]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mattst88...
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
663997d4
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
1da177e4
LT
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/nmi.h>
34#include <linux/init.h>
dff06c15 35#include <linux/uaccess.h>
1da177e4
LT
36#include <linux/highmem.h>
37#include <linux/smp_lock.h>
38#include <asm/mmu_context.h>
39#include <linux/interrupt.h>
c59ede7b 40#include <linux/capability.h>
1da177e4
LT
41#include <linux/completion.h>
42#include <linux/kernel_stat.h>
9a11b49a 43#include <linux/debug_locks.h>
cdd6c482 44#include <linux/perf_event.h>
1da177e4
LT
45#include <linux/security.h>
46#include <linux/notifier.h>
47#include <linux/profile.h>
7dfb7103 48#include <linux/freezer.h>
198e2f18 49#include <linux/vmalloc.h>
1da177e4
LT
50#include <linux/blkdev.h>
51#include <linux/delay.h>
b488893a 52#include <linux/pid_namespace.h>
1da177e4
LT
53#include <linux/smp.h>
54#include <linux/threads.h>
55#include <linux/timer.h>
56#include <linux/rcupdate.h>
57#include <linux/cpu.h>
58#include <linux/cpuset.h>
59#include <linux/percpu.h>
60#include <linux/kthread.h>
b5aadf7f 61#include <linux/proc_fs.h>
1da177e4 62#include <linux/seq_file.h>
e692ab53 63#include <linux/sysctl.h>
1da177e4
LT
64#include <linux/syscalls.h>
65#include <linux/times.h>
8f0ab514 66#include <linux/tsacct_kern.h>
c6fd91f0 67#include <linux/kprobes.h>
0ff92245 68#include <linux/delayacct.h>
dff06c15 69#include <linux/unistd.h>
f5ff8422 70#include <linux/pagemap.h>
8f4d37ec 71#include <linux/hrtimer.h>
30914a58 72#include <linux/tick.h>
f00b45c1
PZ
73#include <linux/debugfs.h>
74#include <linux/ctype.h>
6cd8a4bb 75#include <linux/ftrace.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
a8d154b0 82#define CREATE_TRACE_POINTS
ad8d75ff 83#include <trace/events/sched.h>
a8d154b0 84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
e05606d3
IM
124static inline int rt_policy(int policy)
125{
3f33a7ce 126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
127 return 1;
128 return 0;
129}
130
131static inline int task_has_rt_policy(struct task_struct *p)
132{
133 return rt_policy(p->policy);
134}
135
1da177e4 136/*
6aa645ea 137 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 138 */
6aa645ea
IM
139struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142};
143
d0b27fa7 144struct rt_bandwidth {
ea736ed5 145 /* nests inside the rq lock: */
0986b11b 146 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
d0b27fa7
PZ
150};
151
152static struct rt_bandwidth def_rt_bandwidth;
153
154static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157{
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175}
176
177static
178void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179{
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
0986b11b 183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 184
d0b27fa7
PZ
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
188}
189
c8bfff6d
KH
190static inline int rt_bandwidth_enabled(void)
191{
192 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
193}
194
195static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196{
197 ktime_t now;
198
cac64d00 199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
0986b11b 205 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 206 for (;;) {
7f1e2ca9
PZ
207 unsigned long delta;
208 ktime_t soft, hard;
209
d0b27fa7
PZ
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 220 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 221 }
0986b11b 222 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
223}
224
225#ifdef CONFIG_RT_GROUP_SCHED
226static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227{
228 hrtimer_cancel(&rt_b->rt_period_timer);
229}
230#endif
231
712555ee
HC
232/*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236static DEFINE_MUTEX(sched_domains_mutex);
237
052f1dc7 238#ifdef CONFIG_GROUP_SCHED
29f59db3 239
68318b8e
SV
240#include <linux/cgroup.h>
241
29f59db3
SV
242struct cfs_rq;
243
6f505b16
PZ
244static LIST_HEAD(task_groups);
245
29f59db3 246/* task group related information */
4cf86d77 247struct task_group {
052f1dc7 248#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
249 struct cgroup_subsys_state css;
250#endif
052f1dc7 251
6c415b92
AB
252#ifdef CONFIG_USER_SCHED
253 uid_t uid;
254#endif
255
052f1dc7 256#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
257 /* schedulable entities of this group on each cpu */
258 struct sched_entity **se;
259 /* runqueue "owned" by this group on each cpu */
260 struct cfs_rq **cfs_rq;
261 unsigned long shares;
052f1dc7
PZ
262#endif
263
264#ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity **rt_se;
266 struct rt_rq **rt_rq;
267
d0b27fa7 268 struct rt_bandwidth rt_bandwidth;
052f1dc7 269#endif
6b2d7700 270
ae8393e5 271 struct rcu_head rcu;
6f505b16 272 struct list_head list;
f473aa5e
PZ
273
274 struct task_group *parent;
275 struct list_head siblings;
276 struct list_head children;
29f59db3
SV
277};
278
354d60c2 279#ifdef CONFIG_USER_SCHED
eff766a6 280
6c415b92
AB
281/* Helper function to pass uid information to create_sched_user() */
282void set_tg_uid(struct user_struct *user)
283{
284 user->tg->uid = user->uid;
285}
286
eff766a6
PZ
287/*
288 * Root task group.
84e9dabf
AS
289 * Every UID task group (including init_task_group aka UID-0) will
290 * be a child to this group.
eff766a6
PZ
291 */
292struct task_group root_task_group;
293
052f1dc7 294#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
295/* Default task group's sched entity on each cpu */
296static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
297/* Default task group's cfs_rq on each cpu */
ada3fa15 298static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 299#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
300
301#ifdef CONFIG_RT_GROUP_SCHED
302static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
1871e52c 303static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
6d6bc0ad 304#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 305#else /* !CONFIG_USER_SCHED */
eff766a6 306#define root_task_group init_task_group
9a7e0b18 307#endif /* CONFIG_USER_SCHED */
6f505b16 308
8ed36996 309/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
310 * a task group's cpu shares.
311 */
8ed36996 312static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 313
e9036b36
CG
314#ifdef CONFIG_FAIR_GROUP_SCHED
315
57310a98
PZ
316#ifdef CONFIG_SMP
317static int root_task_group_empty(void)
318{
319 return list_empty(&root_task_group.children);
320}
321#endif
322
052f1dc7
PZ
323#ifdef CONFIG_USER_SCHED
324# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 325#else /* !CONFIG_USER_SCHED */
052f1dc7 326# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 327#endif /* CONFIG_USER_SCHED */
052f1dc7 328
cb4ad1ff 329/*
2e084786
LJ
330 * A weight of 0 or 1 can cause arithmetics problems.
331 * A weight of a cfs_rq is the sum of weights of which entities
332 * are queued on this cfs_rq, so a weight of a entity should not be
333 * too large, so as the shares value of a task group.
cb4ad1ff
MX
334 * (The default weight is 1024 - so there's no practical
335 * limitation from this.)
336 */
18d95a28 337#define MIN_SHARES 2
2e084786 338#define MAX_SHARES (1UL << 18)
18d95a28 339
052f1dc7
PZ
340static int init_task_group_load = INIT_TASK_GROUP_LOAD;
341#endif
342
29f59db3 343/* Default task group.
3a252015 344 * Every task in system belong to this group at bootup.
29f59db3 345 */
434d53b0 346struct task_group init_task_group;
29f59db3
SV
347
348/* return group to which a task belongs */
4cf86d77 349static inline struct task_group *task_group(struct task_struct *p)
29f59db3 350{
4cf86d77 351 struct task_group *tg;
9b5b7751 352
052f1dc7 353#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
354 rcu_read_lock();
355 tg = __task_cred(p)->user->tg;
356 rcu_read_unlock();
052f1dc7 357#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
358 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
359 struct task_group, css);
24e377a8 360#else
41a2d6cf 361 tg = &init_task_group;
24e377a8 362#endif
9b5b7751 363 return tg;
29f59db3
SV
364}
365
366/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 367static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 368{
052f1dc7 369#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
370 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
371 p->se.parent = task_group(p)->se[cpu];
052f1dc7 372#endif
6f505b16 373
052f1dc7 374#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
375 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
376 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 377#endif
29f59db3
SV
378}
379
380#else
381
6f505b16 382static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
383static inline struct task_group *task_group(struct task_struct *p)
384{
385 return NULL;
386}
29f59db3 387
052f1dc7 388#endif /* CONFIG_GROUP_SCHED */
29f59db3 389
6aa645ea
IM
390/* CFS-related fields in a runqueue */
391struct cfs_rq {
392 struct load_weight load;
393 unsigned long nr_running;
394
6aa645ea 395 u64 exec_clock;
e9acbff6 396 u64 min_vruntime;
6aa645ea
IM
397
398 struct rb_root tasks_timeline;
399 struct rb_node *rb_leftmost;
4a55bd5e
PZ
400
401 struct list_head tasks;
402 struct list_head *balance_iterator;
403
404 /*
405 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
406 * It is set to NULL otherwise (i.e when none are currently running).
407 */
4793241b 408 struct sched_entity *curr, *next, *last;
ddc97297 409
5ac5c4d6 410 unsigned int nr_spread_over;
ddc97297 411
62160e3f 412#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
413 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
414
41a2d6cf
IM
415 /*
416 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
417 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
418 * (like users, containers etc.)
419 *
420 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
421 * list is used during load balance.
422 */
41a2d6cf
IM
423 struct list_head leaf_cfs_rq_list;
424 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
425
426#ifdef CONFIG_SMP
c09595f6 427 /*
c8cba857 428 * the part of load.weight contributed by tasks
c09595f6 429 */
c8cba857 430 unsigned long task_weight;
c09595f6 431
c8cba857
PZ
432 /*
433 * h_load = weight * f(tg)
434 *
435 * Where f(tg) is the recursive weight fraction assigned to
436 * this group.
437 */
438 unsigned long h_load;
c09595f6 439
c8cba857
PZ
440 /*
441 * this cpu's part of tg->shares
442 */
443 unsigned long shares;
f1d239f7
PZ
444
445 /*
446 * load.weight at the time we set shares
447 */
448 unsigned long rq_weight;
c09595f6 449#endif
6aa645ea
IM
450#endif
451};
1da177e4 452
6aa645ea
IM
453/* Real-Time classes' related field in a runqueue: */
454struct rt_rq {
455 struct rt_prio_array active;
63489e45 456 unsigned long rt_nr_running;
052f1dc7 457#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
458 struct {
459 int curr; /* highest queued rt task prio */
398a153b 460#ifdef CONFIG_SMP
e864c499 461 int next; /* next highest */
398a153b 462#endif
e864c499 463 } highest_prio;
6f505b16 464#endif
fa85ae24 465#ifdef CONFIG_SMP
73fe6aae 466 unsigned long rt_nr_migratory;
a1ba4d8b 467 unsigned long rt_nr_total;
a22d7fc1 468 int overloaded;
917b627d 469 struct plist_head pushable_tasks;
fa85ae24 470#endif
6f505b16 471 int rt_throttled;
fa85ae24 472 u64 rt_time;
ac086bc2 473 u64 rt_runtime;
ea736ed5 474 /* Nests inside the rq lock: */
0986b11b 475 raw_spinlock_t rt_runtime_lock;
6f505b16 476
052f1dc7 477#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
478 unsigned long rt_nr_boosted;
479
6f505b16
PZ
480 struct rq *rq;
481 struct list_head leaf_rt_rq_list;
482 struct task_group *tg;
483 struct sched_rt_entity *rt_se;
484#endif
6aa645ea
IM
485};
486
57d885fe
GH
487#ifdef CONFIG_SMP
488
489/*
490 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
491 * variables. Each exclusive cpuset essentially defines an island domain by
492 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
493 * exclusive cpuset is created, we also create and attach a new root-domain
494 * object.
495 *
57d885fe
GH
496 */
497struct root_domain {
498 atomic_t refcount;
c6c4927b
RR
499 cpumask_var_t span;
500 cpumask_var_t online;
637f5085 501
0eab9146 502 /*
637f5085
GH
503 * The "RT overload" flag: it gets set if a CPU has more than
504 * one runnable RT task.
505 */
c6c4927b 506 cpumask_var_t rto_mask;
0eab9146 507 atomic_t rto_count;
6e0534f2
GH
508#ifdef CONFIG_SMP
509 struct cpupri cpupri;
510#endif
57d885fe
GH
511};
512
dc938520
GH
513/*
514 * By default the system creates a single root-domain with all cpus as
515 * members (mimicking the global state we have today).
516 */
57d885fe
GH
517static struct root_domain def_root_domain;
518
519#endif
520
1da177e4
LT
521/*
522 * This is the main, per-CPU runqueue data structure.
523 *
524 * Locking rule: those places that want to lock multiple runqueues
525 * (such as the load balancing or the thread migration code), lock
526 * acquire operations must be ordered by ascending &runqueue.
527 */
70b97a7f 528struct rq {
d8016491 529 /* runqueue lock: */
05fa785c 530 raw_spinlock_t lock;
1da177e4
LT
531
532 /*
533 * nr_running and cpu_load should be in the same cacheline because
534 * remote CPUs use both these fields when doing load calculation.
535 */
536 unsigned long nr_running;
6aa645ea
IM
537 #define CPU_LOAD_IDX_MAX 5
538 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
539#ifdef CONFIG_NO_HZ
540 unsigned char in_nohz_recently;
541#endif
d8016491
IM
542 /* capture load from *all* tasks on this cpu: */
543 struct load_weight load;
6aa645ea
IM
544 unsigned long nr_load_updates;
545 u64 nr_switches;
546
547 struct cfs_rq cfs;
6f505b16 548 struct rt_rq rt;
6f505b16 549
6aa645ea 550#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
551 /* list of leaf cfs_rq on this cpu: */
552 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
553#endif
554#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 555 struct list_head leaf_rt_rq_list;
1da177e4 556#endif
1da177e4
LT
557
558 /*
559 * This is part of a global counter where only the total sum
560 * over all CPUs matters. A task can increase this counter on
561 * one CPU and if it got migrated afterwards it may decrease
562 * it on another CPU. Always updated under the runqueue lock:
563 */
564 unsigned long nr_uninterruptible;
565
36c8b586 566 struct task_struct *curr, *idle;
c9819f45 567 unsigned long next_balance;
1da177e4 568 struct mm_struct *prev_mm;
6aa645ea 569
3e51f33f 570 u64 clock;
6aa645ea 571
1da177e4
LT
572 atomic_t nr_iowait;
573
574#ifdef CONFIG_SMP
0eab9146 575 struct root_domain *rd;
1da177e4
LT
576 struct sched_domain *sd;
577
a0a522ce 578 unsigned char idle_at_tick;
1da177e4 579 /* For active balancing */
3f029d3c 580 int post_schedule;
1da177e4
LT
581 int active_balance;
582 int push_cpu;
d8016491
IM
583 /* cpu of this runqueue: */
584 int cpu;
1f11eb6a 585 int online;
1da177e4 586
a8a51d5e 587 unsigned long avg_load_per_task;
1da177e4 588
36c8b586 589 struct task_struct *migration_thread;
1da177e4 590 struct list_head migration_queue;
e9e9250b
PZ
591
592 u64 rt_avg;
593 u64 age_stamp;
1b9508f6
MG
594 u64 idle_stamp;
595 u64 avg_idle;
1da177e4
LT
596#endif
597
dce48a84
TG
598 /* calc_load related fields */
599 unsigned long calc_load_update;
600 long calc_load_active;
601
8f4d37ec 602#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
603#ifdef CONFIG_SMP
604 int hrtick_csd_pending;
605 struct call_single_data hrtick_csd;
606#endif
8f4d37ec
PZ
607 struct hrtimer hrtick_timer;
608#endif
609
1da177e4
LT
610#ifdef CONFIG_SCHEDSTATS
611 /* latency stats */
612 struct sched_info rq_sched_info;
9c2c4802
KC
613 unsigned long long rq_cpu_time;
614 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
615
616 /* sys_sched_yield() stats */
480b9434 617 unsigned int yld_count;
1da177e4
LT
618
619 /* schedule() stats */
480b9434
KC
620 unsigned int sched_switch;
621 unsigned int sched_count;
622 unsigned int sched_goidle;
1da177e4
LT
623
624 /* try_to_wake_up() stats */
480b9434
KC
625 unsigned int ttwu_count;
626 unsigned int ttwu_local;
b8efb561
IM
627
628 /* BKL stats */
480b9434 629 unsigned int bkl_count;
1da177e4
LT
630#endif
631};
632
f34e3b61 633static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 634
7d478721
PZ
635static inline
636void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 637{
7d478721 638 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
639}
640
0a2966b4
CL
641static inline int cpu_of(struct rq *rq)
642{
643#ifdef CONFIG_SMP
644 return rq->cpu;
645#else
646 return 0;
647#endif
648}
649
674311d5
NP
650/*
651 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 652 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
653 *
654 * The domain tree of any CPU may only be accessed from within
655 * preempt-disabled sections.
656 */
48f24c4d
IM
657#define for_each_domain(cpu, __sd) \
658 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
659
660#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
661#define this_rq() (&__get_cpu_var(runqueues))
662#define task_rq(p) cpu_rq(task_cpu(p))
663#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 664#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 665
aa9c4c0f 666inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
667{
668 rq->clock = sched_clock_cpu(cpu_of(rq));
669}
670
bf5c91ba
IM
671/*
672 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
673 */
674#ifdef CONFIG_SCHED_DEBUG
675# define const_debug __read_mostly
676#else
677# define const_debug static const
678#endif
679
017730c1
IM
680/**
681 * runqueue_is_locked
e17b38bf 682 * @cpu: the processor in question.
017730c1
IM
683 *
684 * Returns true if the current cpu runqueue is locked.
685 * This interface allows printk to be called with the runqueue lock
686 * held and know whether or not it is OK to wake up the klogd.
687 */
89f19f04 688int runqueue_is_locked(int cpu)
017730c1 689{
05fa785c 690 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
691}
692
bf5c91ba
IM
693/*
694 * Debugging: various feature bits
695 */
f00b45c1
PZ
696
697#define SCHED_FEAT(name, enabled) \
698 __SCHED_FEAT_##name ,
699
bf5c91ba 700enum {
f00b45c1 701#include "sched_features.h"
bf5c91ba
IM
702};
703
f00b45c1
PZ
704#undef SCHED_FEAT
705
706#define SCHED_FEAT(name, enabled) \
707 (1UL << __SCHED_FEAT_##name) * enabled |
708
bf5c91ba 709const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
710#include "sched_features.h"
711 0;
712
713#undef SCHED_FEAT
714
715#ifdef CONFIG_SCHED_DEBUG
716#define SCHED_FEAT(name, enabled) \
717 #name ,
718
983ed7a6 719static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
720#include "sched_features.h"
721 NULL
722};
723
724#undef SCHED_FEAT
725
34f3a814 726static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 727{
f00b45c1
PZ
728 int i;
729
730 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
731 if (!(sysctl_sched_features & (1UL << i)))
732 seq_puts(m, "NO_");
733 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 734 }
34f3a814 735 seq_puts(m, "\n");
f00b45c1 736
34f3a814 737 return 0;
f00b45c1
PZ
738}
739
740static ssize_t
741sched_feat_write(struct file *filp, const char __user *ubuf,
742 size_t cnt, loff_t *ppos)
743{
744 char buf[64];
745 char *cmp = buf;
746 int neg = 0;
747 int i;
748
749 if (cnt > 63)
750 cnt = 63;
751
752 if (copy_from_user(&buf, ubuf, cnt))
753 return -EFAULT;
754
755 buf[cnt] = 0;
756
c24b7c52 757 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
758 neg = 1;
759 cmp += 3;
760 }
761
762 for (i = 0; sched_feat_names[i]; i++) {
763 int len = strlen(sched_feat_names[i]);
764
765 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
766 if (neg)
767 sysctl_sched_features &= ~(1UL << i);
768 else
769 sysctl_sched_features |= (1UL << i);
770 break;
771 }
772 }
773
774 if (!sched_feat_names[i])
775 return -EINVAL;
776
42994724 777 *ppos += cnt;
f00b45c1
PZ
778
779 return cnt;
780}
781
34f3a814
LZ
782static int sched_feat_open(struct inode *inode, struct file *filp)
783{
784 return single_open(filp, sched_feat_show, NULL);
785}
786
828c0950 787static const struct file_operations sched_feat_fops = {
34f3a814
LZ
788 .open = sched_feat_open,
789 .write = sched_feat_write,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
f00b45c1
PZ
793};
794
795static __init int sched_init_debug(void)
796{
f00b45c1
PZ
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
799
800 return 0;
801}
802late_initcall(sched_init_debug);
803
804#endif
805
806#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 807
b82d9fdd
PZ
808/*
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
811 */
812const_debug unsigned int sysctl_sched_nr_migrate = 32;
813
2398f2c6
PZ
814/*
815 * ratelimit for updating the group shares.
55cd5340 816 * default: 0.25ms
2398f2c6 817 */
55cd5340 818unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 819unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 820
ffda12a1
PZ
821/*
822 * Inject some fuzzyness into changing the per-cpu group shares
823 * this avoids remote rq-locks at the expense of fairness.
824 * default: 4
825 */
826unsigned int sysctl_sched_shares_thresh = 4;
827
e9e9250b
PZ
828/*
829 * period over which we average the RT time consumption, measured
830 * in ms.
831 *
832 * default: 1s
833 */
834const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
835
fa85ae24 836/*
9f0c1e56 837 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
838 * default: 1s
839 */
9f0c1e56 840unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 841
6892b75e
IM
842static __read_mostly int scheduler_running;
843
9f0c1e56
PZ
844/*
845 * part of the period that we allow rt tasks to run in us.
846 * default: 0.95s
847 */
848int sysctl_sched_rt_runtime = 950000;
fa85ae24 849
d0b27fa7
PZ
850static inline u64 global_rt_period(void)
851{
852 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
853}
854
855static inline u64 global_rt_runtime(void)
856{
e26873bb 857 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
858 return RUNTIME_INF;
859
860 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
861}
fa85ae24 862
1da177e4 863#ifndef prepare_arch_switch
4866cde0
NP
864# define prepare_arch_switch(next) do { } while (0)
865#endif
866#ifndef finish_arch_switch
867# define finish_arch_switch(prev) do { } while (0)
868#endif
869
051a1d1a
DA
870static inline int task_current(struct rq *rq, struct task_struct *p)
871{
872 return rq->curr == p;
873}
874
4866cde0 875#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 876static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 877{
051a1d1a 878 return task_current(rq, p);
4866cde0
NP
879}
880
70b97a7f 881static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
882{
883}
884
70b97a7f 885static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 886{
da04c035
IM
887#ifdef CONFIG_DEBUG_SPINLOCK
888 /* this is a valid case when another task releases the spinlock */
889 rq->lock.owner = current;
890#endif
8a25d5de
IM
891 /*
892 * If we are tracking spinlock dependencies then we have to
893 * fix up the runqueue lock - which gets 'carried over' from
894 * prev into current:
895 */
896 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
897
05fa785c 898 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
899}
900
901#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 902static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
903{
904#ifdef CONFIG_SMP
905 return p->oncpu;
906#else
051a1d1a 907 return task_current(rq, p);
4866cde0
NP
908#endif
909}
910
70b97a7f 911static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
912{
913#ifdef CONFIG_SMP
914 /*
915 * We can optimise this out completely for !SMP, because the
916 * SMP rebalancing from interrupt is the only thing that cares
917 * here.
918 */
919 next->oncpu = 1;
920#endif
921#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 922 raw_spin_unlock_irq(&rq->lock);
4866cde0 923#else
05fa785c 924 raw_spin_unlock(&rq->lock);
4866cde0
NP
925#endif
926}
927
70b97a7f 928static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
929{
930#ifdef CONFIG_SMP
931 /*
932 * After ->oncpu is cleared, the task can be moved to a different CPU.
933 * We must ensure this doesn't happen until the switch is completely
934 * finished.
935 */
936 smp_wmb();
937 prev->oncpu = 0;
938#endif
939#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 local_irq_enable();
1da177e4 941#endif
4866cde0
NP
942}
943#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 944
b29739f9
IM
945/*
946 * __task_rq_lock - lock the runqueue a given task resides on.
947 * Must be called interrupts disabled.
948 */
70b97a7f 949static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
950 __acquires(rq->lock)
951{
3a5c359a
AK
952 for (;;) {
953 struct rq *rq = task_rq(p);
05fa785c 954 raw_spin_lock(&rq->lock);
3a5c359a
AK
955 if (likely(rq == task_rq(p)))
956 return rq;
05fa785c 957 raw_spin_unlock(&rq->lock);
b29739f9 958 }
b29739f9
IM
959}
960
1da177e4
LT
961/*
962 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 963 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
964 * explicitly disabling preemption.
965 */
70b97a7f 966static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
967 __acquires(rq->lock)
968{
70b97a7f 969 struct rq *rq;
1da177e4 970
3a5c359a
AK
971 for (;;) {
972 local_irq_save(*flags);
973 rq = task_rq(p);
05fa785c 974 raw_spin_lock(&rq->lock);
3a5c359a
AK
975 if (likely(rq == task_rq(p)))
976 return rq;
05fa785c 977 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 978 }
1da177e4
LT
979}
980
ad474cac
ON
981void task_rq_unlock_wait(struct task_struct *p)
982{
983 struct rq *rq = task_rq(p);
984
985 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 986 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
987}
988
a9957449 989static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
990 __releases(rq->lock)
991{
05fa785c 992 raw_spin_unlock(&rq->lock);
b29739f9
IM
993}
994
70b97a7f 995static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
996 __releases(rq->lock)
997{
05fa785c 998 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
999}
1000
1da177e4 1001/*
cc2a73b5 1002 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1003 */
a9957449 1004static struct rq *this_rq_lock(void)
1da177e4
LT
1005 __acquires(rq->lock)
1006{
70b97a7f 1007 struct rq *rq;
1da177e4
LT
1008
1009 local_irq_disable();
1010 rq = this_rq();
05fa785c 1011 raw_spin_lock(&rq->lock);
1da177e4
LT
1012
1013 return rq;
1014}
1015
8f4d37ec
PZ
1016#ifdef CONFIG_SCHED_HRTICK
1017/*
1018 * Use HR-timers to deliver accurate preemption points.
1019 *
1020 * Its all a bit involved since we cannot program an hrt while holding the
1021 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1022 * reschedule event.
1023 *
1024 * When we get rescheduled we reprogram the hrtick_timer outside of the
1025 * rq->lock.
1026 */
8f4d37ec
PZ
1027
1028/*
1029 * Use hrtick when:
1030 * - enabled by features
1031 * - hrtimer is actually high res
1032 */
1033static inline int hrtick_enabled(struct rq *rq)
1034{
1035 if (!sched_feat(HRTICK))
1036 return 0;
ba42059f 1037 if (!cpu_active(cpu_of(rq)))
b328ca18 1038 return 0;
8f4d37ec
PZ
1039 return hrtimer_is_hres_active(&rq->hrtick_timer);
1040}
1041
8f4d37ec
PZ
1042static void hrtick_clear(struct rq *rq)
1043{
1044 if (hrtimer_active(&rq->hrtick_timer))
1045 hrtimer_cancel(&rq->hrtick_timer);
1046}
1047
8f4d37ec
PZ
1048/*
1049 * High-resolution timer tick.
1050 * Runs from hardirq context with interrupts disabled.
1051 */
1052static enum hrtimer_restart hrtick(struct hrtimer *timer)
1053{
1054 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1055
1056 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1057
05fa785c 1058 raw_spin_lock(&rq->lock);
3e51f33f 1059 update_rq_clock(rq);
8f4d37ec 1060 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1061 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1062
1063 return HRTIMER_NORESTART;
1064}
1065
95e904c7 1066#ifdef CONFIG_SMP
31656519
PZ
1067/*
1068 * called from hardirq (IPI) context
1069 */
1070static void __hrtick_start(void *arg)
b328ca18 1071{
31656519 1072 struct rq *rq = arg;
b328ca18 1073
05fa785c 1074 raw_spin_lock(&rq->lock);
31656519
PZ
1075 hrtimer_restart(&rq->hrtick_timer);
1076 rq->hrtick_csd_pending = 0;
05fa785c 1077 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1078}
1079
31656519
PZ
1080/*
1081 * Called to set the hrtick timer state.
1082 *
1083 * called with rq->lock held and irqs disabled
1084 */
1085static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1086{
31656519
PZ
1087 struct hrtimer *timer = &rq->hrtick_timer;
1088 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1089
cc584b21 1090 hrtimer_set_expires(timer, time);
31656519
PZ
1091
1092 if (rq == this_rq()) {
1093 hrtimer_restart(timer);
1094 } else if (!rq->hrtick_csd_pending) {
6e275637 1095 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1096 rq->hrtick_csd_pending = 1;
1097 }
b328ca18
PZ
1098}
1099
1100static int
1101hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1102{
1103 int cpu = (int)(long)hcpu;
1104
1105 switch (action) {
1106 case CPU_UP_CANCELED:
1107 case CPU_UP_CANCELED_FROZEN:
1108 case CPU_DOWN_PREPARE:
1109 case CPU_DOWN_PREPARE_FROZEN:
1110 case CPU_DEAD:
1111 case CPU_DEAD_FROZEN:
31656519 1112 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1113 return NOTIFY_OK;
1114 }
1115
1116 return NOTIFY_DONE;
1117}
1118
fa748203 1119static __init void init_hrtick(void)
b328ca18
PZ
1120{
1121 hotcpu_notifier(hotplug_hrtick, 0);
1122}
31656519
PZ
1123#else
1124/*
1125 * Called to set the hrtick timer state.
1126 *
1127 * called with rq->lock held and irqs disabled
1128 */
1129static void hrtick_start(struct rq *rq, u64 delay)
1130{
7f1e2ca9 1131 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1132 HRTIMER_MODE_REL_PINNED, 0);
31656519 1133}
b328ca18 1134
006c75f1 1135static inline void init_hrtick(void)
8f4d37ec 1136{
8f4d37ec 1137}
31656519 1138#endif /* CONFIG_SMP */
8f4d37ec 1139
31656519 1140static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1141{
31656519
PZ
1142#ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
8f4d37ec 1144
31656519
PZ
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148#endif
8f4d37ec 1149
31656519
PZ
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
8f4d37ec 1152}
006c75f1 1153#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1154static inline void hrtick_clear(struct rq *rq)
1155{
1156}
1157
8f4d37ec
PZ
1158static inline void init_rq_hrtick(struct rq *rq)
1159{
1160}
1161
b328ca18
PZ
1162static inline void init_hrtick(void)
1163{
1164}
006c75f1 1165#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1166
c24d20db
IM
1167/*
1168 * resched_task - mark a task 'to be rescheduled now'.
1169 *
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1173 */
1174#ifdef CONFIG_SMP
1175
1176#ifndef tsk_is_polling
1177#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178#endif
1179
31656519 1180static void resched_task(struct task_struct *p)
c24d20db
IM
1181{
1182 int cpu;
1183
05fa785c 1184 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1185
5ed0cec0 1186 if (test_tsk_need_resched(p))
c24d20db
IM
1187 return;
1188
5ed0cec0 1189 set_tsk_need_resched(p);
c24d20db
IM
1190
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1194
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1199}
1200
1201static void resched_cpu(int cpu)
1202{
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1205
05fa785c 1206 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1207 return;
1208 resched_task(cpu_curr(cpu));
05fa785c 1209 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1210}
06d8308c
TG
1211
1212#ifdef CONFIG_NO_HZ
1213/*
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1222 */
1223void wake_up_idle_cpu(int cpu)
1224{
1225 struct rq *rq = cpu_rq(cpu);
1226
1227 if (cpu == smp_processor_id())
1228 return;
1229
1230 /*
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1236 */
1237 if (rq->curr != rq->idle)
1238 return;
1239
1240 /*
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1244 */
5ed0cec0 1245 set_tsk_need_resched(rq->idle);
06d8308c
TG
1246
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1251}
6d6bc0ad 1252#endif /* CONFIG_NO_HZ */
06d8308c 1253
e9e9250b
PZ
1254static u64 sched_avg_period(void)
1255{
1256 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1257}
1258
1259static void sched_avg_update(struct rq *rq)
1260{
1261 s64 period = sched_avg_period();
1262
1263 while ((s64)(rq->clock - rq->age_stamp) > period) {
1264 rq->age_stamp += period;
1265 rq->rt_avg /= 2;
1266 }
1267}
1268
1269static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1270{
1271 rq->rt_avg += rt_delta;
1272 sched_avg_update(rq);
1273}
1274
6d6bc0ad 1275#else /* !CONFIG_SMP */
31656519 1276static void resched_task(struct task_struct *p)
c24d20db 1277{
05fa785c 1278 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1279 set_tsk_need_resched(p);
c24d20db 1280}
e9e9250b
PZ
1281
1282static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1283{
1284}
6d6bc0ad 1285#endif /* CONFIG_SMP */
c24d20db 1286
45bf76df
IM
1287#if BITS_PER_LONG == 32
1288# define WMULT_CONST (~0UL)
1289#else
1290# define WMULT_CONST (1UL << 32)
1291#endif
1292
1293#define WMULT_SHIFT 32
1294
194081eb
IM
1295/*
1296 * Shift right and round:
1297 */
cf2ab469 1298#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1299
a7be37ac
PZ
1300/*
1301 * delta *= weight / lw
1302 */
cb1c4fc9 1303static unsigned long
45bf76df
IM
1304calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305 struct load_weight *lw)
1306{
1307 u64 tmp;
1308
7a232e03
LJ
1309 if (!lw->inv_weight) {
1310 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1311 lw->inv_weight = 1;
1312 else
1313 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1314 / (lw->weight+1);
1315 }
45bf76df
IM
1316
1317 tmp = (u64)delta_exec * weight;
1318 /*
1319 * Check whether we'd overflow the 64-bit multiplication:
1320 */
194081eb 1321 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1322 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1323 WMULT_SHIFT/2);
1324 else
cf2ab469 1325 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1326
ecf691da 1327 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1328}
1329
1091985b 1330static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1331{
1332 lw->weight += inc;
e89996ae 1333 lw->inv_weight = 0;
45bf76df
IM
1334}
1335
1091985b 1336static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1337{
1338 lw->weight -= dec;
e89996ae 1339 lw->inv_weight = 0;
45bf76df
IM
1340}
1341
2dd73a4f
PW
1342/*
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1347 * scaled version of the new time slice allocation that they receive on time
1348 * slice expiry etc.
1349 */
1350
cce7ade8
PZ
1351#define WEIGHT_IDLEPRIO 3
1352#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1353
1354/*
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1359 *
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
dd41f596
IM
1365 */
1366static const int prio_to_weight[40] = {
254753dc
IM
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1375};
1376
5714d2de
IM
1377/*
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1379 *
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1383 */
dd41f596 1384static const u32 prio_to_wmult[40] = {
254753dc
IM
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1393};
2dd73a4f 1394
dd41f596
IM
1395static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1396
1397/*
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1401 */
1402struct rq_iterator {
1403 void *arg;
1404 struct task_struct *(*start)(void *);
1405 struct task_struct *(*next)(void *);
1406};
1407
e1d1484f
PW
1408#ifdef CONFIG_SMP
1409static unsigned long
1410balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411 unsigned long max_load_move, struct sched_domain *sd,
1412 enum cpu_idle_type idle, int *all_pinned,
1413 int *this_best_prio, struct rq_iterator *iterator);
1414
1415static int
1416iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle,
1418 struct rq_iterator *iterator);
e1d1484f 1419#endif
dd41f596 1420
ef12fefa
BR
1421/* Time spent by the tasks of the cpu accounting group executing in ... */
1422enum cpuacct_stat_index {
1423 CPUACCT_STAT_USER, /* ... user mode */
1424 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1425
1426 CPUACCT_STAT_NSTATS,
1427};
1428
d842de87
SV
1429#ifdef CONFIG_CGROUP_CPUACCT
1430static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1431static void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1433#else
1434static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1435static inline void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1437#endif
1438
18d95a28
PZ
1439static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1440{
1441 update_load_add(&rq->load, load);
1442}
1443
1444static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1445{
1446 update_load_sub(&rq->load, load);
1447}
1448
7940ca36 1449#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1450typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1451
1452/*
1453 * Iterate the full tree, calling @down when first entering a node and @up when
1454 * leaving it for the final time.
1455 */
eb755805 1456static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1457{
1458 struct task_group *parent, *child;
eb755805 1459 int ret;
c09595f6
PZ
1460
1461 rcu_read_lock();
1462 parent = &root_task_group;
1463down:
eb755805
PZ
1464 ret = (*down)(parent, data);
1465 if (ret)
1466 goto out_unlock;
c09595f6
PZ
1467 list_for_each_entry_rcu(child, &parent->children, siblings) {
1468 parent = child;
1469 goto down;
1470
1471up:
1472 continue;
1473 }
eb755805
PZ
1474 ret = (*up)(parent, data);
1475 if (ret)
1476 goto out_unlock;
c09595f6
PZ
1477
1478 child = parent;
1479 parent = parent->parent;
1480 if (parent)
1481 goto up;
eb755805 1482out_unlock:
c09595f6 1483 rcu_read_unlock();
eb755805
PZ
1484
1485 return ret;
c09595f6
PZ
1486}
1487
eb755805
PZ
1488static int tg_nop(struct task_group *tg, void *data)
1489{
1490 return 0;
c09595f6 1491}
eb755805
PZ
1492#endif
1493
1494#ifdef CONFIG_SMP
f5f08f39
PZ
1495/* Used instead of source_load when we know the type == 0 */
1496static unsigned long weighted_cpuload(const int cpu)
1497{
1498 return cpu_rq(cpu)->load.weight;
1499}
1500
1501/*
1502 * Return a low guess at the load of a migration-source cpu weighted
1503 * according to the scheduling class and "nice" value.
1504 *
1505 * We want to under-estimate the load of migration sources, to
1506 * balance conservatively.
1507 */
1508static unsigned long source_load(int cpu, int type)
1509{
1510 struct rq *rq = cpu_rq(cpu);
1511 unsigned long total = weighted_cpuload(cpu);
1512
1513 if (type == 0 || !sched_feat(LB_BIAS))
1514 return total;
1515
1516 return min(rq->cpu_load[type-1], total);
1517}
1518
1519/*
1520 * Return a high guess at the load of a migration-target cpu weighted
1521 * according to the scheduling class and "nice" value.
1522 */
1523static unsigned long target_load(int cpu, int type)
1524{
1525 struct rq *rq = cpu_rq(cpu);
1526 unsigned long total = weighted_cpuload(cpu);
1527
1528 if (type == 0 || !sched_feat(LB_BIAS))
1529 return total;
1530
1531 return max(rq->cpu_load[type-1], total);
1532}
1533
ae154be1
PZ
1534static struct sched_group *group_of(int cpu)
1535{
1536 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1537
1538 if (!sd)
1539 return NULL;
1540
1541 return sd->groups;
1542}
1543
1544static unsigned long power_of(int cpu)
1545{
1546 struct sched_group *group = group_of(cpu);
1547
1548 if (!group)
1549 return SCHED_LOAD_SCALE;
1550
1551 return group->cpu_power;
1552}
1553
eb755805
PZ
1554static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1555
1556static unsigned long cpu_avg_load_per_task(int cpu)
1557{
1558 struct rq *rq = cpu_rq(cpu);
af6d596f 1559 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1560
4cd42620
SR
1561 if (nr_running)
1562 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1563 else
1564 rq->avg_load_per_task = 0;
eb755805
PZ
1565
1566 return rq->avg_load_per_task;
1567}
1568
1569#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1570
4a6cc4bd 1571static __read_mostly unsigned long *update_shares_data;
34d76c41 1572
c09595f6
PZ
1573static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1574
1575/*
1576 * Calculate and set the cpu's group shares.
1577 */
34d76c41
PZ
1578static void update_group_shares_cpu(struct task_group *tg, int cpu,
1579 unsigned long sd_shares,
1580 unsigned long sd_rq_weight,
4a6cc4bd 1581 unsigned long *usd_rq_weight)
18d95a28 1582{
34d76c41 1583 unsigned long shares, rq_weight;
a5004278 1584 int boost = 0;
c09595f6 1585
4a6cc4bd 1586 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1587 if (!rq_weight) {
1588 boost = 1;
1589 rq_weight = NICE_0_LOAD;
1590 }
c8cba857 1591
c09595f6 1592 /*
a8af7246
PZ
1593 * \Sum_j shares_j * rq_weight_i
1594 * shares_i = -----------------------------
1595 * \Sum_j rq_weight_j
c09595f6 1596 */
ec4e0e2f 1597 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1598 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1599
ffda12a1
PZ
1600 if (abs(shares - tg->se[cpu]->load.weight) >
1601 sysctl_sched_shares_thresh) {
1602 struct rq *rq = cpu_rq(cpu);
1603 unsigned long flags;
c09595f6 1604
05fa785c 1605 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1606 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1607 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1608 __set_se_shares(tg->se[cpu], shares);
05fa785c 1609 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1610 }
18d95a28 1611}
c09595f6
PZ
1612
1613/*
c8cba857
PZ
1614 * Re-compute the task group their per cpu shares over the given domain.
1615 * This needs to be done in a bottom-up fashion because the rq weight of a
1616 * parent group depends on the shares of its child groups.
c09595f6 1617 */
eb755805 1618static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1619{
cd8ad40d 1620 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1621 unsigned long *usd_rq_weight;
eb755805 1622 struct sched_domain *sd = data;
34d76c41 1623 unsigned long flags;
c8cba857 1624 int i;
c09595f6 1625
34d76c41
PZ
1626 if (!tg->se[0])
1627 return 0;
1628
1629 local_irq_save(flags);
4a6cc4bd 1630 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1631
758b2cdc 1632 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1633 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1634 usd_rq_weight[i] = weight;
34d76c41 1635
cd8ad40d 1636 rq_weight += weight;
ec4e0e2f
KC
1637 /*
1638 * If there are currently no tasks on the cpu pretend there
1639 * is one of average load so that when a new task gets to
1640 * run here it will not get delayed by group starvation.
1641 */
ec4e0e2f
KC
1642 if (!weight)
1643 weight = NICE_0_LOAD;
1644
cd8ad40d 1645 sum_weight += weight;
c8cba857 1646 shares += tg->cfs_rq[i]->shares;
c09595f6 1647 }
c09595f6 1648
cd8ad40d
PZ
1649 if (!rq_weight)
1650 rq_weight = sum_weight;
1651
c8cba857
PZ
1652 if ((!shares && rq_weight) || shares > tg->shares)
1653 shares = tg->shares;
1654
1655 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1656 shares = tg->shares;
c09595f6 1657
758b2cdc 1658 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1659 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1660
1661 local_irq_restore(flags);
eb755805
PZ
1662
1663 return 0;
c09595f6
PZ
1664}
1665
1666/*
c8cba857
PZ
1667 * Compute the cpu's hierarchical load factor for each task group.
1668 * This needs to be done in a top-down fashion because the load of a child
1669 * group is a fraction of its parents load.
c09595f6 1670 */
eb755805 1671static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1672{
c8cba857 1673 unsigned long load;
eb755805 1674 long cpu = (long)data;
c09595f6 1675
c8cba857
PZ
1676 if (!tg->parent) {
1677 load = cpu_rq(cpu)->load.weight;
1678 } else {
1679 load = tg->parent->cfs_rq[cpu]->h_load;
1680 load *= tg->cfs_rq[cpu]->shares;
1681 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1682 }
c09595f6 1683
c8cba857 1684 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1685
eb755805 1686 return 0;
c09595f6
PZ
1687}
1688
c8cba857 1689static void update_shares(struct sched_domain *sd)
4d8d595d 1690{
e7097159
PZ
1691 s64 elapsed;
1692 u64 now;
1693
1694 if (root_task_group_empty())
1695 return;
1696
1697 now = cpu_clock(raw_smp_processor_id());
1698 elapsed = now - sd->last_update;
2398f2c6
PZ
1699
1700 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1701 sd->last_update = now;
eb755805 1702 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1703 }
4d8d595d
PZ
1704}
1705
3e5459b4
PZ
1706static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1707{
e7097159
PZ
1708 if (root_task_group_empty())
1709 return;
1710
05fa785c 1711 raw_spin_unlock(&rq->lock);
3e5459b4 1712 update_shares(sd);
05fa785c 1713 raw_spin_lock(&rq->lock);
3e5459b4
PZ
1714}
1715
eb755805 1716static void update_h_load(long cpu)
c09595f6 1717{
e7097159
PZ
1718 if (root_task_group_empty())
1719 return;
1720
eb755805 1721 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1722}
1723
c09595f6
PZ
1724#else
1725
c8cba857 1726static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1727{
1728}
1729
3e5459b4
PZ
1730static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1731{
1732}
1733
18d95a28
PZ
1734#endif
1735
8f45e2b5
GH
1736#ifdef CONFIG_PREEMPT
1737
b78bb868
PZ
1738static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1739
70574a99 1740/*
8f45e2b5
GH
1741 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1742 * way at the expense of forcing extra atomic operations in all
1743 * invocations. This assures that the double_lock is acquired using the
1744 * same underlying policy as the spinlock_t on this architecture, which
1745 * reduces latency compared to the unfair variant below. However, it
1746 * also adds more overhead and therefore may reduce throughput.
70574a99 1747 */
8f45e2b5
GH
1748static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1749 __releases(this_rq->lock)
1750 __acquires(busiest->lock)
1751 __acquires(this_rq->lock)
1752{
05fa785c 1753 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1754 double_rq_lock(this_rq, busiest);
1755
1756 return 1;
1757}
1758
1759#else
1760/*
1761 * Unfair double_lock_balance: Optimizes throughput at the expense of
1762 * latency by eliminating extra atomic operations when the locks are
1763 * already in proper order on entry. This favors lower cpu-ids and will
1764 * grant the double lock to lower cpus over higher ids under contention,
1765 * regardless of entry order into the function.
1766 */
1767static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1768 __releases(this_rq->lock)
1769 __acquires(busiest->lock)
1770 __acquires(this_rq->lock)
1771{
1772 int ret = 0;
1773
05fa785c 1774 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1775 if (busiest < this_rq) {
05fa785c
TG
1776 raw_spin_unlock(&this_rq->lock);
1777 raw_spin_lock(&busiest->lock);
1778 raw_spin_lock_nested(&this_rq->lock,
1779 SINGLE_DEPTH_NESTING);
70574a99
AD
1780 ret = 1;
1781 } else
05fa785c
TG
1782 raw_spin_lock_nested(&busiest->lock,
1783 SINGLE_DEPTH_NESTING);
70574a99
AD
1784 }
1785 return ret;
1786}
1787
8f45e2b5
GH
1788#endif /* CONFIG_PREEMPT */
1789
1790/*
1791 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1792 */
1793static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1794{
1795 if (unlikely(!irqs_disabled())) {
1796 /* printk() doesn't work good under rq->lock */
05fa785c 1797 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1798 BUG_ON(1);
1799 }
1800
1801 return _double_lock_balance(this_rq, busiest);
1802}
1803
70574a99
AD
1804static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1805 __releases(busiest->lock)
1806{
05fa785c 1807 raw_spin_unlock(&busiest->lock);
70574a99
AD
1808 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1809}
18d95a28
PZ
1810#endif
1811
30432094 1812#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1813static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1814{
30432094 1815#ifdef CONFIG_SMP
34e83e85
IM
1816 cfs_rq->shares = shares;
1817#endif
1818}
30432094 1819#endif
e7693a36 1820
dce48a84 1821static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1822static void update_sysctl(void);
acb4a848 1823static int get_update_sysctl_factor(void);
dce48a84 1824
cd29fe6f
PZ
1825static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1826{
1827 set_task_rq(p, cpu);
1828#ifdef CONFIG_SMP
1829 /*
1830 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1831 * successfuly executed on another CPU. We must ensure that updates of
1832 * per-task data have been completed by this moment.
1833 */
1834 smp_wmb();
1835 task_thread_info(p)->cpu = cpu;
1836#endif
1837}
dce48a84 1838
dd41f596 1839#include "sched_stats.h"
dd41f596 1840#include "sched_idletask.c"
5522d5d5
IM
1841#include "sched_fair.c"
1842#include "sched_rt.c"
dd41f596
IM
1843#ifdef CONFIG_SCHED_DEBUG
1844# include "sched_debug.c"
1845#endif
1846
1847#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1848#define for_each_class(class) \
1849 for (class = sched_class_highest; class; class = class->next)
dd41f596 1850
c09595f6 1851static void inc_nr_running(struct rq *rq)
9c217245
IM
1852{
1853 rq->nr_running++;
9c217245
IM
1854}
1855
c09595f6 1856static void dec_nr_running(struct rq *rq)
9c217245
IM
1857{
1858 rq->nr_running--;
9c217245
IM
1859}
1860
45bf76df
IM
1861static void set_load_weight(struct task_struct *p)
1862{
1863 if (task_has_rt_policy(p)) {
dd41f596
IM
1864 p->se.load.weight = prio_to_weight[0] * 2;
1865 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1866 return;
1867 }
45bf76df 1868
dd41f596
IM
1869 /*
1870 * SCHED_IDLE tasks get minimal weight:
1871 */
1872 if (p->policy == SCHED_IDLE) {
1873 p->se.load.weight = WEIGHT_IDLEPRIO;
1874 p->se.load.inv_weight = WMULT_IDLEPRIO;
1875 return;
1876 }
71f8bd46 1877
dd41f596
IM
1878 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1879 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1880}
1881
2087a1ad
GH
1882static void update_avg(u64 *avg, u64 sample)
1883{
1884 s64 diff = sample - *avg;
1885 *avg += diff >> 3;
1886}
1887
8159f87e 1888static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1889{
831451ac
PZ
1890 if (wakeup)
1891 p->se.start_runtime = p->se.sum_exec_runtime;
1892
dd41f596 1893 sched_info_queued(p);
fd390f6a 1894 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1895 p->se.on_rq = 1;
71f8bd46
IM
1896}
1897
69be72c1 1898static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1899{
831451ac
PZ
1900 if (sleep) {
1901 if (p->se.last_wakeup) {
1902 update_avg(&p->se.avg_overlap,
1903 p->se.sum_exec_runtime - p->se.last_wakeup);
1904 p->se.last_wakeup = 0;
1905 } else {
1906 update_avg(&p->se.avg_wakeup,
1907 sysctl_sched_wakeup_granularity);
1908 }
2087a1ad
GH
1909 }
1910
46ac22ba 1911 sched_info_dequeued(p);
f02231e5 1912 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1913 p->se.on_rq = 0;
71f8bd46
IM
1914}
1915
14531189 1916/*
dd41f596 1917 * __normal_prio - return the priority that is based on the static prio
14531189 1918 */
14531189
IM
1919static inline int __normal_prio(struct task_struct *p)
1920{
dd41f596 1921 return p->static_prio;
14531189
IM
1922}
1923
b29739f9
IM
1924/*
1925 * Calculate the expected normal priority: i.e. priority
1926 * without taking RT-inheritance into account. Might be
1927 * boosted by interactivity modifiers. Changes upon fork,
1928 * setprio syscalls, and whenever the interactivity
1929 * estimator recalculates.
1930 */
36c8b586 1931static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1932{
1933 int prio;
1934
e05606d3 1935 if (task_has_rt_policy(p))
b29739f9
IM
1936 prio = MAX_RT_PRIO-1 - p->rt_priority;
1937 else
1938 prio = __normal_prio(p);
1939 return prio;
1940}
1941
1942/*
1943 * Calculate the current priority, i.e. the priority
1944 * taken into account by the scheduler. This value might
1945 * be boosted by RT tasks, or might be boosted by
1946 * interactivity modifiers. Will be RT if the task got
1947 * RT-boosted. If not then it returns p->normal_prio.
1948 */
36c8b586 1949static int effective_prio(struct task_struct *p)
b29739f9
IM
1950{
1951 p->normal_prio = normal_prio(p);
1952 /*
1953 * If we are RT tasks or we were boosted to RT priority,
1954 * keep the priority unchanged. Otherwise, update priority
1955 * to the normal priority:
1956 */
1957 if (!rt_prio(p->prio))
1958 return p->normal_prio;
1959 return p->prio;
1960}
1961
1da177e4 1962/*
dd41f596 1963 * activate_task - move a task to the runqueue.
1da177e4 1964 */
dd41f596 1965static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1966{
d9514f6c 1967 if (task_contributes_to_load(p))
dd41f596 1968 rq->nr_uninterruptible--;
1da177e4 1969
8159f87e 1970 enqueue_task(rq, p, wakeup);
c09595f6 1971 inc_nr_running(rq);
1da177e4
LT
1972}
1973
1da177e4
LT
1974/*
1975 * deactivate_task - remove a task from the runqueue.
1976 */
2e1cb74a 1977static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1978{
d9514f6c 1979 if (task_contributes_to_load(p))
dd41f596
IM
1980 rq->nr_uninterruptible++;
1981
69be72c1 1982 dequeue_task(rq, p, sleep);
c09595f6 1983 dec_nr_running(rq);
1da177e4
LT
1984}
1985
1da177e4
LT
1986/**
1987 * task_curr - is this task currently executing on a CPU?
1988 * @p: the task in question.
1989 */
36c8b586 1990inline int task_curr(const struct task_struct *p)
1da177e4
LT
1991{
1992 return cpu_curr(task_cpu(p)) == p;
1993}
1994
cb469845
SR
1995static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1996 const struct sched_class *prev_class,
1997 int oldprio, int running)
1998{
1999 if (prev_class != p->sched_class) {
2000 if (prev_class->switched_from)
2001 prev_class->switched_from(rq, p, running);
2002 p->sched_class->switched_to(rq, p, running);
2003 } else
2004 p->sched_class->prio_changed(rq, p, oldprio, running);
2005}
2006
1da177e4 2007#ifdef CONFIG_SMP
cc367732
IM
2008/*
2009 * Is this task likely cache-hot:
2010 */
e7693a36 2011static int
cc367732
IM
2012task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2013{
2014 s64 delta;
2015
e6c8fba7
PZ
2016 if (p->sched_class != &fair_sched_class)
2017 return 0;
2018
f540a608
IM
2019 /*
2020 * Buddy candidates are cache hot:
2021 */
f685ceac 2022 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2023 (&p->se == cfs_rq_of(&p->se)->next ||
2024 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2025 return 1;
2026
6bc1665b
IM
2027 if (sysctl_sched_migration_cost == -1)
2028 return 1;
2029 if (sysctl_sched_migration_cost == 0)
2030 return 0;
2031
cc367732
IM
2032 delta = now - p->se.exec_start;
2033
2034 return delta < (s64)sysctl_sched_migration_cost;
2035}
2036
dd41f596 2037void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2038{
e2912009
PZ
2039#ifdef CONFIG_SCHED_DEBUG
2040 /*
2041 * We should never call set_task_cpu() on a blocked task,
2042 * ttwu() will sort out the placement.
2043 */
077614ee
PZ
2044 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2045 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2046#endif
2047
de1d7286 2048 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2049
738d2be4
PZ
2050 if (task_cpu(p) == new_cpu)
2051 return;
2052
2053 p->se.nr_migrations++;
2054 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
dd41f596
IM
2055
2056 __set_task_cpu(p, new_cpu);
c65cc870
IM
2057}
2058
70b97a7f 2059struct migration_req {
1da177e4 2060 struct list_head list;
1da177e4 2061
36c8b586 2062 struct task_struct *task;
1da177e4
LT
2063 int dest_cpu;
2064
1da177e4 2065 struct completion done;
70b97a7f 2066};
1da177e4
LT
2067
2068/*
2069 * The task's runqueue lock must be held.
2070 * Returns true if you have to wait for migration thread.
2071 */
36c8b586 2072static int
70b97a7f 2073migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2074{
70b97a7f 2075 struct rq *rq = task_rq(p);
1da177e4
LT
2076
2077 /*
2078 * If the task is not on a runqueue (and not running), then
e2912009 2079 * the next wake-up will properly place the task.
1da177e4 2080 */
e2912009 2081 if (!p->se.on_rq && !task_running(rq, p))
1da177e4 2082 return 0;
1da177e4
LT
2083
2084 init_completion(&req->done);
1da177e4
LT
2085 req->task = p;
2086 req->dest_cpu = dest_cpu;
2087 list_add(&req->list, &rq->migration_queue);
48f24c4d 2088
1da177e4
LT
2089 return 1;
2090}
2091
a26b89f0
MM
2092/*
2093 * wait_task_context_switch - wait for a thread to complete at least one
2094 * context switch.
2095 *
2096 * @p must not be current.
2097 */
2098void wait_task_context_switch(struct task_struct *p)
2099{
2100 unsigned long nvcsw, nivcsw, flags;
2101 int running;
2102 struct rq *rq;
2103
2104 nvcsw = p->nvcsw;
2105 nivcsw = p->nivcsw;
2106 for (;;) {
2107 /*
2108 * The runqueue is assigned before the actual context
2109 * switch. We need to take the runqueue lock.
2110 *
2111 * We could check initially without the lock but it is
2112 * very likely that we need to take the lock in every
2113 * iteration.
2114 */
2115 rq = task_rq_lock(p, &flags);
2116 running = task_running(rq, p);
2117 task_rq_unlock(rq, &flags);
2118
2119 if (likely(!running))
2120 break;
2121 /*
2122 * The switch count is incremented before the actual
2123 * context switch. We thus wait for two switches to be
2124 * sure at least one completed.
2125 */
2126 if ((p->nvcsw - nvcsw) > 1)
2127 break;
2128 if ((p->nivcsw - nivcsw) > 1)
2129 break;
2130
2131 cpu_relax();
2132 }
2133}
2134
1da177e4
LT
2135/*
2136 * wait_task_inactive - wait for a thread to unschedule.
2137 *
85ba2d86
RM
2138 * If @match_state is nonzero, it's the @p->state value just checked and
2139 * not expected to change. If it changes, i.e. @p might have woken up,
2140 * then return zero. When we succeed in waiting for @p to be off its CPU,
2141 * we return a positive number (its total switch count). If a second call
2142 * a short while later returns the same number, the caller can be sure that
2143 * @p has remained unscheduled the whole time.
2144 *
1da177e4
LT
2145 * The caller must ensure that the task *will* unschedule sometime soon,
2146 * else this function might spin for a *long* time. This function can't
2147 * be called with interrupts off, or it may introduce deadlock with
2148 * smp_call_function() if an IPI is sent by the same process we are
2149 * waiting to become inactive.
2150 */
85ba2d86 2151unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2152{
2153 unsigned long flags;
dd41f596 2154 int running, on_rq;
85ba2d86 2155 unsigned long ncsw;
70b97a7f 2156 struct rq *rq;
1da177e4 2157
3a5c359a
AK
2158 for (;;) {
2159 /*
2160 * We do the initial early heuristics without holding
2161 * any task-queue locks at all. We'll only try to get
2162 * the runqueue lock when things look like they will
2163 * work out!
2164 */
2165 rq = task_rq(p);
fa490cfd 2166
3a5c359a
AK
2167 /*
2168 * If the task is actively running on another CPU
2169 * still, just relax and busy-wait without holding
2170 * any locks.
2171 *
2172 * NOTE! Since we don't hold any locks, it's not
2173 * even sure that "rq" stays as the right runqueue!
2174 * But we don't care, since "task_running()" will
2175 * return false if the runqueue has changed and p
2176 * is actually now running somewhere else!
2177 */
85ba2d86
RM
2178 while (task_running(rq, p)) {
2179 if (match_state && unlikely(p->state != match_state))
2180 return 0;
3a5c359a 2181 cpu_relax();
85ba2d86 2182 }
fa490cfd 2183
3a5c359a
AK
2184 /*
2185 * Ok, time to look more closely! We need the rq
2186 * lock now, to be *sure*. If we're wrong, we'll
2187 * just go back and repeat.
2188 */
2189 rq = task_rq_lock(p, &flags);
0a16b607 2190 trace_sched_wait_task(rq, p);
3a5c359a
AK
2191 running = task_running(rq, p);
2192 on_rq = p->se.on_rq;
85ba2d86 2193 ncsw = 0;
f31e11d8 2194 if (!match_state || p->state == match_state)
93dcf55f 2195 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2196 task_rq_unlock(rq, &flags);
fa490cfd 2197
85ba2d86
RM
2198 /*
2199 * If it changed from the expected state, bail out now.
2200 */
2201 if (unlikely(!ncsw))
2202 break;
2203
3a5c359a
AK
2204 /*
2205 * Was it really running after all now that we
2206 * checked with the proper locks actually held?
2207 *
2208 * Oops. Go back and try again..
2209 */
2210 if (unlikely(running)) {
2211 cpu_relax();
2212 continue;
2213 }
fa490cfd 2214
3a5c359a
AK
2215 /*
2216 * It's not enough that it's not actively running,
2217 * it must be off the runqueue _entirely_, and not
2218 * preempted!
2219 *
80dd99b3 2220 * So if it was still runnable (but just not actively
3a5c359a
AK
2221 * running right now), it's preempted, and we should
2222 * yield - it could be a while.
2223 */
2224 if (unlikely(on_rq)) {
2225 schedule_timeout_uninterruptible(1);
2226 continue;
2227 }
fa490cfd 2228
3a5c359a
AK
2229 /*
2230 * Ahh, all good. It wasn't running, and it wasn't
2231 * runnable, which means that it will never become
2232 * running in the future either. We're all done!
2233 */
2234 break;
2235 }
85ba2d86
RM
2236
2237 return ncsw;
1da177e4
LT
2238}
2239
2240/***
2241 * kick_process - kick a running thread to enter/exit the kernel
2242 * @p: the to-be-kicked thread
2243 *
2244 * Cause a process which is running on another CPU to enter
2245 * kernel-mode, without any delay. (to get signals handled.)
2246 *
2247 * NOTE: this function doesnt have to take the runqueue lock,
2248 * because all it wants to ensure is that the remote task enters
2249 * the kernel. If the IPI races and the task has been migrated
2250 * to another CPU then no harm is done and the purpose has been
2251 * achieved as well.
2252 */
36c8b586 2253void kick_process(struct task_struct *p)
1da177e4
LT
2254{
2255 int cpu;
2256
2257 preempt_disable();
2258 cpu = task_cpu(p);
2259 if ((cpu != smp_processor_id()) && task_curr(p))
2260 smp_send_reschedule(cpu);
2261 preempt_enable();
2262}
b43e3521 2263EXPORT_SYMBOL_GPL(kick_process);
476d139c 2264#endif /* CONFIG_SMP */
1da177e4 2265
0793a61d
TG
2266/**
2267 * task_oncpu_function_call - call a function on the cpu on which a task runs
2268 * @p: the task to evaluate
2269 * @func: the function to be called
2270 * @info: the function call argument
2271 *
2272 * Calls the function @func when the task is currently running. This might
2273 * be on the current CPU, which just calls the function directly
2274 */
2275void task_oncpu_function_call(struct task_struct *p,
2276 void (*func) (void *info), void *info)
2277{
2278 int cpu;
2279
2280 preempt_disable();
2281 cpu = task_cpu(p);
2282 if (task_curr(p))
2283 smp_call_function_single(cpu, func, info, 1);
2284 preempt_enable();
2285}
2286
970b13ba 2287#ifdef CONFIG_SMP
5da9a0fb
PZ
2288static int select_fallback_rq(int cpu, struct task_struct *p)
2289{
2290 int dest_cpu;
2291 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2292
2293 /* Look for allowed, online CPU in same node. */
2294 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2295 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2296 return dest_cpu;
2297
2298 /* Any allowed, online CPU? */
2299 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2300 if (dest_cpu < nr_cpu_ids)
2301 return dest_cpu;
2302
2303 /* No more Mr. Nice Guy. */
2304 if (dest_cpu >= nr_cpu_ids) {
2305 rcu_read_lock();
2306 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2307 rcu_read_unlock();
2308 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2309
2310 /*
2311 * Don't tell them about moving exiting tasks or
2312 * kernel threads (both mm NULL), since they never
2313 * leave kernel.
2314 */
2315 if (p->mm && printk_ratelimit()) {
2316 printk(KERN_INFO "process %d (%s) no "
2317 "longer affine to cpu%d\n",
2318 task_pid_nr(p), p->comm, cpu);
2319 }
2320 }
2321
2322 return dest_cpu;
2323}
2324
e2912009
PZ
2325/*
2326 * Called from:
2327 *
2328 * - fork, @p is stable because it isn't on the tasklist yet
2329 *
38022906 2330 * - exec, @p is unstable, retry loop
e2912009
PZ
2331 *
2332 * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
2333 * we should be good.
2334 */
970b13ba
PZ
2335static inline
2336int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2337{
e2912009
PZ
2338 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2339
2340 /*
2341 * In order not to call set_task_cpu() on a blocking task we need
2342 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2343 * cpu.
2344 *
2345 * Since this is common to all placement strategies, this lives here.
2346 *
2347 * [ this allows ->select_task() to simply return task_cpu(p) and
2348 * not worry about this generic constraint ]
2349 */
2350 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
5da9a0fb
PZ
2351 !cpu_active(cpu)))
2352 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2353
2354 return cpu;
970b13ba
PZ
2355}
2356#endif
2357
1da177e4
LT
2358/***
2359 * try_to_wake_up - wake up a thread
2360 * @p: the to-be-woken-up thread
2361 * @state: the mask of task states that can be woken
2362 * @sync: do a synchronous wakeup?
2363 *
2364 * Put it on the run-queue if it's not already there. The "current"
2365 * thread is always on the run-queue (except when the actual
2366 * re-schedule is in progress), and as such you're allowed to do
2367 * the simpler "current->state = TASK_RUNNING" to mark yourself
2368 * runnable without the overhead of this.
2369 *
2370 * returns failure only if the task is already active.
2371 */
7d478721
PZ
2372static int try_to_wake_up(struct task_struct *p, unsigned int state,
2373 int wake_flags)
1da177e4 2374{
cc367732 2375 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2376 unsigned long flags;
f5dc3753 2377 struct rq *rq, *orig_rq;
1da177e4 2378
b85d0667 2379 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2380 wake_flags &= ~WF_SYNC;
2398f2c6 2381
e9c84311 2382 this_cpu = get_cpu();
2398f2c6 2383
04e2f174 2384 smp_wmb();
f5dc3753 2385 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2386 update_rq_clock(rq);
e9c84311 2387 if (!(p->state & state))
1da177e4
LT
2388 goto out;
2389
dd41f596 2390 if (p->se.on_rq)
1da177e4
LT
2391 goto out_running;
2392
2393 cpu = task_cpu(p);
cc367732 2394 orig_cpu = cpu;
1da177e4
LT
2395
2396#ifdef CONFIG_SMP
2397 if (unlikely(task_running(rq, p)))
2398 goto out_activate;
2399
e9c84311
PZ
2400 /*
2401 * In order to handle concurrent wakeups and release the rq->lock
2402 * we put the task in TASK_WAKING state.
eb24073b
IM
2403 *
2404 * First fix up the nr_uninterruptible count:
e9c84311 2405 */
eb24073b
IM
2406 if (task_contributes_to_load(p))
2407 rq->nr_uninterruptible--;
e9c84311 2408 p->state = TASK_WAKING;
efbbd05a
PZ
2409
2410 if (p->sched_class->task_waking)
2411 p->sched_class->task_waking(rq, p);
2412
ab19cb23 2413 __task_rq_unlock(rq);
e9c84311 2414
970b13ba 2415 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
ab19cb23 2416 if (cpu != orig_cpu)
5d2f5a61 2417 set_task_cpu(p, cpu);
ab19cb23
PZ
2418
2419 rq = __task_rq_lock(p);
2420 update_rq_clock(rq);
f5dc3753 2421
e9c84311
PZ
2422 WARN_ON(p->state != TASK_WAKING);
2423 cpu = task_cpu(p);
1da177e4 2424
e7693a36
GH
2425#ifdef CONFIG_SCHEDSTATS
2426 schedstat_inc(rq, ttwu_count);
2427 if (cpu == this_cpu)
2428 schedstat_inc(rq, ttwu_local);
2429 else {
2430 struct sched_domain *sd;
2431 for_each_domain(this_cpu, sd) {
758b2cdc 2432 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2433 schedstat_inc(sd, ttwu_wake_remote);
2434 break;
2435 }
2436 }
2437 }
6d6bc0ad 2438#endif /* CONFIG_SCHEDSTATS */
e7693a36 2439
1da177e4
LT
2440out_activate:
2441#endif /* CONFIG_SMP */
cc367732 2442 schedstat_inc(p, se.nr_wakeups);
7d478721 2443 if (wake_flags & WF_SYNC)
cc367732
IM
2444 schedstat_inc(p, se.nr_wakeups_sync);
2445 if (orig_cpu != cpu)
2446 schedstat_inc(p, se.nr_wakeups_migrate);
2447 if (cpu == this_cpu)
2448 schedstat_inc(p, se.nr_wakeups_local);
2449 else
2450 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2451 activate_task(rq, p, 1);
1da177e4
LT
2452 success = 1;
2453
831451ac
PZ
2454 /*
2455 * Only attribute actual wakeups done by this task.
2456 */
2457 if (!in_interrupt()) {
2458 struct sched_entity *se = &current->se;
2459 u64 sample = se->sum_exec_runtime;
2460
2461 if (se->last_wakeup)
2462 sample -= se->last_wakeup;
2463 else
2464 sample -= se->start_runtime;
2465 update_avg(&se->avg_wakeup, sample);
2466
2467 se->last_wakeup = se->sum_exec_runtime;
2468 }
2469
1da177e4 2470out_running:
468a15bb 2471 trace_sched_wakeup(rq, p, success);
7d478721 2472 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2473
1da177e4 2474 p->state = TASK_RUNNING;
9a897c5a 2475#ifdef CONFIG_SMP
efbbd05a
PZ
2476 if (p->sched_class->task_woken)
2477 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2478
2479 if (unlikely(rq->idle_stamp)) {
2480 u64 delta = rq->clock - rq->idle_stamp;
2481 u64 max = 2*sysctl_sched_migration_cost;
2482
2483 if (delta > max)
2484 rq->avg_idle = max;
2485 else
2486 update_avg(&rq->avg_idle, delta);
2487 rq->idle_stamp = 0;
2488 }
9a897c5a 2489#endif
1da177e4
LT
2490out:
2491 task_rq_unlock(rq, &flags);
e9c84311 2492 put_cpu();
1da177e4
LT
2493
2494 return success;
2495}
2496
50fa610a
DH
2497/**
2498 * wake_up_process - Wake up a specific process
2499 * @p: The process to be woken up.
2500 *
2501 * Attempt to wake up the nominated process and move it to the set of runnable
2502 * processes. Returns 1 if the process was woken up, 0 if it was already
2503 * running.
2504 *
2505 * It may be assumed that this function implies a write memory barrier before
2506 * changing the task state if and only if any tasks are woken up.
2507 */
7ad5b3a5 2508int wake_up_process(struct task_struct *p)
1da177e4 2509{
d9514f6c 2510 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2511}
1da177e4
LT
2512EXPORT_SYMBOL(wake_up_process);
2513
7ad5b3a5 2514int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2515{
2516 return try_to_wake_up(p, state, 0);
2517}
2518
1da177e4
LT
2519/*
2520 * Perform scheduler related setup for a newly forked process p.
2521 * p is forked by current.
dd41f596
IM
2522 *
2523 * __sched_fork() is basic setup used by init_idle() too:
2524 */
2525static void __sched_fork(struct task_struct *p)
2526{
dd41f596
IM
2527 p->se.exec_start = 0;
2528 p->se.sum_exec_runtime = 0;
f6cf891c 2529 p->se.prev_sum_exec_runtime = 0;
6c594c21 2530 p->se.nr_migrations = 0;
4ae7d5ce
IM
2531 p->se.last_wakeup = 0;
2532 p->se.avg_overlap = 0;
831451ac
PZ
2533 p->se.start_runtime = 0;
2534 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2535
2536#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2537 p->se.wait_start = 0;
2538 p->se.wait_max = 0;
2539 p->se.wait_count = 0;
2540 p->se.wait_sum = 0;
2541
2542 p->se.sleep_start = 0;
2543 p->se.sleep_max = 0;
2544 p->se.sum_sleep_runtime = 0;
2545
2546 p->se.block_start = 0;
2547 p->se.block_max = 0;
2548 p->se.exec_max = 0;
2549 p->se.slice_max = 0;
2550
2551 p->se.nr_migrations_cold = 0;
2552 p->se.nr_failed_migrations_affine = 0;
2553 p->se.nr_failed_migrations_running = 0;
2554 p->se.nr_failed_migrations_hot = 0;
2555 p->se.nr_forced_migrations = 0;
7793527b
LDM
2556
2557 p->se.nr_wakeups = 0;
2558 p->se.nr_wakeups_sync = 0;
2559 p->se.nr_wakeups_migrate = 0;
2560 p->se.nr_wakeups_local = 0;
2561 p->se.nr_wakeups_remote = 0;
2562 p->se.nr_wakeups_affine = 0;
2563 p->se.nr_wakeups_affine_attempts = 0;
2564 p->se.nr_wakeups_passive = 0;
2565 p->se.nr_wakeups_idle = 0;
2566
6cfb0d5d 2567#endif
476d139c 2568
fa717060 2569 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2570 p->se.on_rq = 0;
4a55bd5e 2571 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2572
e107be36
AK
2573#ifdef CONFIG_PREEMPT_NOTIFIERS
2574 INIT_HLIST_HEAD(&p->preempt_notifiers);
2575#endif
dd41f596
IM
2576}
2577
2578/*
2579 * fork()/clone()-time setup:
2580 */
2581void sched_fork(struct task_struct *p, int clone_flags)
2582{
2583 int cpu = get_cpu();
2584
2585 __sched_fork(p);
06b83b5f
PZ
2586 /*
2587 * We mark the process as waking here. This guarantees that
2588 * nobody will actually run it, and a signal or other external
2589 * event cannot wake it up and insert it on the runqueue either.
2590 */
2591 p->state = TASK_WAKING;
dd41f596 2592
b9dc29e7
MG
2593 /*
2594 * Revert to default priority/policy on fork if requested.
2595 */
2596 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2597 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2598 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2599 p->normal_prio = p->static_prio;
2600 }
b9dc29e7 2601
6c697bdf
MG
2602 if (PRIO_TO_NICE(p->static_prio) < 0) {
2603 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2604 p->normal_prio = p->static_prio;
6c697bdf
MG
2605 set_load_weight(p);
2606 }
2607
b9dc29e7
MG
2608 /*
2609 * We don't need the reset flag anymore after the fork. It has
2610 * fulfilled its duty:
2611 */
2612 p->sched_reset_on_fork = 0;
2613 }
ca94c442 2614
f83f9ac2
PW
2615 /*
2616 * Make sure we do not leak PI boosting priority to the child.
2617 */
2618 p->prio = current->normal_prio;
2619
2ddbf952
HS
2620 if (!rt_prio(p->prio))
2621 p->sched_class = &fair_sched_class;
b29739f9 2622
cd29fe6f
PZ
2623 if (p->sched_class->task_fork)
2624 p->sched_class->task_fork(p);
2625
5f3edc1b 2626#ifdef CONFIG_SMP
970b13ba 2627 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
5f3edc1b
PZ
2628#endif
2629 set_task_cpu(p, cpu);
2630
52f17b6c 2631#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2632 if (likely(sched_info_on()))
52f17b6c 2633 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2634#endif
d6077cb8 2635#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2636 p->oncpu = 0;
2637#endif
1da177e4 2638#ifdef CONFIG_PREEMPT
4866cde0 2639 /* Want to start with kernel preemption disabled. */
a1261f54 2640 task_thread_info(p)->preempt_count = 1;
1da177e4 2641#endif
917b627d
GH
2642 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2643
476d139c 2644 put_cpu();
1da177e4
LT
2645}
2646
2647/*
2648 * wake_up_new_task - wake up a newly created task for the first time.
2649 *
2650 * This function will do some initial scheduler statistics housekeeping
2651 * that must be done for every newly created context, then puts the task
2652 * on the runqueue and wakes it.
2653 */
7ad5b3a5 2654void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2655{
2656 unsigned long flags;
dd41f596 2657 struct rq *rq;
1da177e4
LT
2658
2659 rq = task_rq_lock(p, &flags);
06b83b5f
PZ
2660 BUG_ON(p->state != TASK_WAKING);
2661 p->state = TASK_RUNNING;
a8e504d2 2662 update_rq_clock(rq);
cd29fe6f 2663 activate_task(rq, p, 0);
c71dd42d 2664 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2665 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2666#ifdef CONFIG_SMP
efbbd05a
PZ
2667 if (p->sched_class->task_woken)
2668 p->sched_class->task_woken(rq, p);
9a897c5a 2669#endif
dd41f596 2670 task_rq_unlock(rq, &flags);
1da177e4
LT
2671}
2672
e107be36
AK
2673#ifdef CONFIG_PREEMPT_NOTIFIERS
2674
2675/**
80dd99b3 2676 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2677 * @notifier: notifier struct to register
e107be36
AK
2678 */
2679void preempt_notifier_register(struct preempt_notifier *notifier)
2680{
2681 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2682}
2683EXPORT_SYMBOL_GPL(preempt_notifier_register);
2684
2685/**
2686 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2687 * @notifier: notifier struct to unregister
e107be36
AK
2688 *
2689 * This is safe to call from within a preemption notifier.
2690 */
2691void preempt_notifier_unregister(struct preempt_notifier *notifier)
2692{
2693 hlist_del(&notifier->link);
2694}
2695EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2696
2697static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2698{
2699 struct preempt_notifier *notifier;
2700 struct hlist_node *node;
2701
2702 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2703 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2704}
2705
2706static void
2707fire_sched_out_preempt_notifiers(struct task_struct *curr,
2708 struct task_struct *next)
2709{
2710 struct preempt_notifier *notifier;
2711 struct hlist_node *node;
2712
2713 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2714 notifier->ops->sched_out(notifier, next);
2715}
2716
6d6bc0ad 2717#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2718
2719static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2720{
2721}
2722
2723static void
2724fire_sched_out_preempt_notifiers(struct task_struct *curr,
2725 struct task_struct *next)
2726{
2727}
2728
6d6bc0ad 2729#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2730
4866cde0
NP
2731/**
2732 * prepare_task_switch - prepare to switch tasks
2733 * @rq: the runqueue preparing to switch
421cee29 2734 * @prev: the current task that is being switched out
4866cde0
NP
2735 * @next: the task we are going to switch to.
2736 *
2737 * This is called with the rq lock held and interrupts off. It must
2738 * be paired with a subsequent finish_task_switch after the context
2739 * switch.
2740 *
2741 * prepare_task_switch sets up locking and calls architecture specific
2742 * hooks.
2743 */
e107be36
AK
2744static inline void
2745prepare_task_switch(struct rq *rq, struct task_struct *prev,
2746 struct task_struct *next)
4866cde0 2747{
e107be36 2748 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2749 prepare_lock_switch(rq, next);
2750 prepare_arch_switch(next);
2751}
2752
1da177e4
LT
2753/**
2754 * finish_task_switch - clean up after a task-switch
344babaa 2755 * @rq: runqueue associated with task-switch
1da177e4
LT
2756 * @prev: the thread we just switched away from.
2757 *
4866cde0
NP
2758 * finish_task_switch must be called after the context switch, paired
2759 * with a prepare_task_switch call before the context switch.
2760 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2761 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2762 *
2763 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2764 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2765 * with the lock held can cause deadlocks; see schedule() for
2766 * details.)
2767 */
a9957449 2768static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2769 __releases(rq->lock)
2770{
1da177e4 2771 struct mm_struct *mm = rq->prev_mm;
55a101f8 2772 long prev_state;
1da177e4
LT
2773
2774 rq->prev_mm = NULL;
2775
2776 /*
2777 * A task struct has one reference for the use as "current".
c394cc9f 2778 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2779 * schedule one last time. The schedule call will never return, and
2780 * the scheduled task must drop that reference.
c394cc9f 2781 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2782 * still held, otherwise prev could be scheduled on another cpu, die
2783 * there before we look at prev->state, and then the reference would
2784 * be dropped twice.
2785 * Manfred Spraul <manfred@colorfullife.com>
2786 */
55a101f8 2787 prev_state = prev->state;
4866cde0 2788 finish_arch_switch(prev);
cdd6c482 2789 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2790 finish_lock_switch(rq, prev);
e8fa1362 2791
e107be36 2792 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2793 if (mm)
2794 mmdrop(mm);
c394cc9f 2795 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2796 /*
2797 * Remove function-return probe instances associated with this
2798 * task and put them back on the free list.
9761eea8 2799 */
c6fd91f0 2800 kprobe_flush_task(prev);
1da177e4 2801 put_task_struct(prev);
c6fd91f0 2802 }
1da177e4
LT
2803}
2804
3f029d3c
GH
2805#ifdef CONFIG_SMP
2806
2807/* assumes rq->lock is held */
2808static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2809{
2810 if (prev->sched_class->pre_schedule)
2811 prev->sched_class->pre_schedule(rq, prev);
2812}
2813
2814/* rq->lock is NOT held, but preemption is disabled */
2815static inline void post_schedule(struct rq *rq)
2816{
2817 if (rq->post_schedule) {
2818 unsigned long flags;
2819
05fa785c 2820 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2821 if (rq->curr->sched_class->post_schedule)
2822 rq->curr->sched_class->post_schedule(rq);
05fa785c 2823 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2824
2825 rq->post_schedule = 0;
2826 }
2827}
2828
2829#else
da19ab51 2830
3f029d3c
GH
2831static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2832{
2833}
2834
2835static inline void post_schedule(struct rq *rq)
2836{
1da177e4
LT
2837}
2838
3f029d3c
GH
2839#endif
2840
1da177e4
LT
2841/**
2842 * schedule_tail - first thing a freshly forked thread must call.
2843 * @prev: the thread we just switched away from.
2844 */
36c8b586 2845asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2846 __releases(rq->lock)
2847{
70b97a7f
IM
2848 struct rq *rq = this_rq();
2849
4866cde0 2850 finish_task_switch(rq, prev);
da19ab51 2851
3f029d3c
GH
2852 /*
2853 * FIXME: do we need to worry about rq being invalidated by the
2854 * task_switch?
2855 */
2856 post_schedule(rq);
70b97a7f 2857
4866cde0
NP
2858#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2859 /* In this case, finish_task_switch does not reenable preemption */
2860 preempt_enable();
2861#endif
1da177e4 2862 if (current->set_child_tid)
b488893a 2863 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2864}
2865
2866/*
2867 * context_switch - switch to the new MM and the new
2868 * thread's register state.
2869 */
dd41f596 2870static inline void
70b97a7f 2871context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2872 struct task_struct *next)
1da177e4 2873{
dd41f596 2874 struct mm_struct *mm, *oldmm;
1da177e4 2875
e107be36 2876 prepare_task_switch(rq, prev, next);
0a16b607 2877 trace_sched_switch(rq, prev, next);
dd41f596
IM
2878 mm = next->mm;
2879 oldmm = prev->active_mm;
9226d125
ZA
2880 /*
2881 * For paravirt, this is coupled with an exit in switch_to to
2882 * combine the page table reload and the switch backend into
2883 * one hypercall.
2884 */
224101ed 2885 arch_start_context_switch(prev);
9226d125 2886
710390d9 2887 if (likely(!mm)) {
1da177e4
LT
2888 next->active_mm = oldmm;
2889 atomic_inc(&oldmm->mm_count);
2890 enter_lazy_tlb(oldmm, next);
2891 } else
2892 switch_mm(oldmm, mm, next);
2893
710390d9 2894 if (likely(!prev->mm)) {
1da177e4 2895 prev->active_mm = NULL;
1da177e4
LT
2896 rq->prev_mm = oldmm;
2897 }
3a5f5e48
IM
2898 /*
2899 * Since the runqueue lock will be released by the next
2900 * task (which is an invalid locking op but in the case
2901 * of the scheduler it's an obvious special-case), so we
2902 * do an early lockdep release here:
2903 */
2904#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2905 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2906#endif
1da177e4
LT
2907
2908 /* Here we just switch the register state and the stack. */
2909 switch_to(prev, next, prev);
2910
dd41f596
IM
2911 barrier();
2912 /*
2913 * this_rq must be evaluated again because prev may have moved
2914 * CPUs since it called schedule(), thus the 'rq' on its stack
2915 * frame will be invalid.
2916 */
2917 finish_task_switch(this_rq(), prev);
1da177e4
LT
2918}
2919
2920/*
2921 * nr_running, nr_uninterruptible and nr_context_switches:
2922 *
2923 * externally visible scheduler statistics: current number of runnable
2924 * threads, current number of uninterruptible-sleeping threads, total
2925 * number of context switches performed since bootup.
2926 */
2927unsigned long nr_running(void)
2928{
2929 unsigned long i, sum = 0;
2930
2931 for_each_online_cpu(i)
2932 sum += cpu_rq(i)->nr_running;
2933
2934 return sum;
2935}
2936
2937unsigned long nr_uninterruptible(void)
2938{
2939 unsigned long i, sum = 0;
2940
0a945022 2941 for_each_possible_cpu(i)
1da177e4
LT
2942 sum += cpu_rq(i)->nr_uninterruptible;
2943
2944 /*
2945 * Since we read the counters lockless, it might be slightly
2946 * inaccurate. Do not allow it to go below zero though:
2947 */
2948 if (unlikely((long)sum < 0))
2949 sum = 0;
2950
2951 return sum;
2952}
2953
2954unsigned long long nr_context_switches(void)
2955{
cc94abfc
SR
2956 int i;
2957 unsigned long long sum = 0;
1da177e4 2958
0a945022 2959 for_each_possible_cpu(i)
1da177e4
LT
2960 sum += cpu_rq(i)->nr_switches;
2961
2962 return sum;
2963}
2964
2965unsigned long nr_iowait(void)
2966{
2967 unsigned long i, sum = 0;
2968
0a945022 2969 for_each_possible_cpu(i)
1da177e4
LT
2970 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2971
2972 return sum;
2973}
2974
69d25870
AV
2975unsigned long nr_iowait_cpu(void)
2976{
2977 struct rq *this = this_rq();
2978 return atomic_read(&this->nr_iowait);
2979}
2980
2981unsigned long this_cpu_load(void)
2982{
2983 struct rq *this = this_rq();
2984 return this->cpu_load[0];
2985}
2986
2987
dce48a84
TG
2988/* Variables and functions for calc_load */
2989static atomic_long_t calc_load_tasks;
2990static unsigned long calc_load_update;
2991unsigned long avenrun[3];
2992EXPORT_SYMBOL(avenrun);
2993
2d02494f
TG
2994/**
2995 * get_avenrun - get the load average array
2996 * @loads: pointer to dest load array
2997 * @offset: offset to add
2998 * @shift: shift count to shift the result left
2999 *
3000 * These values are estimates at best, so no need for locking.
3001 */
3002void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3003{
3004 loads[0] = (avenrun[0] + offset) << shift;
3005 loads[1] = (avenrun[1] + offset) << shift;
3006 loads[2] = (avenrun[2] + offset) << shift;
3007}
3008
dce48a84
TG
3009static unsigned long
3010calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3011{
dce48a84
TG
3012 load *= exp;
3013 load += active * (FIXED_1 - exp);
3014 return load >> FSHIFT;
3015}
db1b1fef 3016
dce48a84
TG
3017/*
3018 * calc_load - update the avenrun load estimates 10 ticks after the
3019 * CPUs have updated calc_load_tasks.
3020 */
3021void calc_global_load(void)
3022{
3023 unsigned long upd = calc_load_update + 10;
3024 long active;
3025
3026 if (time_before(jiffies, upd))
3027 return;
db1b1fef 3028
dce48a84
TG
3029 active = atomic_long_read(&calc_load_tasks);
3030 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3031
dce48a84
TG
3032 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3033 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3034 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3035
3036 calc_load_update += LOAD_FREQ;
3037}
3038
3039/*
3040 * Either called from update_cpu_load() or from a cpu going idle
3041 */
3042static void calc_load_account_active(struct rq *this_rq)
3043{
3044 long nr_active, delta;
3045
3046 nr_active = this_rq->nr_running;
3047 nr_active += (long) this_rq->nr_uninterruptible;
3048
3049 if (nr_active != this_rq->calc_load_active) {
3050 delta = nr_active - this_rq->calc_load_active;
3051 this_rq->calc_load_active = nr_active;
3052 atomic_long_add(delta, &calc_load_tasks);
3053 }
db1b1fef
JS
3054}
3055
48f24c4d 3056/*
dd41f596
IM
3057 * Update rq->cpu_load[] statistics. This function is usually called every
3058 * scheduler tick (TICK_NSEC).
48f24c4d 3059 */
dd41f596 3060static void update_cpu_load(struct rq *this_rq)
48f24c4d 3061{
495eca49 3062 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3063 int i, scale;
3064
3065 this_rq->nr_load_updates++;
dd41f596
IM
3066
3067 /* Update our load: */
3068 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3069 unsigned long old_load, new_load;
3070
3071 /* scale is effectively 1 << i now, and >> i divides by scale */
3072
3073 old_load = this_rq->cpu_load[i];
3074 new_load = this_load;
a25707f3
IM
3075 /*
3076 * Round up the averaging division if load is increasing. This
3077 * prevents us from getting stuck on 9 if the load is 10, for
3078 * example.
3079 */
3080 if (new_load > old_load)
3081 new_load += scale-1;
dd41f596
IM
3082 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3083 }
dce48a84
TG
3084
3085 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3086 this_rq->calc_load_update += LOAD_FREQ;
3087 calc_load_account_active(this_rq);
3088 }
48f24c4d
IM
3089}
3090
dd41f596
IM
3091#ifdef CONFIG_SMP
3092
1da177e4
LT
3093/*
3094 * double_rq_lock - safely lock two runqueues
3095 *
3096 * Note this does not disable interrupts like task_rq_lock,
3097 * you need to do so manually before calling.
3098 */
70b97a7f 3099static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3100 __acquires(rq1->lock)
3101 __acquires(rq2->lock)
3102{
054b9108 3103 BUG_ON(!irqs_disabled());
1da177e4 3104 if (rq1 == rq2) {
05fa785c 3105 raw_spin_lock(&rq1->lock);
1da177e4
LT
3106 __acquire(rq2->lock); /* Fake it out ;) */
3107 } else {
c96d145e 3108 if (rq1 < rq2) {
05fa785c
TG
3109 raw_spin_lock(&rq1->lock);
3110 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4 3111 } else {
05fa785c
TG
3112 raw_spin_lock(&rq2->lock);
3113 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3114 }
3115 }
6e82a3be
IM
3116 update_rq_clock(rq1);
3117 update_rq_clock(rq2);
1da177e4
LT
3118}
3119
3120/*
3121 * double_rq_unlock - safely unlock two runqueues
3122 *
3123 * Note this does not restore interrupts like task_rq_unlock,
3124 * you need to do so manually after calling.
3125 */
70b97a7f 3126static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3127 __releases(rq1->lock)
3128 __releases(rq2->lock)
3129{
05fa785c 3130 raw_spin_unlock(&rq1->lock);
1da177e4 3131 if (rq1 != rq2)
05fa785c 3132 raw_spin_unlock(&rq2->lock);
1da177e4
LT
3133 else
3134 __release(rq2->lock);
3135}
3136
1da177e4 3137/*
38022906
PZ
3138 * sched_exec - execve() is a valuable balancing opportunity, because at
3139 * this point the task has the smallest effective memory and cache footprint.
1da177e4 3140 */
38022906 3141void sched_exec(void)
1da177e4 3142{
38022906 3143 struct task_struct *p = current;
70b97a7f 3144 struct migration_req req;
38022906 3145 int dest_cpu, this_cpu;
1da177e4 3146 unsigned long flags;
70b97a7f 3147 struct rq *rq;
1da177e4 3148
38022906
PZ
3149again:
3150 this_cpu = get_cpu();
3151 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3152 if (dest_cpu == this_cpu) {
3153 put_cpu();
3154 return;
3155 }
3156
1da177e4 3157 rq = task_rq_lock(p, &flags);
38022906
PZ
3158 put_cpu();
3159
3160 /*
3161 * select_task_rq() can race against ->cpus_allowed
3162 */
96f874e2 3163 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
38022906
PZ
3164 || unlikely(!cpu_active(dest_cpu))) {
3165 task_rq_unlock(rq, &flags);
3166 goto again;
3167 }
1da177e4
LT
3168
3169 /* force the process onto the specified CPU */
3170 if (migrate_task(p, dest_cpu, &req)) {
3171 /* Need to wait for migration thread (might exit: take ref). */
3172 struct task_struct *mt = rq->migration_thread;
36c8b586 3173
1da177e4
LT
3174 get_task_struct(mt);
3175 task_rq_unlock(rq, &flags);
3176 wake_up_process(mt);
3177 put_task_struct(mt);
3178 wait_for_completion(&req.done);
36c8b586 3179
1da177e4
LT
3180 return;
3181 }
1da177e4
LT
3182 task_rq_unlock(rq, &flags);
3183}
3184
1da177e4
LT
3185/*
3186 * pull_task - move a task from a remote runqueue to the local runqueue.
3187 * Both runqueues must be locked.
3188 */
dd41f596
IM
3189static void pull_task(struct rq *src_rq, struct task_struct *p,
3190 struct rq *this_rq, int this_cpu)
1da177e4 3191{
2e1cb74a 3192 deactivate_task(src_rq, p, 0);
1da177e4 3193 set_task_cpu(p, this_cpu);
dd41f596 3194 activate_task(this_rq, p, 0);
15afe09b 3195 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3196}
3197
3198/*
3199 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3200 */
858119e1 3201static
70b97a7f 3202int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3203 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3204 int *all_pinned)
1da177e4 3205{
708dc512 3206 int tsk_cache_hot = 0;
1da177e4
LT
3207 /*
3208 * We do not migrate tasks that are:
3209 * 1) running (obviously), or
3210 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3211 * 3) are cache-hot on their current CPU.
3212 */
96f874e2 3213 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3214 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3215 return 0;
cc367732 3216 }
81026794
NP
3217 *all_pinned = 0;
3218
cc367732
IM
3219 if (task_running(rq, p)) {
3220 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3221 return 0;
cc367732 3222 }
1da177e4 3223
da84d961
IM
3224 /*
3225 * Aggressive migration if:
3226 * 1) task is cache cold, or
3227 * 2) too many balance attempts have failed.
3228 */
3229
708dc512
LH
3230 tsk_cache_hot = task_hot(p, rq->clock, sd);
3231 if (!tsk_cache_hot ||
3232 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3233#ifdef CONFIG_SCHEDSTATS
708dc512 3234 if (tsk_cache_hot) {
da84d961 3235 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3236 schedstat_inc(p, se.nr_forced_migrations);
3237 }
da84d961
IM
3238#endif
3239 return 1;
3240 }
3241
708dc512 3242 if (tsk_cache_hot) {
cc367732 3243 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3244 return 0;
cc367732 3245 }
1da177e4
LT
3246 return 1;
3247}
3248
e1d1484f
PW
3249static unsigned long
3250balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3251 unsigned long max_load_move, struct sched_domain *sd,
3252 enum cpu_idle_type idle, int *all_pinned,
3253 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3254{
051c6764 3255 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3256 struct task_struct *p;
3257 long rem_load_move = max_load_move;
1da177e4 3258
e1d1484f 3259 if (max_load_move == 0)
1da177e4
LT
3260 goto out;
3261
81026794
NP
3262 pinned = 1;
3263
1da177e4 3264 /*
dd41f596 3265 * Start the load-balancing iterator:
1da177e4 3266 */
dd41f596
IM
3267 p = iterator->start(iterator->arg);
3268next:
b82d9fdd 3269 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3270 goto out;
051c6764
PZ
3271
3272 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3273 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3274 p = iterator->next(iterator->arg);
3275 goto next;
1da177e4
LT
3276 }
3277
dd41f596 3278 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3279 pulled++;
dd41f596 3280 rem_load_move -= p->se.load.weight;
1da177e4 3281
7e96fa58
GH
3282#ifdef CONFIG_PREEMPT
3283 /*
3284 * NEWIDLE balancing is a source of latency, so preemptible kernels
3285 * will stop after the first task is pulled to minimize the critical
3286 * section.
3287 */
3288 if (idle == CPU_NEWLY_IDLE)
3289 goto out;
3290#endif
3291
2dd73a4f 3292 /*
b82d9fdd 3293 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3294 */
e1d1484f 3295 if (rem_load_move > 0) {
a4ac01c3
PW
3296 if (p->prio < *this_best_prio)
3297 *this_best_prio = p->prio;
dd41f596
IM
3298 p = iterator->next(iterator->arg);
3299 goto next;
1da177e4
LT
3300 }
3301out:
3302 /*
e1d1484f 3303 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3304 * so we can safely collect pull_task() stats here rather than
3305 * inside pull_task().
3306 */
3307 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3308
3309 if (all_pinned)
3310 *all_pinned = pinned;
e1d1484f
PW
3311
3312 return max_load_move - rem_load_move;
1da177e4
LT
3313}
3314
dd41f596 3315/*
43010659
PW
3316 * move_tasks tries to move up to max_load_move weighted load from busiest to
3317 * this_rq, as part of a balancing operation within domain "sd".
3318 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3319 *
3320 * Called with both runqueues locked.
3321 */
3322static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3323 unsigned long max_load_move,
dd41f596
IM
3324 struct sched_domain *sd, enum cpu_idle_type idle,
3325 int *all_pinned)
3326{
5522d5d5 3327 const struct sched_class *class = sched_class_highest;
43010659 3328 unsigned long total_load_moved = 0;
a4ac01c3 3329 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3330
3331 do {
43010659
PW
3332 total_load_moved +=
3333 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3334 max_load_move - total_load_moved,
a4ac01c3 3335 sd, idle, all_pinned, &this_best_prio);
dd41f596 3336 class = class->next;
c4acb2c0 3337
7e96fa58
GH
3338#ifdef CONFIG_PREEMPT
3339 /*
3340 * NEWIDLE balancing is a source of latency, so preemptible
3341 * kernels will stop after the first task is pulled to minimize
3342 * the critical section.
3343 */
c4acb2c0
GH
3344 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3345 break;
7e96fa58 3346#endif
43010659 3347 } while (class && max_load_move > total_load_moved);
dd41f596 3348
43010659
PW
3349 return total_load_moved > 0;
3350}
3351
e1d1484f
PW
3352static int
3353iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3354 struct sched_domain *sd, enum cpu_idle_type idle,
3355 struct rq_iterator *iterator)
3356{
3357 struct task_struct *p = iterator->start(iterator->arg);
3358 int pinned = 0;
3359
3360 while (p) {
3361 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3362 pull_task(busiest, p, this_rq, this_cpu);
3363 /*
3364 * Right now, this is only the second place pull_task()
3365 * is called, so we can safely collect pull_task()
3366 * stats here rather than inside pull_task().
3367 */
3368 schedstat_inc(sd, lb_gained[idle]);
3369
3370 return 1;
3371 }
3372 p = iterator->next(iterator->arg);
3373 }
3374
3375 return 0;
3376}
3377
43010659
PW
3378/*
3379 * move_one_task tries to move exactly one task from busiest to this_rq, as
3380 * part of active balancing operations within "domain".
3381 * Returns 1 if successful and 0 otherwise.
3382 *
3383 * Called with both runqueues locked.
3384 */
3385static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3386 struct sched_domain *sd, enum cpu_idle_type idle)
3387{
5522d5d5 3388 const struct sched_class *class;
43010659 3389
cde7e5ca 3390 for_each_class(class) {
e1d1484f 3391 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3392 return 1;
cde7e5ca 3393 }
43010659
PW
3394
3395 return 0;
dd41f596 3396}
67bb6c03 3397/********** Helpers for find_busiest_group ************************/
1da177e4 3398/*
222d656d
GS
3399 * sd_lb_stats - Structure to store the statistics of a sched_domain
3400 * during load balancing.
1da177e4 3401 */
222d656d
GS
3402struct sd_lb_stats {
3403 struct sched_group *busiest; /* Busiest group in this sd */
3404 struct sched_group *this; /* Local group in this sd */
3405 unsigned long total_load; /* Total load of all groups in sd */
3406 unsigned long total_pwr; /* Total power of all groups in sd */
3407 unsigned long avg_load; /* Average load across all groups in sd */
3408
3409 /** Statistics of this group */
3410 unsigned long this_load;
3411 unsigned long this_load_per_task;
3412 unsigned long this_nr_running;
3413
3414 /* Statistics of the busiest group */
3415 unsigned long max_load;
3416 unsigned long busiest_load_per_task;
3417 unsigned long busiest_nr_running;
3418
3419 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3420#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3421 int power_savings_balance; /* Is powersave balance needed for this sd */
3422 struct sched_group *group_min; /* Least loaded group in sd */
3423 struct sched_group *group_leader; /* Group which relieves group_min */
3424 unsigned long min_load_per_task; /* load_per_task in group_min */
3425 unsigned long leader_nr_running; /* Nr running of group_leader */
3426 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3427#endif
222d656d 3428};
1da177e4 3429
d5ac537e 3430/*
381be78f
GS
3431 * sg_lb_stats - stats of a sched_group required for load_balancing
3432 */
3433struct sg_lb_stats {
3434 unsigned long avg_load; /*Avg load across the CPUs of the group */
3435 unsigned long group_load; /* Total load over the CPUs of the group */
3436 unsigned long sum_nr_running; /* Nr tasks running in the group */
3437 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3438 unsigned long group_capacity;
3439 int group_imb; /* Is there an imbalance in the group ? */
3440};
408ed066 3441
67bb6c03
GS
3442/**
3443 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3444 * @group: The group whose first cpu is to be returned.
3445 */
3446static inline unsigned int group_first_cpu(struct sched_group *group)
3447{
3448 return cpumask_first(sched_group_cpus(group));
3449}
3450
3451/**
3452 * get_sd_load_idx - Obtain the load index for a given sched domain.
3453 * @sd: The sched_domain whose load_idx is to be obtained.
3454 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3455 */
3456static inline int get_sd_load_idx(struct sched_domain *sd,
3457 enum cpu_idle_type idle)
3458{
3459 int load_idx;
3460
3461 switch (idle) {
3462 case CPU_NOT_IDLE:
7897986b 3463 load_idx = sd->busy_idx;
67bb6c03
GS
3464 break;
3465
3466 case CPU_NEWLY_IDLE:
7897986b 3467 load_idx = sd->newidle_idx;
67bb6c03
GS
3468 break;
3469 default:
7897986b 3470 load_idx = sd->idle_idx;
67bb6c03
GS
3471 break;
3472 }
1da177e4 3473
67bb6c03
GS
3474 return load_idx;
3475}
1da177e4 3476
1da177e4 3477
c071df18
GS
3478#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3479/**
3480 * init_sd_power_savings_stats - Initialize power savings statistics for
3481 * the given sched_domain, during load balancing.
3482 *
3483 * @sd: Sched domain whose power-savings statistics are to be initialized.
3484 * @sds: Variable containing the statistics for sd.
3485 * @idle: Idle status of the CPU at which we're performing load-balancing.
3486 */
3487static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3488 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3489{
3490 /*
3491 * Busy processors will not participate in power savings
3492 * balance.
3493 */
3494 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3495 sds->power_savings_balance = 0;
3496 else {
3497 sds->power_savings_balance = 1;
3498 sds->min_nr_running = ULONG_MAX;
3499 sds->leader_nr_running = 0;
3500 }
3501}
783609c6 3502
c071df18
GS
3503/**
3504 * update_sd_power_savings_stats - Update the power saving stats for a
3505 * sched_domain while performing load balancing.
3506 *
3507 * @group: sched_group belonging to the sched_domain under consideration.
3508 * @sds: Variable containing the statistics of the sched_domain
3509 * @local_group: Does group contain the CPU for which we're performing
3510 * load balancing ?
3511 * @sgs: Variable containing the statistics of the group.
3512 */
3513static inline void update_sd_power_savings_stats(struct sched_group *group,
3514 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3515{
408ed066 3516
c071df18
GS
3517 if (!sds->power_savings_balance)
3518 return;
1da177e4 3519
c071df18
GS
3520 /*
3521 * If the local group is idle or completely loaded
3522 * no need to do power savings balance at this domain
3523 */
3524 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3525 !sds->this_nr_running))
3526 sds->power_savings_balance = 0;
2dd73a4f 3527
c071df18
GS
3528 /*
3529 * If a group is already running at full capacity or idle,
3530 * don't include that group in power savings calculations
3531 */
3532 if (!sds->power_savings_balance ||
3533 sgs->sum_nr_running >= sgs->group_capacity ||
3534 !sgs->sum_nr_running)
3535 return;
5969fe06 3536
c071df18
GS
3537 /*
3538 * Calculate the group which has the least non-idle load.
3539 * This is the group from where we need to pick up the load
3540 * for saving power
3541 */
3542 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3543 (sgs->sum_nr_running == sds->min_nr_running &&
3544 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3545 sds->group_min = group;
3546 sds->min_nr_running = sgs->sum_nr_running;
3547 sds->min_load_per_task = sgs->sum_weighted_load /
3548 sgs->sum_nr_running;
3549 }
783609c6 3550
c071df18
GS
3551 /*
3552 * Calculate the group which is almost near its
3553 * capacity but still has some space to pick up some load
3554 * from other group and save more power
3555 */
d899a789 3556 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3557 return;
1da177e4 3558
c071df18
GS
3559 if (sgs->sum_nr_running > sds->leader_nr_running ||
3560 (sgs->sum_nr_running == sds->leader_nr_running &&
3561 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3562 sds->group_leader = group;
3563 sds->leader_nr_running = sgs->sum_nr_running;
3564 }
3565}
408ed066 3566
c071df18 3567/**
d5ac537e 3568 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3569 * @sds: Variable containing the statistics of the sched_domain
3570 * under consideration.
3571 * @this_cpu: Cpu at which we're currently performing load-balancing.
3572 * @imbalance: Variable to store the imbalance.
3573 *
d5ac537e
RD
3574 * Description:
3575 * Check if we have potential to perform some power-savings balance.
3576 * If yes, set the busiest group to be the least loaded group in the
3577 * sched_domain, so that it's CPUs can be put to idle.
3578 *
c071df18
GS
3579 * Returns 1 if there is potential to perform power-savings balance.
3580 * Else returns 0.
3581 */
3582static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3583 int this_cpu, unsigned long *imbalance)
3584{
3585 if (!sds->power_savings_balance)
3586 return 0;
1da177e4 3587
c071df18
GS
3588 if (sds->this != sds->group_leader ||
3589 sds->group_leader == sds->group_min)
3590 return 0;
783609c6 3591
c071df18
GS
3592 *imbalance = sds->min_load_per_task;
3593 sds->busiest = sds->group_min;
1da177e4 3594
c071df18 3595 return 1;
1da177e4 3596
c071df18
GS
3597}
3598#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3599static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3600 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3601{
3602 return;
3603}
408ed066 3604
c071df18
GS
3605static inline void update_sd_power_savings_stats(struct sched_group *group,
3606 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3607{
3608 return;
3609}
3610
3611static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3612 int this_cpu, unsigned long *imbalance)
3613{
3614 return 0;
3615}
3616#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3617
d6a59aa3
PZ
3618
3619unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3620{
3621 return SCHED_LOAD_SCALE;
3622}
3623
3624unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3625{
3626 return default_scale_freq_power(sd, cpu);
3627}
3628
3629unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3630{
3631 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3632 unsigned long smt_gain = sd->smt_gain;
3633
3634 smt_gain /= weight;
3635
3636 return smt_gain;
3637}
3638
d6a59aa3
PZ
3639unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3640{
3641 return default_scale_smt_power(sd, cpu);
3642}
3643
e9e9250b
PZ
3644unsigned long scale_rt_power(int cpu)
3645{
3646 struct rq *rq = cpu_rq(cpu);
3647 u64 total, available;
3648
3649 sched_avg_update(rq);
3650
3651 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3652 available = total - rq->rt_avg;
3653
3654 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3655 total = SCHED_LOAD_SCALE;
3656
3657 total >>= SCHED_LOAD_SHIFT;
3658
3659 return div_u64(available, total);
3660}
3661
ab29230e
PZ
3662static void update_cpu_power(struct sched_domain *sd, int cpu)
3663{
3664 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3665 unsigned long power = SCHED_LOAD_SCALE;
3666 struct sched_group *sdg = sd->groups;
ab29230e 3667
8e6598af
PZ
3668 if (sched_feat(ARCH_POWER))
3669 power *= arch_scale_freq_power(sd, cpu);
3670 else
3671 power *= default_scale_freq_power(sd, cpu);
3672
d6a59aa3 3673 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3674
3675 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3676 if (sched_feat(ARCH_POWER))
3677 power *= arch_scale_smt_power(sd, cpu);
3678 else
3679 power *= default_scale_smt_power(sd, cpu);
3680
ab29230e
PZ
3681 power >>= SCHED_LOAD_SHIFT;
3682 }
3683
e9e9250b
PZ
3684 power *= scale_rt_power(cpu);
3685 power >>= SCHED_LOAD_SHIFT;
3686
3687 if (!power)
3688 power = 1;
ab29230e 3689
18a3885f 3690 sdg->cpu_power = power;
ab29230e
PZ
3691}
3692
3693static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3694{
3695 struct sched_domain *child = sd->child;
3696 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3697 unsigned long power;
cc9fba7d
PZ
3698
3699 if (!child) {
ab29230e 3700 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3701 return;
3702 }
3703
d7ea17a7 3704 power = 0;
cc9fba7d
PZ
3705
3706 group = child->groups;
3707 do {
d7ea17a7 3708 power += group->cpu_power;
cc9fba7d
PZ
3709 group = group->next;
3710 } while (group != child->groups);
d7ea17a7
IM
3711
3712 sdg->cpu_power = power;
cc9fba7d 3713}
c071df18 3714
1f8c553d
GS
3715/**
3716 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3717 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3718 * @group: sched_group whose statistics are to be updated.
3719 * @this_cpu: Cpu for which load balance is currently performed.
3720 * @idle: Idle status of this_cpu
3721 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3722 * @sd_idle: Idle status of the sched_domain containing group.
3723 * @local_group: Does group contain this_cpu.
3724 * @cpus: Set of cpus considered for load balancing.
3725 * @balance: Should we balance.
3726 * @sgs: variable to hold the statistics for this group.
3727 */
cc9fba7d
PZ
3728static inline void update_sg_lb_stats(struct sched_domain *sd,
3729 struct sched_group *group, int this_cpu,
1f8c553d
GS
3730 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3731 int local_group, const struct cpumask *cpus,
3732 int *balance, struct sg_lb_stats *sgs)
3733{
3734 unsigned long load, max_cpu_load, min_cpu_load;
3735 int i;
3736 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3737 unsigned long sum_avg_load_per_task;
3738 unsigned long avg_load_per_task;
3739
cc9fba7d 3740 if (local_group) {
1f8c553d 3741 balance_cpu = group_first_cpu(group);
cc9fba7d 3742 if (balance_cpu == this_cpu)
ab29230e 3743 update_group_power(sd, this_cpu);
cc9fba7d 3744 }
1f8c553d
GS
3745
3746 /* Tally up the load of all CPUs in the group */
3747 sum_avg_load_per_task = avg_load_per_task = 0;
3748 max_cpu_load = 0;
3749 min_cpu_load = ~0UL;
408ed066 3750
1f8c553d
GS
3751 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3752 struct rq *rq = cpu_rq(i);
908a7c1b 3753
1f8c553d
GS
3754 if (*sd_idle && rq->nr_running)
3755 *sd_idle = 0;
5c45bf27 3756
1f8c553d 3757 /* Bias balancing toward cpus of our domain */
1da177e4 3758 if (local_group) {
1f8c553d
GS
3759 if (idle_cpu(i) && !first_idle_cpu) {
3760 first_idle_cpu = 1;
3761 balance_cpu = i;
3762 }
3763
3764 load = target_load(i, load_idx);
3765 } else {
3766 load = source_load(i, load_idx);
3767 if (load > max_cpu_load)
3768 max_cpu_load = load;
3769 if (min_cpu_load > load)
3770 min_cpu_load = load;
1da177e4 3771 }
5c45bf27 3772
1f8c553d
GS
3773 sgs->group_load += load;
3774 sgs->sum_nr_running += rq->nr_running;
3775 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3776
1f8c553d
GS
3777 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3778 }
5c45bf27 3779
1f8c553d
GS
3780 /*
3781 * First idle cpu or the first cpu(busiest) in this sched group
3782 * is eligible for doing load balancing at this and above
3783 * domains. In the newly idle case, we will allow all the cpu's
3784 * to do the newly idle load balance.
3785 */
3786 if (idle != CPU_NEWLY_IDLE && local_group &&
3787 balance_cpu != this_cpu && balance) {
3788 *balance = 0;
3789 return;
3790 }
5c45bf27 3791
1f8c553d 3792 /* Adjust by relative CPU power of the group */
18a3885f 3793 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3794
1f8c553d
GS
3795
3796 /*
3797 * Consider the group unbalanced when the imbalance is larger
3798 * than the average weight of two tasks.
3799 *
3800 * APZ: with cgroup the avg task weight can vary wildly and
3801 * might not be a suitable number - should we keep a
3802 * normalized nr_running number somewhere that negates
3803 * the hierarchy?
3804 */
18a3885f
PZ
3805 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3806 group->cpu_power;
1f8c553d
GS
3807
3808 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3809 sgs->group_imb = 1;
3810
bdb94aa5 3811 sgs->group_capacity =
18a3885f 3812 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3813}
dd41f596 3814
37abe198
GS
3815/**
3816 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3817 * @sd: sched_domain whose statistics are to be updated.
3818 * @this_cpu: Cpu for which load balance is currently performed.
3819 * @idle: Idle status of this_cpu
3820 * @sd_idle: Idle status of the sched_domain containing group.
3821 * @cpus: Set of cpus considered for load balancing.
3822 * @balance: Should we balance.
3823 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3824 */
37abe198
GS
3825static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3826 enum cpu_idle_type idle, int *sd_idle,
3827 const struct cpumask *cpus, int *balance,
3828 struct sd_lb_stats *sds)
1da177e4 3829{
b5d978e0 3830 struct sched_domain *child = sd->child;
222d656d 3831 struct sched_group *group = sd->groups;
37abe198 3832 struct sg_lb_stats sgs;
b5d978e0
PZ
3833 int load_idx, prefer_sibling = 0;
3834
3835 if (child && child->flags & SD_PREFER_SIBLING)
3836 prefer_sibling = 1;
222d656d 3837
c071df18 3838 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3839 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3840
3841 do {
1da177e4 3842 int local_group;
1da177e4 3843
758b2cdc
RR
3844 local_group = cpumask_test_cpu(this_cpu,
3845 sched_group_cpus(group));
381be78f 3846 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3847 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3848 local_group, cpus, balance, &sgs);
1da177e4 3849
37abe198
GS
3850 if (local_group && balance && !(*balance))
3851 return;
783609c6 3852
37abe198 3853 sds->total_load += sgs.group_load;
18a3885f 3854 sds->total_pwr += group->cpu_power;
1da177e4 3855
b5d978e0
PZ
3856 /*
3857 * In case the child domain prefers tasks go to siblings
3858 * first, lower the group capacity to one so that we'll try
3859 * and move all the excess tasks away.
3860 */
3861 if (prefer_sibling)
bdb94aa5 3862 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3863
1da177e4 3864 if (local_group) {
37abe198
GS
3865 sds->this_load = sgs.avg_load;
3866 sds->this = group;
3867 sds->this_nr_running = sgs.sum_nr_running;
3868 sds->this_load_per_task = sgs.sum_weighted_load;
3869 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3870 (sgs.sum_nr_running > sgs.group_capacity ||
3871 sgs.group_imb)) {
37abe198
GS
3872 sds->max_load = sgs.avg_load;
3873 sds->busiest = group;
3874 sds->busiest_nr_running = sgs.sum_nr_running;
3875 sds->busiest_load_per_task = sgs.sum_weighted_load;
3876 sds->group_imb = sgs.group_imb;
48f24c4d 3877 }
5c45bf27 3878
c071df18 3879 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3880 group = group->next;
3881 } while (group != sd->groups);
37abe198 3882}
1da177e4 3883
2e6f44ae
GS
3884/**
3885 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3886 * amongst the groups of a sched_domain, during
3887 * load balancing.
2e6f44ae
GS
3888 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3889 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3890 * @imbalance: Variable to store the imbalance.
3891 */
3892static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3893 int this_cpu, unsigned long *imbalance)
3894{
3895 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3896 unsigned int imbn = 2;
3897
3898 if (sds->this_nr_running) {
3899 sds->this_load_per_task /= sds->this_nr_running;
3900 if (sds->busiest_load_per_task >
3901 sds->this_load_per_task)
3902 imbn = 1;
3903 } else
3904 sds->this_load_per_task =
3905 cpu_avg_load_per_task(this_cpu);
1da177e4 3906
2e6f44ae
GS
3907 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3908 sds->busiest_load_per_task * imbn) {
3909 *imbalance = sds->busiest_load_per_task;
3910 return;
3911 }
908a7c1b 3912
1da177e4 3913 /*
2e6f44ae
GS
3914 * OK, we don't have enough imbalance to justify moving tasks,
3915 * however we may be able to increase total CPU power used by
3916 * moving them.
1da177e4 3917 */
2dd73a4f 3918
18a3885f 3919 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3920 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3921 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3922 min(sds->this_load_per_task, sds->this_load);
3923 pwr_now /= SCHED_LOAD_SCALE;
3924
3925 /* Amount of load we'd subtract */
18a3885f
PZ
3926 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3927 sds->busiest->cpu_power;
2e6f44ae 3928 if (sds->max_load > tmp)
18a3885f 3929 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3930 min(sds->busiest_load_per_task, sds->max_load - tmp);
3931
3932 /* Amount of load we'd add */
18a3885f 3933 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3934 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3935 tmp = (sds->max_load * sds->busiest->cpu_power) /
3936 sds->this->cpu_power;
2e6f44ae 3937 else
18a3885f
PZ
3938 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3939 sds->this->cpu_power;
3940 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3941 min(sds->this_load_per_task, sds->this_load + tmp);
3942 pwr_move /= SCHED_LOAD_SCALE;
3943
3944 /* Move if we gain throughput */
3945 if (pwr_move > pwr_now)
3946 *imbalance = sds->busiest_load_per_task;
3947}
dbc523a3
GS
3948
3949/**
3950 * calculate_imbalance - Calculate the amount of imbalance present within the
3951 * groups of a given sched_domain during load balance.
3952 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3953 * @this_cpu: Cpu for which currently load balance is being performed.
3954 * @imbalance: The variable to store the imbalance.
3955 */
3956static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3957 unsigned long *imbalance)
3958{
3959 unsigned long max_pull;
2dd73a4f
PW
3960 /*
3961 * In the presence of smp nice balancing, certain scenarios can have
3962 * max load less than avg load(as we skip the groups at or below
3963 * its cpu_power, while calculating max_load..)
3964 */
dbc523a3 3965 if (sds->max_load < sds->avg_load) {
2dd73a4f 3966 *imbalance = 0;
dbc523a3 3967 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3968 }
0c117f1b
SS
3969
3970 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3971 max_pull = min(sds->max_load - sds->avg_load,
3972 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3973
1da177e4 3974 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3975 *imbalance = min(max_pull * sds->busiest->cpu_power,
3976 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3977 / SCHED_LOAD_SCALE;
3978
2dd73a4f
PW
3979 /*
3980 * if *imbalance is less than the average load per runnable task
3981 * there is no gaurantee that any tasks will be moved so we'll have
3982 * a think about bumping its value to force at least one task to be
3983 * moved
3984 */
dbc523a3
GS
3985 if (*imbalance < sds->busiest_load_per_task)
3986 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3987
dbc523a3 3988}
37abe198 3989/******* find_busiest_group() helpers end here *********************/
1da177e4 3990
b7bb4c9b
GS
3991/**
3992 * find_busiest_group - Returns the busiest group within the sched_domain
3993 * if there is an imbalance. If there isn't an imbalance, and
3994 * the user has opted for power-savings, it returns a group whose
3995 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3996 * such a group exists.
3997 *
3998 * Also calculates the amount of weighted load which should be moved
3999 * to restore balance.
4000 *
4001 * @sd: The sched_domain whose busiest group is to be returned.
4002 * @this_cpu: The cpu for which load balancing is currently being performed.
4003 * @imbalance: Variable which stores amount of weighted load which should
4004 * be moved to restore balance/put a group to idle.
4005 * @idle: The idle status of this_cpu.
4006 * @sd_idle: The idleness of sd
4007 * @cpus: The set of CPUs under consideration for load-balancing.
4008 * @balance: Pointer to a variable indicating if this_cpu
4009 * is the appropriate cpu to perform load balancing at this_level.
4010 *
4011 * Returns: - the busiest group if imbalance exists.
4012 * - If no imbalance and user has opted for power-savings balance,
4013 * return the least loaded group whose CPUs can be
4014 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
4015 */
4016static struct sched_group *
4017find_busiest_group(struct sched_domain *sd, int this_cpu,
4018 unsigned long *imbalance, enum cpu_idle_type idle,
4019 int *sd_idle, const struct cpumask *cpus, int *balance)
4020{
4021 struct sd_lb_stats sds;
1da177e4 4022
37abe198 4023 memset(&sds, 0, sizeof(sds));
1da177e4 4024
37abe198
GS
4025 /*
4026 * Compute the various statistics relavent for load balancing at
4027 * this level.
4028 */
4029 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4030 balance, &sds);
4031
b7bb4c9b
GS
4032 /* Cases where imbalance does not exist from POV of this_cpu */
4033 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4034 * at this level.
4035 * 2) There is no busy sibling group to pull from.
4036 * 3) This group is the busiest group.
4037 * 4) This group is more busy than the avg busieness at this
4038 * sched_domain.
4039 * 5) The imbalance is within the specified limit.
4040 * 6) Any rebalance would lead to ping-pong
4041 */
37abe198
GS
4042 if (balance && !(*balance))
4043 goto ret;
1da177e4 4044
b7bb4c9b
GS
4045 if (!sds.busiest || sds.busiest_nr_running == 0)
4046 goto out_balanced;
1da177e4 4047
b7bb4c9b 4048 if (sds.this_load >= sds.max_load)
1da177e4 4049 goto out_balanced;
1da177e4 4050
222d656d 4051 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4052
b7bb4c9b
GS
4053 if (sds.this_load >= sds.avg_load)
4054 goto out_balanced;
4055
4056 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4057 goto out_balanced;
4058
222d656d
GS
4059 sds.busiest_load_per_task /= sds.busiest_nr_running;
4060 if (sds.group_imb)
4061 sds.busiest_load_per_task =
4062 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4063
1da177e4
LT
4064 /*
4065 * We're trying to get all the cpus to the average_load, so we don't
4066 * want to push ourselves above the average load, nor do we wish to
4067 * reduce the max loaded cpu below the average load, as either of these
4068 * actions would just result in more rebalancing later, and ping-pong
4069 * tasks around. Thus we look for the minimum possible imbalance.
4070 * Negative imbalances (*we* are more loaded than anyone else) will
4071 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4072 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4073 * appear as very large values with unsigned longs.
4074 */
222d656d 4075 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4076 goto out_balanced;
4077
dbc523a3
GS
4078 /* Looks like there is an imbalance. Compute it */
4079 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4080 return sds.busiest;
1da177e4
LT
4081
4082out_balanced:
c071df18
GS
4083 /*
4084 * There is no obvious imbalance. But check if we can do some balancing
4085 * to save power.
4086 */
4087 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4088 return sds.busiest;
783609c6 4089ret:
1da177e4
LT
4090 *imbalance = 0;
4091 return NULL;
4092}
4093
4094/*
4095 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4096 */
70b97a7f 4097static struct rq *
d15bcfdb 4098find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4099 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4100{
70b97a7f 4101 struct rq *busiest = NULL, *rq;
2dd73a4f 4102 unsigned long max_load = 0;
1da177e4
LT
4103 int i;
4104
758b2cdc 4105 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4106 unsigned long power = power_of(i);
4107 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4108 unsigned long wl;
0a2966b4 4109
96f874e2 4110 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4111 continue;
4112
48f24c4d 4113 rq = cpu_rq(i);
bdb94aa5
PZ
4114 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4115 wl /= power;
2dd73a4f 4116
bdb94aa5 4117 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4118 continue;
1da177e4 4119
dd41f596
IM
4120 if (wl > max_load) {
4121 max_load = wl;
48f24c4d 4122 busiest = rq;
1da177e4
LT
4123 }
4124 }
4125
4126 return busiest;
4127}
4128
77391d71
NP
4129/*
4130 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4131 * so long as it is large enough.
4132 */
4133#define MAX_PINNED_INTERVAL 512
4134
df7c8e84
RR
4135/* Working cpumask for load_balance and load_balance_newidle. */
4136static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4137
1da177e4
LT
4138/*
4139 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4140 * tasks if there is an imbalance.
1da177e4 4141 */
70b97a7f 4142static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4143 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4144 int *balance)
1da177e4 4145{
43010659 4146 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4147 struct sched_group *group;
1da177e4 4148 unsigned long imbalance;
70b97a7f 4149 struct rq *busiest;
fe2eea3f 4150 unsigned long flags;
df7c8e84 4151 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4152
6ad4c188 4153 cpumask_copy(cpus, cpu_active_mask);
7c16ec58 4154
89c4710e
SS
4155 /*
4156 * When power savings policy is enabled for the parent domain, idle
4157 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4158 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4159 * portraying it as CPU_NOT_IDLE.
89c4710e 4160 */
d15bcfdb 4161 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4162 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4163 sd_idle = 1;
1da177e4 4164
2d72376b 4165 schedstat_inc(sd, lb_count[idle]);
1da177e4 4166
0a2966b4 4167redo:
c8cba857 4168 update_shares(sd);
0a2966b4 4169 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4170 cpus, balance);
783609c6 4171
06066714 4172 if (*balance == 0)
783609c6 4173 goto out_balanced;
783609c6 4174
1da177e4
LT
4175 if (!group) {
4176 schedstat_inc(sd, lb_nobusyg[idle]);
4177 goto out_balanced;
4178 }
4179
7c16ec58 4180 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4181 if (!busiest) {
4182 schedstat_inc(sd, lb_nobusyq[idle]);
4183 goto out_balanced;
4184 }
4185
db935dbd 4186 BUG_ON(busiest == this_rq);
1da177e4
LT
4187
4188 schedstat_add(sd, lb_imbalance[idle], imbalance);
4189
43010659 4190 ld_moved = 0;
1da177e4
LT
4191 if (busiest->nr_running > 1) {
4192 /*
4193 * Attempt to move tasks. If find_busiest_group has found
4194 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4195 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4196 * correctly treated as an imbalance.
4197 */
fe2eea3f 4198 local_irq_save(flags);
e17224bf 4199 double_rq_lock(this_rq, busiest);
43010659 4200 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4201 imbalance, sd, idle, &all_pinned);
e17224bf 4202 double_rq_unlock(this_rq, busiest);
fe2eea3f 4203 local_irq_restore(flags);
81026794 4204
46cb4b7c
SS
4205 /*
4206 * some other cpu did the load balance for us.
4207 */
43010659 4208 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4209 resched_cpu(this_cpu);
4210
81026794 4211 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4212 if (unlikely(all_pinned)) {
96f874e2
RR
4213 cpumask_clear_cpu(cpu_of(busiest), cpus);
4214 if (!cpumask_empty(cpus))
0a2966b4 4215 goto redo;
81026794 4216 goto out_balanced;
0a2966b4 4217 }
1da177e4 4218 }
81026794 4219
43010659 4220 if (!ld_moved) {
1da177e4
LT
4221 schedstat_inc(sd, lb_failed[idle]);
4222 sd->nr_balance_failed++;
4223
4224 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4225
05fa785c 4226 raw_spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4227
4228 /* don't kick the migration_thread, if the curr
4229 * task on busiest cpu can't be moved to this_cpu
4230 */
96f874e2
RR
4231 if (!cpumask_test_cpu(this_cpu,
4232 &busiest->curr->cpus_allowed)) {
05fa785c
TG
4233 raw_spin_unlock_irqrestore(&busiest->lock,
4234 flags);
fa3b6ddc
SS
4235 all_pinned = 1;
4236 goto out_one_pinned;
4237 }
4238
1da177e4
LT
4239 if (!busiest->active_balance) {
4240 busiest->active_balance = 1;
4241 busiest->push_cpu = this_cpu;
81026794 4242 active_balance = 1;
1da177e4 4243 }
05fa785c 4244 raw_spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4245 if (active_balance)
1da177e4
LT
4246 wake_up_process(busiest->migration_thread);
4247
4248 /*
4249 * We've kicked active balancing, reset the failure
4250 * counter.
4251 */
39507451 4252 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4253 }
81026794 4254 } else
1da177e4
LT
4255 sd->nr_balance_failed = 0;
4256
81026794 4257 if (likely(!active_balance)) {
1da177e4
LT
4258 /* We were unbalanced, so reset the balancing interval */
4259 sd->balance_interval = sd->min_interval;
81026794
NP
4260 } else {
4261 /*
4262 * If we've begun active balancing, start to back off. This
4263 * case may not be covered by the all_pinned logic if there
4264 * is only 1 task on the busy runqueue (because we don't call
4265 * move_tasks).
4266 */
4267 if (sd->balance_interval < sd->max_interval)
4268 sd->balance_interval *= 2;
1da177e4
LT
4269 }
4270
43010659 4271 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4272 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4273 ld_moved = -1;
4274
4275 goto out;
1da177e4
LT
4276
4277out_balanced:
1da177e4
LT
4278 schedstat_inc(sd, lb_balanced[idle]);
4279
16cfb1c0 4280 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4281
4282out_one_pinned:
1da177e4 4283 /* tune up the balancing interval */
77391d71
NP
4284 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4285 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4286 sd->balance_interval *= 2;
4287
48f24c4d 4288 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4289 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4290 ld_moved = -1;
4291 else
4292 ld_moved = 0;
4293out:
c8cba857
PZ
4294 if (ld_moved)
4295 update_shares(sd);
c09595f6 4296 return ld_moved;
1da177e4
LT
4297}
4298
4299/*
4300 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4301 * tasks if there is an imbalance.
4302 *
d15bcfdb 4303 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4304 * this_rq is locked.
4305 */
48f24c4d 4306static int
df7c8e84 4307load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4308{
4309 struct sched_group *group;
70b97a7f 4310 struct rq *busiest = NULL;
1da177e4 4311 unsigned long imbalance;
43010659 4312 int ld_moved = 0;
5969fe06 4313 int sd_idle = 0;
969bb4e4 4314 int all_pinned = 0;
df7c8e84 4315 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4316
6ad4c188 4317 cpumask_copy(cpus, cpu_active_mask);
5969fe06 4318
89c4710e
SS
4319 /*
4320 * When power savings policy is enabled for the parent domain, idle
4321 * sibling can pick up load irrespective of busy siblings. In this case,
4322 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4323 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4324 */
4325 if (sd->flags & SD_SHARE_CPUPOWER &&
4326 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4327 sd_idle = 1;
1da177e4 4328
2d72376b 4329 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4330redo:
3e5459b4 4331 update_shares_locked(this_rq, sd);
d15bcfdb 4332 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4333 &sd_idle, cpus, NULL);
1da177e4 4334 if (!group) {
d15bcfdb 4335 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4336 goto out_balanced;
1da177e4
LT
4337 }
4338
7c16ec58 4339 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4340 if (!busiest) {
d15bcfdb 4341 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4342 goto out_balanced;
1da177e4
LT
4343 }
4344
db935dbd
NP
4345 BUG_ON(busiest == this_rq);
4346
d15bcfdb 4347 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4348
43010659 4349 ld_moved = 0;
d6d5cfaf
NP
4350 if (busiest->nr_running > 1) {
4351 /* Attempt to move tasks */
4352 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4353 /* this_rq->clock is already updated */
4354 update_rq_clock(busiest);
43010659 4355 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4356 imbalance, sd, CPU_NEWLY_IDLE,
4357 &all_pinned);
1b12bbc7 4358 double_unlock_balance(this_rq, busiest);
0a2966b4 4359
969bb4e4 4360 if (unlikely(all_pinned)) {
96f874e2
RR
4361 cpumask_clear_cpu(cpu_of(busiest), cpus);
4362 if (!cpumask_empty(cpus))
0a2966b4
CL
4363 goto redo;
4364 }
d6d5cfaf
NP
4365 }
4366
43010659 4367 if (!ld_moved) {
36dffab6 4368 int active_balance = 0;
ad273b32 4369
d15bcfdb 4370 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4371 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4372 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4373 return -1;
ad273b32
VS
4374
4375 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4376 return -1;
4377
4378 if (sd->nr_balance_failed++ < 2)
4379 return -1;
4380
4381 /*
4382 * The only task running in a non-idle cpu can be moved to this
4383 * cpu in an attempt to completely freeup the other CPU
4384 * package. The same method used to move task in load_balance()
4385 * have been extended for load_balance_newidle() to speedup
4386 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4387 *
4388 * The package power saving logic comes from
4389 * find_busiest_group(). If there are no imbalance, then
4390 * f_b_g() will return NULL. However when sched_mc={1,2} then
4391 * f_b_g() will select a group from which a running task may be
4392 * pulled to this cpu in order to make the other package idle.
4393 * If there is no opportunity to make a package idle and if
4394 * there are no imbalance, then f_b_g() will return NULL and no
4395 * action will be taken in load_balance_newidle().
4396 *
4397 * Under normal task pull operation due to imbalance, there
4398 * will be more than one task in the source run queue and
4399 * move_tasks() will succeed. ld_moved will be true and this
4400 * active balance code will not be triggered.
4401 */
4402
4403 /* Lock busiest in correct order while this_rq is held */
4404 double_lock_balance(this_rq, busiest);
4405
4406 /*
4407 * don't kick the migration_thread, if the curr
4408 * task on busiest cpu can't be moved to this_cpu
4409 */
6ca09dfc 4410 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4411 double_unlock_balance(this_rq, busiest);
4412 all_pinned = 1;
4413 return ld_moved;
4414 }
4415
4416 if (!busiest->active_balance) {
4417 busiest->active_balance = 1;
4418 busiest->push_cpu = this_cpu;
4419 active_balance = 1;
4420 }
4421
4422 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4423 /*
4424 * Should not call ttwu while holding a rq->lock
4425 */
05fa785c 4426 raw_spin_unlock(&this_rq->lock);
ad273b32
VS
4427 if (active_balance)
4428 wake_up_process(busiest->migration_thread);
05fa785c 4429 raw_spin_lock(&this_rq->lock);
ad273b32 4430
5969fe06 4431 } else
16cfb1c0 4432 sd->nr_balance_failed = 0;
1da177e4 4433
3e5459b4 4434 update_shares_locked(this_rq, sd);
43010659 4435 return ld_moved;
16cfb1c0
NP
4436
4437out_balanced:
d15bcfdb 4438 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4439 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4440 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4441 return -1;
16cfb1c0 4442 sd->nr_balance_failed = 0;
48f24c4d 4443
16cfb1c0 4444 return 0;
1da177e4
LT
4445}
4446
4447/*
4448 * idle_balance is called by schedule() if this_cpu is about to become
4449 * idle. Attempts to pull tasks from other CPUs.
4450 */
70b97a7f 4451static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4452{
4453 struct sched_domain *sd;
efbe027e 4454 int pulled_task = 0;
dd41f596 4455 unsigned long next_balance = jiffies + HZ;
1da177e4 4456
1b9508f6
MG
4457 this_rq->idle_stamp = this_rq->clock;
4458
4459 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4460 return;
4461
1da177e4 4462 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4463 unsigned long interval;
4464
4465 if (!(sd->flags & SD_LOAD_BALANCE))
4466 continue;
4467
4468 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4469 /* If we've pulled tasks over stop searching: */
7c16ec58 4470 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4471 sd);
92c4ca5c
CL
4472
4473 interval = msecs_to_jiffies(sd->balance_interval);
4474 if (time_after(next_balance, sd->last_balance + interval))
4475 next_balance = sd->last_balance + interval;
1b9508f6
MG
4476 if (pulled_task) {
4477 this_rq->idle_stamp = 0;
92c4ca5c 4478 break;
1b9508f6 4479 }
1da177e4 4480 }
dd41f596 4481 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4482 /*
4483 * We are going idle. next_balance may be set based on
4484 * a busy processor. So reset next_balance.
4485 */
4486 this_rq->next_balance = next_balance;
dd41f596 4487 }
1da177e4
LT
4488}
4489
4490/*
4491 * active_load_balance is run by migration threads. It pushes running tasks
4492 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4493 * running on each physical CPU where possible, and avoids physical /
4494 * logical imbalances.
4495 *
4496 * Called with busiest_rq locked.
4497 */
70b97a7f 4498static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4499{
39507451 4500 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4501 struct sched_domain *sd;
4502 struct rq *target_rq;
39507451 4503
48f24c4d 4504 /* Is there any task to move? */
39507451 4505 if (busiest_rq->nr_running <= 1)
39507451
NP
4506 return;
4507
4508 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4509
4510 /*
39507451 4511 * This condition is "impossible", if it occurs
41a2d6cf 4512 * we need to fix it. Originally reported by
39507451 4513 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4514 */
39507451 4515 BUG_ON(busiest_rq == target_rq);
1da177e4 4516
39507451
NP
4517 /* move a task from busiest_rq to target_rq */
4518 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4519 update_rq_clock(busiest_rq);
4520 update_rq_clock(target_rq);
39507451
NP
4521
4522 /* Search for an sd spanning us and the target CPU. */
c96d145e 4523 for_each_domain(target_cpu, sd) {
39507451 4524 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4525 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4526 break;
c96d145e 4527 }
39507451 4528
48f24c4d 4529 if (likely(sd)) {
2d72376b 4530 schedstat_inc(sd, alb_count);
39507451 4531
43010659
PW
4532 if (move_one_task(target_rq, target_cpu, busiest_rq,
4533 sd, CPU_IDLE))
48f24c4d
IM
4534 schedstat_inc(sd, alb_pushed);
4535 else
4536 schedstat_inc(sd, alb_failed);
4537 }
1b12bbc7 4538 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4539}
4540
46cb4b7c
SS
4541#ifdef CONFIG_NO_HZ
4542static struct {
4543 atomic_t load_balancer;
7d1e6a9b 4544 cpumask_var_t cpu_mask;
f711f609 4545 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4546} nohz ____cacheline_aligned = {
4547 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4548};
4549
eea08f32
AB
4550int get_nohz_load_balancer(void)
4551{
4552 return atomic_read(&nohz.load_balancer);
4553}
4554
f711f609
GS
4555#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4556/**
4557 * lowest_flag_domain - Return lowest sched_domain containing flag.
4558 * @cpu: The cpu whose lowest level of sched domain is to
4559 * be returned.
4560 * @flag: The flag to check for the lowest sched_domain
4561 * for the given cpu.
4562 *
4563 * Returns the lowest sched_domain of a cpu which contains the given flag.
4564 */
4565static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4566{
4567 struct sched_domain *sd;
4568
4569 for_each_domain(cpu, sd)
4570 if (sd && (sd->flags & flag))
4571 break;
4572
4573 return sd;
4574}
4575
4576/**
4577 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4578 * @cpu: The cpu whose domains we're iterating over.
4579 * @sd: variable holding the value of the power_savings_sd
4580 * for cpu.
4581 * @flag: The flag to filter the sched_domains to be iterated.
4582 *
4583 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4584 * set, starting from the lowest sched_domain to the highest.
4585 */
4586#define for_each_flag_domain(cpu, sd, flag) \
4587 for (sd = lowest_flag_domain(cpu, flag); \
4588 (sd && (sd->flags & flag)); sd = sd->parent)
4589
4590/**
4591 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4592 * @ilb_group: group to be checked for semi-idleness
4593 *
4594 * Returns: 1 if the group is semi-idle. 0 otherwise.
4595 *
4596 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4597 * and atleast one non-idle CPU. This helper function checks if the given
4598 * sched_group is semi-idle or not.
4599 */
4600static inline int is_semi_idle_group(struct sched_group *ilb_group)
4601{
4602 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4603 sched_group_cpus(ilb_group));
4604
4605 /*
4606 * A sched_group is semi-idle when it has atleast one busy cpu
4607 * and atleast one idle cpu.
4608 */
4609 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4610 return 0;
4611
4612 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4613 return 0;
4614
4615 return 1;
4616}
4617/**
4618 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4619 * @cpu: The cpu which is nominating a new idle_load_balancer.
4620 *
4621 * Returns: Returns the id of the idle load balancer if it exists,
4622 * Else, returns >= nr_cpu_ids.
4623 *
4624 * This algorithm picks the idle load balancer such that it belongs to a
4625 * semi-idle powersavings sched_domain. The idea is to try and avoid
4626 * completely idle packages/cores just for the purpose of idle load balancing
4627 * when there are other idle cpu's which are better suited for that job.
4628 */
4629static int find_new_ilb(int cpu)
4630{
4631 struct sched_domain *sd;
4632 struct sched_group *ilb_group;
4633
4634 /*
4635 * Have idle load balancer selection from semi-idle packages only
4636 * when power-aware load balancing is enabled
4637 */
4638 if (!(sched_smt_power_savings || sched_mc_power_savings))
4639 goto out_done;
4640
4641 /*
4642 * Optimize for the case when we have no idle CPUs or only one
4643 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4644 */
4645 if (cpumask_weight(nohz.cpu_mask) < 2)
4646 goto out_done;
4647
4648 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4649 ilb_group = sd->groups;
4650
4651 do {
4652 if (is_semi_idle_group(ilb_group))
4653 return cpumask_first(nohz.ilb_grp_nohz_mask);
4654
4655 ilb_group = ilb_group->next;
4656
4657 } while (ilb_group != sd->groups);
4658 }
4659
4660out_done:
4661 return cpumask_first(nohz.cpu_mask);
4662}
4663#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4664static inline int find_new_ilb(int call_cpu)
4665{
6e29ec57 4666 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4667}
4668#endif
4669
7835b98b 4670/*
46cb4b7c
SS
4671 * This routine will try to nominate the ilb (idle load balancing)
4672 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4673 * load balancing on behalf of all those cpus. If all the cpus in the system
4674 * go into this tickless mode, then there will be no ilb owner (as there is
4675 * no need for one) and all the cpus will sleep till the next wakeup event
4676 * arrives...
4677 *
4678 * For the ilb owner, tick is not stopped. And this tick will be used
4679 * for idle load balancing. ilb owner will still be part of
4680 * nohz.cpu_mask..
7835b98b 4681 *
46cb4b7c
SS
4682 * While stopping the tick, this cpu will become the ilb owner if there
4683 * is no other owner. And will be the owner till that cpu becomes busy
4684 * or if all cpus in the system stop their ticks at which point
4685 * there is no need for ilb owner.
4686 *
4687 * When the ilb owner becomes busy, it nominates another owner, during the
4688 * next busy scheduler_tick()
4689 */
4690int select_nohz_load_balancer(int stop_tick)
4691{
4692 int cpu = smp_processor_id();
4693
4694 if (stop_tick) {
46cb4b7c
SS
4695 cpu_rq(cpu)->in_nohz_recently = 1;
4696
483b4ee6
SS
4697 if (!cpu_active(cpu)) {
4698 if (atomic_read(&nohz.load_balancer) != cpu)
4699 return 0;
4700
4701 /*
4702 * If we are going offline and still the leader,
4703 * give up!
4704 */
46cb4b7c
SS
4705 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4706 BUG();
483b4ee6 4707
46cb4b7c
SS
4708 return 0;
4709 }
4710
483b4ee6
SS
4711 cpumask_set_cpu(cpu, nohz.cpu_mask);
4712
46cb4b7c 4713 /* time for ilb owner also to sleep */
6ad4c188 4714 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
46cb4b7c
SS
4715 if (atomic_read(&nohz.load_balancer) == cpu)
4716 atomic_set(&nohz.load_balancer, -1);
4717 return 0;
4718 }
4719
4720 if (atomic_read(&nohz.load_balancer) == -1) {
4721 /* make me the ilb owner */
4722 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4723 return 1;
e790fb0b
GS
4724 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4725 int new_ilb;
4726
4727 if (!(sched_smt_power_savings ||
4728 sched_mc_power_savings))
4729 return 1;
4730 /*
4731 * Check to see if there is a more power-efficient
4732 * ilb.
4733 */
4734 new_ilb = find_new_ilb(cpu);
4735 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4736 atomic_set(&nohz.load_balancer, -1);
4737 resched_cpu(new_ilb);
4738 return 0;
4739 }
46cb4b7c 4740 return 1;
e790fb0b 4741 }
46cb4b7c 4742 } else {
7d1e6a9b 4743 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4744 return 0;
4745
7d1e6a9b 4746 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4747
4748 if (atomic_read(&nohz.load_balancer) == cpu)
4749 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4750 BUG();
4751 }
4752 return 0;
4753}
4754#endif
4755
4756static DEFINE_SPINLOCK(balancing);
4757
4758/*
7835b98b
CL
4759 * It checks each scheduling domain to see if it is due to be balanced,
4760 * and initiates a balancing operation if so.
4761 *
4762 * Balancing parameters are set up in arch_init_sched_domains.
4763 */
a9957449 4764static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4765{
46cb4b7c
SS
4766 int balance = 1;
4767 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4768 unsigned long interval;
4769 struct sched_domain *sd;
46cb4b7c 4770 /* Earliest time when we have to do rebalance again */
c9819f45 4771 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4772 int update_next_balance = 0;
d07355f5 4773 int need_serialize;
1da177e4 4774
46cb4b7c 4775 for_each_domain(cpu, sd) {
1da177e4
LT
4776 if (!(sd->flags & SD_LOAD_BALANCE))
4777 continue;
4778
4779 interval = sd->balance_interval;
d15bcfdb 4780 if (idle != CPU_IDLE)
1da177e4
LT
4781 interval *= sd->busy_factor;
4782
4783 /* scale ms to jiffies */
4784 interval = msecs_to_jiffies(interval);
4785 if (unlikely(!interval))
4786 interval = 1;
dd41f596
IM
4787 if (interval > HZ*NR_CPUS/10)
4788 interval = HZ*NR_CPUS/10;
4789
d07355f5 4790 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4791
d07355f5 4792 if (need_serialize) {
08c183f3
CL
4793 if (!spin_trylock(&balancing))
4794 goto out;
4795 }
4796
c9819f45 4797 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4798 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4799 /*
4800 * We've pulled tasks over so either we're no
5969fe06
NP
4801 * longer idle, or one of our SMT siblings is
4802 * not idle.
4803 */
d15bcfdb 4804 idle = CPU_NOT_IDLE;
1da177e4 4805 }
1bd77f2d 4806 sd->last_balance = jiffies;
1da177e4 4807 }
d07355f5 4808 if (need_serialize)
08c183f3
CL
4809 spin_unlock(&balancing);
4810out:
f549da84 4811 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4812 next_balance = sd->last_balance + interval;
f549da84
SS
4813 update_next_balance = 1;
4814 }
783609c6
SS
4815
4816 /*
4817 * Stop the load balance at this level. There is another
4818 * CPU in our sched group which is doing load balancing more
4819 * actively.
4820 */
4821 if (!balance)
4822 break;
1da177e4 4823 }
f549da84
SS
4824
4825 /*
4826 * next_balance will be updated only when there is a need.
4827 * When the cpu is attached to null domain for ex, it will not be
4828 * updated.
4829 */
4830 if (likely(update_next_balance))
4831 rq->next_balance = next_balance;
46cb4b7c
SS
4832}
4833
4834/*
4835 * run_rebalance_domains is triggered when needed from the scheduler tick.
4836 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4837 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4838 */
4839static void run_rebalance_domains(struct softirq_action *h)
4840{
dd41f596
IM
4841 int this_cpu = smp_processor_id();
4842 struct rq *this_rq = cpu_rq(this_cpu);
4843 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4844 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4845
dd41f596 4846 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4847
4848#ifdef CONFIG_NO_HZ
4849 /*
4850 * If this cpu is the owner for idle load balancing, then do the
4851 * balancing on behalf of the other idle cpus whose ticks are
4852 * stopped.
4853 */
dd41f596
IM
4854 if (this_rq->idle_at_tick &&
4855 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4856 struct rq *rq;
4857 int balance_cpu;
4858
7d1e6a9b
RR
4859 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4860 if (balance_cpu == this_cpu)
4861 continue;
4862
46cb4b7c
SS
4863 /*
4864 * If this cpu gets work to do, stop the load balancing
4865 * work being done for other cpus. Next load
4866 * balancing owner will pick it up.
4867 */
4868 if (need_resched())
4869 break;
4870
de0cf899 4871 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4872
4873 rq = cpu_rq(balance_cpu);
dd41f596
IM
4874 if (time_after(this_rq->next_balance, rq->next_balance))
4875 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4876 }
4877 }
4878#endif
4879}
4880
8a0be9ef
FW
4881static inline int on_null_domain(int cpu)
4882{
4883 return !rcu_dereference(cpu_rq(cpu)->sd);
4884}
4885
46cb4b7c
SS
4886/*
4887 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4888 *
4889 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4890 * idle load balancing owner or decide to stop the periodic load balancing,
4891 * if the whole system is idle.
4892 */
dd41f596 4893static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4894{
46cb4b7c
SS
4895#ifdef CONFIG_NO_HZ
4896 /*
4897 * If we were in the nohz mode recently and busy at the current
4898 * scheduler tick, then check if we need to nominate new idle
4899 * load balancer.
4900 */
4901 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4902 rq->in_nohz_recently = 0;
4903
4904 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4905 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4906 atomic_set(&nohz.load_balancer, -1);
4907 }
4908
4909 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4910 int ilb = find_new_ilb(cpu);
46cb4b7c 4911
434d53b0 4912 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4913 resched_cpu(ilb);
4914 }
4915 }
4916
4917 /*
4918 * If this cpu is idle and doing idle load balancing for all the
4919 * cpus with ticks stopped, is it time for that to stop?
4920 */
4921 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4922 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4923 resched_cpu(cpu);
4924 return;
4925 }
4926
4927 /*
4928 * If this cpu is idle and the idle load balancing is done by
4929 * someone else, then no need raise the SCHED_SOFTIRQ
4930 */
4931 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4932 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4933 return;
4934#endif
8a0be9ef
FW
4935 /* Don't need to rebalance while attached to NULL domain */
4936 if (time_after_eq(jiffies, rq->next_balance) &&
4937 likely(!on_null_domain(cpu)))
46cb4b7c 4938 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4939}
dd41f596
IM
4940
4941#else /* CONFIG_SMP */
4942
1da177e4
LT
4943/*
4944 * on UP we do not need to balance between CPUs:
4945 */
70b97a7f 4946static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4947{
4948}
dd41f596 4949
1da177e4
LT
4950#endif
4951
1da177e4
LT
4952DEFINE_PER_CPU(struct kernel_stat, kstat);
4953
4954EXPORT_PER_CPU_SYMBOL(kstat);
4955
4956/*
c5f8d995 4957 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4958 * @p in case that task is currently running.
c5f8d995
HS
4959 *
4960 * Called with task_rq_lock() held on @rq.
1da177e4 4961 */
c5f8d995
HS
4962static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4963{
4964 u64 ns = 0;
4965
4966 if (task_current(rq, p)) {
4967 update_rq_clock(rq);
4968 ns = rq->clock - p->se.exec_start;
4969 if ((s64)ns < 0)
4970 ns = 0;
4971 }
4972
4973 return ns;
4974}
4975
bb34d92f 4976unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4977{
1da177e4 4978 unsigned long flags;
41b86e9c 4979 struct rq *rq;
bb34d92f 4980 u64 ns = 0;
48f24c4d 4981
41b86e9c 4982 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4983 ns = do_task_delta_exec(p, rq);
4984 task_rq_unlock(rq, &flags);
1508487e 4985
c5f8d995
HS
4986 return ns;
4987}
f06febc9 4988
c5f8d995
HS
4989/*
4990 * Return accounted runtime for the task.
4991 * In case the task is currently running, return the runtime plus current's
4992 * pending runtime that have not been accounted yet.
4993 */
4994unsigned long long task_sched_runtime(struct task_struct *p)
4995{
4996 unsigned long flags;
4997 struct rq *rq;
4998 u64 ns = 0;
4999
5000 rq = task_rq_lock(p, &flags);
5001 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
5002 task_rq_unlock(rq, &flags);
5003
5004 return ns;
5005}
48f24c4d 5006
c5f8d995
HS
5007/*
5008 * Return sum_exec_runtime for the thread group.
5009 * In case the task is currently running, return the sum plus current's
5010 * pending runtime that have not been accounted yet.
5011 *
5012 * Note that the thread group might have other running tasks as well,
5013 * so the return value not includes other pending runtime that other
5014 * running tasks might have.
5015 */
5016unsigned long long thread_group_sched_runtime(struct task_struct *p)
5017{
5018 struct task_cputime totals;
5019 unsigned long flags;
5020 struct rq *rq;
5021 u64 ns;
5022
5023 rq = task_rq_lock(p, &flags);
5024 thread_group_cputime(p, &totals);
5025 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 5026 task_rq_unlock(rq, &flags);
48f24c4d 5027
1da177e4
LT
5028 return ns;
5029}
5030
1da177e4
LT
5031/*
5032 * Account user cpu time to a process.
5033 * @p: the process that the cpu time gets accounted to
1da177e4 5034 * @cputime: the cpu time spent in user space since the last update
457533a7 5035 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 5036 */
457533a7
MS
5037void account_user_time(struct task_struct *p, cputime_t cputime,
5038 cputime_t cputime_scaled)
1da177e4
LT
5039{
5040 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5041 cputime64_t tmp;
5042
457533a7 5043 /* Add user time to process. */
1da177e4 5044 p->utime = cputime_add(p->utime, cputime);
457533a7 5045 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5046 account_group_user_time(p, cputime);
1da177e4
LT
5047
5048 /* Add user time to cpustat. */
5049 tmp = cputime_to_cputime64(cputime);
5050 if (TASK_NICE(p) > 0)
5051 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5052 else
5053 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5054
5055 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5056 /* Account for user time used */
5057 acct_update_integrals(p);
1da177e4
LT
5058}
5059
94886b84
LV
5060/*
5061 * Account guest cpu time to a process.
5062 * @p: the process that the cpu time gets accounted to
5063 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5064 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5065 */
457533a7
MS
5066static void account_guest_time(struct task_struct *p, cputime_t cputime,
5067 cputime_t cputime_scaled)
94886b84
LV
5068{
5069 cputime64_t tmp;
5070 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5071
5072 tmp = cputime_to_cputime64(cputime);
5073
457533a7 5074 /* Add guest time to process. */
94886b84 5075 p->utime = cputime_add(p->utime, cputime);
457533a7 5076 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5077 account_group_user_time(p, cputime);
94886b84
LV
5078 p->gtime = cputime_add(p->gtime, cputime);
5079
457533a7 5080 /* Add guest time to cpustat. */
ce0e7b28
RO
5081 if (TASK_NICE(p) > 0) {
5082 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5083 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5084 } else {
5085 cpustat->user = cputime64_add(cpustat->user, tmp);
5086 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5087 }
94886b84
LV
5088}
5089
1da177e4
LT
5090/*
5091 * Account system cpu time to a process.
5092 * @p: the process that the cpu time gets accounted to
5093 * @hardirq_offset: the offset to subtract from hardirq_count()
5094 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5095 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5096 */
5097void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5098 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5099{
5100 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5101 cputime64_t tmp;
5102
983ed7a6 5103 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5104 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5105 return;
5106 }
94886b84 5107
457533a7 5108 /* Add system time to process. */
1da177e4 5109 p->stime = cputime_add(p->stime, cputime);
457533a7 5110 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5111 account_group_system_time(p, cputime);
1da177e4
LT
5112
5113 /* Add system time to cpustat. */
5114 tmp = cputime_to_cputime64(cputime);
5115 if (hardirq_count() - hardirq_offset)
5116 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5117 else if (softirq_count())
5118 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5119 else
79741dd3
MS
5120 cpustat->system = cputime64_add(cpustat->system, tmp);
5121
ef12fefa
BR
5122 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5123
1da177e4
LT
5124 /* Account for system time used */
5125 acct_update_integrals(p);
1da177e4
LT
5126}
5127
c66f08be 5128/*
1da177e4 5129 * Account for involuntary wait time.
1da177e4 5130 * @steal: the cpu time spent in involuntary wait
c66f08be 5131 */
79741dd3 5132void account_steal_time(cputime_t cputime)
c66f08be 5133{
79741dd3
MS
5134 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5135 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5136
5137 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5138}
5139
1da177e4 5140/*
79741dd3
MS
5141 * Account for idle time.
5142 * @cputime: the cpu time spent in idle wait
1da177e4 5143 */
79741dd3 5144void account_idle_time(cputime_t cputime)
1da177e4
LT
5145{
5146 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5147 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5148 struct rq *rq = this_rq();
1da177e4 5149
79741dd3
MS
5150 if (atomic_read(&rq->nr_iowait) > 0)
5151 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5152 else
5153 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5154}
5155
79741dd3
MS
5156#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5157
5158/*
5159 * Account a single tick of cpu time.
5160 * @p: the process that the cpu time gets accounted to
5161 * @user_tick: indicates if the tick is a user or a system tick
5162 */
5163void account_process_tick(struct task_struct *p, int user_tick)
5164{
a42548a1 5165 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5166 struct rq *rq = this_rq();
5167
5168 if (user_tick)
a42548a1 5169 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5170 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5171 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5172 one_jiffy_scaled);
5173 else
a42548a1 5174 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5175}
5176
5177/*
5178 * Account multiple ticks of steal time.
5179 * @p: the process from which the cpu time has been stolen
5180 * @ticks: number of stolen ticks
5181 */
5182void account_steal_ticks(unsigned long ticks)
5183{
5184 account_steal_time(jiffies_to_cputime(ticks));
5185}
5186
5187/*
5188 * Account multiple ticks of idle time.
5189 * @ticks: number of stolen ticks
5190 */
5191void account_idle_ticks(unsigned long ticks)
5192{
5193 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5194}
5195
79741dd3
MS
5196#endif
5197
49048622
BS
5198/*
5199 * Use precise platform statistics if available:
5200 */
5201#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 5202void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5203{
d99ca3b9
HS
5204 *ut = p->utime;
5205 *st = p->stime;
49048622
BS
5206}
5207
0cf55e1e 5208void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5209{
0cf55e1e
HS
5210 struct task_cputime cputime;
5211
5212 thread_group_cputime(p, &cputime);
5213
5214 *ut = cputime.utime;
5215 *st = cputime.stime;
49048622
BS
5216}
5217#else
761b1d26
HS
5218
5219#ifndef nsecs_to_cputime
b7b20df9 5220# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
5221#endif
5222
d180c5bc 5223void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5224{
d99ca3b9 5225 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
5226
5227 /*
5228 * Use CFS's precise accounting:
5229 */
d180c5bc 5230 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
5231
5232 if (total) {
d180c5bc
HS
5233 u64 temp;
5234
5235 temp = (u64)(rtime * utime);
49048622 5236 do_div(temp, total);
d180c5bc
HS
5237 utime = (cputime_t)temp;
5238 } else
5239 utime = rtime;
49048622 5240
d180c5bc
HS
5241 /*
5242 * Compare with previous values, to keep monotonicity:
5243 */
761b1d26 5244 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 5245 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 5246
d99ca3b9
HS
5247 *ut = p->prev_utime;
5248 *st = p->prev_stime;
49048622
BS
5249}
5250
0cf55e1e
HS
5251/*
5252 * Must be called with siglock held.
5253 */
5254void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5255{
0cf55e1e
HS
5256 struct signal_struct *sig = p->signal;
5257 struct task_cputime cputime;
5258 cputime_t rtime, utime, total;
49048622 5259
0cf55e1e 5260 thread_group_cputime(p, &cputime);
49048622 5261
0cf55e1e
HS
5262 total = cputime_add(cputime.utime, cputime.stime);
5263 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 5264
0cf55e1e
HS
5265 if (total) {
5266 u64 temp;
49048622 5267
0cf55e1e
HS
5268 temp = (u64)(rtime * cputime.utime);
5269 do_div(temp, total);
5270 utime = (cputime_t)temp;
5271 } else
5272 utime = rtime;
5273
5274 sig->prev_utime = max(sig->prev_utime, utime);
5275 sig->prev_stime = max(sig->prev_stime,
5276 cputime_sub(rtime, sig->prev_utime));
5277
5278 *ut = sig->prev_utime;
5279 *st = sig->prev_stime;
49048622 5280}
49048622 5281#endif
49048622 5282
7835b98b
CL
5283/*
5284 * This function gets called by the timer code, with HZ frequency.
5285 * We call it with interrupts disabled.
5286 *
5287 * It also gets called by the fork code, when changing the parent's
5288 * timeslices.
5289 */
5290void scheduler_tick(void)
5291{
7835b98b
CL
5292 int cpu = smp_processor_id();
5293 struct rq *rq = cpu_rq(cpu);
dd41f596 5294 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5295
5296 sched_clock_tick();
dd41f596 5297
05fa785c 5298 raw_spin_lock(&rq->lock);
3e51f33f 5299 update_rq_clock(rq);
f1a438d8 5300 update_cpu_load(rq);
fa85ae24 5301 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 5302 raw_spin_unlock(&rq->lock);
7835b98b 5303
cdd6c482 5304 perf_event_task_tick(curr, cpu);
e220d2dc 5305
e418e1c2 5306#ifdef CONFIG_SMP
dd41f596
IM
5307 rq->idle_at_tick = idle_cpu(cpu);
5308 trigger_load_balance(rq, cpu);
e418e1c2 5309#endif
1da177e4
LT
5310}
5311
132380a0 5312notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5313{
5314 if (in_lock_functions(addr)) {
5315 addr = CALLER_ADDR2;
5316 if (in_lock_functions(addr))
5317 addr = CALLER_ADDR3;
5318 }
5319 return addr;
5320}
1da177e4 5321
7e49fcce
SR
5322#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5323 defined(CONFIG_PREEMPT_TRACER))
5324
43627582 5325void __kprobes add_preempt_count(int val)
1da177e4 5326{
6cd8a4bb 5327#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5328 /*
5329 * Underflow?
5330 */
9a11b49a
IM
5331 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5332 return;
6cd8a4bb 5333#endif
1da177e4 5334 preempt_count() += val;
6cd8a4bb 5335#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5336 /*
5337 * Spinlock count overflowing soon?
5338 */
33859f7f
MOS
5339 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5340 PREEMPT_MASK - 10);
6cd8a4bb
SR
5341#endif
5342 if (preempt_count() == val)
5343 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5344}
5345EXPORT_SYMBOL(add_preempt_count);
5346
43627582 5347void __kprobes sub_preempt_count(int val)
1da177e4 5348{
6cd8a4bb 5349#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5350 /*
5351 * Underflow?
5352 */
01e3eb82 5353 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5354 return;
1da177e4
LT
5355 /*
5356 * Is the spinlock portion underflowing?
5357 */
9a11b49a
IM
5358 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5359 !(preempt_count() & PREEMPT_MASK)))
5360 return;
6cd8a4bb 5361#endif
9a11b49a 5362
6cd8a4bb
SR
5363 if (preempt_count() == val)
5364 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5365 preempt_count() -= val;
5366}
5367EXPORT_SYMBOL(sub_preempt_count);
5368
5369#endif
5370
5371/*
dd41f596 5372 * Print scheduling while atomic bug:
1da177e4 5373 */
dd41f596 5374static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5375{
838225b4
SS
5376 struct pt_regs *regs = get_irq_regs();
5377
663997d4
JP
5378 pr_err("BUG: scheduling while atomic: %s/%d/0x%08x\n",
5379 prev->comm, prev->pid, preempt_count());
838225b4 5380
dd41f596 5381 debug_show_held_locks(prev);
e21f5b15 5382 print_modules();
dd41f596
IM
5383 if (irqs_disabled())
5384 print_irqtrace_events(prev);
838225b4
SS
5385
5386 if (regs)
5387 show_regs(regs);
5388 else
5389 dump_stack();
dd41f596 5390}
1da177e4 5391
dd41f596
IM
5392/*
5393 * Various schedule()-time debugging checks and statistics:
5394 */
5395static inline void schedule_debug(struct task_struct *prev)
5396{
1da177e4 5397 /*
41a2d6cf 5398 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5399 * schedule() atomically, we ignore that path for now.
5400 * Otherwise, whine if we are scheduling when we should not be.
5401 */
3f33a7ce 5402 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5403 __schedule_bug(prev);
5404
1da177e4
LT
5405 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5406
2d72376b 5407 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5408#ifdef CONFIG_SCHEDSTATS
5409 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5410 schedstat_inc(this_rq(), bkl_count);
5411 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5412 }
5413#endif
dd41f596
IM
5414}
5415
6cecd084 5416static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 5417{
6cecd084
PZ
5418 if (prev->state == TASK_RUNNING) {
5419 u64 runtime = prev->se.sum_exec_runtime;
df1c99d4 5420
6cecd084
PZ
5421 runtime -= prev->se.prev_sum_exec_runtime;
5422 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
df1c99d4
MG
5423
5424 /*
5425 * In order to avoid avg_overlap growing stale when we are
5426 * indeed overlapping and hence not getting put to sleep, grow
5427 * the avg_overlap on preemption.
5428 *
5429 * We use the average preemption runtime because that
5430 * correlates to the amount of cache footprint a task can
5431 * build up.
5432 */
6cecd084 5433 update_avg(&prev->se.avg_overlap, runtime);
df1c99d4 5434 }
6cecd084 5435 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
5436}
5437
dd41f596
IM
5438/*
5439 * Pick up the highest-prio task:
5440 */
5441static inline struct task_struct *
b67802ea 5442pick_next_task(struct rq *rq)
dd41f596 5443{
5522d5d5 5444 const struct sched_class *class;
dd41f596 5445 struct task_struct *p;
1da177e4
LT
5446
5447 /*
dd41f596
IM
5448 * Optimization: we know that if all tasks are in
5449 * the fair class we can call that function directly:
1da177e4 5450 */
dd41f596 5451 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5452 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5453 if (likely(p))
5454 return p;
1da177e4
LT
5455 }
5456
dd41f596
IM
5457 class = sched_class_highest;
5458 for ( ; ; ) {
fb8d4724 5459 p = class->pick_next_task(rq);
dd41f596
IM
5460 if (p)
5461 return p;
5462 /*
5463 * Will never be NULL as the idle class always
5464 * returns a non-NULL p:
5465 */
5466 class = class->next;
5467 }
5468}
1da177e4 5469
dd41f596
IM
5470/*
5471 * schedule() is the main scheduler function.
5472 */
ff743345 5473asmlinkage void __sched schedule(void)
dd41f596
IM
5474{
5475 struct task_struct *prev, *next;
67ca7bde 5476 unsigned long *switch_count;
dd41f596 5477 struct rq *rq;
31656519 5478 int cpu;
dd41f596 5479
ff743345
PZ
5480need_resched:
5481 preempt_disable();
dd41f596
IM
5482 cpu = smp_processor_id();
5483 rq = cpu_rq(cpu);
d6714c22 5484 rcu_sched_qs(cpu);
dd41f596
IM
5485 prev = rq->curr;
5486 switch_count = &prev->nivcsw;
5487
5488 release_kernel_lock(prev);
5489need_resched_nonpreemptible:
5490
5491 schedule_debug(prev);
1da177e4 5492
31656519 5493 if (sched_feat(HRTICK))
f333fdc9 5494 hrtick_clear(rq);
8f4d37ec 5495
05fa785c 5496 raw_spin_lock_irq(&rq->lock);
3e51f33f 5497 update_rq_clock(rq);
1e819950 5498 clear_tsk_need_resched(prev);
1da177e4 5499
1da177e4 5500 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5501 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5502 prev->state = TASK_RUNNING;
16882c1e 5503 else
2e1cb74a 5504 deactivate_task(rq, prev, 1);
dd41f596 5505 switch_count = &prev->nvcsw;
1da177e4
LT
5506 }
5507
3f029d3c 5508 pre_schedule(rq, prev);
f65eda4f 5509
dd41f596 5510 if (unlikely(!rq->nr_running))
1da177e4 5511 idle_balance(cpu, rq);
1da177e4 5512
df1c99d4 5513 put_prev_task(rq, prev);
b67802ea 5514 next = pick_next_task(rq);
1da177e4 5515
1da177e4 5516 if (likely(prev != next)) {
673a90a1 5517 sched_info_switch(prev, next);
cdd6c482 5518 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5519
1da177e4
LT
5520 rq->nr_switches++;
5521 rq->curr = next;
5522 ++*switch_count;
5523
dd41f596 5524 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5525 /*
5526 * the context switch might have flipped the stack from under
5527 * us, hence refresh the local variables.
5528 */
5529 cpu = smp_processor_id();
5530 rq = cpu_rq(cpu);
1da177e4 5531 } else
05fa785c 5532 raw_spin_unlock_irq(&rq->lock);
1da177e4 5533
3f029d3c 5534 post_schedule(rq);
1da177e4 5535
8f4d37ec 5536 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5537 goto need_resched_nonpreemptible;
8f4d37ec 5538
1da177e4 5539 preempt_enable_no_resched();
ff743345 5540 if (need_resched())
1da177e4
LT
5541 goto need_resched;
5542}
1da177e4
LT
5543EXPORT_SYMBOL(schedule);
5544
c08f7829 5545#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
5546/*
5547 * Look out! "owner" is an entirely speculative pointer
5548 * access and not reliable.
5549 */
5550int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5551{
5552 unsigned int cpu;
5553 struct rq *rq;
5554
5555 if (!sched_feat(OWNER_SPIN))
5556 return 0;
5557
5558#ifdef CONFIG_DEBUG_PAGEALLOC
5559 /*
5560 * Need to access the cpu field knowing that
5561 * DEBUG_PAGEALLOC could have unmapped it if
5562 * the mutex owner just released it and exited.
5563 */
5564 if (probe_kernel_address(&owner->cpu, cpu))
5565 goto out;
5566#else
5567 cpu = owner->cpu;
5568#endif
5569
5570 /*
5571 * Even if the access succeeded (likely case),
5572 * the cpu field may no longer be valid.
5573 */
5574 if (cpu >= nr_cpumask_bits)
5575 goto out;
5576
5577 /*
5578 * We need to validate that we can do a
5579 * get_cpu() and that we have the percpu area.
5580 */
5581 if (!cpu_online(cpu))
5582 goto out;
5583
5584 rq = cpu_rq(cpu);
5585
5586 for (;;) {
5587 /*
5588 * Owner changed, break to re-assess state.
5589 */
5590 if (lock->owner != owner)
5591 break;
5592
5593 /*
5594 * Is that owner really running on that cpu?
5595 */
5596 if (task_thread_info(rq->curr) != owner || need_resched())
5597 return 0;
5598
5599 cpu_relax();
5600 }
5601out:
5602 return 1;
5603}
5604#endif
5605
1da177e4
LT
5606#ifdef CONFIG_PREEMPT
5607/*
2ed6e34f 5608 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5609 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5610 * occur there and call schedule directly.
5611 */
5612asmlinkage void __sched preempt_schedule(void)
5613{
5614 struct thread_info *ti = current_thread_info();
6478d880 5615
1da177e4
LT
5616 /*
5617 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5618 * we do not want to preempt the current task. Just return..
1da177e4 5619 */
beed33a8 5620 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5621 return;
5622
3a5c359a
AK
5623 do {
5624 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5625 schedule();
3a5c359a 5626 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5627
3a5c359a
AK
5628 /*
5629 * Check again in case we missed a preemption opportunity
5630 * between schedule and now.
5631 */
5632 barrier();
5ed0cec0 5633 } while (need_resched());
1da177e4 5634}
1da177e4
LT
5635EXPORT_SYMBOL(preempt_schedule);
5636
5637/*
2ed6e34f 5638 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5639 * off of irq context.
5640 * Note, that this is called and return with irqs disabled. This will
5641 * protect us against recursive calling from irq.
5642 */
5643asmlinkage void __sched preempt_schedule_irq(void)
5644{
5645 struct thread_info *ti = current_thread_info();
6478d880 5646
2ed6e34f 5647 /* Catch callers which need to be fixed */
1da177e4
LT
5648 BUG_ON(ti->preempt_count || !irqs_disabled());
5649
3a5c359a
AK
5650 do {
5651 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5652 local_irq_enable();
5653 schedule();
5654 local_irq_disable();
3a5c359a 5655 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5656
3a5c359a
AK
5657 /*
5658 * Check again in case we missed a preemption opportunity
5659 * between schedule and now.
5660 */
5661 barrier();
5ed0cec0 5662 } while (need_resched());
1da177e4
LT
5663}
5664
5665#endif /* CONFIG_PREEMPT */
5666
63859d4f 5667int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5668 void *key)
1da177e4 5669{
63859d4f 5670 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5671}
1da177e4
LT
5672EXPORT_SYMBOL(default_wake_function);
5673
5674/*
41a2d6cf
IM
5675 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5676 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5677 * number) then we wake all the non-exclusive tasks and one exclusive task.
5678 *
5679 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5680 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5681 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5682 */
78ddb08f 5683static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5684 int nr_exclusive, int wake_flags, void *key)
1da177e4 5685{
2e45874c 5686 wait_queue_t *curr, *next;
1da177e4 5687
2e45874c 5688 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5689 unsigned flags = curr->flags;
5690
63859d4f 5691 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5692 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5693 break;
5694 }
5695}
5696
5697/**
5698 * __wake_up - wake up threads blocked on a waitqueue.
5699 * @q: the waitqueue
5700 * @mode: which threads
5701 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5702 * @key: is directly passed to the wakeup function
50fa610a
DH
5703 *
5704 * It may be assumed that this function implies a write memory barrier before
5705 * changing the task state if and only if any tasks are woken up.
1da177e4 5706 */
7ad5b3a5 5707void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5708 int nr_exclusive, void *key)
1da177e4
LT
5709{
5710 unsigned long flags;
5711
5712 spin_lock_irqsave(&q->lock, flags);
5713 __wake_up_common(q, mode, nr_exclusive, 0, key);
5714 spin_unlock_irqrestore(&q->lock, flags);
5715}
1da177e4
LT
5716EXPORT_SYMBOL(__wake_up);
5717
5718/*
5719 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5720 */
7ad5b3a5 5721void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5722{
5723 __wake_up_common(q, mode, 1, 0, NULL);
5724}
5725
4ede816a
DL
5726void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5727{
5728 __wake_up_common(q, mode, 1, 0, key);
5729}
5730
1da177e4 5731/**
4ede816a 5732 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5733 * @q: the waitqueue
5734 * @mode: which threads
5735 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5736 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5737 *
5738 * The sync wakeup differs that the waker knows that it will schedule
5739 * away soon, so while the target thread will be woken up, it will not
5740 * be migrated to another CPU - ie. the two threads are 'synchronized'
5741 * with each other. This can prevent needless bouncing between CPUs.
5742 *
5743 * On UP it can prevent extra preemption.
50fa610a
DH
5744 *
5745 * It may be assumed that this function implies a write memory barrier before
5746 * changing the task state if and only if any tasks are woken up.
1da177e4 5747 */
4ede816a
DL
5748void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5749 int nr_exclusive, void *key)
1da177e4
LT
5750{
5751 unsigned long flags;
7d478721 5752 int wake_flags = WF_SYNC;
1da177e4
LT
5753
5754 if (unlikely(!q))
5755 return;
5756
5757 if (unlikely(!nr_exclusive))
7d478721 5758 wake_flags = 0;
1da177e4
LT
5759
5760 spin_lock_irqsave(&q->lock, flags);
7d478721 5761 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5762 spin_unlock_irqrestore(&q->lock, flags);
5763}
4ede816a
DL
5764EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5765
5766/*
5767 * __wake_up_sync - see __wake_up_sync_key()
5768 */
5769void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5770{
5771 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5772}
1da177e4
LT
5773EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5774
65eb3dc6
KD
5775/**
5776 * complete: - signals a single thread waiting on this completion
5777 * @x: holds the state of this particular completion
5778 *
5779 * This will wake up a single thread waiting on this completion. Threads will be
5780 * awakened in the same order in which they were queued.
5781 *
5782 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5783 *
5784 * It may be assumed that this function implies a write memory barrier before
5785 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5786 */
b15136e9 5787void complete(struct completion *x)
1da177e4
LT
5788{
5789 unsigned long flags;
5790
5791 spin_lock_irqsave(&x->wait.lock, flags);
5792 x->done++;
d9514f6c 5793 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5794 spin_unlock_irqrestore(&x->wait.lock, flags);
5795}
5796EXPORT_SYMBOL(complete);
5797
65eb3dc6
KD
5798/**
5799 * complete_all: - signals all threads waiting on this completion
5800 * @x: holds the state of this particular completion
5801 *
5802 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5803 *
5804 * It may be assumed that this function implies a write memory barrier before
5805 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5806 */
b15136e9 5807void complete_all(struct completion *x)
1da177e4
LT
5808{
5809 unsigned long flags;
5810
5811 spin_lock_irqsave(&x->wait.lock, flags);
5812 x->done += UINT_MAX/2;
d9514f6c 5813 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5814 spin_unlock_irqrestore(&x->wait.lock, flags);
5815}
5816EXPORT_SYMBOL(complete_all);
5817
8cbbe86d
AK
5818static inline long __sched
5819do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5820{
1da177e4
LT
5821 if (!x->done) {
5822 DECLARE_WAITQUEUE(wait, current);
5823
5824 wait.flags |= WQ_FLAG_EXCLUSIVE;
5825 __add_wait_queue_tail(&x->wait, &wait);
5826 do {
94d3d824 5827 if (signal_pending_state(state, current)) {
ea71a546
ON
5828 timeout = -ERESTARTSYS;
5829 break;
8cbbe86d
AK
5830 }
5831 __set_current_state(state);
1da177e4
LT
5832 spin_unlock_irq(&x->wait.lock);
5833 timeout = schedule_timeout(timeout);
5834 spin_lock_irq(&x->wait.lock);
ea71a546 5835 } while (!x->done && timeout);
1da177e4 5836 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5837 if (!x->done)
5838 return timeout;
1da177e4
LT
5839 }
5840 x->done--;
ea71a546 5841 return timeout ?: 1;
1da177e4 5842}
1da177e4 5843
8cbbe86d
AK
5844static long __sched
5845wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5846{
1da177e4
LT
5847 might_sleep();
5848
5849 spin_lock_irq(&x->wait.lock);
8cbbe86d 5850 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5851 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5852 return timeout;
5853}
1da177e4 5854
65eb3dc6
KD
5855/**
5856 * wait_for_completion: - waits for completion of a task
5857 * @x: holds the state of this particular completion
5858 *
5859 * This waits to be signaled for completion of a specific task. It is NOT
5860 * interruptible and there is no timeout.
5861 *
5862 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5863 * and interrupt capability. Also see complete().
5864 */
b15136e9 5865void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5866{
5867 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5868}
8cbbe86d 5869EXPORT_SYMBOL(wait_for_completion);
1da177e4 5870
65eb3dc6
KD
5871/**
5872 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5873 * @x: holds the state of this particular completion
5874 * @timeout: timeout value in jiffies
5875 *
5876 * This waits for either a completion of a specific task to be signaled or for a
5877 * specified timeout to expire. The timeout is in jiffies. It is not
5878 * interruptible.
5879 */
b15136e9 5880unsigned long __sched
8cbbe86d 5881wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5882{
8cbbe86d 5883 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5884}
8cbbe86d 5885EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5886
65eb3dc6
KD
5887/**
5888 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5889 * @x: holds the state of this particular completion
5890 *
5891 * This waits for completion of a specific task to be signaled. It is
5892 * interruptible.
5893 */
8cbbe86d 5894int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5895{
51e97990
AK
5896 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5897 if (t == -ERESTARTSYS)
5898 return t;
5899 return 0;
0fec171c 5900}
8cbbe86d 5901EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5902
65eb3dc6
KD
5903/**
5904 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5905 * @x: holds the state of this particular completion
5906 * @timeout: timeout value in jiffies
5907 *
5908 * This waits for either a completion of a specific task to be signaled or for a
5909 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5910 */
b15136e9 5911unsigned long __sched
8cbbe86d
AK
5912wait_for_completion_interruptible_timeout(struct completion *x,
5913 unsigned long timeout)
0fec171c 5914{
8cbbe86d 5915 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5916}
8cbbe86d 5917EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5918
65eb3dc6
KD
5919/**
5920 * wait_for_completion_killable: - waits for completion of a task (killable)
5921 * @x: holds the state of this particular completion
5922 *
5923 * This waits to be signaled for completion of a specific task. It can be
5924 * interrupted by a kill signal.
5925 */
009e577e
MW
5926int __sched wait_for_completion_killable(struct completion *x)
5927{
5928 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5929 if (t == -ERESTARTSYS)
5930 return t;
5931 return 0;
5932}
5933EXPORT_SYMBOL(wait_for_completion_killable);
5934
be4de352
DC
5935/**
5936 * try_wait_for_completion - try to decrement a completion without blocking
5937 * @x: completion structure
5938 *
5939 * Returns: 0 if a decrement cannot be done without blocking
5940 * 1 if a decrement succeeded.
5941 *
5942 * If a completion is being used as a counting completion,
5943 * attempt to decrement the counter without blocking. This
5944 * enables us to avoid waiting if the resource the completion
5945 * is protecting is not available.
5946 */
5947bool try_wait_for_completion(struct completion *x)
5948{
7539a3b3 5949 unsigned long flags;
be4de352
DC
5950 int ret = 1;
5951
7539a3b3 5952 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5953 if (!x->done)
5954 ret = 0;
5955 else
5956 x->done--;
7539a3b3 5957 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
5958 return ret;
5959}
5960EXPORT_SYMBOL(try_wait_for_completion);
5961
5962/**
5963 * completion_done - Test to see if a completion has any waiters
5964 * @x: completion structure
5965 *
5966 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5967 * 1 if there are no waiters.
5968 *
5969 */
5970bool completion_done(struct completion *x)
5971{
7539a3b3 5972 unsigned long flags;
be4de352
DC
5973 int ret = 1;
5974
7539a3b3 5975 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5976 if (!x->done)
5977 ret = 0;
7539a3b3 5978 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
5979 return ret;
5980}
5981EXPORT_SYMBOL(completion_done);
5982
8cbbe86d
AK
5983static long __sched
5984sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5985{
0fec171c
IM
5986 unsigned long flags;
5987 wait_queue_t wait;
5988
5989 init_waitqueue_entry(&wait, current);
1da177e4 5990
8cbbe86d 5991 __set_current_state(state);
1da177e4 5992
8cbbe86d
AK
5993 spin_lock_irqsave(&q->lock, flags);
5994 __add_wait_queue(q, &wait);
5995 spin_unlock(&q->lock);
5996 timeout = schedule_timeout(timeout);
5997 spin_lock_irq(&q->lock);
5998 __remove_wait_queue(q, &wait);
5999 spin_unlock_irqrestore(&q->lock, flags);
6000
6001 return timeout;
6002}
6003
6004void __sched interruptible_sleep_on(wait_queue_head_t *q)
6005{
6006 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6007}
1da177e4
LT
6008EXPORT_SYMBOL(interruptible_sleep_on);
6009
0fec171c 6010long __sched
95cdf3b7 6011interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6012{
8cbbe86d 6013 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 6014}
1da177e4
LT
6015EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6016
0fec171c 6017void __sched sleep_on(wait_queue_head_t *q)
1da177e4 6018{
8cbbe86d 6019 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6020}
1da177e4
LT
6021EXPORT_SYMBOL(sleep_on);
6022
0fec171c 6023long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6024{
8cbbe86d 6025 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 6026}
1da177e4
LT
6027EXPORT_SYMBOL(sleep_on_timeout);
6028
b29739f9
IM
6029#ifdef CONFIG_RT_MUTEXES
6030
6031/*
6032 * rt_mutex_setprio - set the current priority of a task
6033 * @p: task
6034 * @prio: prio value (kernel-internal form)
6035 *
6036 * This function changes the 'effective' priority of a task. It does
6037 * not touch ->normal_prio like __setscheduler().
6038 *
6039 * Used by the rt_mutex code to implement priority inheritance logic.
6040 */
36c8b586 6041void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
6042{
6043 unsigned long flags;
83b699ed 6044 int oldprio, on_rq, running;
70b97a7f 6045 struct rq *rq;
cb469845 6046 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
6047
6048 BUG_ON(prio < 0 || prio > MAX_PRIO);
6049
6050 rq = task_rq_lock(p, &flags);
a8e504d2 6051 update_rq_clock(rq);
b29739f9 6052
d5f9f942 6053 oldprio = p->prio;
dd41f596 6054 on_rq = p->se.on_rq;
051a1d1a 6055 running = task_current(rq, p);
0e1f3483 6056 if (on_rq)
69be72c1 6057 dequeue_task(rq, p, 0);
0e1f3483
HS
6058 if (running)
6059 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
6060
6061 if (rt_prio(prio))
6062 p->sched_class = &rt_sched_class;
6063 else
6064 p->sched_class = &fair_sched_class;
6065
b29739f9
IM
6066 p->prio = prio;
6067
0e1f3483
HS
6068 if (running)
6069 p->sched_class->set_curr_task(rq);
dd41f596 6070 if (on_rq) {
8159f87e 6071 enqueue_task(rq, p, 0);
cb469845
SR
6072
6073 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6074 }
6075 task_rq_unlock(rq, &flags);
6076}
6077
6078#endif
6079
36c8b586 6080void set_user_nice(struct task_struct *p, long nice)
1da177e4 6081{
dd41f596 6082 int old_prio, delta, on_rq;
1da177e4 6083 unsigned long flags;
70b97a7f 6084 struct rq *rq;
1da177e4
LT
6085
6086 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6087 return;
6088 /*
6089 * We have to be careful, if called from sys_setpriority(),
6090 * the task might be in the middle of scheduling on another CPU.
6091 */
6092 rq = task_rq_lock(p, &flags);
a8e504d2 6093 update_rq_clock(rq);
1da177e4
LT
6094 /*
6095 * The RT priorities are set via sched_setscheduler(), but we still
6096 * allow the 'normal' nice value to be set - but as expected
6097 * it wont have any effect on scheduling until the task is
dd41f596 6098 * SCHED_FIFO/SCHED_RR:
1da177e4 6099 */
e05606d3 6100 if (task_has_rt_policy(p)) {
1da177e4
LT
6101 p->static_prio = NICE_TO_PRIO(nice);
6102 goto out_unlock;
6103 }
dd41f596 6104 on_rq = p->se.on_rq;
c09595f6 6105 if (on_rq)
69be72c1 6106 dequeue_task(rq, p, 0);
1da177e4 6107
1da177e4 6108 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6109 set_load_weight(p);
b29739f9
IM
6110 old_prio = p->prio;
6111 p->prio = effective_prio(p);
6112 delta = p->prio - old_prio;
1da177e4 6113
dd41f596 6114 if (on_rq) {
8159f87e 6115 enqueue_task(rq, p, 0);
1da177e4 6116 /*
d5f9f942
AM
6117 * If the task increased its priority or is running and
6118 * lowered its priority, then reschedule its CPU:
1da177e4 6119 */
d5f9f942 6120 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6121 resched_task(rq->curr);
6122 }
6123out_unlock:
6124 task_rq_unlock(rq, &flags);
6125}
1da177e4
LT
6126EXPORT_SYMBOL(set_user_nice);
6127
e43379f1
MM
6128/*
6129 * can_nice - check if a task can reduce its nice value
6130 * @p: task
6131 * @nice: nice value
6132 */
36c8b586 6133int can_nice(const struct task_struct *p, const int nice)
e43379f1 6134{
024f4747
MM
6135 /* convert nice value [19,-20] to rlimit style value [1,40] */
6136 int nice_rlim = 20 - nice;
48f24c4d 6137
e43379f1
MM
6138 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6139 capable(CAP_SYS_NICE));
6140}
6141
1da177e4
LT
6142#ifdef __ARCH_WANT_SYS_NICE
6143
6144/*
6145 * sys_nice - change the priority of the current process.
6146 * @increment: priority increment
6147 *
6148 * sys_setpriority is a more generic, but much slower function that
6149 * does similar things.
6150 */
5add95d4 6151SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6152{
48f24c4d 6153 long nice, retval;
1da177e4
LT
6154
6155 /*
6156 * Setpriority might change our priority at the same moment.
6157 * We don't have to worry. Conceptually one call occurs first
6158 * and we have a single winner.
6159 */
e43379f1
MM
6160 if (increment < -40)
6161 increment = -40;
1da177e4
LT
6162 if (increment > 40)
6163 increment = 40;
6164
2b8f836f 6165 nice = TASK_NICE(current) + increment;
1da177e4
LT
6166 if (nice < -20)
6167 nice = -20;
6168 if (nice > 19)
6169 nice = 19;
6170
e43379f1
MM
6171 if (increment < 0 && !can_nice(current, nice))
6172 return -EPERM;
6173
1da177e4
LT
6174 retval = security_task_setnice(current, nice);
6175 if (retval)
6176 return retval;
6177
6178 set_user_nice(current, nice);
6179 return 0;
6180}
6181
6182#endif
6183
6184/**
6185 * task_prio - return the priority value of a given task.
6186 * @p: the task in question.
6187 *
6188 * This is the priority value as seen by users in /proc.
6189 * RT tasks are offset by -200. Normal tasks are centered
6190 * around 0, value goes from -16 to +15.
6191 */
36c8b586 6192int task_prio(const struct task_struct *p)
1da177e4
LT
6193{
6194 return p->prio - MAX_RT_PRIO;
6195}
6196
6197/**
6198 * task_nice - return the nice value of a given task.
6199 * @p: the task in question.
6200 */
36c8b586 6201int task_nice(const struct task_struct *p)
1da177e4
LT
6202{
6203 return TASK_NICE(p);
6204}
150d8bed 6205EXPORT_SYMBOL(task_nice);
1da177e4
LT
6206
6207/**
6208 * idle_cpu - is a given cpu idle currently?
6209 * @cpu: the processor in question.
6210 */
6211int idle_cpu(int cpu)
6212{
6213 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6214}
6215
1da177e4
LT
6216/**
6217 * idle_task - return the idle task for a given cpu.
6218 * @cpu: the processor in question.
6219 */
36c8b586 6220struct task_struct *idle_task(int cpu)
1da177e4
LT
6221{
6222 return cpu_rq(cpu)->idle;
6223}
6224
6225/**
6226 * find_process_by_pid - find a process with a matching PID value.
6227 * @pid: the pid in question.
6228 */
a9957449 6229static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6230{
228ebcbe 6231 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6232}
6233
6234/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6235static void
6236__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6237{
dd41f596 6238 BUG_ON(p->se.on_rq);
48f24c4d 6239
1da177e4
LT
6240 p->policy = policy;
6241 p->rt_priority = prio;
b29739f9
IM
6242 p->normal_prio = normal_prio(p);
6243 /* we are holding p->pi_lock already */
6244 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
6245 if (rt_prio(p->prio))
6246 p->sched_class = &rt_sched_class;
6247 else
6248 p->sched_class = &fair_sched_class;
2dd73a4f 6249 set_load_weight(p);
1da177e4
LT
6250}
6251
c69e8d9c
DH
6252/*
6253 * check the target process has a UID that matches the current process's
6254 */
6255static bool check_same_owner(struct task_struct *p)
6256{
6257 const struct cred *cred = current_cred(), *pcred;
6258 bool match;
6259
6260 rcu_read_lock();
6261 pcred = __task_cred(p);
6262 match = (cred->euid == pcred->euid ||
6263 cred->euid == pcred->uid);
6264 rcu_read_unlock();
6265 return match;
6266}
6267
961ccddd
RR
6268static int __sched_setscheduler(struct task_struct *p, int policy,
6269 struct sched_param *param, bool user)
1da177e4 6270{
83b699ed 6271 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6272 unsigned long flags;
cb469845 6273 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6274 struct rq *rq;
ca94c442 6275 int reset_on_fork;
1da177e4 6276
66e5393a
SR
6277 /* may grab non-irq protected spin_locks */
6278 BUG_ON(in_interrupt());
1da177e4
LT
6279recheck:
6280 /* double check policy once rq lock held */
ca94c442
LP
6281 if (policy < 0) {
6282 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6283 policy = oldpolicy = p->policy;
ca94c442
LP
6284 } else {
6285 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6286 policy &= ~SCHED_RESET_ON_FORK;
6287
6288 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6289 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6290 policy != SCHED_IDLE)
6291 return -EINVAL;
6292 }
6293
1da177e4
LT
6294 /*
6295 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6296 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6297 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6298 */
6299 if (param->sched_priority < 0 ||
95cdf3b7 6300 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6301 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6302 return -EINVAL;
e05606d3 6303 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6304 return -EINVAL;
6305
37e4ab3f
OC
6306 /*
6307 * Allow unprivileged RT tasks to decrease priority:
6308 */
961ccddd 6309 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6310 if (rt_policy(policy)) {
8dc3e909 6311 unsigned long rlim_rtprio;
8dc3e909
ON
6312
6313 if (!lock_task_sighand(p, &flags))
6314 return -ESRCH;
6315 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6316 unlock_task_sighand(p, &flags);
6317
6318 /* can't set/change the rt policy */
6319 if (policy != p->policy && !rlim_rtprio)
6320 return -EPERM;
6321
6322 /* can't increase priority */
6323 if (param->sched_priority > p->rt_priority &&
6324 param->sched_priority > rlim_rtprio)
6325 return -EPERM;
6326 }
dd41f596
IM
6327 /*
6328 * Like positive nice levels, dont allow tasks to
6329 * move out of SCHED_IDLE either:
6330 */
6331 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6332 return -EPERM;
5fe1d75f 6333
37e4ab3f 6334 /* can't change other user's priorities */
c69e8d9c 6335 if (!check_same_owner(p))
37e4ab3f 6336 return -EPERM;
ca94c442
LP
6337
6338 /* Normal users shall not reset the sched_reset_on_fork flag */
6339 if (p->sched_reset_on_fork && !reset_on_fork)
6340 return -EPERM;
37e4ab3f 6341 }
1da177e4 6342
725aad24 6343 if (user) {
b68aa230 6344#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6345 /*
6346 * Do not allow realtime tasks into groups that have no runtime
6347 * assigned.
6348 */
9a7e0b18
PZ
6349 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6350 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6351 return -EPERM;
b68aa230
PZ
6352#endif
6353
725aad24
JF
6354 retval = security_task_setscheduler(p, policy, param);
6355 if (retval)
6356 return retval;
6357 }
6358
b29739f9
IM
6359 /*
6360 * make sure no PI-waiters arrive (or leave) while we are
6361 * changing the priority of the task:
6362 */
1d615482 6363 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6364 /*
6365 * To be able to change p->policy safely, the apropriate
6366 * runqueue lock must be held.
6367 */
b29739f9 6368 rq = __task_rq_lock(p);
1da177e4
LT
6369 /* recheck policy now with rq lock held */
6370 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6371 policy = oldpolicy = -1;
b29739f9 6372 __task_rq_unlock(rq);
1d615482 6373 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6374 goto recheck;
6375 }
2daa3577 6376 update_rq_clock(rq);
dd41f596 6377 on_rq = p->se.on_rq;
051a1d1a 6378 running = task_current(rq, p);
0e1f3483 6379 if (on_rq)
2e1cb74a 6380 deactivate_task(rq, p, 0);
0e1f3483
HS
6381 if (running)
6382 p->sched_class->put_prev_task(rq, p);
f6b53205 6383
ca94c442
LP
6384 p->sched_reset_on_fork = reset_on_fork;
6385
1da177e4 6386 oldprio = p->prio;
dd41f596 6387 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6388
0e1f3483
HS
6389 if (running)
6390 p->sched_class->set_curr_task(rq);
dd41f596
IM
6391 if (on_rq) {
6392 activate_task(rq, p, 0);
cb469845
SR
6393
6394 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6395 }
b29739f9 6396 __task_rq_unlock(rq);
1d615482 6397 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 6398
95e02ca9
TG
6399 rt_mutex_adjust_pi(p);
6400
1da177e4
LT
6401 return 0;
6402}
961ccddd
RR
6403
6404/**
6405 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6406 * @p: the task in question.
6407 * @policy: new policy.
6408 * @param: structure containing the new RT priority.
6409 *
6410 * NOTE that the task may be already dead.
6411 */
6412int sched_setscheduler(struct task_struct *p, int policy,
6413 struct sched_param *param)
6414{
6415 return __sched_setscheduler(p, policy, param, true);
6416}
1da177e4
LT
6417EXPORT_SYMBOL_GPL(sched_setscheduler);
6418
961ccddd
RR
6419/**
6420 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6421 * @p: the task in question.
6422 * @policy: new policy.
6423 * @param: structure containing the new RT priority.
6424 *
6425 * Just like sched_setscheduler, only don't bother checking if the
6426 * current context has permission. For example, this is needed in
6427 * stop_machine(): we create temporary high priority worker threads,
6428 * but our caller might not have that capability.
6429 */
6430int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6431 struct sched_param *param)
6432{
6433 return __sched_setscheduler(p, policy, param, false);
6434}
6435
95cdf3b7
IM
6436static int
6437do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6438{
1da177e4
LT
6439 struct sched_param lparam;
6440 struct task_struct *p;
36c8b586 6441 int retval;
1da177e4
LT
6442
6443 if (!param || pid < 0)
6444 return -EINVAL;
6445 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6446 return -EFAULT;
5fe1d75f
ON
6447
6448 rcu_read_lock();
6449 retval = -ESRCH;
1da177e4 6450 p = find_process_by_pid(pid);
5fe1d75f
ON
6451 if (p != NULL)
6452 retval = sched_setscheduler(p, policy, &lparam);
6453 rcu_read_unlock();
36c8b586 6454
1da177e4
LT
6455 return retval;
6456}
6457
6458/**
6459 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6460 * @pid: the pid in question.
6461 * @policy: new policy.
6462 * @param: structure containing the new RT priority.
6463 */
5add95d4
HC
6464SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6465 struct sched_param __user *, param)
1da177e4 6466{
c21761f1
JB
6467 /* negative values for policy are not valid */
6468 if (policy < 0)
6469 return -EINVAL;
6470
1da177e4
LT
6471 return do_sched_setscheduler(pid, policy, param);
6472}
6473
6474/**
6475 * sys_sched_setparam - set/change the RT priority of a thread
6476 * @pid: the pid in question.
6477 * @param: structure containing the new RT priority.
6478 */
5add95d4 6479SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6480{
6481 return do_sched_setscheduler(pid, -1, param);
6482}
6483
6484/**
6485 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6486 * @pid: the pid in question.
6487 */
5add95d4 6488SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6489{
36c8b586 6490 struct task_struct *p;
3a5c359a 6491 int retval;
1da177e4
LT
6492
6493 if (pid < 0)
3a5c359a 6494 return -EINVAL;
1da177e4
LT
6495
6496 retval = -ESRCH;
5fe85be0 6497 rcu_read_lock();
1da177e4
LT
6498 p = find_process_by_pid(pid);
6499 if (p) {
6500 retval = security_task_getscheduler(p);
6501 if (!retval)
ca94c442
LP
6502 retval = p->policy
6503 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 6504 }
5fe85be0 6505 rcu_read_unlock();
1da177e4
LT
6506 return retval;
6507}
6508
6509/**
ca94c442 6510 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6511 * @pid: the pid in question.
6512 * @param: structure containing the RT priority.
6513 */
5add95d4 6514SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6515{
6516 struct sched_param lp;
36c8b586 6517 struct task_struct *p;
3a5c359a 6518 int retval;
1da177e4
LT
6519
6520 if (!param || pid < 0)
3a5c359a 6521 return -EINVAL;
1da177e4 6522
5fe85be0 6523 rcu_read_lock();
1da177e4
LT
6524 p = find_process_by_pid(pid);
6525 retval = -ESRCH;
6526 if (!p)
6527 goto out_unlock;
6528
6529 retval = security_task_getscheduler(p);
6530 if (retval)
6531 goto out_unlock;
6532
6533 lp.sched_priority = p->rt_priority;
5fe85be0 6534 rcu_read_unlock();
1da177e4
LT
6535
6536 /*
6537 * This one might sleep, we cannot do it with a spinlock held ...
6538 */
6539 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6540
1da177e4
LT
6541 return retval;
6542
6543out_unlock:
5fe85be0 6544 rcu_read_unlock();
1da177e4
LT
6545 return retval;
6546}
6547
96f874e2 6548long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6549{
5a16f3d3 6550 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6551 struct task_struct *p;
6552 int retval;
1da177e4 6553
95402b38 6554 get_online_cpus();
23f5d142 6555 rcu_read_lock();
1da177e4
LT
6556
6557 p = find_process_by_pid(pid);
6558 if (!p) {
23f5d142 6559 rcu_read_unlock();
95402b38 6560 put_online_cpus();
1da177e4
LT
6561 return -ESRCH;
6562 }
6563
23f5d142 6564 /* Prevent p going away */
1da177e4 6565 get_task_struct(p);
23f5d142 6566 rcu_read_unlock();
1da177e4 6567
5a16f3d3
RR
6568 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6569 retval = -ENOMEM;
6570 goto out_put_task;
6571 }
6572 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6573 retval = -ENOMEM;
6574 goto out_free_cpus_allowed;
6575 }
1da177e4 6576 retval = -EPERM;
c69e8d9c 6577 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6578 goto out_unlock;
6579
e7834f8f
DQ
6580 retval = security_task_setscheduler(p, 0, NULL);
6581 if (retval)
6582 goto out_unlock;
6583
5a16f3d3
RR
6584 cpuset_cpus_allowed(p, cpus_allowed);
6585 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6586 again:
5a16f3d3 6587 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6588
8707d8b8 6589 if (!retval) {
5a16f3d3
RR
6590 cpuset_cpus_allowed(p, cpus_allowed);
6591 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6592 /*
6593 * We must have raced with a concurrent cpuset
6594 * update. Just reset the cpus_allowed to the
6595 * cpuset's cpus_allowed
6596 */
5a16f3d3 6597 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6598 goto again;
6599 }
6600 }
1da177e4 6601out_unlock:
5a16f3d3
RR
6602 free_cpumask_var(new_mask);
6603out_free_cpus_allowed:
6604 free_cpumask_var(cpus_allowed);
6605out_put_task:
1da177e4 6606 put_task_struct(p);
95402b38 6607 put_online_cpus();
1da177e4
LT
6608 return retval;
6609}
6610
6611static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6612 struct cpumask *new_mask)
1da177e4 6613{
96f874e2
RR
6614 if (len < cpumask_size())
6615 cpumask_clear(new_mask);
6616 else if (len > cpumask_size())
6617 len = cpumask_size();
6618
1da177e4
LT
6619 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6620}
6621
6622/**
6623 * sys_sched_setaffinity - set the cpu affinity of a process
6624 * @pid: pid of the process
6625 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6626 * @user_mask_ptr: user-space pointer to the new cpu mask
6627 */
5add95d4
HC
6628SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6629 unsigned long __user *, user_mask_ptr)
1da177e4 6630{
5a16f3d3 6631 cpumask_var_t new_mask;
1da177e4
LT
6632 int retval;
6633
5a16f3d3
RR
6634 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6635 return -ENOMEM;
1da177e4 6636
5a16f3d3
RR
6637 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6638 if (retval == 0)
6639 retval = sched_setaffinity(pid, new_mask);
6640 free_cpumask_var(new_mask);
6641 return retval;
1da177e4
LT
6642}
6643
96f874e2 6644long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6645{
36c8b586 6646 struct task_struct *p;
31605683
TG
6647 unsigned long flags;
6648 struct rq *rq;
1da177e4 6649 int retval;
1da177e4 6650
95402b38 6651 get_online_cpus();
23f5d142 6652 rcu_read_lock();
1da177e4
LT
6653
6654 retval = -ESRCH;
6655 p = find_process_by_pid(pid);
6656 if (!p)
6657 goto out_unlock;
6658
e7834f8f
DQ
6659 retval = security_task_getscheduler(p);
6660 if (retval)
6661 goto out_unlock;
6662
31605683 6663 rq = task_rq_lock(p, &flags);
96f874e2 6664 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 6665 task_rq_unlock(rq, &flags);
1da177e4
LT
6666
6667out_unlock:
23f5d142 6668 rcu_read_unlock();
95402b38 6669 put_online_cpus();
1da177e4 6670
9531b62f 6671 return retval;
1da177e4
LT
6672}
6673
6674/**
6675 * sys_sched_getaffinity - get the cpu affinity of a process
6676 * @pid: pid of the process
6677 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6678 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6679 */
5add95d4
HC
6680SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6681 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6682{
6683 int ret;
f17c8607 6684 cpumask_var_t mask;
1da177e4 6685
f17c8607 6686 if (len < cpumask_size())
1da177e4
LT
6687 return -EINVAL;
6688
f17c8607
RR
6689 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6690 return -ENOMEM;
1da177e4 6691
f17c8607
RR
6692 ret = sched_getaffinity(pid, mask);
6693 if (ret == 0) {
6694 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6695 ret = -EFAULT;
6696 else
6697 ret = cpumask_size();
6698 }
6699 free_cpumask_var(mask);
1da177e4 6700
f17c8607 6701 return ret;
1da177e4
LT
6702}
6703
6704/**
6705 * sys_sched_yield - yield the current processor to other threads.
6706 *
dd41f596
IM
6707 * This function yields the current CPU to other tasks. If there are no
6708 * other threads running on this CPU then this function will return.
1da177e4 6709 */
5add95d4 6710SYSCALL_DEFINE0(sched_yield)
1da177e4 6711{
70b97a7f 6712 struct rq *rq = this_rq_lock();
1da177e4 6713
2d72376b 6714 schedstat_inc(rq, yld_count);
4530d7ab 6715 current->sched_class->yield_task(rq);
1da177e4
LT
6716
6717 /*
6718 * Since we are going to call schedule() anyway, there's
6719 * no need to preempt or enable interrupts:
6720 */
6721 __release(rq->lock);
8a25d5de 6722 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 6723 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
6724 preempt_enable_no_resched();
6725
6726 schedule();
6727
6728 return 0;
6729}
6730
d86ee480
PZ
6731static inline int should_resched(void)
6732{
6733 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6734}
6735
e7b38404 6736static void __cond_resched(void)
1da177e4 6737{
e7aaaa69
FW
6738 add_preempt_count(PREEMPT_ACTIVE);
6739 schedule();
6740 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6741}
6742
02b67cc3 6743int __sched _cond_resched(void)
1da177e4 6744{
d86ee480 6745 if (should_resched()) {
1da177e4
LT
6746 __cond_resched();
6747 return 1;
6748 }
6749 return 0;
6750}
02b67cc3 6751EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6752
6753/*
613afbf8 6754 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6755 * call schedule, and on return reacquire the lock.
6756 *
41a2d6cf 6757 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6758 * operations here to prevent schedule() from being called twice (once via
6759 * spin_unlock(), once by hand).
6760 */
613afbf8 6761int __cond_resched_lock(spinlock_t *lock)
1da177e4 6762{
d86ee480 6763 int resched = should_resched();
6df3cecb
JK
6764 int ret = 0;
6765
f607c668
PZ
6766 lockdep_assert_held(lock);
6767
95c354fe 6768 if (spin_needbreak(lock) || resched) {
1da177e4 6769 spin_unlock(lock);
d86ee480 6770 if (resched)
95c354fe
NP
6771 __cond_resched();
6772 else
6773 cpu_relax();
6df3cecb 6774 ret = 1;
1da177e4 6775 spin_lock(lock);
1da177e4 6776 }
6df3cecb 6777 return ret;
1da177e4 6778}
613afbf8 6779EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6780
613afbf8 6781int __sched __cond_resched_softirq(void)
1da177e4
LT
6782{
6783 BUG_ON(!in_softirq());
6784
d86ee480 6785 if (should_resched()) {
98d82567 6786 local_bh_enable();
1da177e4
LT
6787 __cond_resched();
6788 local_bh_disable();
6789 return 1;
6790 }
6791 return 0;
6792}
613afbf8 6793EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6794
1da177e4
LT
6795/**
6796 * yield - yield the current processor to other threads.
6797 *
72fd4a35 6798 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6799 * thread runnable and calls sys_sched_yield().
6800 */
6801void __sched yield(void)
6802{
6803 set_current_state(TASK_RUNNING);
6804 sys_sched_yield();
6805}
1da177e4
LT
6806EXPORT_SYMBOL(yield);
6807
6808/*
41a2d6cf 6809 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6810 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6811 */
6812void __sched io_schedule(void)
6813{
54d35f29 6814 struct rq *rq = raw_rq();
1da177e4 6815
0ff92245 6816 delayacct_blkio_start();
1da177e4 6817 atomic_inc(&rq->nr_iowait);
8f0dfc34 6818 current->in_iowait = 1;
1da177e4 6819 schedule();
8f0dfc34 6820 current->in_iowait = 0;
1da177e4 6821 atomic_dec(&rq->nr_iowait);
0ff92245 6822 delayacct_blkio_end();
1da177e4 6823}
1da177e4
LT
6824EXPORT_SYMBOL(io_schedule);
6825
6826long __sched io_schedule_timeout(long timeout)
6827{
54d35f29 6828 struct rq *rq = raw_rq();
1da177e4
LT
6829 long ret;
6830
0ff92245 6831 delayacct_blkio_start();
1da177e4 6832 atomic_inc(&rq->nr_iowait);
8f0dfc34 6833 current->in_iowait = 1;
1da177e4 6834 ret = schedule_timeout(timeout);
8f0dfc34 6835 current->in_iowait = 0;
1da177e4 6836 atomic_dec(&rq->nr_iowait);
0ff92245 6837 delayacct_blkio_end();
1da177e4
LT
6838 return ret;
6839}
6840
6841/**
6842 * sys_sched_get_priority_max - return maximum RT priority.
6843 * @policy: scheduling class.
6844 *
6845 * this syscall returns the maximum rt_priority that can be used
6846 * by a given scheduling class.
6847 */
5add95d4 6848SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6849{
6850 int ret = -EINVAL;
6851
6852 switch (policy) {
6853 case SCHED_FIFO:
6854 case SCHED_RR:
6855 ret = MAX_USER_RT_PRIO-1;
6856 break;
6857 case SCHED_NORMAL:
b0a9499c 6858 case SCHED_BATCH:
dd41f596 6859 case SCHED_IDLE:
1da177e4
LT
6860 ret = 0;
6861 break;
6862 }
6863 return ret;
6864}
6865
6866/**
6867 * sys_sched_get_priority_min - return minimum RT priority.
6868 * @policy: scheduling class.
6869 *
6870 * this syscall returns the minimum rt_priority that can be used
6871 * by a given scheduling class.
6872 */
5add95d4 6873SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6874{
6875 int ret = -EINVAL;
6876
6877 switch (policy) {
6878 case SCHED_FIFO:
6879 case SCHED_RR:
6880 ret = 1;
6881 break;
6882 case SCHED_NORMAL:
b0a9499c 6883 case SCHED_BATCH:
dd41f596 6884 case SCHED_IDLE:
1da177e4
LT
6885 ret = 0;
6886 }
6887 return ret;
6888}
6889
6890/**
6891 * sys_sched_rr_get_interval - return the default timeslice of a process.
6892 * @pid: pid of the process.
6893 * @interval: userspace pointer to the timeslice value.
6894 *
6895 * this syscall writes the default timeslice value of a given process
6896 * into the user-space timespec buffer. A value of '0' means infinity.
6897 */
17da2bd9 6898SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6899 struct timespec __user *, interval)
1da177e4 6900{
36c8b586 6901 struct task_struct *p;
a4ec24b4 6902 unsigned int time_slice;
dba091b9
TG
6903 unsigned long flags;
6904 struct rq *rq;
3a5c359a 6905 int retval;
1da177e4 6906 struct timespec t;
1da177e4
LT
6907
6908 if (pid < 0)
3a5c359a 6909 return -EINVAL;
1da177e4
LT
6910
6911 retval = -ESRCH;
1a551ae7 6912 rcu_read_lock();
1da177e4
LT
6913 p = find_process_by_pid(pid);
6914 if (!p)
6915 goto out_unlock;
6916
6917 retval = security_task_getscheduler(p);
6918 if (retval)
6919 goto out_unlock;
6920
dba091b9
TG
6921 rq = task_rq_lock(p, &flags);
6922 time_slice = p->sched_class->get_rr_interval(rq, p);
6923 task_rq_unlock(rq, &flags);
a4ec24b4 6924
1a551ae7 6925 rcu_read_unlock();
a4ec24b4 6926 jiffies_to_timespec(time_slice, &t);
1da177e4 6927 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6928 return retval;
3a5c359a 6929
1da177e4 6930out_unlock:
1a551ae7 6931 rcu_read_unlock();
1da177e4
LT
6932 return retval;
6933}
6934
7c731e0a 6935static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6936
82a1fcb9 6937void sched_show_task(struct task_struct *p)
1da177e4 6938{
1da177e4 6939 unsigned long free = 0;
36c8b586 6940 unsigned state;
1da177e4 6941
1da177e4 6942 state = p->state ? __ffs(p->state) + 1 : 0;
663997d4 6943 pr_info("%-13.13s %c", p->comm,
2ed6e34f 6944 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6945#if BITS_PER_LONG == 32
1da177e4 6946 if (state == TASK_RUNNING)
663997d4 6947 pr_cont(" running ");
1da177e4 6948 else
663997d4 6949 pr_cont(" %08lx ", thread_saved_pc(p));
1da177e4
LT
6950#else
6951 if (state == TASK_RUNNING)
663997d4 6952 pr_cont(" running task ");
1da177e4 6953 else
663997d4 6954 pr_cont(" %016lx ", thread_saved_pc(p));
1da177e4
LT
6955#endif
6956#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6957 free = stack_not_used(p);
1da177e4 6958#endif
663997d4 6959 pr_cont("%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
6960 task_pid_nr(p), task_pid_nr(p->real_parent),
6961 (unsigned long)task_thread_info(p)->flags);
1da177e4 6962
5fb5e6de 6963 show_stack(p, NULL);
1da177e4
LT
6964}
6965
e59e2ae2 6966void show_state_filter(unsigned long state_filter)
1da177e4 6967{
36c8b586 6968 struct task_struct *g, *p;
1da177e4 6969
4bd77321 6970#if BITS_PER_LONG == 32
663997d4 6971 pr_info(" task PC stack pid father\n");
1da177e4 6972#else
663997d4 6973 pr_info(" task PC stack pid father\n");
1da177e4
LT
6974#endif
6975 read_lock(&tasklist_lock);
6976 do_each_thread(g, p) {
6977 /*
6978 * reset the NMI-timeout, listing all files on a slow
6979 * console might take alot of time:
6980 */
6981 touch_nmi_watchdog();
39bc89fd 6982 if (!state_filter || (p->state & state_filter))
82a1fcb9 6983 sched_show_task(p);
1da177e4
LT
6984 } while_each_thread(g, p);
6985
04c9167f
JF
6986 touch_all_softlockup_watchdogs();
6987
dd41f596
IM
6988#ifdef CONFIG_SCHED_DEBUG
6989 sysrq_sched_debug_show();
6990#endif
1da177e4 6991 read_unlock(&tasklist_lock);
e59e2ae2
IM
6992 /*
6993 * Only show locks if all tasks are dumped:
6994 */
93335a21 6995 if (!state_filter)
e59e2ae2 6996 debug_show_all_locks();
1da177e4
LT
6997}
6998
1df21055
IM
6999void __cpuinit init_idle_bootup_task(struct task_struct *idle)
7000{
dd41f596 7001 idle->sched_class = &idle_sched_class;
1df21055
IM
7002}
7003
f340c0d1
IM
7004/**
7005 * init_idle - set up an idle thread for a given CPU
7006 * @idle: task in question
7007 * @cpu: cpu the idle task belongs to
7008 *
7009 * NOTE: this function does not set the idle thread's NEED_RESCHED
7010 * flag, to make booting more robust.
7011 */
5c1e1767 7012void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 7013{
70b97a7f 7014 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
7015 unsigned long flags;
7016
05fa785c 7017 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 7018
dd41f596 7019 __sched_fork(idle);
06b83b5f 7020 idle->state = TASK_RUNNING;
dd41f596
IM
7021 idle->se.exec_start = sched_clock();
7022
96f874e2 7023 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 7024 __set_task_cpu(idle, cpu);
1da177e4 7025
1da177e4 7026 rq->curr = rq->idle = idle;
4866cde0
NP
7027#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7028 idle->oncpu = 1;
7029#endif
05fa785c 7030 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
7031
7032 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
7033#if defined(CONFIG_PREEMPT)
7034 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7035#else
a1261f54 7036 task_thread_info(idle)->preempt_count = 0;
8e3e076c 7037#endif
dd41f596
IM
7038 /*
7039 * The idle tasks have their own, simple scheduling class:
7040 */
7041 idle->sched_class = &idle_sched_class;
fb52607a 7042 ftrace_graph_init_task(idle);
1da177e4
LT
7043}
7044
7045/*
7046 * In a system that switches off the HZ timer nohz_cpu_mask
7047 * indicates which cpus entered this state. This is used
7048 * in the rcu update to wait only for active cpus. For system
7049 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 7050 * always be CPU_BITS_NONE.
1da177e4 7051 */
6a7b3dc3 7052cpumask_var_t nohz_cpu_mask;
1da177e4 7053
19978ca6
IM
7054/*
7055 * Increase the granularity value when there are more CPUs,
7056 * because with more CPUs the 'effective latency' as visible
7057 * to users decreases. But the relationship is not linear,
7058 * so pick a second-best guess by going with the log2 of the
7059 * number of CPUs.
7060 *
7061 * This idea comes from the SD scheduler of Con Kolivas:
7062 */
acb4a848 7063static int get_update_sysctl_factor(void)
19978ca6 7064{
4ca3ef71 7065 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
7066 unsigned int factor;
7067
7068 switch (sysctl_sched_tunable_scaling) {
7069 case SCHED_TUNABLESCALING_NONE:
7070 factor = 1;
7071 break;
7072 case SCHED_TUNABLESCALING_LINEAR:
7073 factor = cpus;
7074 break;
7075 case SCHED_TUNABLESCALING_LOG:
7076 default:
7077 factor = 1 + ilog2(cpus);
7078 break;
7079 }
19978ca6 7080
acb4a848
CE
7081 return factor;
7082}
19978ca6 7083
acb4a848
CE
7084static void update_sysctl(void)
7085{
7086 unsigned int factor = get_update_sysctl_factor();
19978ca6 7087
0bcdcf28
CE
7088#define SET_SYSCTL(name) \
7089 (sysctl_##name = (factor) * normalized_sysctl_##name)
7090 SET_SYSCTL(sched_min_granularity);
7091 SET_SYSCTL(sched_latency);
7092 SET_SYSCTL(sched_wakeup_granularity);
7093 SET_SYSCTL(sched_shares_ratelimit);
7094#undef SET_SYSCTL
7095}
55cd5340 7096
0bcdcf28
CE
7097static inline void sched_init_granularity(void)
7098{
7099 update_sysctl();
19978ca6
IM
7100}
7101
1da177e4
LT
7102#ifdef CONFIG_SMP
7103/*
7104 * This is how migration works:
7105 *
70b97a7f 7106 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7107 * runqueue and wake up that CPU's migration thread.
7108 * 2) we down() the locked semaphore => thread blocks.
7109 * 3) migration thread wakes up (implicitly it forces the migrated
7110 * thread off the CPU)
7111 * 4) it gets the migration request and checks whether the migrated
7112 * task is still in the wrong runqueue.
7113 * 5) if it's in the wrong runqueue then the migration thread removes
7114 * it and puts it into the right queue.
7115 * 6) migration thread up()s the semaphore.
7116 * 7) we wake up and the migration is done.
7117 */
7118
7119/*
7120 * Change a given task's CPU affinity. Migrate the thread to a
7121 * proper CPU and schedule it away if the CPU it's executing on
7122 * is removed from the allowed bitmask.
7123 *
7124 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7125 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7126 * call is not atomic; no spinlocks may be held.
7127 */
96f874e2 7128int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7129{
70b97a7f 7130 struct migration_req req;
1da177e4 7131 unsigned long flags;
70b97a7f 7132 struct rq *rq;
48f24c4d 7133 int ret = 0;
1da177e4 7134
e2912009
PZ
7135 /*
7136 * Since we rely on wake-ups to migrate sleeping tasks, don't change
7137 * the ->cpus_allowed mask from under waking tasks, which would be
7138 * possible when we change rq->lock in ttwu(), so synchronize against
7139 * TASK_WAKING to avoid that.
7140 */
7141again:
7142 while (p->state == TASK_WAKING)
7143 cpu_relax();
7144
1da177e4 7145 rq = task_rq_lock(p, &flags);
e2912009
PZ
7146
7147 if (p->state == TASK_WAKING) {
7148 task_rq_unlock(rq, &flags);
7149 goto again;
7150 }
7151
6ad4c188 7152 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
7153 ret = -EINVAL;
7154 goto out;
7155 }
7156
9985b0ba 7157 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7158 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7159 ret = -EINVAL;
7160 goto out;
7161 }
7162
73fe6aae 7163 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7164 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7165 else {
96f874e2
RR
7166 cpumask_copy(&p->cpus_allowed, new_mask);
7167 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7168 }
7169
1da177e4 7170 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7171 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7172 goto out;
7173
6ad4c188 7174 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 7175 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7176 struct task_struct *mt = rq->migration_thread;
7177
7178 get_task_struct(mt);
1da177e4
LT
7179 task_rq_unlock(rq, &flags);
7180 wake_up_process(rq->migration_thread);
693525e3 7181 put_task_struct(mt);
1da177e4
LT
7182 wait_for_completion(&req.done);
7183 tlb_migrate_finish(p->mm);
7184 return 0;
7185 }
7186out:
7187 task_rq_unlock(rq, &flags);
48f24c4d 7188
1da177e4
LT
7189 return ret;
7190}
cd8ba7cd 7191EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7192
7193/*
41a2d6cf 7194 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7195 * this because either it can't run here any more (set_cpus_allowed()
7196 * away from this CPU, or CPU going down), or because we're
7197 * attempting to rebalance this task on exec (sched_exec).
7198 *
7199 * So we race with normal scheduler movements, but that's OK, as long
7200 * as the task is no longer on this CPU.
efc30814
KK
7201 *
7202 * Returns non-zero if task was successfully migrated.
1da177e4 7203 */
efc30814 7204static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7205{
70b97a7f 7206 struct rq *rq_dest, *rq_src;
e2912009 7207 int ret = 0;
1da177e4 7208
e761b772 7209 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7210 return ret;
1da177e4
LT
7211
7212 rq_src = cpu_rq(src_cpu);
7213 rq_dest = cpu_rq(dest_cpu);
7214
7215 double_rq_lock(rq_src, rq_dest);
7216 /* Already moved. */
7217 if (task_cpu(p) != src_cpu)
b1e38734 7218 goto done;
1da177e4 7219 /* Affinity changed (again). */
96f874e2 7220 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7221 goto fail;
1da177e4 7222
e2912009
PZ
7223 /*
7224 * If we're not on a rq, the next wake-up will ensure we're
7225 * placed properly.
7226 */
7227 if (p->se.on_rq) {
2e1cb74a 7228 deactivate_task(rq_src, p, 0);
e2912009 7229 set_task_cpu(p, dest_cpu);
dd41f596 7230 activate_task(rq_dest, p, 0);
15afe09b 7231 check_preempt_curr(rq_dest, p, 0);
1da177e4 7232 }
b1e38734 7233done:
efc30814 7234 ret = 1;
b1e38734 7235fail:
1da177e4 7236 double_rq_unlock(rq_src, rq_dest);
efc30814 7237 return ret;
1da177e4
LT
7238}
7239
03b042bf
PM
7240#define RCU_MIGRATION_IDLE 0
7241#define RCU_MIGRATION_NEED_QS 1
7242#define RCU_MIGRATION_GOT_QS 2
7243#define RCU_MIGRATION_MUST_SYNC 3
7244
1da177e4
LT
7245/*
7246 * migration_thread - this is a highprio system thread that performs
7247 * thread migration by bumping thread off CPU then 'pushing' onto
7248 * another runqueue.
7249 */
95cdf3b7 7250static int migration_thread(void *data)
1da177e4 7251{
03b042bf 7252 int badcpu;
1da177e4 7253 int cpu = (long)data;
70b97a7f 7254 struct rq *rq;
1da177e4
LT
7255
7256 rq = cpu_rq(cpu);
7257 BUG_ON(rq->migration_thread != current);
7258
7259 set_current_state(TASK_INTERRUPTIBLE);
7260 while (!kthread_should_stop()) {
70b97a7f 7261 struct migration_req *req;
1da177e4 7262 struct list_head *head;
1da177e4 7263
05fa785c 7264 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
7265
7266 if (cpu_is_offline(cpu)) {
05fa785c 7267 raw_spin_unlock_irq(&rq->lock);
371cbb38 7268 break;
1da177e4
LT
7269 }
7270
7271 if (rq->active_balance) {
7272 active_load_balance(rq, cpu);
7273 rq->active_balance = 0;
7274 }
7275
7276 head = &rq->migration_queue;
7277
7278 if (list_empty(head)) {
05fa785c 7279 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
7280 schedule();
7281 set_current_state(TASK_INTERRUPTIBLE);
7282 continue;
7283 }
70b97a7f 7284 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7285 list_del_init(head->next);
7286
03b042bf 7287 if (req->task != NULL) {
05fa785c 7288 raw_spin_unlock(&rq->lock);
03b042bf
PM
7289 __migrate_task(req->task, cpu, req->dest_cpu);
7290 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7291 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 7292 raw_spin_unlock(&rq->lock);
03b042bf
PM
7293 } else {
7294 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 7295 raw_spin_unlock(&rq->lock);
03b042bf
PM
7296 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7297 }
674311d5 7298 local_irq_enable();
1da177e4
LT
7299
7300 complete(&req->done);
7301 }
7302 __set_current_state(TASK_RUNNING);
1da177e4 7303
1da177e4
LT
7304 return 0;
7305}
7306
7307#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7308
7309static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7310{
7311 int ret;
7312
7313 local_irq_disable();
7314 ret = __migrate_task(p, src_cpu, dest_cpu);
7315 local_irq_enable();
7316 return ret;
7317}
7318
054b9108 7319/*
3a4fa0a2 7320 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7321 */
48f24c4d 7322static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7323{
70b97a7f 7324 int dest_cpu;
e76bd8d9
RR
7325
7326again:
5da9a0fb 7327 dest_cpu = select_fallback_rq(dead_cpu, p);
e76bd8d9 7328
e76bd8d9
RR
7329 /* It can have affinity changed while we were choosing. */
7330 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7331 goto again;
1da177e4
LT
7332}
7333
7334/*
7335 * While a dead CPU has no uninterruptible tasks queued at this point,
7336 * it might still have a nonzero ->nr_uninterruptible counter, because
7337 * for performance reasons the counter is not stricly tracking tasks to
7338 * their home CPUs. So we just add the counter to another CPU's counter,
7339 * to keep the global sum constant after CPU-down:
7340 */
70b97a7f 7341static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7342{
6ad4c188 7343 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
7344 unsigned long flags;
7345
7346 local_irq_save(flags);
7347 double_rq_lock(rq_src, rq_dest);
7348 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7349 rq_src->nr_uninterruptible = 0;
7350 double_rq_unlock(rq_src, rq_dest);
7351 local_irq_restore(flags);
7352}
7353
7354/* Run through task list and migrate tasks from the dead cpu. */
7355static void migrate_live_tasks(int src_cpu)
7356{
48f24c4d 7357 struct task_struct *p, *t;
1da177e4 7358
f7b4cddc 7359 read_lock(&tasklist_lock);
1da177e4 7360
48f24c4d
IM
7361 do_each_thread(t, p) {
7362 if (p == current)
1da177e4
LT
7363 continue;
7364
48f24c4d
IM
7365 if (task_cpu(p) == src_cpu)
7366 move_task_off_dead_cpu(src_cpu, p);
7367 } while_each_thread(t, p);
1da177e4 7368
f7b4cddc 7369 read_unlock(&tasklist_lock);
1da177e4
LT
7370}
7371
dd41f596
IM
7372/*
7373 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7374 * It does so by boosting its priority to highest possible.
7375 * Used by CPU offline code.
1da177e4
LT
7376 */
7377void sched_idle_next(void)
7378{
48f24c4d 7379 int this_cpu = smp_processor_id();
70b97a7f 7380 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7381 struct task_struct *p = rq->idle;
7382 unsigned long flags;
7383
7384 /* cpu has to be offline */
48f24c4d 7385 BUG_ON(cpu_online(this_cpu));
1da177e4 7386
48f24c4d
IM
7387 /*
7388 * Strictly not necessary since rest of the CPUs are stopped by now
7389 * and interrupts disabled on the current cpu.
1da177e4 7390 */
05fa785c 7391 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 7392
dd41f596 7393 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7394
94bc9a7b
DA
7395 update_rq_clock(rq);
7396 activate_task(rq, p, 0);
1da177e4 7397
05fa785c 7398 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
7399}
7400
48f24c4d
IM
7401/*
7402 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7403 * offline.
7404 */
7405void idle_task_exit(void)
7406{
7407 struct mm_struct *mm = current->active_mm;
7408
7409 BUG_ON(cpu_online(smp_processor_id()));
7410
7411 if (mm != &init_mm)
7412 switch_mm(mm, &init_mm, current);
7413 mmdrop(mm);
7414}
7415
054b9108 7416/* called under rq->lock with disabled interrupts */
36c8b586 7417static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7418{
70b97a7f 7419 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7420
7421 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7422 BUG_ON(!p->exit_state);
1da177e4
LT
7423
7424 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7425 BUG_ON(p->state == TASK_DEAD);
1da177e4 7426
48f24c4d 7427 get_task_struct(p);
1da177e4
LT
7428
7429 /*
7430 * Drop lock around migration; if someone else moves it,
41a2d6cf 7431 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7432 * fine.
7433 */
05fa785c 7434 raw_spin_unlock_irq(&rq->lock);
48f24c4d 7435 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 7436 raw_spin_lock_irq(&rq->lock);
1da177e4 7437
48f24c4d 7438 put_task_struct(p);
1da177e4
LT
7439}
7440
7441/* release_task() removes task from tasklist, so we won't find dead tasks. */
7442static void migrate_dead_tasks(unsigned int dead_cpu)
7443{
70b97a7f 7444 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7445 struct task_struct *next;
48f24c4d 7446
dd41f596
IM
7447 for ( ; ; ) {
7448 if (!rq->nr_running)
7449 break;
a8e504d2 7450 update_rq_clock(rq);
b67802ea 7451 next = pick_next_task(rq);
dd41f596
IM
7452 if (!next)
7453 break;
79c53799 7454 next->sched_class->put_prev_task(rq, next);
dd41f596 7455 migrate_dead(dead_cpu, next);
e692ab53 7456
1da177e4
LT
7457 }
7458}
dce48a84
TG
7459
7460/*
7461 * remove the tasks which were accounted by rq from calc_load_tasks.
7462 */
7463static void calc_global_load_remove(struct rq *rq)
7464{
7465 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7466 rq->calc_load_active = 0;
dce48a84 7467}
1da177e4
LT
7468#endif /* CONFIG_HOTPLUG_CPU */
7469
e692ab53
NP
7470#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7471
7472static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7473 {
7474 .procname = "sched_domain",
c57baf1e 7475 .mode = 0555,
e0361851 7476 },
56992309 7477 {}
e692ab53
NP
7478};
7479
7480static struct ctl_table sd_ctl_root[] = {
e0361851
AD
7481 {
7482 .procname = "kernel",
c57baf1e 7483 .mode = 0555,
e0361851
AD
7484 .child = sd_ctl_dir,
7485 },
56992309 7486 {}
e692ab53
NP
7487};
7488
7489static struct ctl_table *sd_alloc_ctl_entry(int n)
7490{
7491 struct ctl_table *entry =
5cf9f062 7492 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7493
e692ab53
NP
7494 return entry;
7495}
7496
6382bc90
MM
7497static void sd_free_ctl_entry(struct ctl_table **tablep)
7498{
cd790076 7499 struct ctl_table *entry;
6382bc90 7500
cd790076
MM
7501 /*
7502 * In the intermediate directories, both the child directory and
7503 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7504 * will always be set. In the lowest directory the names are
cd790076
MM
7505 * static strings and all have proc handlers.
7506 */
7507 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7508 if (entry->child)
7509 sd_free_ctl_entry(&entry->child);
cd790076
MM
7510 if (entry->proc_handler == NULL)
7511 kfree(entry->procname);
7512 }
6382bc90
MM
7513
7514 kfree(*tablep);
7515 *tablep = NULL;
7516}
7517
e692ab53 7518static void
e0361851 7519set_table_entry(struct ctl_table *entry,
e692ab53
NP
7520 const char *procname, void *data, int maxlen,
7521 mode_t mode, proc_handler *proc_handler)
7522{
e692ab53
NP
7523 entry->procname = procname;
7524 entry->data = data;
7525 entry->maxlen = maxlen;
7526 entry->mode = mode;
7527 entry->proc_handler = proc_handler;
7528}
7529
7530static struct ctl_table *
7531sd_alloc_ctl_domain_table(struct sched_domain *sd)
7532{
a5d8c348 7533 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7534
ad1cdc1d
MM
7535 if (table == NULL)
7536 return NULL;
7537
e0361851 7538 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7539 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7540 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7541 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7542 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7543 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7544 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7545 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7546 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7547 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7548 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7549 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7550 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7551 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7552 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7553 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7554 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7555 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7556 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7557 &sd->cache_nice_tries,
7558 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7559 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7560 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7561 set_table_entry(&table[11], "name", sd->name,
7562 CORENAME_MAX_SIZE, 0444, proc_dostring);
7563 /* &table[12] is terminator */
e692ab53
NP
7564
7565 return table;
7566}
7567
9a4e7159 7568static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7569{
7570 struct ctl_table *entry, *table;
7571 struct sched_domain *sd;
7572 int domain_num = 0, i;
7573 char buf[32];
7574
7575 for_each_domain(cpu, sd)
7576 domain_num++;
7577 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7578 if (table == NULL)
7579 return NULL;
e692ab53
NP
7580
7581 i = 0;
7582 for_each_domain(cpu, sd) {
7583 snprintf(buf, 32, "domain%d", i);
e692ab53 7584 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7585 entry->mode = 0555;
e692ab53
NP
7586 entry->child = sd_alloc_ctl_domain_table(sd);
7587 entry++;
7588 i++;
7589 }
7590 return table;
7591}
7592
7593static struct ctl_table_header *sd_sysctl_header;
6382bc90 7594static void register_sched_domain_sysctl(void)
e692ab53 7595{
6ad4c188 7596 int i, cpu_num = num_possible_cpus();
e692ab53
NP
7597 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7598 char buf[32];
7599
7378547f
MM
7600 WARN_ON(sd_ctl_dir[0].child);
7601 sd_ctl_dir[0].child = entry;
7602
ad1cdc1d
MM
7603 if (entry == NULL)
7604 return;
7605
6ad4c188 7606 for_each_possible_cpu(i) {
e692ab53 7607 snprintf(buf, 32, "cpu%d", i);
e692ab53 7608 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7609 entry->mode = 0555;
e692ab53 7610 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7611 entry++;
e692ab53 7612 }
7378547f
MM
7613
7614 WARN_ON(sd_sysctl_header);
e692ab53
NP
7615 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7616}
6382bc90 7617
7378547f 7618/* may be called multiple times per register */
6382bc90
MM
7619static void unregister_sched_domain_sysctl(void)
7620{
7378547f
MM
7621 if (sd_sysctl_header)
7622 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7623 sd_sysctl_header = NULL;
7378547f
MM
7624 if (sd_ctl_dir[0].child)
7625 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7626}
e692ab53 7627#else
6382bc90
MM
7628static void register_sched_domain_sysctl(void)
7629{
7630}
7631static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7632{
7633}
7634#endif
7635
1f11eb6a
GH
7636static void set_rq_online(struct rq *rq)
7637{
7638 if (!rq->online) {
7639 const struct sched_class *class;
7640
c6c4927b 7641 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7642 rq->online = 1;
7643
7644 for_each_class(class) {
7645 if (class->rq_online)
7646 class->rq_online(rq);
7647 }
7648 }
7649}
7650
7651static void set_rq_offline(struct rq *rq)
7652{
7653 if (rq->online) {
7654 const struct sched_class *class;
7655
7656 for_each_class(class) {
7657 if (class->rq_offline)
7658 class->rq_offline(rq);
7659 }
7660
c6c4927b 7661 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7662 rq->online = 0;
7663 }
7664}
7665
1da177e4
LT
7666/*
7667 * migration_call - callback that gets triggered when a CPU is added.
7668 * Here we can start up the necessary migration thread for the new CPU.
7669 */
48f24c4d
IM
7670static int __cpuinit
7671migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7672{
1da177e4 7673 struct task_struct *p;
48f24c4d 7674 int cpu = (long)hcpu;
1da177e4 7675 unsigned long flags;
70b97a7f 7676 struct rq *rq;
1da177e4
LT
7677
7678 switch (action) {
5be9361c 7679
1da177e4 7680 case CPU_UP_PREPARE:
8bb78442 7681 case CPU_UP_PREPARE_FROZEN:
dd41f596 7682 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7683 if (IS_ERR(p))
7684 return NOTIFY_BAD;
1da177e4
LT
7685 kthread_bind(p, cpu);
7686 /* Must be high prio: stop_machine expects to yield to it. */
7687 rq = task_rq_lock(p, &flags);
dd41f596 7688 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7689 task_rq_unlock(rq, &flags);
371cbb38 7690 get_task_struct(p);
1da177e4 7691 cpu_rq(cpu)->migration_thread = p;
a468d389 7692 rq->calc_load_update = calc_load_update;
1da177e4 7693 break;
48f24c4d 7694
1da177e4 7695 case CPU_ONLINE:
8bb78442 7696 case CPU_ONLINE_FROZEN:
3a4fa0a2 7697 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7698 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7699
7700 /* Update our root-domain */
7701 rq = cpu_rq(cpu);
05fa785c 7702 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 7703 if (rq->rd) {
c6c4927b 7704 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7705
7706 set_rq_online(rq);
1f94ef59 7707 }
05fa785c 7708 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7709 break;
48f24c4d 7710
1da177e4
LT
7711#ifdef CONFIG_HOTPLUG_CPU
7712 case CPU_UP_CANCELED:
8bb78442 7713 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7714 if (!cpu_rq(cpu)->migration_thread)
7715 break;
41a2d6cf 7716 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7717 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7718 cpumask_any(cpu_online_mask));
1da177e4 7719 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7720 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7721 cpu_rq(cpu)->migration_thread = NULL;
7722 break;
48f24c4d 7723
1da177e4 7724 case CPU_DEAD:
8bb78442 7725 case CPU_DEAD_FROZEN:
470fd646 7726 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7727 migrate_live_tasks(cpu);
7728 rq = cpu_rq(cpu);
7729 kthread_stop(rq->migration_thread);
371cbb38 7730 put_task_struct(rq->migration_thread);
1da177e4
LT
7731 rq->migration_thread = NULL;
7732 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 7733 raw_spin_lock_irq(&rq->lock);
a8e504d2 7734 update_rq_clock(rq);
2e1cb74a 7735 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
7736 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7737 rq->idle->sched_class = &idle_sched_class;
1da177e4 7738 migrate_dead_tasks(cpu);
05fa785c 7739 raw_spin_unlock_irq(&rq->lock);
470fd646 7740 cpuset_unlock();
1da177e4
LT
7741 migrate_nr_uninterruptible(rq);
7742 BUG_ON(rq->nr_running != 0);
dce48a84 7743 calc_global_load_remove(rq);
41a2d6cf
IM
7744 /*
7745 * No need to migrate the tasks: it was best-effort if
7746 * they didn't take sched_hotcpu_mutex. Just wake up
7747 * the requestors.
7748 */
05fa785c 7749 raw_spin_lock_irq(&rq->lock);
1da177e4 7750 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7751 struct migration_req *req;
7752
1da177e4 7753 req = list_entry(rq->migration_queue.next,
70b97a7f 7754 struct migration_req, list);
1da177e4 7755 list_del_init(&req->list);
05fa785c 7756 raw_spin_unlock_irq(&rq->lock);
1da177e4 7757 complete(&req->done);
05fa785c 7758 raw_spin_lock_irq(&rq->lock);
1da177e4 7759 }
05fa785c 7760 raw_spin_unlock_irq(&rq->lock);
1da177e4 7761 break;
57d885fe 7762
08f503b0
GH
7763 case CPU_DYING:
7764 case CPU_DYING_FROZEN:
57d885fe
GH
7765 /* Update our root-domain */
7766 rq = cpu_rq(cpu);
05fa785c 7767 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 7768 if (rq->rd) {
c6c4927b 7769 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7770 set_rq_offline(rq);
57d885fe 7771 }
05fa785c 7772 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 7773 break;
1da177e4
LT
7774#endif
7775 }
7776 return NOTIFY_OK;
7777}
7778
f38b0820
PM
7779/*
7780 * Register at high priority so that task migration (migrate_all_tasks)
7781 * happens before everything else. This has to be lower priority than
cdd6c482 7782 * the notifier in the perf_event subsystem, though.
1da177e4 7783 */
26c2143b 7784static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7785 .notifier_call = migration_call,
7786 .priority = 10
7787};
7788
7babe8db 7789static int __init migration_init(void)
1da177e4
LT
7790{
7791 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7792 int err;
48f24c4d
IM
7793
7794 /* Start one for the boot CPU: */
07dccf33
AM
7795 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7796 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7797 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7798 register_cpu_notifier(&migration_notifier);
7babe8db 7799
a004cd42 7800 return 0;
1da177e4 7801}
7babe8db 7802early_initcall(migration_init);
1da177e4
LT
7803#endif
7804
7805#ifdef CONFIG_SMP
476f3534 7806
3e9830dc 7807#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7808
f6630114
MT
7809static __read_mostly int sched_domain_debug_enabled;
7810
7811static int __init sched_domain_debug_setup(char *str)
7812{
7813 sched_domain_debug_enabled = 1;
7814
7815 return 0;
7816}
7817early_param("sched_debug", sched_domain_debug_setup);
7818
7c16ec58 7819static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7820 struct cpumask *groupmask)
1da177e4 7821{
4dcf6aff 7822 struct sched_group *group = sd->groups;
434d53b0 7823 char str[256];
1da177e4 7824
968ea6d8 7825 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7826 cpumask_clear(groupmask);
4dcf6aff
IM
7827
7828 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7829
7830 if (!(sd->flags & SD_LOAD_BALANCE)) {
663997d4 7831 pr_cont("does not load-balance\n");
4dcf6aff 7832 if (sd->parent)
663997d4 7833 pr_err("ERROR: !SD_LOAD_BALANCE domain has parent\n");
4dcf6aff 7834 return -1;
41c7ce9a
NP
7835 }
7836
663997d4 7837 pr_cont("span %s level %s\n", str, sd->name);
4dcf6aff 7838
758b2cdc 7839 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
663997d4 7840 pr_err("ERROR: domain->span does not contain CPU%d\n", cpu);
4dcf6aff 7841 }
758b2cdc 7842 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
663997d4 7843 pr_err("ERROR: domain->groups does not contain CPU%d\n", cpu);
4dcf6aff 7844 }
1da177e4 7845
4dcf6aff 7846 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7847 do {
4dcf6aff 7848 if (!group) {
663997d4
JP
7849 pr_cont("\n");
7850 pr_err("ERROR: group is NULL\n");
1da177e4
LT
7851 break;
7852 }
7853
18a3885f 7854 if (!group->cpu_power) {
663997d4
JP
7855 pr_cont("\n");
7856 pr_err("ERROR: domain->cpu_power not set\n");
4dcf6aff
IM
7857 break;
7858 }
1da177e4 7859
758b2cdc 7860 if (!cpumask_weight(sched_group_cpus(group))) {
663997d4
JP
7861 pr_cont("\n");
7862 pr_err("ERROR: empty group\n");
4dcf6aff
IM
7863 break;
7864 }
1da177e4 7865
758b2cdc 7866 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
663997d4
JP
7867 pr_cont("\n");
7868 pr_err("ERROR: repeated CPUs\n");
4dcf6aff
IM
7869 break;
7870 }
1da177e4 7871
758b2cdc 7872 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7873
968ea6d8 7874 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 7875
663997d4 7876 pr_cont(" %s", str);
18a3885f 7877 if (group->cpu_power != SCHED_LOAD_SCALE) {
663997d4 7878 pr_cont(" (cpu_power = %d)", group->cpu_power);
381512cf 7879 }
1da177e4 7880
4dcf6aff
IM
7881 group = group->next;
7882 } while (group != sd->groups);
663997d4 7883 pr_cont("\n");
1da177e4 7884
758b2cdc 7885 if (!cpumask_equal(sched_domain_span(sd), groupmask))
663997d4 7886 pr_err("ERROR: groups don't span domain->span\n");
1da177e4 7887
758b2cdc
RR
7888 if (sd->parent &&
7889 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
663997d4 7890 pr_err("ERROR: parent span is not a superset of domain->span\n");
4dcf6aff
IM
7891 return 0;
7892}
1da177e4 7893
4dcf6aff
IM
7894static void sched_domain_debug(struct sched_domain *sd, int cpu)
7895{
d5dd3db1 7896 cpumask_var_t groupmask;
4dcf6aff 7897 int level = 0;
1da177e4 7898
f6630114
MT
7899 if (!sched_domain_debug_enabled)
7900 return;
7901
4dcf6aff
IM
7902 if (!sd) {
7903 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7904 return;
7905 }
1da177e4 7906
4dcf6aff
IM
7907 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7908
d5dd3db1 7909 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7910 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7911 return;
7912 }
7913
4dcf6aff 7914 for (;;) {
7c16ec58 7915 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7916 break;
1da177e4
LT
7917 level++;
7918 sd = sd->parent;
33859f7f 7919 if (!sd)
4dcf6aff
IM
7920 break;
7921 }
d5dd3db1 7922 free_cpumask_var(groupmask);
1da177e4 7923}
6d6bc0ad 7924#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7925# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7926#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7927
1a20ff27 7928static int sd_degenerate(struct sched_domain *sd)
245af2c7 7929{
758b2cdc 7930 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7931 return 1;
7932
7933 /* Following flags need at least 2 groups */
7934 if (sd->flags & (SD_LOAD_BALANCE |
7935 SD_BALANCE_NEWIDLE |
7936 SD_BALANCE_FORK |
89c4710e
SS
7937 SD_BALANCE_EXEC |
7938 SD_SHARE_CPUPOWER |
7939 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7940 if (sd->groups != sd->groups->next)
7941 return 0;
7942 }
7943
7944 /* Following flags don't use groups */
c88d5910 7945 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7946 return 0;
7947
7948 return 1;
7949}
7950
48f24c4d
IM
7951static int
7952sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7953{
7954 unsigned long cflags = sd->flags, pflags = parent->flags;
7955
7956 if (sd_degenerate(parent))
7957 return 1;
7958
758b2cdc 7959 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7960 return 0;
7961
245af2c7
SS
7962 /* Flags needing groups don't count if only 1 group in parent */
7963 if (parent->groups == parent->groups->next) {
7964 pflags &= ~(SD_LOAD_BALANCE |
7965 SD_BALANCE_NEWIDLE |
7966 SD_BALANCE_FORK |
89c4710e
SS
7967 SD_BALANCE_EXEC |
7968 SD_SHARE_CPUPOWER |
7969 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7970 if (nr_node_ids == 1)
7971 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7972 }
7973 if (~cflags & pflags)
7974 return 0;
7975
7976 return 1;
7977}
7978
c6c4927b
RR
7979static void free_rootdomain(struct root_domain *rd)
7980{
047106ad
PZ
7981 synchronize_sched();
7982
68e74568
RR
7983 cpupri_cleanup(&rd->cpupri);
7984
c6c4927b
RR
7985 free_cpumask_var(rd->rto_mask);
7986 free_cpumask_var(rd->online);
7987 free_cpumask_var(rd->span);
7988 kfree(rd);
7989}
7990
57d885fe
GH
7991static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7992{
a0490fa3 7993 struct root_domain *old_rd = NULL;
57d885fe 7994 unsigned long flags;
57d885fe 7995
05fa785c 7996 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
7997
7998 if (rq->rd) {
a0490fa3 7999 old_rd = rq->rd;
57d885fe 8000
c6c4927b 8001 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 8002 set_rq_offline(rq);
57d885fe 8003
c6c4927b 8004 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 8005
a0490fa3
IM
8006 /*
8007 * If we dont want to free the old_rt yet then
8008 * set old_rd to NULL to skip the freeing later
8009 * in this function:
8010 */
8011 if (!atomic_dec_and_test(&old_rd->refcount))
8012 old_rd = NULL;
57d885fe
GH
8013 }
8014
8015 atomic_inc(&rd->refcount);
8016 rq->rd = rd;
8017
c6c4927b 8018 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 8019 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 8020 set_rq_online(rq);
57d885fe 8021
05fa785c 8022 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
8023
8024 if (old_rd)
8025 free_rootdomain(old_rd);
57d885fe
GH
8026}
8027
fd5e1b5d 8028static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 8029{
36b7b6d4
PE
8030 gfp_t gfp = GFP_KERNEL;
8031
57d885fe
GH
8032 memset(rd, 0, sizeof(*rd));
8033
36b7b6d4
PE
8034 if (bootmem)
8035 gfp = GFP_NOWAIT;
c6c4927b 8036
36b7b6d4 8037 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 8038 goto out;
36b7b6d4 8039 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 8040 goto free_span;
36b7b6d4 8041 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 8042 goto free_online;
6e0534f2 8043
0fb53029 8044 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 8045 goto free_rto_mask;
c6c4927b 8046 return 0;
6e0534f2 8047
68e74568
RR
8048free_rto_mask:
8049 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
8050free_online:
8051 free_cpumask_var(rd->online);
8052free_span:
8053 free_cpumask_var(rd->span);
0c910d28 8054out:
c6c4927b 8055 return -ENOMEM;
57d885fe
GH
8056}
8057
8058static void init_defrootdomain(void)
8059{
c6c4927b
RR
8060 init_rootdomain(&def_root_domain, true);
8061
57d885fe
GH
8062 atomic_set(&def_root_domain.refcount, 1);
8063}
8064
dc938520 8065static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
8066{
8067 struct root_domain *rd;
8068
8069 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8070 if (!rd)
8071 return NULL;
8072
c6c4927b
RR
8073 if (init_rootdomain(rd, false) != 0) {
8074 kfree(rd);
8075 return NULL;
8076 }
57d885fe
GH
8077
8078 return rd;
8079}
8080
1da177e4 8081/*
0eab9146 8082 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8083 * hold the hotplug lock.
8084 */
0eab9146
IM
8085static void
8086cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8087{
70b97a7f 8088 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8089 struct sched_domain *tmp;
8090
8091 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8092 for (tmp = sd; tmp; ) {
245af2c7
SS
8093 struct sched_domain *parent = tmp->parent;
8094 if (!parent)
8095 break;
f29c9b1c 8096
1a848870 8097 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8098 tmp->parent = parent->parent;
1a848870
SS
8099 if (parent->parent)
8100 parent->parent->child = tmp;
f29c9b1c
LZ
8101 } else
8102 tmp = tmp->parent;
245af2c7
SS
8103 }
8104
1a848870 8105 if (sd && sd_degenerate(sd)) {
245af2c7 8106 sd = sd->parent;
1a848870
SS
8107 if (sd)
8108 sd->child = NULL;
8109 }
1da177e4
LT
8110
8111 sched_domain_debug(sd, cpu);
8112
57d885fe 8113 rq_attach_root(rq, rd);
674311d5 8114 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8115}
8116
8117/* cpus with isolated domains */
dcc30a35 8118static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8119
8120/* Setup the mask of cpus configured for isolated domains */
8121static int __init isolated_cpu_setup(char *str)
8122{
bdddd296 8123 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 8124 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8125 return 1;
8126}
8127
8927f494 8128__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8129
8130/*
6711cab4
SS
8131 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8132 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8133 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8134 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8135 *
8136 * init_sched_build_groups will build a circular linked list of the groups
8137 * covered by the given span, and will set each group's ->cpumask correctly,
8138 * and ->cpu_power to 0.
8139 */
a616058b 8140static void
96f874e2
RR
8141init_sched_build_groups(const struct cpumask *span,
8142 const struct cpumask *cpu_map,
8143 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8144 struct sched_group **sg,
96f874e2
RR
8145 struct cpumask *tmpmask),
8146 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8147{
8148 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8149 int i;
8150
96f874e2 8151 cpumask_clear(covered);
7c16ec58 8152
abcd083a 8153 for_each_cpu(i, span) {
6711cab4 8154 struct sched_group *sg;
7c16ec58 8155 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8156 int j;
8157
758b2cdc 8158 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8159 continue;
8160
758b2cdc 8161 cpumask_clear(sched_group_cpus(sg));
18a3885f 8162 sg->cpu_power = 0;
1da177e4 8163
abcd083a 8164 for_each_cpu(j, span) {
7c16ec58 8165 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8166 continue;
8167
96f874e2 8168 cpumask_set_cpu(j, covered);
758b2cdc 8169 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8170 }
8171 if (!first)
8172 first = sg;
8173 if (last)
8174 last->next = sg;
8175 last = sg;
8176 }
8177 last->next = first;
8178}
8179
9c1cfda2 8180#define SD_NODES_PER_DOMAIN 16
1da177e4 8181
9c1cfda2 8182#ifdef CONFIG_NUMA
198e2f18 8183
9c1cfda2
JH
8184/**
8185 * find_next_best_node - find the next node to include in a sched_domain
8186 * @node: node whose sched_domain we're building
8187 * @used_nodes: nodes already in the sched_domain
8188 *
41a2d6cf 8189 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8190 * finds the closest node not already in the @used_nodes map.
8191 *
8192 * Should use nodemask_t.
8193 */
c5f59f08 8194static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8195{
8196 int i, n, val, min_val, best_node = 0;
8197
8198 min_val = INT_MAX;
8199
076ac2af 8200 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8201 /* Start at @node */
076ac2af 8202 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8203
8204 if (!nr_cpus_node(n))
8205 continue;
8206
8207 /* Skip already used nodes */
c5f59f08 8208 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8209 continue;
8210
8211 /* Simple min distance search */
8212 val = node_distance(node, n);
8213
8214 if (val < min_val) {
8215 min_val = val;
8216 best_node = n;
8217 }
8218 }
8219
c5f59f08 8220 node_set(best_node, *used_nodes);
9c1cfda2
JH
8221 return best_node;
8222}
8223
8224/**
8225 * sched_domain_node_span - get a cpumask for a node's sched_domain
8226 * @node: node whose cpumask we're constructing
73486722 8227 * @span: resulting cpumask
9c1cfda2 8228 *
41a2d6cf 8229 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8230 * should be one that prevents unnecessary balancing, but also spreads tasks
8231 * out optimally.
8232 */
96f874e2 8233static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8234{
c5f59f08 8235 nodemask_t used_nodes;
48f24c4d 8236 int i;
9c1cfda2 8237
6ca09dfc 8238 cpumask_clear(span);
c5f59f08 8239 nodes_clear(used_nodes);
9c1cfda2 8240
6ca09dfc 8241 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8242 node_set(node, used_nodes);
9c1cfda2
JH
8243
8244 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8245 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8246
6ca09dfc 8247 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8248 }
9c1cfda2 8249}
6d6bc0ad 8250#endif /* CONFIG_NUMA */
9c1cfda2 8251
5c45bf27 8252int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8253
6c99e9ad
RR
8254/*
8255 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8256 *
8257 * ( See the the comments in include/linux/sched.h:struct sched_group
8258 * and struct sched_domain. )
6c99e9ad
RR
8259 */
8260struct static_sched_group {
8261 struct sched_group sg;
8262 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8263};
8264
8265struct static_sched_domain {
8266 struct sched_domain sd;
8267 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8268};
8269
49a02c51
AH
8270struct s_data {
8271#ifdef CONFIG_NUMA
8272 int sd_allnodes;
8273 cpumask_var_t domainspan;
8274 cpumask_var_t covered;
8275 cpumask_var_t notcovered;
8276#endif
8277 cpumask_var_t nodemask;
8278 cpumask_var_t this_sibling_map;
8279 cpumask_var_t this_core_map;
8280 cpumask_var_t send_covered;
8281 cpumask_var_t tmpmask;
8282 struct sched_group **sched_group_nodes;
8283 struct root_domain *rd;
8284};
8285
2109b99e
AH
8286enum s_alloc {
8287 sa_sched_groups = 0,
8288 sa_rootdomain,
8289 sa_tmpmask,
8290 sa_send_covered,
8291 sa_this_core_map,
8292 sa_this_sibling_map,
8293 sa_nodemask,
8294 sa_sched_group_nodes,
8295#ifdef CONFIG_NUMA
8296 sa_notcovered,
8297 sa_covered,
8298 sa_domainspan,
8299#endif
8300 sa_none,
8301};
8302
9c1cfda2 8303/*
48f24c4d 8304 * SMT sched-domains:
9c1cfda2 8305 */
1da177e4 8306#ifdef CONFIG_SCHED_SMT
6c99e9ad 8307static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 8308static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 8309
41a2d6cf 8310static int
96f874e2
RR
8311cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8312 struct sched_group **sg, struct cpumask *unused)
1da177e4 8313{
6711cab4 8314 if (sg)
1871e52c 8315 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
8316 return cpu;
8317}
6d6bc0ad 8318#endif /* CONFIG_SCHED_SMT */
1da177e4 8319
48f24c4d
IM
8320/*
8321 * multi-core sched-domains:
8322 */
1e9f28fa 8323#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8324static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8325static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8326#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8327
8328#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8329static int
96f874e2
RR
8330cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8331 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8332{
6711cab4 8333 int group;
7c16ec58 8334
c69fc56d 8335 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8336 group = cpumask_first(mask);
6711cab4 8337 if (sg)
6c99e9ad 8338 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8339 return group;
1e9f28fa
SS
8340}
8341#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8342static int
96f874e2
RR
8343cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8344 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8345{
6711cab4 8346 if (sg)
6c99e9ad 8347 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8348 return cpu;
8349}
8350#endif
8351
6c99e9ad
RR
8352static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8353static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8354
41a2d6cf 8355static int
96f874e2
RR
8356cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8357 struct sched_group **sg, struct cpumask *mask)
1da177e4 8358{
6711cab4 8359 int group;
48f24c4d 8360#ifdef CONFIG_SCHED_MC
6ca09dfc 8361 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8362 group = cpumask_first(mask);
1e9f28fa 8363#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8364 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8365 group = cpumask_first(mask);
1da177e4 8366#else
6711cab4 8367 group = cpu;
1da177e4 8368#endif
6711cab4 8369 if (sg)
6c99e9ad 8370 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8371 return group;
1da177e4
LT
8372}
8373
8374#ifdef CONFIG_NUMA
1da177e4 8375/*
9c1cfda2
JH
8376 * The init_sched_build_groups can't handle what we want to do with node
8377 * groups, so roll our own. Now each node has its own list of groups which
8378 * gets dynamically allocated.
1da177e4 8379 */
62ea9ceb 8380static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8381static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8382
62ea9ceb 8383static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8384static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8385
96f874e2
RR
8386static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8387 struct sched_group **sg,
8388 struct cpumask *nodemask)
9c1cfda2 8389{
6711cab4
SS
8390 int group;
8391
6ca09dfc 8392 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8393 group = cpumask_first(nodemask);
6711cab4
SS
8394
8395 if (sg)
6c99e9ad 8396 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8397 return group;
1da177e4 8398}
6711cab4 8399
08069033
SS
8400static void init_numa_sched_groups_power(struct sched_group *group_head)
8401{
8402 struct sched_group *sg = group_head;
8403 int j;
8404
8405 if (!sg)
8406 return;
3a5c359a 8407 do {
758b2cdc 8408 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8409 struct sched_domain *sd;
08069033 8410
6c99e9ad 8411 sd = &per_cpu(phys_domains, j).sd;
13318a71 8412 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8413 /*
8414 * Only add "power" once for each
8415 * physical package.
8416 */
8417 continue;
8418 }
08069033 8419
18a3885f 8420 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8421 }
8422 sg = sg->next;
8423 } while (sg != group_head);
08069033 8424}
0601a88d
AH
8425
8426static int build_numa_sched_groups(struct s_data *d,
8427 const struct cpumask *cpu_map, int num)
8428{
8429 struct sched_domain *sd;
8430 struct sched_group *sg, *prev;
8431 int n, j;
8432
8433 cpumask_clear(d->covered);
8434 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8435 if (cpumask_empty(d->nodemask)) {
8436 d->sched_group_nodes[num] = NULL;
8437 goto out;
8438 }
8439
8440 sched_domain_node_span(num, d->domainspan);
8441 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8442
8443 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8444 GFP_KERNEL, num);
8445 if (!sg) {
663997d4 8446 pr_warning("Can not alloc domain group for node %d\n", num);
0601a88d
AH
8447 return -ENOMEM;
8448 }
8449 d->sched_group_nodes[num] = sg;
8450
8451 for_each_cpu(j, d->nodemask) {
8452 sd = &per_cpu(node_domains, j).sd;
8453 sd->groups = sg;
8454 }
8455
18a3885f 8456 sg->cpu_power = 0;
0601a88d
AH
8457 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8458 sg->next = sg;
8459 cpumask_or(d->covered, d->covered, d->nodemask);
8460
8461 prev = sg;
8462 for (j = 0; j < nr_node_ids; j++) {
8463 n = (num + j) % nr_node_ids;
8464 cpumask_complement(d->notcovered, d->covered);
8465 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8466 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8467 if (cpumask_empty(d->tmpmask))
8468 break;
8469 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8470 if (cpumask_empty(d->tmpmask))
8471 continue;
8472 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8473 GFP_KERNEL, num);
8474 if (!sg) {
663997d4
JP
8475 pr_warning("Can not alloc domain group for node %d\n",
8476 j);
0601a88d
AH
8477 return -ENOMEM;
8478 }
18a3885f 8479 sg->cpu_power = 0;
0601a88d
AH
8480 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8481 sg->next = prev->next;
8482 cpumask_or(d->covered, d->covered, d->tmpmask);
8483 prev->next = sg;
8484 prev = sg;
8485 }
8486out:
8487 return 0;
8488}
6d6bc0ad 8489#endif /* CONFIG_NUMA */
1da177e4 8490
a616058b 8491#ifdef CONFIG_NUMA
51888ca2 8492/* Free memory allocated for various sched_group structures */
96f874e2
RR
8493static void free_sched_groups(const struct cpumask *cpu_map,
8494 struct cpumask *nodemask)
51888ca2 8495{
a616058b 8496 int cpu, i;
51888ca2 8497
abcd083a 8498 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8499 struct sched_group **sched_group_nodes
8500 = sched_group_nodes_bycpu[cpu];
8501
51888ca2
SV
8502 if (!sched_group_nodes)
8503 continue;
8504
076ac2af 8505 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8506 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8507
6ca09dfc 8508 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8509 if (cpumask_empty(nodemask))
51888ca2
SV
8510 continue;
8511
8512 if (sg == NULL)
8513 continue;
8514 sg = sg->next;
8515next_sg:
8516 oldsg = sg;
8517 sg = sg->next;
8518 kfree(oldsg);
8519 if (oldsg != sched_group_nodes[i])
8520 goto next_sg;
8521 }
8522 kfree(sched_group_nodes);
8523 sched_group_nodes_bycpu[cpu] = NULL;
8524 }
51888ca2 8525}
6d6bc0ad 8526#else /* !CONFIG_NUMA */
96f874e2
RR
8527static void free_sched_groups(const struct cpumask *cpu_map,
8528 struct cpumask *nodemask)
a616058b
SS
8529{
8530}
6d6bc0ad 8531#endif /* CONFIG_NUMA */
51888ca2 8532
89c4710e
SS
8533/*
8534 * Initialize sched groups cpu_power.
8535 *
8536 * cpu_power indicates the capacity of sched group, which is used while
8537 * distributing the load between different sched groups in a sched domain.
8538 * Typically cpu_power for all the groups in a sched domain will be same unless
8539 * there are asymmetries in the topology. If there are asymmetries, group
8540 * having more cpu_power will pickup more load compared to the group having
8541 * less cpu_power.
89c4710e
SS
8542 */
8543static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8544{
8545 struct sched_domain *child;
8546 struct sched_group *group;
f93e65c1
PZ
8547 long power;
8548 int weight;
89c4710e
SS
8549
8550 WARN_ON(!sd || !sd->groups);
8551
13318a71 8552 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8553 return;
8554
8555 child = sd->child;
8556
18a3885f 8557 sd->groups->cpu_power = 0;
5517d86b 8558
f93e65c1
PZ
8559 if (!child) {
8560 power = SCHED_LOAD_SCALE;
8561 weight = cpumask_weight(sched_domain_span(sd));
8562 /*
8563 * SMT siblings share the power of a single core.
a52bfd73
PZ
8564 * Usually multiple threads get a better yield out of
8565 * that one core than a single thread would have,
8566 * reflect that in sd->smt_gain.
f93e65c1 8567 */
a52bfd73
PZ
8568 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8569 power *= sd->smt_gain;
f93e65c1 8570 power /= weight;
a52bfd73
PZ
8571 power >>= SCHED_LOAD_SHIFT;
8572 }
18a3885f 8573 sd->groups->cpu_power += power;
89c4710e
SS
8574 return;
8575 }
8576
89c4710e 8577 /*
f93e65c1 8578 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8579 */
8580 group = child->groups;
8581 do {
18a3885f 8582 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8583 group = group->next;
8584 } while (group != child->groups);
8585}
8586
7c16ec58
MT
8587/*
8588 * Initializers for schedule domains
8589 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8590 */
8591
a5d8c348
IM
8592#ifdef CONFIG_SCHED_DEBUG
8593# define SD_INIT_NAME(sd, type) sd->name = #type
8594#else
8595# define SD_INIT_NAME(sd, type) do { } while (0)
8596#endif
8597
7c16ec58 8598#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8599
7c16ec58
MT
8600#define SD_INIT_FUNC(type) \
8601static noinline void sd_init_##type(struct sched_domain *sd) \
8602{ \
8603 memset(sd, 0, sizeof(*sd)); \
8604 *sd = SD_##type##_INIT; \
1d3504fc 8605 sd->level = SD_LV_##type; \
a5d8c348 8606 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8607}
8608
8609SD_INIT_FUNC(CPU)
8610#ifdef CONFIG_NUMA
8611 SD_INIT_FUNC(ALLNODES)
8612 SD_INIT_FUNC(NODE)
8613#endif
8614#ifdef CONFIG_SCHED_SMT
8615 SD_INIT_FUNC(SIBLING)
8616#endif
8617#ifdef CONFIG_SCHED_MC
8618 SD_INIT_FUNC(MC)
8619#endif
8620
1d3504fc
HS
8621static int default_relax_domain_level = -1;
8622
8623static int __init setup_relax_domain_level(char *str)
8624{
30e0e178
LZ
8625 unsigned long val;
8626
8627 val = simple_strtoul(str, NULL, 0);
8628 if (val < SD_LV_MAX)
8629 default_relax_domain_level = val;
8630
1d3504fc
HS
8631 return 1;
8632}
8633__setup("relax_domain_level=", setup_relax_domain_level);
8634
8635static void set_domain_attribute(struct sched_domain *sd,
8636 struct sched_domain_attr *attr)
8637{
8638 int request;
8639
8640 if (!attr || attr->relax_domain_level < 0) {
8641 if (default_relax_domain_level < 0)
8642 return;
8643 else
8644 request = default_relax_domain_level;
8645 } else
8646 request = attr->relax_domain_level;
8647 if (request < sd->level) {
8648 /* turn off idle balance on this domain */
c88d5910 8649 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8650 } else {
8651 /* turn on idle balance on this domain */
c88d5910 8652 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8653 }
8654}
8655
2109b99e
AH
8656static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8657 const struct cpumask *cpu_map)
8658{
8659 switch (what) {
8660 case sa_sched_groups:
8661 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8662 d->sched_group_nodes = NULL;
8663 case sa_rootdomain:
8664 free_rootdomain(d->rd); /* fall through */
8665 case sa_tmpmask:
8666 free_cpumask_var(d->tmpmask); /* fall through */
8667 case sa_send_covered:
8668 free_cpumask_var(d->send_covered); /* fall through */
8669 case sa_this_core_map:
8670 free_cpumask_var(d->this_core_map); /* fall through */
8671 case sa_this_sibling_map:
8672 free_cpumask_var(d->this_sibling_map); /* fall through */
8673 case sa_nodemask:
8674 free_cpumask_var(d->nodemask); /* fall through */
8675 case sa_sched_group_nodes:
d1b55138 8676#ifdef CONFIG_NUMA
2109b99e
AH
8677 kfree(d->sched_group_nodes); /* fall through */
8678 case sa_notcovered:
8679 free_cpumask_var(d->notcovered); /* fall through */
8680 case sa_covered:
8681 free_cpumask_var(d->covered); /* fall through */
8682 case sa_domainspan:
8683 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8684#endif
2109b99e
AH
8685 case sa_none:
8686 break;
8687 }
8688}
3404c8d9 8689
2109b99e
AH
8690static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8691 const struct cpumask *cpu_map)
8692{
3404c8d9 8693#ifdef CONFIG_NUMA
2109b99e
AH
8694 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8695 return sa_none;
8696 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8697 return sa_domainspan;
8698 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8699 return sa_covered;
8700 /* Allocate the per-node list of sched groups */
8701 d->sched_group_nodes = kcalloc(nr_node_ids,
8702 sizeof(struct sched_group *), GFP_KERNEL);
8703 if (!d->sched_group_nodes) {
663997d4 8704 pr_warning("Can not alloc sched group node list\n");
2109b99e 8705 return sa_notcovered;
d1b55138 8706 }
2109b99e 8707 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8708#endif
2109b99e
AH
8709 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8710 return sa_sched_group_nodes;
8711 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8712 return sa_nodemask;
8713 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8714 return sa_this_sibling_map;
8715 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8716 return sa_this_core_map;
8717 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8718 return sa_send_covered;
8719 d->rd = alloc_rootdomain();
8720 if (!d->rd) {
663997d4 8721 pr_warning("Cannot alloc root domain\n");
2109b99e 8722 return sa_tmpmask;
57d885fe 8723 }
2109b99e
AH
8724 return sa_rootdomain;
8725}
57d885fe 8726
7f4588f3
AH
8727static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8728 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8729{
8730 struct sched_domain *sd = NULL;
7c16ec58 8731#ifdef CONFIG_NUMA
7f4588f3 8732 struct sched_domain *parent;
1da177e4 8733
7f4588f3
AH
8734 d->sd_allnodes = 0;
8735 if (cpumask_weight(cpu_map) >
8736 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8737 sd = &per_cpu(allnodes_domains, i).sd;
8738 SD_INIT(sd, ALLNODES);
1d3504fc 8739 set_domain_attribute(sd, attr);
7f4588f3
AH
8740 cpumask_copy(sched_domain_span(sd), cpu_map);
8741 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8742 d->sd_allnodes = 1;
8743 }
8744 parent = sd;
8745
8746 sd = &per_cpu(node_domains, i).sd;
8747 SD_INIT(sd, NODE);
8748 set_domain_attribute(sd, attr);
8749 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8750 sd->parent = parent;
8751 if (parent)
8752 parent->child = sd;
8753 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8754#endif
7f4588f3
AH
8755 return sd;
8756}
1da177e4 8757
87cce662
AH
8758static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8759 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8760 struct sched_domain *parent, int i)
8761{
8762 struct sched_domain *sd;
8763 sd = &per_cpu(phys_domains, i).sd;
8764 SD_INIT(sd, CPU);
8765 set_domain_attribute(sd, attr);
8766 cpumask_copy(sched_domain_span(sd), d->nodemask);
8767 sd->parent = parent;
8768 if (parent)
8769 parent->child = sd;
8770 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8771 return sd;
8772}
1da177e4 8773
410c4081
AH
8774static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8775 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8776 struct sched_domain *parent, int i)
8777{
8778 struct sched_domain *sd = parent;
1e9f28fa 8779#ifdef CONFIG_SCHED_MC
410c4081
AH
8780 sd = &per_cpu(core_domains, i).sd;
8781 SD_INIT(sd, MC);
8782 set_domain_attribute(sd, attr);
8783 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8784 sd->parent = parent;
8785 parent->child = sd;
8786 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8787#endif
410c4081
AH
8788 return sd;
8789}
1e9f28fa 8790
d8173535
AH
8791static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8792 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8793 struct sched_domain *parent, int i)
8794{
8795 struct sched_domain *sd = parent;
1da177e4 8796#ifdef CONFIG_SCHED_SMT
d8173535
AH
8797 sd = &per_cpu(cpu_domains, i).sd;
8798 SD_INIT(sd, SIBLING);
8799 set_domain_attribute(sd, attr);
8800 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8801 sd->parent = parent;
8802 parent->child = sd;
8803 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8804#endif
d8173535
AH
8805 return sd;
8806}
1da177e4 8807
0e8e85c9
AH
8808static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8809 const struct cpumask *cpu_map, int cpu)
8810{
8811 switch (l) {
1da177e4 8812#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8813 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8814 cpumask_and(d->this_sibling_map, cpu_map,
8815 topology_thread_cpumask(cpu));
8816 if (cpu == cpumask_first(d->this_sibling_map))
8817 init_sched_build_groups(d->this_sibling_map, cpu_map,
8818 &cpu_to_cpu_group,
8819 d->send_covered, d->tmpmask);
8820 break;
1da177e4 8821#endif
1e9f28fa 8822#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8823 case SD_LV_MC: /* set up multi-core groups */
8824 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8825 if (cpu == cpumask_first(d->this_core_map))
8826 init_sched_build_groups(d->this_core_map, cpu_map,
8827 &cpu_to_core_group,
8828 d->send_covered, d->tmpmask);
8829 break;
1e9f28fa 8830#endif
86548096
AH
8831 case SD_LV_CPU: /* set up physical groups */
8832 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8833 if (!cpumask_empty(d->nodemask))
8834 init_sched_build_groups(d->nodemask, cpu_map,
8835 &cpu_to_phys_group,
8836 d->send_covered, d->tmpmask);
8837 break;
1da177e4 8838#ifdef CONFIG_NUMA
de616e36
AH
8839 case SD_LV_ALLNODES:
8840 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8841 d->send_covered, d->tmpmask);
8842 break;
8843#endif
0e8e85c9
AH
8844 default:
8845 break;
7c16ec58 8846 }
0e8e85c9 8847}
9c1cfda2 8848
2109b99e
AH
8849/*
8850 * Build sched domains for a given set of cpus and attach the sched domains
8851 * to the individual cpus
8852 */
8853static int __build_sched_domains(const struct cpumask *cpu_map,
8854 struct sched_domain_attr *attr)
8855{
8856 enum s_alloc alloc_state = sa_none;
8857 struct s_data d;
294b0c96 8858 struct sched_domain *sd;
2109b99e 8859 int i;
7c16ec58 8860#ifdef CONFIG_NUMA
2109b99e 8861 d.sd_allnodes = 0;
7c16ec58 8862#endif
9c1cfda2 8863
2109b99e
AH
8864 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8865 if (alloc_state != sa_rootdomain)
8866 goto error;
8867 alloc_state = sa_sched_groups;
9c1cfda2 8868
1da177e4 8869 /*
1a20ff27 8870 * Set up domains for cpus specified by the cpu_map.
1da177e4 8871 */
abcd083a 8872 for_each_cpu(i, cpu_map) {
49a02c51
AH
8873 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8874 cpu_map);
9761eea8 8875
7f4588f3 8876 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8877 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8878 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8879 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8880 }
9c1cfda2 8881
abcd083a 8882 for_each_cpu(i, cpu_map) {
0e8e85c9 8883 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8884 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8885 }
9c1cfda2 8886
1da177e4 8887 /* Set up physical groups */
86548096
AH
8888 for (i = 0; i < nr_node_ids; i++)
8889 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8890
1da177e4
LT
8891#ifdef CONFIG_NUMA
8892 /* Set up node groups */
de616e36
AH
8893 if (d.sd_allnodes)
8894 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8895
0601a88d
AH
8896 for (i = 0; i < nr_node_ids; i++)
8897 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8898 goto error;
1da177e4
LT
8899#endif
8900
8901 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8902#ifdef CONFIG_SCHED_SMT
abcd083a 8903 for_each_cpu(i, cpu_map) {
294b0c96 8904 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8905 init_sched_groups_power(i, sd);
5c45bf27 8906 }
1da177e4 8907#endif
1e9f28fa 8908#ifdef CONFIG_SCHED_MC
abcd083a 8909 for_each_cpu(i, cpu_map) {
294b0c96 8910 sd = &per_cpu(core_domains, i).sd;
89c4710e 8911 init_sched_groups_power(i, sd);
5c45bf27
SS
8912 }
8913#endif
1e9f28fa 8914
abcd083a 8915 for_each_cpu(i, cpu_map) {
294b0c96 8916 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8917 init_sched_groups_power(i, sd);
1da177e4
LT
8918 }
8919
9c1cfda2 8920#ifdef CONFIG_NUMA
076ac2af 8921 for (i = 0; i < nr_node_ids; i++)
49a02c51 8922 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8923
49a02c51 8924 if (d.sd_allnodes) {
6711cab4 8925 struct sched_group *sg;
f712c0c7 8926
96f874e2 8927 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8928 d.tmpmask);
f712c0c7
SS
8929 init_numa_sched_groups_power(sg);
8930 }
9c1cfda2
JH
8931#endif
8932
1da177e4 8933 /* Attach the domains */
abcd083a 8934 for_each_cpu(i, cpu_map) {
1da177e4 8935#ifdef CONFIG_SCHED_SMT
6c99e9ad 8936 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8937#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8938 sd = &per_cpu(core_domains, i).sd;
1da177e4 8939#else
6c99e9ad 8940 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8941#endif
49a02c51 8942 cpu_attach_domain(sd, d.rd, i);
1da177e4 8943 }
51888ca2 8944
2109b99e
AH
8945 d.sched_group_nodes = NULL; /* don't free this we still need it */
8946 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8947 return 0;
51888ca2 8948
51888ca2 8949error:
2109b99e
AH
8950 __free_domain_allocs(&d, alloc_state, cpu_map);
8951 return -ENOMEM;
1da177e4 8952}
029190c5 8953
96f874e2 8954static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8955{
8956 return __build_sched_domains(cpu_map, NULL);
8957}
8958
acc3f5d7 8959static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 8960static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8961static struct sched_domain_attr *dattr_cur;
8962 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8963
8964/*
8965 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8966 * cpumask) fails, then fallback to a single sched domain,
8967 * as determined by the single cpumask fallback_doms.
029190c5 8968 */
4212823f 8969static cpumask_var_t fallback_doms;
029190c5 8970
ee79d1bd
HC
8971/*
8972 * arch_update_cpu_topology lets virtualized architectures update the
8973 * cpu core maps. It is supposed to return 1 if the topology changed
8974 * or 0 if it stayed the same.
8975 */
8976int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8977{
ee79d1bd 8978 return 0;
22e52b07
HC
8979}
8980
acc3f5d7
RR
8981cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8982{
8983 int i;
8984 cpumask_var_t *doms;
8985
8986 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8987 if (!doms)
8988 return NULL;
8989 for (i = 0; i < ndoms; i++) {
8990 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8991 free_sched_domains(doms, i);
8992 return NULL;
8993 }
8994 }
8995 return doms;
8996}
8997
8998void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
8999{
9000 unsigned int i;
9001 for (i = 0; i < ndoms; i++)
9002 free_cpumask_var(doms[i]);
9003 kfree(doms);
9004}
9005
1a20ff27 9006/*
41a2d6cf 9007 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
9008 * For now this just excludes isolated cpus, but could be used to
9009 * exclude other special cases in the future.
1a20ff27 9010 */
96f874e2 9011static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 9012{
7378547f
MM
9013 int err;
9014
22e52b07 9015 arch_update_cpu_topology();
029190c5 9016 ndoms_cur = 1;
acc3f5d7 9017 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 9018 if (!doms_cur)
acc3f5d7
RR
9019 doms_cur = &fallback_doms;
9020 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 9021 dattr_cur = NULL;
acc3f5d7 9022 err = build_sched_domains(doms_cur[0]);
6382bc90 9023 register_sched_domain_sysctl();
7378547f
MM
9024
9025 return err;
1a20ff27
DG
9026}
9027
96f874e2
RR
9028static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9029 struct cpumask *tmpmask)
1da177e4 9030{
7c16ec58 9031 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 9032}
1da177e4 9033
1a20ff27
DG
9034/*
9035 * Detach sched domains from a group of cpus specified in cpu_map
9036 * These cpus will now be attached to the NULL domain
9037 */
96f874e2 9038static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 9039{
96f874e2
RR
9040 /* Save because hotplug lock held. */
9041 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
9042 int i;
9043
abcd083a 9044 for_each_cpu(i, cpu_map)
57d885fe 9045 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 9046 synchronize_sched();
96f874e2 9047 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
9048}
9049
1d3504fc
HS
9050/* handle null as "default" */
9051static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9052 struct sched_domain_attr *new, int idx_new)
9053{
9054 struct sched_domain_attr tmp;
9055
9056 /* fast path */
9057 if (!new && !cur)
9058 return 1;
9059
9060 tmp = SD_ATTR_INIT;
9061 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9062 new ? (new + idx_new) : &tmp,
9063 sizeof(struct sched_domain_attr));
9064}
9065
029190c5
PJ
9066/*
9067 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 9068 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
9069 * doms_new[] to the current sched domain partitioning, doms_cur[].
9070 * It destroys each deleted domain and builds each new domain.
9071 *
acc3f5d7 9072 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
9073 * The masks don't intersect (don't overlap.) We should setup one
9074 * sched domain for each mask. CPUs not in any of the cpumasks will
9075 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
9076 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9077 * it as it is.
9078 *
acc3f5d7
RR
9079 * The passed in 'doms_new' should be allocated using
9080 * alloc_sched_domains. This routine takes ownership of it and will
9081 * free_sched_domains it when done with it. If the caller failed the
9082 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9083 * and partition_sched_domains() will fallback to the single partition
9084 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 9085 *
96f874e2 9086 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
9087 * ndoms_new == 0 is a special case for destroying existing domains,
9088 * and it will not create the default domain.
dfb512ec 9089 *
029190c5
PJ
9090 * Call with hotplug lock held
9091 */
acc3f5d7 9092void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 9093 struct sched_domain_attr *dattr_new)
029190c5 9094{
dfb512ec 9095 int i, j, n;
d65bd5ec 9096 int new_topology;
029190c5 9097
712555ee 9098 mutex_lock(&sched_domains_mutex);
a1835615 9099
7378547f
MM
9100 /* always unregister in case we don't destroy any domains */
9101 unregister_sched_domain_sysctl();
9102
d65bd5ec
HC
9103 /* Let architecture update cpu core mappings. */
9104 new_topology = arch_update_cpu_topology();
9105
dfb512ec 9106 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9107
9108 /* Destroy deleted domains */
9109 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9110 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 9111 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 9112 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9113 goto match1;
9114 }
9115 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 9116 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
9117match1:
9118 ;
9119 }
9120
e761b772
MK
9121 if (doms_new == NULL) {
9122 ndoms_cur = 0;
acc3f5d7 9123 doms_new = &fallback_doms;
6ad4c188 9124 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 9125 WARN_ON_ONCE(dattr_new);
e761b772
MK
9126 }
9127
029190c5
PJ
9128 /* Build new domains */
9129 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9130 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 9131 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 9132 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9133 goto match2;
9134 }
9135 /* no match - add a new doms_new */
acc3f5d7 9136 __build_sched_domains(doms_new[i],
1d3504fc 9137 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9138match2:
9139 ;
9140 }
9141
9142 /* Remember the new sched domains */
acc3f5d7
RR
9143 if (doms_cur != &fallback_doms)
9144 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 9145 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9146 doms_cur = doms_new;
1d3504fc 9147 dattr_cur = dattr_new;
029190c5 9148 ndoms_cur = ndoms_new;
7378547f
MM
9149
9150 register_sched_domain_sysctl();
a1835615 9151
712555ee 9152 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9153}
9154
5c45bf27 9155#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9156static void arch_reinit_sched_domains(void)
5c45bf27 9157{
95402b38 9158 get_online_cpus();
dfb512ec
MK
9159
9160 /* Destroy domains first to force the rebuild */
9161 partition_sched_domains(0, NULL, NULL);
9162
e761b772 9163 rebuild_sched_domains();
95402b38 9164 put_online_cpus();
5c45bf27
SS
9165}
9166
9167static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9168{
afb8a9b7 9169 unsigned int level = 0;
5c45bf27 9170
afb8a9b7
GS
9171 if (sscanf(buf, "%u", &level) != 1)
9172 return -EINVAL;
9173
9174 /*
9175 * level is always be positive so don't check for
9176 * level < POWERSAVINGS_BALANCE_NONE which is 0
9177 * What happens on 0 or 1 byte write,
9178 * need to check for count as well?
9179 */
9180
9181 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9182 return -EINVAL;
9183
9184 if (smt)
afb8a9b7 9185 sched_smt_power_savings = level;
5c45bf27 9186 else
afb8a9b7 9187 sched_mc_power_savings = level;
5c45bf27 9188
c70f22d2 9189 arch_reinit_sched_domains();
5c45bf27 9190
c70f22d2 9191 return count;
5c45bf27
SS
9192}
9193
5c45bf27 9194#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9195static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9196 char *page)
5c45bf27
SS
9197{
9198 return sprintf(page, "%u\n", sched_mc_power_savings);
9199}
f718cd4a 9200static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9201 const char *buf, size_t count)
5c45bf27
SS
9202{
9203 return sched_power_savings_store(buf, count, 0);
9204}
f718cd4a
AK
9205static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9206 sched_mc_power_savings_show,
9207 sched_mc_power_savings_store);
5c45bf27
SS
9208#endif
9209
9210#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9211static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9212 char *page)
5c45bf27
SS
9213{
9214 return sprintf(page, "%u\n", sched_smt_power_savings);
9215}
f718cd4a 9216static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9217 const char *buf, size_t count)
5c45bf27
SS
9218{
9219 return sched_power_savings_store(buf, count, 1);
9220}
f718cd4a
AK
9221static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9222 sched_smt_power_savings_show,
6707de00
AB
9223 sched_smt_power_savings_store);
9224#endif
9225
39aac648 9226int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9227{
9228 int err = 0;
9229
9230#ifdef CONFIG_SCHED_SMT
9231 if (smt_capable())
9232 err = sysfs_create_file(&cls->kset.kobj,
9233 &attr_sched_smt_power_savings.attr);
9234#endif
9235#ifdef CONFIG_SCHED_MC
9236 if (!err && mc_capable())
9237 err = sysfs_create_file(&cls->kset.kobj,
9238 &attr_sched_mc_power_savings.attr);
9239#endif
9240 return err;
9241}
6d6bc0ad 9242#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9243
e761b772 9244#ifndef CONFIG_CPUSETS
1da177e4 9245/*
e761b772
MK
9246 * Add online and remove offline CPUs from the scheduler domains.
9247 * When cpusets are enabled they take over this function.
1da177e4
LT
9248 */
9249static int update_sched_domains(struct notifier_block *nfb,
9250 unsigned long action, void *hcpu)
e761b772
MK
9251{
9252 switch (action) {
9253 case CPU_ONLINE:
9254 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
9255 case CPU_DOWN_PREPARE:
9256 case CPU_DOWN_PREPARE_FROZEN:
9257 case CPU_DOWN_FAILED:
9258 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 9259 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9260 return NOTIFY_OK;
9261
9262 default:
9263 return NOTIFY_DONE;
9264 }
9265}
9266#endif
9267
9268static int update_runtime(struct notifier_block *nfb,
9269 unsigned long action, void *hcpu)
1da177e4 9270{
7def2be1
PZ
9271 int cpu = (int)(long)hcpu;
9272
1da177e4 9273 switch (action) {
1da177e4 9274 case CPU_DOWN_PREPARE:
8bb78442 9275 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9276 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9277 return NOTIFY_OK;
9278
1da177e4 9279 case CPU_DOWN_FAILED:
8bb78442 9280 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9281 case CPU_ONLINE:
8bb78442 9282 case CPU_ONLINE_FROZEN:
7def2be1 9283 enable_runtime(cpu_rq(cpu));
e761b772
MK
9284 return NOTIFY_OK;
9285
1da177e4
LT
9286 default:
9287 return NOTIFY_DONE;
9288 }
1da177e4 9289}
1da177e4
LT
9290
9291void __init sched_init_smp(void)
9292{
dcc30a35
RR
9293 cpumask_var_t non_isolated_cpus;
9294
9295 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9296 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9297
434d53b0
MT
9298#if defined(CONFIG_NUMA)
9299 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9300 GFP_KERNEL);
9301 BUG_ON(sched_group_nodes_bycpu == NULL);
9302#endif
95402b38 9303 get_online_cpus();
712555ee 9304 mutex_lock(&sched_domains_mutex);
6ad4c188 9305 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
9306 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9307 if (cpumask_empty(non_isolated_cpus))
9308 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9309 mutex_unlock(&sched_domains_mutex);
95402b38 9310 put_online_cpus();
e761b772
MK
9311
9312#ifndef CONFIG_CPUSETS
1da177e4
LT
9313 /* XXX: Theoretical race here - CPU may be hotplugged now */
9314 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9315#endif
9316
9317 /* RT runtime code needs to handle some hotplug events */
9318 hotcpu_notifier(update_runtime, 0);
9319
b328ca18 9320 init_hrtick();
5c1e1767
NP
9321
9322 /* Move init over to a non-isolated CPU */
dcc30a35 9323 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9324 BUG();
19978ca6 9325 sched_init_granularity();
dcc30a35 9326 free_cpumask_var(non_isolated_cpus);
4212823f 9327
0e3900e6 9328 init_sched_rt_class();
1da177e4
LT
9329}
9330#else
9331void __init sched_init_smp(void)
9332{
19978ca6 9333 sched_init_granularity();
1da177e4
LT
9334}
9335#endif /* CONFIG_SMP */
9336
cd1bb94b
AB
9337const_debug unsigned int sysctl_timer_migration = 1;
9338
1da177e4
LT
9339int in_sched_functions(unsigned long addr)
9340{
1da177e4
LT
9341 return in_lock_functions(addr) ||
9342 (addr >= (unsigned long)__sched_text_start
9343 && addr < (unsigned long)__sched_text_end);
9344}
9345
a9957449 9346static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9347{
9348 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9349 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9350#ifdef CONFIG_FAIR_GROUP_SCHED
9351 cfs_rq->rq = rq;
9352#endif
67e9fb2a 9353 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9354}
9355
fa85ae24
PZ
9356static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9357{
9358 struct rt_prio_array *array;
9359 int i;
9360
9361 array = &rt_rq->active;
9362 for (i = 0; i < MAX_RT_PRIO; i++) {
9363 INIT_LIST_HEAD(array->queue + i);
9364 __clear_bit(i, array->bitmap);
9365 }
9366 /* delimiter for bitsearch: */
9367 __set_bit(MAX_RT_PRIO, array->bitmap);
9368
052f1dc7 9369#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9370 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9371#ifdef CONFIG_SMP
e864c499 9372 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9373#endif
48d5e258 9374#endif
fa85ae24
PZ
9375#ifdef CONFIG_SMP
9376 rt_rq->rt_nr_migratory = 0;
fa85ae24 9377 rt_rq->overloaded = 0;
05fa785c 9378 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9379#endif
9380
9381 rt_rq->rt_time = 0;
9382 rt_rq->rt_throttled = 0;
ac086bc2 9383 rt_rq->rt_runtime = 0;
0986b11b 9384 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9385
052f1dc7 9386#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9387 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9388 rt_rq->rq = rq;
9389#endif
fa85ae24
PZ
9390}
9391
6f505b16 9392#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9393static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9394 struct sched_entity *se, int cpu, int add,
9395 struct sched_entity *parent)
6f505b16 9396{
ec7dc8ac 9397 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9398 tg->cfs_rq[cpu] = cfs_rq;
9399 init_cfs_rq(cfs_rq, rq);
9400 cfs_rq->tg = tg;
9401 if (add)
9402 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9403
9404 tg->se[cpu] = se;
354d60c2
DG
9405 /* se could be NULL for init_task_group */
9406 if (!se)
9407 return;
9408
ec7dc8ac
DG
9409 if (!parent)
9410 se->cfs_rq = &rq->cfs;
9411 else
9412 se->cfs_rq = parent->my_q;
9413
6f505b16
PZ
9414 se->my_q = cfs_rq;
9415 se->load.weight = tg->shares;
e05510d0 9416 se->load.inv_weight = 0;
ec7dc8ac 9417 se->parent = parent;
6f505b16 9418}
052f1dc7 9419#endif
6f505b16 9420
052f1dc7 9421#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9422static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9423 struct sched_rt_entity *rt_se, int cpu, int add,
9424 struct sched_rt_entity *parent)
6f505b16 9425{
ec7dc8ac
DG
9426 struct rq *rq = cpu_rq(cpu);
9427
6f505b16
PZ
9428 tg->rt_rq[cpu] = rt_rq;
9429 init_rt_rq(rt_rq, rq);
9430 rt_rq->tg = tg;
9431 rt_rq->rt_se = rt_se;
ac086bc2 9432 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9433 if (add)
9434 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9435
9436 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9437 if (!rt_se)
9438 return;
9439
ec7dc8ac
DG
9440 if (!parent)
9441 rt_se->rt_rq = &rq->rt;
9442 else
9443 rt_se->rt_rq = parent->my_q;
9444
6f505b16 9445 rt_se->my_q = rt_rq;
ec7dc8ac 9446 rt_se->parent = parent;
6f505b16
PZ
9447 INIT_LIST_HEAD(&rt_se->run_list);
9448}
9449#endif
9450
1da177e4
LT
9451void __init sched_init(void)
9452{
dd41f596 9453 int i, j;
434d53b0
MT
9454 unsigned long alloc_size = 0, ptr;
9455
9456#ifdef CONFIG_FAIR_GROUP_SCHED
9457 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9458#endif
9459#ifdef CONFIG_RT_GROUP_SCHED
9460 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9461#endif
9462#ifdef CONFIG_USER_SCHED
9463 alloc_size *= 2;
df7c8e84
RR
9464#endif
9465#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9466 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 9467#endif
434d53b0 9468 if (alloc_size) {
36b7b6d4 9469 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9470
9471#ifdef CONFIG_FAIR_GROUP_SCHED
9472 init_task_group.se = (struct sched_entity **)ptr;
9473 ptr += nr_cpu_ids * sizeof(void **);
9474
9475 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9476 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9477
9478#ifdef CONFIG_USER_SCHED
9479 root_task_group.se = (struct sched_entity **)ptr;
9480 ptr += nr_cpu_ids * sizeof(void **);
9481
9482 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9483 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9484#endif /* CONFIG_USER_SCHED */
9485#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9486#ifdef CONFIG_RT_GROUP_SCHED
9487 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9488 ptr += nr_cpu_ids * sizeof(void **);
9489
9490 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9491 ptr += nr_cpu_ids * sizeof(void **);
9492
9493#ifdef CONFIG_USER_SCHED
9494 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9495 ptr += nr_cpu_ids * sizeof(void **);
9496
9497 root_task_group.rt_rq = (struct rt_rq **)ptr;
9498 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9499#endif /* CONFIG_USER_SCHED */
9500#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9501#ifdef CONFIG_CPUMASK_OFFSTACK
9502 for_each_possible_cpu(i) {
9503 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9504 ptr += cpumask_size();
9505 }
9506#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9507 }
dd41f596 9508
57d885fe
GH
9509#ifdef CONFIG_SMP
9510 init_defrootdomain();
9511#endif
9512
d0b27fa7
PZ
9513 init_rt_bandwidth(&def_rt_bandwidth,
9514 global_rt_period(), global_rt_runtime());
9515
9516#ifdef CONFIG_RT_GROUP_SCHED
9517 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9518 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9519#ifdef CONFIG_USER_SCHED
9520 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9521 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9522#endif /* CONFIG_USER_SCHED */
9523#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9524
052f1dc7 9525#ifdef CONFIG_GROUP_SCHED
6f505b16 9526 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9527 INIT_LIST_HEAD(&init_task_group.children);
9528
9529#ifdef CONFIG_USER_SCHED
9530 INIT_LIST_HEAD(&root_task_group.children);
9531 init_task_group.parent = &root_task_group;
9532 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9533#endif /* CONFIG_USER_SCHED */
9534#endif /* CONFIG_GROUP_SCHED */
6f505b16 9535
4a6cc4bd
JK
9536#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9537 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9538 __alignof__(unsigned long));
9539#endif
0a945022 9540 for_each_possible_cpu(i) {
70b97a7f 9541 struct rq *rq;
1da177e4
LT
9542
9543 rq = cpu_rq(i);
05fa785c 9544 raw_spin_lock_init(&rq->lock);
7897986b 9545 rq->nr_running = 0;
dce48a84
TG
9546 rq->calc_load_active = 0;
9547 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9548 init_cfs_rq(&rq->cfs, rq);
6f505b16 9549 init_rt_rq(&rq->rt, rq);
dd41f596 9550#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9551 init_task_group.shares = init_task_group_load;
6f505b16 9552 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9553#ifdef CONFIG_CGROUP_SCHED
9554 /*
9555 * How much cpu bandwidth does init_task_group get?
9556 *
9557 * In case of task-groups formed thr' the cgroup filesystem, it
9558 * gets 100% of the cpu resources in the system. This overall
9559 * system cpu resource is divided among the tasks of
9560 * init_task_group and its child task-groups in a fair manner,
9561 * based on each entity's (task or task-group's) weight
9562 * (se->load.weight).
9563 *
9564 * In other words, if init_task_group has 10 tasks of weight
9565 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9566 * then A0's share of the cpu resource is:
9567 *
0d905bca 9568 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9569 *
9570 * We achieve this by letting init_task_group's tasks sit
9571 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9572 */
ec7dc8ac 9573 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9574#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9575 root_task_group.shares = NICE_0_LOAD;
9576 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9577 /*
9578 * In case of task-groups formed thr' the user id of tasks,
9579 * init_task_group represents tasks belonging to root user.
9580 * Hence it forms a sibling of all subsequent groups formed.
9581 * In this case, init_task_group gets only a fraction of overall
9582 * system cpu resource, based on the weight assigned to root
9583 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9584 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9585 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9586 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9587 */
ec7dc8ac 9588 init_tg_cfs_entry(&init_task_group,
84e9dabf 9589 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9590 &per_cpu(init_sched_entity, i), i, 1,
9591 root_task_group.se[i]);
6f505b16 9592
052f1dc7 9593#endif
354d60c2
DG
9594#endif /* CONFIG_FAIR_GROUP_SCHED */
9595
9596 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9597#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9598 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9599#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9600 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9601#elif defined CONFIG_USER_SCHED
eff766a6 9602 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9603 init_tg_rt_entry(&init_task_group,
1871e52c 9604 &per_cpu(init_rt_rq_var, i),
eff766a6
PZ
9605 &per_cpu(init_sched_rt_entity, i), i, 1,
9606 root_task_group.rt_se[i]);
354d60c2 9607#endif
dd41f596 9608#endif
1da177e4 9609
dd41f596
IM
9610 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9611 rq->cpu_load[j] = 0;
1da177e4 9612#ifdef CONFIG_SMP
41c7ce9a 9613 rq->sd = NULL;
57d885fe 9614 rq->rd = NULL;
3f029d3c 9615 rq->post_schedule = 0;
1da177e4 9616 rq->active_balance = 0;
dd41f596 9617 rq->next_balance = jiffies;
1da177e4 9618 rq->push_cpu = 0;
0a2966b4 9619 rq->cpu = i;
1f11eb6a 9620 rq->online = 0;
1da177e4 9621 rq->migration_thread = NULL;
eae0c9df
MG
9622 rq->idle_stamp = 0;
9623 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 9624 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9625 rq_attach_root(rq, &def_root_domain);
1da177e4 9626#endif
8f4d37ec 9627 init_rq_hrtick(rq);
1da177e4 9628 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9629 }
9630
2dd73a4f 9631 set_load_weight(&init_task);
b50f60ce 9632
e107be36
AK
9633#ifdef CONFIG_PREEMPT_NOTIFIERS
9634 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9635#endif
9636
c9819f45 9637#ifdef CONFIG_SMP
962cf36c 9638 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9639#endif
9640
b50f60ce 9641#ifdef CONFIG_RT_MUTEXES
1d615482 9642 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
9643#endif
9644
1da177e4
LT
9645 /*
9646 * The boot idle thread does lazy MMU switching as well:
9647 */
9648 atomic_inc(&init_mm.mm_count);
9649 enter_lazy_tlb(&init_mm, current);
9650
9651 /*
9652 * Make us the idle thread. Technically, schedule() should not be
9653 * called from this thread, however somewhere below it might be,
9654 * but because we are the idle thread, we just pick up running again
9655 * when this runqueue becomes "idle".
9656 */
9657 init_idle(current, smp_processor_id());
dce48a84
TG
9658
9659 calc_load_update = jiffies + LOAD_FREQ;
9660
dd41f596
IM
9661 /*
9662 * During early bootup we pretend to be a normal task:
9663 */
9664 current->sched_class = &fair_sched_class;
6892b75e 9665
6a7b3dc3 9666 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 9667 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9668#ifdef CONFIG_SMP
7d1e6a9b 9669#ifdef CONFIG_NO_HZ
49557e62 9670 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 9671 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9672#endif
bdddd296
RR
9673 /* May be allocated at isolcpus cmdline parse time */
9674 if (cpu_isolated_map == NULL)
9675 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9676#endif /* SMP */
6a7b3dc3 9677
cdd6c482 9678 perf_event_init();
0d905bca 9679
6892b75e 9680 scheduler_running = 1;
1da177e4
LT
9681}
9682
9683#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9684static inline int preempt_count_equals(int preempt_offset)
9685{
234da7bc 9686 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
9687
9688 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9689}
9690
9691void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9692{
48f24c4d 9693#ifdef in_atomic
1da177e4
LT
9694 static unsigned long prev_jiffy; /* ratelimiting */
9695
e4aafea2
FW
9696 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9697 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9698 return;
9699 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9700 return;
9701 prev_jiffy = jiffies;
9702
663997d4
JP
9703 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9704 file, line);
9705 pr_err("in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9706 in_atomic(), irqs_disabled(),
9707 current->pid, current->comm);
aef745fc
IM
9708
9709 debug_show_held_locks(current);
9710 if (irqs_disabled())
9711 print_irqtrace_events(current);
9712 dump_stack();
1da177e4
LT
9713#endif
9714}
9715EXPORT_SYMBOL(__might_sleep);
9716#endif
9717
9718#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9719static void normalize_task(struct rq *rq, struct task_struct *p)
9720{
9721 int on_rq;
3e51f33f 9722
3a5e4dc1
AK
9723 update_rq_clock(rq);
9724 on_rq = p->se.on_rq;
9725 if (on_rq)
9726 deactivate_task(rq, p, 0);
9727 __setscheduler(rq, p, SCHED_NORMAL, 0);
9728 if (on_rq) {
9729 activate_task(rq, p, 0);
9730 resched_task(rq->curr);
9731 }
9732}
9733
1da177e4
LT
9734void normalize_rt_tasks(void)
9735{
a0f98a1c 9736 struct task_struct *g, *p;
1da177e4 9737 unsigned long flags;
70b97a7f 9738 struct rq *rq;
1da177e4 9739
4cf5d77a 9740 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9741 do_each_thread(g, p) {
178be793
IM
9742 /*
9743 * Only normalize user tasks:
9744 */
9745 if (!p->mm)
9746 continue;
9747
6cfb0d5d 9748 p->se.exec_start = 0;
6cfb0d5d 9749#ifdef CONFIG_SCHEDSTATS
dd41f596 9750 p->se.wait_start = 0;
dd41f596 9751 p->se.sleep_start = 0;
dd41f596 9752 p->se.block_start = 0;
6cfb0d5d 9753#endif
dd41f596
IM
9754
9755 if (!rt_task(p)) {
9756 /*
9757 * Renice negative nice level userspace
9758 * tasks back to 0:
9759 */
9760 if (TASK_NICE(p) < 0 && p->mm)
9761 set_user_nice(p, 0);
1da177e4 9762 continue;
dd41f596 9763 }
1da177e4 9764
1d615482 9765 raw_spin_lock(&p->pi_lock);
b29739f9 9766 rq = __task_rq_lock(p);
1da177e4 9767
178be793 9768 normalize_task(rq, p);
3a5e4dc1 9769
b29739f9 9770 __task_rq_unlock(rq);
1d615482 9771 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
9772 } while_each_thread(g, p);
9773
4cf5d77a 9774 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9775}
9776
9777#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9778
9779#ifdef CONFIG_IA64
9780/*
9781 * These functions are only useful for the IA64 MCA handling.
9782 *
9783 * They can only be called when the whole system has been
9784 * stopped - every CPU needs to be quiescent, and no scheduling
9785 * activity can take place. Using them for anything else would
9786 * be a serious bug, and as a result, they aren't even visible
9787 * under any other configuration.
9788 */
9789
9790/**
9791 * curr_task - return the current task for a given cpu.
9792 * @cpu: the processor in question.
9793 *
9794 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9795 */
36c8b586 9796struct task_struct *curr_task(int cpu)
1df5c10a
LT
9797{
9798 return cpu_curr(cpu);
9799}
9800
9801/**
9802 * set_curr_task - set the current task for a given cpu.
9803 * @cpu: the processor in question.
9804 * @p: the task pointer to set.
9805 *
9806 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9807 * are serviced on a separate stack. It allows the architecture to switch the
9808 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9809 * must be called with all CPU's synchronized, and interrupts disabled, the
9810 * and caller must save the original value of the current task (see
9811 * curr_task() above) and restore that value before reenabling interrupts and
9812 * re-starting the system.
9813 *
9814 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9815 */
36c8b586 9816void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9817{
9818 cpu_curr(cpu) = p;
9819}
9820
9821#endif
29f59db3 9822
bccbe08a
PZ
9823#ifdef CONFIG_FAIR_GROUP_SCHED
9824static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9825{
9826 int i;
9827
9828 for_each_possible_cpu(i) {
9829 if (tg->cfs_rq)
9830 kfree(tg->cfs_rq[i]);
9831 if (tg->se)
9832 kfree(tg->se[i]);
6f505b16
PZ
9833 }
9834
9835 kfree(tg->cfs_rq);
9836 kfree(tg->se);
6f505b16
PZ
9837}
9838
ec7dc8ac
DG
9839static
9840int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9841{
29f59db3 9842 struct cfs_rq *cfs_rq;
eab17229 9843 struct sched_entity *se;
9b5b7751 9844 struct rq *rq;
29f59db3
SV
9845 int i;
9846
434d53b0 9847 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9848 if (!tg->cfs_rq)
9849 goto err;
434d53b0 9850 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9851 if (!tg->se)
9852 goto err;
052f1dc7
PZ
9853
9854 tg->shares = NICE_0_LOAD;
29f59db3
SV
9855
9856 for_each_possible_cpu(i) {
9b5b7751 9857 rq = cpu_rq(i);
29f59db3 9858
eab17229
LZ
9859 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9860 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9861 if (!cfs_rq)
9862 goto err;
9863
eab17229
LZ
9864 se = kzalloc_node(sizeof(struct sched_entity),
9865 GFP_KERNEL, cpu_to_node(i));
29f59db3 9866 if (!se)
dfc12eb2 9867 goto err_free_rq;
29f59db3 9868
eab17229 9869 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9870 }
9871
9872 return 1;
9873
dfc12eb2
PC
9874 err_free_rq:
9875 kfree(cfs_rq);
bccbe08a
PZ
9876 err:
9877 return 0;
9878}
9879
9880static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9881{
9882 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9883 &cpu_rq(cpu)->leaf_cfs_rq_list);
9884}
9885
9886static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9887{
9888 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9889}
6d6bc0ad 9890#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9891static inline void free_fair_sched_group(struct task_group *tg)
9892{
9893}
9894
ec7dc8ac
DG
9895static inline
9896int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9897{
9898 return 1;
9899}
9900
9901static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9902{
9903}
9904
9905static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9906{
9907}
6d6bc0ad 9908#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9909
9910#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9911static void free_rt_sched_group(struct task_group *tg)
9912{
9913 int i;
9914
d0b27fa7
PZ
9915 destroy_rt_bandwidth(&tg->rt_bandwidth);
9916
bccbe08a
PZ
9917 for_each_possible_cpu(i) {
9918 if (tg->rt_rq)
9919 kfree(tg->rt_rq[i]);
9920 if (tg->rt_se)
9921 kfree(tg->rt_se[i]);
9922 }
9923
9924 kfree(tg->rt_rq);
9925 kfree(tg->rt_se);
9926}
9927
ec7dc8ac
DG
9928static
9929int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9930{
9931 struct rt_rq *rt_rq;
eab17229 9932 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9933 struct rq *rq;
9934 int i;
9935
434d53b0 9936 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9937 if (!tg->rt_rq)
9938 goto err;
434d53b0 9939 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9940 if (!tg->rt_se)
9941 goto err;
9942
d0b27fa7
PZ
9943 init_rt_bandwidth(&tg->rt_bandwidth,
9944 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9945
9946 for_each_possible_cpu(i) {
9947 rq = cpu_rq(i);
9948
eab17229
LZ
9949 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9950 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9951 if (!rt_rq)
9952 goto err;
29f59db3 9953
eab17229
LZ
9954 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9955 GFP_KERNEL, cpu_to_node(i));
6f505b16 9956 if (!rt_se)
dfc12eb2 9957 goto err_free_rq;
29f59db3 9958
eab17229 9959 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9960 }
9961
bccbe08a
PZ
9962 return 1;
9963
dfc12eb2
PC
9964 err_free_rq:
9965 kfree(rt_rq);
bccbe08a
PZ
9966 err:
9967 return 0;
9968}
9969
9970static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9971{
9972 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9973 &cpu_rq(cpu)->leaf_rt_rq_list);
9974}
9975
9976static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9977{
9978 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9979}
6d6bc0ad 9980#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9981static inline void free_rt_sched_group(struct task_group *tg)
9982{
9983}
9984
ec7dc8ac
DG
9985static inline
9986int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9987{
9988 return 1;
9989}
9990
9991static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9992{
9993}
9994
9995static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9996{
9997}
6d6bc0ad 9998#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9999
d0b27fa7 10000#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
10001static void free_sched_group(struct task_group *tg)
10002{
10003 free_fair_sched_group(tg);
10004 free_rt_sched_group(tg);
10005 kfree(tg);
10006}
10007
10008/* allocate runqueue etc for a new task group */
ec7dc8ac 10009struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
10010{
10011 struct task_group *tg;
10012 unsigned long flags;
10013 int i;
10014
10015 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10016 if (!tg)
10017 return ERR_PTR(-ENOMEM);
10018
ec7dc8ac 10019 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
10020 goto err;
10021
ec7dc8ac 10022 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
10023 goto err;
10024
8ed36996 10025 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10026 for_each_possible_cpu(i) {
bccbe08a
PZ
10027 register_fair_sched_group(tg, i);
10028 register_rt_sched_group(tg, i);
9b5b7751 10029 }
6f505b16 10030 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
10031
10032 WARN_ON(!parent); /* root should already exist */
10033
10034 tg->parent = parent;
f473aa5e 10035 INIT_LIST_HEAD(&tg->children);
09f2724a 10036 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10037 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 10038
9b5b7751 10039 return tg;
29f59db3
SV
10040
10041err:
6f505b16 10042 free_sched_group(tg);
29f59db3
SV
10043 return ERR_PTR(-ENOMEM);
10044}
10045
9b5b7751 10046/* rcu callback to free various structures associated with a task group */
6f505b16 10047static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 10048{
29f59db3 10049 /* now it should be safe to free those cfs_rqs */
6f505b16 10050 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10051}
10052
9b5b7751 10053/* Destroy runqueue etc associated with a task group */
4cf86d77 10054void sched_destroy_group(struct task_group *tg)
29f59db3 10055{
8ed36996 10056 unsigned long flags;
9b5b7751 10057 int i;
29f59db3 10058
8ed36996 10059 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10060 for_each_possible_cpu(i) {
bccbe08a
PZ
10061 unregister_fair_sched_group(tg, i);
10062 unregister_rt_sched_group(tg, i);
9b5b7751 10063 }
6f505b16 10064 list_del_rcu(&tg->list);
f473aa5e 10065 list_del_rcu(&tg->siblings);
8ed36996 10066 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 10067
9b5b7751 10068 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 10069 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
10070}
10071
9b5b7751 10072/* change task's runqueue when it moves between groups.
3a252015
IM
10073 * The caller of this function should have put the task in its new group
10074 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10075 * reflect its new group.
9b5b7751
SV
10076 */
10077void sched_move_task(struct task_struct *tsk)
29f59db3
SV
10078{
10079 int on_rq, running;
10080 unsigned long flags;
10081 struct rq *rq;
10082
10083 rq = task_rq_lock(tsk, &flags);
10084
29f59db3
SV
10085 update_rq_clock(rq);
10086
051a1d1a 10087 running = task_current(rq, tsk);
29f59db3
SV
10088 on_rq = tsk->se.on_rq;
10089
0e1f3483 10090 if (on_rq)
29f59db3 10091 dequeue_task(rq, tsk, 0);
0e1f3483
HS
10092 if (unlikely(running))
10093 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 10094
6f505b16 10095 set_task_rq(tsk, task_cpu(tsk));
29f59db3 10096
810b3817
PZ
10097#ifdef CONFIG_FAIR_GROUP_SCHED
10098 if (tsk->sched_class->moved_group)
88ec22d3 10099 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
10100#endif
10101
0e1f3483
HS
10102 if (unlikely(running))
10103 tsk->sched_class->set_curr_task(rq);
10104 if (on_rq)
7074badb 10105 enqueue_task(rq, tsk, 0);
29f59db3 10106
29f59db3
SV
10107 task_rq_unlock(rq, &flags);
10108}
6d6bc0ad 10109#endif /* CONFIG_GROUP_SCHED */
29f59db3 10110
052f1dc7 10111#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10112static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10113{
10114 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10115 int on_rq;
10116
29f59db3 10117 on_rq = se->on_rq;
62fb1851 10118 if (on_rq)
29f59db3
SV
10119 dequeue_entity(cfs_rq, se, 0);
10120
10121 se->load.weight = shares;
e05510d0 10122 se->load.inv_weight = 0;
29f59db3 10123
62fb1851 10124 if (on_rq)
29f59db3 10125 enqueue_entity(cfs_rq, se, 0);
c09595f6 10126}
62fb1851 10127
c09595f6
PZ
10128static void set_se_shares(struct sched_entity *se, unsigned long shares)
10129{
10130 struct cfs_rq *cfs_rq = se->cfs_rq;
10131 struct rq *rq = cfs_rq->rq;
10132 unsigned long flags;
10133
05fa785c 10134 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 10135 __set_se_shares(se, shares);
05fa785c 10136 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10137}
10138
8ed36996
PZ
10139static DEFINE_MUTEX(shares_mutex);
10140
4cf86d77 10141int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10142{
10143 int i;
8ed36996 10144 unsigned long flags;
c61935fd 10145
ec7dc8ac
DG
10146 /*
10147 * We can't change the weight of the root cgroup.
10148 */
10149 if (!tg->se[0])
10150 return -EINVAL;
10151
18d95a28
PZ
10152 if (shares < MIN_SHARES)
10153 shares = MIN_SHARES;
cb4ad1ff
MX
10154 else if (shares > MAX_SHARES)
10155 shares = MAX_SHARES;
62fb1851 10156
8ed36996 10157 mutex_lock(&shares_mutex);
9b5b7751 10158 if (tg->shares == shares)
5cb350ba 10159 goto done;
29f59db3 10160
8ed36996 10161 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10162 for_each_possible_cpu(i)
10163 unregister_fair_sched_group(tg, i);
f473aa5e 10164 list_del_rcu(&tg->siblings);
8ed36996 10165 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10166
10167 /* wait for any ongoing reference to this group to finish */
10168 synchronize_sched();
10169
10170 /*
10171 * Now we are free to modify the group's share on each cpu
10172 * w/o tripping rebalance_share or load_balance_fair.
10173 */
9b5b7751 10174 tg->shares = shares;
c09595f6
PZ
10175 for_each_possible_cpu(i) {
10176 /*
10177 * force a rebalance
10178 */
10179 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10180 set_se_shares(tg->se[i], shares);
c09595f6 10181 }
29f59db3 10182
6b2d7700
SV
10183 /*
10184 * Enable load balance activity on this group, by inserting it back on
10185 * each cpu's rq->leaf_cfs_rq_list.
10186 */
8ed36996 10187 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10188 for_each_possible_cpu(i)
10189 register_fair_sched_group(tg, i);
f473aa5e 10190 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10191 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10192done:
8ed36996 10193 mutex_unlock(&shares_mutex);
9b5b7751 10194 return 0;
29f59db3
SV
10195}
10196
5cb350ba
DG
10197unsigned long sched_group_shares(struct task_group *tg)
10198{
10199 return tg->shares;
10200}
052f1dc7 10201#endif
5cb350ba 10202
052f1dc7 10203#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10204/*
9f0c1e56 10205 * Ensure that the real time constraints are schedulable.
6f505b16 10206 */
9f0c1e56
PZ
10207static DEFINE_MUTEX(rt_constraints_mutex);
10208
10209static unsigned long to_ratio(u64 period, u64 runtime)
10210{
10211 if (runtime == RUNTIME_INF)
9a7e0b18 10212 return 1ULL << 20;
9f0c1e56 10213
9a7e0b18 10214 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10215}
10216
9a7e0b18
PZ
10217/* Must be called with tasklist_lock held */
10218static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10219{
9a7e0b18 10220 struct task_struct *g, *p;
b40b2e8e 10221
9a7e0b18
PZ
10222 do_each_thread(g, p) {
10223 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10224 return 1;
10225 } while_each_thread(g, p);
b40b2e8e 10226
9a7e0b18
PZ
10227 return 0;
10228}
b40b2e8e 10229
9a7e0b18
PZ
10230struct rt_schedulable_data {
10231 struct task_group *tg;
10232 u64 rt_period;
10233 u64 rt_runtime;
10234};
b40b2e8e 10235
9a7e0b18
PZ
10236static int tg_schedulable(struct task_group *tg, void *data)
10237{
10238 struct rt_schedulable_data *d = data;
10239 struct task_group *child;
10240 unsigned long total, sum = 0;
10241 u64 period, runtime;
b40b2e8e 10242
9a7e0b18
PZ
10243 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10244 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10245
9a7e0b18
PZ
10246 if (tg == d->tg) {
10247 period = d->rt_period;
10248 runtime = d->rt_runtime;
b40b2e8e 10249 }
b40b2e8e 10250
98a4826b
PZ
10251#ifdef CONFIG_USER_SCHED
10252 if (tg == &root_task_group) {
10253 period = global_rt_period();
10254 runtime = global_rt_runtime();
10255 }
10256#endif
10257
4653f803
PZ
10258 /*
10259 * Cannot have more runtime than the period.
10260 */
10261 if (runtime > period && runtime != RUNTIME_INF)
10262 return -EINVAL;
6f505b16 10263
4653f803
PZ
10264 /*
10265 * Ensure we don't starve existing RT tasks.
10266 */
9a7e0b18
PZ
10267 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10268 return -EBUSY;
6f505b16 10269
9a7e0b18 10270 total = to_ratio(period, runtime);
6f505b16 10271
4653f803
PZ
10272 /*
10273 * Nobody can have more than the global setting allows.
10274 */
10275 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10276 return -EINVAL;
6f505b16 10277
4653f803
PZ
10278 /*
10279 * The sum of our children's runtime should not exceed our own.
10280 */
9a7e0b18
PZ
10281 list_for_each_entry_rcu(child, &tg->children, siblings) {
10282 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10283 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10284
9a7e0b18
PZ
10285 if (child == d->tg) {
10286 period = d->rt_period;
10287 runtime = d->rt_runtime;
10288 }
6f505b16 10289
9a7e0b18 10290 sum += to_ratio(period, runtime);
9f0c1e56 10291 }
6f505b16 10292
9a7e0b18
PZ
10293 if (sum > total)
10294 return -EINVAL;
10295
10296 return 0;
6f505b16
PZ
10297}
10298
9a7e0b18 10299static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10300{
9a7e0b18
PZ
10301 struct rt_schedulable_data data = {
10302 .tg = tg,
10303 .rt_period = period,
10304 .rt_runtime = runtime,
10305 };
10306
10307 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10308}
10309
d0b27fa7
PZ
10310static int tg_set_bandwidth(struct task_group *tg,
10311 u64 rt_period, u64 rt_runtime)
6f505b16 10312{
ac086bc2 10313 int i, err = 0;
9f0c1e56 10314
9f0c1e56 10315 mutex_lock(&rt_constraints_mutex);
521f1a24 10316 read_lock(&tasklist_lock);
9a7e0b18
PZ
10317 err = __rt_schedulable(tg, rt_period, rt_runtime);
10318 if (err)
9f0c1e56 10319 goto unlock;
ac086bc2 10320
0986b11b 10321 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10322 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10323 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10324
10325 for_each_possible_cpu(i) {
10326 struct rt_rq *rt_rq = tg->rt_rq[i];
10327
0986b11b 10328 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 10329 rt_rq->rt_runtime = rt_runtime;
0986b11b 10330 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 10331 }
0986b11b 10332 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10333 unlock:
521f1a24 10334 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10335 mutex_unlock(&rt_constraints_mutex);
10336
10337 return err;
6f505b16
PZ
10338}
10339
d0b27fa7
PZ
10340int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10341{
10342 u64 rt_runtime, rt_period;
10343
10344 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10345 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10346 if (rt_runtime_us < 0)
10347 rt_runtime = RUNTIME_INF;
10348
10349 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10350}
10351
9f0c1e56
PZ
10352long sched_group_rt_runtime(struct task_group *tg)
10353{
10354 u64 rt_runtime_us;
10355
d0b27fa7 10356 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10357 return -1;
10358
d0b27fa7 10359 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10360 do_div(rt_runtime_us, NSEC_PER_USEC);
10361 return rt_runtime_us;
10362}
d0b27fa7
PZ
10363
10364int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10365{
10366 u64 rt_runtime, rt_period;
10367
10368 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10369 rt_runtime = tg->rt_bandwidth.rt_runtime;
10370
619b0488
R
10371 if (rt_period == 0)
10372 return -EINVAL;
10373
d0b27fa7
PZ
10374 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10375}
10376
10377long sched_group_rt_period(struct task_group *tg)
10378{
10379 u64 rt_period_us;
10380
10381 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10382 do_div(rt_period_us, NSEC_PER_USEC);
10383 return rt_period_us;
10384}
10385
10386static int sched_rt_global_constraints(void)
10387{
4653f803 10388 u64 runtime, period;
d0b27fa7
PZ
10389 int ret = 0;
10390
ec5d4989
HS
10391 if (sysctl_sched_rt_period <= 0)
10392 return -EINVAL;
10393
4653f803
PZ
10394 runtime = global_rt_runtime();
10395 period = global_rt_period();
10396
10397 /*
10398 * Sanity check on the sysctl variables.
10399 */
10400 if (runtime > period && runtime != RUNTIME_INF)
10401 return -EINVAL;
10b612f4 10402
d0b27fa7 10403 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10404 read_lock(&tasklist_lock);
4653f803 10405 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10406 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10407 mutex_unlock(&rt_constraints_mutex);
10408
10409 return ret;
10410}
54e99124
DG
10411
10412int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10413{
10414 /* Don't accept realtime tasks when there is no way for them to run */
10415 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10416 return 0;
10417
10418 return 1;
10419}
10420
6d6bc0ad 10421#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10422static int sched_rt_global_constraints(void)
10423{
ac086bc2
PZ
10424 unsigned long flags;
10425 int i;
10426
ec5d4989
HS
10427 if (sysctl_sched_rt_period <= 0)
10428 return -EINVAL;
10429
60aa605d
PZ
10430 /*
10431 * There's always some RT tasks in the root group
10432 * -- migration, kstopmachine etc..
10433 */
10434 if (sysctl_sched_rt_runtime == 0)
10435 return -EBUSY;
10436
0986b11b 10437 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
10438 for_each_possible_cpu(i) {
10439 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10440
0986b11b 10441 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 10442 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 10443 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 10444 }
0986b11b 10445 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 10446
d0b27fa7
PZ
10447 return 0;
10448}
6d6bc0ad 10449#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10450
10451int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10452 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10453 loff_t *ppos)
10454{
10455 int ret;
10456 int old_period, old_runtime;
10457 static DEFINE_MUTEX(mutex);
10458
10459 mutex_lock(&mutex);
10460 old_period = sysctl_sched_rt_period;
10461 old_runtime = sysctl_sched_rt_runtime;
10462
8d65af78 10463 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10464
10465 if (!ret && write) {
10466 ret = sched_rt_global_constraints();
10467 if (ret) {
10468 sysctl_sched_rt_period = old_period;
10469 sysctl_sched_rt_runtime = old_runtime;
10470 } else {
10471 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10472 def_rt_bandwidth.rt_period =
10473 ns_to_ktime(global_rt_period());
10474 }
10475 }
10476 mutex_unlock(&mutex);
10477
10478 return ret;
10479}
68318b8e 10480
052f1dc7 10481#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10482
10483/* return corresponding task_group object of a cgroup */
2b01dfe3 10484static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10485{
2b01dfe3
PM
10486 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10487 struct task_group, css);
68318b8e
SV
10488}
10489
10490static struct cgroup_subsys_state *
2b01dfe3 10491cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10492{
ec7dc8ac 10493 struct task_group *tg, *parent;
68318b8e 10494
2b01dfe3 10495 if (!cgrp->parent) {
68318b8e 10496 /* This is early initialization for the top cgroup */
68318b8e
SV
10497 return &init_task_group.css;
10498 }
10499
ec7dc8ac
DG
10500 parent = cgroup_tg(cgrp->parent);
10501 tg = sched_create_group(parent);
68318b8e
SV
10502 if (IS_ERR(tg))
10503 return ERR_PTR(-ENOMEM);
10504
68318b8e
SV
10505 return &tg->css;
10506}
10507
41a2d6cf
IM
10508static void
10509cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10510{
2b01dfe3 10511 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10512
10513 sched_destroy_group(tg);
10514}
10515
41a2d6cf 10516static int
be367d09 10517cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10518{
b68aa230 10519#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10520 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10521 return -EINVAL;
10522#else
68318b8e
SV
10523 /* We don't support RT-tasks being in separate groups */
10524 if (tsk->sched_class != &fair_sched_class)
10525 return -EINVAL;
b68aa230 10526#endif
be367d09
BB
10527 return 0;
10528}
68318b8e 10529
be367d09
BB
10530static int
10531cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10532 struct task_struct *tsk, bool threadgroup)
10533{
10534 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10535 if (retval)
10536 return retval;
10537 if (threadgroup) {
10538 struct task_struct *c;
10539 rcu_read_lock();
10540 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10541 retval = cpu_cgroup_can_attach_task(cgrp, c);
10542 if (retval) {
10543 rcu_read_unlock();
10544 return retval;
10545 }
10546 }
10547 rcu_read_unlock();
10548 }
68318b8e
SV
10549 return 0;
10550}
10551
10552static void
2b01dfe3 10553cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10554 struct cgroup *old_cont, struct task_struct *tsk,
10555 bool threadgroup)
68318b8e
SV
10556{
10557 sched_move_task(tsk);
be367d09
BB
10558 if (threadgroup) {
10559 struct task_struct *c;
10560 rcu_read_lock();
10561 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10562 sched_move_task(c);
10563 }
10564 rcu_read_unlock();
10565 }
68318b8e
SV
10566}
10567
052f1dc7 10568#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10569static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10570 u64 shareval)
68318b8e 10571{
2b01dfe3 10572 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10573}
10574
f4c753b7 10575static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10576{
2b01dfe3 10577 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10578
10579 return (u64) tg->shares;
10580}
6d6bc0ad 10581#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10582
052f1dc7 10583#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10584static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10585 s64 val)
6f505b16 10586{
06ecb27c 10587 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10588}
10589
06ecb27c 10590static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10591{
06ecb27c 10592 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10593}
d0b27fa7
PZ
10594
10595static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10596 u64 rt_period_us)
10597{
10598 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10599}
10600
10601static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10602{
10603 return sched_group_rt_period(cgroup_tg(cgrp));
10604}
6d6bc0ad 10605#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10606
fe5c7cc2 10607static struct cftype cpu_files[] = {
052f1dc7 10608#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10609 {
10610 .name = "shares",
f4c753b7
PM
10611 .read_u64 = cpu_shares_read_u64,
10612 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10613 },
052f1dc7
PZ
10614#endif
10615#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10616 {
9f0c1e56 10617 .name = "rt_runtime_us",
06ecb27c
PM
10618 .read_s64 = cpu_rt_runtime_read,
10619 .write_s64 = cpu_rt_runtime_write,
6f505b16 10620 },
d0b27fa7
PZ
10621 {
10622 .name = "rt_period_us",
f4c753b7
PM
10623 .read_u64 = cpu_rt_period_read_uint,
10624 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10625 },
052f1dc7 10626#endif
68318b8e
SV
10627};
10628
10629static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10630{
fe5c7cc2 10631 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10632}
10633
10634struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10635 .name = "cpu",
10636 .create = cpu_cgroup_create,
10637 .destroy = cpu_cgroup_destroy,
10638 .can_attach = cpu_cgroup_can_attach,
10639 .attach = cpu_cgroup_attach,
10640 .populate = cpu_cgroup_populate,
10641 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10642 .early_init = 1,
10643};
10644
052f1dc7 10645#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10646
10647#ifdef CONFIG_CGROUP_CPUACCT
10648
10649/*
10650 * CPU accounting code for task groups.
10651 *
10652 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10653 * (balbir@in.ibm.com).
10654 */
10655
934352f2 10656/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10657struct cpuacct {
10658 struct cgroup_subsys_state css;
10659 /* cpuusage holds pointer to a u64-type object on every cpu */
10660 u64 *cpuusage;
ef12fefa 10661 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10662 struct cpuacct *parent;
d842de87
SV
10663};
10664
10665struct cgroup_subsys cpuacct_subsys;
10666
10667/* return cpu accounting group corresponding to this container */
32cd756a 10668static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10669{
32cd756a 10670 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10671 struct cpuacct, css);
10672}
10673
10674/* return cpu accounting group to which this task belongs */
10675static inline struct cpuacct *task_ca(struct task_struct *tsk)
10676{
10677 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10678 struct cpuacct, css);
10679}
10680
10681/* create a new cpu accounting group */
10682static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10683 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10684{
10685 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10686 int i;
d842de87
SV
10687
10688 if (!ca)
ef12fefa 10689 goto out;
d842de87
SV
10690
10691 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10692 if (!ca->cpuusage)
10693 goto out_free_ca;
10694
10695 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10696 if (percpu_counter_init(&ca->cpustat[i], 0))
10697 goto out_free_counters;
d842de87 10698
934352f2
BR
10699 if (cgrp->parent)
10700 ca->parent = cgroup_ca(cgrp->parent);
10701
d842de87 10702 return &ca->css;
ef12fefa
BR
10703
10704out_free_counters:
10705 while (--i >= 0)
10706 percpu_counter_destroy(&ca->cpustat[i]);
10707 free_percpu(ca->cpuusage);
10708out_free_ca:
10709 kfree(ca);
10710out:
10711 return ERR_PTR(-ENOMEM);
d842de87
SV
10712}
10713
10714/* destroy an existing cpu accounting group */
41a2d6cf 10715static void
32cd756a 10716cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10717{
32cd756a 10718 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10719 int i;
d842de87 10720
ef12fefa
BR
10721 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10722 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10723 free_percpu(ca->cpuusage);
10724 kfree(ca);
10725}
10726
720f5498
KC
10727static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10728{
b36128c8 10729 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10730 u64 data;
10731
10732#ifndef CONFIG_64BIT
10733 /*
10734 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10735 */
05fa785c 10736 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 10737 data = *cpuusage;
05fa785c 10738 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
10739#else
10740 data = *cpuusage;
10741#endif
10742
10743 return data;
10744}
10745
10746static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10747{
b36128c8 10748 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10749
10750#ifndef CONFIG_64BIT
10751 /*
10752 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10753 */
05fa785c 10754 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 10755 *cpuusage = val;
05fa785c 10756 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
10757#else
10758 *cpuusage = val;
10759#endif
10760}
10761
d842de87 10762/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10763static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10764{
32cd756a 10765 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10766 u64 totalcpuusage = 0;
10767 int i;
10768
720f5498
KC
10769 for_each_present_cpu(i)
10770 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10771
10772 return totalcpuusage;
10773}
10774
0297b803
DG
10775static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10776 u64 reset)
10777{
10778 struct cpuacct *ca = cgroup_ca(cgrp);
10779 int err = 0;
10780 int i;
10781
10782 if (reset) {
10783 err = -EINVAL;
10784 goto out;
10785 }
10786
720f5498
KC
10787 for_each_present_cpu(i)
10788 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10789
0297b803
DG
10790out:
10791 return err;
10792}
10793
e9515c3c
KC
10794static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10795 struct seq_file *m)
10796{
10797 struct cpuacct *ca = cgroup_ca(cgroup);
10798 u64 percpu;
10799 int i;
10800
10801 for_each_present_cpu(i) {
10802 percpu = cpuacct_cpuusage_read(ca, i);
10803 seq_printf(m, "%llu ", (unsigned long long) percpu);
10804 }
10805 seq_printf(m, "\n");
10806 return 0;
10807}
10808
ef12fefa
BR
10809static const char *cpuacct_stat_desc[] = {
10810 [CPUACCT_STAT_USER] = "user",
10811 [CPUACCT_STAT_SYSTEM] = "system",
10812};
10813
10814static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10815 struct cgroup_map_cb *cb)
10816{
10817 struct cpuacct *ca = cgroup_ca(cgrp);
10818 int i;
10819
10820 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10821 s64 val = percpu_counter_read(&ca->cpustat[i]);
10822 val = cputime64_to_clock_t(val);
10823 cb->fill(cb, cpuacct_stat_desc[i], val);
10824 }
10825 return 0;
10826}
10827
d842de87
SV
10828static struct cftype files[] = {
10829 {
10830 .name = "usage",
f4c753b7
PM
10831 .read_u64 = cpuusage_read,
10832 .write_u64 = cpuusage_write,
d842de87 10833 },
e9515c3c
KC
10834 {
10835 .name = "usage_percpu",
10836 .read_seq_string = cpuacct_percpu_seq_read,
10837 },
ef12fefa
BR
10838 {
10839 .name = "stat",
10840 .read_map = cpuacct_stats_show,
10841 },
d842de87
SV
10842};
10843
32cd756a 10844static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10845{
32cd756a 10846 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10847}
10848
10849/*
10850 * charge this task's execution time to its accounting group.
10851 *
10852 * called with rq->lock held.
10853 */
10854static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10855{
10856 struct cpuacct *ca;
934352f2 10857 int cpu;
d842de87 10858
c40c6f85 10859 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10860 return;
10861
934352f2 10862 cpu = task_cpu(tsk);
a18b83b7
BR
10863
10864 rcu_read_lock();
10865
d842de87 10866 ca = task_ca(tsk);
d842de87 10867
934352f2 10868 for (; ca; ca = ca->parent) {
b36128c8 10869 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10870 *cpuusage += cputime;
10871 }
a18b83b7
BR
10872
10873 rcu_read_unlock();
d842de87
SV
10874}
10875
ef12fefa
BR
10876/*
10877 * Charge the system/user time to the task's accounting group.
10878 */
10879static void cpuacct_update_stats(struct task_struct *tsk,
10880 enum cpuacct_stat_index idx, cputime_t val)
10881{
10882 struct cpuacct *ca;
10883
10884 if (unlikely(!cpuacct_subsys.active))
10885 return;
10886
10887 rcu_read_lock();
10888 ca = task_ca(tsk);
10889
10890 do {
10891 percpu_counter_add(&ca->cpustat[idx], val);
10892 ca = ca->parent;
10893 } while (ca);
10894 rcu_read_unlock();
10895}
10896
d842de87
SV
10897struct cgroup_subsys cpuacct_subsys = {
10898 .name = "cpuacct",
10899 .create = cpuacct_create,
10900 .destroy = cpuacct_destroy,
10901 .populate = cpuacct_populate,
10902 .subsys_id = cpuacct_subsys_id,
10903};
10904#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10905
10906#ifndef CONFIG_SMP
10907
10908int rcu_expedited_torture_stats(char *page)
10909{
10910 return 0;
10911}
10912EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10913
10914void synchronize_sched_expedited(void)
10915{
10916}
10917EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10918
10919#else /* #ifndef CONFIG_SMP */
10920
10921static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10922static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10923
10924#define RCU_EXPEDITED_STATE_POST -2
10925#define RCU_EXPEDITED_STATE_IDLE -1
10926
10927static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10928
10929int rcu_expedited_torture_stats(char *page)
10930{
10931 int cnt = 0;
10932 int cpu;
10933
10934 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10935 for_each_online_cpu(cpu) {
10936 cnt += sprintf(&page[cnt], " %d:%d",
10937 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10938 }
10939 cnt += sprintf(&page[cnt], "\n");
10940 return cnt;
10941}
10942EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10943
10944static long synchronize_sched_expedited_count;
10945
10946/*
10947 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10948 * approach to force grace period to end quickly. This consumes
10949 * significant time on all CPUs, and is thus not recommended for
10950 * any sort of common-case code.
10951 *
10952 * Note that it is illegal to call this function while holding any
10953 * lock that is acquired by a CPU-hotplug notifier. Failing to
10954 * observe this restriction will result in deadlock.
10955 */
10956void synchronize_sched_expedited(void)
10957{
10958 int cpu;
10959 unsigned long flags;
10960 bool need_full_sync = 0;
10961 struct rq *rq;
10962 struct migration_req *req;
10963 long snap;
10964 int trycount = 0;
10965
10966 smp_mb(); /* ensure prior mod happens before capturing snap. */
10967 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10968 get_online_cpus();
10969 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10970 put_online_cpus();
10971 if (trycount++ < 10)
10972 udelay(trycount * num_online_cpus());
10973 else {
10974 synchronize_sched();
10975 return;
10976 }
10977 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10978 smp_mb(); /* ensure test happens before caller kfree */
10979 return;
10980 }
10981 get_online_cpus();
10982 }
10983 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10984 for_each_online_cpu(cpu) {
10985 rq = cpu_rq(cpu);
10986 req = &per_cpu(rcu_migration_req, cpu);
10987 init_completion(&req->done);
10988 req->task = NULL;
10989 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 10990 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 10991 list_add(&req->list, &rq->migration_queue);
05fa785c 10992 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
10993 wake_up_process(rq->migration_thread);
10994 }
10995 for_each_online_cpu(cpu) {
10996 rcu_expedited_state = cpu;
10997 req = &per_cpu(rcu_migration_req, cpu);
10998 rq = cpu_rq(cpu);
10999 wait_for_completion(&req->done);
05fa785c 11000 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
11001 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11002 need_full_sync = 1;
11003 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 11004 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
11005 }
11006 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 11007 synchronize_sched_expedited_count++;
03b042bf
PM
11008 mutex_unlock(&rcu_sched_expedited_mutex);
11009 put_online_cpus();
11010 if (need_full_sync)
11011 synchronize_sched();
11012}
11013EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11014
11015#endif /* #else #ifndef CONFIG_SMP */