next)
2723{
2724}
2725
6d6bc0ad 2726#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2727
4866cde0
NP
2728/**
2729 * prepare_task_switch - prepare to switch tasks
2730 * @rq: the runqueue preparing to switch
421cee29 2731 * @prev: the current task that is being switched out
4866cde0
NP
2732 * @next: the task we are going to switch to.
2733 *
2734 * This is called with the rq lock held and interrupts off. It must
2735 * be paired with a subsequent finish_task_switch after the context
2736 * switch.
2737 *
2738 * prepare_task_switch sets up locking and calls architecture specific
2739 * hooks.
2740 */
e107be36
AK
2741static inline void
2742prepare_task_switch(struct rq *rq, struct task_struct *prev,
2743 struct task_struct *next)
4866cde0 2744{
e107be36 2745 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2746 prepare_lock_switch(rq, next);
2747 prepare_arch_switch(next);
2748}
2749
1da177e4
LT
2750/**
2751 * finish_task_switch - clean up after a task-switch
344babaa 2752 * @rq: runqueue associated with task-switch
1da177e4
LT
2753 * @prev: the thread we just switched away from.
2754 *
4866cde0
NP
2755 * finish_task_switch must be called after the context switch, paired
2756 * with a prepare_task_switch call before the context switch.
2757 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2758 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2759 *
2760 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2761 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2762 * with the lock held can cause deadlocks; see schedule() for
2763 * details.)
2764 */
a9957449 2765static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2766 __releases(rq->lock)
2767{
1da177e4 2768 struct mm_struct *mm = rq->prev_mm;
55a101f8 2769 long prev_state;
1da177e4
LT
2770
2771 rq->prev_mm = NULL;
2772
2773 /*
2774 * A task struct has one reference for the use as "current".
c394cc9f 2775 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2776 * schedule one last time. The schedule call will never return, and
2777 * the scheduled task must drop that reference.
c394cc9f 2778 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2779 * still held, otherwise prev could be scheduled on another cpu, die
2780 * there before we look at prev->state, and then the reference would
2781 * be dropped twice.
2782 * Manfred Spraul <manfred@colorfullife.com>
2783 */
55a101f8 2784 prev_state = prev->state;
4866cde0 2785 finish_arch_switch(prev);
cdd6c482 2786 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2787 finish_lock_switch(rq, prev);
e8fa1362 2788
e107be36 2789 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2790 if (mm)
2791 mmdrop(mm);
c394cc9f 2792 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2793 /*
2794 * Remove function-return probe instances associated with this
2795 * task and put them back on the free list.
9761eea8 2796 */
c6fd91f0 2797 kprobe_flush_task(prev);
1da177e4 2798 put_task_struct(prev);
c6fd91f0 2799 }
1da177e4
LT
2800}
2801
3f029d3c
GH
2802#ifdef CONFIG_SMP
2803
2804/* assumes rq->lock is held */
2805static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2806{
2807 if (prev->sched_class->pre_schedule)
2808 prev->sched_class->pre_schedule(rq, prev);
2809}
2810
2811/* rq->lock is NOT held, but preemption is disabled */
2812static inline void post_schedule(struct rq *rq)
2813{
2814 if (rq->post_schedule) {
2815 unsigned long flags;
2816
05fa785c 2817 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2818 if (rq->curr->sched_class->post_schedule)
2819 rq->curr->sched_class->post_schedule(rq);
05fa785c 2820 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2821
2822 rq->post_schedule = 0;
2823 }
2824}
2825
2826#else
da19ab51 2827
3f029d3c
GH
2828static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2829{
2830}
2831
2832static inline void post_schedule(struct rq *rq)
2833{
1da177e4
LT
2834}
2835
3f029d3c
GH
2836#endif
2837
1da177e4
LT
2838/**
2839 * schedule_tail - first thing a freshly forked thread must call.
2840 * @prev: the thread we just switched away from.
2841 */
36c8b586 2842asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2843 __releases(rq->lock)
2844{
70b97a7f
IM
2845 struct rq *rq = this_rq();
2846
4866cde0 2847 finish_task_switch(rq, prev);
da19ab51 2848
3f029d3c
GH
2849 /*
2850 * FIXME: do we need to worry about rq being invalidated by the
2851 * task_switch?
2852 */
2853 post_schedule(rq);
70b97a7f 2854
4866cde0
NP
2855#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2856 /* In this case, finish_task_switch does not reenable preemption */
2857 preempt_enable();
2858#endif
1da177e4 2859 if (current->set_child_tid)
b488893a 2860 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2861}
2862
2863/*
2864 * context_switch - switch to the new MM and the new
2865 * thread's register state.
2866 */
dd41f596 2867static inline void
70b97a7f 2868context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2869 struct task_struct *next)
1da177e4 2870{
dd41f596 2871 struct mm_struct *mm, *oldmm;
1da177e4 2872
e107be36 2873 prepare_task_switch(rq, prev, next);
0a16b607 2874 trace_sched_switch(rq, prev, next);
dd41f596
IM
2875 mm = next->mm;
2876 oldmm = prev->active_mm;
9226d125
ZA
2877 /*
2878 * For paravirt, this is coupled with an exit in switch_to to
2879 * combine the page table reload and the switch backend into
2880 * one hypercall.
2881 */
224101ed 2882 arch_start_context_switch(prev);
9226d125 2883
710390d9 2884 if (likely(!mm)) {
1da177e4
LT
2885 next->active_mm = oldmm;
2886 atomic_inc(&oldmm->mm_count);
2887 enter_lazy_tlb(oldmm, next);
2888 } else
2889 switch_mm(oldmm, mm, next);
2890
710390d9 2891 if (likely(!prev->mm)) {
1da177e4 2892 prev->active_mm = NULL;
1da177e4
LT
2893 rq->prev_mm = oldmm;
2894 }
3a5f5e48
IM
2895 /*
2896 * Since the runqueue lock will be released by the next
2897 * task (which is an invalid locking op but in the case
2898 * of the scheduler it's an obvious special-case), so we
2899 * do an early lockdep release here:
2900 */
2901#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2902 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2903#endif
1da177e4
LT
2904
2905 /* Here we just switch the register state and the stack. */
2906 switch_to(prev, next, prev);
2907
dd41f596
IM
2908 barrier();
2909 /*
2910 * this_rq must be evaluated again because prev may have moved
2911 * CPUs since it called schedule(), thus the 'rq' on its stack
2912 * frame will be invalid.
2913 */
2914 finish_task_switch(this_rq(), prev);
1da177e4
LT
2915}
2916
2917/*
2918 * nr_running, nr_uninterruptible and nr_context_switches:
2919 *
2920 * externally visible scheduler statistics: current number of runnable
2921 * threads, current number of uninterruptible-sleeping threads, total
2922 * number of context switches performed since bootup.
2923 */
2924unsigned long nr_running(void)
2925{
2926 unsigned long i, sum = 0;
2927
2928 for_each_online_cpu(i)
2929 sum += cpu_rq(i)->nr_running;
2930
2931 return sum;
2932}
2933
2934unsigned long nr_uninterruptible(void)
2935{
2936 unsigned long i, sum = 0;
2937
0a945022 2938 for_each_possible_cpu(i)
1da177e4
LT
2939 sum += cpu_rq(i)->nr_uninterruptible;
2940
2941 /*
2942 * Since we read the counters lockless, it might be slightly
2943 * inaccurate. Do not allow it to go below zero though:
2944 */
2945 if (unlikely((long)sum < 0))
2946 sum = 0;
2947
2948 return sum;
2949}
2950
2951unsigned long long nr_context_switches(void)
2952{
cc94abfc
SR
2953 int i;
2954 unsigned long long sum = 0;
1da177e4 2955
0a945022 2956 for_each_possible_cpu(i)
1da177e4
LT
2957 sum += cpu_rq(i)->nr_switches;
2958
2959 return sum;
2960}
2961
2962unsigned long nr_iowait(void)
2963{
2964 unsigned long i, sum = 0;
2965
0a945022 2966 for_each_possible_cpu(i)
1da177e4
LT
2967 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2968
2969 return sum;
2970}
2971
69d25870
AV
2972unsigned long nr_iowait_cpu(void)
2973{
2974 struct rq *this = this_rq();
2975 return atomic_read(&this->nr_iowait);
2976}
2977
2978unsigned long this_cpu_load(void)
2979{
2980 struct rq *this = this_rq();
2981 return this->cpu_load[0];
2982}
2983
2984
dce48a84
TG
2985/* Variables and functions for calc_load */
2986static atomic_long_t calc_load_tasks;
2987static unsigned long calc_load_update;
2988unsigned long avenrun[3];
2989EXPORT_SYMBOL(avenrun);
2990
2d02494f
TG
2991/**
2992 * get_avenrun - get the load average array
2993 * @loads: pointer to dest load array
2994 * @offset: offset to add
2995 * @shift: shift count to shift the result left
2996 *
2997 * These values are estimates at best, so no need for locking.
2998 */
2999void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3000{
3001 loads[0] = (avenrun[0] + offset) << shift;
3002 loads[1] = (avenrun[1] + offset) << shift;
3003 loads[2] = (avenrun[2] + offset) << shift;
3004}
3005
dce48a84
TG
3006static unsigned long
3007calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3008{
dce48a84
TG
3009 load *= exp;
3010 load += active * (FIXED_1 - exp);
3011 return load >> FSHIFT;
3012}
db1b1fef 3013
dce48a84
TG
3014/*
3015 * calc_load - update the avenrun load estimates 10 ticks after the
3016 * CPUs have updated calc_load_tasks.
3017 */
3018void calc_global_load(void)
3019{
3020 unsigned long upd = calc_load_update + 10;
3021 long active;
3022
3023 if (time_before(jiffies, upd))
3024 return;
db1b1fef 3025
dce48a84
TG
3026 active = atomic_long_read(&calc_load_tasks);
3027 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3028
dce48a84
TG
3029 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3030 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3031 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3032
3033 calc_load_update += LOAD_FREQ;
3034}
3035
3036/*
3037 * Either called from update_cpu_load() or from a cpu going idle
3038 */
3039static void calc_load_account_active(struct rq *this_rq)
3040{
3041 long nr_active, delta;
3042
3043 nr_active = this_rq->nr_running;
3044 nr_active += (long) this_rq->nr_uninterruptible;
3045
3046 if (nr_active != this_rq->calc_load_active) {
3047 delta = nr_active - this_rq->calc_load_active;
3048 this_rq->calc_load_active = nr_active;
3049 atomic_long_add(delta, &calc_load_tasks);
3050 }
db1b1fef
JS
3051}
3052
48f24c4d 3053/*
dd41f596
IM
3054 * Update rq->cpu_load[] statistics. This function is usually called every
3055 * scheduler tick (TICK_NSEC).
48f24c4d 3056 */
dd41f596 3057static void update_cpu_load(struct rq *this_rq)
48f24c4d 3058{
495eca49 3059 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3060 int i, scale;
3061
3062 this_rq->nr_load_updates++;
dd41f596
IM
3063
3064 /* Update our load: */
3065 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3066 unsigned long old_load, new_load;
3067
3068 /* scale is effectively 1 << i now, and >> i divides by scale */
3069
3070 old_load = this_rq->cpu_load[i];
3071 new_load = this_load;
a25707f3
IM
3072 /*
3073 * Round up the averaging division if load is increasing. This
3074 * prevents us from getting stuck on 9 if the load is 10, for
3075 * example.
3076 */
3077 if (new_load > old_load)
3078 new_load += scale-1;
dd41f596
IM
3079 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3080 }
dce48a84
TG
3081
3082 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3083 this_rq->calc_load_update += LOAD_FREQ;
3084 calc_load_account_active(this_rq);
3085 }
48f24c4d
IM
3086}
3087
dd41f596
IM
3088#ifdef CONFIG_SMP
3089
1da177e4
LT
3090/*
3091 * double_rq_lock - safely lock two runqueues
3092 *
3093 * Note this does not disable interrupts like task_rq_lock,
3094 * you need to do so manually before calling.
3095 */
70b97a7f 3096static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3097 __acquires(rq1->lock)
3098 __acquires(rq2->lock)
3099{
054b9108 3100 BUG_ON(!irqs_disabled());
1da177e4 3101 if (rq1 == rq2) {
05fa785c 3102 raw_spin_lock(&rq1->lock);
1da177e4
LT
3103 __acquire(rq2->lock); /* Fake it out ;) */
3104 } else {
c96d145e 3105 if (rq1 < rq2) {
05fa785c
TG
3106 raw_spin_lock(&rq1->lock);
3107 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4 3108 } else {
05fa785c
TG
3109 raw_spin_lock(&rq2->lock);
3110 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3111 }
3112 }
6e82a3be
IM
3113 update_rq_clock(rq1);
3114 update_rq_clock(rq2);
1da177e4
LT
3115}
3116
3117/*
3118 * double_rq_unlock - safely unlock two runqueues
3119 *
3120 * Note this does not restore interrupts like task_rq_unlock,
3121 * you need to do so manually after calling.
3122 */
70b97a7f 3123static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3124 __releases(rq1->lock)
3125 __releases(rq2->lock)
3126{
05fa785c 3127 raw_spin_unlock(&rq1->lock);
1da177e4 3128 if (rq1 != rq2)
05fa785c 3129 raw_spin_unlock(&rq2->lock);
1da177e4
LT
3130 else
3131 __release(rq2->lock);
3132}
3133
1da177e4
LT
3134/*
3135 * If dest_cpu is allowed for this process, migrate the task to it.
3136 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3137 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3138 * the cpu_allowed mask is restored.
3139 */
36c8b586 3140static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3141{
70b97a7f 3142 struct migration_req req;
1da177e4 3143 unsigned long flags;
70b97a7f 3144 struct rq *rq;
1da177e4
LT
3145
3146 rq = task_rq_lock(p, &flags);
96f874e2 3147 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3148 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3149 goto out;
3150
3151 /* force the process onto the specified CPU */
3152 if (migrate_task(p, dest_cpu, &req)) {
3153 /* Need to wait for migration thread (might exit: take ref). */
3154 struct task_struct *mt = rq->migration_thread;
36c8b586 3155
1da177e4
LT
3156 get_task_struct(mt);
3157 task_rq_unlock(rq, &flags);
3158 wake_up_process(mt);
3159 put_task_struct(mt);
3160 wait_for_completion(&req.done);
36c8b586 3161
1da177e4
LT
3162 return;
3163 }
3164out:
3165 task_rq_unlock(rq, &flags);
3166}
3167
3168/*
476d139c
NP
3169 * sched_exec - execve() is a valuable balancing opportunity, because at
3170 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3171 */
3172void sched_exec(void)
3173{
1da177e4 3174 int new_cpu, this_cpu = get_cpu();
970b13ba 3175 new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
1da177e4 3176 put_cpu();
476d139c
NP
3177 if (new_cpu != this_cpu)
3178 sched_migrate_task(current, new_cpu);
1da177e4
LT
3179}
3180
3181/*
3182 * pull_task - move a task from a remote runqueue to the local runqueue.
3183 * Both runqueues must be locked.
3184 */
dd41f596
IM
3185static void pull_task(struct rq *src_rq, struct task_struct *p,
3186 struct rq *this_rq, int this_cpu)
1da177e4 3187{
2e1cb74a 3188 deactivate_task(src_rq, p, 0);
1da177e4 3189 set_task_cpu(p, this_cpu);
dd41f596 3190 activate_task(this_rq, p, 0);
15afe09b 3191 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3192}
3193
3194/*
3195 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3196 */
858119e1 3197static
70b97a7f 3198int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3199 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3200 int *all_pinned)
1da177e4 3201{
708dc512 3202 int tsk_cache_hot = 0;
1da177e4
LT
3203 /*
3204 * We do not migrate tasks that are:
3205 * 1) running (obviously), or
3206 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3207 * 3) are cache-hot on their current CPU.
3208 */
96f874e2 3209 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3210 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3211 return 0;
cc367732 3212 }
81026794
NP
3213 *all_pinned = 0;
3214
cc367732
IM
3215 if (task_running(rq, p)) {
3216 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3217 return 0;
cc367732 3218 }
1da177e4 3219
da84d961
IM
3220 /*
3221 * Aggressive migration if:
3222 * 1) task is cache cold, or
3223 * 2) too many balance attempts have failed.
3224 */
3225
708dc512
LH
3226 tsk_cache_hot = task_hot(p, rq->clock, sd);
3227 if (!tsk_cache_hot ||
3228 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3229#ifdef CONFIG_SCHEDSTATS
708dc512 3230 if (tsk_cache_hot) {
da84d961 3231 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3232 schedstat_inc(p, se.nr_forced_migrations);
3233 }
da84d961
IM
3234#endif
3235 return 1;
3236 }
3237
708dc512 3238 if (tsk_cache_hot) {
cc367732 3239 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3240 return 0;
cc367732 3241 }
1da177e4
LT
3242 return 1;
3243}
3244
e1d1484f
PW
3245static unsigned long
3246balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3247 unsigned long max_load_move, struct sched_domain *sd,
3248 enum cpu_idle_type idle, int *all_pinned,
3249 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3250{
051c6764 3251 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3252 struct task_struct *p;
3253 long rem_load_move = max_load_move;
1da177e4 3254
e1d1484f 3255 if (max_load_move == 0)
1da177e4
LT
3256 goto out;
3257
81026794
NP
3258 pinned = 1;
3259
1da177e4 3260 /*
dd41f596 3261 * Start the load-balancing iterator:
1da177e4 3262 */
dd41f596
IM
3263 p = iterator->start(iterator->arg);
3264next:
b82d9fdd 3265 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3266 goto out;
051c6764
PZ
3267
3268 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3269 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3270 p = iterator->next(iterator->arg);
3271 goto next;
1da177e4
LT
3272 }
3273
dd41f596 3274 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3275 pulled++;
dd41f596 3276 rem_load_move -= p->se.load.weight;
1da177e4 3277
7e96fa58
GH
3278#ifdef CONFIG_PREEMPT
3279 /*
3280 * NEWIDLE balancing is a source of latency, so preemptible kernels
3281 * will stop after the first task is pulled to minimize the critical
3282 * section.
3283 */
3284 if (idle == CPU_NEWLY_IDLE)
3285 goto out;
3286#endif
3287
2dd73a4f 3288 /*
b82d9fdd 3289 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3290 */
e1d1484f 3291 if (rem_load_move > 0) {
a4ac01c3
PW
3292 if (p->prio < *this_best_prio)
3293 *this_best_prio = p->prio;
dd41f596
IM
3294 p = iterator->next(iterator->arg);
3295 goto next;
1da177e4
LT
3296 }
3297out:
3298 /*
e1d1484f 3299 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3300 * so we can safely collect pull_task() stats here rather than
3301 * inside pull_task().
3302 */
3303 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3304
3305 if (all_pinned)
3306 *all_pinned = pinned;
e1d1484f
PW
3307
3308 return max_load_move - rem_load_move;
1da177e4
LT
3309}
3310
dd41f596 3311/*
43010659
PW
3312 * move_tasks tries to move up to max_load_move weighted load from busiest to
3313 * this_rq, as part of a balancing operation within domain "sd".
3314 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3315 *
3316 * Called with both runqueues locked.
3317 */
3318static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3319 unsigned long max_load_move,
dd41f596
IM
3320 struct sched_domain *sd, enum cpu_idle_type idle,
3321 int *all_pinned)
3322{
5522d5d5 3323 const struct sched_class *class = sched_class_highest;
43010659 3324 unsigned long total_load_moved = 0;
a4ac01c3 3325 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3326
3327 do {
43010659
PW
3328 total_load_moved +=
3329 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3330 max_load_move - total_load_moved,
a4ac01c3 3331 sd, idle, all_pinned, &this_best_prio);
dd41f596 3332 class = class->next;
c4acb2c0 3333
7e96fa58
GH
3334#ifdef CONFIG_PREEMPT
3335 /*
3336 * NEWIDLE balancing is a source of latency, so preemptible
3337 * kernels will stop after the first task is pulled to minimize
3338 * the critical section.
3339 */
c4acb2c0
GH
3340 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3341 break;
7e96fa58 3342#endif
43010659 3343 } while (class && max_load_move > total_load_moved);
dd41f596 3344
43010659
PW
3345 return total_load_moved > 0;
3346}
3347
e1d1484f
PW
3348static int
3349iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3350 struct sched_domain *sd, enum cpu_idle_type idle,
3351 struct rq_iterator *iterator)
3352{
3353 struct task_struct *p = iterator->start(iterator->arg);
3354 int pinned = 0;
3355
3356 while (p) {
3357 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3358 pull_task(busiest, p, this_rq, this_cpu);
3359 /*
3360 * Right now, this is only the second place pull_task()
3361 * is called, so we can safely collect pull_task()
3362 * stats here rather than inside pull_task().
3363 */
3364 schedstat_inc(sd, lb_gained[idle]);
3365
3366 return 1;
3367 }
3368 p = iterator->next(iterator->arg);
3369 }
3370
3371 return 0;
3372}
3373
43010659
PW
3374/*
3375 * move_one_task tries to move exactly one task from busiest to this_rq, as
3376 * part of active balancing operations within "domain".
3377 * Returns 1 if successful and 0 otherwise.
3378 *
3379 * Called with both runqueues locked.
3380 */
3381static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3382 struct sched_domain *sd, enum cpu_idle_type idle)
3383{
5522d5d5 3384 const struct sched_class *class;
43010659 3385
cde7e5ca 3386 for_each_class(class) {
e1d1484f 3387 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3388 return 1;
cde7e5ca 3389 }
43010659
PW
3390
3391 return 0;
dd41f596 3392}
67bb6c03 3393/********** Helpers for find_busiest_group ************************/
1da177e4 3394/*
222d656d
GS
3395 * sd_lb_stats - Structure to store the statistics of a sched_domain
3396 * during load balancing.
1da177e4 3397 */
222d656d
GS
3398struct sd_lb_stats {
3399 struct sched_group *busiest; /* Busiest group in this sd */
3400 struct sched_group *this; /* Local group in this sd */
3401 unsigned long total_load; /* Total load of all groups in sd */
3402 unsigned long total_pwr; /* Total power of all groups in sd */
3403 unsigned long avg_load; /* Average load across all groups in sd */
3404
3405 /** Statistics of this group */
3406 unsigned long this_load;
3407 unsigned long this_load_per_task;
3408 unsigned long this_nr_running;
3409
3410 /* Statistics of the busiest group */
3411 unsigned long max_load;
3412 unsigned long busiest_load_per_task;
3413 unsigned long busiest_nr_running;
3414
3415 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3416#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3417 int power_savings_balance; /* Is powersave balance needed for this sd */
3418 struct sched_group *group_min; /* Least loaded group in sd */
3419 struct sched_group *group_leader; /* Group which relieves group_min */
3420 unsigned long min_load_per_task; /* load_per_task in group_min */
3421 unsigned long leader_nr_running; /* Nr running of group_leader */
3422 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3423#endif
222d656d 3424};
1da177e4 3425
d5ac537e 3426/*
381be78f
GS
3427 * sg_lb_stats - stats of a sched_group required for load_balancing
3428 */
3429struct sg_lb_stats {
3430 unsigned long avg_load; /*Avg load across the CPUs of the group */
3431 unsigned long group_load; /* Total load over the CPUs of the group */
3432 unsigned long sum_nr_running; /* Nr tasks running in the group */
3433 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3434 unsigned long group_capacity;
3435 int group_imb; /* Is there an imbalance in the group ? */
3436};
408ed066 3437
67bb6c03
GS
3438/**
3439 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3440 * @group: The group whose first cpu is to be returned.
3441 */
3442static inline unsigned int group_first_cpu(struct sched_group *group)
3443{
3444 return cpumask_first(sched_group_cpus(group));
3445}
3446
3447/**
3448 * get_sd_load_idx - Obtain the load index for a given sched domain.
3449 * @sd: The sched_domain whose load_idx is to be obtained.
3450 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3451 */
3452static inline int get_sd_load_idx(struct sched_domain *sd,
3453 enum cpu_idle_type idle)
3454{
3455 int load_idx;
3456
3457 switch (idle) {
3458 case CPU_NOT_IDLE:
7897986b 3459 load_idx = sd->busy_idx;
67bb6c03
GS
3460 break;
3461
3462 case CPU_NEWLY_IDLE:
7897986b 3463 load_idx = sd->newidle_idx;
67bb6c03
GS
3464 break;
3465 default:
7897986b 3466 load_idx = sd->idle_idx;
67bb6c03
GS
3467 break;
3468 }
1da177e4 3469
67bb6c03
GS
3470 return load_idx;
3471}
1da177e4 3472
1da177e4 3473
c071df18
GS
3474#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3475/**
3476 * init_sd_power_savings_stats - Initialize power savings statistics for
3477 * the given sched_domain, during load balancing.
3478 *
3479 * @sd: Sched domain whose power-savings statistics are to be initialized.
3480 * @sds: Variable containing the statistics for sd.
3481 * @idle: Idle status of the CPU at which we're performing load-balancing.
3482 */
3483static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3484 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3485{
3486 /*
3487 * Busy processors will not participate in power savings
3488 * balance.
3489 */
3490 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3491 sds->power_savings_balance = 0;
3492 else {
3493 sds->power_savings_balance = 1;
3494 sds->min_nr_running = ULONG_MAX;
3495 sds->leader_nr_running = 0;
3496 }
3497}
783609c6 3498
c071df18
GS
3499/**
3500 * update_sd_power_savings_stats - Update the power saving stats for a
3501 * sched_domain while performing load balancing.
3502 *
3503 * @group: sched_group belonging to the sched_domain under consideration.
3504 * @sds: Variable containing the statistics of the sched_domain
3505 * @local_group: Does group contain the CPU for which we're performing
3506 * load balancing ?
3507 * @sgs: Variable containing the statistics of the group.
3508 */
3509static inline void update_sd_power_savings_stats(struct sched_group *group,
3510 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3511{
408ed066 3512
c071df18
GS
3513 if (!sds->power_savings_balance)
3514 return;
1da177e4 3515
c071df18
GS
3516 /*
3517 * If the local group is idle or completely loaded
3518 * no need to do power savings balance at this domain
3519 */
3520 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3521 !sds->this_nr_running))
3522 sds->power_savings_balance = 0;
2dd73a4f 3523
c071df18
GS
3524 /*
3525 * If a group is already running at full capacity or idle,
3526 * don't include that group in power savings calculations
3527 */
3528 if (!sds->power_savings_balance ||
3529 sgs->sum_nr_running >= sgs->group_capacity ||
3530 !sgs->sum_nr_running)
3531 return;
5969fe06 3532
c071df18
GS
3533 /*
3534 * Calculate the group which has the least non-idle load.
3535 * This is the group from where we need to pick up the load
3536 * for saving power
3537 */
3538 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3539 (sgs->sum_nr_running == sds->min_nr_running &&
3540 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3541 sds->group_min = group;
3542 sds->min_nr_running = sgs->sum_nr_running;
3543 sds->min_load_per_task = sgs->sum_weighted_load /
3544 sgs->sum_nr_running;
3545 }
783609c6 3546
c071df18
GS
3547 /*
3548 * Calculate the group which is almost near its
3549 * capacity but still has some space to pick up some load
3550 * from other group and save more power
3551 */
d899a789 3552 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3553 return;
1da177e4 3554
c071df18
GS
3555 if (sgs->sum_nr_running > sds->leader_nr_running ||
3556 (sgs->sum_nr_running == sds->leader_nr_running &&
3557 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3558 sds->group_leader = group;
3559 sds->leader_nr_running = sgs->sum_nr_running;
3560 }
3561}
408ed066 3562
c071df18 3563/**
d5ac537e 3564 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3565 * @sds: Variable containing the statistics of the sched_domain
3566 * under consideration.
3567 * @this_cpu: Cpu at which we're currently performing load-balancing.
3568 * @imbalance: Variable to store the imbalance.
3569 *
d5ac537e
RD
3570 * Description:
3571 * Check if we have potential to perform some power-savings balance.
3572 * If yes, set the busiest group to be the least loaded group in the
3573 * sched_domain, so that it's CPUs can be put to idle.
3574 *
c071df18
GS
3575 * Returns 1 if there is potential to perform power-savings balance.
3576 * Else returns 0.
3577 */
3578static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3579 int this_cpu, unsigned long *imbalance)
3580{
3581 if (!sds->power_savings_balance)
3582 return 0;
1da177e4 3583
c071df18
GS
3584 if (sds->this != sds->group_leader ||
3585 sds->group_leader == sds->group_min)
3586 return 0;
783609c6 3587
c071df18
GS
3588 *imbalance = sds->min_load_per_task;
3589 sds->busiest = sds->group_min;
1da177e4 3590
c071df18 3591 return 1;
1da177e4 3592
c071df18
GS
3593}
3594#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3595static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3596 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3597{
3598 return;
3599}
408ed066 3600
c071df18
GS
3601static inline void update_sd_power_savings_stats(struct sched_group *group,
3602 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3603{
3604 return;
3605}
3606
3607static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3608 int this_cpu, unsigned long *imbalance)
3609{
3610 return 0;
3611}
3612#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3613
d6a59aa3
PZ
3614
3615unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3616{
3617 return SCHED_LOAD_SCALE;
3618}
3619
3620unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3621{
3622 return default_scale_freq_power(sd, cpu);
3623}
3624
3625unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3626{
3627 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3628 unsigned long smt_gain = sd->smt_gain;
3629
3630 smt_gain /= weight;
3631
3632 return smt_gain;
3633}
3634
d6a59aa3
PZ
3635unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3636{
3637 return default_scale_smt_power(sd, cpu);
3638}
3639
e9e9250b
PZ
3640unsigned long scale_rt_power(int cpu)
3641{
3642 struct rq *rq = cpu_rq(cpu);
3643 u64 total, available;
3644
3645 sched_avg_update(rq);
3646
3647 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3648 available = total - rq->rt_avg;
3649
3650 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3651 total = SCHED_LOAD_SCALE;
3652
3653 total >>= SCHED_LOAD_SHIFT;
3654
3655 return div_u64(available, total);
3656}
3657
ab29230e
PZ
3658static void update_cpu_power(struct sched_domain *sd, int cpu)
3659{
3660 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3661 unsigned long power = SCHED_LOAD_SCALE;
3662 struct sched_group *sdg = sd->groups;
ab29230e 3663
8e6598af
PZ
3664 if (sched_feat(ARCH_POWER))
3665 power *= arch_scale_freq_power(sd, cpu);
3666 else
3667 power *= default_scale_freq_power(sd, cpu);
3668
d6a59aa3 3669 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3670
3671 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3672 if (sched_feat(ARCH_POWER))
3673 power *= arch_scale_smt_power(sd, cpu);
3674 else
3675 power *= default_scale_smt_power(sd, cpu);
3676
ab29230e
PZ
3677 power >>= SCHED_LOAD_SHIFT;
3678 }
3679
e9e9250b
PZ
3680 power *= scale_rt_power(cpu);
3681 power >>= SCHED_LOAD_SHIFT;
3682
3683 if (!power)
3684 power = 1;
ab29230e 3685
18a3885f 3686 sdg->cpu_power = power;
ab29230e
PZ
3687}
3688
3689static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3690{
3691 struct sched_domain *child = sd->child;
3692 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3693 unsigned long power;
cc9fba7d
PZ
3694
3695 if (!child) {
ab29230e 3696 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3697 return;
3698 }
3699
d7ea17a7 3700 power = 0;
cc9fba7d
PZ
3701
3702 group = child->groups;
3703 do {
d7ea17a7 3704 power += group->cpu_power;
cc9fba7d
PZ
3705 group = group->next;
3706 } while (group != child->groups);
d7ea17a7
IM
3707
3708 sdg->cpu_power = power;
cc9fba7d 3709}
c071df18 3710
1f8c553d
GS
3711/**
3712 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3713 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3714 * @group: sched_group whose statistics are to be updated.
3715 * @this_cpu: Cpu for which load balance is currently performed.
3716 * @idle: Idle status of this_cpu
3717 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3718 * @sd_idle: Idle status of the sched_domain containing group.
3719 * @local_group: Does group contain this_cpu.
3720 * @cpus: Set of cpus considered for load balancing.
3721 * @balance: Should we balance.
3722 * @sgs: variable to hold the statistics for this group.
3723 */
cc9fba7d
PZ
3724static inline void update_sg_lb_stats(struct sched_domain *sd,
3725 struct sched_group *group, int this_cpu,
1f8c553d
GS
3726 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3727 int local_group, const struct cpumask *cpus,
3728 int *balance, struct sg_lb_stats *sgs)
3729{
3730 unsigned long load, max_cpu_load, min_cpu_load;
3731 int i;
3732 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3733 unsigned long sum_avg_load_per_task;
3734 unsigned long avg_load_per_task;
3735
cc9fba7d 3736 if (local_group) {
1f8c553d 3737 balance_cpu = group_first_cpu(group);
cc9fba7d 3738 if (balance_cpu == this_cpu)
ab29230e 3739 update_group_power(sd, this_cpu);
cc9fba7d 3740 }
1f8c553d
GS
3741
3742 /* Tally up the load of all CPUs in the group */
3743 sum_avg_load_per_task = avg_load_per_task = 0;
3744 max_cpu_load = 0;
3745 min_cpu_load = ~0UL;
408ed066 3746
1f8c553d
GS
3747 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3748 struct rq *rq = cpu_rq(i);
908a7c1b 3749
1f8c553d
GS
3750 if (*sd_idle && rq->nr_running)
3751 *sd_idle = 0;
5c45bf27 3752
1f8c553d 3753 /* Bias balancing toward cpus of our domain */
1da177e4 3754 if (local_group) {
1f8c553d
GS
3755 if (idle_cpu(i) && !first_idle_cpu) {
3756 first_idle_cpu = 1;
3757 balance_cpu = i;
3758 }
3759
3760 load = target_load(i, load_idx);
3761 } else {
3762 load = source_load(i, load_idx);
3763 if (load > max_cpu_load)
3764 max_cpu_load = load;
3765 if (min_cpu_load > load)
3766 min_cpu_load = load;
1da177e4 3767 }
5c45bf27 3768
1f8c553d
GS
3769 sgs->group_load += load;
3770 sgs->sum_nr_running += rq->nr_running;
3771 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3772
1f8c553d
GS
3773 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3774 }
5c45bf27 3775
1f8c553d
GS
3776 /*
3777 * First idle cpu or the first cpu(busiest) in this sched group
3778 * is eligible for doing load balancing at this and above
3779 * domains. In the newly idle case, we will allow all the cpu's
3780 * to do the newly idle load balance.
3781 */
3782 if (idle != CPU_NEWLY_IDLE && local_group &&
3783 balance_cpu != this_cpu && balance) {
3784 *balance = 0;
3785 return;
3786 }
5c45bf27 3787
1f8c553d 3788 /* Adjust by relative CPU power of the group */
18a3885f 3789 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3790
1f8c553d
GS
3791
3792 /*
3793 * Consider the group unbalanced when the imbalance is larger
3794 * than the average weight of two tasks.
3795 *
3796 * APZ: with cgroup the avg task weight can vary wildly and
3797 * might not be a suitable number - should we keep a
3798 * normalized nr_running number somewhere that negates
3799 * the hierarchy?
3800 */
18a3885f
PZ
3801 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3802 group->cpu_power;
1f8c553d
GS
3803
3804 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3805 sgs->group_imb = 1;
3806
bdb94aa5 3807 sgs->group_capacity =
18a3885f 3808 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3809}
dd41f596 3810
37abe198
GS
3811/**
3812 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3813 * @sd: sched_domain whose statistics are to be updated.
3814 * @this_cpu: Cpu for which load balance is currently performed.
3815 * @idle: Idle status of this_cpu
3816 * @sd_idle: Idle status of the sched_domain containing group.
3817 * @cpus: Set of cpus considered for load balancing.
3818 * @balance: Should we balance.
3819 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3820 */
37abe198
GS
3821static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3822 enum cpu_idle_type idle, int *sd_idle,
3823 const struct cpumask *cpus, int *balance,
3824 struct sd_lb_stats *sds)
1da177e4 3825{
b5d978e0 3826 struct sched_domain *child = sd->child;
222d656d 3827 struct sched_group *group = sd->groups;
37abe198 3828 struct sg_lb_stats sgs;
b5d978e0
PZ
3829 int load_idx, prefer_sibling = 0;
3830
3831 if (child && child->flags & SD_PREFER_SIBLING)
3832 prefer_sibling = 1;
222d656d 3833
c071df18 3834 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3835 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3836
3837 do {
1da177e4 3838 int local_group;
1da177e4 3839
758b2cdc
RR
3840 local_group = cpumask_test_cpu(this_cpu,
3841 sched_group_cpus(group));
381be78f 3842 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3843 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3844 local_group, cpus, balance, &sgs);
1da177e4 3845
37abe198
GS
3846 if (local_group && balance && !(*balance))
3847 return;
783609c6 3848
37abe198 3849 sds->total_load += sgs.group_load;
18a3885f 3850 sds->total_pwr += group->cpu_power;
1da177e4 3851
b5d978e0
PZ
3852 /*
3853 * In case the child domain prefers tasks go to siblings
3854 * first, lower the group capacity to one so that we'll try
3855 * and move all the excess tasks away.
3856 */
3857 if (prefer_sibling)
bdb94aa5 3858 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3859
1da177e4 3860 if (local_group) {
37abe198
GS
3861 sds->this_load = sgs.avg_load;
3862 sds->this = group;
3863 sds->this_nr_running = sgs.sum_nr_running;
3864 sds->this_load_per_task = sgs.sum_weighted_load;
3865 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3866 (sgs.sum_nr_running > sgs.group_capacity ||
3867 sgs.group_imb)) {
37abe198
GS
3868 sds->max_load = sgs.avg_load;
3869 sds->busiest = group;
3870 sds->busiest_nr_running = sgs.sum_nr_running;
3871 sds->busiest_load_per_task = sgs.sum_weighted_load;
3872 sds->group_imb = sgs.group_imb;
48f24c4d 3873 }
5c45bf27 3874
c071df18 3875 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3876 group = group->next;
3877 } while (group != sd->groups);
37abe198 3878}
1da177e4 3879
2e6f44ae
GS
3880/**
3881 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3882 * amongst the groups of a sched_domain, during
3883 * load balancing.
2e6f44ae
GS
3884 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3885 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3886 * @imbalance: Variable to store the imbalance.
3887 */
3888static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3889 int this_cpu, unsigned long *imbalance)
3890{
3891 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3892 unsigned int imbn = 2;
3893
3894 if (sds->this_nr_running) {
3895 sds->this_load_per_task /= sds->this_nr_running;
3896 if (sds->busiest_load_per_task >
3897 sds->this_load_per_task)
3898 imbn = 1;
3899 } else
3900 sds->this_load_per_task =
3901 cpu_avg_load_per_task(this_cpu);
1da177e4 3902
2e6f44ae
GS
3903 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3904 sds->busiest_load_per_task * imbn) {
3905 *imbalance = sds->busiest_load_per_task;
3906 return;
3907 }
908a7c1b 3908
1da177e4 3909 /*
2e6f44ae
GS
3910 * OK, we don't have enough imbalance to justify moving tasks,
3911 * however we may be able to increase total CPU power used by
3912 * moving them.
1da177e4 3913 */
2dd73a4f 3914
18a3885f 3915 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3916 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3917 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3918 min(sds->this_load_per_task, sds->this_load);
3919 pwr_now /= SCHED_LOAD_SCALE;
3920
3921 /* Amount of load we'd subtract */
18a3885f
PZ
3922 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3923 sds->busiest->cpu_power;
2e6f44ae 3924 if (sds->max_load > tmp)
18a3885f 3925 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3926 min(sds->busiest_load_per_task, sds->max_load - tmp);
3927
3928 /* Amount of load we'd add */
18a3885f 3929 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3930 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3931 tmp = (sds->max_load * sds->busiest->cpu_power) /
3932 sds->this->cpu_power;
2e6f44ae 3933 else
18a3885f
PZ
3934 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3935 sds->this->cpu_power;
3936 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3937 min(sds->this_load_per_task, sds->this_load + tmp);
3938 pwr_move /= SCHED_LOAD_SCALE;
3939
3940 /* Move if we gain throughput */
3941 if (pwr_move > pwr_now)
3942 *imbalance = sds->busiest_load_per_task;
3943}
dbc523a3
GS
3944
3945/**
3946 * calculate_imbalance - Calculate the amount of imbalance present within the
3947 * groups of a given sched_domain during load balance.
3948 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3949 * @this_cpu: Cpu for which currently load balance is being performed.
3950 * @imbalance: The variable to store the imbalance.
3951 */
3952static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3953 unsigned long *imbalance)
3954{
3955 unsigned long max_pull;
2dd73a4f
PW
3956 /*
3957 * In the presence of smp nice balancing, certain scenarios can have
3958 * max load less than avg load(as we skip the groups at or below
3959 * its cpu_power, while calculating max_load..)
3960 */
dbc523a3 3961 if (sds->max_load < sds->avg_load) {
2dd73a4f 3962 *imbalance = 0;
dbc523a3 3963 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3964 }
0c117f1b
SS
3965
3966 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3967 max_pull = min(sds->max_load - sds->avg_load,
3968 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3969
1da177e4 3970 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3971 *imbalance = min(max_pull * sds->busiest->cpu_power,
3972 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3973 / SCHED_LOAD_SCALE;
3974
2dd73a4f
PW
3975 /*
3976 * if *imbalance is less than the average load per runnable task
3977 * there is no gaurantee that any tasks will be moved so we'll have
3978 * a think about bumping its value to force at least one task to be
3979 * moved
3980 */
dbc523a3
GS
3981 if (*imbalance < sds->busiest_load_per_task)
3982 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3983
dbc523a3 3984}
37abe198 3985/******* find_busiest_group() helpers end here *********************/
1da177e4 3986
b7bb4c9b
GS
3987/**
3988 * find_busiest_group - Returns the busiest group within the sched_domain
3989 * if there is an imbalance. If there isn't an imbalance, and
3990 * the user has opted for power-savings, it returns a group whose
3991 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3992 * such a group exists.
3993 *
3994 * Also calculates the amount of weighted load which should be moved
3995 * to restore balance.
3996 *
3997 * @sd: The sched_domain whose busiest group is to be returned.
3998 * @this_cpu: The cpu for which load balancing is currently being performed.
3999 * @imbalance: Variable which stores amount of weighted load which should
4000 * be moved to restore balance/put a group to idle.
4001 * @idle: The idle status of this_cpu.
4002 * @sd_idle: The idleness of sd
4003 * @cpus: The set of CPUs under consideration for load-balancing.
4004 * @balance: Pointer to a variable indicating if this_cpu
4005 * is the appropriate cpu to perform load balancing at this_level.
4006 *
4007 * Returns: - the busiest group if imbalance exists.
4008 * - If no imbalance and user has opted for power-savings balance,
4009 * return the least loaded group whose CPUs can be
4010 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
4011 */
4012static struct sched_group *
4013find_busiest_group(struct sched_domain *sd, int this_cpu,
4014 unsigned long *imbalance, enum cpu_idle_type idle,
4015 int *sd_idle, const struct cpumask *cpus, int *balance)
4016{
4017 struct sd_lb_stats sds;
1da177e4 4018
37abe198 4019 memset(&sds, 0, sizeof(sds));
1da177e4 4020
37abe198
GS
4021 /*
4022 * Compute the various statistics relavent for load balancing at
4023 * this level.
4024 */
4025 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4026 balance, &sds);
4027
b7bb4c9b
GS
4028 /* Cases where imbalance does not exist from POV of this_cpu */
4029 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4030 * at this level.
4031 * 2) There is no busy sibling group to pull from.
4032 * 3) This group is the busiest group.
4033 * 4) This group is more busy than the avg busieness at this
4034 * sched_domain.
4035 * 5) The imbalance is within the specified limit.
4036 * 6) Any rebalance would lead to ping-pong
4037 */
37abe198
GS
4038 if (balance && !(*balance))
4039 goto ret;
1da177e4 4040
b7bb4c9b
GS
4041 if (!sds.busiest || sds.busiest_nr_running == 0)
4042 goto out_balanced;
1da177e4 4043
b7bb4c9b 4044 if (sds.this_load >= sds.max_load)
1da177e4 4045 goto out_balanced;
1da177e4 4046
222d656d 4047 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4048
b7bb4c9b
GS
4049 if (sds.this_load >= sds.avg_load)
4050 goto out_balanced;
4051
4052 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4053 goto out_balanced;
4054
222d656d
GS
4055 sds.busiest_load_per_task /= sds.busiest_nr_running;
4056 if (sds.group_imb)
4057 sds.busiest_load_per_task =
4058 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4059
1da177e4
LT
4060 /*
4061 * We're trying to get all the cpus to the average_load, so we don't
4062 * want to push ourselves above the average load, nor do we wish to
4063 * reduce the max loaded cpu below the average load, as either of these
4064 * actions would just result in more rebalancing later, and ping-pong
4065 * tasks around. Thus we look for the minimum possible imbalance.
4066 * Negative imbalances (*we* are more loaded than anyone else) will
4067 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4068 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4069 * appear as very large values with unsigned longs.
4070 */
222d656d 4071 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4072 goto out_balanced;
4073
dbc523a3
GS
4074 /* Looks like there is an imbalance. Compute it */
4075 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4076 return sds.busiest;
1da177e4
LT
4077
4078out_balanced:
c071df18
GS
4079 /*
4080 * There is no obvious imbalance. But check if we can do some balancing
4081 * to save power.
4082 */
4083 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4084 return sds.busiest;
783609c6 4085ret:
1da177e4
LT
4086 *imbalance = 0;
4087 return NULL;
4088}
4089
4090/*
4091 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4092 */
70b97a7f 4093static struct rq *
d15bcfdb 4094find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4095 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4096{
70b97a7f 4097 struct rq *busiest = NULL, *rq;
2dd73a4f 4098 unsigned long max_load = 0;
1da177e4
LT
4099 int i;
4100
758b2cdc 4101 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4102 unsigned long power = power_of(i);
4103 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4104 unsigned long wl;
0a2966b4 4105
96f874e2 4106 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4107 continue;
4108
48f24c4d 4109 rq = cpu_rq(i);
bdb94aa5
PZ
4110 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4111 wl /= power;
2dd73a4f 4112
bdb94aa5 4113 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4114 continue;
1da177e4 4115
dd41f596
IM
4116 if (wl > max_load) {
4117 max_load = wl;
48f24c4d 4118 busiest = rq;
1da177e4
LT
4119 }
4120 }
4121
4122 return busiest;
4123}
4124
77391d71
NP
4125/*
4126 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4127 * so long as it is large enough.
4128 */
4129#define MAX_PINNED_INTERVAL 512
4130
df7c8e84
RR
4131/* Working cpumask for load_balance and load_balance_newidle. */
4132static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4133
1da177e4
LT
4134/*
4135 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4136 * tasks if there is an imbalance.
1da177e4 4137 */
70b97a7f 4138static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4139 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4140 int *balance)
1da177e4 4141{
43010659 4142 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4143 struct sched_group *group;
1da177e4 4144 unsigned long imbalance;
70b97a7f 4145 struct rq *busiest;
fe2eea3f 4146 unsigned long flags;
df7c8e84 4147 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4148
6ad4c188 4149 cpumask_copy(cpus, cpu_active_mask);
7c16ec58 4150
89c4710e
SS
4151 /*
4152 * When power savings policy is enabled for the parent domain, idle
4153 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4154 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4155 * portraying it as CPU_NOT_IDLE.
89c4710e 4156 */
d15bcfdb 4157 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4158 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4159 sd_idle = 1;
1da177e4 4160
2d72376b 4161 schedstat_inc(sd, lb_count[idle]);
1da177e4 4162
0a2966b4 4163redo:
c8cba857 4164 update_shares(sd);
0a2966b4 4165 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4166 cpus, balance);
783609c6 4167
06066714 4168 if (*balance == 0)
783609c6 4169 goto out_balanced;
783609c6 4170
1da177e4
LT
4171 if (!group) {
4172 schedstat_inc(sd, lb_nobusyg[idle]);
4173 goto out_balanced;
4174 }
4175
7c16ec58 4176 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4177 if (!busiest) {
4178 schedstat_inc(sd, lb_nobusyq[idle]);
4179 goto out_balanced;
4180 }
4181
db935dbd 4182 BUG_ON(busiest == this_rq);
1da177e4
LT
4183
4184 schedstat_add(sd, lb_imbalance[idle], imbalance);
4185
43010659 4186 ld_moved = 0;
1da177e4
LT
4187 if (busiest->nr_running > 1) {
4188 /*
4189 * Attempt to move tasks. If find_busiest_group has found
4190 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4191 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4192 * correctly treated as an imbalance.
4193 */
fe2eea3f 4194 local_irq_save(flags);
e17224bf 4195 double_rq_lock(this_rq, busiest);
43010659 4196 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4197 imbalance, sd, idle, &all_pinned);
e17224bf 4198 double_rq_unlock(this_rq, busiest);
fe2eea3f 4199 local_irq_restore(flags);
81026794 4200
46cb4b7c
SS
4201 /*
4202 * some other cpu did the load balance for us.
4203 */
43010659 4204 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4205 resched_cpu(this_cpu);
4206
81026794 4207 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4208 if (unlikely(all_pinned)) {
96f874e2
RR
4209 cpumask_clear_cpu(cpu_of(busiest), cpus);
4210 if (!cpumask_empty(cpus))
0a2966b4 4211 goto redo;
81026794 4212 goto out_balanced;
0a2966b4 4213 }
1da177e4 4214 }
81026794 4215
43010659 4216 if (!ld_moved) {
1da177e4
LT
4217 schedstat_inc(sd, lb_failed[idle]);
4218 sd->nr_balance_failed++;
4219
4220 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4221
05fa785c 4222 raw_spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4223
4224 /* don't kick the migration_thread, if the curr
4225 * task on busiest cpu can't be moved to this_cpu
4226 */
96f874e2
RR
4227 if (!cpumask_test_cpu(this_cpu,
4228 &busiest->curr->cpus_allowed)) {
05fa785c
TG
4229 raw_spin_unlock_irqrestore(&busiest->lock,
4230 flags);
fa3b6ddc
SS
4231 all_pinned = 1;
4232 goto out_one_pinned;
4233 }
4234
1da177e4
LT
4235 if (!busiest->active_balance) {
4236 busiest->active_balance = 1;
4237 busiest->push_cpu = this_cpu;
81026794 4238 active_balance = 1;
1da177e4 4239 }
05fa785c 4240 raw_spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4241 if (active_balance)
1da177e4
LT
4242 wake_up_process(busiest->migration_thread);
4243
4244 /*
4245 * We've kicked active balancing, reset the failure
4246 * counter.
4247 */
39507451 4248 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4249 }
81026794 4250 } else
1da177e4
LT
4251 sd->nr_balance_failed = 0;
4252
81026794 4253 if (likely(!active_balance)) {
1da177e4
LT
4254 /* We were unbalanced, so reset the balancing interval */
4255 sd->balance_interval = sd->min_interval;
81026794
NP
4256 } else {
4257 /*
4258 * If we've begun active balancing, start to back off. This
4259 * case may not be covered by the all_pinned logic if there
4260 * is only 1 task on the busy runqueue (because we don't call
4261 * move_tasks).
4262 */
4263 if (sd->balance_interval < sd->max_interval)
4264 sd->balance_interval *= 2;
1da177e4
LT
4265 }
4266
43010659 4267 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4268 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4269 ld_moved = -1;
4270
4271 goto out;
1da177e4
LT
4272
4273out_balanced:
1da177e4
LT
4274 schedstat_inc(sd, lb_balanced[idle]);
4275
16cfb1c0 4276 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4277
4278out_one_pinned:
1da177e4 4279 /* tune up the balancing interval */
77391d71
NP
4280 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4281 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4282 sd->balance_interval *= 2;
4283
48f24c4d 4284 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4285 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4286 ld_moved = -1;
4287 else
4288 ld_moved = 0;
4289out:
c8cba857
PZ
4290 if (ld_moved)
4291 update_shares(sd);
c09595f6 4292 return ld_moved;
1da177e4
LT
4293}
4294
4295/*
4296 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4297 * tasks if there is an imbalance.
4298 *
d15bcfdb 4299 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4300 * this_rq is locked.
4301 */
48f24c4d 4302static int
df7c8e84 4303load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4304{
4305 struct sched_group *group;
70b97a7f 4306 struct rq *busiest = NULL;
1da177e4 4307 unsigned long imbalance;
43010659 4308 int ld_moved = 0;
5969fe06 4309 int sd_idle = 0;
969bb4e4 4310 int all_pinned = 0;
df7c8e84 4311 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4312
6ad4c188 4313 cpumask_copy(cpus, cpu_active_mask);
5969fe06 4314
89c4710e
SS
4315 /*
4316 * When power savings policy is enabled for the parent domain, idle
4317 * sibling can pick up load irrespective of busy siblings. In this case,
4318 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4319 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4320 */
4321 if (sd->flags & SD_SHARE_CPUPOWER &&
4322 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4323 sd_idle = 1;
1da177e4 4324
2d72376b 4325 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4326redo:
3e5459b4 4327 update_shares_locked(this_rq, sd);
d15bcfdb 4328 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4329 &sd_idle, cpus, NULL);
1da177e4 4330 if (!group) {
d15bcfdb 4331 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4332 goto out_balanced;
1da177e4
LT
4333 }
4334
7c16ec58 4335 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4336 if (!busiest) {
d15bcfdb 4337 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4338 goto out_balanced;
1da177e4
LT
4339 }
4340
db935dbd
NP
4341 BUG_ON(busiest == this_rq);
4342
d15bcfdb 4343 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4344
43010659 4345 ld_moved = 0;
d6d5cfaf
NP
4346 if (busiest->nr_running > 1) {
4347 /* Attempt to move tasks */
4348 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4349 /* this_rq->clock is already updated */
4350 update_rq_clock(busiest);
43010659 4351 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4352 imbalance, sd, CPU_NEWLY_IDLE,
4353 &all_pinned);
1b12bbc7 4354 double_unlock_balance(this_rq, busiest);
0a2966b4 4355
969bb4e4 4356 if (unlikely(all_pinned)) {
96f874e2
RR
4357 cpumask_clear_cpu(cpu_of(busiest), cpus);
4358 if (!cpumask_empty(cpus))
0a2966b4
CL
4359 goto redo;
4360 }
d6d5cfaf
NP
4361 }
4362
43010659 4363 if (!ld_moved) {
36dffab6 4364 int active_balance = 0;
ad273b32 4365
d15bcfdb 4366 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4367 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4368 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4369 return -1;
ad273b32
VS
4370
4371 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4372 return -1;
4373
4374 if (sd->nr_balance_failed++ < 2)
4375 return -1;
4376
4377 /*
4378 * The only task running in a non-idle cpu can be moved to this
4379 * cpu in an attempt to completely freeup the other CPU
4380 * package. The same method used to move task in load_balance()
4381 * have been extended for load_balance_newidle() to speedup
4382 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4383 *
4384 * The package power saving logic comes from
4385 * find_busiest_group(). If there are no imbalance, then
4386 * f_b_g() will return NULL. However when sched_mc={1,2} then
4387 * f_b_g() will select a group from which a running task may be
4388 * pulled to this cpu in order to make the other package idle.
4389 * If there is no opportunity to make a package idle and if
4390 * there are no imbalance, then f_b_g() will return NULL and no
4391 * action will be taken in load_balance_newidle().
4392 *
4393 * Under normal task pull operation due to imbalance, there
4394 * will be more than one task in the source run queue and
4395 * move_tasks() will succeed. ld_moved will be true and this
4396 * active balance code will not be triggered.
4397 */
4398
4399 /* Lock busiest in correct order while this_rq is held */
4400 double_lock_balance(this_rq, busiest);
4401
4402 /*
4403 * don't kick the migration_thread, if the curr
4404 * task on busiest cpu can't be moved to this_cpu
4405 */
6ca09dfc 4406 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4407 double_unlock_balance(this_rq, busiest);
4408 all_pinned = 1;
4409 return ld_moved;
4410 }
4411
4412 if (!busiest->active_balance) {
4413 busiest->active_balance = 1;
4414 busiest->push_cpu = this_cpu;
4415 active_balance = 1;
4416 }
4417
4418 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4419 /*
4420 * Should not call ttwu while holding a rq->lock
4421 */
05fa785c 4422 raw_spin_unlock(&this_rq->lock);
ad273b32
VS
4423 if (active_balance)
4424 wake_up_process(busiest->migration_thread);
05fa785c 4425 raw_spin_lock(&this_rq->lock);
ad273b32 4426
5969fe06 4427 } else
16cfb1c0 4428 sd->nr_balance_failed = 0;
1da177e4 4429
3e5459b4 4430 update_shares_locked(this_rq, sd);
43010659 4431 return ld_moved;
16cfb1c0
NP
4432
4433out_balanced:
d15bcfdb 4434 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4435 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4436 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4437 return -1;
16cfb1c0 4438 sd->nr_balance_failed = 0;
48f24c4d 4439
16cfb1c0 4440 return 0;
1da177e4
LT
4441}
4442
4443/*
4444 * idle_balance is called by schedule() if this_cpu is about to become
4445 * idle. Attempts to pull tasks from other CPUs.
4446 */
70b97a7f 4447static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4448{
4449 struct sched_domain *sd;
efbe027e 4450 int pulled_task = 0;
dd41f596 4451 unsigned long next_balance = jiffies + HZ;
1da177e4 4452
1b9508f6
MG
4453 this_rq->idle_stamp = this_rq->clock;
4454
4455 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4456 return;
4457
1da177e4 4458 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4459 unsigned long interval;
4460
4461 if (!(sd->flags & SD_LOAD_BALANCE))
4462 continue;
4463
4464 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4465 /* If we've pulled tasks over stop searching: */
7c16ec58 4466 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4467 sd);
92c4ca5c
CL
4468
4469 interval = msecs_to_jiffies(sd->balance_interval);
4470 if (time_after(next_balance, sd->last_balance + interval))
4471 next_balance = sd->last_balance + interval;
1b9508f6
MG
4472 if (pulled_task) {
4473 this_rq->idle_stamp = 0;
92c4ca5c 4474 break;
1b9508f6 4475 }
1da177e4 4476 }
dd41f596 4477 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4478 /*
4479 * We are going idle. next_balance may be set based on
4480 * a busy processor. So reset next_balance.
4481 */
4482 this_rq->next_balance = next_balance;
dd41f596 4483 }
1da177e4
LT
4484}
4485
4486/*
4487 * active_load_balance is run by migration threads. It pushes running tasks
4488 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4489 * running on each physical CPU where possible, and avoids physical /
4490 * logical imbalances.
4491 *
4492 * Called with busiest_rq locked.
4493 */
70b97a7f 4494static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4495{
39507451 4496 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4497 struct sched_domain *sd;
4498 struct rq *target_rq;
39507451 4499
48f24c4d 4500 /* Is there any task to move? */
39507451 4501 if (busiest_rq->nr_running <= 1)
39507451
NP
4502 return;
4503
4504 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4505
4506 /*
39507451 4507 * This condition is "impossible", if it occurs
41a2d6cf 4508 * we need to fix it. Originally reported by
39507451 4509 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4510 */
39507451 4511 BUG_ON(busiest_rq == target_rq);
1da177e4 4512
39507451
NP
4513 /* move a task from busiest_rq to target_rq */
4514 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4515 update_rq_clock(busiest_rq);
4516 update_rq_clock(target_rq);
39507451
NP
4517
4518 /* Search for an sd spanning us and the target CPU. */
c96d145e 4519 for_each_domain(target_cpu, sd) {
39507451 4520 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4521 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4522 break;
c96d145e 4523 }
39507451 4524
48f24c4d 4525 if (likely(sd)) {
2d72376b 4526 schedstat_inc(sd, alb_count);
39507451 4527
43010659
PW
4528 if (move_one_task(target_rq, target_cpu, busiest_rq,
4529 sd, CPU_IDLE))
48f24c4d
IM
4530 schedstat_inc(sd, alb_pushed);
4531 else
4532 schedstat_inc(sd, alb_failed);
4533 }
1b12bbc7 4534 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4535}
4536
46cb4b7c
SS
4537#ifdef CONFIG_NO_HZ
4538static struct {
4539 atomic_t load_balancer;
7d1e6a9b 4540 cpumask_var_t cpu_mask;
f711f609 4541 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4542} nohz ____cacheline_aligned = {
4543 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4544};
4545
eea08f32
AB
4546int get_nohz_load_balancer(void)
4547{
4548 return atomic_read(&nohz.load_balancer);
4549}
4550
f711f609
GS
4551#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4552/**
4553 * lowest_flag_domain - Return lowest sched_domain containing flag.
4554 * @cpu: The cpu whose lowest level of sched domain is to
4555 * be returned.
4556 * @flag: The flag to check for the lowest sched_domain
4557 * for the given cpu.
4558 *
4559 * Returns the lowest sched_domain of a cpu which contains the given flag.
4560 */
4561static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4562{
4563 struct sched_domain *sd;
4564
4565 for_each_domain(cpu, sd)
4566 if (sd && (sd->flags & flag))
4567 break;
4568
4569 return sd;
4570}
4571
4572/**
4573 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4574 * @cpu: The cpu whose domains we're iterating over.
4575 * @sd: variable holding the value of the power_savings_sd
4576 * for cpu.
4577 * @flag: The flag to filter the sched_domains to be iterated.
4578 *
4579 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4580 * set, starting from the lowest sched_domain to the highest.
4581 */
4582#define for_each_flag_domain(cpu, sd, flag) \
4583 for (sd = lowest_flag_domain(cpu, flag); \
4584 (sd && (sd->flags & flag)); sd = sd->parent)
4585
4586/**
4587 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4588 * @ilb_group: group to be checked for semi-idleness
4589 *
4590 * Returns: 1 if the group is semi-idle. 0 otherwise.
4591 *
4592 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4593 * and atleast one non-idle CPU. This helper function checks if the given
4594 * sched_group is semi-idle or not.
4595 */
4596static inline int is_semi_idle_group(struct sched_group *ilb_group)
4597{
4598 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4599 sched_group_cpus(ilb_group));
4600
4601 /*
4602 * A sched_group is semi-idle when it has atleast one busy cpu
4603 * and atleast one idle cpu.
4604 */
4605 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4606 return 0;
4607
4608 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4609 return 0;
4610
4611 return 1;
4612}
4613/**
4614 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4615 * @cpu: The cpu which is nominating a new idle_load_balancer.
4616 *
4617 * Returns: Returns the id of the idle load balancer if it exists,
4618 * Else, returns >= nr_cpu_ids.
4619 *
4620 * This algorithm picks the idle load balancer such that it belongs to a
4621 * semi-idle powersavings sched_domain. The idea is to try and avoid
4622 * completely idle packages/cores just for the purpose of idle load balancing
4623 * when there are other idle cpu's which are better suited for that job.
4624 */
4625static int find_new_ilb(int cpu)
4626{
4627 struct sched_domain *sd;
4628 struct sched_group *ilb_group;
4629
4630 /*
4631 * Have idle load balancer selection from semi-idle packages only
4632 * when power-aware load balancing is enabled
4633 */
4634 if (!(sched_smt_power_savings || sched_mc_power_savings))
4635 goto out_done;
4636
4637 /*
4638 * Optimize for the case when we have no idle CPUs or only one
4639 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4640 */
4641 if (cpumask_weight(nohz.cpu_mask) < 2)
4642 goto out_done;
4643
4644 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4645 ilb_group = sd->groups;
4646
4647 do {
4648 if (is_semi_idle_group(ilb_group))
4649 return cpumask_first(nohz.ilb_grp_nohz_mask);
4650
4651 ilb_group = ilb_group->next;
4652
4653 } while (ilb_group != sd->groups);
4654 }
4655
4656out_done:
4657 return cpumask_first(nohz.cpu_mask);
4658}
4659#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4660static inline int find_new_ilb(int call_cpu)
4661{
6e29ec57 4662 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4663}
4664#endif
4665
7835b98b 4666/*
46cb4b7c
SS
4667 * This routine will try to nominate the ilb (idle load balancing)
4668 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4669 * load balancing on behalf of all those cpus. If all the cpus in the system
4670 * go into this tickless mode, then there will be no ilb owner (as there is
4671 * no need for one) and all the cpus will sleep till the next wakeup event
4672 * arrives...
4673 *
4674 * For the ilb owner, tick is not stopped. And this tick will be used
4675 * for idle load balancing. ilb owner will still be part of
4676 * nohz.cpu_mask..
7835b98b 4677 *
46cb4b7c
SS
4678 * While stopping the tick, this cpu will become the ilb owner if there
4679 * is no other owner. And will be the owner till that cpu becomes busy
4680 * or if all cpus in the system stop their ticks at which point
4681 * there is no need for ilb owner.
4682 *
4683 * When the ilb owner becomes busy, it nominates another owner, during the
4684 * next busy scheduler_tick()
4685 */
4686int select_nohz_load_balancer(int stop_tick)
4687{
4688 int cpu = smp_processor_id();
4689
4690 if (stop_tick) {
46cb4b7c
SS
4691 cpu_rq(cpu)->in_nohz_recently = 1;
4692
483b4ee6
SS
4693 if (!cpu_active(cpu)) {
4694 if (atomic_read(&nohz.load_balancer) != cpu)
4695 return 0;
4696
4697 /*
4698 * If we are going offline and still the leader,
4699 * give up!
4700 */
46cb4b7c
SS
4701 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4702 BUG();
483b4ee6 4703
46cb4b7c
SS
4704 return 0;
4705 }
4706
483b4ee6
SS
4707 cpumask_set_cpu(cpu, nohz.cpu_mask);
4708
46cb4b7c 4709 /* time for ilb owner also to sleep */
6ad4c188 4710 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
46cb4b7c
SS
4711 if (atomic_read(&nohz.load_balancer) == cpu)
4712 atomic_set(&nohz.load_balancer, -1);
4713 return 0;
4714 }
4715
4716 if (atomic_read(&nohz.load_balancer) == -1) {
4717 /* make me the ilb owner */
4718 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4719 return 1;
e790fb0b
GS
4720 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4721 int new_ilb;
4722
4723 if (!(sched_smt_power_savings ||
4724 sched_mc_power_savings))
4725 return 1;
4726 /*
4727 * Check to see if there is a more power-efficient
4728 * ilb.
4729 */
4730 new_ilb = find_new_ilb(cpu);
4731 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4732 atomic_set(&nohz.load_balancer, -1);
4733 resched_cpu(new_ilb);
4734 return 0;
4735 }
46cb4b7c 4736 return 1;
e790fb0b 4737 }
46cb4b7c 4738 } else {
7d1e6a9b 4739 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4740 return 0;
4741
7d1e6a9b 4742 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4743
4744 if (atomic_read(&nohz.load_balancer) == cpu)
4745 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4746 BUG();
4747 }
4748 return 0;
4749}
4750#endif
4751
4752static DEFINE_SPINLOCK(balancing);
4753
4754/*
7835b98b
CL
4755 * It checks each scheduling domain to see if it is due to be balanced,
4756 * and initiates a balancing operation if so.
4757 *
4758 * Balancing parameters are set up in arch_init_sched_domains.
4759 */
a9957449 4760static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4761{
46cb4b7c
SS
4762 int balance = 1;
4763 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4764 unsigned long interval;
4765 struct sched_domain *sd;
46cb4b7c 4766 /* Earliest time when we have to do rebalance again */
c9819f45 4767 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4768 int update_next_balance = 0;
d07355f5 4769 int need_serialize;
1da177e4 4770
46cb4b7c 4771 for_each_domain(cpu, sd) {
1da177e4
LT
4772 if (!(sd->flags & SD_LOAD_BALANCE))
4773 continue;
4774
4775 interval = sd->balance_interval;
d15bcfdb 4776 if (idle != CPU_IDLE)
1da177e4
LT
4777 interval *= sd->busy_factor;
4778
4779 /* scale ms to jiffies */
4780 interval = msecs_to_jiffies(interval);
4781 if (unlikely(!interval))
4782 interval = 1;
dd41f596
IM
4783 if (interval > HZ*NR_CPUS/10)
4784 interval = HZ*NR_CPUS/10;
4785
d07355f5 4786 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4787
d07355f5 4788 if (need_serialize) {
08c183f3
CL
4789 if (!spin_trylock(&balancing))
4790 goto out;
4791 }
4792
c9819f45 4793 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4794 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4795 /*
4796 * We've pulled tasks over so either we're no
5969fe06
NP
4797 * longer idle, or one of our SMT siblings is
4798 * not idle.
4799 */
d15bcfdb 4800 idle = CPU_NOT_IDLE;
1da177e4 4801 }
1bd77f2d 4802 sd->last_balance = jiffies;
1da177e4 4803 }
d07355f5 4804 if (need_serialize)
08c183f3
CL
4805 spin_unlock(&balancing);
4806out:
f549da84 4807 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4808 next_balance = sd->last_balance + interval;
f549da84
SS
4809 update_next_balance = 1;
4810 }
783609c6
SS
4811
4812 /*
4813 * Stop the load balance at this level. There is another
4814 * CPU in our sched group which is doing load balancing more
4815 * actively.
4816 */
4817 if (!balance)
4818 break;
1da177e4 4819 }
f549da84
SS
4820
4821 /*
4822 * next_balance will be updated only when there is a need.
4823 * When the cpu is attached to null domain for ex, it will not be
4824 * updated.
4825 */
4826 if (likely(update_next_balance))
4827 rq->next_balance = next_balance;
46cb4b7c
SS
4828}
4829
4830/*
4831 * run_rebalance_domains is triggered when needed from the scheduler tick.
4832 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4833 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4834 */
4835static void run_rebalance_domains(struct softirq_action *h)
4836{
dd41f596
IM
4837 int this_cpu = smp_processor_id();
4838 struct rq *this_rq = cpu_rq(this_cpu);
4839 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4840 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4841
dd41f596 4842 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4843
4844#ifdef CONFIG_NO_HZ
4845 /*
4846 * If this cpu is the owner for idle load balancing, then do the
4847 * balancing on behalf of the other idle cpus whose ticks are
4848 * stopped.
4849 */
dd41f596
IM
4850 if (this_rq->idle_at_tick &&
4851 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4852 struct rq *rq;
4853 int balance_cpu;
4854
7d1e6a9b
RR
4855 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4856 if (balance_cpu == this_cpu)
4857 continue;
4858
46cb4b7c
SS
4859 /*
4860 * If this cpu gets work to do, stop the load balancing
4861 * work being done for other cpus. Next load
4862 * balancing owner will pick it up.
4863 */
4864 if (need_resched())
4865 break;
4866
de0cf899 4867 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4868
4869 rq = cpu_rq(balance_cpu);
dd41f596
IM
4870 if (time_after(this_rq->next_balance, rq->next_balance))
4871 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4872 }
4873 }
4874#endif
4875}
4876
8a0be9ef
FW
4877static inline int on_null_domain(int cpu)
4878{
4879 return !rcu_dereference(cpu_rq(cpu)->sd);
4880}
4881
46cb4b7c
SS
4882/*
4883 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4884 *
4885 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4886 * idle load balancing owner or decide to stop the periodic load balancing,
4887 * if the whole system is idle.
4888 */
dd41f596 4889static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4890{
46cb4b7c
SS
4891#ifdef CONFIG_NO_HZ
4892 /*
4893 * If we were in the nohz mode recently and busy at the current
4894 * scheduler tick, then check if we need to nominate new idle
4895 * load balancer.
4896 */
4897 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4898 rq->in_nohz_recently = 0;
4899
4900 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4901 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4902 atomic_set(&nohz.load_balancer, -1);
4903 }
4904
4905 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4906 int ilb = find_new_ilb(cpu);
46cb4b7c 4907
434d53b0 4908 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4909 resched_cpu(ilb);
4910 }
4911 }
4912
4913 /*
4914 * If this cpu is idle and doing idle load balancing for all the
4915 * cpus with ticks stopped, is it time for that to stop?
4916 */
4917 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4918 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4919 resched_cpu(cpu);
4920 return;
4921 }
4922
4923 /*
4924 * If this cpu is idle and the idle load balancing is done by
4925 * someone else, then no need raise the SCHED_SOFTIRQ
4926 */
4927 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4928 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4929 return;
4930#endif
8a0be9ef
FW
4931 /* Don't need to rebalance while attached to NULL domain */
4932 if (time_after_eq(jiffies, rq->next_balance) &&
4933 likely(!on_null_domain(cpu)))
46cb4b7c 4934 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4935}
dd41f596
IM
4936
4937#else /* CONFIG_SMP */
4938
1da177e4
LT
4939/*
4940 * on UP we do not need to balance between CPUs:
4941 */
70b97a7f 4942static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4943{
4944}
dd41f596 4945
1da177e4
LT
4946#endif
4947
1da177e4
LT
4948DEFINE_PER_CPU(struct kernel_stat, kstat);
4949
4950EXPORT_PER_CPU_SYMBOL(kstat);
4951
4952/*
c5f8d995 4953 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4954 * @p in case that task is currently running.
c5f8d995
HS
4955 *
4956 * Called with task_rq_lock() held on @rq.
1da177e4 4957 */
c5f8d995
HS
4958static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4959{
4960 u64 ns = 0;
4961
4962 if (task_current(rq, p)) {
4963 update_rq_clock(rq);
4964 ns = rq->clock - p->se.exec_start;
4965 if ((s64)ns < 0)
4966 ns = 0;
4967 }
4968
4969 return ns;
4970}
4971
bb34d92f 4972unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4973{
1da177e4 4974 unsigned long flags;
41b86e9c 4975 struct rq *rq;
bb34d92f 4976 u64 ns = 0;
48f24c4d 4977
41b86e9c 4978 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4979 ns = do_task_delta_exec(p, rq);
4980 task_rq_unlock(rq, &flags);
1508487e 4981
c5f8d995
HS
4982 return ns;
4983}
f06febc9 4984
c5f8d995
HS
4985/*
4986 * Return accounted runtime for the task.
4987 * In case the task is currently running, return the runtime plus current's
4988 * pending runtime that have not been accounted yet.
4989 */
4990unsigned long long task_sched_runtime(struct task_struct *p)
4991{
4992 unsigned long flags;
4993 struct rq *rq;
4994 u64 ns = 0;
4995
4996 rq = task_rq_lock(p, &flags);
4997 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4998 task_rq_unlock(rq, &flags);
4999
5000 return ns;
5001}
48f24c4d 5002
c5f8d995
HS
5003/*
5004 * Return sum_exec_runtime for the thread group.
5005 * In case the task is currently running, return the sum plus current's
5006 * pending runtime that have not been accounted yet.
5007 *
5008 * Note that the thread group might have other running tasks as well,
5009 * so the return value not includes other pending runtime that other
5010 * running tasks might have.
5011 */
5012unsigned long long thread_group_sched_runtime(struct task_struct *p)
5013{
5014 struct task_cputime totals;
5015 unsigned long flags;
5016 struct rq *rq;
5017 u64 ns;
5018
5019 rq = task_rq_lock(p, &flags);
5020 thread_group_cputime(p, &totals);
5021 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 5022 task_rq_unlock(rq, &flags);
48f24c4d 5023
1da177e4
LT
5024 return ns;
5025}
5026
1da177e4
LT
5027/*
5028 * Account user cpu time to a process.
5029 * @p: the process that the cpu time gets accounted to
1da177e4 5030 * @cputime: the cpu time spent in user space since the last update
457533a7 5031 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 5032 */
457533a7
MS
5033void account_user_time(struct task_struct *p, cputime_t cputime,
5034 cputime_t cputime_scaled)
1da177e4
LT
5035{
5036 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5037 cputime64_t tmp;
5038
457533a7 5039 /* Add user time to process. */
1da177e4 5040 p->utime = cputime_add(p->utime, cputime);
457533a7 5041 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5042 account_group_user_time(p, cputime);
1da177e4
LT
5043
5044 /* Add user time to cpustat. */
5045 tmp = cputime_to_cputime64(cputime);
5046 if (TASK_NICE(p) > 0)
5047 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5048 else
5049 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5050
5051 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5052 /* Account for user time used */
5053 acct_update_integrals(p);
1da177e4
LT
5054}
5055
94886b84
LV
5056/*
5057 * Account guest cpu time to a process.
5058 * @p: the process that the cpu time gets accounted to
5059 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5060 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5061 */
457533a7
MS
5062static void account_guest_time(struct task_struct *p, cputime_t cputime,
5063 cputime_t cputime_scaled)
94886b84
LV
5064{
5065 cputime64_t tmp;
5066 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5067
5068 tmp = cputime_to_cputime64(cputime);
5069
457533a7 5070 /* Add guest time to process. */
94886b84 5071 p->utime = cputime_add(p->utime, cputime);
457533a7 5072 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5073 account_group_user_time(p, cputime);
94886b84
LV
5074 p->gtime = cputime_add(p->gtime, cputime);
5075
457533a7 5076 /* Add guest time to cpustat. */
ce0e7b28
RO
5077 if (TASK_NICE(p) > 0) {
5078 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5079 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5080 } else {
5081 cpustat->user = cputime64_add(cpustat->user, tmp);
5082 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5083 }
94886b84
LV
5084}
5085
1da177e4
LT
5086/*
5087 * Account system cpu time to a process.
5088 * @p: the process that the cpu time gets accounted to
5089 * @hardirq_offset: the offset to subtract from hardirq_count()
5090 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5091 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5092 */
5093void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5094 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5095{
5096 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5097 cputime64_t tmp;
5098
983ed7a6 5099 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5100 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5101 return;
5102 }
94886b84 5103
457533a7 5104 /* Add system time to process. */
1da177e4 5105 p->stime = cputime_add(p->stime, cputime);
457533a7 5106 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5107 account_group_system_time(p, cputime);
1da177e4
LT
5108
5109 /* Add system time to cpustat. */
5110 tmp = cputime_to_cputime64(cputime);
5111 if (hardirq_count() - hardirq_offset)
5112 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5113 else if (softirq_count())
5114 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5115 else
79741dd3
MS
5116 cpustat->system = cputime64_add(cpustat->system, tmp);
5117
ef12fefa
BR
5118 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5119
1da177e4
LT
5120 /* Account for system time used */
5121 acct_update_integrals(p);
1da177e4
LT
5122}
5123
c66f08be 5124/*
1da177e4 5125 * Account for involuntary wait time.
1da177e4 5126 * @steal: the cpu time spent in involuntary wait
c66f08be 5127 */
79741dd3 5128void account_steal_time(cputime_t cputime)
c66f08be 5129{
79741dd3
MS
5130 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5131 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5132
5133 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5134}
5135
1da177e4 5136/*
79741dd3
MS
5137 * Account for idle time.
5138 * @cputime: the cpu time spent in idle wait
1da177e4 5139 */
79741dd3 5140void account_idle_time(cputime_t cputime)
1da177e4
LT
5141{
5142 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5143 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5144 struct rq *rq = this_rq();
1da177e4 5145
79741dd3
MS
5146 if (atomic_read(&rq->nr_iowait) > 0)
5147 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5148 else
5149 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5150}
5151
79741dd3
MS
5152#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5153
5154/*
5155 * Account a single tick of cpu time.
5156 * @p: the process that the cpu time gets accounted to
5157 * @user_tick: indicates if the tick is a user or a system tick
5158 */
5159void account_process_tick(struct task_struct *p, int user_tick)
5160{
a42548a1 5161 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5162 struct rq *rq = this_rq();
5163
5164 if (user_tick)
a42548a1 5165 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5166 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5167 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5168 one_jiffy_scaled);
5169 else
a42548a1 5170 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5171}
5172
5173/*
5174 * Account multiple ticks of steal time.
5175 * @p: the process from which the cpu time has been stolen
5176 * @ticks: number of stolen ticks
5177 */
5178void account_steal_ticks(unsigned long ticks)
5179{
5180 account_steal_time(jiffies_to_cputime(ticks));
5181}
5182
5183/*
5184 * Account multiple ticks of idle time.
5185 * @ticks: number of stolen ticks
5186 */
5187void account_idle_ticks(unsigned long ticks)
5188{
5189 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5190}
5191
79741dd3
MS
5192#endif
5193
49048622
BS
5194/*
5195 * Use precise platform statistics if available:
5196 */
5197#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 5198void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5199{
d99ca3b9
HS
5200 *ut = p->utime;
5201 *st = p->stime;
49048622
BS
5202}
5203
0cf55e1e 5204void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5205{
0cf55e1e
HS
5206 struct task_cputime cputime;
5207
5208 thread_group_cputime(p, &cputime);
5209
5210 *ut = cputime.utime;
5211 *st = cputime.stime;
49048622
BS
5212}
5213#else
761b1d26
HS
5214
5215#ifndef nsecs_to_cputime
b7b20df9 5216# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
5217#endif
5218
d180c5bc 5219void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5220{
d99ca3b9 5221 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
5222
5223 /*
5224 * Use CFS's precise accounting:
5225 */
d180c5bc 5226 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
5227
5228 if (total) {
d180c5bc
HS
5229 u64 temp;
5230
5231 temp = (u64)(rtime * utime);
49048622 5232 do_div(temp, total);
d180c5bc
HS
5233 utime = (cputime_t)temp;
5234 } else
5235 utime = rtime;
49048622 5236
d180c5bc
HS
5237 /*
5238 * Compare with previous values, to keep monotonicity:
5239 */
761b1d26 5240 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 5241 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 5242
d99ca3b9
HS
5243 *ut = p->prev_utime;
5244 *st = p->prev_stime;
49048622
BS
5245}
5246
0cf55e1e
HS
5247/*
5248 * Must be called with siglock held.
5249 */
5250void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5251{
0cf55e1e
HS
5252 struct signal_struct *sig = p->signal;
5253 struct task_cputime cputime;
5254 cputime_t rtime, utime, total;
49048622 5255
0cf55e1e 5256 thread_group_cputime(p, &cputime);
49048622 5257
0cf55e1e
HS
5258 total = cputime_add(cputime.utime, cputime.stime);
5259 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 5260
0cf55e1e
HS
5261 if (total) {
5262 u64 temp;
49048622 5263
0cf55e1e
HS
5264 temp = (u64)(rtime * cputime.utime);
5265 do_div(temp, total);
5266 utime = (cputime_t)temp;
5267 } else
5268 utime = rtime;
5269
5270 sig->prev_utime = max(sig->prev_utime, utime);
5271 sig->prev_stime = max(sig->prev_stime,
5272 cputime_sub(rtime, sig->prev_utime));
5273
5274 *ut = sig->prev_utime;
5275 *st = sig->prev_stime;
49048622 5276}
49048622 5277#endif
49048622 5278
7835b98b
CL
5279/*
5280 * This function gets called by the timer code, with HZ frequency.
5281 * We call it with interrupts disabled.
5282 *
5283 * It also gets called by the fork code, when changing the parent's
5284 * timeslices.
5285 */
5286void scheduler_tick(void)
5287{
7835b98b
CL
5288 int cpu = smp_processor_id();
5289 struct rq *rq = cpu_rq(cpu);
dd41f596 5290 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5291
5292 sched_clock_tick();
dd41f596 5293
05fa785c 5294 raw_spin_lock(&rq->lock);
3e51f33f 5295 update_rq_clock(rq);
f1a438d8 5296 update_cpu_load(rq);
fa85ae24 5297 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 5298 raw_spin_unlock(&rq->lock);
7835b98b 5299
cdd6c482 5300 perf_event_task_tick(curr, cpu);
e220d2dc 5301
e418e1c2 5302#ifdef CONFIG_SMP
dd41f596
IM
5303 rq->idle_at_tick = idle_cpu(cpu);
5304 trigger_load_balance(rq, cpu);
e418e1c2 5305#endif
1da177e4
LT
5306}
5307
132380a0 5308notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5309{
5310 if (in_lock_functions(addr)) {
5311 addr = CALLER_ADDR2;
5312 if (in_lock_functions(addr))
5313 addr = CALLER_ADDR3;
5314 }
5315 return addr;
5316}
1da177e4 5317
7e49fcce
SR
5318#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5319 defined(CONFIG_PREEMPT_TRACER))
5320
43627582 5321void __kprobes add_preempt_count(int val)
1da177e4 5322{
6cd8a4bb 5323#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5324 /*
5325 * Underflow?
5326 */
9a11b49a
IM
5327 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5328 return;
6cd8a4bb 5329#endif
1da177e4 5330 preempt_count() += val;
6cd8a4bb 5331#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5332 /*
5333 * Spinlock count overflowing soon?
5334 */
33859f7f
MOS
5335 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5336 PREEMPT_MASK - 10);
6cd8a4bb
SR
5337#endif
5338 if (preempt_count() == val)
5339 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5340}
5341EXPORT_SYMBOL(add_preempt_count);
5342
43627582 5343void __kprobes sub_preempt_count(int val)
1da177e4 5344{
6cd8a4bb 5345#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5346 /*
5347 * Underflow?
5348 */
01e3eb82 5349 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5350 return;
1da177e4
LT
5351 /*
5352 * Is the spinlock portion underflowing?
5353 */
9a11b49a
IM
5354 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5355 !(preempt_count() & PREEMPT_MASK)))
5356 return;
6cd8a4bb 5357#endif
9a11b49a 5358
6cd8a4bb
SR
5359 if (preempt_count() == val)
5360 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5361 preempt_count() -= val;
5362}
5363EXPORT_SYMBOL(sub_preempt_count);
5364
5365#endif
5366
5367/*
dd41f596 5368 * Print scheduling while atomic bug:
1da177e4 5369 */
dd41f596 5370static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5371{
838225b4
SS
5372 struct pt_regs *regs = get_irq_regs();
5373
663997d4
JP
5374 pr_err("BUG: scheduling while atomic: %s/%d/0x%08x\n",
5375 prev->comm, prev->pid, preempt_count());
838225b4 5376
dd41f596 5377 debug_show_held_locks(prev);
e21f5b15 5378 print_modules();
dd41f596
IM
5379 if (irqs_disabled())
5380 print_irqtrace_events(prev);
838225b4
SS
5381
5382 if (regs)
5383 show_regs(regs);
5384 else
5385 dump_stack();
dd41f596 5386}
1da177e4 5387
dd41f596
IM
5388/*
5389 * Various schedule()-time debugging checks and statistics:
5390 */
5391static inline void schedule_debug(struct task_struct *prev)
5392{
1da177e4 5393 /*
41a2d6cf 5394 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5395 * schedule() atomically, we ignore that path for now.
5396 * Otherwise, whine if we are scheduling when we should not be.
5397 */
3f33a7ce 5398 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5399 __schedule_bug(prev);
5400
1da177e4
LT
5401 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5402
2d72376b 5403 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5404#ifdef CONFIG_SCHEDSTATS
5405 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5406 schedstat_inc(this_rq(), bkl_count);
5407 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5408 }
5409#endif
dd41f596
IM
5410}
5411
6cecd084 5412static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 5413{
6cecd084
PZ
5414 if (prev->state == TASK_RUNNING) {
5415 u64 runtime = prev->se.sum_exec_runtime;
df1c99d4 5416
6cecd084
PZ
5417 runtime -= prev->se.prev_sum_exec_runtime;
5418 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
df1c99d4
MG
5419
5420 /*
5421 * In order to avoid avg_overlap growing stale when we are
5422 * indeed overlapping and hence not getting put to sleep, grow
5423 * the avg_overlap on preemption.
5424 *
5425 * We use the average preemption runtime because that
5426 * correlates to the amount of cache footprint a task can
5427 * build up.
5428 */
6cecd084 5429 update_avg(&prev->se.avg_overlap, runtime);
df1c99d4 5430 }
6cecd084 5431 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
5432}
5433
dd41f596
IM
5434/*
5435 * Pick up the highest-prio task:
5436 */
5437static inline struct task_struct *
b67802ea 5438pick_next_task(struct rq *rq)
dd41f596 5439{
5522d5d5 5440 const struct sched_class *class;
dd41f596 5441 struct task_struct *p;
1da177e4
LT
5442
5443 /*
dd41f596
IM
5444 * Optimization: we know that if all tasks are in
5445 * the fair class we can call that function directly:
1da177e4 5446 */
dd41f596 5447 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5448 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5449 if (likely(p))
5450 return p;
1da177e4
LT
5451 }
5452
dd41f596
IM
5453 class = sched_class_highest;
5454 for ( ; ; ) {
fb8d4724 5455 p = class->pick_next_task(rq);
dd41f596
IM
5456 if (p)
5457 return p;
5458 /*
5459 * Will never be NULL as the idle class always
5460 * returns a non-NULL p:
5461 */
5462 class = class->next;
5463 }
5464}
1da177e4 5465
dd41f596
IM
5466/*
5467 * schedule() is the main scheduler function.
5468 */
ff743345 5469asmlinkage void __sched schedule(void)
dd41f596
IM
5470{
5471 struct task_struct *prev, *next;
67ca7bde 5472 unsigned long *switch_count;
dd41f596 5473 struct rq *rq;
31656519 5474 int cpu;
dd41f596 5475
ff743345
PZ
5476need_resched:
5477 preempt_disable();
dd41f596
IM
5478 cpu = smp_processor_id();
5479 rq = cpu_rq(cpu);
d6714c22 5480 rcu_sched_qs(cpu);
dd41f596
IM
5481 prev = rq->curr;
5482 switch_count = &prev->nivcsw;
5483
5484 release_kernel_lock(prev);
5485need_resched_nonpreemptible:
5486
5487 schedule_debug(prev);
1da177e4 5488
31656519 5489 if (sched_feat(HRTICK))
f333fdc9 5490 hrtick_clear(rq);
8f4d37ec 5491
05fa785c 5492 raw_spin_lock_irq(&rq->lock);
3e51f33f 5493 update_rq_clock(rq);
1e819950 5494 clear_tsk_need_resched(prev);
1da177e4 5495
1da177e4 5496 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5497 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5498 prev->state = TASK_RUNNING;
16882c1e 5499 else
2e1cb74a 5500 deactivate_task(rq, prev, 1);
dd41f596 5501 switch_count = &prev->nvcsw;
1da177e4
LT
5502 }
5503
3f029d3c 5504 pre_schedule(rq, prev);
f65eda4f 5505
dd41f596 5506 if (unlikely(!rq->nr_running))
1da177e4 5507 idle_balance(cpu, rq);
1da177e4 5508
df1c99d4 5509 put_prev_task(rq, prev);
b67802ea 5510 next = pick_next_task(rq);
1da177e4 5511
1da177e4 5512 if (likely(prev != next)) {
673a90a1 5513 sched_info_switch(prev, next);
cdd6c482 5514 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5515
1da177e4
LT
5516 rq->nr_switches++;
5517 rq->curr = next;
5518 ++*switch_count;
5519
dd41f596 5520 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5521 /*
5522 * the context switch might have flipped the stack from under
5523 * us, hence refresh the local variables.
5524 */
5525 cpu = smp_processor_id();
5526 rq = cpu_rq(cpu);
1da177e4 5527 } else
05fa785c 5528 raw_spin_unlock_irq(&rq->lock);
1da177e4 5529
3f029d3c 5530 post_schedule(rq);
1da177e4 5531
8f4d37ec 5532 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5533 goto need_resched_nonpreemptible;
8f4d37ec 5534
1da177e4 5535 preempt_enable_no_resched();
ff743345 5536 if (need_resched())
1da177e4
LT
5537 goto need_resched;
5538}
1da177e4
LT
5539EXPORT_SYMBOL(schedule);
5540
c08f7829 5541#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
5542/*
5543 * Look out! "owner" is an entirely speculative pointer
5544 * access and not reliable.
5545 */
5546int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5547{
5548 unsigned int cpu;
5549 struct rq *rq;
5550
5551 if (!sched_feat(OWNER_SPIN))
5552 return 0;
5553
5554#ifdef CONFIG_DEBUG_PAGEALLOC
5555 /*
5556 * Need to access the cpu field knowing that
5557 * DEBUG_PAGEALLOC could have unmapped it if
5558 * the mutex owner just released it and exited.
5559 */
5560 if (probe_kernel_address(&owner->cpu, cpu))
5561 goto out;
5562#else
5563 cpu = owner->cpu;
5564#endif
5565
5566 /*
5567 * Even if the access succeeded (likely case),
5568 * the cpu field may no longer be valid.
5569 */
5570 if (cpu >= nr_cpumask_bits)
5571 goto out;
5572
5573 /*
5574 * We need to validate that we can do a
5575 * get_cpu() and that we have the percpu area.
5576 */
5577 if (!cpu_online(cpu))
5578 goto out;
5579
5580 rq = cpu_rq(cpu);
5581
5582 for (;;) {
5583 /*
5584 * Owner changed, break to re-assess state.
5585 */
5586 if (lock->owner != owner)
5587 break;
5588
5589 /*
5590 * Is that owner really running on that cpu?
5591 */
5592 if (task_thread_info(rq->curr) != owner || need_resched())
5593 return 0;
5594
5595 cpu_relax();
5596 }
5597out:
5598 return 1;
5599}
5600#endif
5601
1da177e4
LT
5602#ifdef CONFIG_PREEMPT
5603/*
2ed6e34f 5604 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5605 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5606 * occur there and call schedule directly.
5607 */
5608asmlinkage void __sched preempt_schedule(void)
5609{
5610 struct thread_info *ti = current_thread_info();
6478d880 5611
1da177e4
LT
5612 /*
5613 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5614 * we do not want to preempt the current task. Just return..
1da177e4 5615 */
beed33a8 5616 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5617 return;
5618
3a5c359a
AK
5619 do {
5620 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5621 schedule();
3a5c359a 5622 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5623
3a5c359a
AK
5624 /*
5625 * Check again in case we missed a preemption opportunity
5626 * between schedule and now.
5627 */
5628 barrier();
5ed0cec0 5629 } while (need_resched());
1da177e4 5630}
1da177e4
LT
5631EXPORT_SYMBOL(preempt_schedule);
5632
5633/*
2ed6e34f 5634 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5635 * off of irq context.
5636 * Note, that this is called and return with irqs disabled. This will
5637 * protect us against recursive calling from irq.
5638 */
5639asmlinkage void __sched preempt_schedule_irq(void)
5640{
5641 struct thread_info *ti = current_thread_info();
6478d880 5642
2ed6e34f 5643 /* Catch callers which need to be fixed */
1da177e4
LT
5644 BUG_ON(ti->preempt_count || !irqs_disabled());
5645
3a5c359a
AK
5646 do {
5647 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5648 local_irq_enable();
5649 schedule();
5650 local_irq_disable();
3a5c359a 5651 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5652
3a5c359a
AK
5653 /*
5654 * Check again in case we missed a preemption opportunity
5655 * between schedule and now.
5656 */
5657 barrier();
5ed0cec0 5658 } while (need_resched());
1da177e4
LT
5659}
5660
5661#endif /* CONFIG_PREEMPT */
5662
63859d4f 5663int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5664 void *key)
1da177e4 5665{
63859d4f 5666 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5667}
1da177e4
LT
5668EXPORT_SYMBOL(default_wake_function);
5669
5670/*
41a2d6cf
IM
5671 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5672 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5673 * number) then we wake all the non-exclusive tasks and one exclusive task.
5674 *
5675 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5676 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5677 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5678 */
78ddb08f 5679static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5680 int nr_exclusive, int wake_flags, void *key)
1da177e4 5681{
2e45874c 5682 wait_queue_t *curr, *next;
1da177e4 5683
2e45874c 5684 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5685 unsigned flags = curr->flags;
5686
63859d4f 5687 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5688 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5689 break;
5690 }
5691}
5692
5693/**
5694 * __wake_up - wake up threads blocked on a waitqueue.
5695 * @q: the waitqueue
5696 * @mode: which threads
5697 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5698 * @key: is directly passed to the wakeup function
50fa610a
DH
5699 *
5700 * It may be assumed that this function implies a write memory barrier before
5701 * changing the task state if and only if any tasks are woken up.
1da177e4 5702 */
7ad5b3a5 5703void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5704 int nr_exclusive, void *key)
1da177e4
LT
5705{
5706 unsigned long flags;
5707
5708 spin_lock_irqsave(&q->lock, flags);
5709 __wake_up_common(q, mode, nr_exclusive, 0, key);
5710 spin_unlock_irqrestore(&q->lock, flags);
5711}
1da177e4
LT
5712EXPORT_SYMBOL(__wake_up);
5713
5714/*
5715 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5716 */
7ad5b3a5 5717void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5718{
5719 __wake_up_common(q, mode, 1, 0, NULL);
5720}
5721
4ede816a
DL
5722void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5723{
5724 __wake_up_common(q, mode, 1, 0, key);
5725}
5726
1da177e4 5727/**
4ede816a 5728 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5729 * @q: the waitqueue
5730 * @mode: which threads
5731 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5732 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5733 *
5734 * The sync wakeup differs that the waker knows that it will schedule
5735 * away soon, so while the target thread will be woken up, it will not
5736 * be migrated to another CPU - ie. the two threads are 'synchronized'
5737 * with each other. This can prevent needless bouncing between CPUs.
5738 *
5739 * On UP it can prevent extra preemption.
50fa610a
DH
5740 *
5741 * It may be assumed that this function implies a write memory barrier before
5742 * changing the task state if and only if any tasks are woken up.
1da177e4 5743 */
4ede816a
DL
5744void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5745 int nr_exclusive, void *key)
1da177e4
LT
5746{
5747 unsigned long flags;
7d478721 5748 int wake_flags = WF_SYNC;
1da177e4
LT
5749
5750 if (unlikely(!q))
5751 return;
5752
5753 if (unlikely(!nr_exclusive))
7d478721 5754 wake_flags = 0;
1da177e4
LT
5755
5756 spin_lock_irqsave(&q->lock, flags);
7d478721 5757 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5758 spin_unlock_irqrestore(&q->lock, flags);
5759}
4ede816a
DL
5760EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5761
5762/*
5763 * __wake_up_sync - see __wake_up_sync_key()
5764 */
5765void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5766{
5767 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5768}
1da177e4
LT
5769EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5770
65eb3dc6
KD
5771/**
5772 * complete: - signals a single thread waiting on this completion
5773 * @x: holds the state of this particular completion
5774 *
5775 * This will wake up a single thread waiting on this completion. Threads will be
5776 * awakened in the same order in which they were queued.
5777 *
5778 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5779 *
5780 * It may be assumed that this function implies a write memory barrier before
5781 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5782 */
b15136e9 5783void complete(struct completion *x)
1da177e4
LT
5784{
5785 unsigned long flags;
5786
5787 spin_lock_irqsave(&x->wait.lock, flags);
5788 x->done++;
d9514f6c 5789 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5790 spin_unlock_irqrestore(&x->wait.lock, flags);
5791}
5792EXPORT_SYMBOL(complete);
5793
65eb3dc6
KD
5794/**
5795 * complete_all: - signals all threads waiting on this completion
5796 * @x: holds the state of this particular completion
5797 *
5798 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5799 *
5800 * It may be assumed that this function implies a write memory barrier before
5801 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5802 */
b15136e9 5803void complete_all(struct completion *x)
1da177e4
LT
5804{
5805 unsigned long flags;
5806
5807 spin_lock_irqsave(&x->wait.lock, flags);
5808 x->done += UINT_MAX/2;
d9514f6c 5809 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5810 spin_unlock_irqrestore(&x->wait.lock, flags);
5811}
5812EXPORT_SYMBOL(complete_all);
5813
8cbbe86d
AK
5814static inline long __sched
5815do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5816{
1da177e4
LT
5817 if (!x->done) {
5818 DECLARE_WAITQUEUE(wait, current);
5819
5820 wait.flags |= WQ_FLAG_EXCLUSIVE;
5821 __add_wait_queue_tail(&x->wait, &wait);
5822 do {
94d3d824 5823 if (signal_pending_state(state, current)) {
ea71a546
ON
5824 timeout = -ERESTARTSYS;
5825 break;
8cbbe86d
AK
5826 }
5827 __set_current_state(state);
1da177e4
LT
5828 spin_unlock_irq(&x->wait.lock);
5829 timeout = schedule_timeout(timeout);
5830 spin_lock_irq(&x->wait.lock);
ea71a546 5831 } while (!x->done && timeout);
1da177e4 5832 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5833 if (!x->done)
5834 return timeout;
1da177e4
LT
5835 }
5836 x->done--;
ea71a546 5837 return timeout ?: 1;
1da177e4 5838}
1da177e4 5839
8cbbe86d
AK
5840static long __sched
5841wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5842{
1da177e4
LT
5843 might_sleep();
5844
5845 spin_lock_irq(&x->wait.lock);
8cbbe86d 5846 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5847 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5848 return timeout;
5849}
1da177e4 5850
65eb3dc6
KD
5851/**
5852 * wait_for_completion: - waits for completion of a task
5853 * @x: holds the state of this particular completion
5854 *
5855 * This waits to be signaled for completion of a specific task. It is NOT
5856 * interruptible and there is no timeout.
5857 *
5858 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5859 * and interrupt capability. Also see complete().
5860 */
b15136e9 5861void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5862{
5863 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5864}
8cbbe86d 5865EXPORT_SYMBOL(wait_for_completion);
1da177e4 5866
65eb3dc6
KD
5867/**
5868 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5869 * @x: holds the state of this particular completion
5870 * @timeout: timeout value in jiffies
5871 *
5872 * This waits for either a completion of a specific task to be signaled or for a
5873 * specified timeout to expire. The timeout is in jiffies. It is not
5874 * interruptible.
5875 */
b15136e9 5876unsigned long __sched
8cbbe86d 5877wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5878{
8cbbe86d 5879 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5880}
8cbbe86d 5881EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5882
65eb3dc6
KD
5883/**
5884 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5885 * @x: holds the state of this particular completion
5886 *
5887 * This waits for completion of a specific task to be signaled. It is
5888 * interruptible.
5889 */
8cbbe86d 5890int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5891{
51e97990
AK
5892 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5893 if (t == -ERESTARTSYS)
5894 return t;
5895 return 0;
0fec171c 5896}
8cbbe86d 5897EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5898
65eb3dc6
KD
5899/**
5900 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5901 * @x: holds the state of this particular completion
5902 * @timeout: timeout value in jiffies
5903 *
5904 * This waits for either a completion of a specific task to be signaled or for a
5905 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5906 */
b15136e9 5907unsigned long __sched
8cbbe86d
AK
5908wait_for_completion_interruptible_timeout(struct completion *x,
5909 unsigned long timeout)
0fec171c 5910{
8cbbe86d 5911 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5912}
8cbbe86d 5913EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5914
65eb3dc6
KD
5915/**
5916 * wait_for_completion_killable: - waits for completion of a task (killable)
5917 * @x: holds the state of this particular completion
5918 *
5919 * This waits to be signaled for completion of a specific task. It can be
5920 * interrupted by a kill signal.
5921 */
009e577e
MW
5922int __sched wait_for_completion_killable(struct completion *x)
5923{
5924 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5925 if (t == -ERESTARTSYS)
5926 return t;
5927 return 0;
5928}
5929EXPORT_SYMBOL(wait_for_completion_killable);
5930
be4de352
DC
5931/**
5932 * try_wait_for_completion - try to decrement a completion without blocking
5933 * @x: completion structure
5934 *
5935 * Returns: 0 if a decrement cannot be done without blocking
5936 * 1 if a decrement succeeded.
5937 *
5938 * If a completion is being used as a counting completion,
5939 * attempt to decrement the counter without blocking. This
5940 * enables us to avoid waiting if the resource the completion
5941 * is protecting is not available.
5942 */
5943bool try_wait_for_completion(struct completion *x)
5944{
7539a3b3 5945 unsigned long flags;
be4de352
DC
5946 int ret = 1;
5947
7539a3b3 5948 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5949 if (!x->done)
5950 ret = 0;
5951 else
5952 x->done--;
7539a3b3 5953 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
5954 return ret;
5955}
5956EXPORT_SYMBOL(try_wait_for_completion);
5957
5958/**
5959 * completion_done - Test to see if a completion has any waiters
5960 * @x: completion structure
5961 *
5962 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5963 * 1 if there are no waiters.
5964 *
5965 */
5966bool completion_done(struct completion *x)
5967{
7539a3b3 5968 unsigned long flags;
be4de352
DC
5969 int ret = 1;
5970
7539a3b3 5971 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5972 if (!x->done)
5973 ret = 0;
7539a3b3 5974 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
5975 return ret;
5976}
5977EXPORT_SYMBOL(completion_done);
5978
8cbbe86d
AK
5979static long __sched
5980sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5981{
0fec171c
IM
5982 unsigned long flags;
5983 wait_queue_t wait;
5984
5985 init_waitqueue_entry(&wait, current);
1da177e4 5986
8cbbe86d 5987 __set_current_state(state);
1da177e4 5988
8cbbe86d
AK
5989 spin_lock_irqsave(&q->lock, flags);
5990 __add_wait_queue(q, &wait);
5991 spin_unlock(&q->lock);
5992 timeout = schedule_timeout(timeout);
5993 spin_lock_irq(&q->lock);
5994 __remove_wait_queue(q, &wait);
5995 spin_unlock_irqrestore(&q->lock, flags);
5996
5997 return timeout;
5998}
5999
6000void __sched interruptible_sleep_on(wait_queue_head_t *q)
6001{
6002 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6003}
1da177e4
LT
6004EXPORT_SYMBOL(interruptible_sleep_on);
6005
0fec171c 6006long __sched
95cdf3b7 6007interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6008{
8cbbe86d 6009 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 6010}
1da177e4
LT
6011EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6012
0fec171c 6013void __sched sleep_on(wait_queue_head_t *q)
1da177e4 6014{
8cbbe86d 6015 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6016}
1da177e4
LT
6017EXPORT_SYMBOL(sleep_on);
6018
0fec171c 6019long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6020{
8cbbe86d 6021 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 6022}
1da177e4
LT
6023EXPORT_SYMBOL(sleep_on_timeout);
6024
b29739f9
IM
6025#ifdef CONFIG_RT_MUTEXES
6026
6027/*
6028 * rt_mutex_setprio - set the current priority of a task
6029 * @p: task
6030 * @prio: prio value (kernel-internal form)
6031 *
6032 * This function changes the 'effective' priority of a task. It does
6033 * not touch ->normal_prio like __setscheduler().
6034 *
6035 * Used by the rt_mutex code to implement priority inheritance logic.
6036 */
36c8b586 6037void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
6038{
6039 unsigned long flags;
83b699ed 6040 int oldprio, on_rq, running;
70b97a7f 6041 struct rq *rq;
cb469845 6042 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
6043
6044 BUG_ON(prio < 0 || prio > MAX_PRIO);
6045
6046 rq = task_rq_lock(p, &flags);
a8e504d2 6047 update_rq_clock(rq);
b29739f9 6048
d5f9f942 6049 oldprio = p->prio;
dd41f596 6050 on_rq = p->se.on_rq;
051a1d1a 6051 running = task_current(rq, p);
0e1f3483 6052 if (on_rq)
69be72c1 6053 dequeue_task(rq, p, 0);
0e1f3483
HS
6054 if (running)
6055 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
6056
6057 if (rt_prio(prio))
6058 p->sched_class = &rt_sched_class;
6059 else
6060 p->sched_class = &fair_sched_class;
6061
b29739f9
IM
6062 p->prio = prio;
6063
0e1f3483
HS
6064 if (running)
6065 p->sched_class->set_curr_task(rq);
dd41f596 6066 if (on_rq) {
8159f87e 6067 enqueue_task(rq, p, 0);
cb469845
SR
6068
6069 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6070 }
6071 task_rq_unlock(rq, &flags);
6072}
6073
6074#endif
6075
36c8b586 6076void set_user_nice(struct task_struct *p, long nice)
1da177e4 6077{
dd41f596 6078 int old_prio, delta, on_rq;
1da177e4 6079 unsigned long flags;
70b97a7f 6080 struct rq *rq;
1da177e4
LT
6081
6082 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6083 return;
6084 /*
6085 * We have to be careful, if called from sys_setpriority(),
6086 * the task might be in the middle of scheduling on another CPU.
6087 */
6088 rq = task_rq_lock(p, &flags);
a8e504d2 6089 update_rq_clock(rq);
1da177e4
LT
6090 /*
6091 * The RT priorities are set via sched_setscheduler(), but we still
6092 * allow the 'normal' nice value to be set - but as expected
6093 * it wont have any effect on scheduling until the task is
dd41f596 6094 * SCHED_FIFO/SCHED_RR:
1da177e4 6095 */
e05606d3 6096 if (task_has_rt_policy(p)) {
1da177e4
LT
6097 p->static_prio = NICE_TO_PRIO(nice);
6098 goto out_unlock;
6099 }
dd41f596 6100 on_rq = p->se.on_rq;
c09595f6 6101 if (on_rq)
69be72c1 6102 dequeue_task(rq, p, 0);
1da177e4 6103
1da177e4 6104 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6105 set_load_weight(p);
b29739f9
IM
6106 old_prio = p->prio;
6107 p->prio = effective_prio(p);
6108 delta = p->prio - old_prio;
1da177e4 6109
dd41f596 6110 if (on_rq) {
8159f87e 6111 enqueue_task(rq, p, 0);
1da177e4 6112 /*
d5f9f942
AM
6113 * If the task increased its priority or is running and
6114 * lowered its priority, then reschedule its CPU:
1da177e4 6115 */
d5f9f942 6116 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6117 resched_task(rq->curr);
6118 }
6119out_unlock:
6120 task_rq_unlock(rq, &flags);
6121}
1da177e4
LT
6122EXPORT_SYMBOL(set_user_nice);
6123
e43379f1
MM
6124/*
6125 * can_nice - check if a task can reduce its nice value
6126 * @p: task
6127 * @nice: nice value
6128 */
36c8b586 6129int can_nice(const struct task_struct *p, const int nice)
e43379f1 6130{
024f4747
MM
6131 /* convert nice value [19,-20] to rlimit style value [1,40] */
6132 int nice_rlim = 20 - nice;
48f24c4d 6133
e43379f1
MM
6134 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6135 capable(CAP_SYS_NICE));
6136}
6137
1da177e4
LT
6138#ifdef __ARCH_WANT_SYS_NICE
6139
6140/*
6141 * sys_nice - change the priority of the current process.
6142 * @increment: priority increment
6143 *
6144 * sys_setpriority is a more generic, but much slower function that
6145 * does similar things.
6146 */
5add95d4 6147SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6148{
48f24c4d 6149 long nice, retval;
1da177e4
LT
6150
6151 /*
6152 * Setpriority might change our priority at the same moment.
6153 * We don't have to worry. Conceptually one call occurs first
6154 * and we have a single winner.
6155 */
e43379f1
MM
6156 if (increment < -40)
6157 increment = -40;
1da177e4
LT
6158 if (increment > 40)
6159 increment = 40;
6160
2b8f836f 6161 nice = TASK_NICE(current) + increment;
1da177e4
LT
6162 if (nice < -20)
6163 nice = -20;
6164 if (nice > 19)
6165 nice = 19;
6166
e43379f1
MM
6167 if (increment < 0 && !can_nice(current, nice))
6168 return -EPERM;
6169
1da177e4
LT
6170 retval = security_task_setnice(current, nice);
6171 if (retval)
6172 return retval;
6173
6174 set_user_nice(current, nice);
6175 return 0;
6176}
6177
6178#endif
6179
6180/**
6181 * task_prio - return the priority value of a given task.
6182 * @p: the task in question.
6183 *
6184 * This is the priority value as seen by users in /proc.
6185 * RT tasks are offset by -200. Normal tasks are centered
6186 * around 0, value goes from -16 to +15.
6187 */
36c8b586 6188int task_prio(const struct task_struct *p)
1da177e4
LT
6189{
6190 return p->prio - MAX_RT_PRIO;
6191}
6192
6193/**
6194 * task_nice - return the nice value of a given task.
6195 * @p: the task in question.
6196 */
36c8b586 6197int task_nice(const struct task_struct *p)
1da177e4
LT
6198{
6199 return TASK_NICE(p);
6200}
150d8bed 6201EXPORT_SYMBOL(task_nice);
1da177e4
LT
6202
6203/**
6204 * idle_cpu - is a given cpu idle currently?
6205 * @cpu: the processor in question.
6206 */
6207int idle_cpu(int cpu)
6208{
6209 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6210}
6211
1da177e4
LT
6212/**
6213 * idle_task - return the idle task for a given cpu.
6214 * @cpu: the processor in question.
6215 */
36c8b586 6216struct task_struct *idle_task(int cpu)
1da177e4
LT
6217{
6218 return cpu_rq(cpu)->idle;
6219}
6220
6221/**
6222 * find_process_by_pid - find a process with a matching PID value.
6223 * @pid: the pid in question.
6224 */
a9957449 6225static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6226{
228ebcbe 6227 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6228}
6229
6230/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6231static void
6232__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6233{
dd41f596 6234 BUG_ON(p->se.on_rq);
48f24c4d 6235
1da177e4
LT
6236 p->policy = policy;
6237 p->rt_priority = prio;
b29739f9
IM
6238 p->normal_prio = normal_prio(p);
6239 /* we are holding p->pi_lock already */
6240 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
6241 if (rt_prio(p->prio))
6242 p->sched_class = &rt_sched_class;
6243 else
6244 p->sched_class = &fair_sched_class;
2dd73a4f 6245 set_load_weight(p);
1da177e4
LT
6246}
6247
c69e8d9c
DH
6248/*
6249 * check the target process has a UID that matches the current process's
6250 */
6251static bool check_same_owner(struct task_struct *p)
6252{
6253 const struct cred *cred = current_cred(), *pcred;
6254 bool match;
6255
6256 rcu_read_lock();
6257 pcred = __task_cred(p);
6258 match = (cred->euid == pcred->euid ||
6259 cred->euid == pcred->uid);
6260 rcu_read_unlock();
6261 return match;
6262}
6263
961ccddd
RR
6264static int __sched_setscheduler(struct task_struct *p, int policy,
6265 struct sched_param *param, bool user)
1da177e4 6266{
83b699ed 6267 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6268 unsigned long flags;
cb469845 6269 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6270 struct rq *rq;
ca94c442 6271 int reset_on_fork;
1da177e4 6272
66e5393a
SR
6273 /* may grab non-irq protected spin_locks */
6274 BUG_ON(in_interrupt());
1da177e4
LT
6275recheck:
6276 /* double check policy once rq lock held */
ca94c442
LP
6277 if (policy < 0) {
6278 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6279 policy = oldpolicy = p->policy;
ca94c442
LP
6280 } else {
6281 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6282 policy &= ~SCHED_RESET_ON_FORK;
6283
6284 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6285 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6286 policy != SCHED_IDLE)
6287 return -EINVAL;
6288 }
6289
1da177e4
LT
6290 /*
6291 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6292 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6293 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6294 */
6295 if (param->sched_priority < 0 ||
95cdf3b7 6296 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6297 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6298 return -EINVAL;
e05606d3 6299 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6300 return -EINVAL;
6301
37e4ab3f
OC
6302 /*
6303 * Allow unprivileged RT tasks to decrease priority:
6304 */
961ccddd 6305 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6306 if (rt_policy(policy)) {
8dc3e909 6307 unsigned long rlim_rtprio;
8dc3e909
ON
6308
6309 if (!lock_task_sighand(p, &flags))
6310 return -ESRCH;
6311 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6312 unlock_task_sighand(p, &flags);
6313
6314 /* can't set/change the rt policy */
6315 if (policy != p->policy && !rlim_rtprio)
6316 return -EPERM;
6317
6318 /* can't increase priority */
6319 if (param->sched_priority > p->rt_priority &&
6320 param->sched_priority > rlim_rtprio)
6321 return -EPERM;
6322 }
dd41f596
IM
6323 /*
6324 * Like positive nice levels, dont allow tasks to
6325 * move out of SCHED_IDLE either:
6326 */
6327 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6328 return -EPERM;
5fe1d75f 6329
37e4ab3f 6330 /* can't change other user's priorities */
c69e8d9c 6331 if (!check_same_owner(p))
37e4ab3f 6332 return -EPERM;
ca94c442
LP
6333
6334 /* Normal users shall not reset the sched_reset_on_fork flag */
6335 if (p->sched_reset_on_fork && !reset_on_fork)
6336 return -EPERM;
37e4ab3f 6337 }
1da177e4 6338
725aad24 6339 if (user) {
b68aa230 6340#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6341 /*
6342 * Do not allow realtime tasks into groups that have no runtime
6343 * assigned.
6344 */
9a7e0b18
PZ
6345 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6346 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6347 return -EPERM;
b68aa230
PZ
6348#endif
6349
725aad24
JF
6350 retval = security_task_setscheduler(p, policy, param);
6351 if (retval)
6352 return retval;
6353 }
6354
b29739f9
IM
6355 /*
6356 * make sure no PI-waiters arrive (or leave) while we are
6357 * changing the priority of the task:
6358 */
1d615482 6359 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6360 /*
6361 * To be able to change p->policy safely, the apropriate
6362 * runqueue lock must be held.
6363 */
b29739f9 6364 rq = __task_rq_lock(p);
1da177e4
LT
6365 /* recheck policy now with rq lock held */
6366 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6367 policy = oldpolicy = -1;
b29739f9 6368 __task_rq_unlock(rq);
1d615482 6369 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6370 goto recheck;
6371 }
2daa3577 6372 update_rq_clock(rq);
dd41f596 6373 on_rq = p->se.on_rq;
051a1d1a 6374 running = task_current(rq, p);
0e1f3483 6375 if (on_rq)
2e1cb74a 6376 deactivate_task(rq, p, 0);
0e1f3483
HS
6377 if (running)
6378 p->sched_class->put_prev_task(rq, p);
f6b53205 6379
ca94c442
LP
6380 p->sched_reset_on_fork = reset_on_fork;
6381
1da177e4 6382 oldprio = p->prio;
dd41f596 6383 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6384
0e1f3483
HS
6385 if (running)
6386 p->sched_class->set_curr_task(rq);
dd41f596
IM
6387 if (on_rq) {
6388 activate_task(rq, p, 0);
cb469845
SR
6389
6390 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6391 }
b29739f9 6392 __task_rq_unlock(rq);
1d615482 6393 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 6394
95e02ca9
TG
6395 rt_mutex_adjust_pi(p);
6396
1da177e4
LT
6397 return 0;
6398}
961ccddd
RR
6399
6400/**
6401 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6402 * @p: the task in question.
6403 * @policy: new policy.
6404 * @param: structure containing the new RT priority.
6405 *
6406 * NOTE that the task may be already dead.
6407 */
6408int sched_setscheduler(struct task_struct *p, int policy,
6409 struct sched_param *param)
6410{
6411 return __sched_setscheduler(p, policy, param, true);
6412}
1da177e4
LT
6413EXPORT_SYMBOL_GPL(sched_setscheduler);
6414
961ccddd
RR
6415/**
6416 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6417 * @p: the task in question.
6418 * @policy: new policy.
6419 * @param: structure containing the new RT priority.
6420 *
6421 * Just like sched_setscheduler, only don't bother checking if the
6422 * current context has permission. For example, this is needed in
6423 * stop_machine(): we create temporary high priority worker threads,
6424 * but our caller might not have that capability.
6425 */
6426int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6427 struct sched_param *param)
6428{
6429 return __sched_setscheduler(p, policy, param, false);
6430}
6431
95cdf3b7
IM
6432static int
6433do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6434{
1da177e4
LT
6435 struct sched_param lparam;
6436 struct task_struct *p;
36c8b586 6437 int retval;
1da177e4
LT
6438
6439 if (!param || pid < 0)
6440 return -EINVAL;
6441 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6442 return -EFAULT;
5fe1d75f
ON
6443
6444 rcu_read_lock();
6445 retval = -ESRCH;
1da177e4 6446 p = find_process_by_pid(pid);
5fe1d75f
ON
6447 if (p != NULL)
6448 retval = sched_setscheduler(p, policy, &lparam);
6449 rcu_read_unlock();
36c8b586 6450
1da177e4
LT
6451 return retval;
6452}
6453
6454/**
6455 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6456 * @pid: the pid in question.
6457 * @policy: new policy.
6458 * @param: structure containing the new RT priority.
6459 */
5add95d4
HC
6460SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6461 struct sched_param __user *, param)
1da177e4 6462{
c21761f1
JB
6463 /* negative values for policy are not valid */
6464 if (policy < 0)
6465 return -EINVAL;
6466
1da177e4
LT
6467 return do_sched_setscheduler(pid, policy, param);
6468}
6469
6470/**
6471 * sys_sched_setparam - set/change the RT priority of a thread
6472 * @pid: the pid in question.
6473 * @param: structure containing the new RT priority.
6474 */
5add95d4 6475SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6476{
6477 return do_sched_setscheduler(pid, -1, param);
6478}
6479
6480/**
6481 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6482 * @pid: the pid in question.
6483 */
5add95d4 6484SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6485{
36c8b586 6486 struct task_struct *p;
3a5c359a 6487 int retval;
1da177e4
LT
6488
6489 if (pid < 0)
3a5c359a 6490 return -EINVAL;
1da177e4
LT
6491
6492 retval = -ESRCH;
5fe85be0 6493 rcu_read_lock();
1da177e4
LT
6494 p = find_process_by_pid(pid);
6495 if (p) {
6496 retval = security_task_getscheduler(p);
6497 if (!retval)
ca94c442
LP
6498 retval = p->policy
6499 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 6500 }
5fe85be0 6501 rcu_read_unlock();
1da177e4
LT
6502 return retval;
6503}
6504
6505/**
ca94c442 6506 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6507 * @pid: the pid in question.
6508 * @param: structure containing the RT priority.
6509 */
5add95d4 6510SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6511{
6512 struct sched_param lp;
36c8b586 6513 struct task_struct *p;
3a5c359a 6514 int retval;
1da177e4
LT
6515
6516 if (!param || pid < 0)
3a5c359a 6517 return -EINVAL;
1da177e4 6518
5fe85be0 6519 rcu_read_lock();
1da177e4
LT
6520 p = find_process_by_pid(pid);
6521 retval = -ESRCH;
6522 if (!p)
6523 goto out_unlock;
6524
6525 retval = security_task_getscheduler(p);
6526 if (retval)
6527 goto out_unlock;
6528
6529 lp.sched_priority = p->rt_priority;
5fe85be0 6530 rcu_read_unlock();
1da177e4
LT
6531
6532 /*
6533 * This one might sleep, we cannot do it with a spinlock held ...
6534 */
6535 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6536
1da177e4
LT
6537 return retval;
6538
6539out_unlock:
5fe85be0 6540 rcu_read_unlock();
1da177e4
LT
6541 return retval;
6542}
6543
96f874e2 6544long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6545{
5a16f3d3 6546 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6547 struct task_struct *p;
6548 int retval;
1da177e4 6549
95402b38 6550 get_online_cpus();
23f5d142 6551 rcu_read_lock();
1da177e4
LT
6552
6553 p = find_process_by_pid(pid);
6554 if (!p) {
23f5d142 6555 rcu_read_unlock();
95402b38 6556 put_online_cpus();
1da177e4
LT
6557 return -ESRCH;
6558 }
6559
23f5d142 6560 /* Prevent p going away */
1da177e4 6561 get_task_struct(p);
23f5d142 6562 rcu_read_unlock();
1da177e4 6563
5a16f3d3
RR
6564 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6565 retval = -ENOMEM;
6566 goto out_put_task;
6567 }
6568 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6569 retval = -ENOMEM;
6570 goto out_free_cpus_allowed;
6571 }
1da177e4 6572 retval = -EPERM;
c69e8d9c 6573 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6574 goto out_unlock;
6575
e7834f8f
DQ
6576 retval = security_task_setscheduler(p, 0, NULL);
6577 if (retval)
6578 goto out_unlock;
6579
5a16f3d3
RR
6580 cpuset_cpus_allowed(p, cpus_allowed);
6581 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6582 again:
5a16f3d3 6583 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6584
8707d8b8 6585 if (!retval) {
5a16f3d3
RR
6586 cpuset_cpus_allowed(p, cpus_allowed);
6587 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6588 /*
6589 * We must have raced with a concurrent cpuset
6590 * update. Just reset the cpus_allowed to the
6591 * cpuset's cpus_allowed
6592 */
5a16f3d3 6593 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6594 goto again;
6595 }
6596 }
1da177e4 6597out_unlock:
5a16f3d3
RR
6598 free_cpumask_var(new_mask);
6599out_free_cpus_allowed:
6600 free_cpumask_var(cpus_allowed);
6601out_put_task:
1da177e4 6602 put_task_struct(p);
95402b38 6603 put_online_cpus();
1da177e4
LT
6604 return retval;
6605}
6606
6607static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6608 struct cpumask *new_mask)
1da177e4 6609{
96f874e2
RR
6610 if (len < cpumask_size())
6611 cpumask_clear(new_mask);
6612 else if (len > cpumask_size())
6613 len = cpumask_size();
6614
1da177e4
LT
6615 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6616}
6617
6618/**
6619 * sys_sched_setaffinity - set the cpu affinity of a process
6620 * @pid: pid of the process
6621 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6622 * @user_mask_ptr: user-space pointer to the new cpu mask
6623 */
5add95d4
HC
6624SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6625 unsigned long __user *, user_mask_ptr)
1da177e4 6626{
5a16f3d3 6627 cpumask_var_t new_mask;
1da177e4
LT
6628 int retval;
6629
5a16f3d3
RR
6630 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6631 return -ENOMEM;
1da177e4 6632
5a16f3d3
RR
6633 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6634 if (retval == 0)
6635 retval = sched_setaffinity(pid, new_mask);
6636 free_cpumask_var(new_mask);
6637 return retval;
1da177e4
LT
6638}
6639
96f874e2 6640long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6641{
36c8b586 6642 struct task_struct *p;
31605683
TG
6643 unsigned long flags;
6644 struct rq *rq;
1da177e4 6645 int retval;
1da177e4 6646
95402b38 6647 get_online_cpus();
23f5d142 6648 rcu_read_lock();
1da177e4
LT
6649
6650 retval = -ESRCH;
6651 p = find_process_by_pid(pid);
6652 if (!p)
6653 goto out_unlock;
6654
e7834f8f
DQ
6655 retval = security_task_getscheduler(p);
6656 if (retval)
6657 goto out_unlock;
6658
31605683 6659 rq = task_rq_lock(p, &flags);
96f874e2 6660 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 6661 task_rq_unlock(rq, &flags);
1da177e4
LT
6662
6663out_unlock:
23f5d142 6664 rcu_read_unlock();
95402b38 6665 put_online_cpus();
1da177e4 6666
9531b62f 6667 return retval;
1da177e4
LT
6668}
6669
6670/**
6671 * sys_sched_getaffinity - get the cpu affinity of a process
6672 * @pid: pid of the process
6673 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6674 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6675 */
5add95d4
HC
6676SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6677 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6678{
6679 int ret;
f17c8607 6680 cpumask_var_t mask;
1da177e4 6681
f17c8607 6682 if (len < cpumask_size())
1da177e4
LT
6683 return -EINVAL;
6684
f17c8607
RR
6685 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6686 return -ENOMEM;
1da177e4 6687
f17c8607
RR
6688 ret = sched_getaffinity(pid, mask);
6689 if (ret == 0) {
6690 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6691 ret = -EFAULT;
6692 else
6693 ret = cpumask_size();
6694 }
6695 free_cpumask_var(mask);
1da177e4 6696
f17c8607 6697 return ret;
1da177e4
LT
6698}
6699
6700/**
6701 * sys_sched_yield - yield the current processor to other threads.
6702 *
dd41f596
IM
6703 * This function yields the current CPU to other tasks. If there are no
6704 * other threads running on this CPU then this function will return.
1da177e4 6705 */
5add95d4 6706SYSCALL_DEFINE0(sched_yield)
1da177e4 6707{
70b97a7f 6708 struct rq *rq = this_rq_lock();
1da177e4 6709
2d72376b 6710 schedstat_inc(rq, yld_count);
4530d7ab 6711 current->sched_class->yield_task(rq);
1da177e4
LT
6712
6713 /*
6714 * Since we are going to call schedule() anyway, there's
6715 * no need to preempt or enable interrupts:
6716 */
6717 __release(rq->lock);
8a25d5de 6718 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 6719 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
6720 preempt_enable_no_resched();
6721
6722 schedule();
6723
6724 return 0;
6725}
6726
d86ee480
PZ
6727static inline int should_resched(void)
6728{
6729 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6730}
6731
e7b38404 6732static void __cond_resched(void)
1da177e4 6733{
e7aaaa69
FW
6734 add_preempt_count(PREEMPT_ACTIVE);
6735 schedule();
6736 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6737}
6738
02b67cc3 6739int __sched _cond_resched(void)
1da177e4 6740{
d86ee480 6741 if (should_resched()) {
1da177e4
LT
6742 __cond_resched();
6743 return 1;
6744 }
6745 return 0;
6746}
02b67cc3 6747EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6748
6749/*
613afbf8 6750 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6751 * call schedule, and on return reacquire the lock.
6752 *
41a2d6cf 6753 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6754 * operations here to prevent schedule() from being called twice (once via
6755 * spin_unlock(), once by hand).
6756 */
613afbf8 6757int __cond_resched_lock(spinlock_t *lock)
1da177e4 6758{
d86ee480 6759 int resched = should_resched();
6df3cecb
JK
6760 int ret = 0;
6761
f607c668
PZ
6762 lockdep_assert_held(lock);
6763
95c354fe 6764 if (spin_needbreak(lock) || resched) {
1da177e4 6765 spin_unlock(lock);
d86ee480 6766 if (resched)
95c354fe
NP
6767 __cond_resched();
6768 else
6769 cpu_relax();
6df3cecb 6770 ret = 1;
1da177e4 6771 spin_lock(lock);
1da177e4 6772 }
6df3cecb 6773 return ret;
1da177e4 6774}
613afbf8 6775EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6776
613afbf8 6777int __sched __cond_resched_softirq(void)
1da177e4
LT
6778{
6779 BUG_ON(!in_softirq());
6780
d86ee480 6781 if (should_resched()) {
98d82567 6782 local_bh_enable();
1da177e4
LT
6783 __cond_resched();
6784 local_bh_disable();
6785 return 1;
6786 }
6787 return 0;
6788}
613afbf8 6789EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6790
1da177e4
LT
6791/**
6792 * yield - yield the current processor to other threads.
6793 *
72fd4a35 6794 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6795 * thread runnable and calls sys_sched_yield().
6796 */
6797void __sched yield(void)
6798{
6799 set_current_state(TASK_RUNNING);
6800 sys_sched_yield();
6801}
1da177e4
LT
6802EXPORT_SYMBOL(yield);
6803
6804/*
41a2d6cf 6805 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6806 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6807 */
6808void __sched io_schedule(void)
6809{
54d35f29 6810 struct rq *rq = raw_rq();
1da177e4 6811
0ff92245 6812 delayacct_blkio_start();
1da177e4 6813 atomic_inc(&rq->nr_iowait);
8f0dfc34 6814 current->in_iowait = 1;
1da177e4 6815 schedule();
8f0dfc34 6816 current->in_iowait = 0;
1da177e4 6817 atomic_dec(&rq->nr_iowait);
0ff92245 6818 delayacct_blkio_end();
1da177e4 6819}
1da177e4
LT
6820EXPORT_SYMBOL(io_schedule);
6821
6822long __sched io_schedule_timeout(long timeout)
6823{
54d35f29 6824 struct rq *rq = raw_rq();
1da177e4
LT
6825 long ret;
6826
0ff92245 6827 delayacct_blkio_start();
1da177e4 6828 atomic_inc(&rq->nr_iowait);
8f0dfc34 6829 current->in_iowait = 1;
1da177e4 6830 ret = schedule_timeout(timeout);
8f0dfc34 6831 current->in_iowait = 0;
1da177e4 6832 atomic_dec(&rq->nr_iowait);
0ff92245 6833 delayacct_blkio_end();
1da177e4
LT
6834 return ret;
6835}
6836
6837/**
6838 * sys_sched_get_priority_max - return maximum RT priority.
6839 * @policy: scheduling class.
6840 *
6841 * this syscall returns the maximum rt_priority that can be used
6842 * by a given scheduling class.
6843 */
5add95d4 6844SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6845{
6846 int ret = -EINVAL;
6847
6848 switch (policy) {
6849 case SCHED_FIFO:
6850 case SCHED_RR:
6851 ret = MAX_USER_RT_PRIO-1;
6852 break;
6853 case SCHED_NORMAL:
b0a9499c 6854 case SCHED_BATCH:
dd41f596 6855 case SCHED_IDLE:
1da177e4
LT
6856 ret = 0;
6857 break;
6858 }
6859 return ret;
6860}
6861
6862/**
6863 * sys_sched_get_priority_min - return minimum RT priority.
6864 * @policy: scheduling class.
6865 *
6866 * this syscall returns the minimum rt_priority that can be used
6867 * by a given scheduling class.
6868 */
5add95d4 6869SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6870{
6871 int ret = -EINVAL;
6872
6873 switch (policy) {
6874 case SCHED_FIFO:
6875 case SCHED_RR:
6876 ret = 1;
6877 break;
6878 case SCHED_NORMAL:
b0a9499c 6879 case SCHED_BATCH:
dd41f596 6880 case SCHED_IDLE:
1da177e4
LT
6881 ret = 0;
6882 }
6883 return ret;
6884}
6885
6886/**
6887 * sys_sched_rr_get_interval - return the default timeslice of a process.
6888 * @pid: pid of the process.
6889 * @interval: userspace pointer to the timeslice value.
6890 *
6891 * this syscall writes the default timeslice value of a given process
6892 * into the user-space timespec buffer. A value of '0' means infinity.
6893 */
17da2bd9 6894SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6895 struct timespec __user *, interval)
1da177e4 6896{
36c8b586 6897 struct task_struct *p;
a4ec24b4 6898 unsigned int time_slice;
dba091b9
TG
6899 unsigned long flags;
6900 struct rq *rq;
3a5c359a 6901 int retval;
1da177e4 6902 struct timespec t;
1da177e4
LT
6903
6904 if (pid < 0)
3a5c359a 6905 return -EINVAL;
1da177e4
LT
6906
6907 retval = -ESRCH;
1a551ae7 6908 rcu_read_lock();
1da177e4
LT
6909 p = find_process_by_pid(pid);
6910 if (!p)
6911 goto out_unlock;
6912
6913 retval = security_task_getscheduler(p);
6914 if (retval)
6915 goto out_unlock;
6916
dba091b9
TG
6917 rq = task_rq_lock(p, &flags);
6918 time_slice = p->sched_class->get_rr_interval(rq, p);
6919 task_rq_unlock(rq, &flags);
a4ec24b4 6920
1a551ae7 6921 rcu_read_unlock();
a4ec24b4 6922 jiffies_to_timespec(time_slice, &t);
1da177e4 6923 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6924 return retval;
3a5c359a 6925
1da177e4 6926out_unlock:
1a551ae7 6927 rcu_read_unlock();
1da177e4
LT
6928 return retval;
6929}
6930
7c731e0a 6931static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6932
82a1fcb9 6933void sched_show_task(struct task_struct *p)
1da177e4 6934{
1da177e4 6935 unsigned long free = 0;
36c8b586 6936 unsigned state;
1da177e4 6937
1da177e4 6938 state = p->state ? __ffs(p->state) + 1 : 0;
663997d4 6939 pr_info("%-13.13s %c", p->comm,
2ed6e34f 6940 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6941#if BITS_PER_LONG == 32
1da177e4 6942 if (state == TASK_RUNNING)
663997d4 6943 pr_cont(" running ");
1da177e4 6944 else
663997d4 6945 pr_cont(" %08lx ", thread_saved_pc(p));
1da177e4
LT
6946#else
6947 if (state == TASK_RUNNING)
663997d4 6948 pr_cont(" running task ");
1da177e4 6949 else
663997d4 6950 pr_cont(" %016lx ", thread_saved_pc(p));
1da177e4
LT
6951#endif
6952#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6953 free = stack_not_used(p);
1da177e4 6954#endif
663997d4 6955 pr_cont("%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
6956 task_pid_nr(p), task_pid_nr(p->real_parent),
6957 (unsigned long)task_thread_info(p)->flags);
1da177e4 6958
5fb5e6de 6959 show_stack(p, NULL);
1da177e4
LT
6960}
6961
e59e2ae2 6962void show_state_filter(unsigned long state_filter)
1da177e4 6963{
36c8b586 6964 struct task_struct *g, *p;
1da177e4 6965
4bd77321 6966#if BITS_PER_LONG == 32
663997d4 6967 pr_info(" task PC stack pid father\n");
1da177e4 6968#else
663997d4 6969 pr_info(" task PC stack pid father\n");
1da177e4
LT
6970#endif
6971 read_lock(&tasklist_lock);
6972 do_each_thread(g, p) {
6973 /*
6974 * reset the NMI-timeout, listing all files on a slow
6975 * console might take alot of time:
6976 */
6977 touch_nmi_watchdog();
39bc89fd 6978 if (!state_filter || (p->state & state_filter))
82a1fcb9 6979 sched_show_task(p);
1da177e4
LT
6980 } while_each_thread(g, p);
6981
04c9167f
JF
6982 touch_all_softlockup_watchdogs();
6983
dd41f596
IM
6984#ifdef CONFIG_SCHED_DEBUG
6985 sysrq_sched_debug_show();
6986#endif
1da177e4 6987 read_unlock(&tasklist_lock);
e59e2ae2
IM
6988 /*
6989 * Only show locks if all tasks are dumped:
6990 */
93335a21 6991 if (!state_filter)
e59e2ae2 6992 debug_show_all_locks();
1da177e4
LT
6993}
6994
1df21055
IM
6995void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6996{
dd41f596 6997 idle->sched_class = &idle_sched_class;
1df21055
IM
6998}
6999
f340c0d1
IM
7000/**
7001 * init_idle - set up an idle thread for a given CPU
7002 * @idle: task in question
7003 * @cpu: cpu the idle task belongs to
7004 *
7005 * NOTE: this function does not set the idle thread's NEED_RESCHED
7006 * flag, to make booting more robust.
7007 */
5c1e1767 7008void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 7009{
70b97a7f 7010 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
7011 unsigned long flags;
7012
05fa785c 7013 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 7014
dd41f596 7015 __sched_fork(idle);
06b83b5f 7016 idle->state = TASK_RUNNING;
dd41f596
IM
7017 idle->se.exec_start = sched_clock();
7018
96f874e2 7019 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 7020 __set_task_cpu(idle, cpu);
1da177e4 7021
1da177e4 7022 rq->curr = rq->idle = idle;
4866cde0
NP
7023#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7024 idle->oncpu = 1;
7025#endif
05fa785c 7026 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
7027
7028 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
7029#if defined(CONFIG_PREEMPT)
7030 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7031#else
a1261f54 7032 task_thread_info(idle)->preempt_count = 0;
8e3e076c 7033#endif
dd41f596
IM
7034 /*
7035 * The idle tasks have their own, simple scheduling class:
7036 */
7037 idle->sched_class = &idle_sched_class;
fb52607a 7038 ftrace_graph_init_task(idle);
1da177e4
LT
7039}
7040
7041/*
7042 * In a system that switches off the HZ timer nohz_cpu_mask
7043 * indicates which cpus entered this state. This is used
7044 * in the rcu update to wait only for active cpus. For system
7045 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 7046 * always be CPU_BITS_NONE.
1da177e4 7047 */
6a7b3dc3 7048cpumask_var_t nohz_cpu_mask;
1da177e4 7049
19978ca6
IM
7050/*
7051 * Increase the granularity value when there are more CPUs,
7052 * because with more CPUs the 'effective latency' as visible
7053 * to users decreases. But the relationship is not linear,
7054 * so pick a second-best guess by going with the log2 of the
7055 * number of CPUs.
7056 *
7057 * This idea comes from the SD scheduler of Con Kolivas:
7058 */
acb4a848 7059static int get_update_sysctl_factor(void)
19978ca6 7060{
4ca3ef71 7061 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
7062 unsigned int factor;
7063
7064 switch (sysctl_sched_tunable_scaling) {
7065 case SCHED_TUNABLESCALING_NONE:
7066 factor = 1;
7067 break;
7068 case SCHED_TUNABLESCALING_LINEAR:
7069 factor = cpus;
7070 break;
7071 case SCHED_TUNABLESCALING_LOG:
7072 default:
7073 factor = 1 + ilog2(cpus);
7074 break;
7075 }
19978ca6 7076
acb4a848
CE
7077 return factor;
7078}
19978ca6 7079
acb4a848
CE
7080static void update_sysctl(void)
7081{
7082 unsigned int factor = get_update_sysctl_factor();
19978ca6 7083
0bcdcf28
CE
7084#define SET_SYSCTL(name) \
7085 (sysctl_##name = (factor) * normalized_sysctl_##name)
7086 SET_SYSCTL(sched_min_granularity);
7087 SET_SYSCTL(sched_latency);
7088 SET_SYSCTL(sched_wakeup_granularity);
7089 SET_SYSCTL(sched_shares_ratelimit);
7090#undef SET_SYSCTL
7091}
55cd5340 7092
0bcdcf28
CE
7093static inline void sched_init_granularity(void)
7094{
7095 update_sysctl();
19978ca6
IM
7096}
7097
1da177e4
LT
7098#ifdef CONFIG_SMP
7099/*
7100 * This is how migration works:
7101 *
70b97a7f 7102 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7103 * runqueue and wake up that CPU's migration thread.
7104 * 2) we down() the locked semaphore => thread blocks.
7105 * 3) migration thread wakes up (implicitly it forces the migrated
7106 * thread off the CPU)
7107 * 4) it gets the migration request and checks whether the migrated
7108 * task is still in the wrong runqueue.
7109 * 5) if it's in the wrong runqueue then the migration thread removes
7110 * it and puts it into the right queue.
7111 * 6) migration thread up()s the semaphore.
7112 * 7) we wake up and the migration is done.
7113 */
7114
7115/*
7116 * Change a given task's CPU affinity. Migrate the thread to a
7117 * proper CPU and schedule it away if the CPU it's executing on
7118 * is removed from the allowed bitmask.
7119 *
7120 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7121 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7122 * call is not atomic; no spinlocks may be held.
7123 */
96f874e2 7124int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7125{
70b97a7f 7126 struct migration_req req;
1da177e4 7127 unsigned long flags;
70b97a7f 7128 struct rq *rq;
48f24c4d 7129 int ret = 0;
1da177e4 7130
e2912009
PZ
7131 /*
7132 * Since we rely on wake-ups to migrate sleeping tasks, don't change
7133 * the ->cpus_allowed mask from under waking tasks, which would be
7134 * possible when we change rq->lock in ttwu(), so synchronize against
7135 * TASK_WAKING to avoid that.
7136 */
7137again:
7138 while (p->state == TASK_WAKING)
7139 cpu_relax();
7140
1da177e4 7141 rq = task_rq_lock(p, &flags);
e2912009
PZ
7142
7143 if (p->state == TASK_WAKING) {
7144 task_rq_unlock(rq, &flags);
7145 goto again;
7146 }
7147
6ad4c188 7148 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
7149 ret = -EINVAL;
7150 goto out;
7151 }
7152
9985b0ba 7153 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7154 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7155 ret = -EINVAL;
7156 goto out;
7157 }
7158
73fe6aae 7159 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7160 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7161 else {
96f874e2
RR
7162 cpumask_copy(&p->cpus_allowed, new_mask);
7163 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7164 }
7165
1da177e4 7166 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7167 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7168 goto out;
7169
6ad4c188 7170 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 7171 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7172 struct task_struct *mt = rq->migration_thread;
7173
7174 get_task_struct(mt);
1da177e4
LT
7175 task_rq_unlock(rq, &flags);
7176 wake_up_process(rq->migration_thread);
693525e3 7177 put_task_struct(mt);
1da177e4
LT
7178 wait_for_completion(&req.done);
7179 tlb_migrate_finish(p->mm);
7180 return 0;
7181 }
7182out:
7183 task_rq_unlock(rq, &flags);
48f24c4d 7184
1da177e4
LT
7185 return ret;
7186}
cd8ba7cd 7187EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7188
7189/*
41a2d6cf 7190 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7191 * this because either it can't run here any more (set_cpus_allowed()
7192 * away from this CPU, or CPU going down), or because we're
7193 * attempting to rebalance this task on exec (sched_exec).
7194 *
7195 * So we race with normal scheduler movements, but that's OK, as long
7196 * as the task is no longer on this CPU.
efc30814
KK
7197 *
7198 * Returns non-zero if task was successfully migrated.
1da177e4 7199 */
efc30814 7200static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7201{
70b97a7f 7202 struct rq *rq_dest, *rq_src;
e2912009 7203 int ret = 0;
1da177e4 7204
e761b772 7205 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7206 return ret;
1da177e4
LT
7207
7208 rq_src = cpu_rq(src_cpu);
7209 rq_dest = cpu_rq(dest_cpu);
7210
7211 double_rq_lock(rq_src, rq_dest);
7212 /* Already moved. */
7213 if (task_cpu(p) != src_cpu)
b1e38734 7214 goto done;
1da177e4 7215 /* Affinity changed (again). */
96f874e2 7216 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7217 goto fail;
1da177e4 7218
e2912009
PZ
7219 /*
7220 * If we're not on a rq, the next wake-up will ensure we're
7221 * placed properly.
7222 */
7223 if (p->se.on_rq) {
2e1cb74a 7224 deactivate_task(rq_src, p, 0);
e2912009 7225 set_task_cpu(p, dest_cpu);
dd41f596 7226 activate_task(rq_dest, p, 0);
15afe09b 7227 check_preempt_curr(rq_dest, p, 0);
1da177e4 7228 }
b1e38734 7229done:
efc30814 7230 ret = 1;
b1e38734 7231fail:
1da177e4 7232 double_rq_unlock(rq_src, rq_dest);
efc30814 7233 return ret;
1da177e4
LT
7234}
7235
03b042bf
PM
7236#define RCU_MIGRATION_IDLE 0
7237#define RCU_MIGRATION_NEED_QS 1
7238#define RCU_MIGRATION_GOT_QS 2
7239#define RCU_MIGRATION_MUST_SYNC 3
7240
1da177e4
LT
7241/*
7242 * migration_thread - this is a highprio system thread that performs
7243 * thread migration by bumping thread off CPU then 'pushing' onto
7244 * another runqueue.
7245 */
95cdf3b7 7246static int migration_thread(void *data)
1da177e4 7247{
03b042bf 7248 int badcpu;
1da177e4 7249 int cpu = (long)data;
70b97a7f 7250 struct rq *rq;
1da177e4
LT
7251
7252 rq = cpu_rq(cpu);
7253 BUG_ON(rq->migration_thread != current);
7254
7255 set_current_state(TASK_INTERRUPTIBLE);
7256 while (!kthread_should_stop()) {
70b97a7f 7257 struct migration_req *req;
1da177e4 7258 struct list_head *head;
1da177e4 7259
05fa785c 7260 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
7261
7262 if (cpu_is_offline(cpu)) {
05fa785c 7263 raw_spin_unlock_irq(&rq->lock);
371cbb38 7264 break;
1da177e4
LT
7265 }
7266
7267 if (rq->active_balance) {
7268 active_load_balance(rq, cpu);
7269 rq->active_balance = 0;
7270 }
7271
7272 head = &rq->migration_queue;
7273
7274 if (list_empty(head)) {
05fa785c 7275 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
7276 schedule();
7277 set_current_state(TASK_INTERRUPTIBLE);
7278 continue;
7279 }
70b97a7f 7280 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7281 list_del_init(head->next);
7282
03b042bf 7283 if (req->task != NULL) {
05fa785c 7284 raw_spin_unlock(&rq->lock);
03b042bf
PM
7285 __migrate_task(req->task, cpu, req->dest_cpu);
7286 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7287 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 7288 raw_spin_unlock(&rq->lock);
03b042bf
PM
7289 } else {
7290 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 7291 raw_spin_unlock(&rq->lock);
03b042bf
PM
7292 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7293 }
674311d5 7294 local_irq_enable();
1da177e4
LT
7295
7296 complete(&req->done);
7297 }
7298 __set_current_state(TASK_RUNNING);
1da177e4 7299
1da177e4
LT
7300 return 0;
7301}
7302
7303#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7304
7305static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7306{
7307 int ret;
7308
7309 local_irq_disable();
7310 ret = __migrate_task(p, src_cpu, dest_cpu);
7311 local_irq_enable();
7312 return ret;
7313}
7314
054b9108 7315/*
3a4fa0a2 7316 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7317 */
48f24c4d 7318static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7319{
70b97a7f 7320 int dest_cpu;
6ca09dfc 7321 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7322
7323again:
7324 /* Look for allowed, online CPU in same node. */
6ad4c188 7325 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
e76bd8d9
RR
7326 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7327 goto move;
7328
7329 /* Any allowed, online CPU? */
6ad4c188 7330 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
e76bd8d9
RR
7331 if (dest_cpu < nr_cpu_ids)
7332 goto move;
7333
7334 /* No more Mr. Nice Guy. */
7335 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9 7336 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6ad4c188 7337 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
1da177e4 7338
e76bd8d9
RR
7339 /*
7340 * Don't tell them about moving exiting tasks or
7341 * kernel threads (both mm NULL), since they never
7342 * leave kernel.
7343 */
7344 if (p->mm && printk_ratelimit()) {
663997d4
JP
7345 pr_info("process %d (%s) no longer affine to cpu%d\n",
7346 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7347 }
e76bd8d9
RR
7348 }
7349
7350move:
7351 /* It can have affinity changed while we were choosing. */
7352 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7353 goto again;
1da177e4
LT
7354}
7355
7356/*
7357 * While a dead CPU has no uninterruptible tasks queued at this point,
7358 * it might still have a nonzero ->nr_uninterruptible counter, because
7359 * for performance reasons the counter is not stricly tracking tasks to
7360 * their home CPUs. So we just add the counter to another CPU's counter,
7361 * to keep the global sum constant after CPU-down:
7362 */
70b97a7f 7363static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7364{
6ad4c188 7365 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
7366 unsigned long flags;
7367
7368 local_irq_save(flags);
7369 double_rq_lock(rq_src, rq_dest);
7370 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7371 rq_src->nr_uninterruptible = 0;
7372 double_rq_unlock(rq_src, rq_dest);
7373 local_irq_restore(flags);
7374}
7375
7376/* Run through task list and migrate tasks from the dead cpu. */
7377static void migrate_live_tasks(int src_cpu)
7378{
48f24c4d 7379 struct task_struct *p, *t;
1da177e4 7380
f7b4cddc 7381 read_lock(&tasklist_lock);
1da177e4 7382
48f24c4d
IM
7383 do_each_thread(t, p) {
7384 if (p == current)
1da177e4
LT
7385 continue;
7386
48f24c4d
IM
7387 if (task_cpu(p) == src_cpu)
7388 move_task_off_dead_cpu(src_cpu, p);
7389 } while_each_thread(t, p);
1da177e4 7390
f7b4cddc 7391 read_unlock(&tasklist_lock);
1da177e4
LT
7392}
7393
dd41f596
IM
7394/*
7395 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7396 * It does so by boosting its priority to highest possible.
7397 * Used by CPU offline code.
1da177e4
LT
7398 */
7399void sched_idle_next(void)
7400{
48f24c4d 7401 int this_cpu = smp_processor_id();
70b97a7f 7402 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7403 struct task_struct *p = rq->idle;
7404 unsigned long flags;
7405
7406 /* cpu has to be offline */
48f24c4d 7407 BUG_ON(cpu_online(this_cpu));
1da177e4 7408
48f24c4d
IM
7409 /*
7410 * Strictly not necessary since rest of the CPUs are stopped by now
7411 * and interrupts disabled on the current cpu.
1da177e4 7412 */
05fa785c 7413 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 7414
dd41f596 7415 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7416
94bc9a7b
DA
7417 update_rq_clock(rq);
7418 activate_task(rq, p, 0);
1da177e4 7419
05fa785c 7420 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
7421}
7422
48f24c4d
IM
7423/*
7424 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7425 * offline.
7426 */
7427void idle_task_exit(void)
7428{
7429 struct mm_struct *mm = current->active_mm;
7430
7431 BUG_ON(cpu_online(smp_processor_id()));
7432
7433 if (mm != &init_mm)
7434 switch_mm(mm, &init_mm, current);
7435 mmdrop(mm);
7436}
7437
054b9108 7438/* called under rq->lock with disabled interrupts */
36c8b586 7439static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7440{
70b97a7f 7441 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7442
7443 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7444 BUG_ON(!p->exit_state);
1da177e4
LT
7445
7446 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7447 BUG_ON(p->state == TASK_DEAD);
1da177e4 7448
48f24c4d 7449 get_task_struct(p);
1da177e4
LT
7450
7451 /*
7452 * Drop lock around migration; if someone else moves it,
41a2d6cf 7453 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7454 * fine.
7455 */
05fa785c 7456 raw_spin_unlock_irq(&rq->lock);
48f24c4d 7457 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 7458 raw_spin_lock_irq(&rq->lock);
1da177e4 7459
48f24c4d 7460 put_task_struct(p);
1da177e4
LT
7461}
7462
7463/* release_task() removes task from tasklist, so we won't find dead tasks. */
7464static void migrate_dead_tasks(unsigned int dead_cpu)
7465{
70b97a7f 7466 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7467 struct task_struct *next;
48f24c4d 7468
dd41f596
IM
7469 for ( ; ; ) {
7470 if (!rq->nr_running)
7471 break;
a8e504d2 7472 update_rq_clock(rq);
b67802ea 7473 next = pick_next_task(rq);
dd41f596
IM
7474 if (!next)
7475 break;
79c53799 7476 next->sched_class->put_prev_task(rq, next);
dd41f596 7477 migrate_dead(dead_cpu, next);
e692ab53 7478
1da177e4
LT
7479 }
7480}
dce48a84
TG
7481
7482/*
7483 * remove the tasks which were accounted by rq from calc_load_tasks.
7484 */
7485static void calc_global_load_remove(struct rq *rq)
7486{
7487 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7488 rq->calc_load_active = 0;
dce48a84 7489}
1da177e4
LT
7490#endif /* CONFIG_HOTPLUG_CPU */
7491
e692ab53
NP
7492#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7493
7494static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7495 {
7496 .procname = "sched_domain",
c57baf1e 7497 .mode = 0555,
e0361851 7498 },
56992309 7499 {}
e692ab53
NP
7500};
7501
7502static struct ctl_table sd_ctl_root[] = {
e0361851
AD
7503 {
7504 .procname = "kernel",
c57baf1e 7505 .mode = 0555,
e0361851
AD
7506 .child = sd_ctl_dir,
7507 },
56992309 7508 {}
e692ab53
NP
7509};
7510
7511static struct ctl_table *sd_alloc_ctl_entry(int n)
7512{
7513 struct ctl_table *entry =
5cf9f062 7514 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7515
e692ab53
NP
7516 return entry;
7517}
7518
6382bc90
MM
7519static void sd_free_ctl_entry(struct ctl_table **tablep)
7520{
cd790076 7521 struct ctl_table *entry;
6382bc90 7522
cd790076
MM
7523 /*
7524 * In the intermediate directories, both the child directory and
7525 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7526 * will always be set. In the lowest directory the names are
cd790076
MM
7527 * static strings and all have proc handlers.
7528 */
7529 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7530 if (entry->child)
7531 sd_free_ctl_entry(&entry->child);
cd790076
MM
7532 if (entry->proc_handler == NULL)
7533 kfree(entry->procname);
7534 }
6382bc90
MM
7535
7536 kfree(*tablep);
7537 *tablep = NULL;
7538}
7539
e692ab53 7540static void
e0361851 7541set_table_entry(struct ctl_table *entry,
e692ab53
NP
7542 const char *procname, void *data, int maxlen,
7543 mode_t mode, proc_handler *proc_handler)
7544{
e692ab53
NP
7545 entry->procname = procname;
7546 entry->data = data;
7547 entry->maxlen = maxlen;
7548 entry->mode = mode;
7549 entry->proc_handler = proc_handler;
7550}
7551
7552static struct ctl_table *
7553sd_alloc_ctl_domain_table(struct sched_domain *sd)
7554{
a5d8c348 7555 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7556
ad1cdc1d
MM
7557 if (table == NULL)
7558 return NULL;
7559
e0361851 7560 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7561 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7562 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7563 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7564 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7565 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7566 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7567 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7568 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7569 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7570 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7571 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7572 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7573 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7574 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7575 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7576 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7577 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7578 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7579 &sd->cache_nice_tries,
7580 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7581 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7582 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7583 set_table_entry(&table[11], "name", sd->name,
7584 CORENAME_MAX_SIZE, 0444, proc_dostring);
7585 /* &table[12] is terminator */
e692ab53
NP
7586
7587 return table;
7588}
7589
9a4e7159 7590static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7591{
7592 struct ctl_table *entry, *table;
7593 struct sched_domain *sd;
7594 int domain_num = 0, i;
7595 char buf[32];
7596
7597 for_each_domain(cpu, sd)
7598 domain_num++;
7599 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7600 if (table == NULL)
7601 return NULL;
e692ab53
NP
7602
7603 i = 0;
7604 for_each_domain(cpu, sd) {
7605 snprintf(buf, 32, "domain%d", i);
e692ab53 7606 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7607 entry->mode = 0555;
e692ab53
NP
7608 entry->child = sd_alloc_ctl_domain_table(sd);
7609 entry++;
7610 i++;
7611 }
7612 return table;
7613}
7614
7615static struct ctl_table_header *sd_sysctl_header;
6382bc90 7616static void register_sched_domain_sysctl(void)
e692ab53 7617{
6ad4c188 7618 int i, cpu_num = num_possible_cpus();
e692ab53
NP
7619 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7620 char buf[32];
7621
7378547f
MM
7622 WARN_ON(sd_ctl_dir[0].child);
7623 sd_ctl_dir[0].child = entry;
7624
ad1cdc1d
MM
7625 if (entry == NULL)
7626 return;
7627
6ad4c188 7628 for_each_possible_cpu(i) {
e692ab53 7629 snprintf(buf, 32, "cpu%d", i);
e692ab53 7630 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7631 entry->mode = 0555;
e692ab53 7632 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7633 entry++;
e692ab53 7634 }
7378547f
MM
7635
7636 WARN_ON(sd_sysctl_header);
e692ab53
NP
7637 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7638}
6382bc90 7639
7378547f 7640/* may be called multiple times per register */
6382bc90
MM
7641static void unregister_sched_domain_sysctl(void)
7642{
7378547f
MM
7643 if (sd_sysctl_header)
7644 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7645 sd_sysctl_header = NULL;
7378547f
MM
7646 if (sd_ctl_dir[0].child)
7647 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7648}
e692ab53 7649#else
6382bc90
MM
7650static void register_sched_domain_sysctl(void)
7651{
7652}
7653static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7654{
7655}
7656#endif
7657
1f11eb6a
GH
7658static void set_rq_online(struct rq *rq)
7659{
7660 if (!rq->online) {
7661 const struct sched_class *class;
7662
c6c4927b 7663 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7664 rq->online = 1;
7665
7666 for_each_class(class) {
7667 if (class->rq_online)
7668 class->rq_online(rq);
7669 }
7670 }
7671}
7672
7673static void set_rq_offline(struct rq *rq)
7674{
7675 if (rq->online) {
7676 const struct sched_class *class;
7677
7678 for_each_class(class) {
7679 if (class->rq_offline)
7680 class->rq_offline(rq);
7681 }
7682
c6c4927b 7683 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7684 rq->online = 0;
7685 }
7686}
7687
1da177e4
LT
7688/*
7689 * migration_call - callback that gets triggered when a CPU is added.
7690 * Here we can start up the necessary migration thread for the new CPU.
7691 */
48f24c4d
IM
7692static int __cpuinit
7693migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7694{
1da177e4 7695 struct task_struct *p;
48f24c4d 7696 int cpu = (long)hcpu;
1da177e4 7697 unsigned long flags;
70b97a7f 7698 struct rq *rq;
1da177e4
LT
7699
7700 switch (action) {
5be9361c 7701
1da177e4 7702 case CPU_UP_PREPARE:
8bb78442 7703 case CPU_UP_PREPARE_FROZEN:
dd41f596 7704 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7705 if (IS_ERR(p))
7706 return NOTIFY_BAD;
1da177e4
LT
7707 kthread_bind(p, cpu);
7708 /* Must be high prio: stop_machine expects to yield to it. */
7709 rq = task_rq_lock(p, &flags);
dd41f596 7710 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7711 task_rq_unlock(rq, &flags);
371cbb38 7712 get_task_struct(p);
1da177e4 7713 cpu_rq(cpu)->migration_thread = p;
a468d389 7714 rq->calc_load_update = calc_load_update;
1da177e4 7715 break;
48f24c4d 7716
1da177e4 7717 case CPU_ONLINE:
8bb78442 7718 case CPU_ONLINE_FROZEN:
3a4fa0a2 7719 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7720 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7721
7722 /* Update our root-domain */
7723 rq = cpu_rq(cpu);
05fa785c 7724 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 7725 if (rq->rd) {
c6c4927b 7726 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7727
7728 set_rq_online(rq);
1f94ef59 7729 }
05fa785c 7730 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7731 break;
48f24c4d 7732
1da177e4
LT
7733#ifdef CONFIG_HOTPLUG_CPU
7734 case CPU_UP_CANCELED:
8bb78442 7735 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7736 if (!cpu_rq(cpu)->migration_thread)
7737 break;
41a2d6cf 7738 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7739 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7740 cpumask_any(cpu_online_mask));
1da177e4 7741 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7742 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7743 cpu_rq(cpu)->migration_thread = NULL;
7744 break;
48f24c4d 7745
1da177e4 7746 case CPU_DEAD:
8bb78442 7747 case CPU_DEAD_FROZEN:
470fd646 7748 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7749 migrate_live_tasks(cpu);
7750 rq = cpu_rq(cpu);
7751 kthread_stop(rq->migration_thread);
371cbb38 7752 put_task_struct(rq->migration_thread);
1da177e4
LT
7753 rq->migration_thread = NULL;
7754 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 7755 raw_spin_lock_irq(&rq->lock);
a8e504d2 7756 update_rq_clock(rq);
2e1cb74a 7757 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
7758 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7759 rq->idle->sched_class = &idle_sched_class;
1da177e4 7760 migrate_dead_tasks(cpu);
05fa785c 7761 raw_spin_unlock_irq(&rq->lock);
470fd646 7762 cpuset_unlock();
1da177e4
LT
7763 migrate_nr_uninterruptible(rq);
7764 BUG_ON(rq->nr_running != 0);
dce48a84 7765 calc_global_load_remove(rq);
41a2d6cf
IM
7766 /*
7767 * No need to migrate the tasks: it was best-effort if
7768 * they didn't take sched_hotcpu_mutex. Just wake up
7769 * the requestors.
7770 */
05fa785c 7771 raw_spin_lock_irq(&rq->lock);
1da177e4 7772 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7773 struct migration_req *req;
7774
1da177e4 7775 req = list_entry(rq->migration_queue.next,
70b97a7f 7776 struct migration_req, list);
1da177e4 7777 list_del_init(&req->list);
05fa785c 7778 raw_spin_unlock_irq(&rq->lock);
1da177e4 7779 complete(&req->done);
05fa785c 7780 raw_spin_lock_irq(&rq->lock);
1da177e4 7781 }
05fa785c 7782 raw_spin_unlock_irq(&rq->lock);
1da177e4 7783 break;
57d885fe 7784
08f503b0
GH
7785 case CPU_DYING:
7786 case CPU_DYING_FROZEN:
57d885fe
GH
7787 /* Update our root-domain */
7788 rq = cpu_rq(cpu);
05fa785c 7789 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 7790 if (rq->rd) {
c6c4927b 7791 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7792 set_rq_offline(rq);
57d885fe 7793 }
05fa785c 7794 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 7795 break;
1da177e4
LT
7796#endif
7797 }
7798 return NOTIFY_OK;
7799}
7800
f38b0820
PM
7801/*
7802 * Register at high priority so that task migration (migrate_all_tasks)
7803 * happens before everything else. This has to be lower priority than
cdd6c482 7804 * the notifier in the perf_event subsystem, though.
1da177e4 7805 */
26c2143b 7806static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7807 .notifier_call = migration_call,
7808 .priority = 10
7809};
7810
7babe8db 7811static int __init migration_init(void)
1da177e4
LT
7812{
7813 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7814 int err;
48f24c4d
IM
7815
7816 /* Start one for the boot CPU: */
07dccf33
AM
7817 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7818 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7819 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7820 register_cpu_notifier(&migration_notifier);
7babe8db 7821
a004cd42 7822 return 0;
1da177e4 7823}
7babe8db 7824early_initcall(migration_init);
1da177e4
LT
7825#endif
7826
7827#ifdef CONFIG_SMP
476f3534 7828
3e9830dc 7829#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7830
f6630114
MT
7831static __read_mostly int sched_domain_debug_enabled;
7832
7833static int __init sched_domain_debug_setup(char *str)
7834{
7835 sched_domain_debug_enabled = 1;
7836
7837 return 0;
7838}
7839early_param("sched_debug", sched_domain_debug_setup);
7840
7c16ec58 7841static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7842 struct cpumask *groupmask)
1da177e4 7843{
4dcf6aff 7844 struct sched_group *group = sd->groups;
434d53b0 7845 char str[256];
1da177e4 7846
968ea6d8 7847 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7848 cpumask_clear(groupmask);
4dcf6aff
IM
7849
7850 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7851
7852 if (!(sd->flags & SD_LOAD_BALANCE)) {
663997d4 7853 pr_cont("does not load-balance\n");
4dcf6aff 7854 if (sd->parent)
663997d4 7855 pr_err("ERROR: !SD_LOAD_BALANCE domain has parent\n");
4dcf6aff 7856 return -1;
41c7ce9a
NP
7857 }
7858
663997d4 7859 pr_cont("span %s level %s\n", str, sd->name);
4dcf6aff 7860
758b2cdc 7861 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
663997d4 7862 pr_err("ERROR: domain->span does not contain CPU%d\n", cpu);
4dcf6aff 7863 }
758b2cdc 7864 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
663997d4 7865 pr_err("ERROR: domain->groups does not contain CPU%d\n", cpu);
4dcf6aff 7866 }
1da177e4 7867
4dcf6aff 7868 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7869 do {
4dcf6aff 7870 if (!group) {
663997d4
JP
7871 pr_cont("\n");
7872 pr_err("ERROR: group is NULL\n");
1da177e4
LT
7873 break;
7874 }
7875
18a3885f 7876 if (!group->cpu_power) {
663997d4
JP
7877 pr_cont("\n");
7878 pr_err("ERROR: domain->cpu_power not set\n");
4dcf6aff
IM
7879 break;
7880 }
1da177e4 7881
758b2cdc 7882 if (!cpumask_weight(sched_group_cpus(group))) {
663997d4
JP
7883 pr_cont("\n");
7884 pr_err("ERROR: empty group\n");
4dcf6aff
IM
7885 break;
7886 }
1da177e4 7887
758b2cdc 7888 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
663997d4
JP
7889 pr_cont("\n");
7890 pr_err("ERROR: repeated CPUs\n");
4dcf6aff
IM
7891 break;
7892 }
1da177e4 7893
758b2cdc 7894 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7895
968ea6d8 7896 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 7897
663997d4 7898 pr_cont(" %s", str);
18a3885f 7899 if (group->cpu_power != SCHED_LOAD_SCALE) {
663997d4 7900 pr_cont(" (cpu_power = %d)", group->cpu_power);
381512cf 7901 }
1da177e4 7902
4dcf6aff
IM
7903 group = group->next;
7904 } while (group != sd->groups);
663997d4 7905 pr_cont("\n");
1da177e4 7906
758b2cdc 7907 if (!cpumask_equal(sched_domain_span(sd), groupmask))
663997d4 7908 pr_err("ERROR: groups don't span domain->span\n");
1da177e4 7909
758b2cdc
RR
7910 if (sd->parent &&
7911 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
663997d4 7912 pr_err("ERROR: parent span is not a superset of domain->span\n");
4dcf6aff
IM
7913 return 0;
7914}
1da177e4 7915
4dcf6aff
IM
7916static void sched_domain_debug(struct sched_domain *sd, int cpu)
7917{
d5dd3db1 7918 cpumask_var_t groupmask;
4dcf6aff 7919 int level = 0;
1da177e4 7920
f6630114
MT
7921 if (!sched_domain_debug_enabled)
7922 return;
7923
4dcf6aff
IM
7924 if (!sd) {
7925 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7926 return;
7927 }
1da177e4 7928
4dcf6aff
IM
7929 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7930
d5dd3db1 7931 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7932 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7933 return;
7934 }
7935
4dcf6aff 7936 for (;;) {
7c16ec58 7937 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7938 break;
1da177e4
LT
7939 level++;
7940 sd = sd->parent;
33859f7f 7941 if (!sd)
4dcf6aff
IM
7942 break;
7943 }
d5dd3db1 7944 free_cpumask_var(groupmask);
1da177e4 7945}
6d6bc0ad 7946#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7947# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7948#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7949
1a20ff27 7950static int sd_degenerate(struct sched_domain *sd)
245af2c7 7951{
758b2cdc 7952 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7953 return 1;
7954
7955 /* Following flags need at least 2 groups */
7956 if (sd->flags & (SD_LOAD_BALANCE |
7957 SD_BALANCE_NEWIDLE |
7958 SD_BALANCE_FORK |
89c4710e
SS
7959 SD_BALANCE_EXEC |
7960 SD_SHARE_CPUPOWER |
7961 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7962 if (sd->groups != sd->groups->next)
7963 return 0;
7964 }
7965
7966 /* Following flags don't use groups */
c88d5910 7967 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7968 return 0;
7969
7970 return 1;
7971}
7972
48f24c4d
IM
7973static int
7974sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7975{
7976 unsigned long cflags = sd->flags, pflags = parent->flags;
7977
7978 if (sd_degenerate(parent))
7979 return 1;
7980
758b2cdc 7981 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7982 return 0;
7983
245af2c7
SS
7984 /* Flags needing groups don't count if only 1 group in parent */
7985 if (parent->groups == parent->groups->next) {
7986 pflags &= ~(SD_LOAD_BALANCE |
7987 SD_BALANCE_NEWIDLE |
7988 SD_BALANCE_FORK |
89c4710e
SS
7989 SD_BALANCE_EXEC |
7990 SD_SHARE_CPUPOWER |
7991 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7992 if (nr_node_ids == 1)
7993 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7994 }
7995 if (~cflags & pflags)
7996 return 0;
7997
7998 return 1;
7999}
8000
c6c4927b
RR
8001static void free_rootdomain(struct root_domain *rd)
8002{
047106ad
PZ
8003 synchronize_sched();
8004
68e74568
RR
8005 cpupri_cleanup(&rd->cpupri);
8006
c6c4927b
RR
8007 free_cpumask_var(rd->rto_mask);
8008 free_cpumask_var(rd->online);
8009 free_cpumask_var(rd->span);
8010 kfree(rd);
8011}
8012
57d885fe
GH
8013static void rq_attach_root(struct rq *rq, struct root_domain *rd)
8014{
a0490fa3 8015 struct root_domain *old_rd = NULL;
57d885fe 8016 unsigned long flags;
57d885fe 8017
05fa785c 8018 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
8019
8020 if (rq->rd) {
a0490fa3 8021 old_rd = rq->rd;
57d885fe 8022
c6c4927b 8023 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 8024 set_rq_offline(rq);
57d885fe 8025
c6c4927b 8026 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 8027
a0490fa3
IM
8028 /*
8029 * If we dont want to free the old_rt yet then
8030 * set old_rd to NULL to skip the freeing later
8031 * in this function:
8032 */
8033 if (!atomic_dec_and_test(&old_rd->refcount))
8034 old_rd = NULL;
57d885fe
GH
8035 }
8036
8037 atomic_inc(&rd->refcount);
8038 rq->rd = rd;
8039
c6c4927b 8040 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 8041 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 8042 set_rq_online(rq);
57d885fe 8043
05fa785c 8044 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
8045
8046 if (old_rd)
8047 free_rootdomain(old_rd);
57d885fe
GH
8048}
8049
fd5e1b5d 8050static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 8051{
36b7b6d4
PE
8052 gfp_t gfp = GFP_KERNEL;
8053
57d885fe
GH
8054 memset(rd, 0, sizeof(*rd));
8055
36b7b6d4
PE
8056 if (bootmem)
8057 gfp = GFP_NOWAIT;
c6c4927b 8058
36b7b6d4 8059 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 8060 goto out;
36b7b6d4 8061 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 8062 goto free_span;
36b7b6d4 8063 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 8064 goto free_online;
6e0534f2 8065
0fb53029 8066 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 8067 goto free_rto_mask;
c6c4927b 8068 return 0;
6e0534f2 8069
68e74568
RR
8070free_rto_mask:
8071 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
8072free_online:
8073 free_cpumask_var(rd->online);
8074free_span:
8075 free_cpumask_var(rd->span);
0c910d28 8076out:
c6c4927b 8077 return -ENOMEM;
57d885fe
GH
8078}
8079
8080static void init_defrootdomain(void)
8081{
c6c4927b
RR
8082 init_rootdomain(&def_root_domain, true);
8083
57d885fe
GH
8084 atomic_set(&def_root_domain.refcount, 1);
8085}
8086
dc938520 8087static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
8088{
8089 struct root_domain *rd;
8090
8091 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8092 if (!rd)
8093 return NULL;
8094
c6c4927b
RR
8095 if (init_rootdomain(rd, false) != 0) {
8096 kfree(rd);
8097 return NULL;
8098 }
57d885fe
GH
8099
8100 return rd;
8101}
8102
1da177e4 8103/*
0eab9146 8104 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8105 * hold the hotplug lock.
8106 */
0eab9146
IM
8107static void
8108cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8109{
70b97a7f 8110 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8111 struct sched_domain *tmp;
8112
8113 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8114 for (tmp = sd; tmp; ) {
245af2c7
SS
8115 struct sched_domain *parent = tmp->parent;
8116 if (!parent)
8117 break;
f29c9b1c 8118
1a848870 8119 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8120 tmp->parent = parent->parent;
1a848870
SS
8121 if (parent->parent)
8122 parent->parent->child = tmp;
f29c9b1c
LZ
8123 } else
8124 tmp = tmp->parent;
245af2c7
SS
8125 }
8126
1a848870 8127 if (sd && sd_degenerate(sd)) {
245af2c7 8128 sd = sd->parent;
1a848870
SS
8129 if (sd)
8130 sd->child = NULL;
8131 }
1da177e4
LT
8132
8133 sched_domain_debug(sd, cpu);
8134
57d885fe 8135 rq_attach_root(rq, rd);
674311d5 8136 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8137}
8138
8139/* cpus with isolated domains */
dcc30a35 8140static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8141
8142/* Setup the mask of cpus configured for isolated domains */
8143static int __init isolated_cpu_setup(char *str)
8144{
bdddd296 8145 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 8146 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8147 return 1;
8148}
8149
8927f494 8150__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8151
8152/*
6711cab4
SS
8153 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8154 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8155 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8156 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8157 *
8158 * init_sched_build_groups will build a circular linked list of the groups
8159 * covered by the given span, and will set each group's ->cpumask correctly,
8160 * and ->cpu_power to 0.
8161 */
a616058b 8162static void
96f874e2
RR
8163init_sched_build_groups(const struct cpumask *span,
8164 const struct cpumask *cpu_map,
8165 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8166 struct sched_group **sg,
96f874e2
RR
8167 struct cpumask *tmpmask),
8168 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8169{
8170 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8171 int i;
8172
96f874e2 8173 cpumask_clear(covered);
7c16ec58 8174
abcd083a 8175 for_each_cpu(i, span) {
6711cab4 8176 struct sched_group *sg;
7c16ec58 8177 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8178 int j;
8179
758b2cdc 8180 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8181 continue;
8182
758b2cdc 8183 cpumask_clear(sched_group_cpus(sg));
18a3885f 8184 sg->cpu_power = 0;
1da177e4 8185
abcd083a 8186 for_each_cpu(j, span) {
7c16ec58 8187 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8188 continue;
8189
96f874e2 8190 cpumask_set_cpu(j, covered);
758b2cdc 8191 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8192 }
8193 if (!first)
8194 first = sg;
8195 if (last)
8196 last->next = sg;
8197 last = sg;
8198 }
8199 last->next = first;
8200}
8201
9c1cfda2 8202#define SD_NODES_PER_DOMAIN 16
1da177e4 8203
9c1cfda2 8204#ifdef CONFIG_NUMA
198e2f18 8205
9c1cfda2
JH
8206/**
8207 * find_next_best_node - find the next node to include in a sched_domain
8208 * @node: node whose sched_domain we're building
8209 * @used_nodes: nodes already in the sched_domain
8210 *
41a2d6cf 8211 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8212 * finds the closest node not already in the @used_nodes map.
8213 *
8214 * Should use nodemask_t.
8215 */
c5f59f08 8216static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8217{
8218 int i, n, val, min_val, best_node = 0;
8219
8220 min_val = INT_MAX;
8221
076ac2af 8222 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8223 /* Start at @node */
076ac2af 8224 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8225
8226 if (!nr_cpus_node(n))
8227 continue;
8228
8229 /* Skip already used nodes */
c5f59f08 8230 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8231 continue;
8232
8233 /* Simple min distance search */
8234 val = node_distance(node, n);
8235
8236 if (val < min_val) {
8237 min_val = val;
8238 best_node = n;
8239 }
8240 }
8241
c5f59f08 8242 node_set(best_node, *used_nodes);
9c1cfda2
JH
8243 return best_node;
8244}
8245
8246/**
8247 * sched_domain_node_span - get a cpumask for a node's sched_domain
8248 * @node: node whose cpumask we're constructing
73486722 8249 * @span: resulting cpumask
9c1cfda2 8250 *
41a2d6cf 8251 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8252 * should be one that prevents unnecessary balancing, but also spreads tasks
8253 * out optimally.
8254 */
96f874e2 8255static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8256{
c5f59f08 8257 nodemask_t used_nodes;
48f24c4d 8258 int i;
9c1cfda2 8259
6ca09dfc 8260 cpumask_clear(span);
c5f59f08 8261 nodes_clear(used_nodes);
9c1cfda2 8262
6ca09dfc 8263 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8264 node_set(node, used_nodes);
9c1cfda2
JH
8265
8266 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8267 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8268
6ca09dfc 8269 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8270 }
9c1cfda2 8271}
6d6bc0ad 8272#endif /* CONFIG_NUMA */
9c1cfda2 8273
5c45bf27 8274int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8275
6c99e9ad
RR
8276/*
8277 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8278 *
8279 * ( See the the comments in include/linux/sched.h:struct sched_group
8280 * and struct sched_domain. )
6c99e9ad
RR
8281 */
8282struct static_sched_group {
8283 struct sched_group sg;
8284 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8285};
8286
8287struct static_sched_domain {
8288 struct sched_domain sd;
8289 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8290};
8291
49a02c51
AH
8292struct s_data {
8293#ifdef CONFIG_NUMA
8294 int sd_allnodes;
8295 cpumask_var_t domainspan;
8296 cpumask_var_t covered;
8297 cpumask_var_t notcovered;
8298#endif
8299 cpumask_var_t nodemask;
8300 cpumask_var_t this_sibling_map;
8301 cpumask_var_t this_core_map;
8302 cpumask_var_t send_covered;
8303 cpumask_var_t tmpmask;
8304 struct sched_group **sched_group_nodes;
8305 struct root_domain *rd;
8306};
8307
2109b99e
AH
8308enum s_alloc {
8309 sa_sched_groups = 0,
8310 sa_rootdomain,
8311 sa_tmpmask,
8312 sa_send_covered,
8313 sa_this_core_map,
8314 sa_this_sibling_map,
8315 sa_nodemask,
8316 sa_sched_group_nodes,
8317#ifdef CONFIG_NUMA
8318 sa_notcovered,
8319 sa_covered,
8320 sa_domainspan,
8321#endif
8322 sa_none,
8323};
8324
9c1cfda2 8325/*
48f24c4d 8326 * SMT sched-domains:
9c1cfda2 8327 */
1da177e4 8328#ifdef CONFIG_SCHED_SMT
6c99e9ad 8329static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 8330static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 8331
41a2d6cf 8332static int
96f874e2
RR
8333cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8334 struct sched_group **sg, struct cpumask *unused)
1da177e4 8335{
6711cab4 8336 if (sg)
1871e52c 8337 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
8338 return cpu;
8339}
6d6bc0ad 8340#endif /* CONFIG_SCHED_SMT */
1da177e4 8341
48f24c4d
IM
8342/*
8343 * multi-core sched-domains:
8344 */
1e9f28fa 8345#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8346static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8347static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8348#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8349
8350#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8351static int
96f874e2
RR
8352cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8353 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8354{
6711cab4 8355 int group;
7c16ec58 8356
c69fc56d 8357 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8358 group = cpumask_first(mask);
6711cab4 8359 if (sg)
6c99e9ad 8360 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8361 return group;
1e9f28fa
SS
8362}
8363#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8364static int
96f874e2
RR
8365cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8366 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8367{
6711cab4 8368 if (sg)
6c99e9ad 8369 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8370 return cpu;
8371}
8372#endif
8373
6c99e9ad
RR
8374static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8375static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8376
41a2d6cf 8377static int
96f874e2
RR
8378cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8379 struct sched_group **sg, struct cpumask *mask)
1da177e4 8380{
6711cab4 8381 int group;
48f24c4d 8382#ifdef CONFIG_SCHED_MC
6ca09dfc 8383 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8384 group = cpumask_first(mask);
1e9f28fa 8385#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8386 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8387 group = cpumask_first(mask);
1da177e4 8388#else
6711cab4 8389 group = cpu;
1da177e4 8390#endif
6711cab4 8391 if (sg)
6c99e9ad 8392 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8393 return group;
1da177e4
LT
8394}
8395
8396#ifdef CONFIG_NUMA
1da177e4 8397/*
9c1cfda2
JH
8398 * The init_sched_build_groups can't handle what we want to do with node
8399 * groups, so roll our own. Now each node has its own list of groups which
8400 * gets dynamically allocated.
1da177e4 8401 */
62ea9ceb 8402static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8403static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8404
62ea9ceb 8405static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8406static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8407
96f874e2
RR
8408static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8409 struct sched_group **sg,
8410 struct cpumask *nodemask)
9c1cfda2 8411{
6711cab4
SS
8412 int group;
8413
6ca09dfc 8414 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8415 group = cpumask_first(nodemask);
6711cab4
SS
8416
8417 if (sg)
6c99e9ad 8418 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8419 return group;
1da177e4 8420}
6711cab4 8421
08069033
SS
8422static void init_numa_sched_groups_power(struct sched_group *group_head)
8423{
8424 struct sched_group *sg = group_head;
8425 int j;
8426
8427 if (!sg)
8428 return;
3a5c359a 8429 do {
758b2cdc 8430 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8431 struct sched_domain *sd;
08069033 8432
6c99e9ad 8433 sd = &per_cpu(phys_domains, j).sd;
13318a71 8434 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8435 /*
8436 * Only add "power" once for each
8437 * physical package.
8438 */
8439 continue;
8440 }
08069033 8441
18a3885f 8442 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8443 }
8444 sg = sg->next;
8445 } while (sg != group_head);
08069033 8446}
0601a88d
AH
8447
8448static int build_numa_sched_groups(struct s_data *d,
8449 const struct cpumask *cpu_map, int num)
8450{
8451 struct sched_domain *sd;
8452 struct sched_group *sg, *prev;
8453 int n, j;
8454
8455 cpumask_clear(d->covered);
8456 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8457 if (cpumask_empty(d->nodemask)) {
8458 d->sched_group_nodes[num] = NULL;
8459 goto out;
8460 }
8461
8462 sched_domain_node_span(num, d->domainspan);
8463 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8464
8465 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8466 GFP_KERNEL, num);
8467 if (!sg) {
663997d4 8468 pr_warning("Can not alloc domain group for node %d\n", num);
0601a88d
AH
8469 return -ENOMEM;
8470 }
8471 d->sched_group_nodes[num] = sg;
8472
8473 for_each_cpu(j, d->nodemask) {
8474 sd = &per_cpu(node_domains, j).sd;
8475 sd->groups = sg;
8476 }
8477
18a3885f 8478 sg->cpu_power = 0;
0601a88d
AH
8479 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8480 sg->next = sg;
8481 cpumask_or(d->covered, d->covered, d->nodemask);
8482
8483 prev = sg;
8484 for (j = 0; j < nr_node_ids; j++) {
8485 n = (num + j) % nr_node_ids;
8486 cpumask_complement(d->notcovered, d->covered);
8487 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8488 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8489 if (cpumask_empty(d->tmpmask))
8490 break;
8491 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8492 if (cpumask_empty(d->tmpmask))
8493 continue;
8494 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8495 GFP_KERNEL, num);
8496 if (!sg) {
663997d4
JP
8497 pr_warning("Can not alloc domain group for node %d\n",
8498 j);
0601a88d
AH
8499 return -ENOMEM;
8500 }
18a3885f 8501 sg->cpu_power = 0;
0601a88d
AH
8502 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8503 sg->next = prev->next;
8504 cpumask_or(d->covered, d->covered, d->tmpmask);
8505 prev->next = sg;
8506 prev = sg;
8507 }
8508out:
8509 return 0;
8510}
6d6bc0ad 8511#endif /* CONFIG_NUMA */
1da177e4 8512
a616058b 8513#ifdef CONFIG_NUMA
51888ca2 8514/* Free memory allocated for various sched_group structures */
96f874e2
RR
8515static void free_sched_groups(const struct cpumask *cpu_map,
8516 struct cpumask *nodemask)
51888ca2 8517{
a616058b 8518 int cpu, i;
51888ca2 8519
abcd083a 8520 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8521 struct sched_group **sched_group_nodes
8522 = sched_group_nodes_bycpu[cpu];
8523
51888ca2
SV
8524 if (!sched_group_nodes)
8525 continue;
8526
076ac2af 8527 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8528 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8529
6ca09dfc 8530 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8531 if (cpumask_empty(nodemask))
51888ca2
SV
8532 continue;
8533
8534 if (sg == NULL)
8535 continue;
8536 sg = sg->next;
8537next_sg:
8538 oldsg = sg;
8539 sg = sg->next;
8540 kfree(oldsg);
8541 if (oldsg != sched_group_nodes[i])
8542 goto next_sg;
8543 }
8544 kfree(sched_group_nodes);
8545 sched_group_nodes_bycpu[cpu] = NULL;
8546 }
51888ca2 8547}
6d6bc0ad 8548#else /* !CONFIG_NUMA */
96f874e2
RR
8549static void free_sched_groups(const struct cpumask *cpu_map,
8550 struct cpumask *nodemask)
a616058b
SS
8551{
8552}
6d6bc0ad 8553#endif /* CONFIG_NUMA */
51888ca2 8554
89c4710e
SS
8555/*
8556 * Initialize sched groups cpu_power.
8557 *
8558 * cpu_power indicates the capacity of sched group, which is used while
8559 * distributing the load between different sched groups in a sched domain.
8560 * Typically cpu_power for all the groups in a sched domain will be same unless
8561 * there are asymmetries in the topology. If there are asymmetries, group
8562 * having more cpu_power will pickup more load compared to the group having
8563 * less cpu_power.
89c4710e
SS
8564 */
8565static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8566{
8567 struct sched_domain *child;
8568 struct sched_group *group;
f93e65c1
PZ
8569 long power;
8570 int weight;
89c4710e
SS
8571
8572 WARN_ON(!sd || !sd->groups);
8573
13318a71 8574 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8575 return;
8576
8577 child = sd->child;
8578
18a3885f 8579 sd->groups->cpu_power = 0;
5517d86b 8580
f93e65c1
PZ
8581 if (!child) {
8582 power = SCHED_LOAD_SCALE;
8583 weight = cpumask_weight(sched_domain_span(sd));
8584 /*
8585 * SMT siblings share the power of a single core.
a52bfd73
PZ
8586 * Usually multiple threads get a better yield out of
8587 * that one core than a single thread would have,
8588 * reflect that in sd->smt_gain.
f93e65c1 8589 */
a52bfd73
PZ
8590 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8591 power *= sd->smt_gain;
f93e65c1 8592 power /= weight;
a52bfd73
PZ
8593 power >>= SCHED_LOAD_SHIFT;
8594 }
18a3885f 8595 sd->groups->cpu_power += power;
89c4710e
SS
8596 return;
8597 }
8598
89c4710e 8599 /*
f93e65c1 8600 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8601 */
8602 group = child->groups;
8603 do {
18a3885f 8604 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8605 group = group->next;
8606 } while (group != child->groups);
8607}
8608
7c16ec58
MT
8609/*
8610 * Initializers for schedule domains
8611 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8612 */
8613
a5d8c348
IM
8614#ifdef CONFIG_SCHED_DEBUG
8615# define SD_INIT_NAME(sd, type) sd->name = #type
8616#else
8617# define SD_INIT_NAME(sd, type) do { } while (0)
8618#endif
8619
7c16ec58 8620#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8621
7c16ec58
MT
8622#define SD_INIT_FUNC(type) \
8623static noinline void sd_init_##type(struct sched_domain *sd) \
8624{ \
8625 memset(sd, 0, sizeof(*sd)); \
8626 *sd = SD_##type##_INIT; \
1d3504fc 8627 sd->level = SD_LV_##type; \
a5d8c348 8628 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8629}
8630
8631SD_INIT_FUNC(CPU)
8632#ifdef CONFIG_NUMA
8633 SD_INIT_FUNC(ALLNODES)
8634 SD_INIT_FUNC(NODE)
8635#endif
8636#ifdef CONFIG_SCHED_SMT
8637 SD_INIT_FUNC(SIBLING)
8638#endif
8639#ifdef CONFIG_SCHED_MC
8640 SD_INIT_FUNC(MC)
8641#endif
8642
1d3504fc
HS
8643static int default_relax_domain_level = -1;
8644
8645static int __init setup_relax_domain_level(char *str)
8646{
30e0e178
LZ
8647 unsigned long val;
8648
8649 val = simple_strtoul(str, NULL, 0);
8650 if (val < SD_LV_MAX)
8651 default_relax_domain_level = val;
8652
1d3504fc
HS
8653 return 1;
8654}
8655__setup("relax_domain_level=", setup_relax_domain_level);
8656
8657static void set_domain_attribute(struct sched_domain *sd,
8658 struct sched_domain_attr *attr)
8659{
8660 int request;
8661
8662 if (!attr || attr->relax_domain_level < 0) {
8663 if (default_relax_domain_level < 0)
8664 return;
8665 else
8666 request = default_relax_domain_level;
8667 } else
8668 request = attr->relax_domain_level;
8669 if (request < sd->level) {
8670 /* turn off idle balance on this domain */
c88d5910 8671 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8672 } else {
8673 /* turn on idle balance on this domain */
c88d5910 8674 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8675 }
8676}
8677
2109b99e
AH
8678static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8679 const struct cpumask *cpu_map)
8680{
8681 switch (what) {
8682 case sa_sched_groups:
8683 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8684 d->sched_group_nodes = NULL;
8685 case sa_rootdomain:
8686 free_rootdomain(d->rd); /* fall through */
8687 case sa_tmpmask:
8688 free_cpumask_var(d->tmpmask); /* fall through */
8689 case sa_send_covered:
8690 free_cpumask_var(d->send_covered); /* fall through */
8691 case sa_this_core_map:
8692 free_cpumask_var(d->this_core_map); /* fall through */
8693 case sa_this_sibling_map:
8694 free_cpumask_var(d->this_sibling_map); /* fall through */
8695 case sa_nodemask:
8696 free_cpumask_var(d->nodemask); /* fall through */
8697 case sa_sched_group_nodes:
d1b55138 8698#ifdef CONFIG_NUMA
2109b99e
AH
8699 kfree(d->sched_group_nodes); /* fall through */
8700 case sa_notcovered:
8701 free_cpumask_var(d->notcovered); /* fall through */
8702 case sa_covered:
8703 free_cpumask_var(d->covered); /* fall through */
8704 case sa_domainspan:
8705 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8706#endif
2109b99e
AH
8707 case sa_none:
8708 break;
8709 }
8710}
3404c8d9 8711
2109b99e
AH
8712static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8713 const struct cpumask *cpu_map)
8714{
3404c8d9 8715#ifdef CONFIG_NUMA
2109b99e
AH
8716 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8717 return sa_none;
8718 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8719 return sa_domainspan;
8720 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8721 return sa_covered;
8722 /* Allocate the per-node list of sched groups */
8723 d->sched_group_nodes = kcalloc(nr_node_ids,
8724 sizeof(struct sched_group *), GFP_KERNEL);
8725 if (!d->sched_group_nodes) {
663997d4 8726 pr_warning("Can not alloc sched group node list\n");
2109b99e 8727 return sa_notcovered;
d1b55138 8728 }
2109b99e 8729 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8730#endif
2109b99e
AH
8731 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8732 return sa_sched_group_nodes;
8733 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8734 return sa_nodemask;
8735 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8736 return sa_this_sibling_map;
8737 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8738 return sa_this_core_map;
8739 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8740 return sa_send_covered;
8741 d->rd = alloc_rootdomain();
8742 if (!d->rd) {
663997d4 8743 pr_warning("Cannot alloc root domain\n");
2109b99e 8744 return sa_tmpmask;
57d885fe 8745 }
2109b99e
AH
8746 return sa_rootdomain;
8747}
57d885fe 8748
7f4588f3
AH
8749static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8750 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8751{
8752 struct sched_domain *sd = NULL;
7c16ec58 8753#ifdef CONFIG_NUMA
7f4588f3 8754 struct sched_domain *parent;
1da177e4 8755
7f4588f3
AH
8756 d->sd_allnodes = 0;
8757 if (cpumask_weight(cpu_map) >
8758 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8759 sd = &per_cpu(allnodes_domains, i).sd;
8760 SD_INIT(sd, ALLNODES);
1d3504fc 8761 set_domain_attribute(sd, attr);
7f4588f3
AH
8762 cpumask_copy(sched_domain_span(sd), cpu_map);
8763 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8764 d->sd_allnodes = 1;
8765 }
8766 parent = sd;
8767
8768 sd = &per_cpu(node_domains, i).sd;
8769 SD_INIT(sd, NODE);
8770 set_domain_attribute(sd, attr);
8771 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8772 sd->parent = parent;
8773 if (parent)
8774 parent->child = sd;
8775 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8776#endif
7f4588f3
AH
8777 return sd;
8778}
1da177e4 8779
87cce662
AH
8780static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8781 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8782 struct sched_domain *parent, int i)
8783{
8784 struct sched_domain *sd;
8785 sd = &per_cpu(phys_domains, i).sd;
8786 SD_INIT(sd, CPU);
8787 set_domain_attribute(sd, attr);
8788 cpumask_copy(sched_domain_span(sd), d->nodemask);
8789 sd->parent = parent;
8790 if (parent)
8791 parent->child = sd;
8792 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8793 return sd;
8794}
1da177e4 8795
410c4081
AH
8796static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8797 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8798 struct sched_domain *parent, int i)
8799{
8800 struct sched_domain *sd = parent;
1e9f28fa 8801#ifdef CONFIG_SCHED_MC
410c4081
AH
8802 sd = &per_cpu(core_domains, i).sd;
8803 SD_INIT(sd, MC);
8804 set_domain_attribute(sd, attr);
8805 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8806 sd->parent = parent;
8807 parent->child = sd;
8808 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8809#endif
410c4081
AH
8810 return sd;
8811}
1e9f28fa 8812
d8173535
AH
8813static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8814 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8815 struct sched_domain *parent, int i)
8816{
8817 struct sched_domain *sd = parent;
1da177e4 8818#ifdef CONFIG_SCHED_SMT
d8173535
AH
8819 sd = &per_cpu(cpu_domains, i).sd;
8820 SD_INIT(sd, SIBLING);
8821 set_domain_attribute(sd, attr);
8822 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8823 sd->parent = parent;
8824 parent->child = sd;
8825 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8826#endif
d8173535
AH
8827 return sd;
8828}
1da177e4 8829
0e8e85c9
AH
8830static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8831 const struct cpumask *cpu_map, int cpu)
8832{
8833 switch (l) {
1da177e4 8834#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8835 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8836 cpumask_and(d->this_sibling_map, cpu_map,
8837 topology_thread_cpumask(cpu));
8838 if (cpu == cpumask_first(d->this_sibling_map))
8839 init_sched_build_groups(d->this_sibling_map, cpu_map,
8840 &cpu_to_cpu_group,
8841 d->send_covered, d->tmpmask);
8842 break;
1da177e4 8843#endif
1e9f28fa 8844#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8845 case SD_LV_MC: /* set up multi-core groups */
8846 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8847 if (cpu == cpumask_first(d->this_core_map))
8848 init_sched_build_groups(d->this_core_map, cpu_map,
8849 &cpu_to_core_group,
8850 d->send_covered, d->tmpmask);
8851 break;
1e9f28fa 8852#endif
86548096
AH
8853 case SD_LV_CPU: /* set up physical groups */
8854 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8855 if (!cpumask_empty(d->nodemask))
8856 init_sched_build_groups(d->nodemask, cpu_map,
8857 &cpu_to_phys_group,
8858 d->send_covered, d->tmpmask);
8859 break;
1da177e4 8860#ifdef CONFIG_NUMA
de616e36
AH
8861 case SD_LV_ALLNODES:
8862 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8863 d->send_covered, d->tmpmask);
8864 break;
8865#endif
0e8e85c9
AH
8866 default:
8867 break;
7c16ec58 8868 }
0e8e85c9 8869}
9c1cfda2 8870
2109b99e
AH
8871/*
8872 * Build sched domains for a given set of cpus and attach the sched domains
8873 * to the individual cpus
8874 */
8875static int __build_sched_domains(const struct cpumask *cpu_map,
8876 struct sched_domain_attr *attr)
8877{
8878 enum s_alloc alloc_state = sa_none;
8879 struct s_data d;
294b0c96 8880 struct sched_domain *sd;
2109b99e 8881 int i;
7c16ec58 8882#ifdef CONFIG_NUMA
2109b99e 8883 d.sd_allnodes = 0;
7c16ec58 8884#endif
9c1cfda2 8885
2109b99e
AH
8886 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8887 if (alloc_state != sa_rootdomain)
8888 goto error;
8889 alloc_state = sa_sched_groups;
9c1cfda2 8890
1da177e4 8891 /*
1a20ff27 8892 * Set up domains for cpus specified by the cpu_map.
1da177e4 8893 */
abcd083a 8894 for_each_cpu(i, cpu_map) {
49a02c51
AH
8895 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8896 cpu_map);
9761eea8 8897
7f4588f3 8898 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8899 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8900 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8901 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8902 }
9c1cfda2 8903
abcd083a 8904 for_each_cpu(i, cpu_map) {
0e8e85c9 8905 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8906 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8907 }
9c1cfda2 8908
1da177e4 8909 /* Set up physical groups */
86548096
AH
8910 for (i = 0; i < nr_node_ids; i++)
8911 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8912
1da177e4
LT
8913#ifdef CONFIG_NUMA
8914 /* Set up node groups */
de616e36
AH
8915 if (d.sd_allnodes)
8916 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8917
0601a88d
AH
8918 for (i = 0; i < nr_node_ids; i++)
8919 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8920 goto error;
1da177e4
LT
8921#endif
8922
8923 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8924#ifdef CONFIG_SCHED_SMT
abcd083a 8925 for_each_cpu(i, cpu_map) {
294b0c96 8926 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8927 init_sched_groups_power(i, sd);
5c45bf27 8928 }
1da177e4 8929#endif
1e9f28fa 8930#ifdef CONFIG_SCHED_MC
abcd083a 8931 for_each_cpu(i, cpu_map) {
294b0c96 8932 sd = &per_cpu(core_domains, i).sd;
89c4710e 8933 init_sched_groups_power(i, sd);
5c45bf27
SS
8934 }
8935#endif
1e9f28fa 8936
abcd083a 8937 for_each_cpu(i, cpu_map) {
294b0c96 8938 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8939 init_sched_groups_power(i, sd);
1da177e4
LT
8940 }
8941
9c1cfda2 8942#ifdef CONFIG_NUMA
076ac2af 8943 for (i = 0; i < nr_node_ids; i++)
49a02c51 8944 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8945
49a02c51 8946 if (d.sd_allnodes) {
6711cab4 8947 struct sched_group *sg;
f712c0c7 8948
96f874e2 8949 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8950 d.tmpmask);
f712c0c7
SS
8951 init_numa_sched_groups_power(sg);
8952 }
9c1cfda2
JH
8953#endif
8954
1da177e4 8955 /* Attach the domains */
abcd083a 8956 for_each_cpu(i, cpu_map) {
1da177e4 8957#ifdef CONFIG_SCHED_SMT
6c99e9ad 8958 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8959#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8960 sd = &per_cpu(core_domains, i).sd;
1da177e4 8961#else
6c99e9ad 8962 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8963#endif
49a02c51 8964 cpu_attach_domain(sd, d.rd, i);
1da177e4 8965 }
51888ca2 8966
2109b99e
AH
8967 d.sched_group_nodes = NULL; /* don't free this we still need it */
8968 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8969 return 0;
51888ca2 8970
51888ca2 8971error:
2109b99e
AH
8972 __free_domain_allocs(&d, alloc_state, cpu_map);
8973 return -ENOMEM;
1da177e4 8974}
029190c5 8975
96f874e2 8976static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8977{
8978 return __build_sched_domains(cpu_map, NULL);
8979}
8980
acc3f5d7 8981static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 8982static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8983static struct sched_domain_attr *dattr_cur;
8984 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8985
8986/*
8987 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8988 * cpumask) fails, then fallback to a single sched domain,
8989 * as determined by the single cpumask fallback_doms.
029190c5 8990 */
4212823f 8991static cpumask_var_t fallback_doms;
029190c5 8992
ee79d1bd
HC
8993/*
8994 * arch_update_cpu_topology lets virtualized architectures update the
8995 * cpu core maps. It is supposed to return 1 if the topology changed
8996 * or 0 if it stayed the same.
8997 */
8998int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8999{
ee79d1bd 9000 return 0;
22e52b07
HC
9001}
9002
acc3f5d7
RR
9003cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
9004{
9005 int i;
9006 cpumask_var_t *doms;
9007
9008 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
9009 if (!doms)
9010 return NULL;
9011 for (i = 0; i < ndoms; i++) {
9012 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
9013 free_sched_domains(doms, i);
9014 return NULL;
9015 }
9016 }
9017 return doms;
9018}
9019
9020void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
9021{
9022 unsigned int i;
9023 for (i = 0; i < ndoms; i++)
9024 free_cpumask_var(doms[i]);
9025 kfree(doms);
9026}
9027
1a20ff27 9028/*
41a2d6cf 9029 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
9030 * For now this just excludes isolated cpus, but could be used to
9031 * exclude other special cases in the future.
1a20ff27 9032 */
96f874e2 9033static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 9034{
7378547f
MM
9035 int err;
9036
22e52b07 9037 arch_update_cpu_topology();
029190c5 9038 ndoms_cur = 1;
acc3f5d7 9039 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 9040 if (!doms_cur)
acc3f5d7
RR
9041 doms_cur = &fallback_doms;
9042 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 9043 dattr_cur = NULL;
acc3f5d7 9044 err = build_sched_domains(doms_cur[0]);
6382bc90 9045 register_sched_domain_sysctl();
7378547f
MM
9046
9047 return err;
1a20ff27
DG
9048}
9049
96f874e2
RR
9050static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9051 struct cpumask *tmpmask)
1da177e4 9052{
7c16ec58 9053 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 9054}
1da177e4 9055
1a20ff27
DG
9056/*
9057 * Detach sched domains from a group of cpus specified in cpu_map
9058 * These cpus will now be attached to the NULL domain
9059 */
96f874e2 9060static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 9061{
96f874e2
RR
9062 /* Save because hotplug lock held. */
9063 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
9064 int i;
9065
abcd083a 9066 for_each_cpu(i, cpu_map)
57d885fe 9067 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 9068 synchronize_sched();
96f874e2 9069 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
9070}
9071
1d3504fc
HS
9072/* handle null as "default" */
9073static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9074 struct sched_domain_attr *new, int idx_new)
9075{
9076 struct sched_domain_attr tmp;
9077
9078 /* fast path */
9079 if (!new && !cur)
9080 return 1;
9081
9082 tmp = SD_ATTR_INIT;
9083 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9084 new ? (new + idx_new) : &tmp,
9085 sizeof(struct sched_domain_attr));
9086}
9087
029190c5
PJ
9088/*
9089 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 9090 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
9091 * doms_new[] to the current sched domain partitioning, doms_cur[].
9092 * It destroys each deleted domain and builds each new domain.
9093 *
acc3f5d7 9094 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
9095 * The masks don't intersect (don't overlap.) We should setup one
9096 * sched domain for each mask. CPUs not in any of the cpumasks will
9097 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
9098 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9099 * it as it is.
9100 *
acc3f5d7
RR
9101 * The passed in 'doms_new' should be allocated using
9102 * alloc_sched_domains. This routine takes ownership of it and will
9103 * free_sched_domains it when done with it. If the caller failed the
9104 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9105 * and partition_sched_domains() will fallback to the single partition
9106 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 9107 *
96f874e2 9108 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
9109 * ndoms_new == 0 is a special case for destroying existing domains,
9110 * and it will not create the default domain.
dfb512ec 9111 *
029190c5
PJ
9112 * Call with hotplug lock held
9113 */
acc3f5d7 9114void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 9115 struct sched_domain_attr *dattr_new)
029190c5 9116{
dfb512ec 9117 int i, j, n;
d65bd5ec 9118 int new_topology;
029190c5 9119
712555ee 9120 mutex_lock(&sched_domains_mutex);
a1835615 9121
7378547f
MM
9122 /* always unregister in case we don't destroy any domains */
9123 unregister_sched_domain_sysctl();
9124
d65bd5ec
HC
9125 /* Let architecture update cpu core mappings. */
9126 new_topology = arch_update_cpu_topology();
9127
dfb512ec 9128 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9129
9130 /* Destroy deleted domains */
9131 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9132 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 9133 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 9134 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9135 goto match1;
9136 }
9137 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 9138 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
9139match1:
9140 ;
9141 }
9142
e761b772
MK
9143 if (doms_new == NULL) {
9144 ndoms_cur = 0;
acc3f5d7 9145 doms_new = &fallback_doms;
6ad4c188 9146 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 9147 WARN_ON_ONCE(dattr_new);
e761b772
MK
9148 }
9149
029190c5
PJ
9150 /* Build new domains */
9151 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9152 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 9153 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 9154 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9155 goto match2;
9156 }
9157 /* no match - add a new doms_new */
acc3f5d7 9158 __build_sched_domains(doms_new[i],
1d3504fc 9159 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9160match2:
9161 ;
9162 }
9163
9164 /* Remember the new sched domains */
acc3f5d7
RR
9165 if (doms_cur != &fallback_doms)
9166 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 9167 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9168 doms_cur = doms_new;
1d3504fc 9169 dattr_cur = dattr_new;
029190c5 9170 ndoms_cur = ndoms_new;
7378547f
MM
9171
9172 register_sched_domain_sysctl();
a1835615 9173
712555ee 9174 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9175}
9176
5c45bf27 9177#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9178static void arch_reinit_sched_domains(void)
5c45bf27 9179{
95402b38 9180 get_online_cpus();
dfb512ec
MK
9181
9182 /* Destroy domains first to force the rebuild */
9183 partition_sched_domains(0, NULL, NULL);
9184
e761b772 9185 rebuild_sched_domains();
95402b38 9186 put_online_cpus();
5c45bf27
SS
9187}
9188
9189static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9190{
afb8a9b7 9191 unsigned int level = 0;
5c45bf27 9192
afb8a9b7
GS
9193 if (sscanf(buf, "%u", &level) != 1)
9194 return -EINVAL;
9195
9196 /*
9197 * level is always be positive so don't check for
9198 * level < POWERSAVINGS_BALANCE_NONE which is 0
9199 * What happens on 0 or 1 byte write,
9200 * need to check for count as well?
9201 */
9202
9203 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9204 return -EINVAL;
9205
9206 if (smt)
afb8a9b7 9207 sched_smt_power_savings = level;
5c45bf27 9208 else
afb8a9b7 9209 sched_mc_power_savings = level;
5c45bf27 9210
c70f22d2 9211 arch_reinit_sched_domains();
5c45bf27 9212
c70f22d2 9213 return count;
5c45bf27
SS
9214}
9215
5c45bf27 9216#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9217static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9218 char *page)
5c45bf27
SS
9219{
9220 return sprintf(page, "%u\n", sched_mc_power_savings);
9221}
f718cd4a 9222static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9223 const char *buf, size_t count)
5c45bf27
SS
9224{
9225 return sched_power_savings_store(buf, count, 0);
9226}
f718cd4a
AK
9227static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9228 sched_mc_power_savings_show,
9229 sched_mc_power_savings_store);
5c45bf27
SS
9230#endif
9231
9232#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9233static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9234 char *page)
5c45bf27
SS
9235{
9236 return sprintf(page, "%u\n", sched_smt_power_savings);
9237}
f718cd4a 9238static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9239 const char *buf, size_t count)
5c45bf27
SS
9240{
9241 return sched_power_savings_store(buf, count, 1);
9242}
f718cd4a
AK
9243static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9244 sched_smt_power_savings_show,
6707de00
AB
9245 sched_smt_power_savings_store);
9246#endif
9247
39aac648 9248int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9249{
9250 int err = 0;
9251
9252#ifdef CONFIG_SCHED_SMT
9253 if (smt_capable())
9254 err = sysfs_create_file(&cls->kset.kobj,
9255 &attr_sched_smt_power_savings.attr);
9256#endif
9257#ifdef CONFIG_SCHED_MC
9258 if (!err && mc_capable())
9259 err = sysfs_create_file(&cls->kset.kobj,
9260 &attr_sched_mc_power_savings.attr);
9261#endif
9262 return err;
9263}
6d6bc0ad 9264#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9265
e761b772 9266#ifndef CONFIG_CPUSETS
1da177e4 9267/*
e761b772
MK
9268 * Add online and remove offline CPUs from the scheduler domains.
9269 * When cpusets are enabled they take over this function.
1da177e4
LT
9270 */
9271static int update_sched_domains(struct notifier_block *nfb,
9272 unsigned long action, void *hcpu)
e761b772
MK
9273{
9274 switch (action) {
9275 case CPU_ONLINE:
9276 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
9277 case CPU_DOWN_PREPARE:
9278 case CPU_DOWN_PREPARE_FROZEN:
9279 case CPU_DOWN_FAILED:
9280 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 9281 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9282 return NOTIFY_OK;
9283
9284 default:
9285 return NOTIFY_DONE;
9286 }
9287}
9288#endif
9289
9290static int update_runtime(struct notifier_block *nfb,
9291 unsigned long action, void *hcpu)
1da177e4 9292{
7def2be1
PZ
9293 int cpu = (int)(long)hcpu;
9294
1da177e4 9295 switch (action) {
1da177e4 9296 case CPU_DOWN_PREPARE:
8bb78442 9297 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9298 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9299 return NOTIFY_OK;
9300
1da177e4 9301 case CPU_DOWN_FAILED:
8bb78442 9302 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9303 case CPU_ONLINE:
8bb78442 9304 case CPU_ONLINE_FROZEN:
7def2be1 9305 enable_runtime(cpu_rq(cpu));
e761b772
MK
9306 return NOTIFY_OK;
9307
1da177e4
LT
9308 default:
9309 return NOTIFY_DONE;
9310 }
1da177e4 9311}
1da177e4
LT
9312
9313void __init sched_init_smp(void)
9314{
dcc30a35
RR
9315 cpumask_var_t non_isolated_cpus;
9316
9317 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9318 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9319
434d53b0
MT
9320#if defined(CONFIG_NUMA)
9321 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9322 GFP_KERNEL);
9323 BUG_ON(sched_group_nodes_bycpu == NULL);
9324#endif
95402b38 9325 get_online_cpus();
712555ee 9326 mutex_lock(&sched_domains_mutex);
6ad4c188 9327 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
9328 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9329 if (cpumask_empty(non_isolated_cpus))
9330 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9331 mutex_unlock(&sched_domains_mutex);
95402b38 9332 put_online_cpus();
e761b772
MK
9333
9334#ifndef CONFIG_CPUSETS
1da177e4
LT
9335 /* XXX: Theoretical race here - CPU may be hotplugged now */
9336 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9337#endif
9338
9339 /* RT runtime code needs to handle some hotplug events */
9340 hotcpu_notifier(update_runtime, 0);
9341
b328ca18 9342 init_hrtick();
5c1e1767
NP
9343
9344 /* Move init over to a non-isolated CPU */
dcc30a35 9345 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9346 BUG();
19978ca6 9347 sched_init_granularity();
dcc30a35 9348 free_cpumask_var(non_isolated_cpus);
4212823f 9349
0e3900e6 9350 init_sched_rt_class();
1da177e4
LT
9351}
9352#else
9353void __init sched_init_smp(void)
9354{
19978ca6 9355 sched_init_granularity();
1da177e4
LT
9356}
9357#endif /* CONFIG_SMP */
9358
cd1bb94b
AB
9359const_debug unsigned int sysctl_timer_migration = 1;
9360
1da177e4
LT
9361int in_sched_functions(unsigned long addr)
9362{
1da177e4
LT
9363 return in_lock_functions(addr) ||
9364 (addr >= (unsigned long)__sched_text_start
9365 && addr < (unsigned long)__sched_text_end);
9366}
9367
a9957449 9368static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9369{
9370 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9371 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9372#ifdef CONFIG_FAIR_GROUP_SCHED
9373 cfs_rq->rq = rq;
9374#endif
67e9fb2a 9375 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9376}
9377
fa85ae24
PZ
9378static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9379{
9380 struct rt_prio_array *array;
9381 int i;
9382
9383 array = &rt_rq->active;
9384 for (i = 0; i < MAX_RT_PRIO; i++) {
9385 INIT_LIST_HEAD(array->queue + i);
9386 __clear_bit(i, array->bitmap);
9387 }
9388 /* delimiter for bitsearch: */
9389 __set_bit(MAX_RT_PRIO, array->bitmap);
9390
052f1dc7 9391#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9392 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9393#ifdef CONFIG_SMP
e864c499 9394 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9395#endif
48d5e258 9396#endif
fa85ae24
PZ
9397#ifdef CONFIG_SMP
9398 rt_rq->rt_nr_migratory = 0;
fa85ae24 9399 rt_rq->overloaded = 0;
05fa785c 9400 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9401#endif
9402
9403 rt_rq->rt_time = 0;
9404 rt_rq->rt_throttled = 0;
ac086bc2 9405 rt_rq->rt_runtime = 0;
0986b11b 9406 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9407
052f1dc7 9408#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9409 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9410 rt_rq->rq = rq;
9411#endif
fa85ae24
PZ
9412}
9413
6f505b16 9414#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9415static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9416 struct sched_entity *se, int cpu, int add,
9417 struct sched_entity *parent)
6f505b16 9418{
ec7dc8ac 9419 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9420 tg->cfs_rq[cpu] = cfs_rq;
9421 init_cfs_rq(cfs_rq, rq);
9422 cfs_rq->tg = tg;
9423 if (add)
9424 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9425
9426 tg->se[cpu] = se;
354d60c2
DG
9427 /* se could be NULL for init_task_group */
9428 if (!se)
9429 return;
9430
ec7dc8ac
DG
9431 if (!parent)
9432 se->cfs_rq = &rq->cfs;
9433 else
9434 se->cfs_rq = parent->my_q;
9435
6f505b16
PZ
9436 se->my_q = cfs_rq;
9437 se->load.weight = tg->shares;
e05510d0 9438 se->load.inv_weight = 0;
ec7dc8ac 9439 se->parent = parent;
6f505b16 9440}
052f1dc7 9441#endif
6f505b16 9442
052f1dc7 9443#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9444static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9445 struct sched_rt_entity *rt_se, int cpu, int add,
9446 struct sched_rt_entity *parent)
6f505b16 9447{
ec7dc8ac
DG
9448 struct rq *rq = cpu_rq(cpu);
9449
6f505b16
PZ
9450 tg->rt_rq[cpu] = rt_rq;
9451 init_rt_rq(rt_rq, rq);
9452 rt_rq->tg = tg;
9453 rt_rq->rt_se = rt_se;
ac086bc2 9454 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9455 if (add)
9456 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9457
9458 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9459 if (!rt_se)
9460 return;
9461
ec7dc8ac
DG
9462 if (!parent)
9463 rt_se->rt_rq = &rq->rt;
9464 else
9465 rt_se->rt_rq = parent->my_q;
9466
6f505b16 9467 rt_se->my_q = rt_rq;
ec7dc8ac 9468 rt_se->parent = parent;
6f505b16
PZ
9469 INIT_LIST_HEAD(&rt_se->run_list);
9470}
9471#endif
9472
1da177e4
LT
9473void __init sched_init(void)
9474{
dd41f596 9475 int i, j;
434d53b0
MT
9476 unsigned long alloc_size = 0, ptr;
9477
9478#ifdef CONFIG_FAIR_GROUP_SCHED
9479 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9480#endif
9481#ifdef CONFIG_RT_GROUP_SCHED
9482 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9483#endif
9484#ifdef CONFIG_USER_SCHED
9485 alloc_size *= 2;
df7c8e84
RR
9486#endif
9487#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9488 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 9489#endif
434d53b0 9490 if (alloc_size) {
36b7b6d4 9491 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9492
9493#ifdef CONFIG_FAIR_GROUP_SCHED
9494 init_task_group.se = (struct sched_entity **)ptr;
9495 ptr += nr_cpu_ids * sizeof(void **);
9496
9497 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9498 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9499
9500#ifdef CONFIG_USER_SCHED
9501 root_task_group.se = (struct sched_entity **)ptr;
9502 ptr += nr_cpu_ids * sizeof(void **);
9503
9504 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9505 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9506#endif /* CONFIG_USER_SCHED */
9507#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9508#ifdef CONFIG_RT_GROUP_SCHED
9509 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9510 ptr += nr_cpu_ids * sizeof(void **);
9511
9512 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9513 ptr += nr_cpu_ids * sizeof(void **);
9514
9515#ifdef CONFIG_USER_SCHED
9516 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9517 ptr += nr_cpu_ids * sizeof(void **);
9518
9519 root_task_group.rt_rq = (struct rt_rq **)ptr;
9520 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9521#endif /* CONFIG_USER_SCHED */
9522#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9523#ifdef CONFIG_CPUMASK_OFFSTACK
9524 for_each_possible_cpu(i) {
9525 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9526 ptr += cpumask_size();
9527 }
9528#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9529 }
dd41f596 9530
57d885fe
GH
9531#ifdef CONFIG_SMP
9532 init_defrootdomain();
9533#endif
9534
d0b27fa7
PZ
9535 init_rt_bandwidth(&def_rt_bandwidth,
9536 global_rt_period(), global_rt_runtime());
9537
9538#ifdef CONFIG_RT_GROUP_SCHED
9539 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9540 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9541#ifdef CONFIG_USER_SCHED
9542 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9543 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9544#endif /* CONFIG_USER_SCHED */
9545#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9546
052f1dc7 9547#ifdef CONFIG_GROUP_SCHED
6f505b16 9548 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9549 INIT_LIST_HEAD(&init_task_group.children);
9550
9551#ifdef CONFIG_USER_SCHED
9552 INIT_LIST_HEAD(&root_task_group.children);
9553 init_task_group.parent = &root_task_group;
9554 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9555#endif /* CONFIG_USER_SCHED */
9556#endif /* CONFIG_GROUP_SCHED */
6f505b16 9557
4a6cc4bd
JK
9558#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9559 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9560 __alignof__(unsigned long));
9561#endif
0a945022 9562 for_each_possible_cpu(i) {
70b97a7f 9563 struct rq *rq;
1da177e4
LT
9564
9565 rq = cpu_rq(i);
05fa785c 9566 raw_spin_lock_init(&rq->lock);
7897986b 9567 rq->nr_running = 0;
dce48a84
TG
9568 rq->calc_load_active = 0;
9569 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9570 init_cfs_rq(&rq->cfs, rq);
6f505b16 9571 init_rt_rq(&rq->rt, rq);
dd41f596 9572#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9573 init_task_group.shares = init_task_group_load;
6f505b16 9574 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9575#ifdef CONFIG_CGROUP_SCHED
9576 /*
9577 * How much cpu bandwidth does init_task_group get?
9578 *
9579 * In case of task-groups formed thr' the cgroup filesystem, it
9580 * gets 100% of the cpu resources in the system. This overall
9581 * system cpu resource is divided among the tasks of
9582 * init_task_group and its child task-groups in a fair manner,
9583 * based on each entity's (task or task-group's) weight
9584 * (se->load.weight).
9585 *
9586 * In other words, if init_task_group has 10 tasks of weight
9587 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9588 * then A0's share of the cpu resource is:
9589 *
0d905bca 9590 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9591 *
9592 * We achieve this by letting init_task_group's tasks sit
9593 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9594 */
ec7dc8ac 9595 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9596#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9597 root_task_group.shares = NICE_0_LOAD;
9598 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9599 /*
9600 * In case of task-groups formed thr' the user id of tasks,
9601 * init_task_group represents tasks belonging to root user.
9602 * Hence it forms a sibling of all subsequent groups formed.
9603 * In this case, init_task_group gets only a fraction of overall
9604 * system cpu resource, based on the weight assigned to root
9605 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9606 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9607 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9608 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9609 */
ec7dc8ac 9610 init_tg_cfs_entry(&init_task_group,
84e9dabf 9611 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9612 &per_cpu(init_sched_entity, i), i, 1,
9613 root_task_group.se[i]);
6f505b16 9614
052f1dc7 9615#endif
354d60c2
DG
9616#endif /* CONFIG_FAIR_GROUP_SCHED */
9617
9618 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9619#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9620 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9621#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9622 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9623#elif defined CONFIG_USER_SCHED
eff766a6 9624 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9625 init_tg_rt_entry(&init_task_group,
1871e52c 9626 &per_cpu(init_rt_rq_var, i),
eff766a6
PZ
9627 &per_cpu(init_sched_rt_entity, i), i, 1,
9628 root_task_group.rt_se[i]);
354d60c2 9629#endif
dd41f596 9630#endif
1da177e4 9631
dd41f596
IM
9632 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9633 rq->cpu_load[j] = 0;
1da177e4 9634#ifdef CONFIG_SMP
41c7ce9a 9635 rq->sd = NULL;
57d885fe 9636 rq->rd = NULL;
3f029d3c 9637 rq->post_schedule = 0;
1da177e4 9638 rq->active_balance = 0;
dd41f596 9639 rq->next_balance = jiffies;
1da177e4 9640 rq->push_cpu = 0;
0a2966b4 9641 rq->cpu = i;
1f11eb6a 9642 rq->online = 0;
1da177e4 9643 rq->migration_thread = NULL;
eae0c9df
MG
9644 rq->idle_stamp = 0;
9645 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 9646 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9647 rq_attach_root(rq, &def_root_domain);
1da177e4 9648#endif
8f4d37ec 9649 init_rq_hrtick(rq);
1da177e4 9650 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9651 }
9652
2dd73a4f 9653 set_load_weight(&init_task);
b50f60ce 9654
e107be36
AK
9655#ifdef CONFIG_PREEMPT_NOTIFIERS
9656 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9657#endif
9658
c9819f45 9659#ifdef CONFIG_SMP
962cf36c 9660 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9661#endif
9662
b50f60ce 9663#ifdef CONFIG_RT_MUTEXES
1d615482 9664 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
9665#endif
9666
1da177e4
LT
9667 /*
9668 * The boot idle thread does lazy MMU switching as well:
9669 */
9670 atomic_inc(&init_mm.mm_count);
9671 enter_lazy_tlb(&init_mm, current);
9672
9673 /*
9674 * Make us the idle thread. Technically, schedule() should not be
9675 * called from this thread, however somewhere below it might be,
9676 * but because we are the idle thread, we just pick up running again
9677 * when this runqueue becomes "idle".
9678 */
9679 init_idle(current, smp_processor_id());
dce48a84
TG
9680
9681 calc_load_update = jiffies + LOAD_FREQ;
9682
dd41f596
IM
9683 /*
9684 * During early bootup we pretend to be a normal task:
9685 */
9686 current->sched_class = &fair_sched_class;
6892b75e 9687
6a7b3dc3 9688 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 9689 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9690#ifdef CONFIG_SMP
7d1e6a9b 9691#ifdef CONFIG_NO_HZ
49557e62 9692 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 9693 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9694#endif
bdddd296
RR
9695 /* May be allocated at isolcpus cmdline parse time */
9696 if (cpu_isolated_map == NULL)
9697 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9698#endif /* SMP */
6a7b3dc3 9699
cdd6c482 9700 perf_event_init();
0d905bca 9701
6892b75e 9702 scheduler_running = 1;
1da177e4
LT
9703}
9704
9705#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9706static inline int preempt_count_equals(int preempt_offset)
9707{
9708 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9709
9710 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9711}
9712
9713void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9714{
48f24c4d 9715#ifdef in_atomic
1da177e4
LT
9716 static unsigned long prev_jiffy; /* ratelimiting */
9717
e4aafea2
FW
9718 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9719 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9720 return;
9721 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9722 return;
9723 prev_jiffy = jiffies;
9724
663997d4
JP
9725 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9726 file, line);
9727 pr_err("in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9728 in_atomic(), irqs_disabled(),
9729 current->pid, current->comm);
aef745fc
IM
9730
9731 debug_show_held_locks(current);
9732 if (irqs_disabled())
9733 print_irqtrace_events(current);
9734 dump_stack();
1da177e4
LT
9735#endif
9736}
9737EXPORT_SYMBOL(__might_sleep);
9738#endif
9739
9740#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9741static void normalize_task(struct rq *rq, struct task_struct *p)
9742{
9743 int on_rq;
3e51f33f 9744
3a5e4dc1
AK
9745 update_rq_clock(rq);
9746 on_rq = p->se.on_rq;
9747 if (on_rq)
9748 deactivate_task(rq, p, 0);
9749 __setscheduler(rq, p, SCHED_NORMAL, 0);
9750 if (on_rq) {
9751 activate_task(rq, p, 0);
9752 resched_task(rq->curr);
9753 }
9754}
9755
1da177e4
LT
9756void normalize_rt_tasks(void)
9757{
a0f98a1c 9758 struct task_struct *g, *p;
1da177e4 9759 unsigned long flags;
70b97a7f 9760 struct rq *rq;
1da177e4 9761
4cf5d77a 9762 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9763 do_each_thread(g, p) {
178be793
IM
9764 /*
9765 * Only normalize user tasks:
9766 */
9767 if (!p->mm)
9768 continue;
9769
6cfb0d5d 9770 p->se.exec_start = 0;
6cfb0d5d 9771#ifdef CONFIG_SCHEDSTATS
dd41f596 9772 p->se.wait_start = 0;
dd41f596 9773 p->se.sleep_start = 0;
dd41f596 9774 p->se.block_start = 0;
6cfb0d5d 9775#endif
dd41f596
IM
9776
9777 if (!rt_task(p)) {
9778 /*
9779 * Renice negative nice level userspace
9780 * tasks back to 0:
9781 */
9782 if (TASK_NICE(p) < 0 && p->mm)
9783 set_user_nice(p, 0);
1da177e4 9784 continue;
dd41f596 9785 }
1da177e4 9786
1d615482 9787 raw_spin_lock(&p->pi_lock);
b29739f9 9788 rq = __task_rq_lock(p);
1da177e4 9789
178be793 9790 normalize_task(rq, p);
3a5e4dc1 9791
b29739f9 9792 __task_rq_unlock(rq);
1d615482 9793 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
9794 } while_each_thread(g, p);
9795
4cf5d77a 9796 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9797}
9798
9799#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9800
9801#ifdef CONFIG_IA64
9802/*
9803 * These functions are only useful for the IA64 MCA handling.
9804 *
9805 * They can only be called when the whole system has been
9806 * stopped - every CPU needs to be quiescent, and no scheduling
9807 * activity can take place. Using them for anything else would
9808 * be a serious bug, and as a result, they aren't even visible
9809 * under any other configuration.
9810 */
9811
9812/**
9813 * curr_task - return the current task for a given cpu.
9814 * @cpu: the processor in question.
9815 *
9816 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9817 */
36c8b586 9818struct task_struct *curr_task(int cpu)
1df5c10a
LT
9819{
9820 return cpu_curr(cpu);
9821}
9822
9823/**
9824 * set_curr_task - set the current task for a given cpu.
9825 * @cpu: the processor in question.
9826 * @p: the task pointer to set.
9827 *
9828 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9829 * are serviced on a separate stack. It allows the architecture to switch the
9830 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9831 * must be called with all CPU's synchronized, and interrupts disabled, the
9832 * and caller must save the original value of the current task (see
9833 * curr_task() above) and restore that value before reenabling interrupts and
9834 * re-starting the system.
9835 *
9836 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9837 */
36c8b586 9838void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9839{
9840 cpu_curr(cpu) = p;
9841}
9842
9843#endif
29f59db3 9844
bccbe08a
PZ
9845#ifdef CONFIG_FAIR_GROUP_SCHED
9846static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9847{
9848 int i;
9849
9850 for_each_possible_cpu(i) {
9851 if (tg->cfs_rq)
9852 kfree(tg->cfs_rq[i]);
9853 if (tg->se)
9854 kfree(tg->se[i]);
6f505b16
PZ
9855 }
9856
9857 kfree(tg->cfs_rq);
9858 kfree(tg->se);
6f505b16
PZ
9859}
9860
ec7dc8ac
DG
9861static
9862int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9863{
29f59db3 9864 struct cfs_rq *cfs_rq;
eab17229 9865 struct sched_entity *se;
9b5b7751 9866 struct rq *rq;
29f59db3
SV
9867 int i;
9868
434d53b0 9869 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9870 if (!tg->cfs_rq)
9871 goto err;
434d53b0 9872 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9873 if (!tg->se)
9874 goto err;
052f1dc7
PZ
9875
9876 tg->shares = NICE_0_LOAD;
29f59db3
SV
9877
9878 for_each_possible_cpu(i) {
9b5b7751 9879 rq = cpu_rq(i);
29f59db3 9880
eab17229
LZ
9881 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9882 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9883 if (!cfs_rq)
9884 goto err;
9885
eab17229
LZ
9886 se = kzalloc_node(sizeof(struct sched_entity),
9887 GFP_KERNEL, cpu_to_node(i));
29f59db3 9888 if (!se)
dfc12eb2 9889 goto err_free_rq;
29f59db3 9890
eab17229 9891 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9892 }
9893
9894 return 1;
9895
dfc12eb2
PC
9896 err_free_rq:
9897 kfree(cfs_rq);
bccbe08a
PZ
9898 err:
9899 return 0;
9900}
9901
9902static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9903{
9904 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9905 &cpu_rq(cpu)->leaf_cfs_rq_list);
9906}
9907
9908static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9909{
9910 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9911}
6d6bc0ad 9912#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9913static inline void free_fair_sched_group(struct task_group *tg)
9914{
9915}
9916
ec7dc8ac
DG
9917static inline
9918int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9919{
9920 return 1;
9921}
9922
9923static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9924{
9925}
9926
9927static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9928{
9929}
6d6bc0ad 9930#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9931
9932#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9933static void free_rt_sched_group(struct task_group *tg)
9934{
9935 int i;
9936
d0b27fa7
PZ
9937 destroy_rt_bandwidth(&tg->rt_bandwidth);
9938
bccbe08a
PZ
9939 for_each_possible_cpu(i) {
9940 if (tg->rt_rq)
9941 kfree(tg->rt_rq[i]);
9942 if (tg->rt_se)
9943 kfree(tg->rt_se[i]);
9944 }
9945
9946 kfree(tg->rt_rq);
9947 kfree(tg->rt_se);
9948}
9949
ec7dc8ac
DG
9950static
9951int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9952{
9953 struct rt_rq *rt_rq;
eab17229 9954 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9955 struct rq *rq;
9956 int i;
9957
434d53b0 9958 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9959 if (!tg->rt_rq)
9960 goto err;
434d53b0 9961 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9962 if (!tg->rt_se)
9963 goto err;
9964
d0b27fa7
PZ
9965 init_rt_bandwidth(&tg->rt_bandwidth,
9966 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9967
9968 for_each_possible_cpu(i) {
9969 rq = cpu_rq(i);
9970
eab17229
LZ
9971 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9972 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9973 if (!rt_rq)
9974 goto err;
29f59db3 9975
eab17229
LZ
9976 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9977 GFP_KERNEL, cpu_to_node(i));
6f505b16 9978 if (!rt_se)
dfc12eb2 9979 goto err_free_rq;
29f59db3 9980
eab17229 9981 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9982 }
9983
bccbe08a
PZ
9984 return 1;
9985
dfc12eb2
PC
9986 err_free_rq:
9987 kfree(rt_rq);
bccbe08a
PZ
9988 err:
9989 return 0;
9990}
9991
9992static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9993{
9994 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9995 &cpu_rq(cpu)->leaf_rt_rq_list);
9996}
9997
9998static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9999{
10000 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
10001}
6d6bc0ad 10002#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
10003static inline void free_rt_sched_group(struct task_group *tg)
10004{
10005}
10006
ec7dc8ac
DG
10007static inline
10008int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
10009{
10010 return 1;
10011}
10012
10013static inline void register_rt_sched_group(struct task_group *tg, int cpu)
10014{
10015}
10016
10017static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10018{
10019}
6d6bc0ad 10020#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 10021
d0b27fa7 10022#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
10023static void free_sched_group(struct task_group *tg)
10024{
10025 free_fair_sched_group(tg);
10026 free_rt_sched_group(tg);
10027 kfree(tg);
10028}
10029
10030/* allocate runqueue etc for a new task group */
ec7dc8ac 10031struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
10032{
10033 struct task_group *tg;
10034 unsigned long flags;
10035 int i;
10036
10037 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10038 if (!tg)
10039 return ERR_PTR(-ENOMEM);
10040
ec7dc8ac 10041 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
10042 goto err;
10043
ec7dc8ac 10044 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
10045 goto err;
10046
8ed36996 10047 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10048 for_each_possible_cpu(i) {
bccbe08a
PZ
10049 register_fair_sched_group(tg, i);
10050 register_rt_sched_group(tg, i);
9b5b7751 10051 }
6f505b16 10052 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
10053
10054 WARN_ON(!parent); /* root should already exist */
10055
10056 tg->parent = parent;
f473aa5e 10057 INIT_LIST_HEAD(&tg->children);
09f2724a 10058 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10059 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 10060
9b5b7751 10061 return tg;
29f59db3
SV
10062
10063err:
6f505b16 10064 free_sched_group(tg);
29f59db3
SV
10065 return ERR_PTR(-ENOMEM);
10066}
10067
9b5b7751 10068/* rcu callback to free various structures associated with a task group */
6f505b16 10069static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 10070{
29f59db3 10071 /* now it should be safe to free those cfs_rqs */
6f505b16 10072 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10073}
10074
9b5b7751 10075/* Destroy runqueue etc associated with a task group */
4cf86d77 10076void sched_destroy_group(struct task_group *tg)
29f59db3 10077{
8ed36996 10078 unsigned long flags;
9b5b7751 10079 int i;
29f59db3 10080
8ed36996 10081 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10082 for_each_possible_cpu(i) {
bccbe08a
PZ
10083 unregister_fair_sched_group(tg, i);
10084 unregister_rt_sched_group(tg, i);
9b5b7751 10085 }
6f505b16 10086 list_del_rcu(&tg->list);
f473aa5e 10087 list_del_rcu(&tg->siblings);
8ed36996 10088 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 10089
9b5b7751 10090 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 10091 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
10092}
10093
9b5b7751 10094/* change task's runqueue when it moves between groups.
3a252015
IM
10095 * The caller of this function should have put the task in its new group
10096 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10097 * reflect its new group.
9b5b7751
SV
10098 */
10099void sched_move_task(struct task_struct *tsk)
29f59db3
SV
10100{
10101 int on_rq, running;
10102 unsigned long flags;
10103 struct rq *rq;
10104
10105 rq = task_rq_lock(tsk, &flags);
10106
29f59db3
SV
10107 update_rq_clock(rq);
10108
051a1d1a 10109 running = task_current(rq, tsk);
29f59db3
SV
10110 on_rq = tsk->se.on_rq;
10111
0e1f3483 10112 if (on_rq)
29f59db3 10113 dequeue_task(rq, tsk, 0);
0e1f3483
HS
10114 if (unlikely(running))
10115 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 10116
6f505b16 10117 set_task_rq(tsk, task_cpu(tsk));
29f59db3 10118
810b3817
PZ
10119#ifdef CONFIG_FAIR_GROUP_SCHED
10120 if (tsk->sched_class->moved_group)
10121 tsk->sched_class->moved_group(tsk);
10122#endif
10123
0e1f3483
HS
10124 if (unlikely(running))
10125 tsk->sched_class->set_curr_task(rq);
10126 if (on_rq)
7074badb 10127 enqueue_task(rq, tsk, 0);
29f59db3 10128
29f59db3
SV
10129 task_rq_unlock(rq, &flags);
10130}
6d6bc0ad 10131#endif /* CONFIG_GROUP_SCHED */
29f59db3 10132
052f1dc7 10133#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10134static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10135{
10136 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10137 int on_rq;
10138
29f59db3 10139 on_rq = se->on_rq;
62fb1851 10140 if (on_rq)
29f59db3
SV
10141 dequeue_entity(cfs_rq, se, 0);
10142
10143 se->load.weight = shares;
e05510d0 10144 se->load.inv_weight = 0;
29f59db3 10145
62fb1851 10146 if (on_rq)
29f59db3 10147 enqueue_entity(cfs_rq, se, 0);
c09595f6 10148}
62fb1851 10149
c09595f6
PZ
10150static void set_se_shares(struct sched_entity *se, unsigned long shares)
10151{
10152 struct cfs_rq *cfs_rq = se->cfs_rq;
10153 struct rq *rq = cfs_rq->rq;
10154 unsigned long flags;
10155
05fa785c 10156 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 10157 __set_se_shares(se, shares);
05fa785c 10158 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10159}
10160
8ed36996
PZ
10161static DEFINE_MUTEX(shares_mutex);
10162
4cf86d77 10163int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10164{
10165 int i;
8ed36996 10166 unsigned long flags;
c61935fd 10167
ec7dc8ac
DG
10168 /*
10169 * We can't change the weight of the root cgroup.
10170 */
10171 if (!tg->se[0])
10172 return -EINVAL;
10173
18d95a28
PZ
10174 if (shares < MIN_SHARES)
10175 shares = MIN_SHARES;
cb4ad1ff
MX
10176 else if (shares > MAX_SHARES)
10177 shares = MAX_SHARES;
62fb1851 10178
8ed36996 10179 mutex_lock(&shares_mutex);
9b5b7751 10180 if (tg->shares == shares)
5cb350ba 10181 goto done;
29f59db3 10182
8ed36996 10183 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10184 for_each_possible_cpu(i)
10185 unregister_fair_sched_group(tg, i);
f473aa5e 10186 list_del_rcu(&tg->siblings);
8ed36996 10187 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10188
10189 /* wait for any ongoing reference to this group to finish */
10190 synchronize_sched();
10191
10192 /*
10193 * Now we are free to modify the group's share on each cpu
10194 * w/o tripping rebalance_share or load_balance_fair.
10195 */
9b5b7751 10196 tg->shares = shares;
c09595f6
PZ
10197 for_each_possible_cpu(i) {
10198 /*
10199 * force a rebalance
10200 */
10201 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10202 set_se_shares(tg->se[i], shares);
c09595f6 10203 }
29f59db3 10204
6b2d7700
SV
10205 /*
10206 * Enable load balance activity on this group, by inserting it back on
10207 * each cpu's rq->leaf_cfs_rq_list.
10208 */
8ed36996 10209 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10210 for_each_possible_cpu(i)
10211 register_fair_sched_group(tg, i);
f473aa5e 10212 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10213 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10214done:
8ed36996 10215 mutex_unlock(&shares_mutex);
9b5b7751 10216 return 0;
29f59db3
SV
10217}
10218
5cb350ba
DG
10219unsigned long sched_group_shares(struct task_group *tg)
10220{
10221 return tg->shares;
10222}
052f1dc7 10223#endif
5cb350ba 10224
052f1dc7 10225#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10226/*
9f0c1e56 10227 * Ensure that the real time constraints are schedulable.
6f505b16 10228 */
9f0c1e56
PZ
10229static DEFINE_MUTEX(rt_constraints_mutex);
10230
10231static unsigned long to_ratio(u64 period, u64 runtime)
10232{
10233 if (runtime == RUNTIME_INF)
9a7e0b18 10234 return 1ULL << 20;
9f0c1e56 10235
9a7e0b18 10236 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10237}
10238
9a7e0b18
PZ
10239/* Must be called with tasklist_lock held */
10240static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10241{
9a7e0b18 10242 struct task_struct *g, *p;
b40b2e8e 10243
9a7e0b18
PZ
10244 do_each_thread(g, p) {
10245 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10246 return 1;
10247 } while_each_thread(g, p);
b40b2e8e 10248
9a7e0b18
PZ
10249 return 0;
10250}
b40b2e8e 10251
9a7e0b18
PZ
10252struct rt_schedulable_data {
10253 struct task_group *tg;
10254 u64 rt_period;
10255 u64 rt_runtime;
10256};
b40b2e8e 10257
9a7e0b18
PZ
10258static int tg_schedulable(struct task_group *tg, void *data)
10259{
10260 struct rt_schedulable_data *d = data;
10261 struct task_group *child;
10262 unsigned long total, sum = 0;
10263 u64 period, runtime;
b40b2e8e 10264
9a7e0b18
PZ
10265 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10266 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10267
9a7e0b18
PZ
10268 if (tg == d->tg) {
10269 period = d->rt_period;
10270 runtime = d->rt_runtime;
b40b2e8e 10271 }
b40b2e8e 10272
98a4826b
PZ
10273#ifdef CONFIG_USER_SCHED
10274 if (tg == &root_task_group) {
10275 period = global_rt_period();
10276 runtime = global_rt_runtime();
10277 }
10278#endif
10279
4653f803
PZ
10280 /*
10281 * Cannot have more runtime than the period.
10282 */
10283 if (runtime > period && runtime != RUNTIME_INF)
10284 return -EINVAL;
6f505b16 10285
4653f803
PZ
10286 /*
10287 * Ensure we don't starve existing RT tasks.
10288 */
9a7e0b18
PZ
10289 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10290 return -EBUSY;
6f505b16 10291
9a7e0b18 10292 total = to_ratio(period, runtime);
6f505b16 10293
4653f803
PZ
10294 /*
10295 * Nobody can have more than the global setting allows.
10296 */
10297 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10298 return -EINVAL;
6f505b16 10299
4653f803
PZ
10300 /*
10301 * The sum of our children's runtime should not exceed our own.
10302 */
9a7e0b18
PZ
10303 list_for_each_entry_rcu(child, &tg->children, siblings) {
10304 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10305 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10306
9a7e0b18
PZ
10307 if (child == d->tg) {
10308 period = d->rt_period;
10309 runtime = d->rt_runtime;
10310 }
6f505b16 10311
9a7e0b18 10312 sum += to_ratio(period, runtime);
9f0c1e56 10313 }
6f505b16 10314
9a7e0b18
PZ
10315 if (sum > total)
10316 return -EINVAL;
10317
10318 return 0;
6f505b16
PZ
10319}
10320
9a7e0b18 10321static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10322{
9a7e0b18
PZ
10323 struct rt_schedulable_data data = {
10324 .tg = tg,
10325 .rt_period = period,
10326 .rt_runtime = runtime,
10327 };
10328
10329 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10330}
10331
d0b27fa7
PZ
10332static int tg_set_bandwidth(struct task_group *tg,
10333 u64 rt_period, u64 rt_runtime)
6f505b16 10334{
ac086bc2 10335 int i, err = 0;
9f0c1e56 10336
9f0c1e56 10337 mutex_lock(&rt_constraints_mutex);
521f1a24 10338 read_lock(&tasklist_lock);
9a7e0b18
PZ
10339 err = __rt_schedulable(tg, rt_period, rt_runtime);
10340 if (err)
9f0c1e56 10341 goto unlock;
ac086bc2 10342
0986b11b 10343 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10344 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10345 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10346
10347 for_each_possible_cpu(i) {
10348 struct rt_rq *rt_rq = tg->rt_rq[i];
10349
0986b11b 10350 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 10351 rt_rq->rt_runtime = rt_runtime;
0986b11b 10352 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 10353 }
0986b11b 10354 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10355 unlock:
521f1a24 10356 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10357 mutex_unlock(&rt_constraints_mutex);
10358
10359 return err;
6f505b16
PZ
10360}
10361
d0b27fa7
PZ
10362int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10363{
10364 u64 rt_runtime, rt_period;
10365
10366 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10367 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10368 if (rt_runtime_us < 0)
10369 rt_runtime = RUNTIME_INF;
10370
10371 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10372}
10373
9f0c1e56
PZ
10374long sched_group_rt_runtime(struct task_group *tg)
10375{
10376 u64 rt_runtime_us;
10377
d0b27fa7 10378 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10379 return -1;
10380
d0b27fa7 10381 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10382 do_div(rt_runtime_us, NSEC_PER_USEC);
10383 return rt_runtime_us;
10384}
d0b27fa7
PZ
10385
10386int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10387{
10388 u64 rt_runtime, rt_period;
10389
10390 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10391 rt_runtime = tg->rt_bandwidth.rt_runtime;
10392
619b0488
R
10393 if (rt_period == 0)
10394 return -EINVAL;
10395
d0b27fa7
PZ
10396 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10397}
10398
10399long sched_group_rt_period(struct task_group *tg)
10400{
10401 u64 rt_period_us;
10402
10403 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10404 do_div(rt_period_us, NSEC_PER_USEC);
10405 return rt_period_us;
10406}
10407
10408static int sched_rt_global_constraints(void)
10409{
4653f803 10410 u64 runtime, period;
d0b27fa7
PZ
10411 int ret = 0;
10412
ec5d4989
HS
10413 if (sysctl_sched_rt_period <= 0)
10414 return -EINVAL;
10415
4653f803
PZ
10416 runtime = global_rt_runtime();
10417 period = global_rt_period();
10418
10419 /*
10420 * Sanity check on the sysctl variables.
10421 */
10422 if (runtime > period && runtime != RUNTIME_INF)
10423 return -EINVAL;
10b612f4 10424
d0b27fa7 10425 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10426 read_lock(&tasklist_lock);
4653f803 10427 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10428 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10429 mutex_unlock(&rt_constraints_mutex);
10430
10431 return ret;
10432}
54e99124
DG
10433
10434int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10435{
10436 /* Don't accept realtime tasks when there is no way for them to run */
10437 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10438 return 0;
10439
10440 return 1;
10441}
10442
6d6bc0ad 10443#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10444static int sched_rt_global_constraints(void)
10445{
ac086bc2
PZ
10446 unsigned long flags;
10447 int i;
10448
ec5d4989
HS
10449 if (sysctl_sched_rt_period <= 0)
10450 return -EINVAL;
10451
60aa605d
PZ
10452 /*
10453 * There's always some RT tasks in the root group
10454 * -- migration, kstopmachine etc..
10455 */
10456 if (sysctl_sched_rt_runtime == 0)
10457 return -EBUSY;
10458
0986b11b 10459 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
10460 for_each_possible_cpu(i) {
10461 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10462
0986b11b 10463 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 10464 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 10465 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 10466 }
0986b11b 10467 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 10468
d0b27fa7
PZ
10469 return 0;
10470}
6d6bc0ad 10471#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10472
10473int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10474 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10475 loff_t *ppos)
10476{
10477 int ret;
10478 int old_period, old_runtime;
10479 static DEFINE_MUTEX(mutex);
10480
10481 mutex_lock(&mutex);
10482 old_period = sysctl_sched_rt_period;
10483 old_runtime = sysctl_sched_rt_runtime;
10484
8d65af78 10485 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10486
10487 if (!ret && write) {
10488 ret = sched_rt_global_constraints();
10489 if (ret) {
10490 sysctl_sched_rt_period = old_period;
10491 sysctl_sched_rt_runtime = old_runtime;
10492 } else {
10493 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10494 def_rt_bandwidth.rt_period =
10495 ns_to_ktime(global_rt_period());
10496 }
10497 }
10498 mutex_unlock(&mutex);
10499
10500 return ret;
10501}
68318b8e 10502
052f1dc7 10503#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10504
10505/* return corresponding task_group object of a cgroup */
2b01dfe3 10506static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10507{
2b01dfe3
PM
10508 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10509 struct task_group, css);
68318b8e
SV
10510}
10511
10512static struct cgroup_subsys_state *
2b01dfe3 10513cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10514{
ec7dc8ac 10515 struct task_group *tg, *parent;
68318b8e 10516
2b01dfe3 10517 if (!cgrp->parent) {
68318b8e 10518 /* This is early initialization for the top cgroup */
68318b8e
SV
10519 return &init_task_group.css;
10520 }
10521
ec7dc8ac
DG
10522 parent = cgroup_tg(cgrp->parent);
10523 tg = sched_create_group(parent);
68318b8e
SV
10524 if (IS_ERR(tg))
10525 return ERR_PTR(-ENOMEM);
10526
68318b8e
SV
10527 return &tg->css;
10528}
10529
41a2d6cf
IM
10530static void
10531cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10532{
2b01dfe3 10533 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10534
10535 sched_destroy_group(tg);
10536}
10537
41a2d6cf 10538static int
be367d09 10539cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10540{
b68aa230 10541#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10542 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10543 return -EINVAL;
10544#else
68318b8e
SV
10545 /* We don't support RT-tasks being in separate groups */
10546 if (tsk->sched_class != &fair_sched_class)
10547 return -EINVAL;
b68aa230 10548#endif
be367d09
BB
10549 return 0;
10550}
68318b8e 10551
be367d09
BB
10552static int
10553cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10554 struct task_struct *tsk, bool threadgroup)
10555{
10556 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10557 if (retval)
10558 return retval;
10559 if (threadgroup) {
10560 struct task_struct *c;
10561 rcu_read_lock();
10562 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10563 retval = cpu_cgroup_can_attach_task(cgrp, c);
10564 if (retval) {
10565 rcu_read_unlock();
10566 return retval;
10567 }
10568 }
10569 rcu_read_unlock();
10570 }
68318b8e
SV
10571 return 0;
10572}
10573
10574static void
2b01dfe3 10575cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10576 struct cgroup *old_cont, struct task_struct *tsk,
10577 bool threadgroup)
68318b8e
SV
10578{
10579 sched_move_task(tsk);
be367d09
BB
10580 if (threadgroup) {
10581 struct task_struct *c;
10582 rcu_read_lock();
10583 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10584 sched_move_task(c);
10585 }
10586 rcu_read_unlock();
10587 }
68318b8e
SV
10588}
10589
052f1dc7 10590#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10591static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10592 u64 shareval)
68318b8e 10593{
2b01dfe3 10594 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10595}
10596
f4c753b7 10597static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10598{
2b01dfe3 10599 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10600
10601 return (u64) tg->shares;
10602}
6d6bc0ad 10603#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10604
052f1dc7 10605#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10606static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10607 s64 val)
6f505b16 10608{
06ecb27c 10609 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10610}
10611
06ecb27c 10612static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10613{
06ecb27c 10614 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10615}
d0b27fa7
PZ
10616
10617static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10618 u64 rt_period_us)
10619{
10620 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10621}
10622
10623static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10624{
10625 return sched_group_rt_period(cgroup_tg(cgrp));
10626}
6d6bc0ad 10627#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10628
fe5c7cc2 10629static struct cftype cpu_files[] = {
052f1dc7 10630#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10631 {
10632 .name = "shares",
f4c753b7
PM
10633 .read_u64 = cpu_shares_read_u64,
10634 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10635 },
052f1dc7
PZ
10636#endif
10637#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10638 {
9f0c1e56 10639 .name = "rt_runtime_us",
06ecb27c
PM
10640 .read_s64 = cpu_rt_runtime_read,
10641 .write_s64 = cpu_rt_runtime_write,
6f505b16 10642 },
d0b27fa7
PZ
10643 {
10644 .name = "rt_period_us",
f4c753b7
PM
10645 .read_u64 = cpu_rt_period_read_uint,
10646 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10647 },
052f1dc7 10648#endif
68318b8e
SV
10649};
10650
10651static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10652{
fe5c7cc2 10653 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10654}
10655
10656struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10657 .name = "cpu",
10658 .create = cpu_cgroup_create,
10659 .destroy = cpu_cgroup_destroy,
10660 .can_attach = cpu_cgroup_can_attach,
10661 .attach = cpu_cgroup_attach,
10662 .populate = cpu_cgroup_populate,
10663 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10664 .early_init = 1,
10665};
10666
052f1dc7 10667#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10668
10669#ifdef CONFIG_CGROUP_CPUACCT
10670
10671/*
10672 * CPU accounting code for task groups.
10673 *
10674 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10675 * (balbir@in.ibm.com).
10676 */
10677
934352f2 10678/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10679struct cpuacct {
10680 struct cgroup_subsys_state css;
10681 /* cpuusage holds pointer to a u64-type object on every cpu */
10682 u64 *cpuusage;
ef12fefa 10683 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10684 struct cpuacct *parent;
d842de87
SV
10685};
10686
10687struct cgroup_subsys cpuacct_subsys;
10688
10689/* return cpu accounting group corresponding to this container */
32cd756a 10690static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10691{
32cd756a 10692 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10693 struct cpuacct, css);
10694}
10695
10696/* return cpu accounting group to which this task belongs */
10697static inline struct cpuacct *task_ca(struct task_struct *tsk)
10698{
10699 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10700 struct cpuacct, css);
10701}
10702
10703/* create a new cpu accounting group */
10704static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10705 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10706{
10707 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10708 int i;
d842de87
SV
10709
10710 if (!ca)
ef12fefa 10711 goto out;
d842de87
SV
10712
10713 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10714 if (!ca->cpuusage)
10715 goto out_free_ca;
10716
10717 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10718 if (percpu_counter_init(&ca->cpustat[i], 0))
10719 goto out_free_counters;
d842de87 10720
934352f2
BR
10721 if (cgrp->parent)
10722 ca->parent = cgroup_ca(cgrp->parent);
10723
d842de87 10724 return &ca->css;
ef12fefa
BR
10725
10726out_free_counters:
10727 while (--i >= 0)
10728 percpu_counter_destroy(&ca->cpustat[i]);
10729 free_percpu(ca->cpuusage);
10730out_free_ca:
10731 kfree(ca);
10732out:
10733 return ERR_PTR(-ENOMEM);
d842de87
SV
10734}
10735
10736/* destroy an existing cpu accounting group */
41a2d6cf 10737static void
32cd756a 10738cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10739{
32cd756a 10740 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10741 int i;
d842de87 10742
ef12fefa
BR
10743 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10744 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10745 free_percpu(ca->cpuusage);
10746 kfree(ca);
10747}
10748
720f5498
KC
10749static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10750{
b36128c8 10751 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10752 u64 data;
10753
10754#ifndef CONFIG_64BIT
10755 /*
10756 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10757 */
05fa785c 10758 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 10759 data = *cpuusage;
05fa785c 10760 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
10761#else
10762 data = *cpuusage;
10763#endif
10764
10765 return data;
10766}
10767
10768static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10769{
b36128c8 10770 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10771
10772#ifndef CONFIG_64BIT
10773 /*
10774 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10775 */
05fa785c 10776 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 10777 *cpuusage = val;
05fa785c 10778 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
10779#else
10780 *cpuusage = val;
10781#endif
10782}
10783
d842de87 10784/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10785static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10786{
32cd756a 10787 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10788 u64 totalcpuusage = 0;
10789 int i;
10790
720f5498
KC
10791 for_each_present_cpu(i)
10792 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10793
10794 return totalcpuusage;
10795}
10796
0297b803
DG
10797static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10798 u64 reset)
10799{
10800 struct cpuacct *ca = cgroup_ca(cgrp);
10801 int err = 0;
10802 int i;
10803
10804 if (reset) {
10805 err = -EINVAL;
10806 goto out;
10807 }
10808
720f5498
KC
10809 for_each_present_cpu(i)
10810 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10811
0297b803
DG
10812out:
10813 return err;
10814}
10815
e9515c3c
KC
10816static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10817 struct seq_file *m)
10818{
10819 struct cpuacct *ca = cgroup_ca(cgroup);
10820 u64 percpu;
10821 int i;
10822
10823 for_each_present_cpu(i) {
10824 percpu = cpuacct_cpuusage_read(ca, i);
10825 seq_printf(m, "%llu ", (unsigned long long) percpu);
10826 }
10827 seq_printf(m, "\n");
10828 return 0;
10829}
10830
ef12fefa
BR
10831static const char *cpuacct_stat_desc[] = {
10832 [CPUACCT_STAT_USER] = "user",
10833 [CPUACCT_STAT_SYSTEM] = "system",
10834};
10835
10836static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10837 struct cgroup_map_cb *cb)
10838{
10839 struct cpuacct *ca = cgroup_ca(cgrp);
10840 int i;
10841
10842 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10843 s64 val = percpu_counter_read(&ca->cpustat[i]);
10844 val = cputime64_to_clock_t(val);
10845 cb->fill(cb, cpuacct_stat_desc[i], val);
10846 }
10847 return 0;
10848}
10849
d842de87
SV
10850static struct cftype files[] = {
10851 {
10852 .name = "usage",
f4c753b7
PM
10853 .read_u64 = cpuusage_read,
10854 .write_u64 = cpuusage_write,
d842de87 10855 },
e9515c3c
KC
10856 {
10857 .name = "usage_percpu",
10858 .read_seq_string = cpuacct_percpu_seq_read,
10859 },
ef12fefa
BR
10860 {
10861 .name = "stat",
10862 .read_map = cpuacct_stats_show,
10863 },
d842de87
SV
10864};
10865
32cd756a 10866static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10867{
32cd756a 10868 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10869}
10870
10871/*
10872 * charge this task's execution time to its accounting group.
10873 *
10874 * called with rq->lock held.
10875 */
10876static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10877{
10878 struct cpuacct *ca;
934352f2 10879 int cpu;
d842de87 10880
c40c6f85 10881 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10882 return;
10883
934352f2 10884 cpu = task_cpu(tsk);
a18b83b7
BR
10885
10886 rcu_read_lock();
10887
d842de87 10888 ca = task_ca(tsk);
d842de87 10889
934352f2 10890 for (; ca; ca = ca->parent) {
b36128c8 10891 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10892 *cpuusage += cputime;
10893 }
a18b83b7
BR
10894
10895 rcu_read_unlock();
d842de87
SV
10896}
10897
ef12fefa
BR
10898/*
10899 * Charge the system/user time to the task's accounting group.
10900 */
10901static void cpuacct_update_stats(struct task_struct *tsk,
10902 enum cpuacct_stat_index idx, cputime_t val)
10903{
10904 struct cpuacct *ca;
10905
10906 if (unlikely(!cpuacct_subsys.active))
10907 return;
10908
10909 rcu_read_lock();
10910 ca = task_ca(tsk);
10911
10912 do {
10913 percpu_counter_add(&ca->cpustat[idx], val);
10914 ca = ca->parent;
10915 } while (ca);
10916 rcu_read_unlock();
10917}
10918
d842de87
SV
10919struct cgroup_subsys cpuacct_subsys = {
10920 .name = "cpuacct",
10921 .create = cpuacct_create,
10922 .destroy = cpuacct_destroy,
10923 .populate = cpuacct_populate,
10924 .subsys_id = cpuacct_subsys_id,
10925};
10926#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10927
10928#ifndef CONFIG_SMP
10929
10930int rcu_expedited_torture_stats(char *page)
10931{
10932 return 0;
10933}
10934EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10935
10936void synchronize_sched_expedited(void)
10937{
10938}
10939EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10940
10941#else /* #ifndef CONFIG_SMP */
10942
10943static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10944static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10945
10946#define RCU_EXPEDITED_STATE_POST -2
10947#define RCU_EXPEDITED_STATE_IDLE -1
10948
10949static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10950
10951int rcu_expedited_torture_stats(char *page)
10952{
10953 int cnt = 0;
10954 int cpu;
10955
10956 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10957 for_each_online_cpu(cpu) {
10958 cnt += sprintf(&page[cnt], " %d:%d",
10959 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10960 }
10961 cnt += sprintf(&page[cnt], "\n");
10962 return cnt;
10963}
10964EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10965
10966static long synchronize_sched_expedited_count;
10967
10968/*
10969 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10970 * approach to force grace period to end quickly. This consumes
10971 * significant time on all CPUs, and is thus not recommended for
10972 * any sort of common-case code.
10973 *
10974 * Note that it is illegal to call this function while holding any
10975 * lock that is acquired by a CPU-hotplug notifier. Failing to
10976 * observe this restriction will result in deadlock.
10977 */
10978void synchronize_sched_expedited(void)
10979{
10980 int cpu;
10981 unsigned long flags;
10982 bool need_full_sync = 0;
10983 struct rq *rq;
10984 struct migration_req *req;
10985 long snap;
10986 int trycount = 0;
10987
10988 smp_mb(); /* ensure prior mod happens before capturing snap. */
10989 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10990 get_online_cpus();
10991 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10992 put_online_cpus();
10993 if (trycount++ < 10)
10994 udelay(trycount * num_online_cpus());
10995 else {
10996 synchronize_sched();
10997 return;
10998 }
10999 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
11000 smp_mb(); /* ensure test happens before caller kfree */
11001 return;
11002 }
11003 get_online_cpus();
11004 }
11005 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
11006 for_each_online_cpu(cpu) {
11007 rq = cpu_rq(cpu);
11008 req = &per_cpu(rcu_migration_req, cpu);
11009 init_completion(&req->done);
11010 req->task = NULL;
11011 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 11012 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 11013 list_add(&req->list, &rq->migration_queue);
05fa785c 11014 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
11015 wake_up_process(rq->migration_thread);
11016 }
11017 for_each_online_cpu(cpu) {
11018 rcu_expedited_state = cpu;
11019 req = &per_cpu(rcu_migration_req, cpu);
11020 rq = cpu_rq(cpu);
11021 wait_for_completion(&req->done);
05fa785c 11022 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
11023 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11024 need_full_sync = 1;
11025 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 11026 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
11027 }
11028 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 11029 synchronize_sched_expedited_count++;
03b042bf
PM
11030 mutex_unlock(&rcu_sched_expedited_mutex);
11031 put_online_cpus();
11032 if (need_full_sync)
11033 synchronize_sched();
11034}
11035EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11036
11037#endif /* #else #ifndef CONFIG_SMP */