]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: Remove rq->clock coupling from set_task_cpu()
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5
IM
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
ac086bc2
PZ
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
ada3fa15 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
b9bf3121 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
e9036b36
CG
312#ifdef CONFIG_FAIR_GROUP_SCHED
313
57310a98
PZ
314#ifdef CONFIG_SMP
315static int root_task_group_empty(void)
316{
317 return list_empty(&root_task_group.children);
318}
319#endif
320
052f1dc7
PZ
321#ifdef CONFIG_USER_SCHED
322# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 323#else /* !CONFIG_USER_SCHED */
052f1dc7 324# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 325#endif /* CONFIG_USER_SCHED */
052f1dc7 326
cb4ad1ff 327/*
2e084786
LJ
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
cb4ad1ff
MX
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
334 */
18d95a28 335#define MIN_SHARES 2
2e084786 336#define MAX_SHARES (1UL << 18)
18d95a28 337
052f1dc7
PZ
338static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339#endif
340
29f59db3 341/* Default task group.
3a252015 342 * Every task in system belong to this group at bootup.
29f59db3 343 */
434d53b0 344struct task_group init_task_group;
29f59db3
SV
345
346/* return group to which a task belongs */
4cf86d77 347static inline struct task_group *task_group(struct task_struct *p)
29f59db3 348{
4cf86d77 349 struct task_group *tg;
9b5b7751 350
052f1dc7 351#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
052f1dc7 355#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
24e377a8 358#else
41a2d6cf 359 tg = &init_task_group;
24e377a8 360#endif
9b5b7751 361 return tg;
29f59db3
SV
362}
363
364/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 366{
052f1dc7 367#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
052f1dc7 370#endif
6f505b16 371
052f1dc7 372#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 375#endif
29f59db3
SV
376}
377
378#else
379
6f505b16 380static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
381static inline struct task_group *task_group(struct task_struct *p)
382{
383 return NULL;
384}
29f59db3 385
052f1dc7 386#endif /* CONFIG_GROUP_SCHED */
29f59db3 387
6aa645ea
IM
388/* CFS-related fields in a runqueue */
389struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
6aa645ea 393 u64 exec_clock;
e9acbff6 394 u64 min_vruntime;
6aa645ea
IM
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
4a55bd5e
PZ
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
4793241b 406 struct sched_entity *curr, *next, *last;
ddc97297 407
5ac5c4d6 408 unsigned int nr_spread_over;
ddc97297 409
62160e3f 410#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
41a2d6cf
IM
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
41a2d6cf
IM
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
423
424#ifdef CONFIG_SMP
c09595f6 425 /*
c8cba857 426 * the part of load.weight contributed by tasks
c09595f6 427 */
c8cba857 428 unsigned long task_weight;
c09595f6 429
c8cba857
PZ
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
c09595f6 437
c8cba857
PZ
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
f1d239f7
PZ
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
c09595f6 447#endif
6aa645ea
IM
448#endif
449};
1da177e4 450
6aa645ea
IM
451/* Real-Time classes' related field in a runqueue: */
452struct rt_rq {
453 struct rt_prio_array active;
63489e45 454 unsigned long rt_nr_running;
052f1dc7 455#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
456 struct {
457 int curr; /* highest queued rt task prio */
398a153b 458#ifdef CONFIG_SMP
e864c499 459 int next; /* next highest */
398a153b 460#endif
e864c499 461 } highest_prio;
6f505b16 462#endif
fa85ae24 463#ifdef CONFIG_SMP
73fe6aae 464 unsigned long rt_nr_migratory;
a1ba4d8b 465 unsigned long rt_nr_total;
a22d7fc1 466 int overloaded;
917b627d 467 struct plist_head pushable_tasks;
fa85ae24 468#endif
6f505b16 469 int rt_throttled;
fa85ae24 470 u64 rt_time;
ac086bc2 471 u64 rt_runtime;
ea736ed5 472 /* Nests inside the rq lock: */
ac086bc2 473 spinlock_t rt_runtime_lock;
6f505b16 474
052f1dc7 475#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
476 unsigned long rt_nr_boosted;
477
6f505b16
PZ
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482#endif
6aa645ea
IM
483};
484
57d885fe
GH
485#ifdef CONFIG_SMP
486
487/*
488 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
493 *
57d885fe
GH
494 */
495struct root_domain {
496 atomic_t refcount;
c6c4927b
RR
497 cpumask_var_t span;
498 cpumask_var_t online;
637f5085 499
0eab9146 500 /*
637f5085
GH
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
c6c4927b 504 cpumask_var_t rto_mask;
0eab9146 505 atomic_t rto_count;
6e0534f2
GH
506#ifdef CONFIG_SMP
507 struct cpupri cpupri;
508#endif
57d885fe
GH
509};
510
dc938520
GH
511/*
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
514 */
57d885fe
GH
515static struct root_domain def_root_domain;
516
517#endif
518
1da177e4
LT
519/*
520 * This is the main, per-CPU runqueue data structure.
521 *
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
525 */
70b97a7f 526struct rq {
d8016491
IM
527 /* runqueue lock: */
528 spinlock_t lock;
1da177e4
LT
529
530 /*
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
533 */
534 unsigned long nr_running;
6aa645ea
IM
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
537#ifdef CONFIG_NO_HZ
538 unsigned char in_nohz_recently;
539#endif
d8016491
IM
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
6aa645ea
IM
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544
545 struct cfs_rq cfs;
6f505b16 546 struct rt_rq rt;
6f505b16 547
6aa645ea 548#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
551#endif
552#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 553 struct list_head leaf_rt_rq_list;
1da177e4 554#endif
1da177e4
LT
555
556 /*
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
561 */
562 unsigned long nr_uninterruptible;
563
36c8b586 564 struct task_struct *curr, *idle;
c9819f45 565 unsigned long next_balance;
1da177e4 566 struct mm_struct *prev_mm;
6aa645ea 567
3e51f33f 568 u64 clock;
6aa645ea 569
1da177e4
LT
570 atomic_t nr_iowait;
571
572#ifdef CONFIG_SMP
0eab9146 573 struct root_domain *rd;
1da177e4
LT
574 struct sched_domain *sd;
575
a0a522ce 576 unsigned char idle_at_tick;
1da177e4 577 /* For active balancing */
3f029d3c 578 int post_schedule;
1da177e4
LT
579 int active_balance;
580 int push_cpu;
d8016491
IM
581 /* cpu of this runqueue: */
582 int cpu;
1f11eb6a 583 int online;
1da177e4 584
a8a51d5e 585 unsigned long avg_load_per_task;
1da177e4 586
36c8b586 587 struct task_struct *migration_thread;
1da177e4 588 struct list_head migration_queue;
e9e9250b
PZ
589
590 u64 rt_avg;
591 u64 age_stamp;
1b9508f6
MG
592 u64 idle_stamp;
593 u64 avg_idle;
1da177e4
LT
594#endif
595
dce48a84
TG
596 /* calc_load related fields */
597 unsigned long calc_load_update;
598 long calc_load_active;
599
8f4d37ec 600#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
601#ifdef CONFIG_SMP
602 int hrtick_csd_pending;
603 struct call_single_data hrtick_csd;
604#endif
8f4d37ec
PZ
605 struct hrtimer hrtick_timer;
606#endif
607
1da177e4
LT
608#ifdef CONFIG_SCHEDSTATS
609 /* latency stats */
610 struct sched_info rq_sched_info;
9c2c4802
KC
611 unsigned long long rq_cpu_time;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
613
614 /* sys_sched_yield() stats */
480b9434 615 unsigned int yld_count;
1da177e4
LT
616
617 /* schedule() stats */
480b9434
KC
618 unsigned int sched_switch;
619 unsigned int sched_count;
620 unsigned int sched_goidle;
1da177e4
LT
621
622 /* try_to_wake_up() stats */
480b9434
KC
623 unsigned int ttwu_count;
624 unsigned int ttwu_local;
b8efb561
IM
625
626 /* BKL stats */
480b9434 627 unsigned int bkl_count;
1da177e4
LT
628#endif
629};
630
f34e3b61 631static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 632
7d478721
PZ
633static inline
634void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 635{
7d478721 636 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
637}
638
0a2966b4
CL
639static inline int cpu_of(struct rq *rq)
640{
641#ifdef CONFIG_SMP
642 return rq->cpu;
643#else
644 return 0;
645#endif
646}
647
674311d5
NP
648/*
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 650 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
651 *
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
654 */
48f24c4d
IM
655#define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
657
658#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659#define this_rq() (&__get_cpu_var(runqueues))
660#define task_rq(p) cpu_rq(task_cpu(p))
661#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 662#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 663
aa9c4c0f 664inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
665{
666 rq->clock = sched_clock_cpu(cpu_of(rq));
667}
668
bf5c91ba
IM
669/*
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 */
672#ifdef CONFIG_SCHED_DEBUG
673# define const_debug __read_mostly
674#else
675# define const_debug static const
676#endif
677
017730c1
IM
678/**
679 * runqueue_is_locked
e17b38bf 680 * @cpu: the processor in question.
017730c1
IM
681 *
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
685 */
89f19f04 686int runqueue_is_locked(int cpu)
017730c1 687{
89f19f04 688 return spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
689}
690
bf5c91ba
IM
691/*
692 * Debugging: various feature bits
693 */
f00b45c1
PZ
694
695#define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
697
bf5c91ba 698enum {
f00b45c1 699#include "sched_features.h"
bf5c91ba
IM
700};
701
f00b45c1
PZ
702#undef SCHED_FEAT
703
704#define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
706
bf5c91ba 707const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
708#include "sched_features.h"
709 0;
710
711#undef SCHED_FEAT
712
713#ifdef CONFIG_SCHED_DEBUG
714#define SCHED_FEAT(name, enabled) \
715 #name ,
716
983ed7a6 717static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
718#include "sched_features.h"
719 NULL
720};
721
722#undef SCHED_FEAT
723
34f3a814 724static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 725{
f00b45c1
PZ
726 int i;
727
728 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
729 if (!(sysctl_sched_features & (1UL << i)))
730 seq_puts(m, "NO_");
731 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 732 }
34f3a814 733 seq_puts(m, "\n");
f00b45c1 734
34f3a814 735 return 0;
f00b45c1
PZ
736}
737
738static ssize_t
739sched_feat_write(struct file *filp, const char __user *ubuf,
740 size_t cnt, loff_t *ppos)
741{
742 char buf[64];
743 char *cmp = buf;
744 int neg = 0;
745 int i;
746
747 if (cnt > 63)
748 cnt = 63;
749
750 if (copy_from_user(&buf, ubuf, cnt))
751 return -EFAULT;
752
753 buf[cnt] = 0;
754
c24b7c52 755 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
756 neg = 1;
757 cmp += 3;
758 }
759
760 for (i = 0; sched_feat_names[i]; i++) {
761 int len = strlen(sched_feat_names[i]);
762
763 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
764 if (neg)
765 sysctl_sched_features &= ~(1UL << i);
766 else
767 sysctl_sched_features |= (1UL << i);
768 break;
769 }
770 }
771
772 if (!sched_feat_names[i])
773 return -EINVAL;
774
42994724 775 *ppos += cnt;
f00b45c1
PZ
776
777 return cnt;
778}
779
34f3a814
LZ
780static int sched_feat_open(struct inode *inode, struct file *filp)
781{
782 return single_open(filp, sched_feat_show, NULL);
783}
784
828c0950 785static const struct file_operations sched_feat_fops = {
34f3a814
LZ
786 .open = sched_feat_open,
787 .write = sched_feat_write,
788 .read = seq_read,
789 .llseek = seq_lseek,
790 .release = single_release,
f00b45c1
PZ
791};
792
793static __init int sched_init_debug(void)
794{
f00b45c1
PZ
795 debugfs_create_file("sched_features", 0644, NULL, NULL,
796 &sched_feat_fops);
797
798 return 0;
799}
800late_initcall(sched_init_debug);
801
802#endif
803
804#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 805
b82d9fdd
PZ
806/*
807 * Number of tasks to iterate in a single balance run.
808 * Limited because this is done with IRQs disabled.
809 */
810const_debug unsigned int sysctl_sched_nr_migrate = 32;
811
2398f2c6
PZ
812/*
813 * ratelimit for updating the group shares.
55cd5340 814 * default: 0.25ms
2398f2c6 815 */
55cd5340 816unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 817
ffda12a1
PZ
818/*
819 * Inject some fuzzyness into changing the per-cpu group shares
820 * this avoids remote rq-locks at the expense of fairness.
821 * default: 4
822 */
823unsigned int sysctl_sched_shares_thresh = 4;
824
e9e9250b
PZ
825/*
826 * period over which we average the RT time consumption, measured
827 * in ms.
828 *
829 * default: 1s
830 */
831const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
832
fa85ae24 833/*
9f0c1e56 834 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
835 * default: 1s
836 */
9f0c1e56 837unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 838
6892b75e
IM
839static __read_mostly int scheduler_running;
840
9f0c1e56
PZ
841/*
842 * part of the period that we allow rt tasks to run in us.
843 * default: 0.95s
844 */
845int sysctl_sched_rt_runtime = 950000;
fa85ae24 846
d0b27fa7
PZ
847static inline u64 global_rt_period(void)
848{
849 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
850}
851
852static inline u64 global_rt_runtime(void)
853{
e26873bb 854 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
855 return RUNTIME_INF;
856
857 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
858}
fa85ae24 859
1da177e4 860#ifndef prepare_arch_switch
4866cde0
NP
861# define prepare_arch_switch(next) do { } while (0)
862#endif
863#ifndef finish_arch_switch
864# define finish_arch_switch(prev) do { } while (0)
865#endif
866
051a1d1a
DA
867static inline int task_current(struct rq *rq, struct task_struct *p)
868{
869 return rq->curr == p;
870}
871
4866cde0 872#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 874{
051a1d1a 875 return task_current(rq, p);
4866cde0
NP
876}
877
70b97a7f 878static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
879{
880}
881
70b97a7f 882static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 883{
da04c035
IM
884#ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq->lock.owner = current;
887#endif
8a25d5de
IM
888 /*
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
891 * prev into current:
892 */
893 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
894
4866cde0
NP
895 spin_unlock_irq(&rq->lock);
896}
897
898#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 899static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 return p->oncpu;
903#else
051a1d1a 904 return task_current(rq, p);
4866cde0
NP
905#endif
906}
907
70b97a7f 908static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
909{
910#ifdef CONFIG_SMP
911 /*
912 * We can optimise this out completely for !SMP, because the
913 * SMP rebalancing from interrupt is the only thing that cares
914 * here.
915 */
916 next->oncpu = 1;
917#endif
918#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 spin_unlock_irq(&rq->lock);
920#else
921 spin_unlock(&rq->lock);
922#endif
923}
924
70b97a7f 925static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
926{
927#ifdef CONFIG_SMP
928 /*
929 * After ->oncpu is cleared, the task can be moved to a different CPU.
930 * We must ensure this doesn't happen until the switch is completely
931 * finished.
932 */
933 smp_wmb();
934 prev->oncpu = 0;
935#endif
936#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
937 local_irq_enable();
1da177e4 938#endif
4866cde0
NP
939}
940#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 941
b29739f9
IM
942/*
943 * __task_rq_lock - lock the runqueue a given task resides on.
944 * Must be called interrupts disabled.
945 */
70b97a7f 946static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
947 __acquires(rq->lock)
948{
3a5c359a
AK
949 for (;;) {
950 struct rq *rq = task_rq(p);
951 spin_lock(&rq->lock);
952 if (likely(rq == task_rq(p)))
953 return rq;
b29739f9 954 spin_unlock(&rq->lock);
b29739f9 955 }
b29739f9
IM
956}
957
1da177e4
LT
958/*
959 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 960 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
961 * explicitly disabling preemption.
962 */
70b97a7f 963static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
964 __acquires(rq->lock)
965{
70b97a7f 966 struct rq *rq;
1da177e4 967
3a5c359a
AK
968 for (;;) {
969 local_irq_save(*flags);
970 rq = task_rq(p);
971 spin_lock(&rq->lock);
972 if (likely(rq == task_rq(p)))
973 return rq;
1da177e4 974 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 975 }
1da177e4
LT
976}
977
ad474cac
ON
978void task_rq_unlock_wait(struct task_struct *p)
979{
980 struct rq *rq = task_rq(p);
981
982 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
983 spin_unlock_wait(&rq->lock);
984}
985
a9957449 986static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
987 __releases(rq->lock)
988{
989 spin_unlock(&rq->lock);
990}
991
70b97a7f 992static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
993 __releases(rq->lock)
994{
995 spin_unlock_irqrestore(&rq->lock, *flags);
996}
997
1da177e4 998/*
cc2a73b5 999 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1000 */
a9957449 1001static struct rq *this_rq_lock(void)
1da177e4
LT
1002 __acquires(rq->lock)
1003{
70b97a7f 1004 struct rq *rq;
1da177e4
LT
1005
1006 local_irq_disable();
1007 rq = this_rq();
1008 spin_lock(&rq->lock);
1009
1010 return rq;
1011}
1012
8f4d37ec
PZ
1013#ifdef CONFIG_SCHED_HRTICK
1014/*
1015 * Use HR-timers to deliver accurate preemption points.
1016 *
1017 * Its all a bit involved since we cannot program an hrt while holding the
1018 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1019 * reschedule event.
1020 *
1021 * When we get rescheduled we reprogram the hrtick_timer outside of the
1022 * rq->lock.
1023 */
8f4d37ec
PZ
1024
1025/*
1026 * Use hrtick when:
1027 * - enabled by features
1028 * - hrtimer is actually high res
1029 */
1030static inline int hrtick_enabled(struct rq *rq)
1031{
1032 if (!sched_feat(HRTICK))
1033 return 0;
ba42059f 1034 if (!cpu_active(cpu_of(rq)))
b328ca18 1035 return 0;
8f4d37ec
PZ
1036 return hrtimer_is_hres_active(&rq->hrtick_timer);
1037}
1038
8f4d37ec
PZ
1039static void hrtick_clear(struct rq *rq)
1040{
1041 if (hrtimer_active(&rq->hrtick_timer))
1042 hrtimer_cancel(&rq->hrtick_timer);
1043}
1044
8f4d37ec
PZ
1045/*
1046 * High-resolution timer tick.
1047 * Runs from hardirq context with interrupts disabled.
1048 */
1049static enum hrtimer_restart hrtick(struct hrtimer *timer)
1050{
1051 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1052
1053 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1054
1055 spin_lock(&rq->lock);
3e51f33f 1056 update_rq_clock(rq);
8f4d37ec
PZ
1057 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1058 spin_unlock(&rq->lock);
1059
1060 return HRTIMER_NORESTART;
1061}
1062
95e904c7 1063#ifdef CONFIG_SMP
31656519
PZ
1064/*
1065 * called from hardirq (IPI) context
1066 */
1067static void __hrtick_start(void *arg)
b328ca18 1068{
31656519 1069 struct rq *rq = arg;
b328ca18 1070
31656519
PZ
1071 spin_lock(&rq->lock);
1072 hrtimer_restart(&rq->hrtick_timer);
1073 rq->hrtick_csd_pending = 0;
1074 spin_unlock(&rq->lock);
b328ca18
PZ
1075}
1076
31656519
PZ
1077/*
1078 * Called to set the hrtick timer state.
1079 *
1080 * called with rq->lock held and irqs disabled
1081 */
1082static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1083{
31656519
PZ
1084 struct hrtimer *timer = &rq->hrtick_timer;
1085 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1086
cc584b21 1087 hrtimer_set_expires(timer, time);
31656519
PZ
1088
1089 if (rq == this_rq()) {
1090 hrtimer_restart(timer);
1091 } else if (!rq->hrtick_csd_pending) {
6e275637 1092 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1093 rq->hrtick_csd_pending = 1;
1094 }
b328ca18
PZ
1095}
1096
1097static int
1098hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1099{
1100 int cpu = (int)(long)hcpu;
1101
1102 switch (action) {
1103 case CPU_UP_CANCELED:
1104 case CPU_UP_CANCELED_FROZEN:
1105 case CPU_DOWN_PREPARE:
1106 case CPU_DOWN_PREPARE_FROZEN:
1107 case CPU_DEAD:
1108 case CPU_DEAD_FROZEN:
31656519 1109 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1110 return NOTIFY_OK;
1111 }
1112
1113 return NOTIFY_DONE;
1114}
1115
fa748203 1116static __init void init_hrtick(void)
b328ca18
PZ
1117{
1118 hotcpu_notifier(hotplug_hrtick, 0);
1119}
31656519
PZ
1120#else
1121/*
1122 * Called to set the hrtick timer state.
1123 *
1124 * called with rq->lock held and irqs disabled
1125 */
1126static void hrtick_start(struct rq *rq, u64 delay)
1127{
7f1e2ca9 1128 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1129 HRTIMER_MODE_REL_PINNED, 0);
31656519 1130}
b328ca18 1131
006c75f1 1132static inline void init_hrtick(void)
8f4d37ec 1133{
8f4d37ec 1134}
31656519 1135#endif /* CONFIG_SMP */
8f4d37ec 1136
31656519 1137static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1138{
31656519
PZ
1139#ifdef CONFIG_SMP
1140 rq->hrtick_csd_pending = 0;
8f4d37ec 1141
31656519
PZ
1142 rq->hrtick_csd.flags = 0;
1143 rq->hrtick_csd.func = __hrtick_start;
1144 rq->hrtick_csd.info = rq;
1145#endif
8f4d37ec 1146
31656519
PZ
1147 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1148 rq->hrtick_timer.function = hrtick;
8f4d37ec 1149}
006c75f1 1150#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1151static inline void hrtick_clear(struct rq *rq)
1152{
1153}
1154
8f4d37ec
PZ
1155static inline void init_rq_hrtick(struct rq *rq)
1156{
1157}
1158
b328ca18
PZ
1159static inline void init_hrtick(void)
1160{
1161}
006c75f1 1162#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1163
c24d20db
IM
1164/*
1165 * resched_task - mark a task 'to be rescheduled now'.
1166 *
1167 * On UP this means the setting of the need_resched flag, on SMP it
1168 * might also involve a cross-CPU call to trigger the scheduler on
1169 * the target CPU.
1170 */
1171#ifdef CONFIG_SMP
1172
1173#ifndef tsk_is_polling
1174#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1175#endif
1176
31656519 1177static void resched_task(struct task_struct *p)
c24d20db
IM
1178{
1179 int cpu;
1180
1181 assert_spin_locked(&task_rq(p)->lock);
1182
5ed0cec0 1183 if (test_tsk_need_resched(p))
c24d20db
IM
1184 return;
1185
5ed0cec0 1186 set_tsk_need_resched(p);
c24d20db
IM
1187
1188 cpu = task_cpu(p);
1189 if (cpu == smp_processor_id())
1190 return;
1191
1192 /* NEED_RESCHED must be visible before we test polling */
1193 smp_mb();
1194 if (!tsk_is_polling(p))
1195 smp_send_reschedule(cpu);
1196}
1197
1198static void resched_cpu(int cpu)
1199{
1200 struct rq *rq = cpu_rq(cpu);
1201 unsigned long flags;
1202
1203 if (!spin_trylock_irqsave(&rq->lock, flags))
1204 return;
1205 resched_task(cpu_curr(cpu));
1206 spin_unlock_irqrestore(&rq->lock, flags);
1207}
06d8308c
TG
1208
1209#ifdef CONFIG_NO_HZ
1210/*
1211 * When add_timer_on() enqueues a timer into the timer wheel of an
1212 * idle CPU then this timer might expire before the next timer event
1213 * which is scheduled to wake up that CPU. In case of a completely
1214 * idle system the next event might even be infinite time into the
1215 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1216 * leaves the inner idle loop so the newly added timer is taken into
1217 * account when the CPU goes back to idle and evaluates the timer
1218 * wheel for the next timer event.
1219 */
1220void wake_up_idle_cpu(int cpu)
1221{
1222 struct rq *rq = cpu_rq(cpu);
1223
1224 if (cpu == smp_processor_id())
1225 return;
1226
1227 /*
1228 * This is safe, as this function is called with the timer
1229 * wheel base lock of (cpu) held. When the CPU is on the way
1230 * to idle and has not yet set rq->curr to idle then it will
1231 * be serialized on the timer wheel base lock and take the new
1232 * timer into account automatically.
1233 */
1234 if (rq->curr != rq->idle)
1235 return;
1236
1237 /*
1238 * We can set TIF_RESCHED on the idle task of the other CPU
1239 * lockless. The worst case is that the other CPU runs the
1240 * idle task through an additional NOOP schedule()
1241 */
5ed0cec0 1242 set_tsk_need_resched(rq->idle);
06d8308c
TG
1243
1244 /* NEED_RESCHED must be visible before we test polling */
1245 smp_mb();
1246 if (!tsk_is_polling(rq->idle))
1247 smp_send_reschedule(cpu);
1248}
6d6bc0ad 1249#endif /* CONFIG_NO_HZ */
06d8308c 1250
e9e9250b
PZ
1251static u64 sched_avg_period(void)
1252{
1253 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1254}
1255
1256static void sched_avg_update(struct rq *rq)
1257{
1258 s64 period = sched_avg_period();
1259
1260 while ((s64)(rq->clock - rq->age_stamp) > period) {
1261 rq->age_stamp += period;
1262 rq->rt_avg /= 2;
1263 }
1264}
1265
1266static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1267{
1268 rq->rt_avg += rt_delta;
1269 sched_avg_update(rq);
1270}
1271
6d6bc0ad 1272#else /* !CONFIG_SMP */
31656519 1273static void resched_task(struct task_struct *p)
c24d20db
IM
1274{
1275 assert_spin_locked(&task_rq(p)->lock);
31656519 1276 set_tsk_need_resched(p);
c24d20db 1277}
e9e9250b
PZ
1278
1279static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1280{
1281}
6d6bc0ad 1282#endif /* CONFIG_SMP */
c24d20db 1283
45bf76df
IM
1284#if BITS_PER_LONG == 32
1285# define WMULT_CONST (~0UL)
1286#else
1287# define WMULT_CONST (1UL << 32)
1288#endif
1289
1290#define WMULT_SHIFT 32
1291
194081eb
IM
1292/*
1293 * Shift right and round:
1294 */
cf2ab469 1295#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1296
a7be37ac
PZ
1297/*
1298 * delta *= weight / lw
1299 */
cb1c4fc9 1300static unsigned long
45bf76df
IM
1301calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1302 struct load_weight *lw)
1303{
1304 u64 tmp;
1305
7a232e03
LJ
1306 if (!lw->inv_weight) {
1307 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1308 lw->inv_weight = 1;
1309 else
1310 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1311 / (lw->weight+1);
1312 }
45bf76df
IM
1313
1314 tmp = (u64)delta_exec * weight;
1315 /*
1316 * Check whether we'd overflow the 64-bit multiplication:
1317 */
194081eb 1318 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1319 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1320 WMULT_SHIFT/2);
1321 else
cf2ab469 1322 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1323
ecf691da 1324 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1325}
1326
1091985b 1327static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1328{
1329 lw->weight += inc;
e89996ae 1330 lw->inv_weight = 0;
45bf76df
IM
1331}
1332
1091985b 1333static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1334{
1335 lw->weight -= dec;
e89996ae 1336 lw->inv_weight = 0;
45bf76df
IM
1337}
1338
2dd73a4f
PW
1339/*
1340 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1341 * of tasks with abnormal "nice" values across CPUs the contribution that
1342 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1343 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1344 * scaled version of the new time slice allocation that they receive on time
1345 * slice expiry etc.
1346 */
1347
cce7ade8
PZ
1348#define WEIGHT_IDLEPRIO 3
1349#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1350
1351/*
1352 * Nice levels are multiplicative, with a gentle 10% change for every
1353 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1354 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1355 * that remained on nice 0.
1356 *
1357 * The "10% effect" is relative and cumulative: from _any_ nice level,
1358 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1359 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1360 * If a task goes up by ~10% and another task goes down by ~10% then
1361 * the relative distance between them is ~25%.)
dd41f596
IM
1362 */
1363static const int prio_to_weight[40] = {
254753dc
IM
1364 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1365 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1366 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1367 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1368 /* 0 */ 1024, 820, 655, 526, 423,
1369 /* 5 */ 335, 272, 215, 172, 137,
1370 /* 10 */ 110, 87, 70, 56, 45,
1371 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1372};
1373
5714d2de
IM
1374/*
1375 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1376 *
1377 * In cases where the weight does not change often, we can use the
1378 * precalculated inverse to speed up arithmetics by turning divisions
1379 * into multiplications:
1380 */
dd41f596 1381static const u32 prio_to_wmult[40] = {
254753dc
IM
1382 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1383 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1384 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1385 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1386 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1387 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1388 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1389 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1390};
2dd73a4f 1391
dd41f596
IM
1392static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1393
1394/*
1395 * runqueue iterator, to support SMP load-balancing between different
1396 * scheduling classes, without having to expose their internal data
1397 * structures to the load-balancing proper:
1398 */
1399struct rq_iterator {
1400 void *arg;
1401 struct task_struct *(*start)(void *);
1402 struct task_struct *(*next)(void *);
1403};
1404
e1d1484f
PW
1405#ifdef CONFIG_SMP
1406static unsigned long
1407balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1408 unsigned long max_load_move, struct sched_domain *sd,
1409 enum cpu_idle_type idle, int *all_pinned,
1410 int *this_best_prio, struct rq_iterator *iterator);
1411
1412static int
1413iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1414 struct sched_domain *sd, enum cpu_idle_type idle,
1415 struct rq_iterator *iterator);
e1d1484f 1416#endif
dd41f596 1417
ef12fefa
BR
1418/* Time spent by the tasks of the cpu accounting group executing in ... */
1419enum cpuacct_stat_index {
1420 CPUACCT_STAT_USER, /* ... user mode */
1421 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1422
1423 CPUACCT_STAT_NSTATS,
1424};
1425
d842de87
SV
1426#ifdef CONFIG_CGROUP_CPUACCT
1427static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1428static void cpuacct_update_stats(struct task_struct *tsk,
1429 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1430#else
1431static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1432static inline void cpuacct_update_stats(struct task_struct *tsk,
1433 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1434#endif
1435
18d95a28
PZ
1436static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1437{
1438 update_load_add(&rq->load, load);
1439}
1440
1441static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1442{
1443 update_load_sub(&rq->load, load);
1444}
1445
7940ca36 1446#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1447typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1448
1449/*
1450 * Iterate the full tree, calling @down when first entering a node and @up when
1451 * leaving it for the final time.
1452 */
eb755805 1453static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1454{
1455 struct task_group *parent, *child;
eb755805 1456 int ret;
c09595f6
PZ
1457
1458 rcu_read_lock();
1459 parent = &root_task_group;
1460down:
eb755805
PZ
1461 ret = (*down)(parent, data);
1462 if (ret)
1463 goto out_unlock;
c09595f6
PZ
1464 list_for_each_entry_rcu(child, &parent->children, siblings) {
1465 parent = child;
1466 goto down;
1467
1468up:
1469 continue;
1470 }
eb755805
PZ
1471 ret = (*up)(parent, data);
1472 if (ret)
1473 goto out_unlock;
c09595f6
PZ
1474
1475 child = parent;
1476 parent = parent->parent;
1477 if (parent)
1478 goto up;
eb755805 1479out_unlock:
c09595f6 1480 rcu_read_unlock();
eb755805
PZ
1481
1482 return ret;
c09595f6
PZ
1483}
1484
eb755805
PZ
1485static int tg_nop(struct task_group *tg, void *data)
1486{
1487 return 0;
c09595f6 1488}
eb755805
PZ
1489#endif
1490
1491#ifdef CONFIG_SMP
f5f08f39
PZ
1492/* Used instead of source_load when we know the type == 0 */
1493static unsigned long weighted_cpuload(const int cpu)
1494{
1495 return cpu_rq(cpu)->load.weight;
1496}
1497
1498/*
1499 * Return a low guess at the load of a migration-source cpu weighted
1500 * according to the scheduling class and "nice" value.
1501 *
1502 * We want to under-estimate the load of migration sources, to
1503 * balance conservatively.
1504 */
1505static unsigned long source_load(int cpu, int type)
1506{
1507 struct rq *rq = cpu_rq(cpu);
1508 unsigned long total = weighted_cpuload(cpu);
1509
1510 if (type == 0 || !sched_feat(LB_BIAS))
1511 return total;
1512
1513 return min(rq->cpu_load[type-1], total);
1514}
1515
1516/*
1517 * Return a high guess at the load of a migration-target cpu weighted
1518 * according to the scheduling class and "nice" value.
1519 */
1520static unsigned long target_load(int cpu, int type)
1521{
1522 struct rq *rq = cpu_rq(cpu);
1523 unsigned long total = weighted_cpuload(cpu);
1524
1525 if (type == 0 || !sched_feat(LB_BIAS))
1526 return total;
1527
1528 return max(rq->cpu_load[type-1], total);
1529}
1530
ae154be1
PZ
1531static struct sched_group *group_of(int cpu)
1532{
1533 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1534
1535 if (!sd)
1536 return NULL;
1537
1538 return sd->groups;
1539}
1540
1541static unsigned long power_of(int cpu)
1542{
1543 struct sched_group *group = group_of(cpu);
1544
1545 if (!group)
1546 return SCHED_LOAD_SCALE;
1547
1548 return group->cpu_power;
1549}
1550
eb755805
PZ
1551static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1552
1553static unsigned long cpu_avg_load_per_task(int cpu)
1554{
1555 struct rq *rq = cpu_rq(cpu);
af6d596f 1556 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1557
4cd42620
SR
1558 if (nr_running)
1559 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1560 else
1561 rq->avg_load_per_task = 0;
eb755805
PZ
1562
1563 return rq->avg_load_per_task;
1564}
1565
1566#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1567
4a6cc4bd 1568static __read_mostly unsigned long *update_shares_data;
34d76c41 1569
c09595f6
PZ
1570static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1571
1572/*
1573 * Calculate and set the cpu's group shares.
1574 */
34d76c41
PZ
1575static void update_group_shares_cpu(struct task_group *tg, int cpu,
1576 unsigned long sd_shares,
1577 unsigned long sd_rq_weight,
4a6cc4bd 1578 unsigned long *usd_rq_weight)
18d95a28 1579{
34d76c41 1580 unsigned long shares, rq_weight;
a5004278 1581 int boost = 0;
c09595f6 1582
4a6cc4bd 1583 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1584 if (!rq_weight) {
1585 boost = 1;
1586 rq_weight = NICE_0_LOAD;
1587 }
c8cba857 1588
c09595f6 1589 /*
a8af7246
PZ
1590 * \Sum_j shares_j * rq_weight_i
1591 * shares_i = -----------------------------
1592 * \Sum_j rq_weight_j
c09595f6 1593 */
ec4e0e2f 1594 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1595 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1596
ffda12a1
PZ
1597 if (abs(shares - tg->se[cpu]->load.weight) >
1598 sysctl_sched_shares_thresh) {
1599 struct rq *rq = cpu_rq(cpu);
1600 unsigned long flags;
c09595f6 1601
ffda12a1 1602 spin_lock_irqsave(&rq->lock, flags);
34d76c41 1603 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1604 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1605 __set_se_shares(tg->se[cpu], shares);
1606 spin_unlock_irqrestore(&rq->lock, flags);
1607 }
18d95a28 1608}
c09595f6
PZ
1609
1610/*
c8cba857
PZ
1611 * Re-compute the task group their per cpu shares over the given domain.
1612 * This needs to be done in a bottom-up fashion because the rq weight of a
1613 * parent group depends on the shares of its child groups.
c09595f6 1614 */
eb755805 1615static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1616{
34d76c41 1617 unsigned long weight, rq_weight = 0, shares = 0;
4a6cc4bd 1618 unsigned long *usd_rq_weight;
eb755805 1619 struct sched_domain *sd = data;
34d76c41 1620 unsigned long flags;
c8cba857 1621 int i;
c09595f6 1622
34d76c41
PZ
1623 if (!tg->se[0])
1624 return 0;
1625
1626 local_irq_save(flags);
4a6cc4bd 1627 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1628
758b2cdc 1629 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1630 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1631 usd_rq_weight[i] = weight;
34d76c41 1632
ec4e0e2f
KC
1633 /*
1634 * If there are currently no tasks on the cpu pretend there
1635 * is one of average load so that when a new task gets to
1636 * run here it will not get delayed by group starvation.
1637 */
ec4e0e2f
KC
1638 if (!weight)
1639 weight = NICE_0_LOAD;
1640
ec4e0e2f 1641 rq_weight += weight;
c8cba857 1642 shares += tg->cfs_rq[i]->shares;
c09595f6 1643 }
c09595f6 1644
c8cba857
PZ
1645 if ((!shares && rq_weight) || shares > tg->shares)
1646 shares = tg->shares;
1647
1648 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1649 shares = tg->shares;
c09595f6 1650
758b2cdc 1651 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1652 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1653
1654 local_irq_restore(flags);
eb755805
PZ
1655
1656 return 0;
c09595f6
PZ
1657}
1658
1659/*
c8cba857
PZ
1660 * Compute the cpu's hierarchical load factor for each task group.
1661 * This needs to be done in a top-down fashion because the load of a child
1662 * group is a fraction of its parents load.
c09595f6 1663 */
eb755805 1664static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1665{
c8cba857 1666 unsigned long load;
eb755805 1667 long cpu = (long)data;
c09595f6 1668
c8cba857
PZ
1669 if (!tg->parent) {
1670 load = cpu_rq(cpu)->load.weight;
1671 } else {
1672 load = tg->parent->cfs_rq[cpu]->h_load;
1673 load *= tg->cfs_rq[cpu]->shares;
1674 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1675 }
c09595f6 1676
c8cba857 1677 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1678
eb755805 1679 return 0;
c09595f6
PZ
1680}
1681
c8cba857 1682static void update_shares(struct sched_domain *sd)
4d8d595d 1683{
e7097159
PZ
1684 s64 elapsed;
1685 u64 now;
1686
1687 if (root_task_group_empty())
1688 return;
1689
1690 now = cpu_clock(raw_smp_processor_id());
1691 elapsed = now - sd->last_update;
2398f2c6
PZ
1692
1693 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1694 sd->last_update = now;
eb755805 1695 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1696 }
4d8d595d
PZ
1697}
1698
3e5459b4
PZ
1699static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1700{
e7097159
PZ
1701 if (root_task_group_empty())
1702 return;
1703
3e5459b4
PZ
1704 spin_unlock(&rq->lock);
1705 update_shares(sd);
1706 spin_lock(&rq->lock);
1707}
1708
eb755805 1709static void update_h_load(long cpu)
c09595f6 1710{
e7097159
PZ
1711 if (root_task_group_empty())
1712 return;
1713
eb755805 1714 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1715}
1716
c09595f6
PZ
1717#else
1718
c8cba857 1719static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1720{
1721}
1722
3e5459b4
PZ
1723static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1724{
1725}
1726
18d95a28
PZ
1727#endif
1728
8f45e2b5
GH
1729#ifdef CONFIG_PREEMPT
1730
b78bb868
PZ
1731static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1732
70574a99 1733/*
8f45e2b5
GH
1734 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1735 * way at the expense of forcing extra atomic operations in all
1736 * invocations. This assures that the double_lock is acquired using the
1737 * same underlying policy as the spinlock_t on this architecture, which
1738 * reduces latency compared to the unfair variant below. However, it
1739 * also adds more overhead and therefore may reduce throughput.
70574a99 1740 */
8f45e2b5
GH
1741static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1742 __releases(this_rq->lock)
1743 __acquires(busiest->lock)
1744 __acquires(this_rq->lock)
1745{
1746 spin_unlock(&this_rq->lock);
1747 double_rq_lock(this_rq, busiest);
1748
1749 return 1;
1750}
1751
1752#else
1753/*
1754 * Unfair double_lock_balance: Optimizes throughput at the expense of
1755 * latency by eliminating extra atomic operations when the locks are
1756 * already in proper order on entry. This favors lower cpu-ids and will
1757 * grant the double lock to lower cpus over higher ids under contention,
1758 * regardless of entry order into the function.
1759 */
1760static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1761 __releases(this_rq->lock)
1762 __acquires(busiest->lock)
1763 __acquires(this_rq->lock)
1764{
1765 int ret = 0;
1766
70574a99
AD
1767 if (unlikely(!spin_trylock(&busiest->lock))) {
1768 if (busiest < this_rq) {
1769 spin_unlock(&this_rq->lock);
1770 spin_lock(&busiest->lock);
1771 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1772 ret = 1;
1773 } else
1774 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1775 }
1776 return ret;
1777}
1778
8f45e2b5
GH
1779#endif /* CONFIG_PREEMPT */
1780
1781/*
1782 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1783 */
1784static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1785{
1786 if (unlikely(!irqs_disabled())) {
1787 /* printk() doesn't work good under rq->lock */
1788 spin_unlock(&this_rq->lock);
1789 BUG_ON(1);
1790 }
1791
1792 return _double_lock_balance(this_rq, busiest);
1793}
1794
70574a99
AD
1795static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1796 __releases(busiest->lock)
1797{
1798 spin_unlock(&busiest->lock);
1799 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1800}
18d95a28
PZ
1801#endif
1802
30432094 1803#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1804static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1805{
30432094 1806#ifdef CONFIG_SMP
34e83e85
IM
1807 cfs_rq->shares = shares;
1808#endif
1809}
30432094 1810#endif
e7693a36 1811
dce48a84
TG
1812static void calc_load_account_active(struct rq *this_rq);
1813
dd41f596 1814#include "sched_stats.h"
dd41f596 1815#include "sched_idletask.c"
5522d5d5
IM
1816#include "sched_fair.c"
1817#include "sched_rt.c"
dd41f596
IM
1818#ifdef CONFIG_SCHED_DEBUG
1819# include "sched_debug.c"
1820#endif
1821
1822#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1823#define for_each_class(class) \
1824 for (class = sched_class_highest; class; class = class->next)
dd41f596 1825
c09595f6 1826static void inc_nr_running(struct rq *rq)
9c217245
IM
1827{
1828 rq->nr_running++;
9c217245
IM
1829}
1830
c09595f6 1831static void dec_nr_running(struct rq *rq)
9c217245
IM
1832{
1833 rq->nr_running--;
9c217245
IM
1834}
1835
45bf76df
IM
1836static void set_load_weight(struct task_struct *p)
1837{
1838 if (task_has_rt_policy(p)) {
dd41f596
IM
1839 p->se.load.weight = prio_to_weight[0] * 2;
1840 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1841 return;
1842 }
45bf76df 1843
dd41f596
IM
1844 /*
1845 * SCHED_IDLE tasks get minimal weight:
1846 */
1847 if (p->policy == SCHED_IDLE) {
1848 p->se.load.weight = WEIGHT_IDLEPRIO;
1849 p->se.load.inv_weight = WMULT_IDLEPRIO;
1850 return;
1851 }
71f8bd46 1852
dd41f596
IM
1853 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1854 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1855}
1856
2087a1ad
GH
1857static void update_avg(u64 *avg, u64 sample)
1858{
1859 s64 diff = sample - *avg;
1860 *avg += diff >> 3;
1861}
1862
8159f87e 1863static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1864{
831451ac
PZ
1865 if (wakeup)
1866 p->se.start_runtime = p->se.sum_exec_runtime;
1867
dd41f596 1868 sched_info_queued(p);
fd390f6a 1869 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1870 p->se.on_rq = 1;
71f8bd46
IM
1871}
1872
69be72c1 1873static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1874{
831451ac
PZ
1875 if (sleep) {
1876 if (p->se.last_wakeup) {
1877 update_avg(&p->se.avg_overlap,
1878 p->se.sum_exec_runtime - p->se.last_wakeup);
1879 p->se.last_wakeup = 0;
1880 } else {
1881 update_avg(&p->se.avg_wakeup,
1882 sysctl_sched_wakeup_granularity);
1883 }
2087a1ad
GH
1884 }
1885
46ac22ba 1886 sched_info_dequeued(p);
f02231e5 1887 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1888 p->se.on_rq = 0;
71f8bd46
IM
1889}
1890
14531189 1891/*
dd41f596 1892 * __normal_prio - return the priority that is based on the static prio
14531189 1893 */
14531189
IM
1894static inline int __normal_prio(struct task_struct *p)
1895{
dd41f596 1896 return p->static_prio;
14531189
IM
1897}
1898
b29739f9
IM
1899/*
1900 * Calculate the expected normal priority: i.e. priority
1901 * without taking RT-inheritance into account. Might be
1902 * boosted by interactivity modifiers. Changes upon fork,
1903 * setprio syscalls, and whenever the interactivity
1904 * estimator recalculates.
1905 */
36c8b586 1906static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1907{
1908 int prio;
1909
e05606d3 1910 if (task_has_rt_policy(p))
b29739f9
IM
1911 prio = MAX_RT_PRIO-1 - p->rt_priority;
1912 else
1913 prio = __normal_prio(p);
1914 return prio;
1915}
1916
1917/*
1918 * Calculate the current priority, i.e. the priority
1919 * taken into account by the scheduler. This value might
1920 * be boosted by RT tasks, or might be boosted by
1921 * interactivity modifiers. Will be RT if the task got
1922 * RT-boosted. If not then it returns p->normal_prio.
1923 */
36c8b586 1924static int effective_prio(struct task_struct *p)
b29739f9
IM
1925{
1926 p->normal_prio = normal_prio(p);
1927 /*
1928 * If we are RT tasks or we were boosted to RT priority,
1929 * keep the priority unchanged. Otherwise, update priority
1930 * to the normal priority:
1931 */
1932 if (!rt_prio(p->prio))
1933 return p->normal_prio;
1934 return p->prio;
1935}
1936
1da177e4 1937/*
dd41f596 1938 * activate_task - move a task to the runqueue.
1da177e4 1939 */
dd41f596 1940static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1941{
d9514f6c 1942 if (task_contributes_to_load(p))
dd41f596 1943 rq->nr_uninterruptible--;
1da177e4 1944
8159f87e 1945 enqueue_task(rq, p, wakeup);
c09595f6 1946 inc_nr_running(rq);
1da177e4
LT
1947}
1948
1da177e4
LT
1949/*
1950 * deactivate_task - remove a task from the runqueue.
1951 */
2e1cb74a 1952static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1953{
d9514f6c 1954 if (task_contributes_to_load(p))
dd41f596
IM
1955 rq->nr_uninterruptible++;
1956
69be72c1 1957 dequeue_task(rq, p, sleep);
c09595f6 1958 dec_nr_running(rq);
1da177e4
LT
1959}
1960
1da177e4
LT
1961/**
1962 * task_curr - is this task currently executing on a CPU?
1963 * @p: the task in question.
1964 */
36c8b586 1965inline int task_curr(const struct task_struct *p)
1da177e4
LT
1966{
1967 return cpu_curr(task_cpu(p)) == p;
1968}
1969
dd41f596
IM
1970static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1971{
6f505b16 1972 set_task_rq(p, cpu);
dd41f596 1973#ifdef CONFIG_SMP
ce96b5ac
DA
1974 /*
1975 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1976 * successfuly executed on another CPU. We must ensure that updates of
1977 * per-task data have been completed by this moment.
1978 */
1979 smp_wmb();
dd41f596 1980 task_thread_info(p)->cpu = cpu;
dd41f596 1981#endif
2dd73a4f
PW
1982}
1983
cb469845
SR
1984static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1985 const struct sched_class *prev_class,
1986 int oldprio, int running)
1987{
1988 if (prev_class != p->sched_class) {
1989 if (prev_class->switched_from)
1990 prev_class->switched_from(rq, p, running);
1991 p->sched_class->switched_to(rq, p, running);
1992 } else
1993 p->sched_class->prio_changed(rq, p, oldprio, running);
1994}
1995
b84ff7d6
MG
1996/**
1997 * kthread_bind - bind a just-created kthread to a cpu.
968c8645 1998 * @p: thread created by kthread_create().
b84ff7d6
MG
1999 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2000 *
2001 * Description: This function is equivalent to set_cpus_allowed(),
2002 * except that @cpu doesn't need to be online, and the thread must be
2003 * stopped (i.e., just returned from kthread_create()).
2004 *
2005 * Function lives here instead of kthread.c because it messes with
2006 * scheduler internals which require locking.
2007 */
2008void kthread_bind(struct task_struct *p, unsigned int cpu)
2009{
2010 struct rq *rq = cpu_rq(cpu);
2011 unsigned long flags;
2012
2013 /* Must have done schedule() in kthread() before we set_task_cpu */
2014 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2015 WARN_ON(1);
2016 return;
2017 }
2018
2019 spin_lock_irqsave(&rq->lock, flags);
055a0086 2020 update_rq_clock(rq);
b84ff7d6
MG
2021 set_task_cpu(p, cpu);
2022 p->cpus_allowed = cpumask_of_cpu(cpu);
2023 p->rt.nr_cpus_allowed = 1;
2024 p->flags |= PF_THREAD_BOUND;
2025 spin_unlock_irqrestore(&rq->lock, flags);
2026}
2027EXPORT_SYMBOL(kthread_bind);
2028
1da177e4 2029#ifdef CONFIG_SMP
cc367732
IM
2030/*
2031 * Is this task likely cache-hot:
2032 */
e7693a36 2033static int
cc367732
IM
2034task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2035{
2036 s64 delta;
2037
f540a608
IM
2038 /*
2039 * Buddy candidates are cache hot:
2040 */
f685ceac 2041 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2042 (&p->se == cfs_rq_of(&p->se)->next ||
2043 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2044 return 1;
2045
cc367732
IM
2046 if (p->sched_class != &fair_sched_class)
2047 return 0;
2048
6bc1665b
IM
2049 if (sysctl_sched_migration_cost == -1)
2050 return 1;
2051 if (sysctl_sched_migration_cost == 0)
2052 return 0;
2053
cc367732
IM
2054 delta = now - p->se.exec_start;
2055
2056 return delta < (s64)sysctl_sched_migration_cost;
2057}
2058
2059
dd41f596 2060void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2061{
dd41f596 2062 int old_cpu = task_cpu(p);
5afcdab7 2063 struct rq *old_rq = cpu_rq(old_cpu);
2830cf8c
SV
2064 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2065 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
6cfb0d5d 2066
de1d7286 2067 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2068
cc367732 2069 if (old_cpu != new_cpu) {
6c594c21
IM
2070 p->se.nr_migrations++;
2071#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2072 if (task_hot(p, old_rq->clock, NULL))
2073 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2074#endif
cdd6c482 2075 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
e5289d4a 2076 1, 1, NULL, 0);
6c594c21 2077 }
2830cf8c
SV
2078 p->se.vruntime -= old_cfsrq->min_vruntime -
2079 new_cfsrq->min_vruntime;
dd41f596
IM
2080
2081 __set_task_cpu(p, new_cpu);
c65cc870
IM
2082}
2083
70b97a7f 2084struct migration_req {
1da177e4 2085 struct list_head list;
1da177e4 2086
36c8b586 2087 struct task_struct *task;
1da177e4
LT
2088 int dest_cpu;
2089
1da177e4 2090 struct completion done;
70b97a7f 2091};
1da177e4
LT
2092
2093/*
2094 * The task's runqueue lock must be held.
2095 * Returns true if you have to wait for migration thread.
2096 */
36c8b586 2097static int
70b97a7f 2098migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2099{
70b97a7f 2100 struct rq *rq = task_rq(p);
1da177e4
LT
2101
2102 /*
2103 * If the task is not on a runqueue (and not running), then
2104 * it is sufficient to simply update the task's cpu field.
2105 */
dd41f596 2106 if (!p->se.on_rq && !task_running(rq, p)) {
055a0086 2107 update_rq_clock(rq);
1da177e4
LT
2108 set_task_cpu(p, dest_cpu);
2109 return 0;
2110 }
2111
2112 init_completion(&req->done);
1da177e4
LT
2113 req->task = p;
2114 req->dest_cpu = dest_cpu;
2115 list_add(&req->list, &rq->migration_queue);
48f24c4d 2116
1da177e4
LT
2117 return 1;
2118}
2119
a26b89f0
MM
2120/*
2121 * wait_task_context_switch - wait for a thread to complete at least one
2122 * context switch.
2123 *
2124 * @p must not be current.
2125 */
2126void wait_task_context_switch(struct task_struct *p)
2127{
2128 unsigned long nvcsw, nivcsw, flags;
2129 int running;
2130 struct rq *rq;
2131
2132 nvcsw = p->nvcsw;
2133 nivcsw = p->nivcsw;
2134 for (;;) {
2135 /*
2136 * The runqueue is assigned before the actual context
2137 * switch. We need to take the runqueue lock.
2138 *
2139 * We could check initially without the lock but it is
2140 * very likely that we need to take the lock in every
2141 * iteration.
2142 */
2143 rq = task_rq_lock(p, &flags);
2144 running = task_running(rq, p);
2145 task_rq_unlock(rq, &flags);
2146
2147 if (likely(!running))
2148 break;
2149 /*
2150 * The switch count is incremented before the actual
2151 * context switch. We thus wait for two switches to be
2152 * sure at least one completed.
2153 */
2154 if ((p->nvcsw - nvcsw) > 1)
2155 break;
2156 if ((p->nivcsw - nivcsw) > 1)
2157 break;
2158
2159 cpu_relax();
2160 }
2161}
2162
1da177e4
LT
2163/*
2164 * wait_task_inactive - wait for a thread to unschedule.
2165 *
85ba2d86
RM
2166 * If @match_state is nonzero, it's the @p->state value just checked and
2167 * not expected to change. If it changes, i.e. @p might have woken up,
2168 * then return zero. When we succeed in waiting for @p to be off its CPU,
2169 * we return a positive number (its total switch count). If a second call
2170 * a short while later returns the same number, the caller can be sure that
2171 * @p has remained unscheduled the whole time.
2172 *
1da177e4
LT
2173 * The caller must ensure that the task *will* unschedule sometime soon,
2174 * else this function might spin for a *long* time. This function can't
2175 * be called with interrupts off, or it may introduce deadlock with
2176 * smp_call_function() if an IPI is sent by the same process we are
2177 * waiting to become inactive.
2178 */
85ba2d86 2179unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2180{
2181 unsigned long flags;
dd41f596 2182 int running, on_rq;
85ba2d86 2183 unsigned long ncsw;
70b97a7f 2184 struct rq *rq;
1da177e4 2185
3a5c359a
AK
2186 for (;;) {
2187 /*
2188 * We do the initial early heuristics without holding
2189 * any task-queue locks at all. We'll only try to get
2190 * the runqueue lock when things look like they will
2191 * work out!
2192 */
2193 rq = task_rq(p);
fa490cfd 2194
3a5c359a
AK
2195 /*
2196 * If the task is actively running on another CPU
2197 * still, just relax and busy-wait without holding
2198 * any locks.
2199 *
2200 * NOTE! Since we don't hold any locks, it's not
2201 * even sure that "rq" stays as the right runqueue!
2202 * But we don't care, since "task_running()" will
2203 * return false if the runqueue has changed and p
2204 * is actually now running somewhere else!
2205 */
85ba2d86
RM
2206 while (task_running(rq, p)) {
2207 if (match_state && unlikely(p->state != match_state))
2208 return 0;
3a5c359a 2209 cpu_relax();
85ba2d86 2210 }
fa490cfd 2211
3a5c359a
AK
2212 /*
2213 * Ok, time to look more closely! We need the rq
2214 * lock now, to be *sure*. If we're wrong, we'll
2215 * just go back and repeat.
2216 */
2217 rq = task_rq_lock(p, &flags);
0a16b607 2218 trace_sched_wait_task(rq, p);
3a5c359a
AK
2219 running = task_running(rq, p);
2220 on_rq = p->se.on_rq;
85ba2d86 2221 ncsw = 0;
f31e11d8 2222 if (!match_state || p->state == match_state)
93dcf55f 2223 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2224 task_rq_unlock(rq, &flags);
fa490cfd 2225
85ba2d86
RM
2226 /*
2227 * If it changed from the expected state, bail out now.
2228 */
2229 if (unlikely(!ncsw))
2230 break;
2231
3a5c359a
AK
2232 /*
2233 * Was it really running after all now that we
2234 * checked with the proper locks actually held?
2235 *
2236 * Oops. Go back and try again..
2237 */
2238 if (unlikely(running)) {
2239 cpu_relax();
2240 continue;
2241 }
fa490cfd 2242
3a5c359a
AK
2243 /*
2244 * It's not enough that it's not actively running,
2245 * it must be off the runqueue _entirely_, and not
2246 * preempted!
2247 *
80dd99b3 2248 * So if it was still runnable (but just not actively
3a5c359a
AK
2249 * running right now), it's preempted, and we should
2250 * yield - it could be a while.
2251 */
2252 if (unlikely(on_rq)) {
2253 schedule_timeout_uninterruptible(1);
2254 continue;
2255 }
fa490cfd 2256
3a5c359a
AK
2257 /*
2258 * Ahh, all good. It wasn't running, and it wasn't
2259 * runnable, which means that it will never become
2260 * running in the future either. We're all done!
2261 */
2262 break;
2263 }
85ba2d86
RM
2264
2265 return ncsw;
1da177e4
LT
2266}
2267
2268/***
2269 * kick_process - kick a running thread to enter/exit the kernel
2270 * @p: the to-be-kicked thread
2271 *
2272 * Cause a process which is running on another CPU to enter
2273 * kernel-mode, without any delay. (to get signals handled.)
2274 *
2275 * NOTE: this function doesnt have to take the runqueue lock,
2276 * because all it wants to ensure is that the remote task enters
2277 * the kernel. If the IPI races and the task has been migrated
2278 * to another CPU then no harm is done and the purpose has been
2279 * achieved as well.
2280 */
36c8b586 2281void kick_process(struct task_struct *p)
1da177e4
LT
2282{
2283 int cpu;
2284
2285 preempt_disable();
2286 cpu = task_cpu(p);
2287 if ((cpu != smp_processor_id()) && task_curr(p))
2288 smp_send_reschedule(cpu);
2289 preempt_enable();
2290}
b43e3521 2291EXPORT_SYMBOL_GPL(kick_process);
476d139c 2292#endif /* CONFIG_SMP */
1da177e4 2293
0793a61d
TG
2294/**
2295 * task_oncpu_function_call - call a function on the cpu on which a task runs
2296 * @p: the task to evaluate
2297 * @func: the function to be called
2298 * @info: the function call argument
2299 *
2300 * Calls the function @func when the task is currently running. This might
2301 * be on the current CPU, which just calls the function directly
2302 */
2303void task_oncpu_function_call(struct task_struct *p,
2304 void (*func) (void *info), void *info)
2305{
2306 int cpu;
2307
2308 preempt_disable();
2309 cpu = task_cpu(p);
2310 if (task_curr(p))
2311 smp_call_function_single(cpu, func, info, 1);
2312 preempt_enable();
2313}
2314
970b13ba
PZ
2315#ifdef CONFIG_SMP
2316static inline
2317int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2318{
2319 return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2320}
2321#endif
2322
1da177e4
LT
2323/***
2324 * try_to_wake_up - wake up a thread
2325 * @p: the to-be-woken-up thread
2326 * @state: the mask of task states that can be woken
2327 * @sync: do a synchronous wakeup?
2328 *
2329 * Put it on the run-queue if it's not already there. The "current"
2330 * thread is always on the run-queue (except when the actual
2331 * re-schedule is in progress), and as such you're allowed to do
2332 * the simpler "current->state = TASK_RUNNING" to mark yourself
2333 * runnable without the overhead of this.
2334 *
2335 * returns failure only if the task is already active.
2336 */
7d478721
PZ
2337static int try_to_wake_up(struct task_struct *p, unsigned int state,
2338 int wake_flags)
1da177e4 2339{
cc367732 2340 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2341 unsigned long flags;
f5dc3753 2342 struct rq *rq, *orig_rq;
1da177e4 2343
b85d0667 2344 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2345 wake_flags &= ~WF_SYNC;
2398f2c6 2346
e9c84311 2347 this_cpu = get_cpu();
2398f2c6 2348
04e2f174 2349 smp_wmb();
f5dc3753 2350 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2351 update_rq_clock(rq);
e9c84311 2352 if (!(p->state & state))
1da177e4
LT
2353 goto out;
2354
dd41f596 2355 if (p->se.on_rq)
1da177e4
LT
2356 goto out_running;
2357
2358 cpu = task_cpu(p);
cc367732 2359 orig_cpu = cpu;
1da177e4
LT
2360
2361#ifdef CONFIG_SMP
2362 if (unlikely(task_running(rq, p)))
2363 goto out_activate;
2364
e9c84311
PZ
2365 /*
2366 * In order to handle concurrent wakeups and release the rq->lock
2367 * we put the task in TASK_WAKING state.
eb24073b
IM
2368 *
2369 * First fix up the nr_uninterruptible count:
e9c84311 2370 */
eb24073b
IM
2371 if (task_contributes_to_load(p))
2372 rq->nr_uninterruptible--;
e9c84311
PZ
2373 p->state = TASK_WAKING;
2374 task_rq_unlock(rq, &flags);
2375
970b13ba 2376 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
055a0086
MG
2377 if (cpu != orig_cpu) {
2378 local_irq_save(flags);
2379 rq = cpu_rq(cpu);
2380 update_rq_clock(rq);
5d2f5a61 2381 set_task_cpu(p, cpu);
055a0086
MG
2382 local_irq_restore(flags);
2383 }
e9c84311 2384 rq = task_rq_lock(p, &flags);
f5dc3753 2385
e9c84311
PZ
2386 WARN_ON(p->state != TASK_WAKING);
2387 cpu = task_cpu(p);
1da177e4 2388
e7693a36
GH
2389#ifdef CONFIG_SCHEDSTATS
2390 schedstat_inc(rq, ttwu_count);
2391 if (cpu == this_cpu)
2392 schedstat_inc(rq, ttwu_local);
2393 else {
2394 struct sched_domain *sd;
2395 for_each_domain(this_cpu, sd) {
758b2cdc 2396 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2397 schedstat_inc(sd, ttwu_wake_remote);
2398 break;
2399 }
2400 }
2401 }
6d6bc0ad 2402#endif /* CONFIG_SCHEDSTATS */
e7693a36 2403
1da177e4
LT
2404out_activate:
2405#endif /* CONFIG_SMP */
cc367732 2406 schedstat_inc(p, se.nr_wakeups);
7d478721 2407 if (wake_flags & WF_SYNC)
cc367732
IM
2408 schedstat_inc(p, se.nr_wakeups_sync);
2409 if (orig_cpu != cpu)
2410 schedstat_inc(p, se.nr_wakeups_migrate);
2411 if (cpu == this_cpu)
2412 schedstat_inc(p, se.nr_wakeups_local);
2413 else
2414 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2415 activate_task(rq, p, 1);
1da177e4
LT
2416 success = 1;
2417
831451ac
PZ
2418 /*
2419 * Only attribute actual wakeups done by this task.
2420 */
2421 if (!in_interrupt()) {
2422 struct sched_entity *se = &current->se;
2423 u64 sample = se->sum_exec_runtime;
2424
2425 if (se->last_wakeup)
2426 sample -= se->last_wakeup;
2427 else
2428 sample -= se->start_runtime;
2429 update_avg(&se->avg_wakeup, sample);
2430
2431 se->last_wakeup = se->sum_exec_runtime;
2432 }
2433
1da177e4 2434out_running:
468a15bb 2435 trace_sched_wakeup(rq, p, success);
7d478721 2436 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2437
1da177e4 2438 p->state = TASK_RUNNING;
9a897c5a
SR
2439#ifdef CONFIG_SMP
2440 if (p->sched_class->task_wake_up)
2441 p->sched_class->task_wake_up(rq, p);
eae0c9df
MG
2442
2443 if (unlikely(rq->idle_stamp)) {
2444 u64 delta = rq->clock - rq->idle_stamp;
2445 u64 max = 2*sysctl_sched_migration_cost;
2446
2447 if (delta > max)
2448 rq->avg_idle = max;
2449 else
2450 update_avg(&rq->avg_idle, delta);
2451 rq->idle_stamp = 0;
2452 }
9a897c5a 2453#endif
1da177e4
LT
2454out:
2455 task_rq_unlock(rq, &flags);
e9c84311 2456 put_cpu();
1da177e4
LT
2457
2458 return success;
2459}
2460
50fa610a
DH
2461/**
2462 * wake_up_process - Wake up a specific process
2463 * @p: The process to be woken up.
2464 *
2465 * Attempt to wake up the nominated process and move it to the set of runnable
2466 * processes. Returns 1 if the process was woken up, 0 if it was already
2467 * running.
2468 *
2469 * It may be assumed that this function implies a write memory barrier before
2470 * changing the task state if and only if any tasks are woken up.
2471 */
7ad5b3a5 2472int wake_up_process(struct task_struct *p)
1da177e4 2473{
d9514f6c 2474 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2475}
1da177e4
LT
2476EXPORT_SYMBOL(wake_up_process);
2477
7ad5b3a5 2478int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2479{
2480 return try_to_wake_up(p, state, 0);
2481}
2482
1da177e4
LT
2483/*
2484 * Perform scheduler related setup for a newly forked process p.
2485 * p is forked by current.
dd41f596
IM
2486 *
2487 * __sched_fork() is basic setup used by init_idle() too:
2488 */
2489static void __sched_fork(struct task_struct *p)
2490{
dd41f596
IM
2491 p->se.exec_start = 0;
2492 p->se.sum_exec_runtime = 0;
f6cf891c 2493 p->se.prev_sum_exec_runtime = 0;
6c594c21 2494 p->se.nr_migrations = 0;
4ae7d5ce
IM
2495 p->se.last_wakeup = 0;
2496 p->se.avg_overlap = 0;
831451ac
PZ
2497 p->se.start_runtime = 0;
2498 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
ad4b78bb 2499 p->se.avg_running = 0;
6cfb0d5d
IM
2500
2501#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2502 p->se.wait_start = 0;
2503 p->se.wait_max = 0;
2504 p->se.wait_count = 0;
2505 p->se.wait_sum = 0;
2506
2507 p->se.sleep_start = 0;
2508 p->se.sleep_max = 0;
2509 p->se.sum_sleep_runtime = 0;
2510
2511 p->se.block_start = 0;
2512 p->se.block_max = 0;
2513 p->se.exec_max = 0;
2514 p->se.slice_max = 0;
2515
2516 p->se.nr_migrations_cold = 0;
2517 p->se.nr_failed_migrations_affine = 0;
2518 p->se.nr_failed_migrations_running = 0;
2519 p->se.nr_failed_migrations_hot = 0;
2520 p->se.nr_forced_migrations = 0;
2521 p->se.nr_forced2_migrations = 0;
2522
2523 p->se.nr_wakeups = 0;
2524 p->se.nr_wakeups_sync = 0;
2525 p->se.nr_wakeups_migrate = 0;
2526 p->se.nr_wakeups_local = 0;
2527 p->se.nr_wakeups_remote = 0;
2528 p->se.nr_wakeups_affine = 0;
2529 p->se.nr_wakeups_affine_attempts = 0;
2530 p->se.nr_wakeups_passive = 0;
2531 p->se.nr_wakeups_idle = 0;
2532
6cfb0d5d 2533#endif
476d139c 2534
fa717060 2535 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2536 p->se.on_rq = 0;
4a55bd5e 2537 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2538
e107be36
AK
2539#ifdef CONFIG_PREEMPT_NOTIFIERS
2540 INIT_HLIST_HEAD(&p->preempt_notifiers);
2541#endif
2542
1da177e4
LT
2543 /*
2544 * We mark the process as running here, but have not actually
2545 * inserted it onto the runqueue yet. This guarantees that
2546 * nobody will actually run it, and a signal or other external
2547 * event cannot wake it up and insert it on the runqueue either.
2548 */
2549 p->state = TASK_RUNNING;
dd41f596
IM
2550}
2551
2552/*
2553 * fork()/clone()-time setup:
2554 */
2555void sched_fork(struct task_struct *p, int clone_flags)
2556{
2557 int cpu = get_cpu();
055a0086 2558 unsigned long flags;
dd41f596
IM
2559
2560 __sched_fork(p);
2561
b9dc29e7
MG
2562 /*
2563 * Revert to default priority/policy on fork if requested.
2564 */
2565 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2566 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2567 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2568 p->normal_prio = p->static_prio;
2569 }
b9dc29e7 2570
6c697bdf
MG
2571 if (PRIO_TO_NICE(p->static_prio) < 0) {
2572 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2573 p->normal_prio = p->static_prio;
6c697bdf
MG
2574 set_load_weight(p);
2575 }
2576
b9dc29e7
MG
2577 /*
2578 * We don't need the reset flag anymore after the fork. It has
2579 * fulfilled its duty:
2580 */
2581 p->sched_reset_on_fork = 0;
2582 }
ca94c442 2583
f83f9ac2
PW
2584 /*
2585 * Make sure we do not leak PI boosting priority to the child.
2586 */
2587 p->prio = current->normal_prio;
2588
2ddbf952
HS
2589 if (!rt_prio(p->prio))
2590 p->sched_class = &fair_sched_class;
b29739f9 2591
5f3edc1b 2592#ifdef CONFIG_SMP
970b13ba 2593 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
5f3edc1b 2594#endif
055a0086
MG
2595 local_irq_save(flags);
2596 update_rq_clock(cpu_rq(cpu));
5f3edc1b 2597 set_task_cpu(p, cpu);
055a0086 2598 local_irq_restore(flags);
5f3edc1b 2599
52f17b6c 2600#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2601 if (likely(sched_info_on()))
52f17b6c 2602 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2603#endif
d6077cb8 2604#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2605 p->oncpu = 0;
2606#endif
1da177e4 2607#ifdef CONFIG_PREEMPT
4866cde0 2608 /* Want to start with kernel preemption disabled. */
a1261f54 2609 task_thread_info(p)->preempt_count = 1;
1da177e4 2610#endif
917b627d
GH
2611 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2612
476d139c 2613 put_cpu();
1da177e4
LT
2614}
2615
2616/*
2617 * wake_up_new_task - wake up a newly created task for the first time.
2618 *
2619 * This function will do some initial scheduler statistics housekeeping
2620 * that must be done for every newly created context, then puts the task
2621 * on the runqueue and wakes it.
2622 */
7ad5b3a5 2623void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2624{
2625 unsigned long flags;
dd41f596 2626 struct rq *rq;
1da177e4
LT
2627
2628 rq = task_rq_lock(p, &flags);
147cbb4b 2629 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2630 update_rq_clock(rq);
1da177e4 2631
b9dca1e0 2632 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2633 activate_task(rq, p, 0);
1da177e4 2634 } else {
1da177e4 2635 /*
dd41f596
IM
2636 * Let the scheduling class do new task startup
2637 * management (if any):
1da177e4 2638 */
ee0827d8 2639 p->sched_class->task_new(rq, p);
c09595f6 2640 inc_nr_running(rq);
1da177e4 2641 }
c71dd42d 2642 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2643 check_preempt_curr(rq, p, WF_FORK);
9a897c5a
SR
2644#ifdef CONFIG_SMP
2645 if (p->sched_class->task_wake_up)
2646 p->sched_class->task_wake_up(rq, p);
2647#endif
dd41f596 2648 task_rq_unlock(rq, &flags);
1da177e4
LT
2649}
2650
e107be36
AK
2651#ifdef CONFIG_PREEMPT_NOTIFIERS
2652
2653/**
80dd99b3 2654 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2655 * @notifier: notifier struct to register
e107be36
AK
2656 */
2657void preempt_notifier_register(struct preempt_notifier *notifier)
2658{
2659 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2660}
2661EXPORT_SYMBOL_GPL(preempt_notifier_register);
2662
2663/**
2664 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2665 * @notifier: notifier struct to unregister
e107be36
AK
2666 *
2667 * This is safe to call from within a preemption notifier.
2668 */
2669void preempt_notifier_unregister(struct preempt_notifier *notifier)
2670{
2671 hlist_del(&notifier->link);
2672}
2673EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2674
2675static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2676{
2677 struct preempt_notifier *notifier;
2678 struct hlist_node *node;
2679
2680 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2681 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2682}
2683
2684static void
2685fire_sched_out_preempt_notifiers(struct task_struct *curr,
2686 struct task_struct *next)
2687{
2688 struct preempt_notifier *notifier;
2689 struct hlist_node *node;
2690
2691 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2692 notifier->ops->sched_out(notifier, next);
2693}
2694
6d6bc0ad 2695#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2696
2697static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2698{
2699}
2700
2701static void
2702fire_sched_out_preempt_notifiers(struct task_struct *curr,
2703 struct task_struct *next)
2704{
2705}
2706
6d6bc0ad 2707#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2708
4866cde0
NP
2709/**
2710 * prepare_task_switch - prepare to switch tasks
2711 * @rq: the runqueue preparing to switch
421cee29 2712 * @prev: the current task that is being switched out
4866cde0
NP
2713 * @next: the task we are going to switch to.
2714 *
2715 * This is called with the rq lock held and interrupts off. It must
2716 * be paired with a subsequent finish_task_switch after the context
2717 * switch.
2718 *
2719 * prepare_task_switch sets up locking and calls architecture specific
2720 * hooks.
2721 */
e107be36
AK
2722static inline void
2723prepare_task_switch(struct rq *rq, struct task_struct *prev,
2724 struct task_struct *next)
4866cde0 2725{
e107be36 2726 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2727 prepare_lock_switch(rq, next);
2728 prepare_arch_switch(next);
2729}
2730
1da177e4
LT
2731/**
2732 * finish_task_switch - clean up after a task-switch
344babaa 2733 * @rq: runqueue associated with task-switch
1da177e4
LT
2734 * @prev: the thread we just switched away from.
2735 *
4866cde0
NP
2736 * finish_task_switch must be called after the context switch, paired
2737 * with a prepare_task_switch call before the context switch.
2738 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2739 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2740 *
2741 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2742 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2743 * with the lock held can cause deadlocks; see schedule() for
2744 * details.)
2745 */
a9957449 2746static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2747 __releases(rq->lock)
2748{
1da177e4 2749 struct mm_struct *mm = rq->prev_mm;
55a101f8 2750 long prev_state;
1da177e4
LT
2751
2752 rq->prev_mm = NULL;
2753
2754 /*
2755 * A task struct has one reference for the use as "current".
c394cc9f 2756 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2757 * schedule one last time. The schedule call will never return, and
2758 * the scheduled task must drop that reference.
c394cc9f 2759 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2760 * still held, otherwise prev could be scheduled on another cpu, die
2761 * there before we look at prev->state, and then the reference would
2762 * be dropped twice.
2763 * Manfred Spraul <manfred@colorfullife.com>
2764 */
55a101f8 2765 prev_state = prev->state;
4866cde0 2766 finish_arch_switch(prev);
cdd6c482 2767 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2768 finish_lock_switch(rq, prev);
e8fa1362 2769
e107be36 2770 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2771 if (mm)
2772 mmdrop(mm);
c394cc9f 2773 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2774 /*
2775 * Remove function-return probe instances associated with this
2776 * task and put them back on the free list.
9761eea8 2777 */
c6fd91f0 2778 kprobe_flush_task(prev);
1da177e4 2779 put_task_struct(prev);
c6fd91f0 2780 }
1da177e4
LT
2781}
2782
3f029d3c
GH
2783#ifdef CONFIG_SMP
2784
2785/* assumes rq->lock is held */
2786static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2787{
2788 if (prev->sched_class->pre_schedule)
2789 prev->sched_class->pre_schedule(rq, prev);
2790}
2791
2792/* rq->lock is NOT held, but preemption is disabled */
2793static inline void post_schedule(struct rq *rq)
2794{
2795 if (rq->post_schedule) {
2796 unsigned long flags;
2797
2798 spin_lock_irqsave(&rq->lock, flags);
2799 if (rq->curr->sched_class->post_schedule)
2800 rq->curr->sched_class->post_schedule(rq);
2801 spin_unlock_irqrestore(&rq->lock, flags);
2802
2803 rq->post_schedule = 0;
2804 }
2805}
2806
2807#else
da19ab51 2808
3f029d3c
GH
2809static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2810{
2811}
2812
2813static inline void post_schedule(struct rq *rq)
2814{
1da177e4
LT
2815}
2816
3f029d3c
GH
2817#endif
2818
1da177e4
LT
2819/**
2820 * schedule_tail - first thing a freshly forked thread must call.
2821 * @prev: the thread we just switched away from.
2822 */
36c8b586 2823asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2824 __releases(rq->lock)
2825{
70b97a7f
IM
2826 struct rq *rq = this_rq();
2827
4866cde0 2828 finish_task_switch(rq, prev);
da19ab51 2829
3f029d3c
GH
2830 /*
2831 * FIXME: do we need to worry about rq being invalidated by the
2832 * task_switch?
2833 */
2834 post_schedule(rq);
70b97a7f 2835
4866cde0
NP
2836#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2837 /* In this case, finish_task_switch does not reenable preemption */
2838 preempt_enable();
2839#endif
1da177e4 2840 if (current->set_child_tid)
b488893a 2841 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2842}
2843
2844/*
2845 * context_switch - switch to the new MM and the new
2846 * thread's register state.
2847 */
dd41f596 2848static inline void
70b97a7f 2849context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2850 struct task_struct *next)
1da177e4 2851{
dd41f596 2852 struct mm_struct *mm, *oldmm;
1da177e4 2853
e107be36 2854 prepare_task_switch(rq, prev, next);
0a16b607 2855 trace_sched_switch(rq, prev, next);
dd41f596
IM
2856 mm = next->mm;
2857 oldmm = prev->active_mm;
9226d125
ZA
2858 /*
2859 * For paravirt, this is coupled with an exit in switch_to to
2860 * combine the page table reload and the switch backend into
2861 * one hypercall.
2862 */
224101ed 2863 arch_start_context_switch(prev);
9226d125 2864
710390d9 2865 if (likely(!mm)) {
1da177e4
LT
2866 next->active_mm = oldmm;
2867 atomic_inc(&oldmm->mm_count);
2868 enter_lazy_tlb(oldmm, next);
2869 } else
2870 switch_mm(oldmm, mm, next);
2871
710390d9 2872 if (likely(!prev->mm)) {
1da177e4 2873 prev->active_mm = NULL;
1da177e4
LT
2874 rq->prev_mm = oldmm;
2875 }
3a5f5e48
IM
2876 /*
2877 * Since the runqueue lock will be released by the next
2878 * task (which is an invalid locking op but in the case
2879 * of the scheduler it's an obvious special-case), so we
2880 * do an early lockdep release here:
2881 */
2882#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2883 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2884#endif
1da177e4
LT
2885
2886 /* Here we just switch the register state and the stack. */
2887 switch_to(prev, next, prev);
2888
dd41f596
IM
2889 barrier();
2890 /*
2891 * this_rq must be evaluated again because prev may have moved
2892 * CPUs since it called schedule(), thus the 'rq' on its stack
2893 * frame will be invalid.
2894 */
2895 finish_task_switch(this_rq(), prev);
1da177e4
LT
2896}
2897
2898/*
2899 * nr_running, nr_uninterruptible and nr_context_switches:
2900 *
2901 * externally visible scheduler statistics: current number of runnable
2902 * threads, current number of uninterruptible-sleeping threads, total
2903 * number of context switches performed since bootup.
2904 */
2905unsigned long nr_running(void)
2906{
2907 unsigned long i, sum = 0;
2908
2909 for_each_online_cpu(i)
2910 sum += cpu_rq(i)->nr_running;
2911
2912 return sum;
2913}
2914
2915unsigned long nr_uninterruptible(void)
2916{
2917 unsigned long i, sum = 0;
2918
0a945022 2919 for_each_possible_cpu(i)
1da177e4
LT
2920 sum += cpu_rq(i)->nr_uninterruptible;
2921
2922 /*
2923 * Since we read the counters lockless, it might be slightly
2924 * inaccurate. Do not allow it to go below zero though:
2925 */
2926 if (unlikely((long)sum < 0))
2927 sum = 0;
2928
2929 return sum;
2930}
2931
2932unsigned long long nr_context_switches(void)
2933{
cc94abfc
SR
2934 int i;
2935 unsigned long long sum = 0;
1da177e4 2936
0a945022 2937 for_each_possible_cpu(i)
1da177e4
LT
2938 sum += cpu_rq(i)->nr_switches;
2939
2940 return sum;
2941}
2942
2943unsigned long nr_iowait(void)
2944{
2945 unsigned long i, sum = 0;
2946
0a945022 2947 for_each_possible_cpu(i)
1da177e4
LT
2948 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2949
2950 return sum;
2951}
2952
69d25870
AV
2953unsigned long nr_iowait_cpu(void)
2954{
2955 struct rq *this = this_rq();
2956 return atomic_read(&this->nr_iowait);
2957}
2958
2959unsigned long this_cpu_load(void)
2960{
2961 struct rq *this = this_rq();
2962 return this->cpu_load[0];
2963}
2964
2965
dce48a84
TG
2966/* Variables and functions for calc_load */
2967static atomic_long_t calc_load_tasks;
2968static unsigned long calc_load_update;
2969unsigned long avenrun[3];
2970EXPORT_SYMBOL(avenrun);
2971
2d02494f
TG
2972/**
2973 * get_avenrun - get the load average array
2974 * @loads: pointer to dest load array
2975 * @offset: offset to add
2976 * @shift: shift count to shift the result left
2977 *
2978 * These values are estimates at best, so no need for locking.
2979 */
2980void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2981{
2982 loads[0] = (avenrun[0] + offset) << shift;
2983 loads[1] = (avenrun[1] + offset) << shift;
2984 loads[2] = (avenrun[2] + offset) << shift;
2985}
2986
dce48a84
TG
2987static unsigned long
2988calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2989{
dce48a84
TG
2990 load *= exp;
2991 load += active * (FIXED_1 - exp);
2992 return load >> FSHIFT;
2993}
db1b1fef 2994
dce48a84
TG
2995/*
2996 * calc_load - update the avenrun load estimates 10 ticks after the
2997 * CPUs have updated calc_load_tasks.
2998 */
2999void calc_global_load(void)
3000{
3001 unsigned long upd = calc_load_update + 10;
3002 long active;
3003
3004 if (time_before(jiffies, upd))
3005 return;
db1b1fef 3006
dce48a84
TG
3007 active = atomic_long_read(&calc_load_tasks);
3008 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3009
dce48a84
TG
3010 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3011 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3012 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3013
3014 calc_load_update += LOAD_FREQ;
3015}
3016
3017/*
3018 * Either called from update_cpu_load() or from a cpu going idle
3019 */
3020static void calc_load_account_active(struct rq *this_rq)
3021{
3022 long nr_active, delta;
3023
3024 nr_active = this_rq->nr_running;
3025 nr_active += (long) this_rq->nr_uninterruptible;
3026
3027 if (nr_active != this_rq->calc_load_active) {
3028 delta = nr_active - this_rq->calc_load_active;
3029 this_rq->calc_load_active = nr_active;
3030 atomic_long_add(delta, &calc_load_tasks);
3031 }
db1b1fef
JS
3032}
3033
48f24c4d 3034/*
dd41f596
IM
3035 * Update rq->cpu_load[] statistics. This function is usually called every
3036 * scheduler tick (TICK_NSEC).
48f24c4d 3037 */
dd41f596 3038static void update_cpu_load(struct rq *this_rq)
48f24c4d 3039{
495eca49 3040 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3041 int i, scale;
3042
3043 this_rq->nr_load_updates++;
dd41f596
IM
3044
3045 /* Update our load: */
3046 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3047 unsigned long old_load, new_load;
3048
3049 /* scale is effectively 1 << i now, and >> i divides by scale */
3050
3051 old_load = this_rq->cpu_load[i];
3052 new_load = this_load;
a25707f3
IM
3053 /*
3054 * Round up the averaging division if load is increasing. This
3055 * prevents us from getting stuck on 9 if the load is 10, for
3056 * example.
3057 */
3058 if (new_load > old_load)
3059 new_load += scale-1;
dd41f596
IM
3060 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3061 }
dce48a84
TG
3062
3063 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3064 this_rq->calc_load_update += LOAD_FREQ;
3065 calc_load_account_active(this_rq);
3066 }
48f24c4d
IM
3067}
3068
dd41f596
IM
3069#ifdef CONFIG_SMP
3070
1da177e4
LT
3071/*
3072 * double_rq_lock - safely lock two runqueues
3073 *
3074 * Note this does not disable interrupts like task_rq_lock,
3075 * you need to do so manually before calling.
3076 */
70b97a7f 3077static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3078 __acquires(rq1->lock)
3079 __acquires(rq2->lock)
3080{
054b9108 3081 BUG_ON(!irqs_disabled());
1da177e4
LT
3082 if (rq1 == rq2) {
3083 spin_lock(&rq1->lock);
3084 __acquire(rq2->lock); /* Fake it out ;) */
3085 } else {
c96d145e 3086 if (rq1 < rq2) {
1da177e4 3087 spin_lock(&rq1->lock);
5e710e37 3088 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3089 } else {
3090 spin_lock(&rq2->lock);
5e710e37 3091 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3092 }
3093 }
6e82a3be
IM
3094 update_rq_clock(rq1);
3095 update_rq_clock(rq2);
1da177e4
LT
3096}
3097
3098/*
3099 * double_rq_unlock - safely unlock two runqueues
3100 *
3101 * Note this does not restore interrupts like task_rq_unlock,
3102 * you need to do so manually after calling.
3103 */
70b97a7f 3104static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3105 __releases(rq1->lock)
3106 __releases(rq2->lock)
3107{
3108 spin_unlock(&rq1->lock);
3109 if (rq1 != rq2)
3110 spin_unlock(&rq2->lock);
3111 else
3112 __release(rq2->lock);
3113}
3114
1da177e4
LT
3115/*
3116 * If dest_cpu is allowed for this process, migrate the task to it.
3117 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3118 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3119 * the cpu_allowed mask is restored.
3120 */
36c8b586 3121static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3122{
70b97a7f 3123 struct migration_req req;
1da177e4 3124 unsigned long flags;
70b97a7f 3125 struct rq *rq;
1da177e4
LT
3126
3127 rq = task_rq_lock(p, &flags);
96f874e2 3128 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3129 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3130 goto out;
3131
3132 /* force the process onto the specified CPU */
3133 if (migrate_task(p, dest_cpu, &req)) {
3134 /* Need to wait for migration thread (might exit: take ref). */
3135 struct task_struct *mt = rq->migration_thread;
36c8b586 3136
1da177e4
LT
3137 get_task_struct(mt);
3138 task_rq_unlock(rq, &flags);
3139 wake_up_process(mt);
3140 put_task_struct(mt);
3141 wait_for_completion(&req.done);
36c8b586 3142
1da177e4
LT
3143 return;
3144 }
3145out:
3146 task_rq_unlock(rq, &flags);
3147}
3148
3149/*
476d139c
NP
3150 * sched_exec - execve() is a valuable balancing opportunity, because at
3151 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3152 */
3153void sched_exec(void)
3154{
1da177e4 3155 int new_cpu, this_cpu = get_cpu();
970b13ba 3156 new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
1da177e4 3157 put_cpu();
476d139c
NP
3158 if (new_cpu != this_cpu)
3159 sched_migrate_task(current, new_cpu);
1da177e4
LT
3160}
3161
3162/*
3163 * pull_task - move a task from a remote runqueue to the local runqueue.
3164 * Both runqueues must be locked.
3165 */
dd41f596
IM
3166static void pull_task(struct rq *src_rq, struct task_struct *p,
3167 struct rq *this_rq, int this_cpu)
1da177e4 3168{
2e1cb74a 3169 deactivate_task(src_rq, p, 0);
1da177e4 3170 set_task_cpu(p, this_cpu);
dd41f596 3171 activate_task(this_rq, p, 0);
1da177e4
LT
3172 /*
3173 * Note that idle threads have a prio of MAX_PRIO, for this test
3174 * to be always true for them.
3175 */
15afe09b 3176 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3177}
3178
3179/*
3180 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3181 */
858119e1 3182static
70b97a7f 3183int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3184 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3185 int *all_pinned)
1da177e4 3186{
708dc512 3187 int tsk_cache_hot = 0;
1da177e4
LT
3188 /*
3189 * We do not migrate tasks that are:
3190 * 1) running (obviously), or
3191 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3192 * 3) are cache-hot on their current CPU.
3193 */
96f874e2 3194 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3195 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3196 return 0;
cc367732 3197 }
81026794
NP
3198 *all_pinned = 0;
3199
cc367732
IM
3200 if (task_running(rq, p)) {
3201 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3202 return 0;
cc367732 3203 }
1da177e4 3204
da84d961
IM
3205 /*
3206 * Aggressive migration if:
3207 * 1) task is cache cold, or
3208 * 2) too many balance attempts have failed.
3209 */
3210
708dc512
LH
3211 tsk_cache_hot = task_hot(p, rq->clock, sd);
3212 if (!tsk_cache_hot ||
3213 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3214#ifdef CONFIG_SCHEDSTATS
708dc512 3215 if (tsk_cache_hot) {
da84d961 3216 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3217 schedstat_inc(p, se.nr_forced_migrations);
3218 }
da84d961
IM
3219#endif
3220 return 1;
3221 }
3222
708dc512 3223 if (tsk_cache_hot) {
cc367732 3224 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3225 return 0;
cc367732 3226 }
1da177e4
LT
3227 return 1;
3228}
3229
e1d1484f
PW
3230static unsigned long
3231balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3232 unsigned long max_load_move, struct sched_domain *sd,
3233 enum cpu_idle_type idle, int *all_pinned,
3234 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3235{
051c6764 3236 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3237 struct task_struct *p;
3238 long rem_load_move = max_load_move;
1da177e4 3239
e1d1484f 3240 if (max_load_move == 0)
1da177e4
LT
3241 goto out;
3242
81026794
NP
3243 pinned = 1;
3244
1da177e4 3245 /*
dd41f596 3246 * Start the load-balancing iterator:
1da177e4 3247 */
dd41f596
IM
3248 p = iterator->start(iterator->arg);
3249next:
b82d9fdd 3250 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3251 goto out;
051c6764
PZ
3252
3253 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3254 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3255 p = iterator->next(iterator->arg);
3256 goto next;
1da177e4
LT
3257 }
3258
dd41f596 3259 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3260 pulled++;
dd41f596 3261 rem_load_move -= p->se.load.weight;
1da177e4 3262
7e96fa58
GH
3263#ifdef CONFIG_PREEMPT
3264 /*
3265 * NEWIDLE balancing is a source of latency, so preemptible kernels
3266 * will stop after the first task is pulled to minimize the critical
3267 * section.
3268 */
3269 if (idle == CPU_NEWLY_IDLE)
3270 goto out;
3271#endif
3272
2dd73a4f 3273 /*
b82d9fdd 3274 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3275 */
e1d1484f 3276 if (rem_load_move > 0) {
a4ac01c3
PW
3277 if (p->prio < *this_best_prio)
3278 *this_best_prio = p->prio;
dd41f596
IM
3279 p = iterator->next(iterator->arg);
3280 goto next;
1da177e4
LT
3281 }
3282out:
3283 /*
e1d1484f 3284 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3285 * so we can safely collect pull_task() stats here rather than
3286 * inside pull_task().
3287 */
3288 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3289
3290 if (all_pinned)
3291 *all_pinned = pinned;
e1d1484f
PW
3292
3293 return max_load_move - rem_load_move;
1da177e4
LT
3294}
3295
dd41f596 3296/*
43010659
PW
3297 * move_tasks tries to move up to max_load_move weighted load from busiest to
3298 * this_rq, as part of a balancing operation within domain "sd".
3299 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3300 *
3301 * Called with both runqueues locked.
3302 */
3303static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3304 unsigned long max_load_move,
dd41f596
IM
3305 struct sched_domain *sd, enum cpu_idle_type idle,
3306 int *all_pinned)
3307{
5522d5d5 3308 const struct sched_class *class = sched_class_highest;
43010659 3309 unsigned long total_load_moved = 0;
a4ac01c3 3310 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3311
3312 do {
43010659
PW
3313 total_load_moved +=
3314 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3315 max_load_move - total_load_moved,
a4ac01c3 3316 sd, idle, all_pinned, &this_best_prio);
dd41f596 3317 class = class->next;
c4acb2c0 3318
7e96fa58
GH
3319#ifdef CONFIG_PREEMPT
3320 /*
3321 * NEWIDLE balancing is a source of latency, so preemptible
3322 * kernels will stop after the first task is pulled to minimize
3323 * the critical section.
3324 */
c4acb2c0
GH
3325 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3326 break;
7e96fa58 3327#endif
43010659 3328 } while (class && max_load_move > total_load_moved);
dd41f596 3329
43010659
PW
3330 return total_load_moved > 0;
3331}
3332
e1d1484f
PW
3333static int
3334iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3335 struct sched_domain *sd, enum cpu_idle_type idle,
3336 struct rq_iterator *iterator)
3337{
3338 struct task_struct *p = iterator->start(iterator->arg);
3339 int pinned = 0;
3340
3341 while (p) {
3342 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3343 pull_task(busiest, p, this_rq, this_cpu);
3344 /*
3345 * Right now, this is only the second place pull_task()
3346 * is called, so we can safely collect pull_task()
3347 * stats here rather than inside pull_task().
3348 */
3349 schedstat_inc(sd, lb_gained[idle]);
3350
3351 return 1;
3352 }
3353 p = iterator->next(iterator->arg);
3354 }
3355
3356 return 0;
3357}
3358
43010659
PW
3359/*
3360 * move_one_task tries to move exactly one task from busiest to this_rq, as
3361 * part of active balancing operations within "domain".
3362 * Returns 1 if successful and 0 otherwise.
3363 *
3364 * Called with both runqueues locked.
3365 */
3366static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3367 struct sched_domain *sd, enum cpu_idle_type idle)
3368{
5522d5d5 3369 const struct sched_class *class;
43010659 3370
cde7e5ca 3371 for_each_class(class) {
e1d1484f 3372 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3373 return 1;
cde7e5ca 3374 }
43010659
PW
3375
3376 return 0;
dd41f596 3377}
67bb6c03 3378/********** Helpers for find_busiest_group ************************/
1da177e4 3379/*
222d656d
GS
3380 * sd_lb_stats - Structure to store the statistics of a sched_domain
3381 * during load balancing.
1da177e4 3382 */
222d656d
GS
3383struct sd_lb_stats {
3384 struct sched_group *busiest; /* Busiest group in this sd */
3385 struct sched_group *this; /* Local group in this sd */
3386 unsigned long total_load; /* Total load of all groups in sd */
3387 unsigned long total_pwr; /* Total power of all groups in sd */
3388 unsigned long avg_load; /* Average load across all groups in sd */
3389
3390 /** Statistics of this group */
3391 unsigned long this_load;
3392 unsigned long this_load_per_task;
3393 unsigned long this_nr_running;
3394
3395 /* Statistics of the busiest group */
3396 unsigned long max_load;
3397 unsigned long busiest_load_per_task;
3398 unsigned long busiest_nr_running;
3399
3400 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3401#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3402 int power_savings_balance; /* Is powersave balance needed for this sd */
3403 struct sched_group *group_min; /* Least loaded group in sd */
3404 struct sched_group *group_leader; /* Group which relieves group_min */
3405 unsigned long min_load_per_task; /* load_per_task in group_min */
3406 unsigned long leader_nr_running; /* Nr running of group_leader */
3407 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3408#endif
222d656d 3409};
1da177e4 3410
d5ac537e 3411/*
381be78f
GS
3412 * sg_lb_stats - stats of a sched_group required for load_balancing
3413 */
3414struct sg_lb_stats {
3415 unsigned long avg_load; /*Avg load across the CPUs of the group */
3416 unsigned long group_load; /* Total load over the CPUs of the group */
3417 unsigned long sum_nr_running; /* Nr tasks running in the group */
3418 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3419 unsigned long group_capacity;
3420 int group_imb; /* Is there an imbalance in the group ? */
3421};
408ed066 3422
67bb6c03
GS
3423/**
3424 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3425 * @group: The group whose first cpu is to be returned.
3426 */
3427static inline unsigned int group_first_cpu(struct sched_group *group)
3428{
3429 return cpumask_first(sched_group_cpus(group));
3430}
3431
3432/**
3433 * get_sd_load_idx - Obtain the load index for a given sched domain.
3434 * @sd: The sched_domain whose load_idx is to be obtained.
3435 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3436 */
3437static inline int get_sd_load_idx(struct sched_domain *sd,
3438 enum cpu_idle_type idle)
3439{
3440 int load_idx;
3441
3442 switch (idle) {
3443 case CPU_NOT_IDLE:
7897986b 3444 load_idx = sd->busy_idx;
67bb6c03
GS
3445 break;
3446
3447 case CPU_NEWLY_IDLE:
7897986b 3448 load_idx = sd->newidle_idx;
67bb6c03
GS
3449 break;
3450 default:
7897986b 3451 load_idx = sd->idle_idx;
67bb6c03
GS
3452 break;
3453 }
1da177e4 3454
67bb6c03
GS
3455 return load_idx;
3456}
1da177e4 3457
1da177e4 3458
c071df18
GS
3459#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3460/**
3461 * init_sd_power_savings_stats - Initialize power savings statistics for
3462 * the given sched_domain, during load balancing.
3463 *
3464 * @sd: Sched domain whose power-savings statistics are to be initialized.
3465 * @sds: Variable containing the statistics for sd.
3466 * @idle: Idle status of the CPU at which we're performing load-balancing.
3467 */
3468static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3469 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3470{
3471 /*
3472 * Busy processors will not participate in power savings
3473 * balance.
3474 */
3475 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3476 sds->power_savings_balance = 0;
3477 else {
3478 sds->power_savings_balance = 1;
3479 sds->min_nr_running = ULONG_MAX;
3480 sds->leader_nr_running = 0;
3481 }
3482}
783609c6 3483
c071df18
GS
3484/**
3485 * update_sd_power_savings_stats - Update the power saving stats for a
3486 * sched_domain while performing load balancing.
3487 *
3488 * @group: sched_group belonging to the sched_domain under consideration.
3489 * @sds: Variable containing the statistics of the sched_domain
3490 * @local_group: Does group contain the CPU for which we're performing
3491 * load balancing ?
3492 * @sgs: Variable containing the statistics of the group.
3493 */
3494static inline void update_sd_power_savings_stats(struct sched_group *group,
3495 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3496{
408ed066 3497
c071df18
GS
3498 if (!sds->power_savings_balance)
3499 return;
1da177e4 3500
c071df18
GS
3501 /*
3502 * If the local group is idle or completely loaded
3503 * no need to do power savings balance at this domain
3504 */
3505 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3506 !sds->this_nr_running))
3507 sds->power_savings_balance = 0;
2dd73a4f 3508
c071df18
GS
3509 /*
3510 * If a group is already running at full capacity or idle,
3511 * don't include that group in power savings calculations
3512 */
3513 if (!sds->power_savings_balance ||
3514 sgs->sum_nr_running >= sgs->group_capacity ||
3515 !sgs->sum_nr_running)
3516 return;
5969fe06 3517
c071df18
GS
3518 /*
3519 * Calculate the group which has the least non-idle load.
3520 * This is the group from where we need to pick up the load
3521 * for saving power
3522 */
3523 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3524 (sgs->sum_nr_running == sds->min_nr_running &&
3525 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3526 sds->group_min = group;
3527 sds->min_nr_running = sgs->sum_nr_running;
3528 sds->min_load_per_task = sgs->sum_weighted_load /
3529 sgs->sum_nr_running;
3530 }
783609c6 3531
c071df18
GS
3532 /*
3533 * Calculate the group which is almost near its
3534 * capacity but still has some space to pick up some load
3535 * from other group and save more power
3536 */
d899a789 3537 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3538 return;
1da177e4 3539
c071df18
GS
3540 if (sgs->sum_nr_running > sds->leader_nr_running ||
3541 (sgs->sum_nr_running == sds->leader_nr_running &&
3542 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3543 sds->group_leader = group;
3544 sds->leader_nr_running = sgs->sum_nr_running;
3545 }
3546}
408ed066 3547
c071df18 3548/**
d5ac537e 3549 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3550 * @sds: Variable containing the statistics of the sched_domain
3551 * under consideration.
3552 * @this_cpu: Cpu at which we're currently performing load-balancing.
3553 * @imbalance: Variable to store the imbalance.
3554 *
d5ac537e
RD
3555 * Description:
3556 * Check if we have potential to perform some power-savings balance.
3557 * If yes, set the busiest group to be the least loaded group in the
3558 * sched_domain, so that it's CPUs can be put to idle.
3559 *
c071df18
GS
3560 * Returns 1 if there is potential to perform power-savings balance.
3561 * Else returns 0.
3562 */
3563static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3564 int this_cpu, unsigned long *imbalance)
3565{
3566 if (!sds->power_savings_balance)
3567 return 0;
1da177e4 3568
c071df18
GS
3569 if (sds->this != sds->group_leader ||
3570 sds->group_leader == sds->group_min)
3571 return 0;
783609c6 3572
c071df18
GS
3573 *imbalance = sds->min_load_per_task;
3574 sds->busiest = sds->group_min;
1da177e4 3575
c071df18 3576 return 1;
1da177e4 3577
c071df18
GS
3578}
3579#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3580static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3581 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3582{
3583 return;
3584}
408ed066 3585
c071df18
GS
3586static inline void update_sd_power_savings_stats(struct sched_group *group,
3587 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3588{
3589 return;
3590}
3591
3592static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3593 int this_cpu, unsigned long *imbalance)
3594{
3595 return 0;
3596}
3597#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3598
d6a59aa3
PZ
3599
3600unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3601{
3602 return SCHED_LOAD_SCALE;
3603}
3604
3605unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3606{
3607 return default_scale_freq_power(sd, cpu);
3608}
3609
3610unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3611{
3612 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3613 unsigned long smt_gain = sd->smt_gain;
3614
3615 smt_gain /= weight;
3616
3617 return smt_gain;
3618}
3619
d6a59aa3
PZ
3620unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3621{
3622 return default_scale_smt_power(sd, cpu);
3623}
3624
e9e9250b
PZ
3625unsigned long scale_rt_power(int cpu)
3626{
3627 struct rq *rq = cpu_rq(cpu);
3628 u64 total, available;
3629
3630 sched_avg_update(rq);
3631
3632 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3633 available = total - rq->rt_avg;
3634
3635 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3636 total = SCHED_LOAD_SCALE;
3637
3638 total >>= SCHED_LOAD_SHIFT;
3639
3640 return div_u64(available, total);
3641}
3642
ab29230e
PZ
3643static void update_cpu_power(struct sched_domain *sd, int cpu)
3644{
3645 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3646 unsigned long power = SCHED_LOAD_SCALE;
3647 struct sched_group *sdg = sd->groups;
ab29230e 3648
8e6598af
PZ
3649 if (sched_feat(ARCH_POWER))
3650 power *= arch_scale_freq_power(sd, cpu);
3651 else
3652 power *= default_scale_freq_power(sd, cpu);
3653
d6a59aa3 3654 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3655
3656 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3657 if (sched_feat(ARCH_POWER))
3658 power *= arch_scale_smt_power(sd, cpu);
3659 else
3660 power *= default_scale_smt_power(sd, cpu);
3661
ab29230e
PZ
3662 power >>= SCHED_LOAD_SHIFT;
3663 }
3664
e9e9250b
PZ
3665 power *= scale_rt_power(cpu);
3666 power >>= SCHED_LOAD_SHIFT;
3667
3668 if (!power)
3669 power = 1;
ab29230e 3670
18a3885f 3671 sdg->cpu_power = power;
ab29230e
PZ
3672}
3673
3674static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3675{
3676 struct sched_domain *child = sd->child;
3677 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3678 unsigned long power;
cc9fba7d
PZ
3679
3680 if (!child) {
ab29230e 3681 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3682 return;
3683 }
3684
d7ea17a7 3685 power = 0;
cc9fba7d
PZ
3686
3687 group = child->groups;
3688 do {
d7ea17a7 3689 power += group->cpu_power;
cc9fba7d
PZ
3690 group = group->next;
3691 } while (group != child->groups);
d7ea17a7
IM
3692
3693 sdg->cpu_power = power;
cc9fba7d 3694}
c071df18 3695
1f8c553d
GS
3696/**
3697 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3698 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3699 * @group: sched_group whose statistics are to be updated.
3700 * @this_cpu: Cpu for which load balance is currently performed.
3701 * @idle: Idle status of this_cpu
3702 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3703 * @sd_idle: Idle status of the sched_domain containing group.
3704 * @local_group: Does group contain this_cpu.
3705 * @cpus: Set of cpus considered for load balancing.
3706 * @balance: Should we balance.
3707 * @sgs: variable to hold the statistics for this group.
3708 */
cc9fba7d
PZ
3709static inline void update_sg_lb_stats(struct sched_domain *sd,
3710 struct sched_group *group, int this_cpu,
1f8c553d
GS
3711 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3712 int local_group, const struct cpumask *cpus,
3713 int *balance, struct sg_lb_stats *sgs)
3714{
3715 unsigned long load, max_cpu_load, min_cpu_load;
3716 int i;
3717 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3718 unsigned long sum_avg_load_per_task;
3719 unsigned long avg_load_per_task;
3720
cc9fba7d 3721 if (local_group) {
1f8c553d 3722 balance_cpu = group_first_cpu(group);
cc9fba7d 3723 if (balance_cpu == this_cpu)
ab29230e 3724 update_group_power(sd, this_cpu);
cc9fba7d 3725 }
1f8c553d
GS
3726
3727 /* Tally up the load of all CPUs in the group */
3728 sum_avg_load_per_task = avg_load_per_task = 0;
3729 max_cpu_load = 0;
3730 min_cpu_load = ~0UL;
408ed066 3731
1f8c553d
GS
3732 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3733 struct rq *rq = cpu_rq(i);
908a7c1b 3734
1f8c553d
GS
3735 if (*sd_idle && rq->nr_running)
3736 *sd_idle = 0;
5c45bf27 3737
1f8c553d 3738 /* Bias balancing toward cpus of our domain */
1da177e4 3739 if (local_group) {
1f8c553d
GS
3740 if (idle_cpu(i) && !first_idle_cpu) {
3741 first_idle_cpu = 1;
3742 balance_cpu = i;
3743 }
3744
3745 load = target_load(i, load_idx);
3746 } else {
3747 load = source_load(i, load_idx);
3748 if (load > max_cpu_load)
3749 max_cpu_load = load;
3750 if (min_cpu_load > load)
3751 min_cpu_load = load;
1da177e4 3752 }
5c45bf27 3753
1f8c553d
GS
3754 sgs->group_load += load;
3755 sgs->sum_nr_running += rq->nr_running;
3756 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3757
1f8c553d
GS
3758 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3759 }
5c45bf27 3760
1f8c553d
GS
3761 /*
3762 * First idle cpu or the first cpu(busiest) in this sched group
3763 * is eligible for doing load balancing at this and above
3764 * domains. In the newly idle case, we will allow all the cpu's
3765 * to do the newly idle load balance.
3766 */
3767 if (idle != CPU_NEWLY_IDLE && local_group &&
3768 balance_cpu != this_cpu && balance) {
3769 *balance = 0;
3770 return;
3771 }
5c45bf27 3772
1f8c553d 3773 /* Adjust by relative CPU power of the group */
18a3885f 3774 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3775
1f8c553d
GS
3776
3777 /*
3778 * Consider the group unbalanced when the imbalance is larger
3779 * than the average weight of two tasks.
3780 *
3781 * APZ: with cgroup the avg task weight can vary wildly and
3782 * might not be a suitable number - should we keep a
3783 * normalized nr_running number somewhere that negates
3784 * the hierarchy?
3785 */
18a3885f
PZ
3786 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3787 group->cpu_power;
1f8c553d
GS
3788
3789 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3790 sgs->group_imb = 1;
3791
bdb94aa5 3792 sgs->group_capacity =
18a3885f 3793 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3794}
dd41f596 3795
37abe198
GS
3796/**
3797 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3798 * @sd: sched_domain whose statistics are to be updated.
3799 * @this_cpu: Cpu for which load balance is currently performed.
3800 * @idle: Idle status of this_cpu
3801 * @sd_idle: Idle status of the sched_domain containing group.
3802 * @cpus: Set of cpus considered for load balancing.
3803 * @balance: Should we balance.
3804 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3805 */
37abe198
GS
3806static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3807 enum cpu_idle_type idle, int *sd_idle,
3808 const struct cpumask *cpus, int *balance,
3809 struct sd_lb_stats *sds)
1da177e4 3810{
b5d978e0 3811 struct sched_domain *child = sd->child;
222d656d 3812 struct sched_group *group = sd->groups;
37abe198 3813 struct sg_lb_stats sgs;
b5d978e0
PZ
3814 int load_idx, prefer_sibling = 0;
3815
3816 if (child && child->flags & SD_PREFER_SIBLING)
3817 prefer_sibling = 1;
222d656d 3818
c071df18 3819 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3820 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3821
3822 do {
1da177e4 3823 int local_group;
1da177e4 3824
758b2cdc
RR
3825 local_group = cpumask_test_cpu(this_cpu,
3826 sched_group_cpus(group));
381be78f 3827 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3828 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3829 local_group, cpus, balance, &sgs);
1da177e4 3830
37abe198
GS
3831 if (local_group && balance && !(*balance))
3832 return;
783609c6 3833
37abe198 3834 sds->total_load += sgs.group_load;
18a3885f 3835 sds->total_pwr += group->cpu_power;
1da177e4 3836
b5d978e0
PZ
3837 /*
3838 * In case the child domain prefers tasks go to siblings
3839 * first, lower the group capacity to one so that we'll try
3840 * and move all the excess tasks away.
3841 */
3842 if (prefer_sibling)
bdb94aa5 3843 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3844
1da177e4 3845 if (local_group) {
37abe198
GS
3846 sds->this_load = sgs.avg_load;
3847 sds->this = group;
3848 sds->this_nr_running = sgs.sum_nr_running;
3849 sds->this_load_per_task = sgs.sum_weighted_load;
3850 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3851 (sgs.sum_nr_running > sgs.group_capacity ||
3852 sgs.group_imb)) {
37abe198
GS
3853 sds->max_load = sgs.avg_load;
3854 sds->busiest = group;
3855 sds->busiest_nr_running = sgs.sum_nr_running;
3856 sds->busiest_load_per_task = sgs.sum_weighted_load;
3857 sds->group_imb = sgs.group_imb;
48f24c4d 3858 }
5c45bf27 3859
c071df18 3860 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3861 group = group->next;
3862 } while (group != sd->groups);
37abe198 3863}
1da177e4 3864
2e6f44ae
GS
3865/**
3866 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3867 * amongst the groups of a sched_domain, during
3868 * load balancing.
2e6f44ae
GS
3869 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3870 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3871 * @imbalance: Variable to store the imbalance.
3872 */
3873static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3874 int this_cpu, unsigned long *imbalance)
3875{
3876 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3877 unsigned int imbn = 2;
3878
3879 if (sds->this_nr_running) {
3880 sds->this_load_per_task /= sds->this_nr_running;
3881 if (sds->busiest_load_per_task >
3882 sds->this_load_per_task)
3883 imbn = 1;
3884 } else
3885 sds->this_load_per_task =
3886 cpu_avg_load_per_task(this_cpu);
1da177e4 3887
2e6f44ae
GS
3888 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3889 sds->busiest_load_per_task * imbn) {
3890 *imbalance = sds->busiest_load_per_task;
3891 return;
3892 }
908a7c1b 3893
1da177e4 3894 /*
2e6f44ae
GS
3895 * OK, we don't have enough imbalance to justify moving tasks,
3896 * however we may be able to increase total CPU power used by
3897 * moving them.
1da177e4 3898 */
2dd73a4f 3899
18a3885f 3900 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3901 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3902 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3903 min(sds->this_load_per_task, sds->this_load);
3904 pwr_now /= SCHED_LOAD_SCALE;
3905
3906 /* Amount of load we'd subtract */
18a3885f
PZ
3907 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3908 sds->busiest->cpu_power;
2e6f44ae 3909 if (sds->max_load > tmp)
18a3885f 3910 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3911 min(sds->busiest_load_per_task, sds->max_load - tmp);
3912
3913 /* Amount of load we'd add */
18a3885f 3914 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3915 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3916 tmp = (sds->max_load * sds->busiest->cpu_power) /
3917 sds->this->cpu_power;
2e6f44ae 3918 else
18a3885f
PZ
3919 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3920 sds->this->cpu_power;
3921 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3922 min(sds->this_load_per_task, sds->this_load + tmp);
3923 pwr_move /= SCHED_LOAD_SCALE;
3924
3925 /* Move if we gain throughput */
3926 if (pwr_move > pwr_now)
3927 *imbalance = sds->busiest_load_per_task;
3928}
dbc523a3
GS
3929
3930/**
3931 * calculate_imbalance - Calculate the amount of imbalance present within the
3932 * groups of a given sched_domain during load balance.
3933 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3934 * @this_cpu: Cpu for which currently load balance is being performed.
3935 * @imbalance: The variable to store the imbalance.
3936 */
3937static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3938 unsigned long *imbalance)
3939{
3940 unsigned long max_pull;
2dd73a4f
PW
3941 /*
3942 * In the presence of smp nice balancing, certain scenarios can have
3943 * max load less than avg load(as we skip the groups at or below
3944 * its cpu_power, while calculating max_load..)
3945 */
dbc523a3 3946 if (sds->max_load < sds->avg_load) {
2dd73a4f 3947 *imbalance = 0;
dbc523a3 3948 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3949 }
0c117f1b
SS
3950
3951 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3952 max_pull = min(sds->max_load - sds->avg_load,
3953 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3954
1da177e4 3955 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3956 *imbalance = min(max_pull * sds->busiest->cpu_power,
3957 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3958 / SCHED_LOAD_SCALE;
3959
2dd73a4f
PW
3960 /*
3961 * if *imbalance is less than the average load per runnable task
3962 * there is no gaurantee that any tasks will be moved so we'll have
3963 * a think about bumping its value to force at least one task to be
3964 * moved
3965 */
dbc523a3
GS
3966 if (*imbalance < sds->busiest_load_per_task)
3967 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3968
dbc523a3 3969}
37abe198 3970/******* find_busiest_group() helpers end here *********************/
1da177e4 3971
b7bb4c9b
GS
3972/**
3973 * find_busiest_group - Returns the busiest group within the sched_domain
3974 * if there is an imbalance. If there isn't an imbalance, and
3975 * the user has opted for power-savings, it returns a group whose
3976 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3977 * such a group exists.
3978 *
3979 * Also calculates the amount of weighted load which should be moved
3980 * to restore balance.
3981 *
3982 * @sd: The sched_domain whose busiest group is to be returned.
3983 * @this_cpu: The cpu for which load balancing is currently being performed.
3984 * @imbalance: Variable which stores amount of weighted load which should
3985 * be moved to restore balance/put a group to idle.
3986 * @idle: The idle status of this_cpu.
3987 * @sd_idle: The idleness of sd
3988 * @cpus: The set of CPUs under consideration for load-balancing.
3989 * @balance: Pointer to a variable indicating if this_cpu
3990 * is the appropriate cpu to perform load balancing at this_level.
3991 *
3992 * Returns: - the busiest group if imbalance exists.
3993 * - If no imbalance and user has opted for power-savings balance,
3994 * return the least loaded group whose CPUs can be
3995 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3996 */
3997static struct sched_group *
3998find_busiest_group(struct sched_domain *sd, int this_cpu,
3999 unsigned long *imbalance, enum cpu_idle_type idle,
4000 int *sd_idle, const struct cpumask *cpus, int *balance)
4001{
4002 struct sd_lb_stats sds;
1da177e4 4003
37abe198 4004 memset(&sds, 0, sizeof(sds));
1da177e4 4005
37abe198
GS
4006 /*
4007 * Compute the various statistics relavent for load balancing at
4008 * this level.
4009 */
4010 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4011 balance, &sds);
4012
b7bb4c9b
GS
4013 /* Cases where imbalance does not exist from POV of this_cpu */
4014 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4015 * at this level.
4016 * 2) There is no busy sibling group to pull from.
4017 * 3) This group is the busiest group.
4018 * 4) This group is more busy than the avg busieness at this
4019 * sched_domain.
4020 * 5) The imbalance is within the specified limit.
4021 * 6) Any rebalance would lead to ping-pong
4022 */
37abe198
GS
4023 if (balance && !(*balance))
4024 goto ret;
1da177e4 4025
b7bb4c9b
GS
4026 if (!sds.busiest || sds.busiest_nr_running == 0)
4027 goto out_balanced;
1da177e4 4028
b7bb4c9b 4029 if (sds.this_load >= sds.max_load)
1da177e4 4030 goto out_balanced;
1da177e4 4031
222d656d 4032 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4033
b7bb4c9b
GS
4034 if (sds.this_load >= sds.avg_load)
4035 goto out_balanced;
4036
4037 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4038 goto out_balanced;
4039
222d656d
GS
4040 sds.busiest_load_per_task /= sds.busiest_nr_running;
4041 if (sds.group_imb)
4042 sds.busiest_load_per_task =
4043 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4044
1da177e4
LT
4045 /*
4046 * We're trying to get all the cpus to the average_load, so we don't
4047 * want to push ourselves above the average load, nor do we wish to
4048 * reduce the max loaded cpu below the average load, as either of these
4049 * actions would just result in more rebalancing later, and ping-pong
4050 * tasks around. Thus we look for the minimum possible imbalance.
4051 * Negative imbalances (*we* are more loaded than anyone else) will
4052 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4053 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4054 * appear as very large values with unsigned longs.
4055 */
222d656d 4056 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4057 goto out_balanced;
4058
dbc523a3
GS
4059 /* Looks like there is an imbalance. Compute it */
4060 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4061 return sds.busiest;
1da177e4
LT
4062
4063out_balanced:
c071df18
GS
4064 /*
4065 * There is no obvious imbalance. But check if we can do some balancing
4066 * to save power.
4067 */
4068 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4069 return sds.busiest;
783609c6 4070ret:
1da177e4
LT
4071 *imbalance = 0;
4072 return NULL;
4073}
4074
4075/*
4076 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4077 */
70b97a7f 4078static struct rq *
d15bcfdb 4079find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4080 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4081{
70b97a7f 4082 struct rq *busiest = NULL, *rq;
2dd73a4f 4083 unsigned long max_load = 0;
1da177e4
LT
4084 int i;
4085
758b2cdc 4086 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4087 unsigned long power = power_of(i);
4088 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4089 unsigned long wl;
0a2966b4 4090
96f874e2 4091 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4092 continue;
4093
48f24c4d 4094 rq = cpu_rq(i);
bdb94aa5
PZ
4095 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4096 wl /= power;
2dd73a4f 4097
bdb94aa5 4098 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4099 continue;
1da177e4 4100
dd41f596
IM
4101 if (wl > max_load) {
4102 max_load = wl;
48f24c4d 4103 busiest = rq;
1da177e4
LT
4104 }
4105 }
4106
4107 return busiest;
4108}
4109
77391d71
NP
4110/*
4111 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4112 * so long as it is large enough.
4113 */
4114#define MAX_PINNED_INTERVAL 512
4115
df7c8e84
RR
4116/* Working cpumask for load_balance and load_balance_newidle. */
4117static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4118
1da177e4
LT
4119/*
4120 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4121 * tasks if there is an imbalance.
1da177e4 4122 */
70b97a7f 4123static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4124 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4125 int *balance)
1da177e4 4126{
43010659 4127 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4128 struct sched_group *group;
1da177e4 4129 unsigned long imbalance;
70b97a7f 4130 struct rq *busiest;
fe2eea3f 4131 unsigned long flags;
df7c8e84 4132 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4133
6ad4c188 4134 cpumask_copy(cpus, cpu_active_mask);
7c16ec58 4135
89c4710e
SS
4136 /*
4137 * When power savings policy is enabled for the parent domain, idle
4138 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4139 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4140 * portraying it as CPU_NOT_IDLE.
89c4710e 4141 */
d15bcfdb 4142 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4143 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4144 sd_idle = 1;
1da177e4 4145
2d72376b 4146 schedstat_inc(sd, lb_count[idle]);
1da177e4 4147
0a2966b4 4148redo:
c8cba857 4149 update_shares(sd);
0a2966b4 4150 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4151 cpus, balance);
783609c6 4152
06066714 4153 if (*balance == 0)
783609c6 4154 goto out_balanced;
783609c6 4155
1da177e4
LT
4156 if (!group) {
4157 schedstat_inc(sd, lb_nobusyg[idle]);
4158 goto out_balanced;
4159 }
4160
7c16ec58 4161 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4162 if (!busiest) {
4163 schedstat_inc(sd, lb_nobusyq[idle]);
4164 goto out_balanced;
4165 }
4166
db935dbd 4167 BUG_ON(busiest == this_rq);
1da177e4
LT
4168
4169 schedstat_add(sd, lb_imbalance[idle], imbalance);
4170
43010659 4171 ld_moved = 0;
1da177e4
LT
4172 if (busiest->nr_running > 1) {
4173 /*
4174 * Attempt to move tasks. If find_busiest_group has found
4175 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4176 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4177 * correctly treated as an imbalance.
4178 */
fe2eea3f 4179 local_irq_save(flags);
e17224bf 4180 double_rq_lock(this_rq, busiest);
43010659 4181 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4182 imbalance, sd, idle, &all_pinned);
e17224bf 4183 double_rq_unlock(this_rq, busiest);
fe2eea3f 4184 local_irq_restore(flags);
81026794 4185
46cb4b7c
SS
4186 /*
4187 * some other cpu did the load balance for us.
4188 */
43010659 4189 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4190 resched_cpu(this_cpu);
4191
81026794 4192 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4193 if (unlikely(all_pinned)) {
96f874e2
RR
4194 cpumask_clear_cpu(cpu_of(busiest), cpus);
4195 if (!cpumask_empty(cpus))
0a2966b4 4196 goto redo;
81026794 4197 goto out_balanced;
0a2966b4 4198 }
1da177e4 4199 }
81026794 4200
43010659 4201 if (!ld_moved) {
1da177e4
LT
4202 schedstat_inc(sd, lb_failed[idle]);
4203 sd->nr_balance_failed++;
4204
4205 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4206
fe2eea3f 4207 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4208
4209 /* don't kick the migration_thread, if the curr
4210 * task on busiest cpu can't be moved to this_cpu
4211 */
96f874e2
RR
4212 if (!cpumask_test_cpu(this_cpu,
4213 &busiest->curr->cpus_allowed)) {
fe2eea3f 4214 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4215 all_pinned = 1;
4216 goto out_one_pinned;
4217 }
4218
1da177e4
LT
4219 if (!busiest->active_balance) {
4220 busiest->active_balance = 1;
4221 busiest->push_cpu = this_cpu;
81026794 4222 active_balance = 1;
1da177e4 4223 }
fe2eea3f 4224 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4225 if (active_balance)
1da177e4
LT
4226 wake_up_process(busiest->migration_thread);
4227
4228 /*
4229 * We've kicked active balancing, reset the failure
4230 * counter.
4231 */
39507451 4232 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4233 }
81026794 4234 } else
1da177e4
LT
4235 sd->nr_balance_failed = 0;
4236
81026794 4237 if (likely(!active_balance)) {
1da177e4
LT
4238 /* We were unbalanced, so reset the balancing interval */
4239 sd->balance_interval = sd->min_interval;
81026794
NP
4240 } else {
4241 /*
4242 * If we've begun active balancing, start to back off. This
4243 * case may not be covered by the all_pinned logic if there
4244 * is only 1 task on the busy runqueue (because we don't call
4245 * move_tasks).
4246 */
4247 if (sd->balance_interval < sd->max_interval)
4248 sd->balance_interval *= 2;
1da177e4
LT
4249 }
4250
43010659 4251 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4252 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4253 ld_moved = -1;
4254
4255 goto out;
1da177e4
LT
4256
4257out_balanced:
1da177e4
LT
4258 schedstat_inc(sd, lb_balanced[idle]);
4259
16cfb1c0 4260 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4261
4262out_one_pinned:
1da177e4 4263 /* tune up the balancing interval */
77391d71
NP
4264 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4265 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4266 sd->balance_interval *= 2;
4267
48f24c4d 4268 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4269 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4270 ld_moved = -1;
4271 else
4272 ld_moved = 0;
4273out:
c8cba857
PZ
4274 if (ld_moved)
4275 update_shares(sd);
c09595f6 4276 return ld_moved;
1da177e4
LT
4277}
4278
4279/*
4280 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4281 * tasks if there is an imbalance.
4282 *
d15bcfdb 4283 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4284 * this_rq is locked.
4285 */
48f24c4d 4286static int
df7c8e84 4287load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4288{
4289 struct sched_group *group;
70b97a7f 4290 struct rq *busiest = NULL;
1da177e4 4291 unsigned long imbalance;
43010659 4292 int ld_moved = 0;
5969fe06 4293 int sd_idle = 0;
969bb4e4 4294 int all_pinned = 0;
df7c8e84 4295 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4296
6ad4c188 4297 cpumask_copy(cpus, cpu_active_mask);
5969fe06 4298
89c4710e
SS
4299 /*
4300 * When power savings policy is enabled for the parent domain, idle
4301 * sibling can pick up load irrespective of busy siblings. In this case,
4302 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4303 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4304 */
4305 if (sd->flags & SD_SHARE_CPUPOWER &&
4306 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4307 sd_idle = 1;
1da177e4 4308
2d72376b 4309 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4310redo:
3e5459b4 4311 update_shares_locked(this_rq, sd);
d15bcfdb 4312 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4313 &sd_idle, cpus, NULL);
1da177e4 4314 if (!group) {
d15bcfdb 4315 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4316 goto out_balanced;
1da177e4
LT
4317 }
4318
7c16ec58 4319 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4320 if (!busiest) {
d15bcfdb 4321 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4322 goto out_balanced;
1da177e4
LT
4323 }
4324
db935dbd
NP
4325 BUG_ON(busiest == this_rq);
4326
d15bcfdb 4327 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4328
43010659 4329 ld_moved = 0;
d6d5cfaf
NP
4330 if (busiest->nr_running > 1) {
4331 /* Attempt to move tasks */
4332 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4333 /* this_rq->clock is already updated */
4334 update_rq_clock(busiest);
43010659 4335 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4336 imbalance, sd, CPU_NEWLY_IDLE,
4337 &all_pinned);
1b12bbc7 4338 double_unlock_balance(this_rq, busiest);
0a2966b4 4339
969bb4e4 4340 if (unlikely(all_pinned)) {
96f874e2
RR
4341 cpumask_clear_cpu(cpu_of(busiest), cpus);
4342 if (!cpumask_empty(cpus))
0a2966b4
CL
4343 goto redo;
4344 }
d6d5cfaf
NP
4345 }
4346
43010659 4347 if (!ld_moved) {
36dffab6 4348 int active_balance = 0;
ad273b32 4349
d15bcfdb 4350 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4351 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4352 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4353 return -1;
ad273b32
VS
4354
4355 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4356 return -1;
4357
4358 if (sd->nr_balance_failed++ < 2)
4359 return -1;
4360
4361 /*
4362 * The only task running in a non-idle cpu can be moved to this
4363 * cpu in an attempt to completely freeup the other CPU
4364 * package. The same method used to move task in load_balance()
4365 * have been extended for load_balance_newidle() to speedup
4366 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4367 *
4368 * The package power saving logic comes from
4369 * find_busiest_group(). If there are no imbalance, then
4370 * f_b_g() will return NULL. However when sched_mc={1,2} then
4371 * f_b_g() will select a group from which a running task may be
4372 * pulled to this cpu in order to make the other package idle.
4373 * If there is no opportunity to make a package idle and if
4374 * there are no imbalance, then f_b_g() will return NULL and no
4375 * action will be taken in load_balance_newidle().
4376 *
4377 * Under normal task pull operation due to imbalance, there
4378 * will be more than one task in the source run queue and
4379 * move_tasks() will succeed. ld_moved will be true and this
4380 * active balance code will not be triggered.
4381 */
4382
4383 /* Lock busiest in correct order while this_rq is held */
4384 double_lock_balance(this_rq, busiest);
4385
4386 /*
4387 * don't kick the migration_thread, if the curr
4388 * task on busiest cpu can't be moved to this_cpu
4389 */
6ca09dfc 4390 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4391 double_unlock_balance(this_rq, busiest);
4392 all_pinned = 1;
4393 return ld_moved;
4394 }
4395
4396 if (!busiest->active_balance) {
4397 busiest->active_balance = 1;
4398 busiest->push_cpu = this_cpu;
4399 active_balance = 1;
4400 }
4401
4402 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4403 /*
4404 * Should not call ttwu while holding a rq->lock
4405 */
4406 spin_unlock(&this_rq->lock);
ad273b32
VS
4407 if (active_balance)
4408 wake_up_process(busiest->migration_thread);
da8d5089 4409 spin_lock(&this_rq->lock);
ad273b32 4410
5969fe06 4411 } else
16cfb1c0 4412 sd->nr_balance_failed = 0;
1da177e4 4413
3e5459b4 4414 update_shares_locked(this_rq, sd);
43010659 4415 return ld_moved;
16cfb1c0
NP
4416
4417out_balanced:
d15bcfdb 4418 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4419 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4420 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4421 return -1;
16cfb1c0 4422 sd->nr_balance_failed = 0;
48f24c4d 4423
16cfb1c0 4424 return 0;
1da177e4
LT
4425}
4426
4427/*
4428 * idle_balance is called by schedule() if this_cpu is about to become
4429 * idle. Attempts to pull tasks from other CPUs.
4430 */
70b97a7f 4431static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4432{
4433 struct sched_domain *sd;
efbe027e 4434 int pulled_task = 0;
dd41f596 4435 unsigned long next_balance = jiffies + HZ;
1da177e4 4436
1b9508f6
MG
4437 this_rq->idle_stamp = this_rq->clock;
4438
4439 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4440 return;
4441
1da177e4 4442 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4443 unsigned long interval;
4444
4445 if (!(sd->flags & SD_LOAD_BALANCE))
4446 continue;
4447
4448 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4449 /* If we've pulled tasks over stop searching: */
7c16ec58 4450 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4451 sd);
92c4ca5c
CL
4452
4453 interval = msecs_to_jiffies(sd->balance_interval);
4454 if (time_after(next_balance, sd->last_balance + interval))
4455 next_balance = sd->last_balance + interval;
1b9508f6
MG
4456 if (pulled_task) {
4457 this_rq->idle_stamp = 0;
92c4ca5c 4458 break;
1b9508f6 4459 }
1da177e4 4460 }
dd41f596 4461 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4462 /*
4463 * We are going idle. next_balance may be set based on
4464 * a busy processor. So reset next_balance.
4465 */
4466 this_rq->next_balance = next_balance;
dd41f596 4467 }
1da177e4
LT
4468}
4469
4470/*
4471 * active_load_balance is run by migration threads. It pushes running tasks
4472 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4473 * running on each physical CPU where possible, and avoids physical /
4474 * logical imbalances.
4475 *
4476 * Called with busiest_rq locked.
4477 */
70b97a7f 4478static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4479{
39507451 4480 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4481 struct sched_domain *sd;
4482 struct rq *target_rq;
39507451 4483
48f24c4d 4484 /* Is there any task to move? */
39507451 4485 if (busiest_rq->nr_running <= 1)
39507451
NP
4486 return;
4487
4488 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4489
4490 /*
39507451 4491 * This condition is "impossible", if it occurs
41a2d6cf 4492 * we need to fix it. Originally reported by
39507451 4493 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4494 */
39507451 4495 BUG_ON(busiest_rq == target_rq);
1da177e4 4496
39507451
NP
4497 /* move a task from busiest_rq to target_rq */
4498 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4499 update_rq_clock(busiest_rq);
4500 update_rq_clock(target_rq);
39507451
NP
4501
4502 /* Search for an sd spanning us and the target CPU. */
c96d145e 4503 for_each_domain(target_cpu, sd) {
39507451 4504 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4505 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4506 break;
c96d145e 4507 }
39507451 4508
48f24c4d 4509 if (likely(sd)) {
2d72376b 4510 schedstat_inc(sd, alb_count);
39507451 4511
43010659
PW
4512 if (move_one_task(target_rq, target_cpu, busiest_rq,
4513 sd, CPU_IDLE))
48f24c4d
IM
4514 schedstat_inc(sd, alb_pushed);
4515 else
4516 schedstat_inc(sd, alb_failed);
4517 }
1b12bbc7 4518 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4519}
4520
46cb4b7c
SS
4521#ifdef CONFIG_NO_HZ
4522static struct {
4523 atomic_t load_balancer;
7d1e6a9b 4524 cpumask_var_t cpu_mask;
f711f609 4525 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4526} nohz ____cacheline_aligned = {
4527 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4528};
4529
eea08f32
AB
4530int get_nohz_load_balancer(void)
4531{
4532 return atomic_read(&nohz.load_balancer);
4533}
4534
f711f609
GS
4535#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4536/**
4537 * lowest_flag_domain - Return lowest sched_domain containing flag.
4538 * @cpu: The cpu whose lowest level of sched domain is to
4539 * be returned.
4540 * @flag: The flag to check for the lowest sched_domain
4541 * for the given cpu.
4542 *
4543 * Returns the lowest sched_domain of a cpu which contains the given flag.
4544 */
4545static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4546{
4547 struct sched_domain *sd;
4548
4549 for_each_domain(cpu, sd)
4550 if (sd && (sd->flags & flag))
4551 break;
4552
4553 return sd;
4554}
4555
4556/**
4557 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4558 * @cpu: The cpu whose domains we're iterating over.
4559 * @sd: variable holding the value of the power_savings_sd
4560 * for cpu.
4561 * @flag: The flag to filter the sched_domains to be iterated.
4562 *
4563 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4564 * set, starting from the lowest sched_domain to the highest.
4565 */
4566#define for_each_flag_domain(cpu, sd, flag) \
4567 for (sd = lowest_flag_domain(cpu, flag); \
4568 (sd && (sd->flags & flag)); sd = sd->parent)
4569
4570/**
4571 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4572 * @ilb_group: group to be checked for semi-idleness
4573 *
4574 * Returns: 1 if the group is semi-idle. 0 otherwise.
4575 *
4576 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4577 * and atleast one non-idle CPU. This helper function checks if the given
4578 * sched_group is semi-idle or not.
4579 */
4580static inline int is_semi_idle_group(struct sched_group *ilb_group)
4581{
4582 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4583 sched_group_cpus(ilb_group));
4584
4585 /*
4586 * A sched_group is semi-idle when it has atleast one busy cpu
4587 * and atleast one idle cpu.
4588 */
4589 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4590 return 0;
4591
4592 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4593 return 0;
4594
4595 return 1;
4596}
4597/**
4598 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4599 * @cpu: The cpu which is nominating a new idle_load_balancer.
4600 *
4601 * Returns: Returns the id of the idle load balancer if it exists,
4602 * Else, returns >= nr_cpu_ids.
4603 *
4604 * This algorithm picks the idle load balancer such that it belongs to a
4605 * semi-idle powersavings sched_domain. The idea is to try and avoid
4606 * completely idle packages/cores just for the purpose of idle load balancing
4607 * when there are other idle cpu's which are better suited for that job.
4608 */
4609static int find_new_ilb(int cpu)
4610{
4611 struct sched_domain *sd;
4612 struct sched_group *ilb_group;
4613
4614 /*
4615 * Have idle load balancer selection from semi-idle packages only
4616 * when power-aware load balancing is enabled
4617 */
4618 if (!(sched_smt_power_savings || sched_mc_power_savings))
4619 goto out_done;
4620
4621 /*
4622 * Optimize for the case when we have no idle CPUs or only one
4623 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4624 */
4625 if (cpumask_weight(nohz.cpu_mask) < 2)
4626 goto out_done;
4627
4628 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4629 ilb_group = sd->groups;
4630
4631 do {
4632 if (is_semi_idle_group(ilb_group))
4633 return cpumask_first(nohz.ilb_grp_nohz_mask);
4634
4635 ilb_group = ilb_group->next;
4636
4637 } while (ilb_group != sd->groups);
4638 }
4639
4640out_done:
4641 return cpumask_first(nohz.cpu_mask);
4642}
4643#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4644static inline int find_new_ilb(int call_cpu)
4645{
6e29ec57 4646 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4647}
4648#endif
4649
7835b98b 4650/*
46cb4b7c
SS
4651 * This routine will try to nominate the ilb (idle load balancing)
4652 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4653 * load balancing on behalf of all those cpus. If all the cpus in the system
4654 * go into this tickless mode, then there will be no ilb owner (as there is
4655 * no need for one) and all the cpus will sleep till the next wakeup event
4656 * arrives...
4657 *
4658 * For the ilb owner, tick is not stopped. And this tick will be used
4659 * for idle load balancing. ilb owner will still be part of
4660 * nohz.cpu_mask..
7835b98b 4661 *
46cb4b7c
SS
4662 * While stopping the tick, this cpu will become the ilb owner if there
4663 * is no other owner. And will be the owner till that cpu becomes busy
4664 * or if all cpus in the system stop their ticks at which point
4665 * there is no need for ilb owner.
4666 *
4667 * When the ilb owner becomes busy, it nominates another owner, during the
4668 * next busy scheduler_tick()
4669 */
4670int select_nohz_load_balancer(int stop_tick)
4671{
4672 int cpu = smp_processor_id();
4673
4674 if (stop_tick) {
46cb4b7c
SS
4675 cpu_rq(cpu)->in_nohz_recently = 1;
4676
483b4ee6
SS
4677 if (!cpu_active(cpu)) {
4678 if (atomic_read(&nohz.load_balancer) != cpu)
4679 return 0;
4680
4681 /*
4682 * If we are going offline and still the leader,
4683 * give up!
4684 */
46cb4b7c
SS
4685 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4686 BUG();
483b4ee6 4687
46cb4b7c
SS
4688 return 0;
4689 }
4690
483b4ee6
SS
4691 cpumask_set_cpu(cpu, nohz.cpu_mask);
4692
46cb4b7c 4693 /* time for ilb owner also to sleep */
6ad4c188 4694 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
46cb4b7c
SS
4695 if (atomic_read(&nohz.load_balancer) == cpu)
4696 atomic_set(&nohz.load_balancer, -1);
4697 return 0;
4698 }
4699
4700 if (atomic_read(&nohz.load_balancer) == -1) {
4701 /* make me the ilb owner */
4702 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4703 return 1;
e790fb0b
GS
4704 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4705 int new_ilb;
4706
4707 if (!(sched_smt_power_savings ||
4708 sched_mc_power_savings))
4709 return 1;
4710 /*
4711 * Check to see if there is a more power-efficient
4712 * ilb.
4713 */
4714 new_ilb = find_new_ilb(cpu);
4715 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4716 atomic_set(&nohz.load_balancer, -1);
4717 resched_cpu(new_ilb);
4718 return 0;
4719 }
46cb4b7c 4720 return 1;
e790fb0b 4721 }
46cb4b7c 4722 } else {
7d1e6a9b 4723 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4724 return 0;
4725
7d1e6a9b 4726 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4727
4728 if (atomic_read(&nohz.load_balancer) == cpu)
4729 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4730 BUG();
4731 }
4732 return 0;
4733}
4734#endif
4735
4736static DEFINE_SPINLOCK(balancing);
4737
4738/*
7835b98b
CL
4739 * It checks each scheduling domain to see if it is due to be balanced,
4740 * and initiates a balancing operation if so.
4741 *
4742 * Balancing parameters are set up in arch_init_sched_domains.
4743 */
a9957449 4744static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4745{
46cb4b7c
SS
4746 int balance = 1;
4747 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4748 unsigned long interval;
4749 struct sched_domain *sd;
46cb4b7c 4750 /* Earliest time when we have to do rebalance again */
c9819f45 4751 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4752 int update_next_balance = 0;
d07355f5 4753 int need_serialize;
1da177e4 4754
46cb4b7c 4755 for_each_domain(cpu, sd) {
1da177e4
LT
4756 if (!(sd->flags & SD_LOAD_BALANCE))
4757 continue;
4758
4759 interval = sd->balance_interval;
d15bcfdb 4760 if (idle != CPU_IDLE)
1da177e4
LT
4761 interval *= sd->busy_factor;
4762
4763 /* scale ms to jiffies */
4764 interval = msecs_to_jiffies(interval);
4765 if (unlikely(!interval))
4766 interval = 1;
dd41f596
IM
4767 if (interval > HZ*NR_CPUS/10)
4768 interval = HZ*NR_CPUS/10;
4769
d07355f5 4770 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4771
d07355f5 4772 if (need_serialize) {
08c183f3
CL
4773 if (!spin_trylock(&balancing))
4774 goto out;
4775 }
4776
c9819f45 4777 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4778 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4779 /*
4780 * We've pulled tasks over so either we're no
5969fe06
NP
4781 * longer idle, or one of our SMT siblings is
4782 * not idle.
4783 */
d15bcfdb 4784 idle = CPU_NOT_IDLE;
1da177e4 4785 }
1bd77f2d 4786 sd->last_balance = jiffies;
1da177e4 4787 }
d07355f5 4788 if (need_serialize)
08c183f3
CL
4789 spin_unlock(&balancing);
4790out:
f549da84 4791 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4792 next_balance = sd->last_balance + interval;
f549da84
SS
4793 update_next_balance = 1;
4794 }
783609c6
SS
4795
4796 /*
4797 * Stop the load balance at this level. There is another
4798 * CPU in our sched group which is doing load balancing more
4799 * actively.
4800 */
4801 if (!balance)
4802 break;
1da177e4 4803 }
f549da84
SS
4804
4805 /*
4806 * next_balance will be updated only when there is a need.
4807 * When the cpu is attached to null domain for ex, it will not be
4808 * updated.
4809 */
4810 if (likely(update_next_balance))
4811 rq->next_balance = next_balance;
46cb4b7c
SS
4812}
4813
4814/*
4815 * run_rebalance_domains is triggered when needed from the scheduler tick.
4816 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4817 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4818 */
4819static void run_rebalance_domains(struct softirq_action *h)
4820{
dd41f596
IM
4821 int this_cpu = smp_processor_id();
4822 struct rq *this_rq = cpu_rq(this_cpu);
4823 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4824 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4825
dd41f596 4826 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4827
4828#ifdef CONFIG_NO_HZ
4829 /*
4830 * If this cpu is the owner for idle load balancing, then do the
4831 * balancing on behalf of the other idle cpus whose ticks are
4832 * stopped.
4833 */
dd41f596
IM
4834 if (this_rq->idle_at_tick &&
4835 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4836 struct rq *rq;
4837 int balance_cpu;
4838
7d1e6a9b
RR
4839 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4840 if (balance_cpu == this_cpu)
4841 continue;
4842
46cb4b7c
SS
4843 /*
4844 * If this cpu gets work to do, stop the load balancing
4845 * work being done for other cpus. Next load
4846 * balancing owner will pick it up.
4847 */
4848 if (need_resched())
4849 break;
4850
de0cf899 4851 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4852
4853 rq = cpu_rq(balance_cpu);
dd41f596
IM
4854 if (time_after(this_rq->next_balance, rq->next_balance))
4855 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4856 }
4857 }
4858#endif
4859}
4860
8a0be9ef
FW
4861static inline int on_null_domain(int cpu)
4862{
4863 return !rcu_dereference(cpu_rq(cpu)->sd);
4864}
4865
46cb4b7c
SS
4866/*
4867 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4868 *
4869 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4870 * idle load balancing owner or decide to stop the periodic load balancing,
4871 * if the whole system is idle.
4872 */
dd41f596 4873static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4874{
46cb4b7c
SS
4875#ifdef CONFIG_NO_HZ
4876 /*
4877 * If we were in the nohz mode recently and busy at the current
4878 * scheduler tick, then check if we need to nominate new idle
4879 * load balancer.
4880 */
4881 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4882 rq->in_nohz_recently = 0;
4883
4884 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4885 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4886 atomic_set(&nohz.load_balancer, -1);
4887 }
4888
4889 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4890 int ilb = find_new_ilb(cpu);
46cb4b7c 4891
434d53b0 4892 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4893 resched_cpu(ilb);
4894 }
4895 }
4896
4897 /*
4898 * If this cpu is idle and doing idle load balancing for all the
4899 * cpus with ticks stopped, is it time for that to stop?
4900 */
4901 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4902 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4903 resched_cpu(cpu);
4904 return;
4905 }
4906
4907 /*
4908 * If this cpu is idle and the idle load balancing is done by
4909 * someone else, then no need raise the SCHED_SOFTIRQ
4910 */
4911 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4912 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4913 return;
4914#endif
8a0be9ef
FW
4915 /* Don't need to rebalance while attached to NULL domain */
4916 if (time_after_eq(jiffies, rq->next_balance) &&
4917 likely(!on_null_domain(cpu)))
46cb4b7c 4918 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4919}
dd41f596
IM
4920
4921#else /* CONFIG_SMP */
4922
1da177e4
LT
4923/*
4924 * on UP we do not need to balance between CPUs:
4925 */
70b97a7f 4926static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4927{
4928}
dd41f596 4929
1da177e4
LT
4930#endif
4931
1da177e4
LT
4932DEFINE_PER_CPU(struct kernel_stat, kstat);
4933
4934EXPORT_PER_CPU_SYMBOL(kstat);
4935
4936/*
c5f8d995 4937 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4938 * @p in case that task is currently running.
c5f8d995
HS
4939 *
4940 * Called with task_rq_lock() held on @rq.
1da177e4 4941 */
c5f8d995
HS
4942static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4943{
4944 u64 ns = 0;
4945
4946 if (task_current(rq, p)) {
4947 update_rq_clock(rq);
4948 ns = rq->clock - p->se.exec_start;
4949 if ((s64)ns < 0)
4950 ns = 0;
4951 }
4952
4953 return ns;
4954}
4955
bb34d92f 4956unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4957{
1da177e4 4958 unsigned long flags;
41b86e9c 4959 struct rq *rq;
bb34d92f 4960 u64 ns = 0;
48f24c4d 4961
41b86e9c 4962 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4963 ns = do_task_delta_exec(p, rq);
4964 task_rq_unlock(rq, &flags);
1508487e 4965
c5f8d995
HS
4966 return ns;
4967}
f06febc9 4968
c5f8d995
HS
4969/*
4970 * Return accounted runtime for the task.
4971 * In case the task is currently running, return the runtime plus current's
4972 * pending runtime that have not been accounted yet.
4973 */
4974unsigned long long task_sched_runtime(struct task_struct *p)
4975{
4976 unsigned long flags;
4977 struct rq *rq;
4978 u64 ns = 0;
4979
4980 rq = task_rq_lock(p, &flags);
4981 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4982 task_rq_unlock(rq, &flags);
4983
4984 return ns;
4985}
48f24c4d 4986
c5f8d995
HS
4987/*
4988 * Return sum_exec_runtime for the thread group.
4989 * In case the task is currently running, return the sum plus current's
4990 * pending runtime that have not been accounted yet.
4991 *
4992 * Note that the thread group might have other running tasks as well,
4993 * so the return value not includes other pending runtime that other
4994 * running tasks might have.
4995 */
4996unsigned long long thread_group_sched_runtime(struct task_struct *p)
4997{
4998 struct task_cputime totals;
4999 unsigned long flags;
5000 struct rq *rq;
5001 u64 ns;
5002
5003 rq = task_rq_lock(p, &flags);
5004 thread_group_cputime(p, &totals);
5005 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 5006 task_rq_unlock(rq, &flags);
48f24c4d 5007
1da177e4
LT
5008 return ns;
5009}
5010
1da177e4
LT
5011/*
5012 * Account user cpu time to a process.
5013 * @p: the process that the cpu time gets accounted to
1da177e4 5014 * @cputime: the cpu time spent in user space since the last update
457533a7 5015 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 5016 */
457533a7
MS
5017void account_user_time(struct task_struct *p, cputime_t cputime,
5018 cputime_t cputime_scaled)
1da177e4
LT
5019{
5020 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5021 cputime64_t tmp;
5022
457533a7 5023 /* Add user time to process. */
1da177e4 5024 p->utime = cputime_add(p->utime, cputime);
457533a7 5025 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5026 account_group_user_time(p, cputime);
1da177e4
LT
5027
5028 /* Add user time to cpustat. */
5029 tmp = cputime_to_cputime64(cputime);
5030 if (TASK_NICE(p) > 0)
5031 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5032 else
5033 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5034
5035 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5036 /* Account for user time used */
5037 acct_update_integrals(p);
1da177e4
LT
5038}
5039
94886b84
LV
5040/*
5041 * Account guest cpu time to a process.
5042 * @p: the process that the cpu time gets accounted to
5043 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5044 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5045 */
457533a7
MS
5046static void account_guest_time(struct task_struct *p, cputime_t cputime,
5047 cputime_t cputime_scaled)
94886b84
LV
5048{
5049 cputime64_t tmp;
5050 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5051
5052 tmp = cputime_to_cputime64(cputime);
5053
457533a7 5054 /* Add guest time to process. */
94886b84 5055 p->utime = cputime_add(p->utime, cputime);
457533a7 5056 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5057 account_group_user_time(p, cputime);
94886b84
LV
5058 p->gtime = cputime_add(p->gtime, cputime);
5059
457533a7 5060 /* Add guest time to cpustat. */
ce0e7b28
RO
5061 if (TASK_NICE(p) > 0) {
5062 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5063 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5064 } else {
5065 cpustat->user = cputime64_add(cpustat->user, tmp);
5066 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5067 }
94886b84
LV
5068}
5069
1da177e4
LT
5070/*
5071 * Account system cpu time to a process.
5072 * @p: the process that the cpu time gets accounted to
5073 * @hardirq_offset: the offset to subtract from hardirq_count()
5074 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5075 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5076 */
5077void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5078 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5079{
5080 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5081 cputime64_t tmp;
5082
983ed7a6 5083 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5084 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5085 return;
5086 }
94886b84 5087
457533a7 5088 /* Add system time to process. */
1da177e4 5089 p->stime = cputime_add(p->stime, cputime);
457533a7 5090 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5091 account_group_system_time(p, cputime);
1da177e4
LT
5092
5093 /* Add system time to cpustat. */
5094 tmp = cputime_to_cputime64(cputime);
5095 if (hardirq_count() - hardirq_offset)
5096 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5097 else if (softirq_count())
5098 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5099 else
79741dd3
MS
5100 cpustat->system = cputime64_add(cpustat->system, tmp);
5101
ef12fefa
BR
5102 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5103
1da177e4
LT
5104 /* Account for system time used */
5105 acct_update_integrals(p);
1da177e4
LT
5106}
5107
c66f08be 5108/*
1da177e4 5109 * Account for involuntary wait time.
1da177e4 5110 * @steal: the cpu time spent in involuntary wait
c66f08be 5111 */
79741dd3 5112void account_steal_time(cputime_t cputime)
c66f08be 5113{
79741dd3
MS
5114 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5115 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5116
5117 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5118}
5119
1da177e4 5120/*
79741dd3
MS
5121 * Account for idle time.
5122 * @cputime: the cpu time spent in idle wait
1da177e4 5123 */
79741dd3 5124void account_idle_time(cputime_t cputime)
1da177e4
LT
5125{
5126 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5127 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5128 struct rq *rq = this_rq();
1da177e4 5129
79741dd3
MS
5130 if (atomic_read(&rq->nr_iowait) > 0)
5131 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5132 else
5133 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5134}
5135
79741dd3
MS
5136#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5137
5138/*
5139 * Account a single tick of cpu time.
5140 * @p: the process that the cpu time gets accounted to
5141 * @user_tick: indicates if the tick is a user or a system tick
5142 */
5143void account_process_tick(struct task_struct *p, int user_tick)
5144{
a42548a1 5145 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5146 struct rq *rq = this_rq();
5147
5148 if (user_tick)
a42548a1 5149 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5150 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5151 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5152 one_jiffy_scaled);
5153 else
a42548a1 5154 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5155}
5156
5157/*
5158 * Account multiple ticks of steal time.
5159 * @p: the process from which the cpu time has been stolen
5160 * @ticks: number of stolen ticks
5161 */
5162void account_steal_ticks(unsigned long ticks)
5163{
5164 account_steal_time(jiffies_to_cputime(ticks));
5165}
5166
5167/*
5168 * Account multiple ticks of idle time.
5169 * @ticks: number of stolen ticks
5170 */
5171void account_idle_ticks(unsigned long ticks)
5172{
5173 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5174}
5175
79741dd3
MS
5176#endif
5177
49048622
BS
5178/*
5179 * Use precise platform statistics if available:
5180 */
5181#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 5182void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5183{
d99ca3b9
HS
5184 *ut = p->utime;
5185 *st = p->stime;
49048622
BS
5186}
5187
0cf55e1e 5188void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5189{
0cf55e1e
HS
5190 struct task_cputime cputime;
5191
5192 thread_group_cputime(p, &cputime);
5193
5194 *ut = cputime.utime;
5195 *st = cputime.stime;
49048622
BS
5196}
5197#else
761b1d26
HS
5198
5199#ifndef nsecs_to_cputime
b7b20df9 5200# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
5201#endif
5202
d180c5bc 5203void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5204{
d99ca3b9 5205 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
5206
5207 /*
5208 * Use CFS's precise accounting:
5209 */
d180c5bc 5210 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
5211
5212 if (total) {
d180c5bc
HS
5213 u64 temp;
5214
5215 temp = (u64)(rtime * utime);
49048622 5216 do_div(temp, total);
d180c5bc
HS
5217 utime = (cputime_t)temp;
5218 } else
5219 utime = rtime;
49048622 5220
d180c5bc
HS
5221 /*
5222 * Compare with previous values, to keep monotonicity:
5223 */
761b1d26 5224 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 5225 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 5226
d99ca3b9
HS
5227 *ut = p->prev_utime;
5228 *st = p->prev_stime;
49048622
BS
5229}
5230
0cf55e1e
HS
5231/*
5232 * Must be called with siglock held.
5233 */
5234void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5235{
0cf55e1e
HS
5236 struct signal_struct *sig = p->signal;
5237 struct task_cputime cputime;
5238 cputime_t rtime, utime, total;
49048622 5239
0cf55e1e 5240 thread_group_cputime(p, &cputime);
49048622 5241
0cf55e1e
HS
5242 total = cputime_add(cputime.utime, cputime.stime);
5243 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 5244
0cf55e1e
HS
5245 if (total) {
5246 u64 temp;
49048622 5247
0cf55e1e
HS
5248 temp = (u64)(rtime * cputime.utime);
5249 do_div(temp, total);
5250 utime = (cputime_t)temp;
5251 } else
5252 utime = rtime;
5253
5254 sig->prev_utime = max(sig->prev_utime, utime);
5255 sig->prev_stime = max(sig->prev_stime,
5256 cputime_sub(rtime, sig->prev_utime));
5257
5258 *ut = sig->prev_utime;
5259 *st = sig->prev_stime;
49048622 5260}
49048622 5261#endif
49048622 5262
7835b98b
CL
5263/*
5264 * This function gets called by the timer code, with HZ frequency.
5265 * We call it with interrupts disabled.
5266 *
5267 * It also gets called by the fork code, when changing the parent's
5268 * timeslices.
5269 */
5270void scheduler_tick(void)
5271{
7835b98b
CL
5272 int cpu = smp_processor_id();
5273 struct rq *rq = cpu_rq(cpu);
dd41f596 5274 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5275
5276 sched_clock_tick();
dd41f596
IM
5277
5278 spin_lock(&rq->lock);
3e51f33f 5279 update_rq_clock(rq);
f1a438d8 5280 update_cpu_load(rq);
fa85ae24 5281 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5282 spin_unlock(&rq->lock);
7835b98b 5283
cdd6c482 5284 perf_event_task_tick(curr, cpu);
e220d2dc 5285
e418e1c2 5286#ifdef CONFIG_SMP
dd41f596
IM
5287 rq->idle_at_tick = idle_cpu(cpu);
5288 trigger_load_balance(rq, cpu);
e418e1c2 5289#endif
1da177e4
LT
5290}
5291
132380a0 5292notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5293{
5294 if (in_lock_functions(addr)) {
5295 addr = CALLER_ADDR2;
5296 if (in_lock_functions(addr))
5297 addr = CALLER_ADDR3;
5298 }
5299 return addr;
5300}
1da177e4 5301
7e49fcce
SR
5302#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5303 defined(CONFIG_PREEMPT_TRACER))
5304
43627582 5305void __kprobes add_preempt_count(int val)
1da177e4 5306{
6cd8a4bb 5307#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5308 /*
5309 * Underflow?
5310 */
9a11b49a
IM
5311 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5312 return;
6cd8a4bb 5313#endif
1da177e4 5314 preempt_count() += val;
6cd8a4bb 5315#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5316 /*
5317 * Spinlock count overflowing soon?
5318 */
33859f7f
MOS
5319 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5320 PREEMPT_MASK - 10);
6cd8a4bb
SR
5321#endif
5322 if (preempt_count() == val)
5323 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5324}
5325EXPORT_SYMBOL(add_preempt_count);
5326
43627582 5327void __kprobes sub_preempt_count(int val)
1da177e4 5328{
6cd8a4bb 5329#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5330 /*
5331 * Underflow?
5332 */
01e3eb82 5333 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5334 return;
1da177e4
LT
5335 /*
5336 * Is the spinlock portion underflowing?
5337 */
9a11b49a
IM
5338 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5339 !(preempt_count() & PREEMPT_MASK)))
5340 return;
6cd8a4bb 5341#endif
9a11b49a 5342
6cd8a4bb
SR
5343 if (preempt_count() == val)
5344 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5345 preempt_count() -= val;
5346}
5347EXPORT_SYMBOL(sub_preempt_count);
5348
5349#endif
5350
5351/*
dd41f596 5352 * Print scheduling while atomic bug:
1da177e4 5353 */
dd41f596 5354static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5355{
838225b4
SS
5356 struct pt_regs *regs = get_irq_regs();
5357
5358 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5359 prev->comm, prev->pid, preempt_count());
5360
dd41f596 5361 debug_show_held_locks(prev);
e21f5b15 5362 print_modules();
dd41f596
IM
5363 if (irqs_disabled())
5364 print_irqtrace_events(prev);
838225b4
SS
5365
5366 if (regs)
5367 show_regs(regs);
5368 else
5369 dump_stack();
dd41f596 5370}
1da177e4 5371
dd41f596
IM
5372/*
5373 * Various schedule()-time debugging checks and statistics:
5374 */
5375static inline void schedule_debug(struct task_struct *prev)
5376{
1da177e4 5377 /*
41a2d6cf 5378 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5379 * schedule() atomically, we ignore that path for now.
5380 * Otherwise, whine if we are scheduling when we should not be.
5381 */
3f33a7ce 5382 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5383 __schedule_bug(prev);
5384
1da177e4
LT
5385 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5386
2d72376b 5387 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5388#ifdef CONFIG_SCHEDSTATS
5389 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5390 schedstat_inc(this_rq(), bkl_count);
5391 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5392 }
5393#endif
dd41f596
IM
5394}
5395
ad4b78bb 5396static void put_prev_task(struct rq *rq, struct task_struct *p)
df1c99d4 5397{
ad4b78bb 5398 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
df1c99d4 5399
ad4b78bb 5400 update_avg(&p->se.avg_running, runtime);
df1c99d4 5401
ad4b78bb 5402 if (p->state == TASK_RUNNING) {
df1c99d4
MG
5403 /*
5404 * In order to avoid avg_overlap growing stale when we are
5405 * indeed overlapping and hence not getting put to sleep, grow
5406 * the avg_overlap on preemption.
5407 *
5408 * We use the average preemption runtime because that
5409 * correlates to the amount of cache footprint a task can
5410 * build up.
5411 */
ad4b78bb
PZ
5412 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5413 update_avg(&p->se.avg_overlap, runtime);
5414 } else {
5415 update_avg(&p->se.avg_running, 0);
df1c99d4 5416 }
ad4b78bb 5417 p->sched_class->put_prev_task(rq, p);
df1c99d4
MG
5418}
5419
dd41f596
IM
5420/*
5421 * Pick up the highest-prio task:
5422 */
5423static inline struct task_struct *
b67802ea 5424pick_next_task(struct rq *rq)
dd41f596 5425{
5522d5d5 5426 const struct sched_class *class;
dd41f596 5427 struct task_struct *p;
1da177e4
LT
5428
5429 /*
dd41f596
IM
5430 * Optimization: we know that if all tasks are in
5431 * the fair class we can call that function directly:
1da177e4 5432 */
dd41f596 5433 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5434 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5435 if (likely(p))
5436 return p;
1da177e4
LT
5437 }
5438
dd41f596
IM
5439 class = sched_class_highest;
5440 for ( ; ; ) {
fb8d4724 5441 p = class->pick_next_task(rq);
dd41f596
IM
5442 if (p)
5443 return p;
5444 /*
5445 * Will never be NULL as the idle class always
5446 * returns a non-NULL p:
5447 */
5448 class = class->next;
5449 }
5450}
1da177e4 5451
dd41f596
IM
5452/*
5453 * schedule() is the main scheduler function.
5454 */
ff743345 5455asmlinkage void __sched schedule(void)
dd41f596
IM
5456{
5457 struct task_struct *prev, *next;
67ca7bde 5458 unsigned long *switch_count;
dd41f596 5459 struct rq *rq;
31656519 5460 int cpu;
dd41f596 5461
ff743345
PZ
5462need_resched:
5463 preempt_disable();
dd41f596
IM
5464 cpu = smp_processor_id();
5465 rq = cpu_rq(cpu);
d6714c22 5466 rcu_sched_qs(cpu);
dd41f596
IM
5467 prev = rq->curr;
5468 switch_count = &prev->nivcsw;
5469
5470 release_kernel_lock(prev);
5471need_resched_nonpreemptible:
5472
5473 schedule_debug(prev);
1da177e4 5474
31656519 5475 if (sched_feat(HRTICK))
f333fdc9 5476 hrtick_clear(rq);
8f4d37ec 5477
8cd162ce 5478 spin_lock_irq(&rq->lock);
3e51f33f 5479 update_rq_clock(rq);
1e819950 5480 clear_tsk_need_resched(prev);
1da177e4 5481
1da177e4 5482 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5483 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5484 prev->state = TASK_RUNNING;
16882c1e 5485 else
2e1cb74a 5486 deactivate_task(rq, prev, 1);
dd41f596 5487 switch_count = &prev->nvcsw;
1da177e4
LT
5488 }
5489
3f029d3c 5490 pre_schedule(rq, prev);
f65eda4f 5491
dd41f596 5492 if (unlikely(!rq->nr_running))
1da177e4 5493 idle_balance(cpu, rq);
1da177e4 5494
df1c99d4 5495 put_prev_task(rq, prev);
b67802ea 5496 next = pick_next_task(rq);
1da177e4 5497
1da177e4 5498 if (likely(prev != next)) {
673a90a1 5499 sched_info_switch(prev, next);
cdd6c482 5500 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5501
1da177e4
LT
5502 rq->nr_switches++;
5503 rq->curr = next;
5504 ++*switch_count;
5505
dd41f596 5506 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5507 /*
5508 * the context switch might have flipped the stack from under
5509 * us, hence refresh the local variables.
5510 */
5511 cpu = smp_processor_id();
5512 rq = cpu_rq(cpu);
1da177e4
LT
5513 } else
5514 spin_unlock_irq(&rq->lock);
5515
3f029d3c 5516 post_schedule(rq);
1da177e4 5517
8f4d37ec 5518 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5519 goto need_resched_nonpreemptible;
8f4d37ec 5520
1da177e4 5521 preempt_enable_no_resched();
ff743345 5522 if (need_resched())
1da177e4
LT
5523 goto need_resched;
5524}
1da177e4
LT
5525EXPORT_SYMBOL(schedule);
5526
c08f7829 5527#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
5528/*
5529 * Look out! "owner" is an entirely speculative pointer
5530 * access and not reliable.
5531 */
5532int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5533{
5534 unsigned int cpu;
5535 struct rq *rq;
5536
5537 if (!sched_feat(OWNER_SPIN))
5538 return 0;
5539
5540#ifdef CONFIG_DEBUG_PAGEALLOC
5541 /*
5542 * Need to access the cpu field knowing that
5543 * DEBUG_PAGEALLOC could have unmapped it if
5544 * the mutex owner just released it and exited.
5545 */
5546 if (probe_kernel_address(&owner->cpu, cpu))
5547 goto out;
5548#else
5549 cpu = owner->cpu;
5550#endif
5551
5552 /*
5553 * Even if the access succeeded (likely case),
5554 * the cpu field may no longer be valid.
5555 */
5556 if (cpu >= nr_cpumask_bits)
5557 goto out;
5558
5559 /*
5560 * We need to validate that we can do a
5561 * get_cpu() and that we have the percpu area.
5562 */
5563 if (!cpu_online(cpu))
5564 goto out;
5565
5566 rq = cpu_rq(cpu);
5567
5568 for (;;) {
5569 /*
5570 * Owner changed, break to re-assess state.
5571 */
5572 if (lock->owner != owner)
5573 break;
5574
5575 /*
5576 * Is that owner really running on that cpu?
5577 */
5578 if (task_thread_info(rq->curr) != owner || need_resched())
5579 return 0;
5580
5581 cpu_relax();
5582 }
5583out:
5584 return 1;
5585}
5586#endif
5587
1da177e4
LT
5588#ifdef CONFIG_PREEMPT
5589/*
2ed6e34f 5590 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5591 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5592 * occur there and call schedule directly.
5593 */
5594asmlinkage void __sched preempt_schedule(void)
5595{
5596 struct thread_info *ti = current_thread_info();
6478d880 5597
1da177e4
LT
5598 /*
5599 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5600 * we do not want to preempt the current task. Just return..
1da177e4 5601 */
beed33a8 5602 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5603 return;
5604
3a5c359a
AK
5605 do {
5606 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5607 schedule();
3a5c359a 5608 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5609
3a5c359a
AK
5610 /*
5611 * Check again in case we missed a preemption opportunity
5612 * between schedule and now.
5613 */
5614 barrier();
5ed0cec0 5615 } while (need_resched());
1da177e4 5616}
1da177e4
LT
5617EXPORT_SYMBOL(preempt_schedule);
5618
5619/*
2ed6e34f 5620 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5621 * off of irq context.
5622 * Note, that this is called and return with irqs disabled. This will
5623 * protect us against recursive calling from irq.
5624 */
5625asmlinkage void __sched preempt_schedule_irq(void)
5626{
5627 struct thread_info *ti = current_thread_info();
6478d880 5628
2ed6e34f 5629 /* Catch callers which need to be fixed */
1da177e4
LT
5630 BUG_ON(ti->preempt_count || !irqs_disabled());
5631
3a5c359a
AK
5632 do {
5633 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5634 local_irq_enable();
5635 schedule();
5636 local_irq_disable();
3a5c359a 5637 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5638
3a5c359a
AK
5639 /*
5640 * Check again in case we missed a preemption opportunity
5641 * between schedule and now.
5642 */
5643 barrier();
5ed0cec0 5644 } while (need_resched());
1da177e4
LT
5645}
5646
5647#endif /* CONFIG_PREEMPT */
5648
63859d4f 5649int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5650 void *key)
1da177e4 5651{
63859d4f 5652 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5653}
1da177e4
LT
5654EXPORT_SYMBOL(default_wake_function);
5655
5656/*
41a2d6cf
IM
5657 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5658 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5659 * number) then we wake all the non-exclusive tasks and one exclusive task.
5660 *
5661 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5662 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5663 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5664 */
78ddb08f 5665static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5666 int nr_exclusive, int wake_flags, void *key)
1da177e4 5667{
2e45874c 5668 wait_queue_t *curr, *next;
1da177e4 5669
2e45874c 5670 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5671 unsigned flags = curr->flags;
5672
63859d4f 5673 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5674 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5675 break;
5676 }
5677}
5678
5679/**
5680 * __wake_up - wake up threads blocked on a waitqueue.
5681 * @q: the waitqueue
5682 * @mode: which threads
5683 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5684 * @key: is directly passed to the wakeup function
50fa610a
DH
5685 *
5686 * It may be assumed that this function implies a write memory barrier before
5687 * changing the task state if and only if any tasks are woken up.
1da177e4 5688 */
7ad5b3a5 5689void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5690 int nr_exclusive, void *key)
1da177e4
LT
5691{
5692 unsigned long flags;
5693
5694 spin_lock_irqsave(&q->lock, flags);
5695 __wake_up_common(q, mode, nr_exclusive, 0, key);
5696 spin_unlock_irqrestore(&q->lock, flags);
5697}
1da177e4
LT
5698EXPORT_SYMBOL(__wake_up);
5699
5700/*
5701 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5702 */
7ad5b3a5 5703void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5704{
5705 __wake_up_common(q, mode, 1, 0, NULL);
5706}
5707
4ede816a
DL
5708void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5709{
5710 __wake_up_common(q, mode, 1, 0, key);
5711}
5712
1da177e4 5713/**
4ede816a 5714 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5715 * @q: the waitqueue
5716 * @mode: which threads
5717 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5718 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5719 *
5720 * The sync wakeup differs that the waker knows that it will schedule
5721 * away soon, so while the target thread will be woken up, it will not
5722 * be migrated to another CPU - ie. the two threads are 'synchronized'
5723 * with each other. This can prevent needless bouncing between CPUs.
5724 *
5725 * On UP it can prevent extra preemption.
50fa610a
DH
5726 *
5727 * It may be assumed that this function implies a write memory barrier before
5728 * changing the task state if and only if any tasks are woken up.
1da177e4 5729 */
4ede816a
DL
5730void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5731 int nr_exclusive, void *key)
1da177e4
LT
5732{
5733 unsigned long flags;
7d478721 5734 int wake_flags = WF_SYNC;
1da177e4
LT
5735
5736 if (unlikely(!q))
5737 return;
5738
5739 if (unlikely(!nr_exclusive))
7d478721 5740 wake_flags = 0;
1da177e4
LT
5741
5742 spin_lock_irqsave(&q->lock, flags);
7d478721 5743 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5744 spin_unlock_irqrestore(&q->lock, flags);
5745}
4ede816a
DL
5746EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5747
5748/*
5749 * __wake_up_sync - see __wake_up_sync_key()
5750 */
5751void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5752{
5753 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5754}
1da177e4
LT
5755EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5756
65eb3dc6
KD
5757/**
5758 * complete: - signals a single thread waiting on this completion
5759 * @x: holds the state of this particular completion
5760 *
5761 * This will wake up a single thread waiting on this completion. Threads will be
5762 * awakened in the same order in which they were queued.
5763 *
5764 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5765 *
5766 * It may be assumed that this function implies a write memory barrier before
5767 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5768 */
b15136e9 5769void complete(struct completion *x)
1da177e4
LT
5770{
5771 unsigned long flags;
5772
5773 spin_lock_irqsave(&x->wait.lock, flags);
5774 x->done++;
d9514f6c 5775 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5776 spin_unlock_irqrestore(&x->wait.lock, flags);
5777}
5778EXPORT_SYMBOL(complete);
5779
65eb3dc6
KD
5780/**
5781 * complete_all: - signals all threads waiting on this completion
5782 * @x: holds the state of this particular completion
5783 *
5784 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5785 *
5786 * It may be assumed that this function implies a write memory barrier before
5787 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5788 */
b15136e9 5789void complete_all(struct completion *x)
1da177e4
LT
5790{
5791 unsigned long flags;
5792
5793 spin_lock_irqsave(&x->wait.lock, flags);
5794 x->done += UINT_MAX/2;
d9514f6c 5795 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5796 spin_unlock_irqrestore(&x->wait.lock, flags);
5797}
5798EXPORT_SYMBOL(complete_all);
5799
8cbbe86d
AK
5800static inline long __sched
5801do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5802{
1da177e4
LT
5803 if (!x->done) {
5804 DECLARE_WAITQUEUE(wait, current);
5805
5806 wait.flags |= WQ_FLAG_EXCLUSIVE;
5807 __add_wait_queue_tail(&x->wait, &wait);
5808 do {
94d3d824 5809 if (signal_pending_state(state, current)) {
ea71a546
ON
5810 timeout = -ERESTARTSYS;
5811 break;
8cbbe86d
AK
5812 }
5813 __set_current_state(state);
1da177e4
LT
5814 spin_unlock_irq(&x->wait.lock);
5815 timeout = schedule_timeout(timeout);
5816 spin_lock_irq(&x->wait.lock);
ea71a546 5817 } while (!x->done && timeout);
1da177e4 5818 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5819 if (!x->done)
5820 return timeout;
1da177e4
LT
5821 }
5822 x->done--;
ea71a546 5823 return timeout ?: 1;
1da177e4 5824}
1da177e4 5825
8cbbe86d
AK
5826static long __sched
5827wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5828{
1da177e4
LT
5829 might_sleep();
5830
5831 spin_lock_irq(&x->wait.lock);
8cbbe86d 5832 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5833 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5834 return timeout;
5835}
1da177e4 5836
65eb3dc6
KD
5837/**
5838 * wait_for_completion: - waits for completion of a task
5839 * @x: holds the state of this particular completion
5840 *
5841 * This waits to be signaled for completion of a specific task. It is NOT
5842 * interruptible and there is no timeout.
5843 *
5844 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5845 * and interrupt capability. Also see complete().
5846 */
b15136e9 5847void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5848{
5849 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5850}
8cbbe86d 5851EXPORT_SYMBOL(wait_for_completion);
1da177e4 5852
65eb3dc6
KD
5853/**
5854 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5855 * @x: holds the state of this particular completion
5856 * @timeout: timeout value in jiffies
5857 *
5858 * This waits for either a completion of a specific task to be signaled or for a
5859 * specified timeout to expire. The timeout is in jiffies. It is not
5860 * interruptible.
5861 */
b15136e9 5862unsigned long __sched
8cbbe86d 5863wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5864{
8cbbe86d 5865 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5866}
8cbbe86d 5867EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5868
65eb3dc6
KD
5869/**
5870 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5871 * @x: holds the state of this particular completion
5872 *
5873 * This waits for completion of a specific task to be signaled. It is
5874 * interruptible.
5875 */
8cbbe86d 5876int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5877{
51e97990
AK
5878 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5879 if (t == -ERESTARTSYS)
5880 return t;
5881 return 0;
0fec171c 5882}
8cbbe86d 5883EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5884
65eb3dc6
KD
5885/**
5886 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5887 * @x: holds the state of this particular completion
5888 * @timeout: timeout value in jiffies
5889 *
5890 * This waits for either a completion of a specific task to be signaled or for a
5891 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5892 */
b15136e9 5893unsigned long __sched
8cbbe86d
AK
5894wait_for_completion_interruptible_timeout(struct completion *x,
5895 unsigned long timeout)
0fec171c 5896{
8cbbe86d 5897 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5898}
8cbbe86d 5899EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5900
65eb3dc6
KD
5901/**
5902 * wait_for_completion_killable: - waits for completion of a task (killable)
5903 * @x: holds the state of this particular completion
5904 *
5905 * This waits to be signaled for completion of a specific task. It can be
5906 * interrupted by a kill signal.
5907 */
009e577e
MW
5908int __sched wait_for_completion_killable(struct completion *x)
5909{
5910 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5911 if (t == -ERESTARTSYS)
5912 return t;
5913 return 0;
5914}
5915EXPORT_SYMBOL(wait_for_completion_killable);
5916
be4de352
DC
5917/**
5918 * try_wait_for_completion - try to decrement a completion without blocking
5919 * @x: completion structure
5920 *
5921 * Returns: 0 if a decrement cannot be done without blocking
5922 * 1 if a decrement succeeded.
5923 *
5924 * If a completion is being used as a counting completion,
5925 * attempt to decrement the counter without blocking. This
5926 * enables us to avoid waiting if the resource the completion
5927 * is protecting is not available.
5928 */
5929bool try_wait_for_completion(struct completion *x)
5930{
5931 int ret = 1;
5932
5933 spin_lock_irq(&x->wait.lock);
5934 if (!x->done)
5935 ret = 0;
5936 else
5937 x->done--;
5938 spin_unlock_irq(&x->wait.lock);
5939 return ret;
5940}
5941EXPORT_SYMBOL(try_wait_for_completion);
5942
5943/**
5944 * completion_done - Test to see if a completion has any waiters
5945 * @x: completion structure
5946 *
5947 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5948 * 1 if there are no waiters.
5949 *
5950 */
5951bool completion_done(struct completion *x)
5952{
5953 int ret = 1;
5954
5955 spin_lock_irq(&x->wait.lock);
5956 if (!x->done)
5957 ret = 0;
5958 spin_unlock_irq(&x->wait.lock);
5959 return ret;
5960}
5961EXPORT_SYMBOL(completion_done);
5962
8cbbe86d
AK
5963static long __sched
5964sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5965{
0fec171c
IM
5966 unsigned long flags;
5967 wait_queue_t wait;
5968
5969 init_waitqueue_entry(&wait, current);
1da177e4 5970
8cbbe86d 5971 __set_current_state(state);
1da177e4 5972
8cbbe86d
AK
5973 spin_lock_irqsave(&q->lock, flags);
5974 __add_wait_queue(q, &wait);
5975 spin_unlock(&q->lock);
5976 timeout = schedule_timeout(timeout);
5977 spin_lock_irq(&q->lock);
5978 __remove_wait_queue(q, &wait);
5979 spin_unlock_irqrestore(&q->lock, flags);
5980
5981 return timeout;
5982}
5983
5984void __sched interruptible_sleep_on(wait_queue_head_t *q)
5985{
5986 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5987}
1da177e4
LT
5988EXPORT_SYMBOL(interruptible_sleep_on);
5989
0fec171c 5990long __sched
95cdf3b7 5991interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5992{
8cbbe86d 5993 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5994}
1da177e4
LT
5995EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5996
0fec171c 5997void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5998{
8cbbe86d 5999 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6000}
1da177e4
LT
6001EXPORT_SYMBOL(sleep_on);
6002
0fec171c 6003long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6004{
8cbbe86d 6005 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 6006}
1da177e4
LT
6007EXPORT_SYMBOL(sleep_on_timeout);
6008
b29739f9
IM
6009#ifdef CONFIG_RT_MUTEXES
6010
6011/*
6012 * rt_mutex_setprio - set the current priority of a task
6013 * @p: task
6014 * @prio: prio value (kernel-internal form)
6015 *
6016 * This function changes the 'effective' priority of a task. It does
6017 * not touch ->normal_prio like __setscheduler().
6018 *
6019 * Used by the rt_mutex code to implement priority inheritance logic.
6020 */
36c8b586 6021void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
6022{
6023 unsigned long flags;
83b699ed 6024 int oldprio, on_rq, running;
70b97a7f 6025 struct rq *rq;
cb469845 6026 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
6027
6028 BUG_ON(prio < 0 || prio > MAX_PRIO);
6029
6030 rq = task_rq_lock(p, &flags);
a8e504d2 6031 update_rq_clock(rq);
b29739f9 6032
d5f9f942 6033 oldprio = p->prio;
dd41f596 6034 on_rq = p->se.on_rq;
051a1d1a 6035 running = task_current(rq, p);
0e1f3483 6036 if (on_rq)
69be72c1 6037 dequeue_task(rq, p, 0);
0e1f3483
HS
6038 if (running)
6039 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
6040
6041 if (rt_prio(prio))
6042 p->sched_class = &rt_sched_class;
6043 else
6044 p->sched_class = &fair_sched_class;
6045
b29739f9
IM
6046 p->prio = prio;
6047
0e1f3483
HS
6048 if (running)
6049 p->sched_class->set_curr_task(rq);
dd41f596 6050 if (on_rq) {
8159f87e 6051 enqueue_task(rq, p, 0);
cb469845
SR
6052
6053 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6054 }
6055 task_rq_unlock(rq, &flags);
6056}
6057
6058#endif
6059
36c8b586 6060void set_user_nice(struct task_struct *p, long nice)
1da177e4 6061{
dd41f596 6062 int old_prio, delta, on_rq;
1da177e4 6063 unsigned long flags;
70b97a7f 6064 struct rq *rq;
1da177e4
LT
6065
6066 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6067 return;
6068 /*
6069 * We have to be careful, if called from sys_setpriority(),
6070 * the task might be in the middle of scheduling on another CPU.
6071 */
6072 rq = task_rq_lock(p, &flags);
a8e504d2 6073 update_rq_clock(rq);
1da177e4
LT
6074 /*
6075 * The RT priorities are set via sched_setscheduler(), but we still
6076 * allow the 'normal' nice value to be set - but as expected
6077 * it wont have any effect on scheduling until the task is
dd41f596 6078 * SCHED_FIFO/SCHED_RR:
1da177e4 6079 */
e05606d3 6080 if (task_has_rt_policy(p)) {
1da177e4
LT
6081 p->static_prio = NICE_TO_PRIO(nice);
6082 goto out_unlock;
6083 }
dd41f596 6084 on_rq = p->se.on_rq;
c09595f6 6085 if (on_rq)
69be72c1 6086 dequeue_task(rq, p, 0);
1da177e4 6087
1da177e4 6088 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6089 set_load_weight(p);
b29739f9
IM
6090 old_prio = p->prio;
6091 p->prio = effective_prio(p);
6092 delta = p->prio - old_prio;
1da177e4 6093
dd41f596 6094 if (on_rq) {
8159f87e 6095 enqueue_task(rq, p, 0);
1da177e4 6096 /*
d5f9f942
AM
6097 * If the task increased its priority or is running and
6098 * lowered its priority, then reschedule its CPU:
1da177e4 6099 */
d5f9f942 6100 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6101 resched_task(rq->curr);
6102 }
6103out_unlock:
6104 task_rq_unlock(rq, &flags);
6105}
1da177e4
LT
6106EXPORT_SYMBOL(set_user_nice);
6107
e43379f1
MM
6108/*
6109 * can_nice - check if a task can reduce its nice value
6110 * @p: task
6111 * @nice: nice value
6112 */
36c8b586 6113int can_nice(const struct task_struct *p, const int nice)
e43379f1 6114{
024f4747
MM
6115 /* convert nice value [19,-20] to rlimit style value [1,40] */
6116 int nice_rlim = 20 - nice;
48f24c4d 6117
e43379f1
MM
6118 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6119 capable(CAP_SYS_NICE));
6120}
6121
1da177e4
LT
6122#ifdef __ARCH_WANT_SYS_NICE
6123
6124/*
6125 * sys_nice - change the priority of the current process.
6126 * @increment: priority increment
6127 *
6128 * sys_setpriority is a more generic, but much slower function that
6129 * does similar things.
6130 */
5add95d4 6131SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6132{
48f24c4d 6133 long nice, retval;
1da177e4
LT
6134
6135 /*
6136 * Setpriority might change our priority at the same moment.
6137 * We don't have to worry. Conceptually one call occurs first
6138 * and we have a single winner.
6139 */
e43379f1
MM
6140 if (increment < -40)
6141 increment = -40;
1da177e4
LT
6142 if (increment > 40)
6143 increment = 40;
6144
2b8f836f 6145 nice = TASK_NICE(current) + increment;
1da177e4
LT
6146 if (nice < -20)
6147 nice = -20;
6148 if (nice > 19)
6149 nice = 19;
6150
e43379f1
MM
6151 if (increment < 0 && !can_nice(current, nice))
6152 return -EPERM;
6153
1da177e4
LT
6154 retval = security_task_setnice(current, nice);
6155 if (retval)
6156 return retval;
6157
6158 set_user_nice(current, nice);
6159 return 0;
6160}
6161
6162#endif
6163
6164/**
6165 * task_prio - return the priority value of a given task.
6166 * @p: the task in question.
6167 *
6168 * This is the priority value as seen by users in /proc.
6169 * RT tasks are offset by -200. Normal tasks are centered
6170 * around 0, value goes from -16 to +15.
6171 */
36c8b586 6172int task_prio(const struct task_struct *p)
1da177e4
LT
6173{
6174 return p->prio - MAX_RT_PRIO;
6175}
6176
6177/**
6178 * task_nice - return the nice value of a given task.
6179 * @p: the task in question.
6180 */
36c8b586 6181int task_nice(const struct task_struct *p)
1da177e4
LT
6182{
6183 return TASK_NICE(p);
6184}
150d8bed 6185EXPORT_SYMBOL(task_nice);
1da177e4
LT
6186
6187/**
6188 * idle_cpu - is a given cpu idle currently?
6189 * @cpu: the processor in question.
6190 */
6191int idle_cpu(int cpu)
6192{
6193 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6194}
6195
1da177e4
LT
6196/**
6197 * idle_task - return the idle task for a given cpu.
6198 * @cpu: the processor in question.
6199 */
36c8b586 6200struct task_struct *idle_task(int cpu)
1da177e4
LT
6201{
6202 return cpu_rq(cpu)->idle;
6203}
6204
6205/**
6206 * find_process_by_pid - find a process with a matching PID value.
6207 * @pid: the pid in question.
6208 */
a9957449 6209static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6210{
228ebcbe 6211 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6212}
6213
6214/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6215static void
6216__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6217{
dd41f596 6218 BUG_ON(p->se.on_rq);
48f24c4d 6219
1da177e4
LT
6220 p->policy = policy;
6221 p->rt_priority = prio;
b29739f9
IM
6222 p->normal_prio = normal_prio(p);
6223 /* we are holding p->pi_lock already */
6224 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
6225 if (rt_prio(p->prio))
6226 p->sched_class = &rt_sched_class;
6227 else
6228 p->sched_class = &fair_sched_class;
2dd73a4f 6229 set_load_weight(p);
1da177e4
LT
6230}
6231
c69e8d9c
DH
6232/*
6233 * check the target process has a UID that matches the current process's
6234 */
6235static bool check_same_owner(struct task_struct *p)
6236{
6237 const struct cred *cred = current_cred(), *pcred;
6238 bool match;
6239
6240 rcu_read_lock();
6241 pcred = __task_cred(p);
6242 match = (cred->euid == pcred->euid ||
6243 cred->euid == pcred->uid);
6244 rcu_read_unlock();
6245 return match;
6246}
6247
961ccddd
RR
6248static int __sched_setscheduler(struct task_struct *p, int policy,
6249 struct sched_param *param, bool user)
1da177e4 6250{
83b699ed 6251 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6252 unsigned long flags;
cb469845 6253 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6254 struct rq *rq;
ca94c442 6255 int reset_on_fork;
1da177e4 6256
66e5393a
SR
6257 /* may grab non-irq protected spin_locks */
6258 BUG_ON(in_interrupt());
1da177e4
LT
6259recheck:
6260 /* double check policy once rq lock held */
ca94c442
LP
6261 if (policy < 0) {
6262 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6263 policy = oldpolicy = p->policy;
ca94c442
LP
6264 } else {
6265 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6266 policy &= ~SCHED_RESET_ON_FORK;
6267
6268 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6269 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6270 policy != SCHED_IDLE)
6271 return -EINVAL;
6272 }
6273
1da177e4
LT
6274 /*
6275 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6276 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6277 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6278 */
6279 if (param->sched_priority < 0 ||
95cdf3b7 6280 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6281 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6282 return -EINVAL;
e05606d3 6283 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6284 return -EINVAL;
6285
37e4ab3f
OC
6286 /*
6287 * Allow unprivileged RT tasks to decrease priority:
6288 */
961ccddd 6289 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6290 if (rt_policy(policy)) {
8dc3e909 6291 unsigned long rlim_rtprio;
8dc3e909
ON
6292
6293 if (!lock_task_sighand(p, &flags))
6294 return -ESRCH;
6295 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6296 unlock_task_sighand(p, &flags);
6297
6298 /* can't set/change the rt policy */
6299 if (policy != p->policy && !rlim_rtprio)
6300 return -EPERM;
6301
6302 /* can't increase priority */
6303 if (param->sched_priority > p->rt_priority &&
6304 param->sched_priority > rlim_rtprio)
6305 return -EPERM;
6306 }
dd41f596
IM
6307 /*
6308 * Like positive nice levels, dont allow tasks to
6309 * move out of SCHED_IDLE either:
6310 */
6311 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6312 return -EPERM;
5fe1d75f 6313
37e4ab3f 6314 /* can't change other user's priorities */
c69e8d9c 6315 if (!check_same_owner(p))
37e4ab3f 6316 return -EPERM;
ca94c442
LP
6317
6318 /* Normal users shall not reset the sched_reset_on_fork flag */
6319 if (p->sched_reset_on_fork && !reset_on_fork)
6320 return -EPERM;
37e4ab3f 6321 }
1da177e4 6322
725aad24 6323 if (user) {
b68aa230 6324#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6325 /*
6326 * Do not allow realtime tasks into groups that have no runtime
6327 * assigned.
6328 */
9a7e0b18
PZ
6329 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6330 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6331 return -EPERM;
b68aa230
PZ
6332#endif
6333
725aad24
JF
6334 retval = security_task_setscheduler(p, policy, param);
6335 if (retval)
6336 return retval;
6337 }
6338
b29739f9
IM
6339 /*
6340 * make sure no PI-waiters arrive (or leave) while we are
6341 * changing the priority of the task:
6342 */
6343 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6344 /*
6345 * To be able to change p->policy safely, the apropriate
6346 * runqueue lock must be held.
6347 */
b29739f9 6348 rq = __task_rq_lock(p);
1da177e4
LT
6349 /* recheck policy now with rq lock held */
6350 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6351 policy = oldpolicy = -1;
b29739f9
IM
6352 __task_rq_unlock(rq);
6353 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6354 goto recheck;
6355 }
2daa3577 6356 update_rq_clock(rq);
dd41f596 6357 on_rq = p->se.on_rq;
051a1d1a 6358 running = task_current(rq, p);
0e1f3483 6359 if (on_rq)
2e1cb74a 6360 deactivate_task(rq, p, 0);
0e1f3483
HS
6361 if (running)
6362 p->sched_class->put_prev_task(rq, p);
f6b53205 6363
ca94c442
LP
6364 p->sched_reset_on_fork = reset_on_fork;
6365
1da177e4 6366 oldprio = p->prio;
dd41f596 6367 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6368
0e1f3483
HS
6369 if (running)
6370 p->sched_class->set_curr_task(rq);
dd41f596
IM
6371 if (on_rq) {
6372 activate_task(rq, p, 0);
cb469845
SR
6373
6374 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6375 }
b29739f9
IM
6376 __task_rq_unlock(rq);
6377 spin_unlock_irqrestore(&p->pi_lock, flags);
6378
95e02ca9
TG
6379 rt_mutex_adjust_pi(p);
6380
1da177e4
LT
6381 return 0;
6382}
961ccddd
RR
6383
6384/**
6385 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6386 * @p: the task in question.
6387 * @policy: new policy.
6388 * @param: structure containing the new RT priority.
6389 *
6390 * NOTE that the task may be already dead.
6391 */
6392int sched_setscheduler(struct task_struct *p, int policy,
6393 struct sched_param *param)
6394{
6395 return __sched_setscheduler(p, policy, param, true);
6396}
1da177e4
LT
6397EXPORT_SYMBOL_GPL(sched_setscheduler);
6398
961ccddd
RR
6399/**
6400 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6401 * @p: the task in question.
6402 * @policy: new policy.
6403 * @param: structure containing the new RT priority.
6404 *
6405 * Just like sched_setscheduler, only don't bother checking if the
6406 * current context has permission. For example, this is needed in
6407 * stop_machine(): we create temporary high priority worker threads,
6408 * but our caller might not have that capability.
6409 */
6410int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6411 struct sched_param *param)
6412{
6413 return __sched_setscheduler(p, policy, param, false);
6414}
6415
95cdf3b7
IM
6416static int
6417do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6418{
1da177e4
LT
6419 struct sched_param lparam;
6420 struct task_struct *p;
36c8b586 6421 int retval;
1da177e4
LT
6422
6423 if (!param || pid < 0)
6424 return -EINVAL;
6425 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6426 return -EFAULT;
5fe1d75f
ON
6427
6428 rcu_read_lock();
6429 retval = -ESRCH;
1da177e4 6430 p = find_process_by_pid(pid);
5fe1d75f
ON
6431 if (p != NULL)
6432 retval = sched_setscheduler(p, policy, &lparam);
6433 rcu_read_unlock();
36c8b586 6434
1da177e4
LT
6435 return retval;
6436}
6437
6438/**
6439 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6440 * @pid: the pid in question.
6441 * @policy: new policy.
6442 * @param: structure containing the new RT priority.
6443 */
5add95d4
HC
6444SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6445 struct sched_param __user *, param)
1da177e4 6446{
c21761f1
JB
6447 /* negative values for policy are not valid */
6448 if (policy < 0)
6449 return -EINVAL;
6450
1da177e4
LT
6451 return do_sched_setscheduler(pid, policy, param);
6452}
6453
6454/**
6455 * sys_sched_setparam - set/change the RT priority of a thread
6456 * @pid: the pid in question.
6457 * @param: structure containing the new RT priority.
6458 */
5add95d4 6459SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6460{
6461 return do_sched_setscheduler(pid, -1, param);
6462}
6463
6464/**
6465 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6466 * @pid: the pid in question.
6467 */
5add95d4 6468SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6469{
36c8b586 6470 struct task_struct *p;
3a5c359a 6471 int retval;
1da177e4
LT
6472
6473 if (pid < 0)
3a5c359a 6474 return -EINVAL;
1da177e4
LT
6475
6476 retval = -ESRCH;
6477 read_lock(&tasklist_lock);
6478 p = find_process_by_pid(pid);
6479 if (p) {
6480 retval = security_task_getscheduler(p);
6481 if (!retval)
ca94c442
LP
6482 retval = p->policy
6483 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6484 }
6485 read_unlock(&tasklist_lock);
1da177e4
LT
6486 return retval;
6487}
6488
6489/**
ca94c442 6490 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6491 * @pid: the pid in question.
6492 * @param: structure containing the RT priority.
6493 */
5add95d4 6494SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6495{
6496 struct sched_param lp;
36c8b586 6497 struct task_struct *p;
3a5c359a 6498 int retval;
1da177e4
LT
6499
6500 if (!param || pid < 0)
3a5c359a 6501 return -EINVAL;
1da177e4
LT
6502
6503 read_lock(&tasklist_lock);
6504 p = find_process_by_pid(pid);
6505 retval = -ESRCH;
6506 if (!p)
6507 goto out_unlock;
6508
6509 retval = security_task_getscheduler(p);
6510 if (retval)
6511 goto out_unlock;
6512
6513 lp.sched_priority = p->rt_priority;
6514 read_unlock(&tasklist_lock);
6515
6516 /*
6517 * This one might sleep, we cannot do it with a spinlock held ...
6518 */
6519 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6520
1da177e4
LT
6521 return retval;
6522
6523out_unlock:
6524 read_unlock(&tasklist_lock);
6525 return retval;
6526}
6527
96f874e2 6528long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6529{
5a16f3d3 6530 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6531 struct task_struct *p;
6532 int retval;
1da177e4 6533
95402b38 6534 get_online_cpus();
1da177e4
LT
6535 read_lock(&tasklist_lock);
6536
6537 p = find_process_by_pid(pid);
6538 if (!p) {
6539 read_unlock(&tasklist_lock);
95402b38 6540 put_online_cpus();
1da177e4
LT
6541 return -ESRCH;
6542 }
6543
6544 /*
6545 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6546 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6547 * usage count and then drop tasklist_lock.
6548 */
6549 get_task_struct(p);
6550 read_unlock(&tasklist_lock);
6551
5a16f3d3
RR
6552 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6553 retval = -ENOMEM;
6554 goto out_put_task;
6555 }
6556 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6557 retval = -ENOMEM;
6558 goto out_free_cpus_allowed;
6559 }
1da177e4 6560 retval = -EPERM;
c69e8d9c 6561 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6562 goto out_unlock;
6563
e7834f8f
DQ
6564 retval = security_task_setscheduler(p, 0, NULL);
6565 if (retval)
6566 goto out_unlock;
6567
5a16f3d3
RR
6568 cpuset_cpus_allowed(p, cpus_allowed);
6569 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6570 again:
5a16f3d3 6571 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6572
8707d8b8 6573 if (!retval) {
5a16f3d3
RR
6574 cpuset_cpus_allowed(p, cpus_allowed);
6575 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6576 /*
6577 * We must have raced with a concurrent cpuset
6578 * update. Just reset the cpus_allowed to the
6579 * cpuset's cpus_allowed
6580 */
5a16f3d3 6581 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6582 goto again;
6583 }
6584 }
1da177e4 6585out_unlock:
5a16f3d3
RR
6586 free_cpumask_var(new_mask);
6587out_free_cpus_allowed:
6588 free_cpumask_var(cpus_allowed);
6589out_put_task:
1da177e4 6590 put_task_struct(p);
95402b38 6591 put_online_cpus();
1da177e4
LT
6592 return retval;
6593}
6594
6595static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6596 struct cpumask *new_mask)
1da177e4 6597{
96f874e2
RR
6598 if (len < cpumask_size())
6599 cpumask_clear(new_mask);
6600 else if (len > cpumask_size())
6601 len = cpumask_size();
6602
1da177e4
LT
6603 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6604}
6605
6606/**
6607 * sys_sched_setaffinity - set the cpu affinity of a process
6608 * @pid: pid of the process
6609 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6610 * @user_mask_ptr: user-space pointer to the new cpu mask
6611 */
5add95d4
HC
6612SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6613 unsigned long __user *, user_mask_ptr)
1da177e4 6614{
5a16f3d3 6615 cpumask_var_t new_mask;
1da177e4
LT
6616 int retval;
6617
5a16f3d3
RR
6618 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6619 return -ENOMEM;
1da177e4 6620
5a16f3d3
RR
6621 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6622 if (retval == 0)
6623 retval = sched_setaffinity(pid, new_mask);
6624 free_cpumask_var(new_mask);
6625 return retval;
1da177e4
LT
6626}
6627
96f874e2 6628long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6629{
36c8b586 6630 struct task_struct *p;
31605683
TG
6631 unsigned long flags;
6632 struct rq *rq;
1da177e4 6633 int retval;
1da177e4 6634
95402b38 6635 get_online_cpus();
1da177e4
LT
6636 read_lock(&tasklist_lock);
6637
6638 retval = -ESRCH;
6639 p = find_process_by_pid(pid);
6640 if (!p)
6641 goto out_unlock;
6642
e7834f8f
DQ
6643 retval = security_task_getscheduler(p);
6644 if (retval)
6645 goto out_unlock;
6646
31605683 6647 rq = task_rq_lock(p, &flags);
96f874e2 6648 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 6649 task_rq_unlock(rq, &flags);
1da177e4
LT
6650
6651out_unlock:
6652 read_unlock(&tasklist_lock);
95402b38 6653 put_online_cpus();
1da177e4 6654
9531b62f 6655 return retval;
1da177e4
LT
6656}
6657
6658/**
6659 * sys_sched_getaffinity - get the cpu affinity of a process
6660 * @pid: pid of the process
6661 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6662 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6663 */
5add95d4
HC
6664SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6665 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6666{
6667 int ret;
f17c8607 6668 cpumask_var_t mask;
1da177e4 6669
f17c8607 6670 if (len < cpumask_size())
1da177e4
LT
6671 return -EINVAL;
6672
f17c8607
RR
6673 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6674 return -ENOMEM;
1da177e4 6675
f17c8607
RR
6676 ret = sched_getaffinity(pid, mask);
6677 if (ret == 0) {
6678 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6679 ret = -EFAULT;
6680 else
6681 ret = cpumask_size();
6682 }
6683 free_cpumask_var(mask);
1da177e4 6684
f17c8607 6685 return ret;
1da177e4
LT
6686}
6687
6688/**
6689 * sys_sched_yield - yield the current processor to other threads.
6690 *
dd41f596
IM
6691 * This function yields the current CPU to other tasks. If there are no
6692 * other threads running on this CPU then this function will return.
1da177e4 6693 */
5add95d4 6694SYSCALL_DEFINE0(sched_yield)
1da177e4 6695{
70b97a7f 6696 struct rq *rq = this_rq_lock();
1da177e4 6697
2d72376b 6698 schedstat_inc(rq, yld_count);
4530d7ab 6699 current->sched_class->yield_task(rq);
1da177e4
LT
6700
6701 /*
6702 * Since we are going to call schedule() anyway, there's
6703 * no need to preempt or enable interrupts:
6704 */
6705 __release(rq->lock);
8a25d5de 6706 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6707 _raw_spin_unlock(&rq->lock);
6708 preempt_enable_no_resched();
6709
6710 schedule();
6711
6712 return 0;
6713}
6714
d86ee480
PZ
6715static inline int should_resched(void)
6716{
6717 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6718}
6719
e7b38404 6720static void __cond_resched(void)
1da177e4 6721{
e7aaaa69
FW
6722 add_preempt_count(PREEMPT_ACTIVE);
6723 schedule();
6724 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6725}
6726
02b67cc3 6727int __sched _cond_resched(void)
1da177e4 6728{
d86ee480 6729 if (should_resched()) {
1da177e4
LT
6730 __cond_resched();
6731 return 1;
6732 }
6733 return 0;
6734}
02b67cc3 6735EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6736
6737/*
613afbf8 6738 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6739 * call schedule, and on return reacquire the lock.
6740 *
41a2d6cf 6741 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6742 * operations here to prevent schedule() from being called twice (once via
6743 * spin_unlock(), once by hand).
6744 */
613afbf8 6745int __cond_resched_lock(spinlock_t *lock)
1da177e4 6746{
d86ee480 6747 int resched = should_resched();
6df3cecb
JK
6748 int ret = 0;
6749
f607c668
PZ
6750 lockdep_assert_held(lock);
6751
95c354fe 6752 if (spin_needbreak(lock) || resched) {
1da177e4 6753 spin_unlock(lock);
d86ee480 6754 if (resched)
95c354fe
NP
6755 __cond_resched();
6756 else
6757 cpu_relax();
6df3cecb 6758 ret = 1;
1da177e4 6759 spin_lock(lock);
1da177e4 6760 }
6df3cecb 6761 return ret;
1da177e4 6762}
613afbf8 6763EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6764
613afbf8 6765int __sched __cond_resched_softirq(void)
1da177e4
LT
6766{
6767 BUG_ON(!in_softirq());
6768
d86ee480 6769 if (should_resched()) {
98d82567 6770 local_bh_enable();
1da177e4
LT
6771 __cond_resched();
6772 local_bh_disable();
6773 return 1;
6774 }
6775 return 0;
6776}
613afbf8 6777EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6778
1da177e4
LT
6779/**
6780 * yield - yield the current processor to other threads.
6781 *
72fd4a35 6782 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6783 * thread runnable and calls sys_sched_yield().
6784 */
6785void __sched yield(void)
6786{
6787 set_current_state(TASK_RUNNING);
6788 sys_sched_yield();
6789}
1da177e4
LT
6790EXPORT_SYMBOL(yield);
6791
6792/*
41a2d6cf 6793 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6794 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6795 */
6796void __sched io_schedule(void)
6797{
54d35f29 6798 struct rq *rq = raw_rq();
1da177e4 6799
0ff92245 6800 delayacct_blkio_start();
1da177e4 6801 atomic_inc(&rq->nr_iowait);
8f0dfc34 6802 current->in_iowait = 1;
1da177e4 6803 schedule();
8f0dfc34 6804 current->in_iowait = 0;
1da177e4 6805 atomic_dec(&rq->nr_iowait);
0ff92245 6806 delayacct_blkio_end();
1da177e4 6807}
1da177e4
LT
6808EXPORT_SYMBOL(io_schedule);
6809
6810long __sched io_schedule_timeout(long timeout)
6811{
54d35f29 6812 struct rq *rq = raw_rq();
1da177e4
LT
6813 long ret;
6814
0ff92245 6815 delayacct_blkio_start();
1da177e4 6816 atomic_inc(&rq->nr_iowait);
8f0dfc34 6817 current->in_iowait = 1;
1da177e4 6818 ret = schedule_timeout(timeout);
8f0dfc34 6819 current->in_iowait = 0;
1da177e4 6820 atomic_dec(&rq->nr_iowait);
0ff92245 6821 delayacct_blkio_end();
1da177e4
LT
6822 return ret;
6823}
6824
6825/**
6826 * sys_sched_get_priority_max - return maximum RT priority.
6827 * @policy: scheduling class.
6828 *
6829 * this syscall returns the maximum rt_priority that can be used
6830 * by a given scheduling class.
6831 */
5add95d4 6832SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6833{
6834 int ret = -EINVAL;
6835
6836 switch (policy) {
6837 case SCHED_FIFO:
6838 case SCHED_RR:
6839 ret = MAX_USER_RT_PRIO-1;
6840 break;
6841 case SCHED_NORMAL:
b0a9499c 6842 case SCHED_BATCH:
dd41f596 6843 case SCHED_IDLE:
1da177e4
LT
6844 ret = 0;
6845 break;
6846 }
6847 return ret;
6848}
6849
6850/**
6851 * sys_sched_get_priority_min - return minimum RT priority.
6852 * @policy: scheduling class.
6853 *
6854 * this syscall returns the minimum rt_priority that can be used
6855 * by a given scheduling class.
6856 */
5add95d4 6857SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6858{
6859 int ret = -EINVAL;
6860
6861 switch (policy) {
6862 case SCHED_FIFO:
6863 case SCHED_RR:
6864 ret = 1;
6865 break;
6866 case SCHED_NORMAL:
b0a9499c 6867 case SCHED_BATCH:
dd41f596 6868 case SCHED_IDLE:
1da177e4
LT
6869 ret = 0;
6870 }
6871 return ret;
6872}
6873
6874/**
6875 * sys_sched_rr_get_interval - return the default timeslice of a process.
6876 * @pid: pid of the process.
6877 * @interval: userspace pointer to the timeslice value.
6878 *
6879 * this syscall writes the default timeslice value of a given process
6880 * into the user-space timespec buffer. A value of '0' means infinity.
6881 */
17da2bd9 6882SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6883 struct timespec __user *, interval)
1da177e4 6884{
36c8b586 6885 struct task_struct *p;
a4ec24b4 6886 unsigned int time_slice;
dba091b9
TG
6887 unsigned long flags;
6888 struct rq *rq;
3a5c359a 6889 int retval;
1da177e4 6890 struct timespec t;
1da177e4
LT
6891
6892 if (pid < 0)
3a5c359a 6893 return -EINVAL;
1da177e4
LT
6894
6895 retval = -ESRCH;
6896 read_lock(&tasklist_lock);
6897 p = find_process_by_pid(pid);
6898 if (!p)
6899 goto out_unlock;
6900
6901 retval = security_task_getscheduler(p);
6902 if (retval)
6903 goto out_unlock;
6904
dba091b9
TG
6905 rq = task_rq_lock(p, &flags);
6906 time_slice = p->sched_class->get_rr_interval(rq, p);
6907 task_rq_unlock(rq, &flags);
a4ec24b4 6908
1da177e4 6909 read_unlock(&tasklist_lock);
a4ec24b4 6910 jiffies_to_timespec(time_slice, &t);
1da177e4 6911 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6912 return retval;
3a5c359a 6913
1da177e4
LT
6914out_unlock:
6915 read_unlock(&tasklist_lock);
6916 return retval;
6917}
6918
7c731e0a 6919static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6920
82a1fcb9 6921void sched_show_task(struct task_struct *p)
1da177e4 6922{
1da177e4 6923 unsigned long free = 0;
36c8b586 6924 unsigned state;
1da177e4 6925
1da177e4 6926 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6927 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6928 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6929#if BITS_PER_LONG == 32
1da177e4 6930 if (state == TASK_RUNNING)
cc4ea795 6931 printk(KERN_CONT " running ");
1da177e4 6932 else
cc4ea795 6933 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6934#else
6935 if (state == TASK_RUNNING)
cc4ea795 6936 printk(KERN_CONT " running task ");
1da177e4 6937 else
cc4ea795 6938 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6939#endif
6940#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6941 free = stack_not_used(p);
1da177e4 6942#endif
aa47b7e0
DR
6943 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6944 task_pid_nr(p), task_pid_nr(p->real_parent),
6945 (unsigned long)task_thread_info(p)->flags);
1da177e4 6946
5fb5e6de 6947 show_stack(p, NULL);
1da177e4
LT
6948}
6949
e59e2ae2 6950void show_state_filter(unsigned long state_filter)
1da177e4 6951{
36c8b586 6952 struct task_struct *g, *p;
1da177e4 6953
4bd77321
IM
6954#if BITS_PER_LONG == 32
6955 printk(KERN_INFO
6956 " task PC stack pid father\n");
1da177e4 6957#else
4bd77321
IM
6958 printk(KERN_INFO
6959 " task PC stack pid father\n");
1da177e4
LT
6960#endif
6961 read_lock(&tasklist_lock);
6962 do_each_thread(g, p) {
6963 /*
6964 * reset the NMI-timeout, listing all files on a slow
6965 * console might take alot of time:
6966 */
6967 touch_nmi_watchdog();
39bc89fd 6968 if (!state_filter || (p->state & state_filter))
82a1fcb9 6969 sched_show_task(p);
1da177e4
LT
6970 } while_each_thread(g, p);
6971
04c9167f
JF
6972 touch_all_softlockup_watchdogs();
6973
dd41f596
IM
6974#ifdef CONFIG_SCHED_DEBUG
6975 sysrq_sched_debug_show();
6976#endif
1da177e4 6977 read_unlock(&tasklist_lock);
e59e2ae2
IM
6978 /*
6979 * Only show locks if all tasks are dumped:
6980 */
93335a21 6981 if (!state_filter)
e59e2ae2 6982 debug_show_all_locks();
1da177e4
LT
6983}
6984
1df21055
IM
6985void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6986{
dd41f596 6987 idle->sched_class = &idle_sched_class;
1df21055
IM
6988}
6989
f340c0d1
IM
6990/**
6991 * init_idle - set up an idle thread for a given CPU
6992 * @idle: task in question
6993 * @cpu: cpu the idle task belongs to
6994 *
6995 * NOTE: this function does not set the idle thread's NEED_RESCHED
6996 * flag, to make booting more robust.
6997 */
5c1e1767 6998void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6999{
70b97a7f 7000 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
7001 unsigned long flags;
7002
5cbd54ef
IM
7003 spin_lock_irqsave(&rq->lock, flags);
7004
dd41f596
IM
7005 __sched_fork(idle);
7006 idle->se.exec_start = sched_clock();
7007
b29739f9 7008 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 7009 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 7010 __set_task_cpu(idle, cpu);
1da177e4 7011
1da177e4 7012 rq->curr = rq->idle = idle;
4866cde0
NP
7013#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7014 idle->oncpu = 1;
7015#endif
1da177e4
LT
7016 spin_unlock_irqrestore(&rq->lock, flags);
7017
7018 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
7019#if defined(CONFIG_PREEMPT)
7020 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7021#else
a1261f54 7022 task_thread_info(idle)->preempt_count = 0;
8e3e076c 7023#endif
dd41f596
IM
7024 /*
7025 * The idle tasks have their own, simple scheduling class:
7026 */
7027 idle->sched_class = &idle_sched_class;
fb52607a 7028 ftrace_graph_init_task(idle);
1da177e4
LT
7029}
7030
7031/*
7032 * In a system that switches off the HZ timer nohz_cpu_mask
7033 * indicates which cpus entered this state. This is used
7034 * in the rcu update to wait only for active cpus. For system
7035 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 7036 * always be CPU_BITS_NONE.
1da177e4 7037 */
6a7b3dc3 7038cpumask_var_t nohz_cpu_mask;
1da177e4 7039
19978ca6
IM
7040/*
7041 * Increase the granularity value when there are more CPUs,
7042 * because with more CPUs the 'effective latency' as visible
7043 * to users decreases. But the relationship is not linear,
7044 * so pick a second-best guess by going with the log2 of the
7045 * number of CPUs.
7046 *
7047 * This idea comes from the SD scheduler of Con Kolivas:
7048 */
7049static inline void sched_init_granularity(void)
7050{
7051 unsigned int factor = 1 + ilog2(num_online_cpus());
7052 const unsigned long limit = 200000000;
7053
7054 sysctl_sched_min_granularity *= factor;
7055 if (sysctl_sched_min_granularity > limit)
7056 sysctl_sched_min_granularity = limit;
7057
7058 sysctl_sched_latency *= factor;
7059 if (sysctl_sched_latency > limit)
7060 sysctl_sched_latency = limit;
7061
7062 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
7063
7064 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
7065}
7066
1da177e4
LT
7067#ifdef CONFIG_SMP
7068/*
7069 * This is how migration works:
7070 *
70b97a7f 7071 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7072 * runqueue and wake up that CPU's migration thread.
7073 * 2) we down() the locked semaphore => thread blocks.
7074 * 3) migration thread wakes up (implicitly it forces the migrated
7075 * thread off the CPU)
7076 * 4) it gets the migration request and checks whether the migrated
7077 * task is still in the wrong runqueue.
7078 * 5) if it's in the wrong runqueue then the migration thread removes
7079 * it and puts it into the right queue.
7080 * 6) migration thread up()s the semaphore.
7081 * 7) we wake up and the migration is done.
7082 */
7083
7084/*
7085 * Change a given task's CPU affinity. Migrate the thread to a
7086 * proper CPU and schedule it away if the CPU it's executing on
7087 * is removed from the allowed bitmask.
7088 *
7089 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7090 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7091 * call is not atomic; no spinlocks may be held.
7092 */
96f874e2 7093int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7094{
70b97a7f 7095 struct migration_req req;
1da177e4 7096 unsigned long flags;
70b97a7f 7097 struct rq *rq;
48f24c4d 7098 int ret = 0;
1da177e4
LT
7099
7100 rq = task_rq_lock(p, &flags);
6ad4c188 7101 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
7102 ret = -EINVAL;
7103 goto out;
7104 }
7105
9985b0ba 7106 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7107 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7108 ret = -EINVAL;
7109 goto out;
7110 }
7111
73fe6aae 7112 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7113 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7114 else {
96f874e2
RR
7115 cpumask_copy(&p->cpus_allowed, new_mask);
7116 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7117 }
7118
1da177e4 7119 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7120 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7121 goto out;
7122
6ad4c188 7123 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 7124 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7125 struct task_struct *mt = rq->migration_thread;
7126
7127 get_task_struct(mt);
1da177e4
LT
7128 task_rq_unlock(rq, &flags);
7129 wake_up_process(rq->migration_thread);
693525e3 7130 put_task_struct(mt);
1da177e4
LT
7131 wait_for_completion(&req.done);
7132 tlb_migrate_finish(p->mm);
7133 return 0;
7134 }
7135out:
7136 task_rq_unlock(rq, &flags);
48f24c4d 7137
1da177e4
LT
7138 return ret;
7139}
cd8ba7cd 7140EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7141
7142/*
41a2d6cf 7143 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7144 * this because either it can't run here any more (set_cpus_allowed()
7145 * away from this CPU, or CPU going down), or because we're
7146 * attempting to rebalance this task on exec (sched_exec).
7147 *
7148 * So we race with normal scheduler movements, but that's OK, as long
7149 * as the task is no longer on this CPU.
efc30814
KK
7150 *
7151 * Returns non-zero if task was successfully migrated.
1da177e4 7152 */
efc30814 7153static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7154{
70b97a7f 7155 struct rq *rq_dest, *rq_src;
dd41f596 7156 int ret = 0, on_rq;
1da177e4 7157
e761b772 7158 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7159 return ret;
1da177e4
LT
7160
7161 rq_src = cpu_rq(src_cpu);
7162 rq_dest = cpu_rq(dest_cpu);
7163
7164 double_rq_lock(rq_src, rq_dest);
7165 /* Already moved. */
7166 if (task_cpu(p) != src_cpu)
b1e38734 7167 goto done;
1da177e4 7168 /* Affinity changed (again). */
96f874e2 7169 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7170 goto fail;
1da177e4 7171
dd41f596 7172 on_rq = p->se.on_rq;
6e82a3be 7173 if (on_rq)
2e1cb74a 7174 deactivate_task(rq_src, p, 0);
6e82a3be 7175
1da177e4 7176 set_task_cpu(p, dest_cpu);
dd41f596
IM
7177 if (on_rq) {
7178 activate_task(rq_dest, p, 0);
15afe09b 7179 check_preempt_curr(rq_dest, p, 0);
1da177e4 7180 }
b1e38734 7181done:
efc30814 7182 ret = 1;
b1e38734 7183fail:
1da177e4 7184 double_rq_unlock(rq_src, rq_dest);
efc30814 7185 return ret;
1da177e4
LT
7186}
7187
03b042bf
PM
7188#define RCU_MIGRATION_IDLE 0
7189#define RCU_MIGRATION_NEED_QS 1
7190#define RCU_MIGRATION_GOT_QS 2
7191#define RCU_MIGRATION_MUST_SYNC 3
7192
1da177e4
LT
7193/*
7194 * migration_thread - this is a highprio system thread that performs
7195 * thread migration by bumping thread off CPU then 'pushing' onto
7196 * another runqueue.
7197 */
95cdf3b7 7198static int migration_thread(void *data)
1da177e4 7199{
03b042bf 7200 int badcpu;
1da177e4 7201 int cpu = (long)data;
70b97a7f 7202 struct rq *rq;
1da177e4
LT
7203
7204 rq = cpu_rq(cpu);
7205 BUG_ON(rq->migration_thread != current);
7206
7207 set_current_state(TASK_INTERRUPTIBLE);
7208 while (!kthread_should_stop()) {
70b97a7f 7209 struct migration_req *req;
1da177e4 7210 struct list_head *head;
1da177e4 7211
1da177e4
LT
7212 spin_lock_irq(&rq->lock);
7213
7214 if (cpu_is_offline(cpu)) {
7215 spin_unlock_irq(&rq->lock);
371cbb38 7216 break;
1da177e4
LT
7217 }
7218
7219 if (rq->active_balance) {
7220 active_load_balance(rq, cpu);
7221 rq->active_balance = 0;
7222 }
7223
7224 head = &rq->migration_queue;
7225
7226 if (list_empty(head)) {
7227 spin_unlock_irq(&rq->lock);
7228 schedule();
7229 set_current_state(TASK_INTERRUPTIBLE);
7230 continue;
7231 }
70b97a7f 7232 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7233 list_del_init(head->next);
7234
03b042bf
PM
7235 if (req->task != NULL) {
7236 spin_unlock(&rq->lock);
7237 __migrate_task(req->task, cpu, req->dest_cpu);
7238 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7239 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7240 spin_unlock(&rq->lock);
7241 } else {
7242 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7243 spin_unlock(&rq->lock);
7244 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7245 }
674311d5 7246 local_irq_enable();
1da177e4
LT
7247
7248 complete(&req->done);
7249 }
7250 __set_current_state(TASK_RUNNING);
1da177e4 7251
1da177e4
LT
7252 return 0;
7253}
7254
7255#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7256
7257static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7258{
7259 int ret;
7260
7261 local_irq_disable();
7262 ret = __migrate_task(p, src_cpu, dest_cpu);
7263 local_irq_enable();
7264 return ret;
7265}
7266
054b9108 7267/*
3a4fa0a2 7268 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7269 */
48f24c4d 7270static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7271{
70b97a7f 7272 int dest_cpu;
6ca09dfc 7273 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7274
7275again:
7276 /* Look for allowed, online CPU in same node. */
6ad4c188 7277 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
e76bd8d9
RR
7278 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7279 goto move;
7280
7281 /* Any allowed, online CPU? */
6ad4c188 7282 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
e76bd8d9
RR
7283 if (dest_cpu < nr_cpu_ids)
7284 goto move;
7285
7286 /* No more Mr. Nice Guy. */
7287 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9 7288 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6ad4c188 7289 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
1da177e4 7290
e76bd8d9
RR
7291 /*
7292 * Don't tell them about moving exiting tasks or
7293 * kernel threads (both mm NULL), since they never
7294 * leave kernel.
7295 */
7296 if (p->mm && printk_ratelimit()) {
7297 printk(KERN_INFO "process %d (%s) no "
7298 "longer affine to cpu%d\n",
7299 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7300 }
e76bd8d9
RR
7301 }
7302
7303move:
7304 /* It can have affinity changed while we were choosing. */
7305 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7306 goto again;
1da177e4
LT
7307}
7308
7309/*
7310 * While a dead CPU has no uninterruptible tasks queued at this point,
7311 * it might still have a nonzero ->nr_uninterruptible counter, because
7312 * for performance reasons the counter is not stricly tracking tasks to
7313 * their home CPUs. So we just add the counter to another CPU's counter,
7314 * to keep the global sum constant after CPU-down:
7315 */
70b97a7f 7316static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7317{
6ad4c188 7318 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
7319 unsigned long flags;
7320
7321 local_irq_save(flags);
7322 double_rq_lock(rq_src, rq_dest);
7323 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7324 rq_src->nr_uninterruptible = 0;
7325 double_rq_unlock(rq_src, rq_dest);
7326 local_irq_restore(flags);
7327}
7328
7329/* Run through task list and migrate tasks from the dead cpu. */
7330static void migrate_live_tasks(int src_cpu)
7331{
48f24c4d 7332 struct task_struct *p, *t;
1da177e4 7333
f7b4cddc 7334 read_lock(&tasklist_lock);
1da177e4 7335
48f24c4d
IM
7336 do_each_thread(t, p) {
7337 if (p == current)
1da177e4
LT
7338 continue;
7339
48f24c4d
IM
7340 if (task_cpu(p) == src_cpu)
7341 move_task_off_dead_cpu(src_cpu, p);
7342 } while_each_thread(t, p);
1da177e4 7343
f7b4cddc 7344 read_unlock(&tasklist_lock);
1da177e4
LT
7345}
7346
dd41f596
IM
7347/*
7348 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7349 * It does so by boosting its priority to highest possible.
7350 * Used by CPU offline code.
1da177e4
LT
7351 */
7352void sched_idle_next(void)
7353{
48f24c4d 7354 int this_cpu = smp_processor_id();
70b97a7f 7355 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7356 struct task_struct *p = rq->idle;
7357 unsigned long flags;
7358
7359 /* cpu has to be offline */
48f24c4d 7360 BUG_ON(cpu_online(this_cpu));
1da177e4 7361
48f24c4d
IM
7362 /*
7363 * Strictly not necessary since rest of the CPUs are stopped by now
7364 * and interrupts disabled on the current cpu.
1da177e4
LT
7365 */
7366 spin_lock_irqsave(&rq->lock, flags);
7367
dd41f596 7368 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7369
94bc9a7b
DA
7370 update_rq_clock(rq);
7371 activate_task(rq, p, 0);
1da177e4
LT
7372
7373 spin_unlock_irqrestore(&rq->lock, flags);
7374}
7375
48f24c4d
IM
7376/*
7377 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7378 * offline.
7379 */
7380void idle_task_exit(void)
7381{
7382 struct mm_struct *mm = current->active_mm;
7383
7384 BUG_ON(cpu_online(smp_processor_id()));
7385
7386 if (mm != &init_mm)
7387 switch_mm(mm, &init_mm, current);
7388 mmdrop(mm);
7389}
7390
054b9108 7391/* called under rq->lock with disabled interrupts */
36c8b586 7392static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7393{
70b97a7f 7394 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7395
7396 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7397 BUG_ON(!p->exit_state);
1da177e4
LT
7398
7399 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7400 BUG_ON(p->state == TASK_DEAD);
1da177e4 7401
48f24c4d 7402 get_task_struct(p);
1da177e4
LT
7403
7404 /*
7405 * Drop lock around migration; if someone else moves it,
41a2d6cf 7406 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7407 * fine.
7408 */
f7b4cddc 7409 spin_unlock_irq(&rq->lock);
48f24c4d 7410 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7411 spin_lock_irq(&rq->lock);
1da177e4 7412
48f24c4d 7413 put_task_struct(p);
1da177e4
LT
7414}
7415
7416/* release_task() removes task from tasklist, so we won't find dead tasks. */
7417static void migrate_dead_tasks(unsigned int dead_cpu)
7418{
70b97a7f 7419 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7420 struct task_struct *next;
48f24c4d 7421
dd41f596
IM
7422 for ( ; ; ) {
7423 if (!rq->nr_running)
7424 break;
a8e504d2 7425 update_rq_clock(rq);
b67802ea 7426 next = pick_next_task(rq);
dd41f596
IM
7427 if (!next)
7428 break;
79c53799 7429 next->sched_class->put_prev_task(rq, next);
dd41f596 7430 migrate_dead(dead_cpu, next);
e692ab53 7431
1da177e4
LT
7432 }
7433}
dce48a84
TG
7434
7435/*
7436 * remove the tasks which were accounted by rq from calc_load_tasks.
7437 */
7438static void calc_global_load_remove(struct rq *rq)
7439{
7440 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7441 rq->calc_load_active = 0;
dce48a84 7442}
1da177e4
LT
7443#endif /* CONFIG_HOTPLUG_CPU */
7444
e692ab53
NP
7445#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7446
7447static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7448 {
7449 .procname = "sched_domain",
c57baf1e 7450 .mode = 0555,
e0361851 7451 },
38605cae 7452 {0, },
e692ab53
NP
7453};
7454
7455static struct ctl_table sd_ctl_root[] = {
e0361851 7456 {
c57baf1e 7457 .ctl_name = CTL_KERN,
e0361851 7458 .procname = "kernel",
c57baf1e 7459 .mode = 0555,
e0361851
AD
7460 .child = sd_ctl_dir,
7461 },
38605cae 7462 {0, },
e692ab53
NP
7463};
7464
7465static struct ctl_table *sd_alloc_ctl_entry(int n)
7466{
7467 struct ctl_table *entry =
5cf9f062 7468 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7469
e692ab53
NP
7470 return entry;
7471}
7472
6382bc90
MM
7473static void sd_free_ctl_entry(struct ctl_table **tablep)
7474{
cd790076 7475 struct ctl_table *entry;
6382bc90 7476
cd790076
MM
7477 /*
7478 * In the intermediate directories, both the child directory and
7479 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7480 * will always be set. In the lowest directory the names are
cd790076
MM
7481 * static strings and all have proc handlers.
7482 */
7483 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7484 if (entry->child)
7485 sd_free_ctl_entry(&entry->child);
cd790076
MM
7486 if (entry->proc_handler == NULL)
7487 kfree(entry->procname);
7488 }
6382bc90
MM
7489
7490 kfree(*tablep);
7491 *tablep = NULL;
7492}
7493
e692ab53 7494static void
e0361851 7495set_table_entry(struct ctl_table *entry,
e692ab53
NP
7496 const char *procname, void *data, int maxlen,
7497 mode_t mode, proc_handler *proc_handler)
7498{
e692ab53
NP
7499 entry->procname = procname;
7500 entry->data = data;
7501 entry->maxlen = maxlen;
7502 entry->mode = mode;
7503 entry->proc_handler = proc_handler;
7504}
7505
7506static struct ctl_table *
7507sd_alloc_ctl_domain_table(struct sched_domain *sd)
7508{
a5d8c348 7509 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7510
ad1cdc1d
MM
7511 if (table == NULL)
7512 return NULL;
7513
e0361851 7514 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7515 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7516 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7517 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7518 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7519 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7520 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7521 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7522 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7523 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7524 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7525 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7526 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7527 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7528 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7529 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7530 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7531 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7532 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7533 &sd->cache_nice_tries,
7534 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7535 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7536 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7537 set_table_entry(&table[11], "name", sd->name,
7538 CORENAME_MAX_SIZE, 0444, proc_dostring);
7539 /* &table[12] is terminator */
e692ab53
NP
7540
7541 return table;
7542}
7543
9a4e7159 7544static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7545{
7546 struct ctl_table *entry, *table;
7547 struct sched_domain *sd;
7548 int domain_num = 0, i;
7549 char buf[32];
7550
7551 for_each_domain(cpu, sd)
7552 domain_num++;
7553 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7554 if (table == NULL)
7555 return NULL;
e692ab53
NP
7556
7557 i = 0;
7558 for_each_domain(cpu, sd) {
7559 snprintf(buf, 32, "domain%d", i);
e692ab53 7560 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7561 entry->mode = 0555;
e692ab53
NP
7562 entry->child = sd_alloc_ctl_domain_table(sd);
7563 entry++;
7564 i++;
7565 }
7566 return table;
7567}
7568
7569static struct ctl_table_header *sd_sysctl_header;
6382bc90 7570static void register_sched_domain_sysctl(void)
e692ab53 7571{
6ad4c188 7572 int i, cpu_num = num_possible_cpus();
e692ab53
NP
7573 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7574 char buf[32];
7575
7378547f
MM
7576 WARN_ON(sd_ctl_dir[0].child);
7577 sd_ctl_dir[0].child = entry;
7578
ad1cdc1d
MM
7579 if (entry == NULL)
7580 return;
7581
6ad4c188 7582 for_each_possible_cpu(i) {
e692ab53 7583 snprintf(buf, 32, "cpu%d", i);
e692ab53 7584 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7585 entry->mode = 0555;
e692ab53 7586 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7587 entry++;
e692ab53 7588 }
7378547f
MM
7589
7590 WARN_ON(sd_sysctl_header);
e692ab53
NP
7591 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7592}
6382bc90 7593
7378547f 7594/* may be called multiple times per register */
6382bc90
MM
7595static void unregister_sched_domain_sysctl(void)
7596{
7378547f
MM
7597 if (sd_sysctl_header)
7598 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7599 sd_sysctl_header = NULL;
7378547f
MM
7600 if (sd_ctl_dir[0].child)
7601 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7602}
e692ab53 7603#else
6382bc90
MM
7604static void register_sched_domain_sysctl(void)
7605{
7606}
7607static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7608{
7609}
7610#endif
7611
1f11eb6a
GH
7612static void set_rq_online(struct rq *rq)
7613{
7614 if (!rq->online) {
7615 const struct sched_class *class;
7616
c6c4927b 7617 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7618 rq->online = 1;
7619
7620 for_each_class(class) {
7621 if (class->rq_online)
7622 class->rq_online(rq);
7623 }
7624 }
7625}
7626
7627static void set_rq_offline(struct rq *rq)
7628{
7629 if (rq->online) {
7630 const struct sched_class *class;
7631
7632 for_each_class(class) {
7633 if (class->rq_offline)
7634 class->rq_offline(rq);
7635 }
7636
c6c4927b 7637 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7638 rq->online = 0;
7639 }
7640}
7641
1da177e4
LT
7642/*
7643 * migration_call - callback that gets triggered when a CPU is added.
7644 * Here we can start up the necessary migration thread for the new CPU.
7645 */
48f24c4d
IM
7646static int __cpuinit
7647migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7648{
1da177e4 7649 struct task_struct *p;
48f24c4d 7650 int cpu = (long)hcpu;
1da177e4 7651 unsigned long flags;
70b97a7f 7652 struct rq *rq;
1da177e4
LT
7653
7654 switch (action) {
5be9361c 7655
1da177e4 7656 case CPU_UP_PREPARE:
8bb78442 7657 case CPU_UP_PREPARE_FROZEN:
dd41f596 7658 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7659 if (IS_ERR(p))
7660 return NOTIFY_BAD;
1da177e4
LT
7661 kthread_bind(p, cpu);
7662 /* Must be high prio: stop_machine expects to yield to it. */
7663 rq = task_rq_lock(p, &flags);
dd41f596 7664 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7665 task_rq_unlock(rq, &flags);
371cbb38 7666 get_task_struct(p);
1da177e4 7667 cpu_rq(cpu)->migration_thread = p;
a468d389 7668 rq->calc_load_update = calc_load_update;
1da177e4 7669 break;
48f24c4d 7670
1da177e4 7671 case CPU_ONLINE:
8bb78442 7672 case CPU_ONLINE_FROZEN:
3a4fa0a2 7673 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7674 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7675
7676 /* Update our root-domain */
7677 rq = cpu_rq(cpu);
7678 spin_lock_irqsave(&rq->lock, flags);
7679 if (rq->rd) {
c6c4927b 7680 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7681
7682 set_rq_online(rq);
1f94ef59
GH
7683 }
7684 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7685 break;
48f24c4d 7686
1da177e4
LT
7687#ifdef CONFIG_HOTPLUG_CPU
7688 case CPU_UP_CANCELED:
8bb78442 7689 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7690 if (!cpu_rq(cpu)->migration_thread)
7691 break;
41a2d6cf 7692 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7693 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7694 cpumask_any(cpu_online_mask));
1da177e4 7695 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7696 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7697 cpu_rq(cpu)->migration_thread = NULL;
7698 break;
48f24c4d 7699
1da177e4 7700 case CPU_DEAD:
8bb78442 7701 case CPU_DEAD_FROZEN:
470fd646 7702 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7703 migrate_live_tasks(cpu);
7704 rq = cpu_rq(cpu);
7705 kthread_stop(rq->migration_thread);
371cbb38 7706 put_task_struct(rq->migration_thread);
1da177e4
LT
7707 rq->migration_thread = NULL;
7708 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7709 spin_lock_irq(&rq->lock);
a8e504d2 7710 update_rq_clock(rq);
2e1cb74a 7711 deactivate_task(rq, rq->idle, 0);
1da177e4 7712 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7713 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7714 rq->idle->sched_class = &idle_sched_class;
1da177e4 7715 migrate_dead_tasks(cpu);
d2da272a 7716 spin_unlock_irq(&rq->lock);
470fd646 7717 cpuset_unlock();
1da177e4
LT
7718 migrate_nr_uninterruptible(rq);
7719 BUG_ON(rq->nr_running != 0);
dce48a84 7720 calc_global_load_remove(rq);
41a2d6cf
IM
7721 /*
7722 * No need to migrate the tasks: it was best-effort if
7723 * they didn't take sched_hotcpu_mutex. Just wake up
7724 * the requestors.
7725 */
1da177e4
LT
7726 spin_lock_irq(&rq->lock);
7727 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7728 struct migration_req *req;
7729
1da177e4 7730 req = list_entry(rq->migration_queue.next,
70b97a7f 7731 struct migration_req, list);
1da177e4 7732 list_del_init(&req->list);
9a2bd244 7733 spin_unlock_irq(&rq->lock);
1da177e4 7734 complete(&req->done);
9a2bd244 7735 spin_lock_irq(&rq->lock);
1da177e4
LT
7736 }
7737 spin_unlock_irq(&rq->lock);
7738 break;
57d885fe 7739
08f503b0
GH
7740 case CPU_DYING:
7741 case CPU_DYING_FROZEN:
57d885fe
GH
7742 /* Update our root-domain */
7743 rq = cpu_rq(cpu);
7744 spin_lock_irqsave(&rq->lock, flags);
7745 if (rq->rd) {
c6c4927b 7746 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7747 set_rq_offline(rq);
57d885fe
GH
7748 }
7749 spin_unlock_irqrestore(&rq->lock, flags);
7750 break;
1da177e4
LT
7751#endif
7752 }
7753 return NOTIFY_OK;
7754}
7755
f38b0820
PM
7756/*
7757 * Register at high priority so that task migration (migrate_all_tasks)
7758 * happens before everything else. This has to be lower priority than
cdd6c482 7759 * the notifier in the perf_event subsystem, though.
1da177e4 7760 */
26c2143b 7761static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7762 .notifier_call = migration_call,
7763 .priority = 10
7764};
7765
7babe8db 7766static int __init migration_init(void)
1da177e4
LT
7767{
7768 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7769 int err;
48f24c4d
IM
7770
7771 /* Start one for the boot CPU: */
07dccf33
AM
7772 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7773 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7774 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7775 register_cpu_notifier(&migration_notifier);
7babe8db 7776
a004cd42 7777 return 0;
1da177e4 7778}
7babe8db 7779early_initcall(migration_init);
1da177e4
LT
7780#endif
7781
7782#ifdef CONFIG_SMP
476f3534 7783
3e9830dc 7784#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7785
f6630114
MT
7786static __read_mostly int sched_domain_debug_enabled;
7787
7788static int __init sched_domain_debug_setup(char *str)
7789{
7790 sched_domain_debug_enabled = 1;
7791
7792 return 0;
7793}
7794early_param("sched_debug", sched_domain_debug_setup);
7795
7c16ec58 7796static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7797 struct cpumask *groupmask)
1da177e4 7798{
4dcf6aff 7799 struct sched_group *group = sd->groups;
434d53b0 7800 char str[256];
1da177e4 7801
968ea6d8 7802 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7803 cpumask_clear(groupmask);
4dcf6aff
IM
7804
7805 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7806
7807 if (!(sd->flags & SD_LOAD_BALANCE)) {
7808 printk("does not load-balance\n");
7809 if (sd->parent)
7810 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7811 " has parent");
7812 return -1;
41c7ce9a
NP
7813 }
7814
eefd796a 7815 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7816
758b2cdc 7817 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7818 printk(KERN_ERR "ERROR: domain->span does not contain "
7819 "CPU%d\n", cpu);
7820 }
758b2cdc 7821 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7822 printk(KERN_ERR "ERROR: domain->groups does not contain"
7823 " CPU%d\n", cpu);
7824 }
1da177e4 7825
4dcf6aff 7826 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7827 do {
4dcf6aff
IM
7828 if (!group) {
7829 printk("\n");
7830 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7831 break;
7832 }
7833
18a3885f 7834 if (!group->cpu_power) {
4dcf6aff
IM
7835 printk(KERN_CONT "\n");
7836 printk(KERN_ERR "ERROR: domain->cpu_power not "
7837 "set\n");
7838 break;
7839 }
1da177e4 7840
758b2cdc 7841 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7842 printk(KERN_CONT "\n");
7843 printk(KERN_ERR "ERROR: empty group\n");
7844 break;
7845 }
1da177e4 7846
758b2cdc 7847 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7848 printk(KERN_CONT "\n");
7849 printk(KERN_ERR "ERROR: repeated CPUs\n");
7850 break;
7851 }
1da177e4 7852
758b2cdc 7853 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7854
968ea6d8 7855 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7856
7857 printk(KERN_CONT " %s", str);
18a3885f
PZ
7858 if (group->cpu_power != SCHED_LOAD_SCALE) {
7859 printk(KERN_CONT " (cpu_power = %d)",
7860 group->cpu_power);
381512cf 7861 }
1da177e4 7862
4dcf6aff
IM
7863 group = group->next;
7864 } while (group != sd->groups);
7865 printk(KERN_CONT "\n");
1da177e4 7866
758b2cdc 7867 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7868 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7869
758b2cdc
RR
7870 if (sd->parent &&
7871 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7872 printk(KERN_ERR "ERROR: parent span is not a superset "
7873 "of domain->span\n");
7874 return 0;
7875}
1da177e4 7876
4dcf6aff
IM
7877static void sched_domain_debug(struct sched_domain *sd, int cpu)
7878{
d5dd3db1 7879 cpumask_var_t groupmask;
4dcf6aff 7880 int level = 0;
1da177e4 7881
f6630114
MT
7882 if (!sched_domain_debug_enabled)
7883 return;
7884
4dcf6aff
IM
7885 if (!sd) {
7886 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7887 return;
7888 }
1da177e4 7889
4dcf6aff
IM
7890 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7891
d5dd3db1 7892 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7893 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7894 return;
7895 }
7896
4dcf6aff 7897 for (;;) {
7c16ec58 7898 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7899 break;
1da177e4
LT
7900 level++;
7901 sd = sd->parent;
33859f7f 7902 if (!sd)
4dcf6aff
IM
7903 break;
7904 }
d5dd3db1 7905 free_cpumask_var(groupmask);
1da177e4 7906}
6d6bc0ad 7907#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7908# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7909#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7910
1a20ff27 7911static int sd_degenerate(struct sched_domain *sd)
245af2c7 7912{
758b2cdc 7913 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7914 return 1;
7915
7916 /* Following flags need at least 2 groups */
7917 if (sd->flags & (SD_LOAD_BALANCE |
7918 SD_BALANCE_NEWIDLE |
7919 SD_BALANCE_FORK |
89c4710e
SS
7920 SD_BALANCE_EXEC |
7921 SD_SHARE_CPUPOWER |
7922 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7923 if (sd->groups != sd->groups->next)
7924 return 0;
7925 }
7926
7927 /* Following flags don't use groups */
c88d5910 7928 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7929 return 0;
7930
7931 return 1;
7932}
7933
48f24c4d
IM
7934static int
7935sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7936{
7937 unsigned long cflags = sd->flags, pflags = parent->flags;
7938
7939 if (sd_degenerate(parent))
7940 return 1;
7941
758b2cdc 7942 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7943 return 0;
7944
245af2c7
SS
7945 /* Flags needing groups don't count if only 1 group in parent */
7946 if (parent->groups == parent->groups->next) {
7947 pflags &= ~(SD_LOAD_BALANCE |
7948 SD_BALANCE_NEWIDLE |
7949 SD_BALANCE_FORK |
89c4710e
SS
7950 SD_BALANCE_EXEC |
7951 SD_SHARE_CPUPOWER |
7952 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7953 if (nr_node_ids == 1)
7954 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7955 }
7956 if (~cflags & pflags)
7957 return 0;
7958
7959 return 1;
7960}
7961
c6c4927b
RR
7962static void free_rootdomain(struct root_domain *rd)
7963{
047106ad
PZ
7964 synchronize_sched();
7965
68e74568
RR
7966 cpupri_cleanup(&rd->cpupri);
7967
c6c4927b
RR
7968 free_cpumask_var(rd->rto_mask);
7969 free_cpumask_var(rd->online);
7970 free_cpumask_var(rd->span);
7971 kfree(rd);
7972}
7973
57d885fe
GH
7974static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7975{
a0490fa3 7976 struct root_domain *old_rd = NULL;
57d885fe 7977 unsigned long flags;
57d885fe
GH
7978
7979 spin_lock_irqsave(&rq->lock, flags);
7980
7981 if (rq->rd) {
a0490fa3 7982 old_rd = rq->rd;
57d885fe 7983
c6c4927b 7984 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7985 set_rq_offline(rq);
57d885fe 7986
c6c4927b 7987 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7988
a0490fa3
IM
7989 /*
7990 * If we dont want to free the old_rt yet then
7991 * set old_rd to NULL to skip the freeing later
7992 * in this function:
7993 */
7994 if (!atomic_dec_and_test(&old_rd->refcount))
7995 old_rd = NULL;
57d885fe
GH
7996 }
7997
7998 atomic_inc(&rd->refcount);
7999 rq->rd = rd;
8000
c6c4927b 8001 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 8002 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 8003 set_rq_online(rq);
57d885fe
GH
8004
8005 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
8006
8007 if (old_rd)
8008 free_rootdomain(old_rd);
57d885fe
GH
8009}
8010
fd5e1b5d 8011static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 8012{
36b7b6d4
PE
8013 gfp_t gfp = GFP_KERNEL;
8014
57d885fe
GH
8015 memset(rd, 0, sizeof(*rd));
8016
36b7b6d4
PE
8017 if (bootmem)
8018 gfp = GFP_NOWAIT;
c6c4927b 8019
36b7b6d4 8020 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 8021 goto out;
36b7b6d4 8022 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 8023 goto free_span;
36b7b6d4 8024 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 8025 goto free_online;
6e0534f2 8026
0fb53029 8027 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 8028 goto free_rto_mask;
c6c4927b 8029 return 0;
6e0534f2 8030
68e74568
RR
8031free_rto_mask:
8032 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
8033free_online:
8034 free_cpumask_var(rd->online);
8035free_span:
8036 free_cpumask_var(rd->span);
0c910d28 8037out:
c6c4927b 8038 return -ENOMEM;
57d885fe
GH
8039}
8040
8041static void init_defrootdomain(void)
8042{
c6c4927b
RR
8043 init_rootdomain(&def_root_domain, true);
8044
57d885fe
GH
8045 atomic_set(&def_root_domain.refcount, 1);
8046}
8047
dc938520 8048static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
8049{
8050 struct root_domain *rd;
8051
8052 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8053 if (!rd)
8054 return NULL;
8055
c6c4927b
RR
8056 if (init_rootdomain(rd, false) != 0) {
8057 kfree(rd);
8058 return NULL;
8059 }
57d885fe
GH
8060
8061 return rd;
8062}
8063
1da177e4 8064/*
0eab9146 8065 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8066 * hold the hotplug lock.
8067 */
0eab9146
IM
8068static void
8069cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8070{
70b97a7f 8071 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8072 struct sched_domain *tmp;
8073
8074 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8075 for (tmp = sd; tmp; ) {
245af2c7
SS
8076 struct sched_domain *parent = tmp->parent;
8077 if (!parent)
8078 break;
f29c9b1c 8079
1a848870 8080 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8081 tmp->parent = parent->parent;
1a848870
SS
8082 if (parent->parent)
8083 parent->parent->child = tmp;
f29c9b1c
LZ
8084 } else
8085 tmp = tmp->parent;
245af2c7
SS
8086 }
8087
1a848870 8088 if (sd && sd_degenerate(sd)) {
245af2c7 8089 sd = sd->parent;
1a848870
SS
8090 if (sd)
8091 sd->child = NULL;
8092 }
1da177e4
LT
8093
8094 sched_domain_debug(sd, cpu);
8095
57d885fe 8096 rq_attach_root(rq, rd);
674311d5 8097 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8098}
8099
8100/* cpus with isolated domains */
dcc30a35 8101static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8102
8103/* Setup the mask of cpus configured for isolated domains */
8104static int __init isolated_cpu_setup(char *str)
8105{
bdddd296 8106 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 8107 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8108 return 1;
8109}
8110
8927f494 8111__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8112
8113/*
6711cab4
SS
8114 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8115 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8116 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8117 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8118 *
8119 * init_sched_build_groups will build a circular linked list of the groups
8120 * covered by the given span, and will set each group's ->cpumask correctly,
8121 * and ->cpu_power to 0.
8122 */
a616058b 8123static void
96f874e2
RR
8124init_sched_build_groups(const struct cpumask *span,
8125 const struct cpumask *cpu_map,
8126 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8127 struct sched_group **sg,
96f874e2
RR
8128 struct cpumask *tmpmask),
8129 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8130{
8131 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8132 int i;
8133
96f874e2 8134 cpumask_clear(covered);
7c16ec58 8135
abcd083a 8136 for_each_cpu(i, span) {
6711cab4 8137 struct sched_group *sg;
7c16ec58 8138 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8139 int j;
8140
758b2cdc 8141 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8142 continue;
8143
758b2cdc 8144 cpumask_clear(sched_group_cpus(sg));
18a3885f 8145 sg->cpu_power = 0;
1da177e4 8146
abcd083a 8147 for_each_cpu(j, span) {
7c16ec58 8148 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8149 continue;
8150
96f874e2 8151 cpumask_set_cpu(j, covered);
758b2cdc 8152 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8153 }
8154 if (!first)
8155 first = sg;
8156 if (last)
8157 last->next = sg;
8158 last = sg;
8159 }
8160 last->next = first;
8161}
8162
9c1cfda2 8163#define SD_NODES_PER_DOMAIN 16
1da177e4 8164
9c1cfda2 8165#ifdef CONFIG_NUMA
198e2f18 8166
9c1cfda2
JH
8167/**
8168 * find_next_best_node - find the next node to include in a sched_domain
8169 * @node: node whose sched_domain we're building
8170 * @used_nodes: nodes already in the sched_domain
8171 *
41a2d6cf 8172 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8173 * finds the closest node not already in the @used_nodes map.
8174 *
8175 * Should use nodemask_t.
8176 */
c5f59f08 8177static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8178{
8179 int i, n, val, min_val, best_node = 0;
8180
8181 min_val = INT_MAX;
8182
076ac2af 8183 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8184 /* Start at @node */
076ac2af 8185 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8186
8187 if (!nr_cpus_node(n))
8188 continue;
8189
8190 /* Skip already used nodes */
c5f59f08 8191 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8192 continue;
8193
8194 /* Simple min distance search */
8195 val = node_distance(node, n);
8196
8197 if (val < min_val) {
8198 min_val = val;
8199 best_node = n;
8200 }
8201 }
8202
c5f59f08 8203 node_set(best_node, *used_nodes);
9c1cfda2
JH
8204 return best_node;
8205}
8206
8207/**
8208 * sched_domain_node_span - get a cpumask for a node's sched_domain
8209 * @node: node whose cpumask we're constructing
73486722 8210 * @span: resulting cpumask
9c1cfda2 8211 *
41a2d6cf 8212 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8213 * should be one that prevents unnecessary balancing, but also spreads tasks
8214 * out optimally.
8215 */
96f874e2 8216static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8217{
c5f59f08 8218 nodemask_t used_nodes;
48f24c4d 8219 int i;
9c1cfda2 8220
6ca09dfc 8221 cpumask_clear(span);
c5f59f08 8222 nodes_clear(used_nodes);
9c1cfda2 8223
6ca09dfc 8224 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8225 node_set(node, used_nodes);
9c1cfda2
JH
8226
8227 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8228 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8229
6ca09dfc 8230 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8231 }
9c1cfda2 8232}
6d6bc0ad 8233#endif /* CONFIG_NUMA */
9c1cfda2 8234
5c45bf27 8235int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8236
6c99e9ad
RR
8237/*
8238 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8239 *
8240 * ( See the the comments in include/linux/sched.h:struct sched_group
8241 * and struct sched_domain. )
6c99e9ad
RR
8242 */
8243struct static_sched_group {
8244 struct sched_group sg;
8245 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8246};
8247
8248struct static_sched_domain {
8249 struct sched_domain sd;
8250 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8251};
8252
49a02c51
AH
8253struct s_data {
8254#ifdef CONFIG_NUMA
8255 int sd_allnodes;
8256 cpumask_var_t domainspan;
8257 cpumask_var_t covered;
8258 cpumask_var_t notcovered;
8259#endif
8260 cpumask_var_t nodemask;
8261 cpumask_var_t this_sibling_map;
8262 cpumask_var_t this_core_map;
8263 cpumask_var_t send_covered;
8264 cpumask_var_t tmpmask;
8265 struct sched_group **sched_group_nodes;
8266 struct root_domain *rd;
8267};
8268
2109b99e
AH
8269enum s_alloc {
8270 sa_sched_groups = 0,
8271 sa_rootdomain,
8272 sa_tmpmask,
8273 sa_send_covered,
8274 sa_this_core_map,
8275 sa_this_sibling_map,
8276 sa_nodemask,
8277 sa_sched_group_nodes,
8278#ifdef CONFIG_NUMA
8279 sa_notcovered,
8280 sa_covered,
8281 sa_domainspan,
8282#endif
8283 sa_none,
8284};
8285
9c1cfda2 8286/*
48f24c4d 8287 * SMT sched-domains:
9c1cfda2 8288 */
1da177e4 8289#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8290static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8291static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8292
41a2d6cf 8293static int
96f874e2
RR
8294cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8295 struct sched_group **sg, struct cpumask *unused)
1da177e4 8296{
6711cab4 8297 if (sg)
6c99e9ad 8298 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8299 return cpu;
8300}
6d6bc0ad 8301#endif /* CONFIG_SCHED_SMT */
1da177e4 8302
48f24c4d
IM
8303/*
8304 * multi-core sched-domains:
8305 */
1e9f28fa 8306#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8307static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8308static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8309#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8310
8311#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8312static int
96f874e2
RR
8313cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8314 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8315{
6711cab4 8316 int group;
7c16ec58 8317
c69fc56d 8318 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8319 group = cpumask_first(mask);
6711cab4 8320 if (sg)
6c99e9ad 8321 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8322 return group;
1e9f28fa
SS
8323}
8324#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8325static int
96f874e2
RR
8326cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8327 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8328{
6711cab4 8329 if (sg)
6c99e9ad 8330 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8331 return cpu;
8332}
8333#endif
8334
6c99e9ad
RR
8335static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8336static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8337
41a2d6cf 8338static int
96f874e2
RR
8339cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8340 struct sched_group **sg, struct cpumask *mask)
1da177e4 8341{
6711cab4 8342 int group;
48f24c4d 8343#ifdef CONFIG_SCHED_MC
6ca09dfc 8344 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8345 group = cpumask_first(mask);
1e9f28fa 8346#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8347 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8348 group = cpumask_first(mask);
1da177e4 8349#else
6711cab4 8350 group = cpu;
1da177e4 8351#endif
6711cab4 8352 if (sg)
6c99e9ad 8353 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8354 return group;
1da177e4
LT
8355}
8356
8357#ifdef CONFIG_NUMA
1da177e4 8358/*
9c1cfda2
JH
8359 * The init_sched_build_groups can't handle what we want to do with node
8360 * groups, so roll our own. Now each node has its own list of groups which
8361 * gets dynamically allocated.
1da177e4 8362 */
62ea9ceb 8363static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8364static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8365
62ea9ceb 8366static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8367static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8368
96f874e2
RR
8369static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8370 struct sched_group **sg,
8371 struct cpumask *nodemask)
9c1cfda2 8372{
6711cab4
SS
8373 int group;
8374
6ca09dfc 8375 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8376 group = cpumask_first(nodemask);
6711cab4
SS
8377
8378 if (sg)
6c99e9ad 8379 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8380 return group;
1da177e4 8381}
6711cab4 8382
08069033
SS
8383static void init_numa_sched_groups_power(struct sched_group *group_head)
8384{
8385 struct sched_group *sg = group_head;
8386 int j;
8387
8388 if (!sg)
8389 return;
3a5c359a 8390 do {
758b2cdc 8391 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8392 struct sched_domain *sd;
08069033 8393
6c99e9ad 8394 sd = &per_cpu(phys_domains, j).sd;
13318a71 8395 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8396 /*
8397 * Only add "power" once for each
8398 * physical package.
8399 */
8400 continue;
8401 }
08069033 8402
18a3885f 8403 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8404 }
8405 sg = sg->next;
8406 } while (sg != group_head);
08069033 8407}
0601a88d
AH
8408
8409static int build_numa_sched_groups(struct s_data *d,
8410 const struct cpumask *cpu_map, int num)
8411{
8412 struct sched_domain *sd;
8413 struct sched_group *sg, *prev;
8414 int n, j;
8415
8416 cpumask_clear(d->covered);
8417 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8418 if (cpumask_empty(d->nodemask)) {
8419 d->sched_group_nodes[num] = NULL;
8420 goto out;
8421 }
8422
8423 sched_domain_node_span(num, d->domainspan);
8424 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8425
8426 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8427 GFP_KERNEL, num);
8428 if (!sg) {
8429 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8430 num);
8431 return -ENOMEM;
8432 }
8433 d->sched_group_nodes[num] = sg;
8434
8435 for_each_cpu(j, d->nodemask) {
8436 sd = &per_cpu(node_domains, j).sd;
8437 sd->groups = sg;
8438 }
8439
18a3885f 8440 sg->cpu_power = 0;
0601a88d
AH
8441 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8442 sg->next = sg;
8443 cpumask_or(d->covered, d->covered, d->nodemask);
8444
8445 prev = sg;
8446 for (j = 0; j < nr_node_ids; j++) {
8447 n = (num + j) % nr_node_ids;
8448 cpumask_complement(d->notcovered, d->covered);
8449 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8450 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8451 if (cpumask_empty(d->tmpmask))
8452 break;
8453 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8454 if (cpumask_empty(d->tmpmask))
8455 continue;
8456 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8457 GFP_KERNEL, num);
8458 if (!sg) {
8459 printk(KERN_WARNING
8460 "Can not alloc domain group for node %d\n", j);
8461 return -ENOMEM;
8462 }
18a3885f 8463 sg->cpu_power = 0;
0601a88d
AH
8464 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8465 sg->next = prev->next;
8466 cpumask_or(d->covered, d->covered, d->tmpmask);
8467 prev->next = sg;
8468 prev = sg;
8469 }
8470out:
8471 return 0;
8472}
6d6bc0ad 8473#endif /* CONFIG_NUMA */
1da177e4 8474
a616058b 8475#ifdef CONFIG_NUMA
51888ca2 8476/* Free memory allocated for various sched_group structures */
96f874e2
RR
8477static void free_sched_groups(const struct cpumask *cpu_map,
8478 struct cpumask *nodemask)
51888ca2 8479{
a616058b 8480 int cpu, i;
51888ca2 8481
abcd083a 8482 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8483 struct sched_group **sched_group_nodes
8484 = sched_group_nodes_bycpu[cpu];
8485
51888ca2
SV
8486 if (!sched_group_nodes)
8487 continue;
8488
076ac2af 8489 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8490 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8491
6ca09dfc 8492 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8493 if (cpumask_empty(nodemask))
51888ca2
SV
8494 continue;
8495
8496 if (sg == NULL)
8497 continue;
8498 sg = sg->next;
8499next_sg:
8500 oldsg = sg;
8501 sg = sg->next;
8502 kfree(oldsg);
8503 if (oldsg != sched_group_nodes[i])
8504 goto next_sg;
8505 }
8506 kfree(sched_group_nodes);
8507 sched_group_nodes_bycpu[cpu] = NULL;
8508 }
51888ca2 8509}
6d6bc0ad 8510#else /* !CONFIG_NUMA */
96f874e2
RR
8511static void free_sched_groups(const struct cpumask *cpu_map,
8512 struct cpumask *nodemask)
a616058b
SS
8513{
8514}
6d6bc0ad 8515#endif /* CONFIG_NUMA */
51888ca2 8516
89c4710e
SS
8517/*
8518 * Initialize sched groups cpu_power.
8519 *
8520 * cpu_power indicates the capacity of sched group, which is used while
8521 * distributing the load between different sched groups in a sched domain.
8522 * Typically cpu_power for all the groups in a sched domain will be same unless
8523 * there are asymmetries in the topology. If there are asymmetries, group
8524 * having more cpu_power will pickup more load compared to the group having
8525 * less cpu_power.
89c4710e
SS
8526 */
8527static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8528{
8529 struct sched_domain *child;
8530 struct sched_group *group;
f93e65c1
PZ
8531 long power;
8532 int weight;
89c4710e
SS
8533
8534 WARN_ON(!sd || !sd->groups);
8535
13318a71 8536 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8537 return;
8538
8539 child = sd->child;
8540
18a3885f 8541 sd->groups->cpu_power = 0;
5517d86b 8542
f93e65c1
PZ
8543 if (!child) {
8544 power = SCHED_LOAD_SCALE;
8545 weight = cpumask_weight(sched_domain_span(sd));
8546 /*
8547 * SMT siblings share the power of a single core.
a52bfd73
PZ
8548 * Usually multiple threads get a better yield out of
8549 * that one core than a single thread would have,
8550 * reflect that in sd->smt_gain.
f93e65c1 8551 */
a52bfd73
PZ
8552 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8553 power *= sd->smt_gain;
f93e65c1 8554 power /= weight;
a52bfd73
PZ
8555 power >>= SCHED_LOAD_SHIFT;
8556 }
18a3885f 8557 sd->groups->cpu_power += power;
89c4710e
SS
8558 return;
8559 }
8560
89c4710e 8561 /*
f93e65c1 8562 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8563 */
8564 group = child->groups;
8565 do {
18a3885f 8566 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8567 group = group->next;
8568 } while (group != child->groups);
8569}
8570
7c16ec58
MT
8571/*
8572 * Initializers for schedule domains
8573 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8574 */
8575
a5d8c348
IM
8576#ifdef CONFIG_SCHED_DEBUG
8577# define SD_INIT_NAME(sd, type) sd->name = #type
8578#else
8579# define SD_INIT_NAME(sd, type) do { } while (0)
8580#endif
8581
7c16ec58 8582#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8583
7c16ec58
MT
8584#define SD_INIT_FUNC(type) \
8585static noinline void sd_init_##type(struct sched_domain *sd) \
8586{ \
8587 memset(sd, 0, sizeof(*sd)); \
8588 *sd = SD_##type##_INIT; \
1d3504fc 8589 sd->level = SD_LV_##type; \
a5d8c348 8590 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8591}
8592
8593SD_INIT_FUNC(CPU)
8594#ifdef CONFIG_NUMA
8595 SD_INIT_FUNC(ALLNODES)
8596 SD_INIT_FUNC(NODE)
8597#endif
8598#ifdef CONFIG_SCHED_SMT
8599 SD_INIT_FUNC(SIBLING)
8600#endif
8601#ifdef CONFIG_SCHED_MC
8602 SD_INIT_FUNC(MC)
8603#endif
8604
1d3504fc
HS
8605static int default_relax_domain_level = -1;
8606
8607static int __init setup_relax_domain_level(char *str)
8608{
30e0e178
LZ
8609 unsigned long val;
8610
8611 val = simple_strtoul(str, NULL, 0);
8612 if (val < SD_LV_MAX)
8613 default_relax_domain_level = val;
8614
1d3504fc
HS
8615 return 1;
8616}
8617__setup("relax_domain_level=", setup_relax_domain_level);
8618
8619static void set_domain_attribute(struct sched_domain *sd,
8620 struct sched_domain_attr *attr)
8621{
8622 int request;
8623
8624 if (!attr || attr->relax_domain_level < 0) {
8625 if (default_relax_domain_level < 0)
8626 return;
8627 else
8628 request = default_relax_domain_level;
8629 } else
8630 request = attr->relax_domain_level;
8631 if (request < sd->level) {
8632 /* turn off idle balance on this domain */
c88d5910 8633 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8634 } else {
8635 /* turn on idle balance on this domain */
c88d5910 8636 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8637 }
8638}
8639
2109b99e
AH
8640static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8641 const struct cpumask *cpu_map)
8642{
8643 switch (what) {
8644 case sa_sched_groups:
8645 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8646 d->sched_group_nodes = NULL;
8647 case sa_rootdomain:
8648 free_rootdomain(d->rd); /* fall through */
8649 case sa_tmpmask:
8650 free_cpumask_var(d->tmpmask); /* fall through */
8651 case sa_send_covered:
8652 free_cpumask_var(d->send_covered); /* fall through */
8653 case sa_this_core_map:
8654 free_cpumask_var(d->this_core_map); /* fall through */
8655 case sa_this_sibling_map:
8656 free_cpumask_var(d->this_sibling_map); /* fall through */
8657 case sa_nodemask:
8658 free_cpumask_var(d->nodemask); /* fall through */
8659 case sa_sched_group_nodes:
d1b55138 8660#ifdef CONFIG_NUMA
2109b99e
AH
8661 kfree(d->sched_group_nodes); /* fall through */
8662 case sa_notcovered:
8663 free_cpumask_var(d->notcovered); /* fall through */
8664 case sa_covered:
8665 free_cpumask_var(d->covered); /* fall through */
8666 case sa_domainspan:
8667 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8668#endif
2109b99e
AH
8669 case sa_none:
8670 break;
8671 }
8672}
3404c8d9 8673
2109b99e
AH
8674static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8675 const struct cpumask *cpu_map)
8676{
3404c8d9 8677#ifdef CONFIG_NUMA
2109b99e
AH
8678 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8679 return sa_none;
8680 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8681 return sa_domainspan;
8682 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8683 return sa_covered;
8684 /* Allocate the per-node list of sched groups */
8685 d->sched_group_nodes = kcalloc(nr_node_ids,
8686 sizeof(struct sched_group *), GFP_KERNEL);
8687 if (!d->sched_group_nodes) {
d1b55138 8688 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8689 return sa_notcovered;
d1b55138 8690 }
2109b99e 8691 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8692#endif
2109b99e
AH
8693 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8694 return sa_sched_group_nodes;
8695 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8696 return sa_nodemask;
8697 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8698 return sa_this_sibling_map;
8699 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8700 return sa_this_core_map;
8701 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8702 return sa_send_covered;
8703 d->rd = alloc_rootdomain();
8704 if (!d->rd) {
57d885fe 8705 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8706 return sa_tmpmask;
57d885fe 8707 }
2109b99e
AH
8708 return sa_rootdomain;
8709}
57d885fe 8710
7f4588f3
AH
8711static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8712 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8713{
8714 struct sched_domain *sd = NULL;
7c16ec58 8715#ifdef CONFIG_NUMA
7f4588f3 8716 struct sched_domain *parent;
1da177e4 8717
7f4588f3
AH
8718 d->sd_allnodes = 0;
8719 if (cpumask_weight(cpu_map) >
8720 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8721 sd = &per_cpu(allnodes_domains, i).sd;
8722 SD_INIT(sd, ALLNODES);
1d3504fc 8723 set_domain_attribute(sd, attr);
7f4588f3
AH
8724 cpumask_copy(sched_domain_span(sd), cpu_map);
8725 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8726 d->sd_allnodes = 1;
8727 }
8728 parent = sd;
8729
8730 sd = &per_cpu(node_domains, i).sd;
8731 SD_INIT(sd, NODE);
8732 set_domain_attribute(sd, attr);
8733 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8734 sd->parent = parent;
8735 if (parent)
8736 parent->child = sd;
8737 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8738#endif
7f4588f3
AH
8739 return sd;
8740}
1da177e4 8741
87cce662
AH
8742static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8743 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8744 struct sched_domain *parent, int i)
8745{
8746 struct sched_domain *sd;
8747 sd = &per_cpu(phys_domains, i).sd;
8748 SD_INIT(sd, CPU);
8749 set_domain_attribute(sd, attr);
8750 cpumask_copy(sched_domain_span(sd), d->nodemask);
8751 sd->parent = parent;
8752 if (parent)
8753 parent->child = sd;
8754 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8755 return sd;
8756}
1da177e4 8757
410c4081
AH
8758static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8759 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8760 struct sched_domain *parent, int i)
8761{
8762 struct sched_domain *sd = parent;
1e9f28fa 8763#ifdef CONFIG_SCHED_MC
410c4081
AH
8764 sd = &per_cpu(core_domains, i).sd;
8765 SD_INIT(sd, MC);
8766 set_domain_attribute(sd, attr);
8767 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8768 sd->parent = parent;
8769 parent->child = sd;
8770 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8771#endif
410c4081
AH
8772 return sd;
8773}
1e9f28fa 8774
d8173535
AH
8775static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8776 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8777 struct sched_domain *parent, int i)
8778{
8779 struct sched_domain *sd = parent;
1da177e4 8780#ifdef CONFIG_SCHED_SMT
d8173535
AH
8781 sd = &per_cpu(cpu_domains, i).sd;
8782 SD_INIT(sd, SIBLING);
8783 set_domain_attribute(sd, attr);
8784 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8785 sd->parent = parent;
8786 parent->child = sd;
8787 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8788#endif
d8173535
AH
8789 return sd;
8790}
1da177e4 8791
0e8e85c9
AH
8792static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8793 const struct cpumask *cpu_map, int cpu)
8794{
8795 switch (l) {
1da177e4 8796#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8797 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8798 cpumask_and(d->this_sibling_map, cpu_map,
8799 topology_thread_cpumask(cpu));
8800 if (cpu == cpumask_first(d->this_sibling_map))
8801 init_sched_build_groups(d->this_sibling_map, cpu_map,
8802 &cpu_to_cpu_group,
8803 d->send_covered, d->tmpmask);
8804 break;
1da177e4 8805#endif
1e9f28fa 8806#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8807 case SD_LV_MC: /* set up multi-core groups */
8808 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8809 if (cpu == cpumask_first(d->this_core_map))
8810 init_sched_build_groups(d->this_core_map, cpu_map,
8811 &cpu_to_core_group,
8812 d->send_covered, d->tmpmask);
8813 break;
1e9f28fa 8814#endif
86548096
AH
8815 case SD_LV_CPU: /* set up physical groups */
8816 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8817 if (!cpumask_empty(d->nodemask))
8818 init_sched_build_groups(d->nodemask, cpu_map,
8819 &cpu_to_phys_group,
8820 d->send_covered, d->tmpmask);
8821 break;
1da177e4 8822#ifdef CONFIG_NUMA
de616e36
AH
8823 case SD_LV_ALLNODES:
8824 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8825 d->send_covered, d->tmpmask);
8826 break;
8827#endif
0e8e85c9
AH
8828 default:
8829 break;
7c16ec58 8830 }
0e8e85c9 8831}
9c1cfda2 8832
2109b99e
AH
8833/*
8834 * Build sched domains for a given set of cpus and attach the sched domains
8835 * to the individual cpus
8836 */
8837static int __build_sched_domains(const struct cpumask *cpu_map,
8838 struct sched_domain_attr *attr)
8839{
8840 enum s_alloc alloc_state = sa_none;
8841 struct s_data d;
294b0c96 8842 struct sched_domain *sd;
2109b99e 8843 int i;
7c16ec58 8844#ifdef CONFIG_NUMA
2109b99e 8845 d.sd_allnodes = 0;
7c16ec58 8846#endif
9c1cfda2 8847
2109b99e
AH
8848 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8849 if (alloc_state != sa_rootdomain)
8850 goto error;
8851 alloc_state = sa_sched_groups;
9c1cfda2 8852
1da177e4 8853 /*
1a20ff27 8854 * Set up domains for cpus specified by the cpu_map.
1da177e4 8855 */
abcd083a 8856 for_each_cpu(i, cpu_map) {
49a02c51
AH
8857 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8858 cpu_map);
9761eea8 8859
7f4588f3 8860 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8861 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8862 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8863 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8864 }
9c1cfda2 8865
abcd083a 8866 for_each_cpu(i, cpu_map) {
0e8e85c9 8867 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8868 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8869 }
9c1cfda2 8870
1da177e4 8871 /* Set up physical groups */
86548096
AH
8872 for (i = 0; i < nr_node_ids; i++)
8873 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8874
1da177e4
LT
8875#ifdef CONFIG_NUMA
8876 /* Set up node groups */
de616e36
AH
8877 if (d.sd_allnodes)
8878 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8879
0601a88d
AH
8880 for (i = 0; i < nr_node_ids; i++)
8881 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8882 goto error;
1da177e4
LT
8883#endif
8884
8885 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8886#ifdef CONFIG_SCHED_SMT
abcd083a 8887 for_each_cpu(i, cpu_map) {
294b0c96 8888 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8889 init_sched_groups_power(i, sd);
5c45bf27 8890 }
1da177e4 8891#endif
1e9f28fa 8892#ifdef CONFIG_SCHED_MC
abcd083a 8893 for_each_cpu(i, cpu_map) {
294b0c96 8894 sd = &per_cpu(core_domains, i).sd;
89c4710e 8895 init_sched_groups_power(i, sd);
5c45bf27
SS
8896 }
8897#endif
1e9f28fa 8898
abcd083a 8899 for_each_cpu(i, cpu_map) {
294b0c96 8900 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8901 init_sched_groups_power(i, sd);
1da177e4
LT
8902 }
8903
9c1cfda2 8904#ifdef CONFIG_NUMA
076ac2af 8905 for (i = 0; i < nr_node_ids; i++)
49a02c51 8906 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8907
49a02c51 8908 if (d.sd_allnodes) {
6711cab4 8909 struct sched_group *sg;
f712c0c7 8910
96f874e2 8911 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8912 d.tmpmask);
f712c0c7
SS
8913 init_numa_sched_groups_power(sg);
8914 }
9c1cfda2
JH
8915#endif
8916
1da177e4 8917 /* Attach the domains */
abcd083a 8918 for_each_cpu(i, cpu_map) {
1da177e4 8919#ifdef CONFIG_SCHED_SMT
6c99e9ad 8920 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8921#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8922 sd = &per_cpu(core_domains, i).sd;
1da177e4 8923#else
6c99e9ad 8924 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8925#endif
49a02c51 8926 cpu_attach_domain(sd, d.rd, i);
1da177e4 8927 }
51888ca2 8928
2109b99e
AH
8929 d.sched_group_nodes = NULL; /* don't free this we still need it */
8930 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8931 return 0;
51888ca2 8932
51888ca2 8933error:
2109b99e
AH
8934 __free_domain_allocs(&d, alloc_state, cpu_map);
8935 return -ENOMEM;
1da177e4 8936}
029190c5 8937
96f874e2 8938static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8939{
8940 return __build_sched_domains(cpu_map, NULL);
8941}
8942
acc3f5d7 8943static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 8944static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8945static struct sched_domain_attr *dattr_cur;
8946 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8947
8948/*
8949 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8950 * cpumask) fails, then fallback to a single sched domain,
8951 * as determined by the single cpumask fallback_doms.
029190c5 8952 */
4212823f 8953static cpumask_var_t fallback_doms;
029190c5 8954
ee79d1bd
HC
8955/*
8956 * arch_update_cpu_topology lets virtualized architectures update the
8957 * cpu core maps. It is supposed to return 1 if the topology changed
8958 * or 0 if it stayed the same.
8959 */
8960int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8961{
ee79d1bd 8962 return 0;
22e52b07
HC
8963}
8964
acc3f5d7
RR
8965cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8966{
8967 int i;
8968 cpumask_var_t *doms;
8969
8970 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8971 if (!doms)
8972 return NULL;
8973 for (i = 0; i < ndoms; i++) {
8974 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8975 free_sched_domains(doms, i);
8976 return NULL;
8977 }
8978 }
8979 return doms;
8980}
8981
8982void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
8983{
8984 unsigned int i;
8985 for (i = 0; i < ndoms; i++)
8986 free_cpumask_var(doms[i]);
8987 kfree(doms);
8988}
8989
1a20ff27 8990/*
41a2d6cf 8991 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8992 * For now this just excludes isolated cpus, but could be used to
8993 * exclude other special cases in the future.
1a20ff27 8994 */
96f874e2 8995static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8996{
7378547f
MM
8997 int err;
8998
22e52b07 8999 arch_update_cpu_topology();
029190c5 9000 ndoms_cur = 1;
acc3f5d7 9001 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 9002 if (!doms_cur)
acc3f5d7
RR
9003 doms_cur = &fallback_doms;
9004 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 9005 dattr_cur = NULL;
acc3f5d7 9006 err = build_sched_domains(doms_cur[0]);
6382bc90 9007 register_sched_domain_sysctl();
7378547f
MM
9008
9009 return err;
1a20ff27
DG
9010}
9011
96f874e2
RR
9012static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9013 struct cpumask *tmpmask)
1da177e4 9014{
7c16ec58 9015 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 9016}
1da177e4 9017
1a20ff27
DG
9018/*
9019 * Detach sched domains from a group of cpus specified in cpu_map
9020 * These cpus will now be attached to the NULL domain
9021 */
96f874e2 9022static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 9023{
96f874e2
RR
9024 /* Save because hotplug lock held. */
9025 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
9026 int i;
9027
abcd083a 9028 for_each_cpu(i, cpu_map)
57d885fe 9029 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 9030 synchronize_sched();
96f874e2 9031 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
9032}
9033
1d3504fc
HS
9034/* handle null as "default" */
9035static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9036 struct sched_domain_attr *new, int idx_new)
9037{
9038 struct sched_domain_attr tmp;
9039
9040 /* fast path */
9041 if (!new && !cur)
9042 return 1;
9043
9044 tmp = SD_ATTR_INIT;
9045 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9046 new ? (new + idx_new) : &tmp,
9047 sizeof(struct sched_domain_attr));
9048}
9049
029190c5
PJ
9050/*
9051 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 9052 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
9053 * doms_new[] to the current sched domain partitioning, doms_cur[].
9054 * It destroys each deleted domain and builds each new domain.
9055 *
acc3f5d7 9056 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
9057 * The masks don't intersect (don't overlap.) We should setup one
9058 * sched domain for each mask. CPUs not in any of the cpumasks will
9059 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
9060 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9061 * it as it is.
9062 *
acc3f5d7
RR
9063 * The passed in 'doms_new' should be allocated using
9064 * alloc_sched_domains. This routine takes ownership of it and will
9065 * free_sched_domains it when done with it. If the caller failed the
9066 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9067 * and partition_sched_domains() will fallback to the single partition
9068 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 9069 *
96f874e2 9070 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
9071 * ndoms_new == 0 is a special case for destroying existing domains,
9072 * and it will not create the default domain.
dfb512ec 9073 *
029190c5
PJ
9074 * Call with hotplug lock held
9075 */
acc3f5d7 9076void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 9077 struct sched_domain_attr *dattr_new)
029190c5 9078{
dfb512ec 9079 int i, j, n;
d65bd5ec 9080 int new_topology;
029190c5 9081
712555ee 9082 mutex_lock(&sched_domains_mutex);
a1835615 9083
7378547f
MM
9084 /* always unregister in case we don't destroy any domains */
9085 unregister_sched_domain_sysctl();
9086
d65bd5ec
HC
9087 /* Let architecture update cpu core mappings. */
9088 new_topology = arch_update_cpu_topology();
9089
dfb512ec 9090 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9091
9092 /* Destroy deleted domains */
9093 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9094 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 9095 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 9096 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9097 goto match1;
9098 }
9099 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 9100 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
9101match1:
9102 ;
9103 }
9104
e761b772
MK
9105 if (doms_new == NULL) {
9106 ndoms_cur = 0;
acc3f5d7 9107 doms_new = &fallback_doms;
6ad4c188 9108 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 9109 WARN_ON_ONCE(dattr_new);
e761b772
MK
9110 }
9111
029190c5
PJ
9112 /* Build new domains */
9113 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9114 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 9115 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 9116 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9117 goto match2;
9118 }
9119 /* no match - add a new doms_new */
acc3f5d7 9120 __build_sched_domains(doms_new[i],
1d3504fc 9121 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9122match2:
9123 ;
9124 }
9125
9126 /* Remember the new sched domains */
acc3f5d7
RR
9127 if (doms_cur != &fallback_doms)
9128 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 9129 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9130 doms_cur = doms_new;
1d3504fc 9131 dattr_cur = dattr_new;
029190c5 9132 ndoms_cur = ndoms_new;
7378547f
MM
9133
9134 register_sched_domain_sysctl();
a1835615 9135
712555ee 9136 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9137}
9138
5c45bf27 9139#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9140static void arch_reinit_sched_domains(void)
5c45bf27 9141{
95402b38 9142 get_online_cpus();
dfb512ec
MK
9143
9144 /* Destroy domains first to force the rebuild */
9145 partition_sched_domains(0, NULL, NULL);
9146
e761b772 9147 rebuild_sched_domains();
95402b38 9148 put_online_cpus();
5c45bf27
SS
9149}
9150
9151static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9152{
afb8a9b7 9153 unsigned int level = 0;
5c45bf27 9154
afb8a9b7
GS
9155 if (sscanf(buf, "%u", &level) != 1)
9156 return -EINVAL;
9157
9158 /*
9159 * level is always be positive so don't check for
9160 * level < POWERSAVINGS_BALANCE_NONE which is 0
9161 * What happens on 0 or 1 byte write,
9162 * need to check for count as well?
9163 */
9164
9165 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9166 return -EINVAL;
9167
9168 if (smt)
afb8a9b7 9169 sched_smt_power_savings = level;
5c45bf27 9170 else
afb8a9b7 9171 sched_mc_power_savings = level;
5c45bf27 9172
c70f22d2 9173 arch_reinit_sched_domains();
5c45bf27 9174
c70f22d2 9175 return count;
5c45bf27
SS
9176}
9177
5c45bf27 9178#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9179static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9180 char *page)
5c45bf27
SS
9181{
9182 return sprintf(page, "%u\n", sched_mc_power_savings);
9183}
f718cd4a 9184static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9185 const char *buf, size_t count)
5c45bf27
SS
9186{
9187 return sched_power_savings_store(buf, count, 0);
9188}
f718cd4a
AK
9189static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9190 sched_mc_power_savings_show,
9191 sched_mc_power_savings_store);
5c45bf27
SS
9192#endif
9193
9194#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9195static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9196 char *page)
5c45bf27
SS
9197{
9198 return sprintf(page, "%u\n", sched_smt_power_savings);
9199}
f718cd4a 9200static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9201 const char *buf, size_t count)
5c45bf27
SS
9202{
9203 return sched_power_savings_store(buf, count, 1);
9204}
f718cd4a
AK
9205static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9206 sched_smt_power_savings_show,
6707de00
AB
9207 sched_smt_power_savings_store);
9208#endif
9209
39aac648 9210int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9211{
9212 int err = 0;
9213
9214#ifdef CONFIG_SCHED_SMT
9215 if (smt_capable())
9216 err = sysfs_create_file(&cls->kset.kobj,
9217 &attr_sched_smt_power_savings.attr);
9218#endif
9219#ifdef CONFIG_SCHED_MC
9220 if (!err && mc_capable())
9221 err = sysfs_create_file(&cls->kset.kobj,
9222 &attr_sched_mc_power_savings.attr);
9223#endif
9224 return err;
9225}
6d6bc0ad 9226#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9227
e761b772 9228#ifndef CONFIG_CPUSETS
1da177e4 9229/*
e761b772
MK
9230 * Add online and remove offline CPUs from the scheduler domains.
9231 * When cpusets are enabled they take over this function.
1da177e4
LT
9232 */
9233static int update_sched_domains(struct notifier_block *nfb,
9234 unsigned long action, void *hcpu)
e761b772
MK
9235{
9236 switch (action) {
9237 case CPU_ONLINE:
9238 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
9239 case CPU_DOWN_PREPARE:
9240 case CPU_DOWN_PREPARE_FROZEN:
9241 case CPU_DOWN_FAILED:
9242 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 9243 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9244 return NOTIFY_OK;
9245
9246 default:
9247 return NOTIFY_DONE;
9248 }
9249}
9250#endif
9251
9252static int update_runtime(struct notifier_block *nfb,
9253 unsigned long action, void *hcpu)
1da177e4 9254{
7def2be1
PZ
9255 int cpu = (int)(long)hcpu;
9256
1da177e4 9257 switch (action) {
1da177e4 9258 case CPU_DOWN_PREPARE:
8bb78442 9259 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9260 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9261 return NOTIFY_OK;
9262
1da177e4 9263 case CPU_DOWN_FAILED:
8bb78442 9264 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9265 case CPU_ONLINE:
8bb78442 9266 case CPU_ONLINE_FROZEN:
7def2be1 9267 enable_runtime(cpu_rq(cpu));
e761b772
MK
9268 return NOTIFY_OK;
9269
1da177e4
LT
9270 default:
9271 return NOTIFY_DONE;
9272 }
1da177e4 9273}
1da177e4
LT
9274
9275void __init sched_init_smp(void)
9276{
dcc30a35
RR
9277 cpumask_var_t non_isolated_cpus;
9278
9279 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9280 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9281
434d53b0
MT
9282#if defined(CONFIG_NUMA)
9283 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9284 GFP_KERNEL);
9285 BUG_ON(sched_group_nodes_bycpu == NULL);
9286#endif
95402b38 9287 get_online_cpus();
712555ee 9288 mutex_lock(&sched_domains_mutex);
6ad4c188 9289 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
9290 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9291 if (cpumask_empty(non_isolated_cpus))
9292 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9293 mutex_unlock(&sched_domains_mutex);
95402b38 9294 put_online_cpus();
e761b772
MK
9295
9296#ifndef CONFIG_CPUSETS
1da177e4
LT
9297 /* XXX: Theoretical race here - CPU may be hotplugged now */
9298 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9299#endif
9300
9301 /* RT runtime code needs to handle some hotplug events */
9302 hotcpu_notifier(update_runtime, 0);
9303
b328ca18 9304 init_hrtick();
5c1e1767
NP
9305
9306 /* Move init over to a non-isolated CPU */
dcc30a35 9307 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9308 BUG();
19978ca6 9309 sched_init_granularity();
dcc30a35 9310 free_cpumask_var(non_isolated_cpus);
4212823f 9311
0e3900e6 9312 init_sched_rt_class();
1da177e4
LT
9313}
9314#else
9315void __init sched_init_smp(void)
9316{
19978ca6 9317 sched_init_granularity();
1da177e4
LT
9318}
9319#endif /* CONFIG_SMP */
9320
cd1bb94b
AB
9321const_debug unsigned int sysctl_timer_migration = 1;
9322
1da177e4
LT
9323int in_sched_functions(unsigned long addr)
9324{
1da177e4
LT
9325 return in_lock_functions(addr) ||
9326 (addr >= (unsigned long)__sched_text_start
9327 && addr < (unsigned long)__sched_text_end);
9328}
9329
a9957449 9330static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9331{
9332 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9333 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9334#ifdef CONFIG_FAIR_GROUP_SCHED
9335 cfs_rq->rq = rq;
9336#endif
67e9fb2a 9337 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9338}
9339
fa85ae24
PZ
9340static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9341{
9342 struct rt_prio_array *array;
9343 int i;
9344
9345 array = &rt_rq->active;
9346 for (i = 0; i < MAX_RT_PRIO; i++) {
9347 INIT_LIST_HEAD(array->queue + i);
9348 __clear_bit(i, array->bitmap);
9349 }
9350 /* delimiter for bitsearch: */
9351 __set_bit(MAX_RT_PRIO, array->bitmap);
9352
052f1dc7 9353#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9354 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9355#ifdef CONFIG_SMP
e864c499 9356 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9357#endif
48d5e258 9358#endif
fa85ae24
PZ
9359#ifdef CONFIG_SMP
9360 rt_rq->rt_nr_migratory = 0;
fa85ae24 9361 rt_rq->overloaded = 0;
c20b08e3 9362 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9363#endif
9364
9365 rt_rq->rt_time = 0;
9366 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9367 rt_rq->rt_runtime = 0;
9368 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9369
052f1dc7 9370#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9371 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9372 rt_rq->rq = rq;
9373#endif
fa85ae24
PZ
9374}
9375
6f505b16 9376#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9377static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9378 struct sched_entity *se, int cpu, int add,
9379 struct sched_entity *parent)
6f505b16 9380{
ec7dc8ac 9381 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9382 tg->cfs_rq[cpu] = cfs_rq;
9383 init_cfs_rq(cfs_rq, rq);
9384 cfs_rq->tg = tg;
9385 if (add)
9386 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9387
9388 tg->se[cpu] = se;
354d60c2
DG
9389 /* se could be NULL for init_task_group */
9390 if (!se)
9391 return;
9392
ec7dc8ac
DG
9393 if (!parent)
9394 se->cfs_rq = &rq->cfs;
9395 else
9396 se->cfs_rq = parent->my_q;
9397
6f505b16
PZ
9398 se->my_q = cfs_rq;
9399 se->load.weight = tg->shares;
e05510d0 9400 se->load.inv_weight = 0;
ec7dc8ac 9401 se->parent = parent;
6f505b16 9402}
052f1dc7 9403#endif
6f505b16 9404
052f1dc7 9405#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9406static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9407 struct sched_rt_entity *rt_se, int cpu, int add,
9408 struct sched_rt_entity *parent)
6f505b16 9409{
ec7dc8ac
DG
9410 struct rq *rq = cpu_rq(cpu);
9411
6f505b16
PZ
9412 tg->rt_rq[cpu] = rt_rq;
9413 init_rt_rq(rt_rq, rq);
9414 rt_rq->tg = tg;
9415 rt_rq->rt_se = rt_se;
ac086bc2 9416 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9417 if (add)
9418 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9419
9420 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9421 if (!rt_se)
9422 return;
9423
ec7dc8ac
DG
9424 if (!parent)
9425 rt_se->rt_rq = &rq->rt;
9426 else
9427 rt_se->rt_rq = parent->my_q;
9428
6f505b16 9429 rt_se->my_q = rt_rq;
ec7dc8ac 9430 rt_se->parent = parent;
6f505b16
PZ
9431 INIT_LIST_HEAD(&rt_se->run_list);
9432}
9433#endif
9434
1da177e4
LT
9435void __init sched_init(void)
9436{
dd41f596 9437 int i, j;
434d53b0
MT
9438 unsigned long alloc_size = 0, ptr;
9439
9440#ifdef CONFIG_FAIR_GROUP_SCHED
9441 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9442#endif
9443#ifdef CONFIG_RT_GROUP_SCHED
9444 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9445#endif
9446#ifdef CONFIG_USER_SCHED
9447 alloc_size *= 2;
df7c8e84
RR
9448#endif
9449#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9450 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 9451#endif
434d53b0 9452 if (alloc_size) {
36b7b6d4 9453 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9454
9455#ifdef CONFIG_FAIR_GROUP_SCHED
9456 init_task_group.se = (struct sched_entity **)ptr;
9457 ptr += nr_cpu_ids * sizeof(void **);
9458
9459 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9460 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9461
9462#ifdef CONFIG_USER_SCHED
9463 root_task_group.se = (struct sched_entity **)ptr;
9464 ptr += nr_cpu_ids * sizeof(void **);
9465
9466 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9467 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9468#endif /* CONFIG_USER_SCHED */
9469#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9470#ifdef CONFIG_RT_GROUP_SCHED
9471 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9472 ptr += nr_cpu_ids * sizeof(void **);
9473
9474 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9475 ptr += nr_cpu_ids * sizeof(void **);
9476
9477#ifdef CONFIG_USER_SCHED
9478 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9479 ptr += nr_cpu_ids * sizeof(void **);
9480
9481 root_task_group.rt_rq = (struct rt_rq **)ptr;
9482 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9483#endif /* CONFIG_USER_SCHED */
9484#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9485#ifdef CONFIG_CPUMASK_OFFSTACK
9486 for_each_possible_cpu(i) {
9487 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9488 ptr += cpumask_size();
9489 }
9490#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9491 }
dd41f596 9492
57d885fe
GH
9493#ifdef CONFIG_SMP
9494 init_defrootdomain();
9495#endif
9496
d0b27fa7
PZ
9497 init_rt_bandwidth(&def_rt_bandwidth,
9498 global_rt_period(), global_rt_runtime());
9499
9500#ifdef CONFIG_RT_GROUP_SCHED
9501 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9502 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9503#ifdef CONFIG_USER_SCHED
9504 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9505 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9506#endif /* CONFIG_USER_SCHED */
9507#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9508
052f1dc7 9509#ifdef CONFIG_GROUP_SCHED
6f505b16 9510 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9511 INIT_LIST_HEAD(&init_task_group.children);
9512
9513#ifdef CONFIG_USER_SCHED
9514 INIT_LIST_HEAD(&root_task_group.children);
9515 init_task_group.parent = &root_task_group;
9516 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9517#endif /* CONFIG_USER_SCHED */
9518#endif /* CONFIG_GROUP_SCHED */
6f505b16 9519
4a6cc4bd
JK
9520#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9521 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9522 __alignof__(unsigned long));
9523#endif
0a945022 9524 for_each_possible_cpu(i) {
70b97a7f 9525 struct rq *rq;
1da177e4
LT
9526
9527 rq = cpu_rq(i);
9528 spin_lock_init(&rq->lock);
7897986b 9529 rq->nr_running = 0;
dce48a84
TG
9530 rq->calc_load_active = 0;
9531 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9532 init_cfs_rq(&rq->cfs, rq);
6f505b16 9533 init_rt_rq(&rq->rt, rq);
dd41f596 9534#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9535 init_task_group.shares = init_task_group_load;
6f505b16 9536 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9537#ifdef CONFIG_CGROUP_SCHED
9538 /*
9539 * How much cpu bandwidth does init_task_group get?
9540 *
9541 * In case of task-groups formed thr' the cgroup filesystem, it
9542 * gets 100% of the cpu resources in the system. This overall
9543 * system cpu resource is divided among the tasks of
9544 * init_task_group and its child task-groups in a fair manner,
9545 * based on each entity's (task or task-group's) weight
9546 * (se->load.weight).
9547 *
9548 * In other words, if init_task_group has 10 tasks of weight
9549 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9550 * then A0's share of the cpu resource is:
9551 *
0d905bca 9552 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9553 *
9554 * We achieve this by letting init_task_group's tasks sit
9555 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9556 */
ec7dc8ac 9557 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9558#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9559 root_task_group.shares = NICE_0_LOAD;
9560 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9561 /*
9562 * In case of task-groups formed thr' the user id of tasks,
9563 * init_task_group represents tasks belonging to root user.
9564 * Hence it forms a sibling of all subsequent groups formed.
9565 * In this case, init_task_group gets only a fraction of overall
9566 * system cpu resource, based on the weight assigned to root
9567 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9568 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9569 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9570 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9571 */
ec7dc8ac 9572 init_tg_cfs_entry(&init_task_group,
84e9dabf 9573 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9574 &per_cpu(init_sched_entity, i), i, 1,
9575 root_task_group.se[i]);
6f505b16 9576
052f1dc7 9577#endif
354d60c2
DG
9578#endif /* CONFIG_FAIR_GROUP_SCHED */
9579
9580 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9581#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9582 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9583#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9584 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9585#elif defined CONFIG_USER_SCHED
eff766a6 9586 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9587 init_tg_rt_entry(&init_task_group,
6f505b16 9588 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9589 &per_cpu(init_sched_rt_entity, i), i, 1,
9590 root_task_group.rt_se[i]);
354d60c2 9591#endif
dd41f596 9592#endif
1da177e4 9593
dd41f596
IM
9594 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9595 rq->cpu_load[j] = 0;
1da177e4 9596#ifdef CONFIG_SMP
41c7ce9a 9597 rq->sd = NULL;
57d885fe 9598 rq->rd = NULL;
3f029d3c 9599 rq->post_schedule = 0;
1da177e4 9600 rq->active_balance = 0;
dd41f596 9601 rq->next_balance = jiffies;
1da177e4 9602 rq->push_cpu = 0;
0a2966b4 9603 rq->cpu = i;
1f11eb6a 9604 rq->online = 0;
1da177e4 9605 rq->migration_thread = NULL;
eae0c9df
MG
9606 rq->idle_stamp = 0;
9607 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 9608 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9609 rq_attach_root(rq, &def_root_domain);
1da177e4 9610#endif
8f4d37ec 9611 init_rq_hrtick(rq);
1da177e4 9612 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9613 }
9614
2dd73a4f 9615 set_load_weight(&init_task);
b50f60ce 9616
e107be36
AK
9617#ifdef CONFIG_PREEMPT_NOTIFIERS
9618 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9619#endif
9620
c9819f45 9621#ifdef CONFIG_SMP
962cf36c 9622 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9623#endif
9624
b50f60ce
HC
9625#ifdef CONFIG_RT_MUTEXES
9626 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9627#endif
9628
1da177e4
LT
9629 /*
9630 * The boot idle thread does lazy MMU switching as well:
9631 */
9632 atomic_inc(&init_mm.mm_count);
9633 enter_lazy_tlb(&init_mm, current);
9634
9635 /*
9636 * Make us the idle thread. Technically, schedule() should not be
9637 * called from this thread, however somewhere below it might be,
9638 * but because we are the idle thread, we just pick up running again
9639 * when this runqueue becomes "idle".
9640 */
9641 init_idle(current, smp_processor_id());
dce48a84
TG
9642
9643 calc_load_update = jiffies + LOAD_FREQ;
9644
dd41f596
IM
9645 /*
9646 * During early bootup we pretend to be a normal task:
9647 */
9648 current->sched_class = &fair_sched_class;
6892b75e 9649
6a7b3dc3 9650 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 9651 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9652#ifdef CONFIG_SMP
7d1e6a9b 9653#ifdef CONFIG_NO_HZ
49557e62 9654 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 9655 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9656#endif
bdddd296
RR
9657 /* May be allocated at isolcpus cmdline parse time */
9658 if (cpu_isolated_map == NULL)
9659 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9660#endif /* SMP */
6a7b3dc3 9661
cdd6c482 9662 perf_event_init();
0d905bca 9663
6892b75e 9664 scheduler_running = 1;
1da177e4
LT
9665}
9666
9667#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9668static inline int preempt_count_equals(int preempt_offset)
9669{
9670 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9671
9672 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9673}
9674
9675void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9676{
48f24c4d 9677#ifdef in_atomic
1da177e4
LT
9678 static unsigned long prev_jiffy; /* ratelimiting */
9679
e4aafea2
FW
9680 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9681 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9682 return;
9683 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9684 return;
9685 prev_jiffy = jiffies;
9686
9687 printk(KERN_ERR
9688 "BUG: sleeping function called from invalid context at %s:%d\n",
9689 file, line);
9690 printk(KERN_ERR
9691 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9692 in_atomic(), irqs_disabled(),
9693 current->pid, current->comm);
9694
9695 debug_show_held_locks(current);
9696 if (irqs_disabled())
9697 print_irqtrace_events(current);
9698 dump_stack();
1da177e4
LT
9699#endif
9700}
9701EXPORT_SYMBOL(__might_sleep);
9702#endif
9703
9704#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9705static void normalize_task(struct rq *rq, struct task_struct *p)
9706{
9707 int on_rq;
3e51f33f 9708
3a5e4dc1
AK
9709 update_rq_clock(rq);
9710 on_rq = p->se.on_rq;
9711 if (on_rq)
9712 deactivate_task(rq, p, 0);
9713 __setscheduler(rq, p, SCHED_NORMAL, 0);
9714 if (on_rq) {
9715 activate_task(rq, p, 0);
9716 resched_task(rq->curr);
9717 }
9718}
9719
1da177e4
LT
9720void normalize_rt_tasks(void)
9721{
a0f98a1c 9722 struct task_struct *g, *p;
1da177e4 9723 unsigned long flags;
70b97a7f 9724 struct rq *rq;
1da177e4 9725
4cf5d77a 9726 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9727 do_each_thread(g, p) {
178be793
IM
9728 /*
9729 * Only normalize user tasks:
9730 */
9731 if (!p->mm)
9732 continue;
9733
6cfb0d5d 9734 p->se.exec_start = 0;
6cfb0d5d 9735#ifdef CONFIG_SCHEDSTATS
dd41f596 9736 p->se.wait_start = 0;
dd41f596 9737 p->se.sleep_start = 0;
dd41f596 9738 p->se.block_start = 0;
6cfb0d5d 9739#endif
dd41f596
IM
9740
9741 if (!rt_task(p)) {
9742 /*
9743 * Renice negative nice level userspace
9744 * tasks back to 0:
9745 */
9746 if (TASK_NICE(p) < 0 && p->mm)
9747 set_user_nice(p, 0);
1da177e4 9748 continue;
dd41f596 9749 }
1da177e4 9750
4cf5d77a 9751 spin_lock(&p->pi_lock);
b29739f9 9752 rq = __task_rq_lock(p);
1da177e4 9753
178be793 9754 normalize_task(rq, p);
3a5e4dc1 9755
b29739f9 9756 __task_rq_unlock(rq);
4cf5d77a 9757 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9758 } while_each_thread(g, p);
9759
4cf5d77a 9760 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9761}
9762
9763#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9764
9765#ifdef CONFIG_IA64
9766/*
9767 * These functions are only useful for the IA64 MCA handling.
9768 *
9769 * They can only be called when the whole system has been
9770 * stopped - every CPU needs to be quiescent, and no scheduling
9771 * activity can take place. Using them for anything else would
9772 * be a serious bug, and as a result, they aren't even visible
9773 * under any other configuration.
9774 */
9775
9776/**
9777 * curr_task - return the current task for a given cpu.
9778 * @cpu: the processor in question.
9779 *
9780 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9781 */
36c8b586 9782struct task_struct *curr_task(int cpu)
1df5c10a
LT
9783{
9784 return cpu_curr(cpu);
9785}
9786
9787/**
9788 * set_curr_task - set the current task for a given cpu.
9789 * @cpu: the processor in question.
9790 * @p: the task pointer to set.
9791 *
9792 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9793 * are serviced on a separate stack. It allows the architecture to switch the
9794 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9795 * must be called with all CPU's synchronized, and interrupts disabled, the
9796 * and caller must save the original value of the current task (see
9797 * curr_task() above) and restore that value before reenabling interrupts and
9798 * re-starting the system.
9799 *
9800 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9801 */
36c8b586 9802void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9803{
9804 cpu_curr(cpu) = p;
9805}
9806
9807#endif
29f59db3 9808
bccbe08a
PZ
9809#ifdef CONFIG_FAIR_GROUP_SCHED
9810static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9811{
9812 int i;
9813
9814 for_each_possible_cpu(i) {
9815 if (tg->cfs_rq)
9816 kfree(tg->cfs_rq[i]);
9817 if (tg->se)
9818 kfree(tg->se[i]);
6f505b16
PZ
9819 }
9820
9821 kfree(tg->cfs_rq);
9822 kfree(tg->se);
6f505b16
PZ
9823}
9824
ec7dc8ac
DG
9825static
9826int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9827{
29f59db3 9828 struct cfs_rq *cfs_rq;
eab17229 9829 struct sched_entity *se;
9b5b7751 9830 struct rq *rq;
29f59db3
SV
9831 int i;
9832
434d53b0 9833 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9834 if (!tg->cfs_rq)
9835 goto err;
434d53b0 9836 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9837 if (!tg->se)
9838 goto err;
052f1dc7
PZ
9839
9840 tg->shares = NICE_0_LOAD;
29f59db3
SV
9841
9842 for_each_possible_cpu(i) {
9b5b7751 9843 rq = cpu_rq(i);
29f59db3 9844
eab17229
LZ
9845 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9846 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9847 if (!cfs_rq)
9848 goto err;
9849
eab17229
LZ
9850 se = kzalloc_node(sizeof(struct sched_entity),
9851 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9852 if (!se)
9853 goto err;
9854
eab17229 9855 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9856 }
9857
9858 return 1;
9859
9860 err:
9861 return 0;
9862}
9863
9864static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9865{
9866 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9867 &cpu_rq(cpu)->leaf_cfs_rq_list);
9868}
9869
9870static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9871{
9872 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9873}
6d6bc0ad 9874#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9875static inline void free_fair_sched_group(struct task_group *tg)
9876{
9877}
9878
ec7dc8ac
DG
9879static inline
9880int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9881{
9882 return 1;
9883}
9884
9885static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9886{
9887}
9888
9889static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9890{
9891}
6d6bc0ad 9892#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9893
9894#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9895static void free_rt_sched_group(struct task_group *tg)
9896{
9897 int i;
9898
d0b27fa7
PZ
9899 destroy_rt_bandwidth(&tg->rt_bandwidth);
9900
bccbe08a
PZ
9901 for_each_possible_cpu(i) {
9902 if (tg->rt_rq)
9903 kfree(tg->rt_rq[i]);
9904 if (tg->rt_se)
9905 kfree(tg->rt_se[i]);
9906 }
9907
9908 kfree(tg->rt_rq);
9909 kfree(tg->rt_se);
9910}
9911
ec7dc8ac
DG
9912static
9913int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9914{
9915 struct rt_rq *rt_rq;
eab17229 9916 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9917 struct rq *rq;
9918 int i;
9919
434d53b0 9920 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9921 if (!tg->rt_rq)
9922 goto err;
434d53b0 9923 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9924 if (!tg->rt_se)
9925 goto err;
9926
d0b27fa7
PZ
9927 init_rt_bandwidth(&tg->rt_bandwidth,
9928 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9929
9930 for_each_possible_cpu(i) {
9931 rq = cpu_rq(i);
9932
eab17229
LZ
9933 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9934 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9935 if (!rt_rq)
9936 goto err;
29f59db3 9937
eab17229
LZ
9938 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9939 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9940 if (!rt_se)
9941 goto err;
29f59db3 9942
eab17229 9943 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9944 }
9945
bccbe08a
PZ
9946 return 1;
9947
9948 err:
9949 return 0;
9950}
9951
9952static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9953{
9954 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9955 &cpu_rq(cpu)->leaf_rt_rq_list);
9956}
9957
9958static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9959{
9960 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9961}
6d6bc0ad 9962#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9963static inline void free_rt_sched_group(struct task_group *tg)
9964{
9965}
9966
ec7dc8ac
DG
9967static inline
9968int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9969{
9970 return 1;
9971}
9972
9973static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9974{
9975}
9976
9977static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9978{
9979}
6d6bc0ad 9980#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9981
d0b27fa7 9982#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9983static void free_sched_group(struct task_group *tg)
9984{
9985 free_fair_sched_group(tg);
9986 free_rt_sched_group(tg);
9987 kfree(tg);
9988}
9989
9990/* allocate runqueue etc for a new task group */
ec7dc8ac 9991struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9992{
9993 struct task_group *tg;
9994 unsigned long flags;
9995 int i;
9996
9997 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9998 if (!tg)
9999 return ERR_PTR(-ENOMEM);
10000
ec7dc8ac 10001 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
10002 goto err;
10003
ec7dc8ac 10004 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
10005 goto err;
10006
8ed36996 10007 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10008 for_each_possible_cpu(i) {
bccbe08a
PZ
10009 register_fair_sched_group(tg, i);
10010 register_rt_sched_group(tg, i);
9b5b7751 10011 }
6f505b16 10012 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
10013
10014 WARN_ON(!parent); /* root should already exist */
10015
10016 tg->parent = parent;
f473aa5e 10017 INIT_LIST_HEAD(&tg->children);
09f2724a 10018 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10019 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 10020
9b5b7751 10021 return tg;
29f59db3
SV
10022
10023err:
6f505b16 10024 free_sched_group(tg);
29f59db3
SV
10025 return ERR_PTR(-ENOMEM);
10026}
10027
9b5b7751 10028/* rcu callback to free various structures associated with a task group */
6f505b16 10029static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 10030{
29f59db3 10031 /* now it should be safe to free those cfs_rqs */
6f505b16 10032 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10033}
10034
9b5b7751 10035/* Destroy runqueue etc associated with a task group */
4cf86d77 10036void sched_destroy_group(struct task_group *tg)
29f59db3 10037{
8ed36996 10038 unsigned long flags;
9b5b7751 10039 int i;
29f59db3 10040
8ed36996 10041 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10042 for_each_possible_cpu(i) {
bccbe08a
PZ
10043 unregister_fair_sched_group(tg, i);
10044 unregister_rt_sched_group(tg, i);
9b5b7751 10045 }
6f505b16 10046 list_del_rcu(&tg->list);
f473aa5e 10047 list_del_rcu(&tg->siblings);
8ed36996 10048 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 10049
9b5b7751 10050 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 10051 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
10052}
10053
9b5b7751 10054/* change task's runqueue when it moves between groups.
3a252015
IM
10055 * The caller of this function should have put the task in its new group
10056 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10057 * reflect its new group.
9b5b7751
SV
10058 */
10059void sched_move_task(struct task_struct *tsk)
29f59db3
SV
10060{
10061 int on_rq, running;
10062 unsigned long flags;
10063 struct rq *rq;
10064
10065 rq = task_rq_lock(tsk, &flags);
10066
29f59db3
SV
10067 update_rq_clock(rq);
10068
051a1d1a 10069 running = task_current(rq, tsk);
29f59db3
SV
10070 on_rq = tsk->se.on_rq;
10071
0e1f3483 10072 if (on_rq)
29f59db3 10073 dequeue_task(rq, tsk, 0);
0e1f3483
HS
10074 if (unlikely(running))
10075 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 10076
6f505b16 10077 set_task_rq(tsk, task_cpu(tsk));
29f59db3 10078
810b3817
PZ
10079#ifdef CONFIG_FAIR_GROUP_SCHED
10080 if (tsk->sched_class->moved_group)
10081 tsk->sched_class->moved_group(tsk);
10082#endif
10083
0e1f3483
HS
10084 if (unlikely(running))
10085 tsk->sched_class->set_curr_task(rq);
10086 if (on_rq)
7074badb 10087 enqueue_task(rq, tsk, 0);
29f59db3 10088
29f59db3
SV
10089 task_rq_unlock(rq, &flags);
10090}
6d6bc0ad 10091#endif /* CONFIG_GROUP_SCHED */
29f59db3 10092
052f1dc7 10093#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10094static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10095{
10096 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10097 int on_rq;
10098
29f59db3 10099 on_rq = se->on_rq;
62fb1851 10100 if (on_rq)
29f59db3
SV
10101 dequeue_entity(cfs_rq, se, 0);
10102
10103 se->load.weight = shares;
e05510d0 10104 se->load.inv_weight = 0;
29f59db3 10105
62fb1851 10106 if (on_rq)
29f59db3 10107 enqueue_entity(cfs_rq, se, 0);
c09595f6 10108}
62fb1851 10109
c09595f6
PZ
10110static void set_se_shares(struct sched_entity *se, unsigned long shares)
10111{
10112 struct cfs_rq *cfs_rq = se->cfs_rq;
10113 struct rq *rq = cfs_rq->rq;
10114 unsigned long flags;
10115
10116 spin_lock_irqsave(&rq->lock, flags);
10117 __set_se_shares(se, shares);
10118 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10119}
10120
8ed36996
PZ
10121static DEFINE_MUTEX(shares_mutex);
10122
4cf86d77 10123int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10124{
10125 int i;
8ed36996 10126 unsigned long flags;
c61935fd 10127
ec7dc8ac
DG
10128 /*
10129 * We can't change the weight of the root cgroup.
10130 */
10131 if (!tg->se[0])
10132 return -EINVAL;
10133
18d95a28
PZ
10134 if (shares < MIN_SHARES)
10135 shares = MIN_SHARES;
cb4ad1ff
MX
10136 else if (shares > MAX_SHARES)
10137 shares = MAX_SHARES;
62fb1851 10138
8ed36996 10139 mutex_lock(&shares_mutex);
9b5b7751 10140 if (tg->shares == shares)
5cb350ba 10141 goto done;
29f59db3 10142
8ed36996 10143 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10144 for_each_possible_cpu(i)
10145 unregister_fair_sched_group(tg, i);
f473aa5e 10146 list_del_rcu(&tg->siblings);
8ed36996 10147 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10148
10149 /* wait for any ongoing reference to this group to finish */
10150 synchronize_sched();
10151
10152 /*
10153 * Now we are free to modify the group's share on each cpu
10154 * w/o tripping rebalance_share or load_balance_fair.
10155 */
9b5b7751 10156 tg->shares = shares;
c09595f6
PZ
10157 for_each_possible_cpu(i) {
10158 /*
10159 * force a rebalance
10160 */
10161 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10162 set_se_shares(tg->se[i], shares);
c09595f6 10163 }
29f59db3 10164
6b2d7700
SV
10165 /*
10166 * Enable load balance activity on this group, by inserting it back on
10167 * each cpu's rq->leaf_cfs_rq_list.
10168 */
8ed36996 10169 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10170 for_each_possible_cpu(i)
10171 register_fair_sched_group(tg, i);
f473aa5e 10172 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10173 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10174done:
8ed36996 10175 mutex_unlock(&shares_mutex);
9b5b7751 10176 return 0;
29f59db3
SV
10177}
10178
5cb350ba
DG
10179unsigned long sched_group_shares(struct task_group *tg)
10180{
10181 return tg->shares;
10182}
052f1dc7 10183#endif
5cb350ba 10184
052f1dc7 10185#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10186/*
9f0c1e56 10187 * Ensure that the real time constraints are schedulable.
6f505b16 10188 */
9f0c1e56
PZ
10189static DEFINE_MUTEX(rt_constraints_mutex);
10190
10191static unsigned long to_ratio(u64 period, u64 runtime)
10192{
10193 if (runtime == RUNTIME_INF)
9a7e0b18 10194 return 1ULL << 20;
9f0c1e56 10195
9a7e0b18 10196 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10197}
10198
9a7e0b18
PZ
10199/* Must be called with tasklist_lock held */
10200static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10201{
9a7e0b18 10202 struct task_struct *g, *p;
b40b2e8e 10203
9a7e0b18
PZ
10204 do_each_thread(g, p) {
10205 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10206 return 1;
10207 } while_each_thread(g, p);
b40b2e8e 10208
9a7e0b18
PZ
10209 return 0;
10210}
b40b2e8e 10211
9a7e0b18
PZ
10212struct rt_schedulable_data {
10213 struct task_group *tg;
10214 u64 rt_period;
10215 u64 rt_runtime;
10216};
b40b2e8e 10217
9a7e0b18
PZ
10218static int tg_schedulable(struct task_group *tg, void *data)
10219{
10220 struct rt_schedulable_data *d = data;
10221 struct task_group *child;
10222 unsigned long total, sum = 0;
10223 u64 period, runtime;
b40b2e8e 10224
9a7e0b18
PZ
10225 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10226 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10227
9a7e0b18
PZ
10228 if (tg == d->tg) {
10229 period = d->rt_period;
10230 runtime = d->rt_runtime;
b40b2e8e 10231 }
b40b2e8e 10232
98a4826b
PZ
10233#ifdef CONFIG_USER_SCHED
10234 if (tg == &root_task_group) {
10235 period = global_rt_period();
10236 runtime = global_rt_runtime();
10237 }
10238#endif
10239
4653f803
PZ
10240 /*
10241 * Cannot have more runtime than the period.
10242 */
10243 if (runtime > period && runtime != RUNTIME_INF)
10244 return -EINVAL;
6f505b16 10245
4653f803
PZ
10246 /*
10247 * Ensure we don't starve existing RT tasks.
10248 */
9a7e0b18
PZ
10249 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10250 return -EBUSY;
6f505b16 10251
9a7e0b18 10252 total = to_ratio(period, runtime);
6f505b16 10253
4653f803
PZ
10254 /*
10255 * Nobody can have more than the global setting allows.
10256 */
10257 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10258 return -EINVAL;
6f505b16 10259
4653f803
PZ
10260 /*
10261 * The sum of our children's runtime should not exceed our own.
10262 */
9a7e0b18
PZ
10263 list_for_each_entry_rcu(child, &tg->children, siblings) {
10264 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10265 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10266
9a7e0b18
PZ
10267 if (child == d->tg) {
10268 period = d->rt_period;
10269 runtime = d->rt_runtime;
10270 }
6f505b16 10271
9a7e0b18 10272 sum += to_ratio(period, runtime);
9f0c1e56 10273 }
6f505b16 10274
9a7e0b18
PZ
10275 if (sum > total)
10276 return -EINVAL;
10277
10278 return 0;
6f505b16
PZ
10279}
10280
9a7e0b18 10281static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10282{
9a7e0b18
PZ
10283 struct rt_schedulable_data data = {
10284 .tg = tg,
10285 .rt_period = period,
10286 .rt_runtime = runtime,
10287 };
10288
10289 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10290}
10291
d0b27fa7
PZ
10292static int tg_set_bandwidth(struct task_group *tg,
10293 u64 rt_period, u64 rt_runtime)
6f505b16 10294{
ac086bc2 10295 int i, err = 0;
9f0c1e56 10296
9f0c1e56 10297 mutex_lock(&rt_constraints_mutex);
521f1a24 10298 read_lock(&tasklist_lock);
9a7e0b18
PZ
10299 err = __rt_schedulable(tg, rt_period, rt_runtime);
10300 if (err)
9f0c1e56 10301 goto unlock;
ac086bc2
PZ
10302
10303 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10304 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10305 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10306
10307 for_each_possible_cpu(i) {
10308 struct rt_rq *rt_rq = tg->rt_rq[i];
10309
10310 spin_lock(&rt_rq->rt_runtime_lock);
10311 rt_rq->rt_runtime = rt_runtime;
10312 spin_unlock(&rt_rq->rt_runtime_lock);
10313 }
10314 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10315 unlock:
521f1a24 10316 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10317 mutex_unlock(&rt_constraints_mutex);
10318
10319 return err;
6f505b16
PZ
10320}
10321
d0b27fa7
PZ
10322int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10323{
10324 u64 rt_runtime, rt_period;
10325
10326 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10327 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10328 if (rt_runtime_us < 0)
10329 rt_runtime = RUNTIME_INF;
10330
10331 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10332}
10333
9f0c1e56
PZ
10334long sched_group_rt_runtime(struct task_group *tg)
10335{
10336 u64 rt_runtime_us;
10337
d0b27fa7 10338 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10339 return -1;
10340
d0b27fa7 10341 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10342 do_div(rt_runtime_us, NSEC_PER_USEC);
10343 return rt_runtime_us;
10344}
d0b27fa7
PZ
10345
10346int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10347{
10348 u64 rt_runtime, rt_period;
10349
10350 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10351 rt_runtime = tg->rt_bandwidth.rt_runtime;
10352
619b0488
R
10353 if (rt_period == 0)
10354 return -EINVAL;
10355
d0b27fa7
PZ
10356 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10357}
10358
10359long sched_group_rt_period(struct task_group *tg)
10360{
10361 u64 rt_period_us;
10362
10363 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10364 do_div(rt_period_us, NSEC_PER_USEC);
10365 return rt_period_us;
10366}
10367
10368static int sched_rt_global_constraints(void)
10369{
4653f803 10370 u64 runtime, period;
d0b27fa7
PZ
10371 int ret = 0;
10372
ec5d4989
HS
10373 if (sysctl_sched_rt_period <= 0)
10374 return -EINVAL;
10375
4653f803
PZ
10376 runtime = global_rt_runtime();
10377 period = global_rt_period();
10378
10379 /*
10380 * Sanity check on the sysctl variables.
10381 */
10382 if (runtime > period && runtime != RUNTIME_INF)
10383 return -EINVAL;
10b612f4 10384
d0b27fa7 10385 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10386 read_lock(&tasklist_lock);
4653f803 10387 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10388 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10389 mutex_unlock(&rt_constraints_mutex);
10390
10391 return ret;
10392}
54e99124
DG
10393
10394int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10395{
10396 /* Don't accept realtime tasks when there is no way for them to run */
10397 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10398 return 0;
10399
10400 return 1;
10401}
10402
6d6bc0ad 10403#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10404static int sched_rt_global_constraints(void)
10405{
ac086bc2
PZ
10406 unsigned long flags;
10407 int i;
10408
ec5d4989
HS
10409 if (sysctl_sched_rt_period <= 0)
10410 return -EINVAL;
10411
60aa605d
PZ
10412 /*
10413 * There's always some RT tasks in the root group
10414 * -- migration, kstopmachine etc..
10415 */
10416 if (sysctl_sched_rt_runtime == 0)
10417 return -EBUSY;
10418
ac086bc2
PZ
10419 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10420 for_each_possible_cpu(i) {
10421 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10422
10423 spin_lock(&rt_rq->rt_runtime_lock);
10424 rt_rq->rt_runtime = global_rt_runtime();
10425 spin_unlock(&rt_rq->rt_runtime_lock);
10426 }
10427 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10428
d0b27fa7
PZ
10429 return 0;
10430}
6d6bc0ad 10431#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10432
10433int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10434 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10435 loff_t *ppos)
10436{
10437 int ret;
10438 int old_period, old_runtime;
10439 static DEFINE_MUTEX(mutex);
10440
10441 mutex_lock(&mutex);
10442 old_period = sysctl_sched_rt_period;
10443 old_runtime = sysctl_sched_rt_runtime;
10444
8d65af78 10445 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10446
10447 if (!ret && write) {
10448 ret = sched_rt_global_constraints();
10449 if (ret) {
10450 sysctl_sched_rt_period = old_period;
10451 sysctl_sched_rt_runtime = old_runtime;
10452 } else {
10453 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10454 def_rt_bandwidth.rt_period =
10455 ns_to_ktime(global_rt_period());
10456 }
10457 }
10458 mutex_unlock(&mutex);
10459
10460 return ret;
10461}
68318b8e 10462
052f1dc7 10463#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10464
10465/* return corresponding task_group object of a cgroup */
2b01dfe3 10466static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10467{
2b01dfe3
PM
10468 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10469 struct task_group, css);
68318b8e
SV
10470}
10471
10472static struct cgroup_subsys_state *
2b01dfe3 10473cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10474{
ec7dc8ac 10475 struct task_group *tg, *parent;
68318b8e 10476
2b01dfe3 10477 if (!cgrp->parent) {
68318b8e 10478 /* This is early initialization for the top cgroup */
68318b8e
SV
10479 return &init_task_group.css;
10480 }
10481
ec7dc8ac
DG
10482 parent = cgroup_tg(cgrp->parent);
10483 tg = sched_create_group(parent);
68318b8e
SV
10484 if (IS_ERR(tg))
10485 return ERR_PTR(-ENOMEM);
10486
68318b8e
SV
10487 return &tg->css;
10488}
10489
41a2d6cf
IM
10490static void
10491cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10492{
2b01dfe3 10493 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10494
10495 sched_destroy_group(tg);
10496}
10497
41a2d6cf 10498static int
be367d09 10499cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10500{
b68aa230 10501#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10502 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10503 return -EINVAL;
10504#else
68318b8e
SV
10505 /* We don't support RT-tasks being in separate groups */
10506 if (tsk->sched_class != &fair_sched_class)
10507 return -EINVAL;
b68aa230 10508#endif
be367d09
BB
10509 return 0;
10510}
68318b8e 10511
be367d09
BB
10512static int
10513cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10514 struct task_struct *tsk, bool threadgroup)
10515{
10516 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10517 if (retval)
10518 return retval;
10519 if (threadgroup) {
10520 struct task_struct *c;
10521 rcu_read_lock();
10522 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10523 retval = cpu_cgroup_can_attach_task(cgrp, c);
10524 if (retval) {
10525 rcu_read_unlock();
10526 return retval;
10527 }
10528 }
10529 rcu_read_unlock();
10530 }
68318b8e
SV
10531 return 0;
10532}
10533
10534static void
2b01dfe3 10535cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10536 struct cgroup *old_cont, struct task_struct *tsk,
10537 bool threadgroup)
68318b8e
SV
10538{
10539 sched_move_task(tsk);
be367d09
BB
10540 if (threadgroup) {
10541 struct task_struct *c;
10542 rcu_read_lock();
10543 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10544 sched_move_task(c);
10545 }
10546 rcu_read_unlock();
10547 }
68318b8e
SV
10548}
10549
052f1dc7 10550#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10551static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10552 u64 shareval)
68318b8e 10553{
2b01dfe3 10554 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10555}
10556
f4c753b7 10557static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10558{
2b01dfe3 10559 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10560
10561 return (u64) tg->shares;
10562}
6d6bc0ad 10563#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10564
052f1dc7 10565#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10566static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10567 s64 val)
6f505b16 10568{
06ecb27c 10569 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10570}
10571
06ecb27c 10572static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10573{
06ecb27c 10574 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10575}
d0b27fa7
PZ
10576
10577static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10578 u64 rt_period_us)
10579{
10580 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10581}
10582
10583static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10584{
10585 return sched_group_rt_period(cgroup_tg(cgrp));
10586}
6d6bc0ad 10587#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10588
fe5c7cc2 10589static struct cftype cpu_files[] = {
052f1dc7 10590#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10591 {
10592 .name = "shares",
f4c753b7
PM
10593 .read_u64 = cpu_shares_read_u64,
10594 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10595 },
052f1dc7
PZ
10596#endif
10597#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10598 {
9f0c1e56 10599 .name = "rt_runtime_us",
06ecb27c
PM
10600 .read_s64 = cpu_rt_runtime_read,
10601 .write_s64 = cpu_rt_runtime_write,
6f505b16 10602 },
d0b27fa7
PZ
10603 {
10604 .name = "rt_period_us",
f4c753b7
PM
10605 .read_u64 = cpu_rt_period_read_uint,
10606 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10607 },
052f1dc7 10608#endif
68318b8e
SV
10609};
10610
10611static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10612{
fe5c7cc2 10613 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10614}
10615
10616struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10617 .name = "cpu",
10618 .create = cpu_cgroup_create,
10619 .destroy = cpu_cgroup_destroy,
10620 .can_attach = cpu_cgroup_can_attach,
10621 .attach = cpu_cgroup_attach,
10622 .populate = cpu_cgroup_populate,
10623 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10624 .early_init = 1,
10625};
10626
052f1dc7 10627#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10628
10629#ifdef CONFIG_CGROUP_CPUACCT
10630
10631/*
10632 * CPU accounting code for task groups.
10633 *
10634 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10635 * (balbir@in.ibm.com).
10636 */
10637
934352f2 10638/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10639struct cpuacct {
10640 struct cgroup_subsys_state css;
10641 /* cpuusage holds pointer to a u64-type object on every cpu */
10642 u64 *cpuusage;
ef12fefa 10643 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10644 struct cpuacct *parent;
d842de87
SV
10645};
10646
10647struct cgroup_subsys cpuacct_subsys;
10648
10649/* return cpu accounting group corresponding to this container */
32cd756a 10650static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10651{
32cd756a 10652 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10653 struct cpuacct, css);
10654}
10655
10656/* return cpu accounting group to which this task belongs */
10657static inline struct cpuacct *task_ca(struct task_struct *tsk)
10658{
10659 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10660 struct cpuacct, css);
10661}
10662
10663/* create a new cpu accounting group */
10664static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10665 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10666{
10667 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10668 int i;
d842de87
SV
10669
10670 if (!ca)
ef12fefa 10671 goto out;
d842de87
SV
10672
10673 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10674 if (!ca->cpuusage)
10675 goto out_free_ca;
10676
10677 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10678 if (percpu_counter_init(&ca->cpustat[i], 0))
10679 goto out_free_counters;
d842de87 10680
934352f2
BR
10681 if (cgrp->parent)
10682 ca->parent = cgroup_ca(cgrp->parent);
10683
d842de87 10684 return &ca->css;
ef12fefa
BR
10685
10686out_free_counters:
10687 while (--i >= 0)
10688 percpu_counter_destroy(&ca->cpustat[i]);
10689 free_percpu(ca->cpuusage);
10690out_free_ca:
10691 kfree(ca);
10692out:
10693 return ERR_PTR(-ENOMEM);
d842de87
SV
10694}
10695
10696/* destroy an existing cpu accounting group */
41a2d6cf 10697static void
32cd756a 10698cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10699{
32cd756a 10700 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10701 int i;
d842de87 10702
ef12fefa
BR
10703 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10704 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10705 free_percpu(ca->cpuusage);
10706 kfree(ca);
10707}
10708
720f5498
KC
10709static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10710{
b36128c8 10711 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10712 u64 data;
10713
10714#ifndef CONFIG_64BIT
10715 /*
10716 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10717 */
10718 spin_lock_irq(&cpu_rq(cpu)->lock);
10719 data = *cpuusage;
10720 spin_unlock_irq(&cpu_rq(cpu)->lock);
10721#else
10722 data = *cpuusage;
10723#endif
10724
10725 return data;
10726}
10727
10728static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10729{
b36128c8 10730 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10731
10732#ifndef CONFIG_64BIT
10733 /*
10734 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10735 */
10736 spin_lock_irq(&cpu_rq(cpu)->lock);
10737 *cpuusage = val;
10738 spin_unlock_irq(&cpu_rq(cpu)->lock);
10739#else
10740 *cpuusage = val;
10741#endif
10742}
10743
d842de87 10744/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10745static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10746{
32cd756a 10747 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10748 u64 totalcpuusage = 0;
10749 int i;
10750
720f5498
KC
10751 for_each_present_cpu(i)
10752 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10753
10754 return totalcpuusage;
10755}
10756
0297b803
DG
10757static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10758 u64 reset)
10759{
10760 struct cpuacct *ca = cgroup_ca(cgrp);
10761 int err = 0;
10762 int i;
10763
10764 if (reset) {
10765 err = -EINVAL;
10766 goto out;
10767 }
10768
720f5498
KC
10769 for_each_present_cpu(i)
10770 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10771
0297b803
DG
10772out:
10773 return err;
10774}
10775
e9515c3c
KC
10776static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10777 struct seq_file *m)
10778{
10779 struct cpuacct *ca = cgroup_ca(cgroup);
10780 u64 percpu;
10781 int i;
10782
10783 for_each_present_cpu(i) {
10784 percpu = cpuacct_cpuusage_read(ca, i);
10785 seq_printf(m, "%llu ", (unsigned long long) percpu);
10786 }
10787 seq_printf(m, "\n");
10788 return 0;
10789}
10790
ef12fefa
BR
10791static const char *cpuacct_stat_desc[] = {
10792 [CPUACCT_STAT_USER] = "user",
10793 [CPUACCT_STAT_SYSTEM] = "system",
10794};
10795
10796static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10797 struct cgroup_map_cb *cb)
10798{
10799 struct cpuacct *ca = cgroup_ca(cgrp);
10800 int i;
10801
10802 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10803 s64 val = percpu_counter_read(&ca->cpustat[i]);
10804 val = cputime64_to_clock_t(val);
10805 cb->fill(cb, cpuacct_stat_desc[i], val);
10806 }
10807 return 0;
10808}
10809
d842de87
SV
10810static struct cftype files[] = {
10811 {
10812 .name = "usage",
f4c753b7
PM
10813 .read_u64 = cpuusage_read,
10814 .write_u64 = cpuusage_write,
d842de87 10815 },
e9515c3c
KC
10816 {
10817 .name = "usage_percpu",
10818 .read_seq_string = cpuacct_percpu_seq_read,
10819 },
ef12fefa
BR
10820 {
10821 .name = "stat",
10822 .read_map = cpuacct_stats_show,
10823 },
d842de87
SV
10824};
10825
32cd756a 10826static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10827{
32cd756a 10828 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10829}
10830
10831/*
10832 * charge this task's execution time to its accounting group.
10833 *
10834 * called with rq->lock held.
10835 */
10836static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10837{
10838 struct cpuacct *ca;
934352f2 10839 int cpu;
d842de87 10840
c40c6f85 10841 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10842 return;
10843
934352f2 10844 cpu = task_cpu(tsk);
a18b83b7
BR
10845
10846 rcu_read_lock();
10847
d842de87 10848 ca = task_ca(tsk);
d842de87 10849
934352f2 10850 for (; ca; ca = ca->parent) {
b36128c8 10851 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10852 *cpuusage += cputime;
10853 }
a18b83b7
BR
10854
10855 rcu_read_unlock();
d842de87
SV
10856}
10857
ef12fefa
BR
10858/*
10859 * Charge the system/user time to the task's accounting group.
10860 */
10861static void cpuacct_update_stats(struct task_struct *tsk,
10862 enum cpuacct_stat_index idx, cputime_t val)
10863{
10864 struct cpuacct *ca;
10865
10866 if (unlikely(!cpuacct_subsys.active))
10867 return;
10868
10869 rcu_read_lock();
10870 ca = task_ca(tsk);
10871
10872 do {
10873 percpu_counter_add(&ca->cpustat[idx], val);
10874 ca = ca->parent;
10875 } while (ca);
10876 rcu_read_unlock();
10877}
10878
d842de87
SV
10879struct cgroup_subsys cpuacct_subsys = {
10880 .name = "cpuacct",
10881 .create = cpuacct_create,
10882 .destroy = cpuacct_destroy,
10883 .populate = cpuacct_populate,
10884 .subsys_id = cpuacct_subsys_id,
10885};
10886#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10887
10888#ifndef CONFIG_SMP
10889
10890int rcu_expedited_torture_stats(char *page)
10891{
10892 return 0;
10893}
10894EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10895
10896void synchronize_sched_expedited(void)
10897{
10898}
10899EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10900
10901#else /* #ifndef CONFIG_SMP */
10902
10903static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10904static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10905
10906#define RCU_EXPEDITED_STATE_POST -2
10907#define RCU_EXPEDITED_STATE_IDLE -1
10908
10909static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10910
10911int rcu_expedited_torture_stats(char *page)
10912{
10913 int cnt = 0;
10914 int cpu;
10915
10916 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10917 for_each_online_cpu(cpu) {
10918 cnt += sprintf(&page[cnt], " %d:%d",
10919 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10920 }
10921 cnt += sprintf(&page[cnt], "\n");
10922 return cnt;
10923}
10924EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10925
10926static long synchronize_sched_expedited_count;
10927
10928/*
10929 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10930 * approach to force grace period to end quickly. This consumes
10931 * significant time on all CPUs, and is thus not recommended for
10932 * any sort of common-case code.
10933 *
10934 * Note that it is illegal to call this function while holding any
10935 * lock that is acquired by a CPU-hotplug notifier. Failing to
10936 * observe this restriction will result in deadlock.
10937 */
10938void synchronize_sched_expedited(void)
10939{
10940 int cpu;
10941 unsigned long flags;
10942 bool need_full_sync = 0;
10943 struct rq *rq;
10944 struct migration_req *req;
10945 long snap;
10946 int trycount = 0;
10947
10948 smp_mb(); /* ensure prior mod happens before capturing snap. */
10949 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10950 get_online_cpus();
10951 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10952 put_online_cpus();
10953 if (trycount++ < 10)
10954 udelay(trycount * num_online_cpus());
10955 else {
10956 synchronize_sched();
10957 return;
10958 }
10959 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10960 smp_mb(); /* ensure test happens before caller kfree */
10961 return;
10962 }
10963 get_online_cpus();
10964 }
10965 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10966 for_each_online_cpu(cpu) {
10967 rq = cpu_rq(cpu);
10968 req = &per_cpu(rcu_migration_req, cpu);
10969 init_completion(&req->done);
10970 req->task = NULL;
10971 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10972 spin_lock_irqsave(&rq->lock, flags);
10973 list_add(&req->list, &rq->migration_queue);
10974 spin_unlock_irqrestore(&rq->lock, flags);
10975 wake_up_process(rq->migration_thread);
10976 }
10977 for_each_online_cpu(cpu) {
10978 rcu_expedited_state = cpu;
10979 req = &per_cpu(rcu_migration_req, cpu);
10980 rq = cpu_rq(cpu);
10981 wait_for_completion(&req->done);
10982 spin_lock_irqsave(&rq->lock, flags);
10983 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10984 need_full_sync = 1;
10985 req->dest_cpu = RCU_MIGRATION_IDLE;
10986 spin_unlock_irqrestore(&rq->lock, flags);
10987 }
10988 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 10989 synchronize_sched_expedited_count++;
03b042bf
PM
10990 mutex_unlock(&rcu_sched_expedited_mutex);
10991 put_online_cpus();
10992 if (need_full_sync)
10993 synchronize_sched();
10994}
10995EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10996
10997#endif /* #else #ifndef CONFIG_SMP */