]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: Fix build warning in get_update_sysctl_factor()
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5
IM
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
ac086bc2
PZ
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
ada3fa15 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
b9bf3121 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
e9036b36
CG
312#ifdef CONFIG_FAIR_GROUP_SCHED
313
57310a98
PZ
314#ifdef CONFIG_SMP
315static int root_task_group_empty(void)
316{
317 return list_empty(&root_task_group.children);
318}
319#endif
320
052f1dc7
PZ
321#ifdef CONFIG_USER_SCHED
322# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 323#else /* !CONFIG_USER_SCHED */
052f1dc7 324# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 325#endif /* CONFIG_USER_SCHED */
052f1dc7 326
cb4ad1ff 327/*
2e084786
LJ
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
cb4ad1ff
MX
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
334 */
18d95a28 335#define MIN_SHARES 2
2e084786 336#define MAX_SHARES (1UL << 18)
18d95a28 337
052f1dc7
PZ
338static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339#endif
340
29f59db3 341/* Default task group.
3a252015 342 * Every task in system belong to this group at bootup.
29f59db3 343 */
434d53b0 344struct task_group init_task_group;
29f59db3
SV
345
346/* return group to which a task belongs */
4cf86d77 347static inline struct task_group *task_group(struct task_struct *p)
29f59db3 348{
4cf86d77 349 struct task_group *tg;
9b5b7751 350
052f1dc7 351#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
052f1dc7 355#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
24e377a8 358#else
41a2d6cf 359 tg = &init_task_group;
24e377a8 360#endif
9b5b7751 361 return tg;
29f59db3
SV
362}
363
364/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 366{
052f1dc7 367#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
052f1dc7 370#endif
6f505b16 371
052f1dc7 372#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 375#endif
29f59db3
SV
376}
377
378#else
379
6f505b16 380static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
381static inline struct task_group *task_group(struct task_struct *p)
382{
383 return NULL;
384}
29f59db3 385
052f1dc7 386#endif /* CONFIG_GROUP_SCHED */
29f59db3 387
6aa645ea
IM
388/* CFS-related fields in a runqueue */
389struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
6aa645ea 393 u64 exec_clock;
e9acbff6 394 u64 min_vruntime;
6aa645ea
IM
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
4a55bd5e
PZ
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
4793241b 406 struct sched_entity *curr, *next, *last;
ddc97297 407
5ac5c4d6 408 unsigned int nr_spread_over;
ddc97297 409
62160e3f 410#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
41a2d6cf
IM
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
41a2d6cf
IM
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
423
424#ifdef CONFIG_SMP
c09595f6 425 /*
c8cba857 426 * the part of load.weight contributed by tasks
c09595f6 427 */
c8cba857 428 unsigned long task_weight;
c09595f6 429
c8cba857
PZ
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
c09595f6 437
c8cba857
PZ
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
f1d239f7
PZ
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
c09595f6 447#endif
6aa645ea
IM
448#endif
449};
1da177e4 450
6aa645ea
IM
451/* Real-Time classes' related field in a runqueue: */
452struct rt_rq {
453 struct rt_prio_array active;
63489e45 454 unsigned long rt_nr_running;
052f1dc7 455#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
456 struct {
457 int curr; /* highest queued rt task prio */
398a153b 458#ifdef CONFIG_SMP
e864c499 459 int next; /* next highest */
398a153b 460#endif
e864c499 461 } highest_prio;
6f505b16 462#endif
fa85ae24 463#ifdef CONFIG_SMP
73fe6aae 464 unsigned long rt_nr_migratory;
a1ba4d8b 465 unsigned long rt_nr_total;
a22d7fc1 466 int overloaded;
917b627d 467 struct plist_head pushable_tasks;
fa85ae24 468#endif
6f505b16 469 int rt_throttled;
fa85ae24 470 u64 rt_time;
ac086bc2 471 u64 rt_runtime;
ea736ed5 472 /* Nests inside the rq lock: */
ac086bc2 473 spinlock_t rt_runtime_lock;
6f505b16 474
052f1dc7 475#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
476 unsigned long rt_nr_boosted;
477
6f505b16
PZ
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482#endif
6aa645ea
IM
483};
484
57d885fe
GH
485#ifdef CONFIG_SMP
486
487/*
488 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
493 *
57d885fe
GH
494 */
495struct root_domain {
496 atomic_t refcount;
c6c4927b
RR
497 cpumask_var_t span;
498 cpumask_var_t online;
637f5085 499
0eab9146 500 /*
637f5085
GH
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
c6c4927b 504 cpumask_var_t rto_mask;
0eab9146 505 atomic_t rto_count;
6e0534f2
GH
506#ifdef CONFIG_SMP
507 struct cpupri cpupri;
508#endif
57d885fe
GH
509};
510
dc938520
GH
511/*
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
514 */
57d885fe
GH
515static struct root_domain def_root_domain;
516
517#endif
518
1da177e4
LT
519/*
520 * This is the main, per-CPU runqueue data structure.
521 *
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
525 */
70b97a7f 526struct rq {
d8016491
IM
527 /* runqueue lock: */
528 spinlock_t lock;
1da177e4
LT
529
530 /*
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
533 */
534 unsigned long nr_running;
6aa645ea
IM
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
537#ifdef CONFIG_NO_HZ
538 unsigned char in_nohz_recently;
539#endif
d8016491
IM
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
6aa645ea
IM
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544
545 struct cfs_rq cfs;
6f505b16 546 struct rt_rq rt;
6f505b16 547
6aa645ea 548#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
551#endif
552#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 553 struct list_head leaf_rt_rq_list;
1da177e4 554#endif
1da177e4
LT
555
556 /*
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
561 */
562 unsigned long nr_uninterruptible;
563
36c8b586 564 struct task_struct *curr, *idle;
c9819f45 565 unsigned long next_balance;
1da177e4 566 struct mm_struct *prev_mm;
6aa645ea 567
3e51f33f 568 u64 clock;
6aa645ea 569
1da177e4
LT
570 atomic_t nr_iowait;
571
572#ifdef CONFIG_SMP
0eab9146 573 struct root_domain *rd;
1da177e4
LT
574 struct sched_domain *sd;
575
a0a522ce 576 unsigned char idle_at_tick;
1da177e4 577 /* For active balancing */
3f029d3c 578 int post_schedule;
1da177e4
LT
579 int active_balance;
580 int push_cpu;
d8016491
IM
581 /* cpu of this runqueue: */
582 int cpu;
1f11eb6a 583 int online;
1da177e4 584
a8a51d5e 585 unsigned long avg_load_per_task;
1da177e4 586
36c8b586 587 struct task_struct *migration_thread;
1da177e4 588 struct list_head migration_queue;
e9e9250b
PZ
589
590 u64 rt_avg;
591 u64 age_stamp;
1b9508f6
MG
592 u64 idle_stamp;
593 u64 avg_idle;
1da177e4
LT
594#endif
595
dce48a84
TG
596 /* calc_load related fields */
597 unsigned long calc_load_update;
598 long calc_load_active;
599
8f4d37ec 600#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
601#ifdef CONFIG_SMP
602 int hrtick_csd_pending;
603 struct call_single_data hrtick_csd;
604#endif
8f4d37ec
PZ
605 struct hrtimer hrtick_timer;
606#endif
607
1da177e4
LT
608#ifdef CONFIG_SCHEDSTATS
609 /* latency stats */
610 struct sched_info rq_sched_info;
9c2c4802
KC
611 unsigned long long rq_cpu_time;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
613
614 /* sys_sched_yield() stats */
480b9434 615 unsigned int yld_count;
1da177e4
LT
616
617 /* schedule() stats */
480b9434
KC
618 unsigned int sched_switch;
619 unsigned int sched_count;
620 unsigned int sched_goidle;
1da177e4
LT
621
622 /* try_to_wake_up() stats */
480b9434
KC
623 unsigned int ttwu_count;
624 unsigned int ttwu_local;
b8efb561
IM
625
626 /* BKL stats */
480b9434 627 unsigned int bkl_count;
1da177e4
LT
628#endif
629};
630
f34e3b61 631static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 632
7d478721
PZ
633static inline
634void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 635{
7d478721 636 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
637}
638
0a2966b4
CL
639static inline int cpu_of(struct rq *rq)
640{
641#ifdef CONFIG_SMP
642 return rq->cpu;
643#else
644 return 0;
645#endif
646}
647
674311d5
NP
648/*
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 650 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
651 *
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
654 */
48f24c4d
IM
655#define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
657
658#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659#define this_rq() (&__get_cpu_var(runqueues))
660#define task_rq(p) cpu_rq(task_cpu(p))
661#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 662#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 663
aa9c4c0f 664inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
665{
666 rq->clock = sched_clock_cpu(cpu_of(rq));
667}
668
bf5c91ba
IM
669/*
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 */
672#ifdef CONFIG_SCHED_DEBUG
673# define const_debug __read_mostly
674#else
675# define const_debug static const
676#endif
677
017730c1
IM
678/**
679 * runqueue_is_locked
e17b38bf 680 * @cpu: the processor in question.
017730c1
IM
681 *
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
685 */
89f19f04 686int runqueue_is_locked(int cpu)
017730c1 687{
89f19f04 688 return spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
689}
690
bf5c91ba
IM
691/*
692 * Debugging: various feature bits
693 */
f00b45c1
PZ
694
695#define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
697
bf5c91ba 698enum {
f00b45c1 699#include "sched_features.h"
bf5c91ba
IM
700};
701
f00b45c1
PZ
702#undef SCHED_FEAT
703
704#define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
706
bf5c91ba 707const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
708#include "sched_features.h"
709 0;
710
711#undef SCHED_FEAT
712
713#ifdef CONFIG_SCHED_DEBUG
714#define SCHED_FEAT(name, enabled) \
715 #name ,
716
983ed7a6 717static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
718#include "sched_features.h"
719 NULL
720};
721
722#undef SCHED_FEAT
723
34f3a814 724static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 725{
f00b45c1
PZ
726 int i;
727
728 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
729 if (!(sysctl_sched_features & (1UL << i)))
730 seq_puts(m, "NO_");
731 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 732 }
34f3a814 733 seq_puts(m, "\n");
f00b45c1 734
34f3a814 735 return 0;
f00b45c1
PZ
736}
737
738static ssize_t
739sched_feat_write(struct file *filp, const char __user *ubuf,
740 size_t cnt, loff_t *ppos)
741{
742 char buf[64];
743 char *cmp = buf;
744 int neg = 0;
745 int i;
746
747 if (cnt > 63)
748 cnt = 63;
749
750 if (copy_from_user(&buf, ubuf, cnt))
751 return -EFAULT;
752
753 buf[cnt] = 0;
754
c24b7c52 755 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
756 neg = 1;
757 cmp += 3;
758 }
759
760 for (i = 0; sched_feat_names[i]; i++) {
761 int len = strlen(sched_feat_names[i]);
762
763 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
764 if (neg)
765 sysctl_sched_features &= ~(1UL << i);
766 else
767 sysctl_sched_features |= (1UL << i);
768 break;
769 }
770 }
771
772 if (!sched_feat_names[i])
773 return -EINVAL;
774
42994724 775 *ppos += cnt;
f00b45c1
PZ
776
777 return cnt;
778}
779
34f3a814
LZ
780static int sched_feat_open(struct inode *inode, struct file *filp)
781{
782 return single_open(filp, sched_feat_show, NULL);
783}
784
828c0950 785static const struct file_operations sched_feat_fops = {
34f3a814
LZ
786 .open = sched_feat_open,
787 .write = sched_feat_write,
788 .read = seq_read,
789 .llseek = seq_lseek,
790 .release = single_release,
f00b45c1
PZ
791};
792
793static __init int sched_init_debug(void)
794{
f00b45c1
PZ
795 debugfs_create_file("sched_features", 0644, NULL, NULL,
796 &sched_feat_fops);
797
798 return 0;
799}
800late_initcall(sched_init_debug);
801
802#endif
803
804#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 805
b82d9fdd
PZ
806/*
807 * Number of tasks to iterate in a single balance run.
808 * Limited because this is done with IRQs disabled.
809 */
810const_debug unsigned int sysctl_sched_nr_migrate = 32;
811
2398f2c6
PZ
812/*
813 * ratelimit for updating the group shares.
55cd5340 814 * default: 0.25ms
2398f2c6 815 */
55cd5340 816unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 817unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 818
ffda12a1
PZ
819/*
820 * Inject some fuzzyness into changing the per-cpu group shares
821 * this avoids remote rq-locks at the expense of fairness.
822 * default: 4
823 */
824unsigned int sysctl_sched_shares_thresh = 4;
825
e9e9250b
PZ
826/*
827 * period over which we average the RT time consumption, measured
828 * in ms.
829 *
830 * default: 1s
831 */
832const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
833
fa85ae24 834/*
9f0c1e56 835 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
836 * default: 1s
837 */
9f0c1e56 838unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 839
6892b75e
IM
840static __read_mostly int scheduler_running;
841
9f0c1e56
PZ
842/*
843 * part of the period that we allow rt tasks to run in us.
844 * default: 0.95s
845 */
846int sysctl_sched_rt_runtime = 950000;
fa85ae24 847
d0b27fa7
PZ
848static inline u64 global_rt_period(void)
849{
850 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
851}
852
853static inline u64 global_rt_runtime(void)
854{
e26873bb 855 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
856 return RUNTIME_INF;
857
858 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
859}
fa85ae24 860
1da177e4 861#ifndef prepare_arch_switch
4866cde0
NP
862# define prepare_arch_switch(next) do { } while (0)
863#endif
864#ifndef finish_arch_switch
865# define finish_arch_switch(prev) do { } while (0)
866#endif
867
051a1d1a
DA
868static inline int task_current(struct rq *rq, struct task_struct *p)
869{
870 return rq->curr == p;
871}
872
4866cde0 873#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 874static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 875{
051a1d1a 876 return task_current(rq, p);
4866cde0
NP
877}
878
70b97a7f 879static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
880{
881}
882
70b97a7f 883static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 884{
da04c035
IM
885#ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888#endif
8a25d5de
IM
889 /*
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
893 */
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895
4866cde0
NP
896 spin_unlock_irq(&rq->lock);
897}
898
899#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 900static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
901{
902#ifdef CONFIG_SMP
903 return p->oncpu;
904#else
051a1d1a 905 return task_current(rq, p);
4866cde0
NP
906#endif
907}
908
70b97a7f 909static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 /*
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
915 * here.
916 */
917 next->oncpu = 1;
918#endif
919#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 spin_unlock_irq(&rq->lock);
921#else
922 spin_unlock(&rq->lock);
923#endif
924}
925
70b97a7f 926static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
927{
928#ifdef CONFIG_SMP
929 /*
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
932 * finished.
933 */
934 smp_wmb();
935 prev->oncpu = 0;
936#endif
937#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 local_irq_enable();
1da177e4 939#endif
4866cde0
NP
940}
941#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 942
b29739f9
IM
943/*
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
946 */
70b97a7f 947static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
948 __acquires(rq->lock)
949{
3a5c359a
AK
950 for (;;) {
951 struct rq *rq = task_rq(p);
952 spin_lock(&rq->lock);
953 if (likely(rq == task_rq(p)))
954 return rq;
b29739f9 955 spin_unlock(&rq->lock);
b29739f9 956 }
b29739f9
IM
957}
958
1da177e4
LT
959/*
960 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 961 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
962 * explicitly disabling preemption.
963 */
70b97a7f 964static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
965 __acquires(rq->lock)
966{
70b97a7f 967 struct rq *rq;
1da177e4 968
3a5c359a
AK
969 for (;;) {
970 local_irq_save(*flags);
971 rq = task_rq(p);
972 spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
1da177e4 975 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 976 }
1da177e4
LT
977}
978
ad474cac
ON
979void task_rq_unlock_wait(struct task_struct *p)
980{
981 struct rq *rq = task_rq(p);
982
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984 spin_unlock_wait(&rq->lock);
985}
986
a9957449 987static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
988 __releases(rq->lock)
989{
990 spin_unlock(&rq->lock);
991}
992
70b97a7f 993static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
994 __releases(rq->lock)
995{
996 spin_unlock_irqrestore(&rq->lock, *flags);
997}
998
1da177e4 999/*
cc2a73b5 1000 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1001 */
a9957449 1002static struct rq *this_rq_lock(void)
1da177e4
LT
1003 __acquires(rq->lock)
1004{
70b97a7f 1005 struct rq *rq;
1da177e4
LT
1006
1007 local_irq_disable();
1008 rq = this_rq();
1009 spin_lock(&rq->lock);
1010
1011 return rq;
1012}
1013
8f4d37ec
PZ
1014#ifdef CONFIG_SCHED_HRTICK
1015/*
1016 * Use HR-timers to deliver accurate preemption points.
1017 *
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * reschedule event.
1021 *
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 * rq->lock.
1024 */
8f4d37ec
PZ
1025
1026/*
1027 * Use hrtick when:
1028 * - enabled by features
1029 * - hrtimer is actually high res
1030 */
1031static inline int hrtick_enabled(struct rq *rq)
1032{
1033 if (!sched_feat(HRTICK))
1034 return 0;
ba42059f 1035 if (!cpu_active(cpu_of(rq)))
b328ca18 1036 return 0;
8f4d37ec
PZ
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038}
1039
8f4d37ec
PZ
1040static void hrtick_clear(struct rq *rq)
1041{
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1044}
1045
8f4d37ec
PZ
1046/*
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1049 */
1050static enum hrtimer_restart hrtick(struct hrtimer *timer)
1051{
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1053
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1055
1056 spin_lock(&rq->lock);
3e51f33f 1057 update_rq_clock(rq);
8f4d37ec
PZ
1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1059 spin_unlock(&rq->lock);
1060
1061 return HRTIMER_NORESTART;
1062}
1063
95e904c7 1064#ifdef CONFIG_SMP
31656519
PZ
1065/*
1066 * called from hardirq (IPI) context
1067 */
1068static void __hrtick_start(void *arg)
b328ca18 1069{
31656519 1070 struct rq *rq = arg;
b328ca18 1071
31656519
PZ
1072 spin_lock(&rq->lock);
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
1075 spin_unlock(&rq->lock);
b328ca18
PZ
1076}
1077
31656519
PZ
1078/*
1079 * Called to set the hrtick timer state.
1080 *
1081 * called with rq->lock held and irqs disabled
1082 */
1083static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1084{
31656519
PZ
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1087
cc584b21 1088 hrtimer_set_expires(timer, time);
31656519
PZ
1089
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
6e275637 1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1094 rq->hrtick_csd_pending = 1;
1095 }
b328ca18
PZ
1096}
1097
1098static int
1099hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1100{
1101 int cpu = (int)(long)hcpu;
1102
1103 switch (action) {
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1108 case CPU_DEAD:
1109 case CPU_DEAD_FROZEN:
31656519 1110 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1111 return NOTIFY_OK;
1112 }
1113
1114 return NOTIFY_DONE;
1115}
1116
fa748203 1117static __init void init_hrtick(void)
b328ca18
PZ
1118{
1119 hotcpu_notifier(hotplug_hrtick, 0);
1120}
31656519
PZ
1121#else
1122/*
1123 * Called to set the hrtick timer state.
1124 *
1125 * called with rq->lock held and irqs disabled
1126 */
1127static void hrtick_start(struct rq *rq, u64 delay)
1128{
7f1e2ca9 1129 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1130 HRTIMER_MODE_REL_PINNED, 0);
31656519 1131}
b328ca18 1132
006c75f1 1133static inline void init_hrtick(void)
8f4d37ec 1134{
8f4d37ec 1135}
31656519 1136#endif /* CONFIG_SMP */
8f4d37ec 1137
31656519 1138static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1139{
31656519
PZ
1140#ifdef CONFIG_SMP
1141 rq->hrtick_csd_pending = 0;
8f4d37ec 1142
31656519
PZ
1143 rq->hrtick_csd.flags = 0;
1144 rq->hrtick_csd.func = __hrtick_start;
1145 rq->hrtick_csd.info = rq;
1146#endif
8f4d37ec 1147
31656519
PZ
1148 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1149 rq->hrtick_timer.function = hrtick;
8f4d37ec 1150}
006c75f1 1151#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1152static inline void hrtick_clear(struct rq *rq)
1153{
1154}
1155
8f4d37ec
PZ
1156static inline void init_rq_hrtick(struct rq *rq)
1157{
1158}
1159
b328ca18
PZ
1160static inline void init_hrtick(void)
1161{
1162}
006c75f1 1163#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1164
c24d20db
IM
1165/*
1166 * resched_task - mark a task 'to be rescheduled now'.
1167 *
1168 * On UP this means the setting of the need_resched flag, on SMP it
1169 * might also involve a cross-CPU call to trigger the scheduler on
1170 * the target CPU.
1171 */
1172#ifdef CONFIG_SMP
1173
1174#ifndef tsk_is_polling
1175#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1176#endif
1177
31656519 1178static void resched_task(struct task_struct *p)
c24d20db
IM
1179{
1180 int cpu;
1181
1182 assert_spin_locked(&task_rq(p)->lock);
1183
5ed0cec0 1184 if (test_tsk_need_resched(p))
c24d20db
IM
1185 return;
1186
5ed0cec0 1187 set_tsk_need_resched(p);
c24d20db
IM
1188
1189 cpu = task_cpu(p);
1190 if (cpu == smp_processor_id())
1191 return;
1192
1193 /* NEED_RESCHED must be visible before we test polling */
1194 smp_mb();
1195 if (!tsk_is_polling(p))
1196 smp_send_reschedule(cpu);
1197}
1198
1199static void resched_cpu(int cpu)
1200{
1201 struct rq *rq = cpu_rq(cpu);
1202 unsigned long flags;
1203
1204 if (!spin_trylock_irqsave(&rq->lock, flags))
1205 return;
1206 resched_task(cpu_curr(cpu));
1207 spin_unlock_irqrestore(&rq->lock, flags);
1208}
06d8308c
TG
1209
1210#ifdef CONFIG_NO_HZ
1211/*
1212 * When add_timer_on() enqueues a timer into the timer wheel of an
1213 * idle CPU then this timer might expire before the next timer event
1214 * which is scheduled to wake up that CPU. In case of a completely
1215 * idle system the next event might even be infinite time into the
1216 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1217 * leaves the inner idle loop so the newly added timer is taken into
1218 * account when the CPU goes back to idle and evaluates the timer
1219 * wheel for the next timer event.
1220 */
1221void wake_up_idle_cpu(int cpu)
1222{
1223 struct rq *rq = cpu_rq(cpu);
1224
1225 if (cpu == smp_processor_id())
1226 return;
1227
1228 /*
1229 * This is safe, as this function is called with the timer
1230 * wheel base lock of (cpu) held. When the CPU is on the way
1231 * to idle and has not yet set rq->curr to idle then it will
1232 * be serialized on the timer wheel base lock and take the new
1233 * timer into account automatically.
1234 */
1235 if (rq->curr != rq->idle)
1236 return;
1237
1238 /*
1239 * We can set TIF_RESCHED on the idle task of the other CPU
1240 * lockless. The worst case is that the other CPU runs the
1241 * idle task through an additional NOOP schedule()
1242 */
5ed0cec0 1243 set_tsk_need_resched(rq->idle);
06d8308c
TG
1244
1245 /* NEED_RESCHED must be visible before we test polling */
1246 smp_mb();
1247 if (!tsk_is_polling(rq->idle))
1248 smp_send_reschedule(cpu);
1249}
6d6bc0ad 1250#endif /* CONFIG_NO_HZ */
06d8308c 1251
e9e9250b
PZ
1252static u64 sched_avg_period(void)
1253{
1254 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1255}
1256
1257static void sched_avg_update(struct rq *rq)
1258{
1259 s64 period = sched_avg_period();
1260
1261 while ((s64)(rq->clock - rq->age_stamp) > period) {
1262 rq->age_stamp += period;
1263 rq->rt_avg /= 2;
1264 }
1265}
1266
1267static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1268{
1269 rq->rt_avg += rt_delta;
1270 sched_avg_update(rq);
1271}
1272
6d6bc0ad 1273#else /* !CONFIG_SMP */
31656519 1274static void resched_task(struct task_struct *p)
c24d20db
IM
1275{
1276 assert_spin_locked(&task_rq(p)->lock);
31656519 1277 set_tsk_need_resched(p);
c24d20db 1278}
e9e9250b
PZ
1279
1280static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1281{
1282}
6d6bc0ad 1283#endif /* CONFIG_SMP */
c24d20db 1284
45bf76df
IM
1285#if BITS_PER_LONG == 32
1286# define WMULT_CONST (~0UL)
1287#else
1288# define WMULT_CONST (1UL << 32)
1289#endif
1290
1291#define WMULT_SHIFT 32
1292
194081eb
IM
1293/*
1294 * Shift right and round:
1295 */
cf2ab469 1296#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1297
a7be37ac
PZ
1298/*
1299 * delta *= weight / lw
1300 */
cb1c4fc9 1301static unsigned long
45bf76df
IM
1302calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1303 struct load_weight *lw)
1304{
1305 u64 tmp;
1306
7a232e03
LJ
1307 if (!lw->inv_weight) {
1308 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1309 lw->inv_weight = 1;
1310 else
1311 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1312 / (lw->weight+1);
1313 }
45bf76df
IM
1314
1315 tmp = (u64)delta_exec * weight;
1316 /*
1317 * Check whether we'd overflow the 64-bit multiplication:
1318 */
194081eb 1319 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1320 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1321 WMULT_SHIFT/2);
1322 else
cf2ab469 1323 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1324
ecf691da 1325 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1326}
1327
1091985b 1328static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1329{
1330 lw->weight += inc;
e89996ae 1331 lw->inv_weight = 0;
45bf76df
IM
1332}
1333
1091985b 1334static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1335{
1336 lw->weight -= dec;
e89996ae 1337 lw->inv_weight = 0;
45bf76df
IM
1338}
1339
2dd73a4f
PW
1340/*
1341 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1342 * of tasks with abnormal "nice" values across CPUs the contribution that
1343 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1344 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1345 * scaled version of the new time slice allocation that they receive on time
1346 * slice expiry etc.
1347 */
1348
cce7ade8
PZ
1349#define WEIGHT_IDLEPRIO 3
1350#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1351
1352/*
1353 * Nice levels are multiplicative, with a gentle 10% change for every
1354 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1355 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1356 * that remained on nice 0.
1357 *
1358 * The "10% effect" is relative and cumulative: from _any_ nice level,
1359 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1360 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1361 * If a task goes up by ~10% and another task goes down by ~10% then
1362 * the relative distance between them is ~25%.)
dd41f596
IM
1363 */
1364static const int prio_to_weight[40] = {
254753dc
IM
1365 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1366 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1367 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1368 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1369 /* 0 */ 1024, 820, 655, 526, 423,
1370 /* 5 */ 335, 272, 215, 172, 137,
1371 /* 10 */ 110, 87, 70, 56, 45,
1372 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1373};
1374
5714d2de
IM
1375/*
1376 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1377 *
1378 * In cases where the weight does not change often, we can use the
1379 * precalculated inverse to speed up arithmetics by turning divisions
1380 * into multiplications:
1381 */
dd41f596 1382static const u32 prio_to_wmult[40] = {
254753dc
IM
1383 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1384 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1385 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1386 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1387 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1388 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1389 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1390 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1391};
2dd73a4f 1392
dd41f596
IM
1393static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1394
1395/*
1396 * runqueue iterator, to support SMP load-balancing between different
1397 * scheduling classes, without having to expose their internal data
1398 * structures to the load-balancing proper:
1399 */
1400struct rq_iterator {
1401 void *arg;
1402 struct task_struct *(*start)(void *);
1403 struct task_struct *(*next)(void *);
1404};
1405
e1d1484f
PW
1406#ifdef CONFIG_SMP
1407static unsigned long
1408balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 unsigned long max_load_move, struct sched_domain *sd,
1410 enum cpu_idle_type idle, int *all_pinned,
1411 int *this_best_prio, struct rq_iterator *iterator);
1412
1413static int
1414iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 struct sched_domain *sd, enum cpu_idle_type idle,
1416 struct rq_iterator *iterator);
e1d1484f 1417#endif
dd41f596 1418
ef12fefa
BR
1419/* Time spent by the tasks of the cpu accounting group executing in ... */
1420enum cpuacct_stat_index {
1421 CPUACCT_STAT_USER, /* ... user mode */
1422 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1423
1424 CPUACCT_STAT_NSTATS,
1425};
1426
d842de87
SV
1427#ifdef CONFIG_CGROUP_CPUACCT
1428static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1429static void cpuacct_update_stats(struct task_struct *tsk,
1430 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1431#else
1432static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1433static inline void cpuacct_update_stats(struct task_struct *tsk,
1434 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1435#endif
1436
18d95a28
PZ
1437static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1438{
1439 update_load_add(&rq->load, load);
1440}
1441
1442static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1443{
1444 update_load_sub(&rq->load, load);
1445}
1446
7940ca36 1447#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1448typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1449
1450/*
1451 * Iterate the full tree, calling @down when first entering a node and @up when
1452 * leaving it for the final time.
1453 */
eb755805 1454static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1455{
1456 struct task_group *parent, *child;
eb755805 1457 int ret;
c09595f6
PZ
1458
1459 rcu_read_lock();
1460 parent = &root_task_group;
1461down:
eb755805
PZ
1462 ret = (*down)(parent, data);
1463 if (ret)
1464 goto out_unlock;
c09595f6
PZ
1465 list_for_each_entry_rcu(child, &parent->children, siblings) {
1466 parent = child;
1467 goto down;
1468
1469up:
1470 continue;
1471 }
eb755805
PZ
1472 ret = (*up)(parent, data);
1473 if (ret)
1474 goto out_unlock;
c09595f6
PZ
1475
1476 child = parent;
1477 parent = parent->parent;
1478 if (parent)
1479 goto up;
eb755805 1480out_unlock:
c09595f6 1481 rcu_read_unlock();
eb755805
PZ
1482
1483 return ret;
c09595f6
PZ
1484}
1485
eb755805
PZ
1486static int tg_nop(struct task_group *tg, void *data)
1487{
1488 return 0;
c09595f6 1489}
eb755805
PZ
1490#endif
1491
1492#ifdef CONFIG_SMP
f5f08f39
PZ
1493/* Used instead of source_load when we know the type == 0 */
1494static unsigned long weighted_cpuload(const int cpu)
1495{
1496 return cpu_rq(cpu)->load.weight;
1497}
1498
1499/*
1500 * Return a low guess at the load of a migration-source cpu weighted
1501 * according to the scheduling class and "nice" value.
1502 *
1503 * We want to under-estimate the load of migration sources, to
1504 * balance conservatively.
1505 */
1506static unsigned long source_load(int cpu, int type)
1507{
1508 struct rq *rq = cpu_rq(cpu);
1509 unsigned long total = weighted_cpuload(cpu);
1510
1511 if (type == 0 || !sched_feat(LB_BIAS))
1512 return total;
1513
1514 return min(rq->cpu_load[type-1], total);
1515}
1516
1517/*
1518 * Return a high guess at the load of a migration-target cpu weighted
1519 * according to the scheduling class and "nice" value.
1520 */
1521static unsigned long target_load(int cpu, int type)
1522{
1523 struct rq *rq = cpu_rq(cpu);
1524 unsigned long total = weighted_cpuload(cpu);
1525
1526 if (type == 0 || !sched_feat(LB_BIAS))
1527 return total;
1528
1529 return max(rq->cpu_load[type-1], total);
1530}
1531
ae154be1
PZ
1532static struct sched_group *group_of(int cpu)
1533{
1534 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1535
1536 if (!sd)
1537 return NULL;
1538
1539 return sd->groups;
1540}
1541
1542static unsigned long power_of(int cpu)
1543{
1544 struct sched_group *group = group_of(cpu);
1545
1546 if (!group)
1547 return SCHED_LOAD_SCALE;
1548
1549 return group->cpu_power;
1550}
1551
eb755805
PZ
1552static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1553
1554static unsigned long cpu_avg_load_per_task(int cpu)
1555{
1556 struct rq *rq = cpu_rq(cpu);
af6d596f 1557 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1558
4cd42620
SR
1559 if (nr_running)
1560 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1561 else
1562 rq->avg_load_per_task = 0;
eb755805
PZ
1563
1564 return rq->avg_load_per_task;
1565}
1566
1567#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1568
4a6cc4bd 1569static __read_mostly unsigned long *update_shares_data;
34d76c41 1570
c09595f6
PZ
1571static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1572
1573/*
1574 * Calculate and set the cpu's group shares.
1575 */
34d76c41
PZ
1576static void update_group_shares_cpu(struct task_group *tg, int cpu,
1577 unsigned long sd_shares,
1578 unsigned long sd_rq_weight,
4a6cc4bd 1579 unsigned long *usd_rq_weight)
18d95a28 1580{
34d76c41 1581 unsigned long shares, rq_weight;
a5004278 1582 int boost = 0;
c09595f6 1583
4a6cc4bd 1584 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1585 if (!rq_weight) {
1586 boost = 1;
1587 rq_weight = NICE_0_LOAD;
1588 }
c8cba857 1589
c09595f6 1590 /*
a8af7246
PZ
1591 * \Sum_j shares_j * rq_weight_i
1592 * shares_i = -----------------------------
1593 * \Sum_j rq_weight_j
c09595f6 1594 */
ec4e0e2f 1595 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1596 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1597
ffda12a1
PZ
1598 if (abs(shares - tg->se[cpu]->load.weight) >
1599 sysctl_sched_shares_thresh) {
1600 struct rq *rq = cpu_rq(cpu);
1601 unsigned long flags;
c09595f6 1602
ffda12a1 1603 spin_lock_irqsave(&rq->lock, flags);
34d76c41 1604 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1605 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1606 __set_se_shares(tg->se[cpu], shares);
1607 spin_unlock_irqrestore(&rq->lock, flags);
1608 }
18d95a28 1609}
c09595f6
PZ
1610
1611/*
c8cba857
PZ
1612 * Re-compute the task group their per cpu shares over the given domain.
1613 * This needs to be done in a bottom-up fashion because the rq weight of a
1614 * parent group depends on the shares of its child groups.
c09595f6 1615 */
eb755805 1616static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1617{
cd8ad40d 1618 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1619 unsigned long *usd_rq_weight;
eb755805 1620 struct sched_domain *sd = data;
34d76c41 1621 unsigned long flags;
c8cba857 1622 int i;
c09595f6 1623
34d76c41
PZ
1624 if (!tg->se[0])
1625 return 0;
1626
1627 local_irq_save(flags);
4a6cc4bd 1628 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1629
758b2cdc 1630 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1631 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1632 usd_rq_weight[i] = weight;
34d76c41 1633
cd8ad40d 1634 rq_weight += weight;
ec4e0e2f
KC
1635 /*
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1639 */
ec4e0e2f
KC
1640 if (!weight)
1641 weight = NICE_0_LOAD;
1642
cd8ad40d 1643 sum_weight += weight;
c8cba857 1644 shares += tg->cfs_rq[i]->shares;
c09595f6 1645 }
c09595f6 1646
cd8ad40d
PZ
1647 if (!rq_weight)
1648 rq_weight = sum_weight;
1649
c8cba857
PZ
1650 if ((!shares && rq_weight) || shares > tg->shares)
1651 shares = tg->shares;
1652
1653 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1654 shares = tg->shares;
c09595f6 1655
758b2cdc 1656 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1657 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1658
1659 local_irq_restore(flags);
eb755805
PZ
1660
1661 return 0;
c09595f6
PZ
1662}
1663
1664/*
c8cba857
PZ
1665 * Compute the cpu's hierarchical load factor for each task group.
1666 * This needs to be done in a top-down fashion because the load of a child
1667 * group is a fraction of its parents load.
c09595f6 1668 */
eb755805 1669static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1670{
c8cba857 1671 unsigned long load;
eb755805 1672 long cpu = (long)data;
c09595f6 1673
c8cba857
PZ
1674 if (!tg->parent) {
1675 load = cpu_rq(cpu)->load.weight;
1676 } else {
1677 load = tg->parent->cfs_rq[cpu]->h_load;
1678 load *= tg->cfs_rq[cpu]->shares;
1679 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1680 }
c09595f6 1681
c8cba857 1682 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1683
eb755805 1684 return 0;
c09595f6
PZ
1685}
1686
c8cba857 1687static void update_shares(struct sched_domain *sd)
4d8d595d 1688{
e7097159
PZ
1689 s64 elapsed;
1690 u64 now;
1691
1692 if (root_task_group_empty())
1693 return;
1694
1695 now = cpu_clock(raw_smp_processor_id());
1696 elapsed = now - sd->last_update;
2398f2c6
PZ
1697
1698 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1699 sd->last_update = now;
eb755805 1700 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1701 }
4d8d595d
PZ
1702}
1703
3e5459b4
PZ
1704static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1705{
e7097159
PZ
1706 if (root_task_group_empty())
1707 return;
1708
3e5459b4
PZ
1709 spin_unlock(&rq->lock);
1710 update_shares(sd);
1711 spin_lock(&rq->lock);
1712}
1713
eb755805 1714static void update_h_load(long cpu)
c09595f6 1715{
e7097159
PZ
1716 if (root_task_group_empty())
1717 return;
1718
eb755805 1719 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1720}
1721
c09595f6
PZ
1722#else
1723
c8cba857 1724static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1725{
1726}
1727
3e5459b4
PZ
1728static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1729{
1730}
1731
18d95a28
PZ
1732#endif
1733
8f45e2b5
GH
1734#ifdef CONFIG_PREEMPT
1735
b78bb868
PZ
1736static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1737
70574a99 1738/*
8f45e2b5
GH
1739 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1740 * way at the expense of forcing extra atomic operations in all
1741 * invocations. This assures that the double_lock is acquired using the
1742 * same underlying policy as the spinlock_t on this architecture, which
1743 * reduces latency compared to the unfair variant below. However, it
1744 * also adds more overhead and therefore may reduce throughput.
70574a99 1745 */
8f45e2b5
GH
1746static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1747 __releases(this_rq->lock)
1748 __acquires(busiest->lock)
1749 __acquires(this_rq->lock)
1750{
1751 spin_unlock(&this_rq->lock);
1752 double_rq_lock(this_rq, busiest);
1753
1754 return 1;
1755}
1756
1757#else
1758/*
1759 * Unfair double_lock_balance: Optimizes throughput at the expense of
1760 * latency by eliminating extra atomic operations when the locks are
1761 * already in proper order on entry. This favors lower cpu-ids and will
1762 * grant the double lock to lower cpus over higher ids under contention,
1763 * regardless of entry order into the function.
1764 */
1765static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1766 __releases(this_rq->lock)
1767 __acquires(busiest->lock)
1768 __acquires(this_rq->lock)
1769{
1770 int ret = 0;
1771
70574a99
AD
1772 if (unlikely(!spin_trylock(&busiest->lock))) {
1773 if (busiest < this_rq) {
1774 spin_unlock(&this_rq->lock);
1775 spin_lock(&busiest->lock);
1776 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1777 ret = 1;
1778 } else
1779 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1780 }
1781 return ret;
1782}
1783
8f45e2b5
GH
1784#endif /* CONFIG_PREEMPT */
1785
1786/*
1787 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1788 */
1789static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1790{
1791 if (unlikely(!irqs_disabled())) {
1792 /* printk() doesn't work good under rq->lock */
1793 spin_unlock(&this_rq->lock);
1794 BUG_ON(1);
1795 }
1796
1797 return _double_lock_balance(this_rq, busiest);
1798}
1799
70574a99
AD
1800static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1801 __releases(busiest->lock)
1802{
1803 spin_unlock(&busiest->lock);
1804 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1805}
18d95a28
PZ
1806#endif
1807
30432094 1808#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1809static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1810{
30432094 1811#ifdef CONFIG_SMP
34e83e85
IM
1812 cfs_rq->shares = shares;
1813#endif
1814}
30432094 1815#endif
e7693a36 1816
dce48a84 1817static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1818static void update_sysctl(void);
acb4a848 1819static int get_update_sysctl_factor(void);
dce48a84 1820
cd29fe6f
PZ
1821static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1822{
1823 set_task_rq(p, cpu);
1824#ifdef CONFIG_SMP
1825 /*
1826 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1827 * successfuly executed on another CPU. We must ensure that updates of
1828 * per-task data have been completed by this moment.
1829 */
1830 smp_wmb();
1831 task_thread_info(p)->cpu = cpu;
1832#endif
1833}
1834
dd41f596 1835#include "sched_stats.h"
dd41f596 1836#include "sched_idletask.c"
5522d5d5
IM
1837#include "sched_fair.c"
1838#include "sched_rt.c"
dd41f596
IM
1839#ifdef CONFIG_SCHED_DEBUG
1840# include "sched_debug.c"
1841#endif
1842
1843#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1844#define for_each_class(class) \
1845 for (class = sched_class_highest; class; class = class->next)
dd41f596 1846
c09595f6 1847static void inc_nr_running(struct rq *rq)
9c217245
IM
1848{
1849 rq->nr_running++;
9c217245
IM
1850}
1851
c09595f6 1852static void dec_nr_running(struct rq *rq)
9c217245
IM
1853{
1854 rq->nr_running--;
9c217245
IM
1855}
1856
45bf76df
IM
1857static void set_load_weight(struct task_struct *p)
1858{
1859 if (task_has_rt_policy(p)) {
dd41f596
IM
1860 p->se.load.weight = prio_to_weight[0] * 2;
1861 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1862 return;
1863 }
45bf76df 1864
dd41f596
IM
1865 /*
1866 * SCHED_IDLE tasks get minimal weight:
1867 */
1868 if (p->policy == SCHED_IDLE) {
1869 p->se.load.weight = WEIGHT_IDLEPRIO;
1870 p->se.load.inv_weight = WMULT_IDLEPRIO;
1871 return;
1872 }
71f8bd46 1873
dd41f596
IM
1874 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1875 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1876}
1877
2087a1ad
GH
1878static void update_avg(u64 *avg, u64 sample)
1879{
1880 s64 diff = sample - *avg;
1881 *avg += diff >> 3;
1882}
1883
8159f87e 1884static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1885{
831451ac
PZ
1886 if (wakeup)
1887 p->se.start_runtime = p->se.sum_exec_runtime;
1888
dd41f596 1889 sched_info_queued(p);
fd390f6a 1890 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1891 p->se.on_rq = 1;
71f8bd46
IM
1892}
1893
69be72c1 1894static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1895{
831451ac
PZ
1896 if (sleep) {
1897 if (p->se.last_wakeup) {
1898 update_avg(&p->se.avg_overlap,
1899 p->se.sum_exec_runtime - p->se.last_wakeup);
1900 p->se.last_wakeup = 0;
1901 } else {
1902 update_avg(&p->se.avg_wakeup,
1903 sysctl_sched_wakeup_granularity);
1904 }
2087a1ad
GH
1905 }
1906
46ac22ba 1907 sched_info_dequeued(p);
f02231e5 1908 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1909 p->se.on_rq = 0;
71f8bd46
IM
1910}
1911
14531189 1912/*
dd41f596 1913 * __normal_prio - return the priority that is based on the static prio
14531189 1914 */
14531189
IM
1915static inline int __normal_prio(struct task_struct *p)
1916{
dd41f596 1917 return p->static_prio;
14531189
IM
1918}
1919
b29739f9
IM
1920/*
1921 * Calculate the expected normal priority: i.e. priority
1922 * without taking RT-inheritance into account. Might be
1923 * boosted by interactivity modifiers. Changes upon fork,
1924 * setprio syscalls, and whenever the interactivity
1925 * estimator recalculates.
1926 */
36c8b586 1927static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1928{
1929 int prio;
1930
e05606d3 1931 if (task_has_rt_policy(p))
b29739f9
IM
1932 prio = MAX_RT_PRIO-1 - p->rt_priority;
1933 else
1934 prio = __normal_prio(p);
1935 return prio;
1936}
1937
1938/*
1939 * Calculate the current priority, i.e. the priority
1940 * taken into account by the scheduler. This value might
1941 * be boosted by RT tasks, or might be boosted by
1942 * interactivity modifiers. Will be RT if the task got
1943 * RT-boosted. If not then it returns p->normal_prio.
1944 */
36c8b586 1945static int effective_prio(struct task_struct *p)
b29739f9
IM
1946{
1947 p->normal_prio = normal_prio(p);
1948 /*
1949 * If we are RT tasks or we were boosted to RT priority,
1950 * keep the priority unchanged. Otherwise, update priority
1951 * to the normal priority:
1952 */
1953 if (!rt_prio(p->prio))
1954 return p->normal_prio;
1955 return p->prio;
1956}
1957
1da177e4 1958/*
dd41f596 1959 * activate_task - move a task to the runqueue.
1da177e4 1960 */
dd41f596 1961static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1962{
d9514f6c 1963 if (task_contributes_to_load(p))
dd41f596 1964 rq->nr_uninterruptible--;
1da177e4 1965
8159f87e 1966 enqueue_task(rq, p, wakeup);
c09595f6 1967 inc_nr_running(rq);
1da177e4
LT
1968}
1969
1da177e4
LT
1970/*
1971 * deactivate_task - remove a task from the runqueue.
1972 */
2e1cb74a 1973static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1974{
d9514f6c 1975 if (task_contributes_to_load(p))
dd41f596
IM
1976 rq->nr_uninterruptible++;
1977
69be72c1 1978 dequeue_task(rq, p, sleep);
c09595f6 1979 dec_nr_running(rq);
1da177e4
LT
1980}
1981
1da177e4
LT
1982/**
1983 * task_curr - is this task currently executing on a CPU?
1984 * @p: the task in question.
1985 */
36c8b586 1986inline int task_curr(const struct task_struct *p)
1da177e4
LT
1987{
1988 return cpu_curr(task_cpu(p)) == p;
1989}
1990
cb469845
SR
1991static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1992 const struct sched_class *prev_class,
1993 int oldprio, int running)
1994{
1995 if (prev_class != p->sched_class) {
1996 if (prev_class->switched_from)
1997 prev_class->switched_from(rq, p, running);
1998 p->sched_class->switched_to(rq, p, running);
1999 } else
2000 p->sched_class->prio_changed(rq, p, oldprio, running);
2001}
2002
b84ff7d6
MG
2003/**
2004 * kthread_bind - bind a just-created kthread to a cpu.
968c8645 2005 * @p: thread created by kthread_create().
b84ff7d6
MG
2006 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2007 *
2008 * Description: This function is equivalent to set_cpus_allowed(),
2009 * except that @cpu doesn't need to be online, and the thread must be
2010 * stopped (i.e., just returned from kthread_create()).
2011 *
2012 * Function lives here instead of kthread.c because it messes with
2013 * scheduler internals which require locking.
2014 */
2015void kthread_bind(struct task_struct *p, unsigned int cpu)
2016{
2017 struct rq *rq = cpu_rq(cpu);
2018 unsigned long flags;
2019
2020 /* Must have done schedule() in kthread() before we set_task_cpu */
2021 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2022 WARN_ON(1);
2023 return;
2024 }
2025
2026 spin_lock_irqsave(&rq->lock, flags);
055a0086 2027 update_rq_clock(rq);
b84ff7d6
MG
2028 set_task_cpu(p, cpu);
2029 p->cpus_allowed = cpumask_of_cpu(cpu);
2030 p->rt.nr_cpus_allowed = 1;
2031 p->flags |= PF_THREAD_BOUND;
2032 spin_unlock_irqrestore(&rq->lock, flags);
2033}
2034EXPORT_SYMBOL(kthread_bind);
2035
1da177e4 2036#ifdef CONFIG_SMP
cc367732
IM
2037/*
2038 * Is this task likely cache-hot:
2039 */
e7693a36 2040static int
cc367732
IM
2041task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2042{
2043 s64 delta;
2044
f540a608
IM
2045 /*
2046 * Buddy candidates are cache hot:
2047 */
f685ceac 2048 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2049 (&p->se == cfs_rq_of(&p->se)->next ||
2050 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2051 return 1;
2052
cc367732
IM
2053 if (p->sched_class != &fair_sched_class)
2054 return 0;
2055
6bc1665b
IM
2056 if (sysctl_sched_migration_cost == -1)
2057 return 1;
2058 if (sysctl_sched_migration_cost == 0)
2059 return 0;
2060
cc367732
IM
2061 delta = now - p->se.exec_start;
2062
2063 return delta < (s64)sysctl_sched_migration_cost;
2064}
2065
2066
dd41f596 2067void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2068{
dd41f596 2069 int old_cpu = task_cpu(p);
5afcdab7 2070 struct rq *old_rq = cpu_rq(old_cpu);
2830cf8c
SV
2071 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2072 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
6cfb0d5d 2073
de1d7286 2074 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2075
cc367732 2076 if (old_cpu != new_cpu) {
6c594c21
IM
2077 p->se.nr_migrations++;
2078#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2079 if (task_hot(p, old_rq->clock, NULL))
2080 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2081#endif
cdd6c482 2082 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
e5289d4a 2083 1, 1, NULL, 0);
6c594c21 2084 }
2830cf8c
SV
2085 p->se.vruntime -= old_cfsrq->min_vruntime -
2086 new_cfsrq->min_vruntime;
dd41f596
IM
2087
2088 __set_task_cpu(p, new_cpu);
c65cc870
IM
2089}
2090
70b97a7f 2091struct migration_req {
1da177e4 2092 struct list_head list;
1da177e4 2093
36c8b586 2094 struct task_struct *task;
1da177e4
LT
2095 int dest_cpu;
2096
1da177e4 2097 struct completion done;
70b97a7f 2098};
1da177e4
LT
2099
2100/*
2101 * The task's runqueue lock must be held.
2102 * Returns true if you have to wait for migration thread.
2103 */
36c8b586 2104static int
70b97a7f 2105migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2106{
70b97a7f 2107 struct rq *rq = task_rq(p);
1da177e4
LT
2108
2109 /*
2110 * If the task is not on a runqueue (and not running), then
2111 * it is sufficient to simply update the task's cpu field.
2112 */
dd41f596 2113 if (!p->se.on_rq && !task_running(rq, p)) {
055a0086 2114 update_rq_clock(rq);
1da177e4
LT
2115 set_task_cpu(p, dest_cpu);
2116 return 0;
2117 }
2118
2119 init_completion(&req->done);
1da177e4
LT
2120 req->task = p;
2121 req->dest_cpu = dest_cpu;
2122 list_add(&req->list, &rq->migration_queue);
48f24c4d 2123
1da177e4
LT
2124 return 1;
2125}
2126
a26b89f0
MM
2127/*
2128 * wait_task_context_switch - wait for a thread to complete at least one
2129 * context switch.
2130 *
2131 * @p must not be current.
2132 */
2133void wait_task_context_switch(struct task_struct *p)
2134{
2135 unsigned long nvcsw, nivcsw, flags;
2136 int running;
2137 struct rq *rq;
2138
2139 nvcsw = p->nvcsw;
2140 nivcsw = p->nivcsw;
2141 for (;;) {
2142 /*
2143 * The runqueue is assigned before the actual context
2144 * switch. We need to take the runqueue lock.
2145 *
2146 * We could check initially without the lock but it is
2147 * very likely that we need to take the lock in every
2148 * iteration.
2149 */
2150 rq = task_rq_lock(p, &flags);
2151 running = task_running(rq, p);
2152 task_rq_unlock(rq, &flags);
2153
2154 if (likely(!running))
2155 break;
2156 /*
2157 * The switch count is incremented before the actual
2158 * context switch. We thus wait for two switches to be
2159 * sure at least one completed.
2160 */
2161 if ((p->nvcsw - nvcsw) > 1)
2162 break;
2163 if ((p->nivcsw - nivcsw) > 1)
2164 break;
2165
2166 cpu_relax();
2167 }
2168}
2169
1da177e4
LT
2170/*
2171 * wait_task_inactive - wait for a thread to unschedule.
2172 *
85ba2d86
RM
2173 * If @match_state is nonzero, it's the @p->state value just checked and
2174 * not expected to change. If it changes, i.e. @p might have woken up,
2175 * then return zero. When we succeed in waiting for @p to be off its CPU,
2176 * we return a positive number (its total switch count). If a second call
2177 * a short while later returns the same number, the caller can be sure that
2178 * @p has remained unscheduled the whole time.
2179 *
1da177e4
LT
2180 * The caller must ensure that the task *will* unschedule sometime soon,
2181 * else this function might spin for a *long* time. This function can't
2182 * be called with interrupts off, or it may introduce deadlock with
2183 * smp_call_function() if an IPI is sent by the same process we are
2184 * waiting to become inactive.
2185 */
85ba2d86 2186unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2187{
2188 unsigned long flags;
dd41f596 2189 int running, on_rq;
85ba2d86 2190 unsigned long ncsw;
70b97a7f 2191 struct rq *rq;
1da177e4 2192
3a5c359a
AK
2193 for (;;) {
2194 /*
2195 * We do the initial early heuristics without holding
2196 * any task-queue locks at all. We'll only try to get
2197 * the runqueue lock when things look like they will
2198 * work out!
2199 */
2200 rq = task_rq(p);
fa490cfd 2201
3a5c359a
AK
2202 /*
2203 * If the task is actively running on another CPU
2204 * still, just relax and busy-wait without holding
2205 * any locks.
2206 *
2207 * NOTE! Since we don't hold any locks, it's not
2208 * even sure that "rq" stays as the right runqueue!
2209 * But we don't care, since "task_running()" will
2210 * return false if the runqueue has changed and p
2211 * is actually now running somewhere else!
2212 */
85ba2d86
RM
2213 while (task_running(rq, p)) {
2214 if (match_state && unlikely(p->state != match_state))
2215 return 0;
3a5c359a 2216 cpu_relax();
85ba2d86 2217 }
fa490cfd 2218
3a5c359a
AK
2219 /*
2220 * Ok, time to look more closely! We need the rq
2221 * lock now, to be *sure*. If we're wrong, we'll
2222 * just go back and repeat.
2223 */
2224 rq = task_rq_lock(p, &flags);
0a16b607 2225 trace_sched_wait_task(rq, p);
3a5c359a
AK
2226 running = task_running(rq, p);
2227 on_rq = p->se.on_rq;
85ba2d86 2228 ncsw = 0;
f31e11d8 2229 if (!match_state || p->state == match_state)
93dcf55f 2230 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2231 task_rq_unlock(rq, &flags);
fa490cfd 2232
85ba2d86
RM
2233 /*
2234 * If it changed from the expected state, bail out now.
2235 */
2236 if (unlikely(!ncsw))
2237 break;
2238
3a5c359a
AK
2239 /*
2240 * Was it really running after all now that we
2241 * checked with the proper locks actually held?
2242 *
2243 * Oops. Go back and try again..
2244 */
2245 if (unlikely(running)) {
2246 cpu_relax();
2247 continue;
2248 }
fa490cfd 2249
3a5c359a
AK
2250 /*
2251 * It's not enough that it's not actively running,
2252 * it must be off the runqueue _entirely_, and not
2253 * preempted!
2254 *
80dd99b3 2255 * So if it was still runnable (but just not actively
3a5c359a
AK
2256 * running right now), it's preempted, and we should
2257 * yield - it could be a while.
2258 */
2259 if (unlikely(on_rq)) {
2260 schedule_timeout_uninterruptible(1);
2261 continue;
2262 }
fa490cfd 2263
3a5c359a
AK
2264 /*
2265 * Ahh, all good. It wasn't running, and it wasn't
2266 * runnable, which means that it will never become
2267 * running in the future either. We're all done!
2268 */
2269 break;
2270 }
85ba2d86
RM
2271
2272 return ncsw;
1da177e4
LT
2273}
2274
2275/***
2276 * kick_process - kick a running thread to enter/exit the kernel
2277 * @p: the to-be-kicked thread
2278 *
2279 * Cause a process which is running on another CPU to enter
2280 * kernel-mode, without any delay. (to get signals handled.)
2281 *
2282 * NOTE: this function doesnt have to take the runqueue lock,
2283 * because all it wants to ensure is that the remote task enters
2284 * the kernel. If the IPI races and the task has been migrated
2285 * to another CPU then no harm is done and the purpose has been
2286 * achieved as well.
2287 */
36c8b586 2288void kick_process(struct task_struct *p)
1da177e4
LT
2289{
2290 int cpu;
2291
2292 preempt_disable();
2293 cpu = task_cpu(p);
2294 if ((cpu != smp_processor_id()) && task_curr(p))
2295 smp_send_reschedule(cpu);
2296 preempt_enable();
2297}
b43e3521 2298EXPORT_SYMBOL_GPL(kick_process);
476d139c 2299#endif /* CONFIG_SMP */
1da177e4 2300
0793a61d
TG
2301/**
2302 * task_oncpu_function_call - call a function on the cpu on which a task runs
2303 * @p: the task to evaluate
2304 * @func: the function to be called
2305 * @info: the function call argument
2306 *
2307 * Calls the function @func when the task is currently running. This might
2308 * be on the current CPU, which just calls the function directly
2309 */
2310void task_oncpu_function_call(struct task_struct *p,
2311 void (*func) (void *info), void *info)
2312{
2313 int cpu;
2314
2315 preempt_disable();
2316 cpu = task_cpu(p);
2317 if (task_curr(p))
2318 smp_call_function_single(cpu, func, info, 1);
2319 preempt_enable();
2320}
2321
970b13ba
PZ
2322#ifdef CONFIG_SMP
2323static inline
2324int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2325{
2326 return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2327}
2328#endif
2329
1da177e4
LT
2330/***
2331 * try_to_wake_up - wake up a thread
2332 * @p: the to-be-woken-up thread
2333 * @state: the mask of task states that can be woken
2334 * @sync: do a synchronous wakeup?
2335 *
2336 * Put it on the run-queue if it's not already there. The "current"
2337 * thread is always on the run-queue (except when the actual
2338 * re-schedule is in progress), and as such you're allowed to do
2339 * the simpler "current->state = TASK_RUNNING" to mark yourself
2340 * runnable without the overhead of this.
2341 *
2342 * returns failure only if the task is already active.
2343 */
7d478721
PZ
2344static int try_to_wake_up(struct task_struct *p, unsigned int state,
2345 int wake_flags)
1da177e4 2346{
cc367732 2347 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2348 unsigned long flags;
f5dc3753 2349 struct rq *rq, *orig_rq;
1da177e4 2350
b85d0667 2351 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2352 wake_flags &= ~WF_SYNC;
2398f2c6 2353
e9c84311 2354 this_cpu = get_cpu();
2398f2c6 2355
04e2f174 2356 smp_wmb();
f5dc3753 2357 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2358 update_rq_clock(rq);
e9c84311 2359 if (!(p->state & state))
1da177e4
LT
2360 goto out;
2361
dd41f596 2362 if (p->se.on_rq)
1da177e4
LT
2363 goto out_running;
2364
2365 cpu = task_cpu(p);
cc367732 2366 orig_cpu = cpu;
1da177e4
LT
2367
2368#ifdef CONFIG_SMP
2369 if (unlikely(task_running(rq, p)))
2370 goto out_activate;
2371
e9c84311
PZ
2372 /*
2373 * In order to handle concurrent wakeups and release the rq->lock
2374 * we put the task in TASK_WAKING state.
eb24073b
IM
2375 *
2376 * First fix up the nr_uninterruptible count:
e9c84311 2377 */
eb24073b
IM
2378 if (task_contributes_to_load(p))
2379 rq->nr_uninterruptible--;
e9c84311 2380 p->state = TASK_WAKING;
ab19cb23 2381 __task_rq_unlock(rq);
e9c84311 2382
970b13ba 2383 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
ab19cb23 2384 if (cpu != orig_cpu)
5d2f5a61 2385 set_task_cpu(p, cpu);
ab19cb23
PZ
2386
2387 rq = __task_rq_lock(p);
2388 update_rq_clock(rq);
f5dc3753 2389
e9c84311
PZ
2390 WARN_ON(p->state != TASK_WAKING);
2391 cpu = task_cpu(p);
1da177e4 2392
e7693a36
GH
2393#ifdef CONFIG_SCHEDSTATS
2394 schedstat_inc(rq, ttwu_count);
2395 if (cpu == this_cpu)
2396 schedstat_inc(rq, ttwu_local);
2397 else {
2398 struct sched_domain *sd;
2399 for_each_domain(this_cpu, sd) {
758b2cdc 2400 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2401 schedstat_inc(sd, ttwu_wake_remote);
2402 break;
2403 }
2404 }
2405 }
6d6bc0ad 2406#endif /* CONFIG_SCHEDSTATS */
e7693a36 2407
1da177e4
LT
2408out_activate:
2409#endif /* CONFIG_SMP */
cc367732 2410 schedstat_inc(p, se.nr_wakeups);
7d478721 2411 if (wake_flags & WF_SYNC)
cc367732
IM
2412 schedstat_inc(p, se.nr_wakeups_sync);
2413 if (orig_cpu != cpu)
2414 schedstat_inc(p, se.nr_wakeups_migrate);
2415 if (cpu == this_cpu)
2416 schedstat_inc(p, se.nr_wakeups_local);
2417 else
2418 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2419 activate_task(rq, p, 1);
1da177e4
LT
2420 success = 1;
2421
831451ac
PZ
2422 /*
2423 * Only attribute actual wakeups done by this task.
2424 */
2425 if (!in_interrupt()) {
2426 struct sched_entity *se = &current->se;
2427 u64 sample = se->sum_exec_runtime;
2428
2429 if (se->last_wakeup)
2430 sample -= se->last_wakeup;
2431 else
2432 sample -= se->start_runtime;
2433 update_avg(&se->avg_wakeup, sample);
2434
2435 se->last_wakeup = se->sum_exec_runtime;
2436 }
2437
1da177e4 2438out_running:
468a15bb 2439 trace_sched_wakeup(rq, p, success);
7d478721 2440 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2441
1da177e4 2442 p->state = TASK_RUNNING;
9a897c5a
SR
2443#ifdef CONFIG_SMP
2444 if (p->sched_class->task_wake_up)
2445 p->sched_class->task_wake_up(rq, p);
eae0c9df
MG
2446
2447 if (unlikely(rq->idle_stamp)) {
2448 u64 delta = rq->clock - rq->idle_stamp;
2449 u64 max = 2*sysctl_sched_migration_cost;
2450
2451 if (delta > max)
2452 rq->avg_idle = max;
2453 else
2454 update_avg(&rq->avg_idle, delta);
2455 rq->idle_stamp = 0;
2456 }
9a897c5a 2457#endif
1da177e4
LT
2458out:
2459 task_rq_unlock(rq, &flags);
e9c84311 2460 put_cpu();
1da177e4
LT
2461
2462 return success;
2463}
2464
50fa610a
DH
2465/**
2466 * wake_up_process - Wake up a specific process
2467 * @p: The process to be woken up.
2468 *
2469 * Attempt to wake up the nominated process and move it to the set of runnable
2470 * processes. Returns 1 if the process was woken up, 0 if it was already
2471 * running.
2472 *
2473 * It may be assumed that this function implies a write memory barrier before
2474 * changing the task state if and only if any tasks are woken up.
2475 */
7ad5b3a5 2476int wake_up_process(struct task_struct *p)
1da177e4 2477{
d9514f6c 2478 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2479}
1da177e4
LT
2480EXPORT_SYMBOL(wake_up_process);
2481
7ad5b3a5 2482int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2483{
2484 return try_to_wake_up(p, state, 0);
2485}
2486
1da177e4
LT
2487/*
2488 * Perform scheduler related setup for a newly forked process p.
2489 * p is forked by current.
dd41f596
IM
2490 *
2491 * __sched_fork() is basic setup used by init_idle() too:
2492 */
2493static void __sched_fork(struct task_struct *p)
2494{
dd41f596
IM
2495 p->se.exec_start = 0;
2496 p->se.sum_exec_runtime = 0;
f6cf891c 2497 p->se.prev_sum_exec_runtime = 0;
6c594c21 2498 p->se.nr_migrations = 0;
4ae7d5ce
IM
2499 p->se.last_wakeup = 0;
2500 p->se.avg_overlap = 0;
831451ac
PZ
2501 p->se.start_runtime = 0;
2502 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2503
2504#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2505 p->se.wait_start = 0;
2506 p->se.wait_max = 0;
2507 p->se.wait_count = 0;
2508 p->se.wait_sum = 0;
2509
2510 p->se.sleep_start = 0;
2511 p->se.sleep_max = 0;
2512 p->se.sum_sleep_runtime = 0;
2513
2514 p->se.block_start = 0;
2515 p->se.block_max = 0;
2516 p->se.exec_max = 0;
2517 p->se.slice_max = 0;
2518
2519 p->se.nr_migrations_cold = 0;
2520 p->se.nr_failed_migrations_affine = 0;
2521 p->se.nr_failed_migrations_running = 0;
2522 p->se.nr_failed_migrations_hot = 0;
2523 p->se.nr_forced_migrations = 0;
2524 p->se.nr_forced2_migrations = 0;
2525
2526 p->se.nr_wakeups = 0;
2527 p->se.nr_wakeups_sync = 0;
2528 p->se.nr_wakeups_migrate = 0;
2529 p->se.nr_wakeups_local = 0;
2530 p->se.nr_wakeups_remote = 0;
2531 p->se.nr_wakeups_affine = 0;
2532 p->se.nr_wakeups_affine_attempts = 0;
2533 p->se.nr_wakeups_passive = 0;
2534 p->se.nr_wakeups_idle = 0;
2535
6cfb0d5d 2536#endif
476d139c 2537
fa717060 2538 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2539 p->se.on_rq = 0;
4a55bd5e 2540 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2541
e107be36
AK
2542#ifdef CONFIG_PREEMPT_NOTIFIERS
2543 INIT_HLIST_HEAD(&p->preempt_notifiers);
2544#endif
2545
1da177e4
LT
2546 /*
2547 * We mark the process as running here, but have not actually
2548 * inserted it onto the runqueue yet. This guarantees that
2549 * nobody will actually run it, and a signal or other external
2550 * event cannot wake it up and insert it on the runqueue either.
2551 */
2552 p->state = TASK_RUNNING;
dd41f596
IM
2553}
2554
2555/*
2556 * fork()/clone()-time setup:
2557 */
2558void sched_fork(struct task_struct *p, int clone_flags)
2559{
2560 int cpu = get_cpu();
2561
2562 __sched_fork(p);
2563
b9dc29e7
MG
2564 /*
2565 * Revert to default priority/policy on fork if requested.
2566 */
2567 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2568 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2569 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2570 p->normal_prio = p->static_prio;
2571 }
b9dc29e7 2572
6c697bdf
MG
2573 if (PRIO_TO_NICE(p->static_prio) < 0) {
2574 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2575 p->normal_prio = p->static_prio;
6c697bdf
MG
2576 set_load_weight(p);
2577 }
2578
b9dc29e7
MG
2579 /*
2580 * We don't need the reset flag anymore after the fork. It has
2581 * fulfilled its duty:
2582 */
2583 p->sched_reset_on_fork = 0;
2584 }
ca94c442 2585
f83f9ac2
PW
2586 /*
2587 * Make sure we do not leak PI boosting priority to the child.
2588 */
2589 p->prio = current->normal_prio;
2590
2ddbf952
HS
2591 if (!rt_prio(p->prio))
2592 p->sched_class = &fair_sched_class;
b29739f9 2593
cd29fe6f
PZ
2594 if (p->sched_class->task_fork)
2595 p->sched_class->task_fork(p);
2596
5f3edc1b 2597#ifdef CONFIG_SMP
970b13ba 2598 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
5f3edc1b
PZ
2599#endif
2600 set_task_cpu(p, cpu);
2601
52f17b6c 2602#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2603 if (likely(sched_info_on()))
52f17b6c 2604 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2605#endif
d6077cb8 2606#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2607 p->oncpu = 0;
2608#endif
1da177e4 2609#ifdef CONFIG_PREEMPT
4866cde0 2610 /* Want to start with kernel preemption disabled. */
a1261f54 2611 task_thread_info(p)->preempt_count = 1;
1da177e4 2612#endif
917b627d
GH
2613 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2614
476d139c 2615 put_cpu();
1da177e4
LT
2616}
2617
2618/*
2619 * wake_up_new_task - wake up a newly created task for the first time.
2620 *
2621 * This function will do some initial scheduler statistics housekeeping
2622 * that must be done for every newly created context, then puts the task
2623 * on the runqueue and wakes it.
2624 */
7ad5b3a5 2625void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2626{
2627 unsigned long flags;
dd41f596 2628 struct rq *rq;
1da177e4
LT
2629
2630 rq = task_rq_lock(p, &flags);
147cbb4b 2631 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2632 update_rq_clock(rq);
cd29fe6f 2633 activate_task(rq, p, 0);
c71dd42d 2634 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2635 check_preempt_curr(rq, p, WF_FORK);
9a897c5a
SR
2636#ifdef CONFIG_SMP
2637 if (p->sched_class->task_wake_up)
2638 p->sched_class->task_wake_up(rq, p);
2639#endif
dd41f596 2640 task_rq_unlock(rq, &flags);
1da177e4
LT
2641}
2642
e107be36
AK
2643#ifdef CONFIG_PREEMPT_NOTIFIERS
2644
2645/**
80dd99b3 2646 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2647 * @notifier: notifier struct to register
e107be36
AK
2648 */
2649void preempt_notifier_register(struct preempt_notifier *notifier)
2650{
2651 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2652}
2653EXPORT_SYMBOL_GPL(preempt_notifier_register);
2654
2655/**
2656 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2657 * @notifier: notifier struct to unregister
e107be36
AK
2658 *
2659 * This is safe to call from within a preemption notifier.
2660 */
2661void preempt_notifier_unregister(struct preempt_notifier *notifier)
2662{
2663 hlist_del(&notifier->link);
2664}
2665EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2666
2667static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2668{
2669 struct preempt_notifier *notifier;
2670 struct hlist_node *node;
2671
2672 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2673 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2674}
2675
2676static void
2677fire_sched_out_preempt_notifiers(struct task_struct *curr,
2678 struct task_struct *next)
2679{
2680 struct preempt_notifier *notifier;
2681 struct hlist_node *node;
2682
2683 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2684 notifier->ops->sched_out(notifier, next);
2685}
2686
6d6bc0ad 2687#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2688
2689static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2690{
2691}
2692
2693static void
2694fire_sched_out_preempt_notifiers(struct task_struct *curr,
2695 struct task_struct *next)
2696{
2697}
2698
6d6bc0ad 2699#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2700
4866cde0
NP
2701/**
2702 * prepare_task_switch - prepare to switch tasks
2703 * @rq: the runqueue preparing to switch
421cee29 2704 * @prev: the current task that is being switched out
4866cde0
NP
2705 * @next: the task we are going to switch to.
2706 *
2707 * This is called with the rq lock held and interrupts off. It must
2708 * be paired with a subsequent finish_task_switch after the context
2709 * switch.
2710 *
2711 * prepare_task_switch sets up locking and calls architecture specific
2712 * hooks.
2713 */
e107be36
AK
2714static inline void
2715prepare_task_switch(struct rq *rq, struct task_struct *prev,
2716 struct task_struct *next)
4866cde0 2717{
e107be36 2718 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2719 prepare_lock_switch(rq, next);
2720 prepare_arch_switch(next);
2721}
2722
1da177e4
LT
2723/**
2724 * finish_task_switch - clean up after a task-switch
344babaa 2725 * @rq: runqueue associated with task-switch
1da177e4
LT
2726 * @prev: the thread we just switched away from.
2727 *
4866cde0
NP
2728 * finish_task_switch must be called after the context switch, paired
2729 * with a prepare_task_switch call before the context switch.
2730 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2731 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2732 *
2733 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2734 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2735 * with the lock held can cause deadlocks; see schedule() for
2736 * details.)
2737 */
a9957449 2738static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2739 __releases(rq->lock)
2740{
1da177e4 2741 struct mm_struct *mm = rq->prev_mm;
55a101f8 2742 long prev_state;
1da177e4
LT
2743
2744 rq->prev_mm = NULL;
2745
2746 /*
2747 * A task struct has one reference for the use as "current".
c394cc9f 2748 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2749 * schedule one last time. The schedule call will never return, and
2750 * the scheduled task must drop that reference.
c394cc9f 2751 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2752 * still held, otherwise prev could be scheduled on another cpu, die
2753 * there before we look at prev->state, and then the reference would
2754 * be dropped twice.
2755 * Manfred Spraul <manfred@colorfullife.com>
2756 */
55a101f8 2757 prev_state = prev->state;
4866cde0 2758 finish_arch_switch(prev);
cdd6c482 2759 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2760 finish_lock_switch(rq, prev);
e8fa1362 2761
e107be36 2762 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2763 if (mm)
2764 mmdrop(mm);
c394cc9f 2765 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2766 /*
2767 * Remove function-return probe instances associated with this
2768 * task and put them back on the free list.
9761eea8 2769 */
c6fd91f0 2770 kprobe_flush_task(prev);
1da177e4 2771 put_task_struct(prev);
c6fd91f0 2772 }
1da177e4
LT
2773}
2774
3f029d3c
GH
2775#ifdef CONFIG_SMP
2776
2777/* assumes rq->lock is held */
2778static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2779{
2780 if (prev->sched_class->pre_schedule)
2781 prev->sched_class->pre_schedule(rq, prev);
2782}
2783
2784/* rq->lock is NOT held, but preemption is disabled */
2785static inline void post_schedule(struct rq *rq)
2786{
2787 if (rq->post_schedule) {
2788 unsigned long flags;
2789
2790 spin_lock_irqsave(&rq->lock, flags);
2791 if (rq->curr->sched_class->post_schedule)
2792 rq->curr->sched_class->post_schedule(rq);
2793 spin_unlock_irqrestore(&rq->lock, flags);
2794
2795 rq->post_schedule = 0;
2796 }
2797}
2798
2799#else
da19ab51 2800
3f029d3c
GH
2801static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2802{
2803}
2804
2805static inline void post_schedule(struct rq *rq)
2806{
1da177e4
LT
2807}
2808
3f029d3c
GH
2809#endif
2810
1da177e4
LT
2811/**
2812 * schedule_tail - first thing a freshly forked thread must call.
2813 * @prev: the thread we just switched away from.
2814 */
36c8b586 2815asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2816 __releases(rq->lock)
2817{
70b97a7f
IM
2818 struct rq *rq = this_rq();
2819
4866cde0 2820 finish_task_switch(rq, prev);
da19ab51 2821
3f029d3c
GH
2822 /*
2823 * FIXME: do we need to worry about rq being invalidated by the
2824 * task_switch?
2825 */
2826 post_schedule(rq);
70b97a7f 2827
4866cde0
NP
2828#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2829 /* In this case, finish_task_switch does not reenable preemption */
2830 preempt_enable();
2831#endif
1da177e4 2832 if (current->set_child_tid)
b488893a 2833 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2834}
2835
2836/*
2837 * context_switch - switch to the new MM and the new
2838 * thread's register state.
2839 */
dd41f596 2840static inline void
70b97a7f 2841context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2842 struct task_struct *next)
1da177e4 2843{
dd41f596 2844 struct mm_struct *mm, *oldmm;
1da177e4 2845
e107be36 2846 prepare_task_switch(rq, prev, next);
0a16b607 2847 trace_sched_switch(rq, prev, next);
dd41f596
IM
2848 mm = next->mm;
2849 oldmm = prev->active_mm;
9226d125
ZA
2850 /*
2851 * For paravirt, this is coupled with an exit in switch_to to
2852 * combine the page table reload and the switch backend into
2853 * one hypercall.
2854 */
224101ed 2855 arch_start_context_switch(prev);
9226d125 2856
710390d9 2857 if (likely(!mm)) {
1da177e4
LT
2858 next->active_mm = oldmm;
2859 atomic_inc(&oldmm->mm_count);
2860 enter_lazy_tlb(oldmm, next);
2861 } else
2862 switch_mm(oldmm, mm, next);
2863
710390d9 2864 if (likely(!prev->mm)) {
1da177e4 2865 prev->active_mm = NULL;
1da177e4
LT
2866 rq->prev_mm = oldmm;
2867 }
3a5f5e48
IM
2868 /*
2869 * Since the runqueue lock will be released by the next
2870 * task (which is an invalid locking op but in the case
2871 * of the scheduler it's an obvious special-case), so we
2872 * do an early lockdep release here:
2873 */
2874#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2875 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2876#endif
1da177e4
LT
2877
2878 /* Here we just switch the register state and the stack. */
2879 switch_to(prev, next, prev);
2880
dd41f596
IM
2881 barrier();
2882 /*
2883 * this_rq must be evaluated again because prev may have moved
2884 * CPUs since it called schedule(), thus the 'rq' on its stack
2885 * frame will be invalid.
2886 */
2887 finish_task_switch(this_rq(), prev);
1da177e4
LT
2888}
2889
2890/*
2891 * nr_running, nr_uninterruptible and nr_context_switches:
2892 *
2893 * externally visible scheduler statistics: current number of runnable
2894 * threads, current number of uninterruptible-sleeping threads, total
2895 * number of context switches performed since bootup.
2896 */
2897unsigned long nr_running(void)
2898{
2899 unsigned long i, sum = 0;
2900
2901 for_each_online_cpu(i)
2902 sum += cpu_rq(i)->nr_running;
2903
2904 return sum;
2905}
2906
2907unsigned long nr_uninterruptible(void)
2908{
2909 unsigned long i, sum = 0;
2910
0a945022 2911 for_each_possible_cpu(i)
1da177e4
LT
2912 sum += cpu_rq(i)->nr_uninterruptible;
2913
2914 /*
2915 * Since we read the counters lockless, it might be slightly
2916 * inaccurate. Do not allow it to go below zero though:
2917 */
2918 if (unlikely((long)sum < 0))
2919 sum = 0;
2920
2921 return sum;
2922}
2923
2924unsigned long long nr_context_switches(void)
2925{
cc94abfc
SR
2926 int i;
2927 unsigned long long sum = 0;
1da177e4 2928
0a945022 2929 for_each_possible_cpu(i)
1da177e4
LT
2930 sum += cpu_rq(i)->nr_switches;
2931
2932 return sum;
2933}
2934
2935unsigned long nr_iowait(void)
2936{
2937 unsigned long i, sum = 0;
2938
0a945022 2939 for_each_possible_cpu(i)
1da177e4
LT
2940 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2941
2942 return sum;
2943}
2944
69d25870
AV
2945unsigned long nr_iowait_cpu(void)
2946{
2947 struct rq *this = this_rq();
2948 return atomic_read(&this->nr_iowait);
2949}
2950
2951unsigned long this_cpu_load(void)
2952{
2953 struct rq *this = this_rq();
2954 return this->cpu_load[0];
2955}
2956
2957
dce48a84
TG
2958/* Variables and functions for calc_load */
2959static atomic_long_t calc_load_tasks;
2960static unsigned long calc_load_update;
2961unsigned long avenrun[3];
2962EXPORT_SYMBOL(avenrun);
2963
2d02494f
TG
2964/**
2965 * get_avenrun - get the load average array
2966 * @loads: pointer to dest load array
2967 * @offset: offset to add
2968 * @shift: shift count to shift the result left
2969 *
2970 * These values are estimates at best, so no need for locking.
2971 */
2972void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2973{
2974 loads[0] = (avenrun[0] + offset) << shift;
2975 loads[1] = (avenrun[1] + offset) << shift;
2976 loads[2] = (avenrun[2] + offset) << shift;
2977}
2978
dce48a84
TG
2979static unsigned long
2980calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2981{
dce48a84
TG
2982 load *= exp;
2983 load += active * (FIXED_1 - exp);
2984 return load >> FSHIFT;
2985}
db1b1fef 2986
dce48a84
TG
2987/*
2988 * calc_load - update the avenrun load estimates 10 ticks after the
2989 * CPUs have updated calc_load_tasks.
2990 */
2991void calc_global_load(void)
2992{
2993 unsigned long upd = calc_load_update + 10;
2994 long active;
2995
2996 if (time_before(jiffies, upd))
2997 return;
db1b1fef 2998
dce48a84
TG
2999 active = atomic_long_read(&calc_load_tasks);
3000 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3001
dce48a84
TG
3002 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3003 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3004 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3005
3006 calc_load_update += LOAD_FREQ;
3007}
3008
3009/*
3010 * Either called from update_cpu_load() or from a cpu going idle
3011 */
3012static void calc_load_account_active(struct rq *this_rq)
3013{
3014 long nr_active, delta;
3015
3016 nr_active = this_rq->nr_running;
3017 nr_active += (long) this_rq->nr_uninterruptible;
3018
3019 if (nr_active != this_rq->calc_load_active) {
3020 delta = nr_active - this_rq->calc_load_active;
3021 this_rq->calc_load_active = nr_active;
3022 atomic_long_add(delta, &calc_load_tasks);
3023 }
db1b1fef
JS
3024}
3025
48f24c4d 3026/*
dd41f596
IM
3027 * Update rq->cpu_load[] statistics. This function is usually called every
3028 * scheduler tick (TICK_NSEC).
48f24c4d 3029 */
dd41f596 3030static void update_cpu_load(struct rq *this_rq)
48f24c4d 3031{
495eca49 3032 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3033 int i, scale;
3034
3035 this_rq->nr_load_updates++;
dd41f596
IM
3036
3037 /* Update our load: */
3038 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3039 unsigned long old_load, new_load;
3040
3041 /* scale is effectively 1 << i now, and >> i divides by scale */
3042
3043 old_load = this_rq->cpu_load[i];
3044 new_load = this_load;
a25707f3
IM
3045 /*
3046 * Round up the averaging division if load is increasing. This
3047 * prevents us from getting stuck on 9 if the load is 10, for
3048 * example.
3049 */
3050 if (new_load > old_load)
3051 new_load += scale-1;
dd41f596
IM
3052 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3053 }
dce48a84
TG
3054
3055 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3056 this_rq->calc_load_update += LOAD_FREQ;
3057 calc_load_account_active(this_rq);
3058 }
48f24c4d
IM
3059}
3060
dd41f596
IM
3061#ifdef CONFIG_SMP
3062
1da177e4
LT
3063/*
3064 * double_rq_lock - safely lock two runqueues
3065 *
3066 * Note this does not disable interrupts like task_rq_lock,
3067 * you need to do so manually before calling.
3068 */
70b97a7f 3069static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3070 __acquires(rq1->lock)
3071 __acquires(rq2->lock)
3072{
054b9108 3073 BUG_ON(!irqs_disabled());
1da177e4
LT
3074 if (rq1 == rq2) {
3075 spin_lock(&rq1->lock);
3076 __acquire(rq2->lock); /* Fake it out ;) */
3077 } else {
c96d145e 3078 if (rq1 < rq2) {
1da177e4 3079 spin_lock(&rq1->lock);
5e710e37 3080 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3081 } else {
3082 spin_lock(&rq2->lock);
5e710e37 3083 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3084 }
3085 }
6e82a3be
IM
3086 update_rq_clock(rq1);
3087 update_rq_clock(rq2);
1da177e4
LT
3088}
3089
3090/*
3091 * double_rq_unlock - safely unlock two runqueues
3092 *
3093 * Note this does not restore interrupts like task_rq_unlock,
3094 * you need to do so manually after calling.
3095 */
70b97a7f 3096static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3097 __releases(rq1->lock)
3098 __releases(rq2->lock)
3099{
3100 spin_unlock(&rq1->lock);
3101 if (rq1 != rq2)
3102 spin_unlock(&rq2->lock);
3103 else
3104 __release(rq2->lock);
3105}
3106
1da177e4
LT
3107/*
3108 * If dest_cpu is allowed for this process, migrate the task to it.
3109 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3110 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3111 * the cpu_allowed mask is restored.
3112 */
36c8b586 3113static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3114{
70b97a7f 3115 struct migration_req req;
1da177e4 3116 unsigned long flags;
70b97a7f 3117 struct rq *rq;
1da177e4
LT
3118
3119 rq = task_rq_lock(p, &flags);
96f874e2 3120 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3121 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3122 goto out;
3123
3124 /* force the process onto the specified CPU */
3125 if (migrate_task(p, dest_cpu, &req)) {
3126 /* Need to wait for migration thread (might exit: take ref). */
3127 struct task_struct *mt = rq->migration_thread;
36c8b586 3128
1da177e4
LT
3129 get_task_struct(mt);
3130 task_rq_unlock(rq, &flags);
3131 wake_up_process(mt);
3132 put_task_struct(mt);
3133 wait_for_completion(&req.done);
36c8b586 3134
1da177e4
LT
3135 return;
3136 }
3137out:
3138 task_rq_unlock(rq, &flags);
3139}
3140
3141/*
476d139c
NP
3142 * sched_exec - execve() is a valuable balancing opportunity, because at
3143 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3144 */
3145void sched_exec(void)
3146{
1da177e4 3147 int new_cpu, this_cpu = get_cpu();
970b13ba 3148 new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
1da177e4 3149 put_cpu();
476d139c
NP
3150 if (new_cpu != this_cpu)
3151 sched_migrate_task(current, new_cpu);
1da177e4
LT
3152}
3153
3154/*
3155 * pull_task - move a task from a remote runqueue to the local runqueue.
3156 * Both runqueues must be locked.
3157 */
dd41f596
IM
3158static void pull_task(struct rq *src_rq, struct task_struct *p,
3159 struct rq *this_rq, int this_cpu)
1da177e4 3160{
2e1cb74a 3161 deactivate_task(src_rq, p, 0);
1da177e4 3162 set_task_cpu(p, this_cpu);
dd41f596 3163 activate_task(this_rq, p, 0);
15afe09b 3164 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3165}
3166
3167/*
3168 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3169 */
858119e1 3170static
70b97a7f 3171int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3172 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3173 int *all_pinned)
1da177e4 3174{
708dc512 3175 int tsk_cache_hot = 0;
1da177e4
LT
3176 /*
3177 * We do not migrate tasks that are:
3178 * 1) running (obviously), or
3179 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3180 * 3) are cache-hot on their current CPU.
3181 */
96f874e2 3182 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3183 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3184 return 0;
cc367732 3185 }
81026794
NP
3186 *all_pinned = 0;
3187
cc367732
IM
3188 if (task_running(rq, p)) {
3189 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3190 return 0;
cc367732 3191 }
1da177e4 3192
da84d961
IM
3193 /*
3194 * Aggressive migration if:
3195 * 1) task is cache cold, or
3196 * 2) too many balance attempts have failed.
3197 */
3198
708dc512
LH
3199 tsk_cache_hot = task_hot(p, rq->clock, sd);
3200 if (!tsk_cache_hot ||
3201 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3202#ifdef CONFIG_SCHEDSTATS
708dc512 3203 if (tsk_cache_hot) {
da84d961 3204 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3205 schedstat_inc(p, se.nr_forced_migrations);
3206 }
da84d961
IM
3207#endif
3208 return 1;
3209 }
3210
708dc512 3211 if (tsk_cache_hot) {
cc367732 3212 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3213 return 0;
cc367732 3214 }
1da177e4
LT
3215 return 1;
3216}
3217
e1d1484f
PW
3218static unsigned long
3219balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3220 unsigned long max_load_move, struct sched_domain *sd,
3221 enum cpu_idle_type idle, int *all_pinned,
3222 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3223{
051c6764 3224 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3225 struct task_struct *p;
3226 long rem_load_move = max_load_move;
1da177e4 3227
e1d1484f 3228 if (max_load_move == 0)
1da177e4
LT
3229 goto out;
3230
81026794
NP
3231 pinned = 1;
3232
1da177e4 3233 /*
dd41f596 3234 * Start the load-balancing iterator:
1da177e4 3235 */
dd41f596
IM
3236 p = iterator->start(iterator->arg);
3237next:
b82d9fdd 3238 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3239 goto out;
051c6764
PZ
3240
3241 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3242 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3243 p = iterator->next(iterator->arg);
3244 goto next;
1da177e4
LT
3245 }
3246
dd41f596 3247 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3248 pulled++;
dd41f596 3249 rem_load_move -= p->se.load.weight;
1da177e4 3250
7e96fa58
GH
3251#ifdef CONFIG_PREEMPT
3252 /*
3253 * NEWIDLE balancing is a source of latency, so preemptible kernels
3254 * will stop after the first task is pulled to minimize the critical
3255 * section.
3256 */
3257 if (idle == CPU_NEWLY_IDLE)
3258 goto out;
3259#endif
3260
2dd73a4f 3261 /*
b82d9fdd 3262 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3263 */
e1d1484f 3264 if (rem_load_move > 0) {
a4ac01c3
PW
3265 if (p->prio < *this_best_prio)
3266 *this_best_prio = p->prio;
dd41f596
IM
3267 p = iterator->next(iterator->arg);
3268 goto next;
1da177e4
LT
3269 }
3270out:
3271 /*
e1d1484f 3272 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3273 * so we can safely collect pull_task() stats here rather than
3274 * inside pull_task().
3275 */
3276 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3277
3278 if (all_pinned)
3279 *all_pinned = pinned;
e1d1484f
PW
3280
3281 return max_load_move - rem_load_move;
1da177e4
LT
3282}
3283
dd41f596 3284/*
43010659
PW
3285 * move_tasks tries to move up to max_load_move weighted load from busiest to
3286 * this_rq, as part of a balancing operation within domain "sd".
3287 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3288 *
3289 * Called with both runqueues locked.
3290 */
3291static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3292 unsigned long max_load_move,
dd41f596
IM
3293 struct sched_domain *sd, enum cpu_idle_type idle,
3294 int *all_pinned)
3295{
5522d5d5 3296 const struct sched_class *class = sched_class_highest;
43010659 3297 unsigned long total_load_moved = 0;
a4ac01c3 3298 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3299
3300 do {
43010659
PW
3301 total_load_moved +=
3302 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3303 max_load_move - total_load_moved,
a4ac01c3 3304 sd, idle, all_pinned, &this_best_prio);
dd41f596 3305 class = class->next;
c4acb2c0 3306
7e96fa58
GH
3307#ifdef CONFIG_PREEMPT
3308 /*
3309 * NEWIDLE balancing is a source of latency, so preemptible
3310 * kernels will stop after the first task is pulled to minimize
3311 * the critical section.
3312 */
c4acb2c0
GH
3313 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3314 break;
7e96fa58 3315#endif
43010659 3316 } while (class && max_load_move > total_load_moved);
dd41f596 3317
43010659
PW
3318 return total_load_moved > 0;
3319}
3320
e1d1484f
PW
3321static int
3322iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3323 struct sched_domain *sd, enum cpu_idle_type idle,
3324 struct rq_iterator *iterator)
3325{
3326 struct task_struct *p = iterator->start(iterator->arg);
3327 int pinned = 0;
3328
3329 while (p) {
3330 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3331 pull_task(busiest, p, this_rq, this_cpu);
3332 /*
3333 * Right now, this is only the second place pull_task()
3334 * is called, so we can safely collect pull_task()
3335 * stats here rather than inside pull_task().
3336 */
3337 schedstat_inc(sd, lb_gained[idle]);
3338
3339 return 1;
3340 }
3341 p = iterator->next(iterator->arg);
3342 }
3343
3344 return 0;
3345}
3346
43010659
PW
3347/*
3348 * move_one_task tries to move exactly one task from busiest to this_rq, as
3349 * part of active balancing operations within "domain".
3350 * Returns 1 if successful and 0 otherwise.
3351 *
3352 * Called with both runqueues locked.
3353 */
3354static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3355 struct sched_domain *sd, enum cpu_idle_type idle)
3356{
5522d5d5 3357 const struct sched_class *class;
43010659 3358
cde7e5ca 3359 for_each_class(class) {
e1d1484f 3360 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3361 return 1;
cde7e5ca 3362 }
43010659
PW
3363
3364 return 0;
dd41f596 3365}
67bb6c03 3366/********** Helpers for find_busiest_group ************************/
1da177e4 3367/*
222d656d
GS
3368 * sd_lb_stats - Structure to store the statistics of a sched_domain
3369 * during load balancing.
1da177e4 3370 */
222d656d
GS
3371struct sd_lb_stats {
3372 struct sched_group *busiest; /* Busiest group in this sd */
3373 struct sched_group *this; /* Local group in this sd */
3374 unsigned long total_load; /* Total load of all groups in sd */
3375 unsigned long total_pwr; /* Total power of all groups in sd */
3376 unsigned long avg_load; /* Average load across all groups in sd */
3377
3378 /** Statistics of this group */
3379 unsigned long this_load;
3380 unsigned long this_load_per_task;
3381 unsigned long this_nr_running;
3382
3383 /* Statistics of the busiest group */
3384 unsigned long max_load;
3385 unsigned long busiest_load_per_task;
3386 unsigned long busiest_nr_running;
3387
3388 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3389#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3390 int power_savings_balance; /* Is powersave balance needed for this sd */
3391 struct sched_group *group_min; /* Least loaded group in sd */
3392 struct sched_group *group_leader; /* Group which relieves group_min */
3393 unsigned long min_load_per_task; /* load_per_task in group_min */
3394 unsigned long leader_nr_running; /* Nr running of group_leader */
3395 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3396#endif
222d656d 3397};
1da177e4 3398
d5ac537e 3399/*
381be78f
GS
3400 * sg_lb_stats - stats of a sched_group required for load_balancing
3401 */
3402struct sg_lb_stats {
3403 unsigned long avg_load; /*Avg load across the CPUs of the group */
3404 unsigned long group_load; /* Total load over the CPUs of the group */
3405 unsigned long sum_nr_running; /* Nr tasks running in the group */
3406 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3407 unsigned long group_capacity;
3408 int group_imb; /* Is there an imbalance in the group ? */
3409};
408ed066 3410
67bb6c03
GS
3411/**
3412 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3413 * @group: The group whose first cpu is to be returned.
3414 */
3415static inline unsigned int group_first_cpu(struct sched_group *group)
3416{
3417 return cpumask_first(sched_group_cpus(group));
3418}
3419
3420/**
3421 * get_sd_load_idx - Obtain the load index for a given sched domain.
3422 * @sd: The sched_domain whose load_idx is to be obtained.
3423 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3424 */
3425static inline int get_sd_load_idx(struct sched_domain *sd,
3426 enum cpu_idle_type idle)
3427{
3428 int load_idx;
3429
3430 switch (idle) {
3431 case CPU_NOT_IDLE:
7897986b 3432 load_idx = sd->busy_idx;
67bb6c03
GS
3433 break;
3434
3435 case CPU_NEWLY_IDLE:
7897986b 3436 load_idx = sd->newidle_idx;
67bb6c03
GS
3437 break;
3438 default:
7897986b 3439 load_idx = sd->idle_idx;
67bb6c03
GS
3440 break;
3441 }
1da177e4 3442
67bb6c03
GS
3443 return load_idx;
3444}
1da177e4 3445
1da177e4 3446
c071df18
GS
3447#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3448/**
3449 * init_sd_power_savings_stats - Initialize power savings statistics for
3450 * the given sched_domain, during load balancing.
3451 *
3452 * @sd: Sched domain whose power-savings statistics are to be initialized.
3453 * @sds: Variable containing the statistics for sd.
3454 * @idle: Idle status of the CPU at which we're performing load-balancing.
3455 */
3456static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3457 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3458{
3459 /*
3460 * Busy processors will not participate in power savings
3461 * balance.
3462 */
3463 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3464 sds->power_savings_balance = 0;
3465 else {
3466 sds->power_savings_balance = 1;
3467 sds->min_nr_running = ULONG_MAX;
3468 sds->leader_nr_running = 0;
3469 }
3470}
783609c6 3471
c071df18
GS
3472/**
3473 * update_sd_power_savings_stats - Update the power saving stats for a
3474 * sched_domain while performing load balancing.
3475 *
3476 * @group: sched_group belonging to the sched_domain under consideration.
3477 * @sds: Variable containing the statistics of the sched_domain
3478 * @local_group: Does group contain the CPU for which we're performing
3479 * load balancing ?
3480 * @sgs: Variable containing the statistics of the group.
3481 */
3482static inline void update_sd_power_savings_stats(struct sched_group *group,
3483 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3484{
408ed066 3485
c071df18
GS
3486 if (!sds->power_savings_balance)
3487 return;
1da177e4 3488
c071df18
GS
3489 /*
3490 * If the local group is idle or completely loaded
3491 * no need to do power savings balance at this domain
3492 */
3493 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3494 !sds->this_nr_running))
3495 sds->power_savings_balance = 0;
2dd73a4f 3496
c071df18
GS
3497 /*
3498 * If a group is already running at full capacity or idle,
3499 * don't include that group in power savings calculations
3500 */
3501 if (!sds->power_savings_balance ||
3502 sgs->sum_nr_running >= sgs->group_capacity ||
3503 !sgs->sum_nr_running)
3504 return;
5969fe06 3505
c071df18
GS
3506 /*
3507 * Calculate the group which has the least non-idle load.
3508 * This is the group from where we need to pick up the load
3509 * for saving power
3510 */
3511 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3512 (sgs->sum_nr_running == sds->min_nr_running &&
3513 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3514 sds->group_min = group;
3515 sds->min_nr_running = sgs->sum_nr_running;
3516 sds->min_load_per_task = sgs->sum_weighted_load /
3517 sgs->sum_nr_running;
3518 }
783609c6 3519
c071df18
GS
3520 /*
3521 * Calculate the group which is almost near its
3522 * capacity but still has some space to pick up some load
3523 * from other group and save more power
3524 */
d899a789 3525 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3526 return;
1da177e4 3527
c071df18
GS
3528 if (sgs->sum_nr_running > sds->leader_nr_running ||
3529 (sgs->sum_nr_running == sds->leader_nr_running &&
3530 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3531 sds->group_leader = group;
3532 sds->leader_nr_running = sgs->sum_nr_running;
3533 }
3534}
408ed066 3535
c071df18 3536/**
d5ac537e 3537 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3538 * @sds: Variable containing the statistics of the sched_domain
3539 * under consideration.
3540 * @this_cpu: Cpu at which we're currently performing load-balancing.
3541 * @imbalance: Variable to store the imbalance.
3542 *
d5ac537e
RD
3543 * Description:
3544 * Check if we have potential to perform some power-savings balance.
3545 * If yes, set the busiest group to be the least loaded group in the
3546 * sched_domain, so that it's CPUs can be put to idle.
3547 *
c071df18
GS
3548 * Returns 1 if there is potential to perform power-savings balance.
3549 * Else returns 0.
3550 */
3551static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3552 int this_cpu, unsigned long *imbalance)
3553{
3554 if (!sds->power_savings_balance)
3555 return 0;
1da177e4 3556
c071df18
GS
3557 if (sds->this != sds->group_leader ||
3558 sds->group_leader == sds->group_min)
3559 return 0;
783609c6 3560
c071df18
GS
3561 *imbalance = sds->min_load_per_task;
3562 sds->busiest = sds->group_min;
1da177e4 3563
c071df18 3564 return 1;
1da177e4 3565
c071df18
GS
3566}
3567#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3568static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3569 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3570{
3571 return;
3572}
408ed066 3573
c071df18
GS
3574static inline void update_sd_power_savings_stats(struct sched_group *group,
3575 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3576{
3577 return;
3578}
3579
3580static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3581 int this_cpu, unsigned long *imbalance)
3582{
3583 return 0;
3584}
3585#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3586
d6a59aa3
PZ
3587
3588unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3589{
3590 return SCHED_LOAD_SCALE;
3591}
3592
3593unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3594{
3595 return default_scale_freq_power(sd, cpu);
3596}
3597
3598unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3599{
3600 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3601 unsigned long smt_gain = sd->smt_gain;
3602
3603 smt_gain /= weight;
3604
3605 return smt_gain;
3606}
3607
d6a59aa3
PZ
3608unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3609{
3610 return default_scale_smt_power(sd, cpu);
3611}
3612
e9e9250b
PZ
3613unsigned long scale_rt_power(int cpu)
3614{
3615 struct rq *rq = cpu_rq(cpu);
3616 u64 total, available;
3617
3618 sched_avg_update(rq);
3619
3620 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3621 available = total - rq->rt_avg;
3622
3623 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3624 total = SCHED_LOAD_SCALE;
3625
3626 total >>= SCHED_LOAD_SHIFT;
3627
3628 return div_u64(available, total);
3629}
3630
ab29230e
PZ
3631static void update_cpu_power(struct sched_domain *sd, int cpu)
3632{
3633 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3634 unsigned long power = SCHED_LOAD_SCALE;
3635 struct sched_group *sdg = sd->groups;
ab29230e 3636
8e6598af
PZ
3637 if (sched_feat(ARCH_POWER))
3638 power *= arch_scale_freq_power(sd, cpu);
3639 else
3640 power *= default_scale_freq_power(sd, cpu);
3641
d6a59aa3 3642 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3643
3644 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3645 if (sched_feat(ARCH_POWER))
3646 power *= arch_scale_smt_power(sd, cpu);
3647 else
3648 power *= default_scale_smt_power(sd, cpu);
3649
ab29230e
PZ
3650 power >>= SCHED_LOAD_SHIFT;
3651 }
3652
e9e9250b
PZ
3653 power *= scale_rt_power(cpu);
3654 power >>= SCHED_LOAD_SHIFT;
3655
3656 if (!power)
3657 power = 1;
ab29230e 3658
18a3885f 3659 sdg->cpu_power = power;
ab29230e
PZ
3660}
3661
3662static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3663{
3664 struct sched_domain *child = sd->child;
3665 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3666 unsigned long power;
cc9fba7d
PZ
3667
3668 if (!child) {
ab29230e 3669 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3670 return;
3671 }
3672
d7ea17a7 3673 power = 0;
cc9fba7d
PZ
3674
3675 group = child->groups;
3676 do {
d7ea17a7 3677 power += group->cpu_power;
cc9fba7d
PZ
3678 group = group->next;
3679 } while (group != child->groups);
d7ea17a7
IM
3680
3681 sdg->cpu_power = power;
cc9fba7d 3682}
c071df18 3683
1f8c553d
GS
3684/**
3685 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3686 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3687 * @group: sched_group whose statistics are to be updated.
3688 * @this_cpu: Cpu for which load balance is currently performed.
3689 * @idle: Idle status of this_cpu
3690 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3691 * @sd_idle: Idle status of the sched_domain containing group.
3692 * @local_group: Does group contain this_cpu.
3693 * @cpus: Set of cpus considered for load balancing.
3694 * @balance: Should we balance.
3695 * @sgs: variable to hold the statistics for this group.
3696 */
cc9fba7d
PZ
3697static inline void update_sg_lb_stats(struct sched_domain *sd,
3698 struct sched_group *group, int this_cpu,
1f8c553d
GS
3699 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3700 int local_group, const struct cpumask *cpus,
3701 int *balance, struct sg_lb_stats *sgs)
3702{
3703 unsigned long load, max_cpu_load, min_cpu_load;
3704 int i;
3705 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3706 unsigned long sum_avg_load_per_task;
3707 unsigned long avg_load_per_task;
3708
cc9fba7d 3709 if (local_group) {
1f8c553d 3710 balance_cpu = group_first_cpu(group);
cc9fba7d 3711 if (balance_cpu == this_cpu)
ab29230e 3712 update_group_power(sd, this_cpu);
cc9fba7d 3713 }
1f8c553d
GS
3714
3715 /* Tally up the load of all CPUs in the group */
3716 sum_avg_load_per_task = avg_load_per_task = 0;
3717 max_cpu_load = 0;
3718 min_cpu_load = ~0UL;
408ed066 3719
1f8c553d
GS
3720 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3721 struct rq *rq = cpu_rq(i);
908a7c1b 3722
1f8c553d
GS
3723 if (*sd_idle && rq->nr_running)
3724 *sd_idle = 0;
5c45bf27 3725
1f8c553d 3726 /* Bias balancing toward cpus of our domain */
1da177e4 3727 if (local_group) {
1f8c553d
GS
3728 if (idle_cpu(i) && !first_idle_cpu) {
3729 first_idle_cpu = 1;
3730 balance_cpu = i;
3731 }
3732
3733 load = target_load(i, load_idx);
3734 } else {
3735 load = source_load(i, load_idx);
3736 if (load > max_cpu_load)
3737 max_cpu_load = load;
3738 if (min_cpu_load > load)
3739 min_cpu_load = load;
1da177e4 3740 }
5c45bf27 3741
1f8c553d
GS
3742 sgs->group_load += load;
3743 sgs->sum_nr_running += rq->nr_running;
3744 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3745
1f8c553d
GS
3746 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3747 }
5c45bf27 3748
1f8c553d
GS
3749 /*
3750 * First idle cpu or the first cpu(busiest) in this sched group
3751 * is eligible for doing load balancing at this and above
3752 * domains. In the newly idle case, we will allow all the cpu's
3753 * to do the newly idle load balance.
3754 */
3755 if (idle != CPU_NEWLY_IDLE && local_group &&
3756 balance_cpu != this_cpu && balance) {
3757 *balance = 0;
3758 return;
3759 }
5c45bf27 3760
1f8c553d 3761 /* Adjust by relative CPU power of the group */
18a3885f 3762 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3763
1f8c553d
GS
3764
3765 /*
3766 * Consider the group unbalanced when the imbalance is larger
3767 * than the average weight of two tasks.
3768 *
3769 * APZ: with cgroup the avg task weight can vary wildly and
3770 * might not be a suitable number - should we keep a
3771 * normalized nr_running number somewhere that negates
3772 * the hierarchy?
3773 */
18a3885f
PZ
3774 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3775 group->cpu_power;
1f8c553d
GS
3776
3777 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3778 sgs->group_imb = 1;
3779
bdb94aa5 3780 sgs->group_capacity =
18a3885f 3781 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3782}
dd41f596 3783
37abe198
GS
3784/**
3785 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3786 * @sd: sched_domain whose statistics are to be updated.
3787 * @this_cpu: Cpu for which load balance is currently performed.
3788 * @idle: Idle status of this_cpu
3789 * @sd_idle: Idle status of the sched_domain containing group.
3790 * @cpus: Set of cpus considered for load balancing.
3791 * @balance: Should we balance.
3792 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3793 */
37abe198
GS
3794static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3795 enum cpu_idle_type idle, int *sd_idle,
3796 const struct cpumask *cpus, int *balance,
3797 struct sd_lb_stats *sds)
1da177e4 3798{
b5d978e0 3799 struct sched_domain *child = sd->child;
222d656d 3800 struct sched_group *group = sd->groups;
37abe198 3801 struct sg_lb_stats sgs;
b5d978e0
PZ
3802 int load_idx, prefer_sibling = 0;
3803
3804 if (child && child->flags & SD_PREFER_SIBLING)
3805 prefer_sibling = 1;
222d656d 3806
c071df18 3807 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3808 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3809
3810 do {
1da177e4 3811 int local_group;
1da177e4 3812
758b2cdc
RR
3813 local_group = cpumask_test_cpu(this_cpu,
3814 sched_group_cpus(group));
381be78f 3815 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3816 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3817 local_group, cpus, balance, &sgs);
1da177e4 3818
37abe198
GS
3819 if (local_group && balance && !(*balance))
3820 return;
783609c6 3821
37abe198 3822 sds->total_load += sgs.group_load;
18a3885f 3823 sds->total_pwr += group->cpu_power;
1da177e4 3824
b5d978e0
PZ
3825 /*
3826 * In case the child domain prefers tasks go to siblings
3827 * first, lower the group capacity to one so that we'll try
3828 * and move all the excess tasks away.
3829 */
3830 if (prefer_sibling)
bdb94aa5 3831 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3832
1da177e4 3833 if (local_group) {
37abe198
GS
3834 sds->this_load = sgs.avg_load;
3835 sds->this = group;
3836 sds->this_nr_running = sgs.sum_nr_running;
3837 sds->this_load_per_task = sgs.sum_weighted_load;
3838 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3839 (sgs.sum_nr_running > sgs.group_capacity ||
3840 sgs.group_imb)) {
37abe198
GS
3841 sds->max_load = sgs.avg_load;
3842 sds->busiest = group;
3843 sds->busiest_nr_running = sgs.sum_nr_running;
3844 sds->busiest_load_per_task = sgs.sum_weighted_load;
3845 sds->group_imb = sgs.group_imb;
48f24c4d 3846 }
5c45bf27 3847
c071df18 3848 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3849 group = group->next;
3850 } while (group != sd->groups);
37abe198 3851}
1da177e4 3852
2e6f44ae
GS
3853/**
3854 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3855 * amongst the groups of a sched_domain, during
3856 * load balancing.
2e6f44ae
GS
3857 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3858 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3859 * @imbalance: Variable to store the imbalance.
3860 */
3861static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3862 int this_cpu, unsigned long *imbalance)
3863{
3864 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3865 unsigned int imbn = 2;
3866
3867 if (sds->this_nr_running) {
3868 sds->this_load_per_task /= sds->this_nr_running;
3869 if (sds->busiest_load_per_task >
3870 sds->this_load_per_task)
3871 imbn = 1;
3872 } else
3873 sds->this_load_per_task =
3874 cpu_avg_load_per_task(this_cpu);
1da177e4 3875
2e6f44ae
GS
3876 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3877 sds->busiest_load_per_task * imbn) {
3878 *imbalance = sds->busiest_load_per_task;
3879 return;
3880 }
908a7c1b 3881
1da177e4 3882 /*
2e6f44ae
GS
3883 * OK, we don't have enough imbalance to justify moving tasks,
3884 * however we may be able to increase total CPU power used by
3885 * moving them.
1da177e4 3886 */
2dd73a4f 3887
18a3885f 3888 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3889 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3890 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3891 min(sds->this_load_per_task, sds->this_load);
3892 pwr_now /= SCHED_LOAD_SCALE;
3893
3894 /* Amount of load we'd subtract */
18a3885f
PZ
3895 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3896 sds->busiest->cpu_power;
2e6f44ae 3897 if (sds->max_load > tmp)
18a3885f 3898 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3899 min(sds->busiest_load_per_task, sds->max_load - tmp);
3900
3901 /* Amount of load we'd add */
18a3885f 3902 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3903 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3904 tmp = (sds->max_load * sds->busiest->cpu_power) /
3905 sds->this->cpu_power;
2e6f44ae 3906 else
18a3885f
PZ
3907 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3908 sds->this->cpu_power;
3909 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3910 min(sds->this_load_per_task, sds->this_load + tmp);
3911 pwr_move /= SCHED_LOAD_SCALE;
3912
3913 /* Move if we gain throughput */
3914 if (pwr_move > pwr_now)
3915 *imbalance = sds->busiest_load_per_task;
3916}
dbc523a3
GS
3917
3918/**
3919 * calculate_imbalance - Calculate the amount of imbalance present within the
3920 * groups of a given sched_domain during load balance.
3921 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3922 * @this_cpu: Cpu for which currently load balance is being performed.
3923 * @imbalance: The variable to store the imbalance.
3924 */
3925static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3926 unsigned long *imbalance)
3927{
3928 unsigned long max_pull;
2dd73a4f
PW
3929 /*
3930 * In the presence of smp nice balancing, certain scenarios can have
3931 * max load less than avg load(as we skip the groups at or below
3932 * its cpu_power, while calculating max_load..)
3933 */
dbc523a3 3934 if (sds->max_load < sds->avg_load) {
2dd73a4f 3935 *imbalance = 0;
dbc523a3 3936 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3937 }
0c117f1b
SS
3938
3939 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3940 max_pull = min(sds->max_load - sds->avg_load,
3941 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3942
1da177e4 3943 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3944 *imbalance = min(max_pull * sds->busiest->cpu_power,
3945 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3946 / SCHED_LOAD_SCALE;
3947
2dd73a4f
PW
3948 /*
3949 * if *imbalance is less than the average load per runnable task
3950 * there is no gaurantee that any tasks will be moved so we'll have
3951 * a think about bumping its value to force at least one task to be
3952 * moved
3953 */
dbc523a3
GS
3954 if (*imbalance < sds->busiest_load_per_task)
3955 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3956
dbc523a3 3957}
37abe198 3958/******* find_busiest_group() helpers end here *********************/
1da177e4 3959
b7bb4c9b
GS
3960/**
3961 * find_busiest_group - Returns the busiest group within the sched_domain
3962 * if there is an imbalance. If there isn't an imbalance, and
3963 * the user has opted for power-savings, it returns a group whose
3964 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3965 * such a group exists.
3966 *
3967 * Also calculates the amount of weighted load which should be moved
3968 * to restore balance.
3969 *
3970 * @sd: The sched_domain whose busiest group is to be returned.
3971 * @this_cpu: The cpu for which load balancing is currently being performed.
3972 * @imbalance: Variable which stores amount of weighted load which should
3973 * be moved to restore balance/put a group to idle.
3974 * @idle: The idle status of this_cpu.
3975 * @sd_idle: The idleness of sd
3976 * @cpus: The set of CPUs under consideration for load-balancing.
3977 * @balance: Pointer to a variable indicating if this_cpu
3978 * is the appropriate cpu to perform load balancing at this_level.
3979 *
3980 * Returns: - the busiest group if imbalance exists.
3981 * - If no imbalance and user has opted for power-savings balance,
3982 * return the least loaded group whose CPUs can be
3983 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3984 */
3985static struct sched_group *
3986find_busiest_group(struct sched_domain *sd, int this_cpu,
3987 unsigned long *imbalance, enum cpu_idle_type idle,
3988 int *sd_idle, const struct cpumask *cpus, int *balance)
3989{
3990 struct sd_lb_stats sds;
1da177e4 3991
37abe198 3992 memset(&sds, 0, sizeof(sds));
1da177e4 3993
37abe198
GS
3994 /*
3995 * Compute the various statistics relavent for load balancing at
3996 * this level.
3997 */
3998 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3999 balance, &sds);
4000
b7bb4c9b
GS
4001 /* Cases where imbalance does not exist from POV of this_cpu */
4002 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4003 * at this level.
4004 * 2) There is no busy sibling group to pull from.
4005 * 3) This group is the busiest group.
4006 * 4) This group is more busy than the avg busieness at this
4007 * sched_domain.
4008 * 5) The imbalance is within the specified limit.
4009 * 6) Any rebalance would lead to ping-pong
4010 */
37abe198
GS
4011 if (balance && !(*balance))
4012 goto ret;
1da177e4 4013
b7bb4c9b
GS
4014 if (!sds.busiest || sds.busiest_nr_running == 0)
4015 goto out_balanced;
1da177e4 4016
b7bb4c9b 4017 if (sds.this_load >= sds.max_load)
1da177e4 4018 goto out_balanced;
1da177e4 4019
222d656d 4020 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4021
b7bb4c9b
GS
4022 if (sds.this_load >= sds.avg_load)
4023 goto out_balanced;
4024
4025 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4026 goto out_balanced;
4027
222d656d
GS
4028 sds.busiest_load_per_task /= sds.busiest_nr_running;
4029 if (sds.group_imb)
4030 sds.busiest_load_per_task =
4031 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4032
1da177e4
LT
4033 /*
4034 * We're trying to get all the cpus to the average_load, so we don't
4035 * want to push ourselves above the average load, nor do we wish to
4036 * reduce the max loaded cpu below the average load, as either of these
4037 * actions would just result in more rebalancing later, and ping-pong
4038 * tasks around. Thus we look for the minimum possible imbalance.
4039 * Negative imbalances (*we* are more loaded than anyone else) will
4040 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4041 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4042 * appear as very large values with unsigned longs.
4043 */
222d656d 4044 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4045 goto out_balanced;
4046
dbc523a3
GS
4047 /* Looks like there is an imbalance. Compute it */
4048 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4049 return sds.busiest;
1da177e4
LT
4050
4051out_balanced:
c071df18
GS
4052 /*
4053 * There is no obvious imbalance. But check if we can do some balancing
4054 * to save power.
4055 */
4056 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4057 return sds.busiest;
783609c6 4058ret:
1da177e4
LT
4059 *imbalance = 0;
4060 return NULL;
4061}
4062
4063/*
4064 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4065 */
70b97a7f 4066static struct rq *
d15bcfdb 4067find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4068 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4069{
70b97a7f 4070 struct rq *busiest = NULL, *rq;
2dd73a4f 4071 unsigned long max_load = 0;
1da177e4
LT
4072 int i;
4073
758b2cdc 4074 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4075 unsigned long power = power_of(i);
4076 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4077 unsigned long wl;
0a2966b4 4078
96f874e2 4079 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4080 continue;
4081
48f24c4d 4082 rq = cpu_rq(i);
bdb94aa5
PZ
4083 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4084 wl /= power;
2dd73a4f 4085
bdb94aa5 4086 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4087 continue;
1da177e4 4088
dd41f596
IM
4089 if (wl > max_load) {
4090 max_load = wl;
48f24c4d 4091 busiest = rq;
1da177e4
LT
4092 }
4093 }
4094
4095 return busiest;
4096}
4097
77391d71
NP
4098/*
4099 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4100 * so long as it is large enough.
4101 */
4102#define MAX_PINNED_INTERVAL 512
4103
df7c8e84
RR
4104/* Working cpumask for load_balance and load_balance_newidle. */
4105static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4106
1da177e4
LT
4107/*
4108 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4109 * tasks if there is an imbalance.
1da177e4 4110 */
70b97a7f 4111static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4112 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4113 int *balance)
1da177e4 4114{
43010659 4115 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4116 struct sched_group *group;
1da177e4 4117 unsigned long imbalance;
70b97a7f 4118 struct rq *busiest;
fe2eea3f 4119 unsigned long flags;
df7c8e84 4120 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4121
6ad4c188 4122 cpumask_copy(cpus, cpu_active_mask);
7c16ec58 4123
89c4710e
SS
4124 /*
4125 * When power savings policy is enabled for the parent domain, idle
4126 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4127 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4128 * portraying it as CPU_NOT_IDLE.
89c4710e 4129 */
d15bcfdb 4130 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4131 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4132 sd_idle = 1;
1da177e4 4133
2d72376b 4134 schedstat_inc(sd, lb_count[idle]);
1da177e4 4135
0a2966b4 4136redo:
c8cba857 4137 update_shares(sd);
0a2966b4 4138 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4139 cpus, balance);
783609c6 4140
06066714 4141 if (*balance == 0)
783609c6 4142 goto out_balanced;
783609c6 4143
1da177e4
LT
4144 if (!group) {
4145 schedstat_inc(sd, lb_nobusyg[idle]);
4146 goto out_balanced;
4147 }
4148
7c16ec58 4149 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4150 if (!busiest) {
4151 schedstat_inc(sd, lb_nobusyq[idle]);
4152 goto out_balanced;
4153 }
4154
db935dbd 4155 BUG_ON(busiest == this_rq);
1da177e4
LT
4156
4157 schedstat_add(sd, lb_imbalance[idle], imbalance);
4158
43010659 4159 ld_moved = 0;
1da177e4
LT
4160 if (busiest->nr_running > 1) {
4161 /*
4162 * Attempt to move tasks. If find_busiest_group has found
4163 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4164 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4165 * correctly treated as an imbalance.
4166 */
fe2eea3f 4167 local_irq_save(flags);
e17224bf 4168 double_rq_lock(this_rq, busiest);
43010659 4169 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4170 imbalance, sd, idle, &all_pinned);
e17224bf 4171 double_rq_unlock(this_rq, busiest);
fe2eea3f 4172 local_irq_restore(flags);
81026794 4173
46cb4b7c
SS
4174 /*
4175 * some other cpu did the load balance for us.
4176 */
43010659 4177 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4178 resched_cpu(this_cpu);
4179
81026794 4180 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4181 if (unlikely(all_pinned)) {
96f874e2
RR
4182 cpumask_clear_cpu(cpu_of(busiest), cpus);
4183 if (!cpumask_empty(cpus))
0a2966b4 4184 goto redo;
81026794 4185 goto out_balanced;
0a2966b4 4186 }
1da177e4 4187 }
81026794 4188
43010659 4189 if (!ld_moved) {
1da177e4
LT
4190 schedstat_inc(sd, lb_failed[idle]);
4191 sd->nr_balance_failed++;
4192
4193 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4194
fe2eea3f 4195 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4196
4197 /* don't kick the migration_thread, if the curr
4198 * task on busiest cpu can't be moved to this_cpu
4199 */
96f874e2
RR
4200 if (!cpumask_test_cpu(this_cpu,
4201 &busiest->curr->cpus_allowed)) {
fe2eea3f 4202 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4203 all_pinned = 1;
4204 goto out_one_pinned;
4205 }
4206
1da177e4
LT
4207 if (!busiest->active_balance) {
4208 busiest->active_balance = 1;
4209 busiest->push_cpu = this_cpu;
81026794 4210 active_balance = 1;
1da177e4 4211 }
fe2eea3f 4212 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4213 if (active_balance)
1da177e4
LT
4214 wake_up_process(busiest->migration_thread);
4215
4216 /*
4217 * We've kicked active balancing, reset the failure
4218 * counter.
4219 */
39507451 4220 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4221 }
81026794 4222 } else
1da177e4
LT
4223 sd->nr_balance_failed = 0;
4224
81026794 4225 if (likely(!active_balance)) {
1da177e4
LT
4226 /* We were unbalanced, so reset the balancing interval */
4227 sd->balance_interval = sd->min_interval;
81026794
NP
4228 } else {
4229 /*
4230 * If we've begun active balancing, start to back off. This
4231 * case may not be covered by the all_pinned logic if there
4232 * is only 1 task on the busy runqueue (because we don't call
4233 * move_tasks).
4234 */
4235 if (sd->balance_interval < sd->max_interval)
4236 sd->balance_interval *= 2;
1da177e4
LT
4237 }
4238
43010659 4239 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4240 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4241 ld_moved = -1;
4242
4243 goto out;
1da177e4
LT
4244
4245out_balanced:
1da177e4
LT
4246 schedstat_inc(sd, lb_balanced[idle]);
4247
16cfb1c0 4248 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4249
4250out_one_pinned:
1da177e4 4251 /* tune up the balancing interval */
77391d71
NP
4252 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4253 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4254 sd->balance_interval *= 2;
4255
48f24c4d 4256 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4257 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4258 ld_moved = -1;
4259 else
4260 ld_moved = 0;
4261out:
c8cba857
PZ
4262 if (ld_moved)
4263 update_shares(sd);
c09595f6 4264 return ld_moved;
1da177e4
LT
4265}
4266
4267/*
4268 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4269 * tasks if there is an imbalance.
4270 *
d15bcfdb 4271 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4272 * this_rq is locked.
4273 */
48f24c4d 4274static int
df7c8e84 4275load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4276{
4277 struct sched_group *group;
70b97a7f 4278 struct rq *busiest = NULL;
1da177e4 4279 unsigned long imbalance;
43010659 4280 int ld_moved = 0;
5969fe06 4281 int sd_idle = 0;
969bb4e4 4282 int all_pinned = 0;
df7c8e84 4283 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4284
6ad4c188 4285 cpumask_copy(cpus, cpu_active_mask);
5969fe06 4286
89c4710e
SS
4287 /*
4288 * When power savings policy is enabled for the parent domain, idle
4289 * sibling can pick up load irrespective of busy siblings. In this case,
4290 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4291 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4292 */
4293 if (sd->flags & SD_SHARE_CPUPOWER &&
4294 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4295 sd_idle = 1;
1da177e4 4296
2d72376b 4297 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4298redo:
3e5459b4 4299 update_shares_locked(this_rq, sd);
d15bcfdb 4300 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4301 &sd_idle, cpus, NULL);
1da177e4 4302 if (!group) {
d15bcfdb 4303 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4304 goto out_balanced;
1da177e4
LT
4305 }
4306
7c16ec58 4307 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4308 if (!busiest) {
d15bcfdb 4309 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4310 goto out_balanced;
1da177e4
LT
4311 }
4312
db935dbd
NP
4313 BUG_ON(busiest == this_rq);
4314
d15bcfdb 4315 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4316
43010659 4317 ld_moved = 0;
d6d5cfaf
NP
4318 if (busiest->nr_running > 1) {
4319 /* Attempt to move tasks */
4320 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4321 /* this_rq->clock is already updated */
4322 update_rq_clock(busiest);
43010659 4323 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4324 imbalance, sd, CPU_NEWLY_IDLE,
4325 &all_pinned);
1b12bbc7 4326 double_unlock_balance(this_rq, busiest);
0a2966b4 4327
969bb4e4 4328 if (unlikely(all_pinned)) {
96f874e2
RR
4329 cpumask_clear_cpu(cpu_of(busiest), cpus);
4330 if (!cpumask_empty(cpus))
0a2966b4
CL
4331 goto redo;
4332 }
d6d5cfaf
NP
4333 }
4334
43010659 4335 if (!ld_moved) {
36dffab6 4336 int active_balance = 0;
ad273b32 4337
d15bcfdb 4338 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4339 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4340 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4341 return -1;
ad273b32
VS
4342
4343 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4344 return -1;
4345
4346 if (sd->nr_balance_failed++ < 2)
4347 return -1;
4348
4349 /*
4350 * The only task running in a non-idle cpu can be moved to this
4351 * cpu in an attempt to completely freeup the other CPU
4352 * package. The same method used to move task in load_balance()
4353 * have been extended for load_balance_newidle() to speedup
4354 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4355 *
4356 * The package power saving logic comes from
4357 * find_busiest_group(). If there are no imbalance, then
4358 * f_b_g() will return NULL. However when sched_mc={1,2} then
4359 * f_b_g() will select a group from which a running task may be
4360 * pulled to this cpu in order to make the other package idle.
4361 * If there is no opportunity to make a package idle and if
4362 * there are no imbalance, then f_b_g() will return NULL and no
4363 * action will be taken in load_balance_newidle().
4364 *
4365 * Under normal task pull operation due to imbalance, there
4366 * will be more than one task in the source run queue and
4367 * move_tasks() will succeed. ld_moved will be true and this
4368 * active balance code will not be triggered.
4369 */
4370
4371 /* Lock busiest in correct order while this_rq is held */
4372 double_lock_balance(this_rq, busiest);
4373
4374 /*
4375 * don't kick the migration_thread, if the curr
4376 * task on busiest cpu can't be moved to this_cpu
4377 */
6ca09dfc 4378 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4379 double_unlock_balance(this_rq, busiest);
4380 all_pinned = 1;
4381 return ld_moved;
4382 }
4383
4384 if (!busiest->active_balance) {
4385 busiest->active_balance = 1;
4386 busiest->push_cpu = this_cpu;
4387 active_balance = 1;
4388 }
4389
4390 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4391 /*
4392 * Should not call ttwu while holding a rq->lock
4393 */
4394 spin_unlock(&this_rq->lock);
ad273b32
VS
4395 if (active_balance)
4396 wake_up_process(busiest->migration_thread);
da8d5089 4397 spin_lock(&this_rq->lock);
ad273b32 4398
5969fe06 4399 } else
16cfb1c0 4400 sd->nr_balance_failed = 0;
1da177e4 4401
3e5459b4 4402 update_shares_locked(this_rq, sd);
43010659 4403 return ld_moved;
16cfb1c0
NP
4404
4405out_balanced:
d15bcfdb 4406 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4407 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4408 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4409 return -1;
16cfb1c0 4410 sd->nr_balance_failed = 0;
48f24c4d 4411
16cfb1c0 4412 return 0;
1da177e4
LT
4413}
4414
4415/*
4416 * idle_balance is called by schedule() if this_cpu is about to become
4417 * idle. Attempts to pull tasks from other CPUs.
4418 */
70b97a7f 4419static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4420{
4421 struct sched_domain *sd;
efbe027e 4422 int pulled_task = 0;
dd41f596 4423 unsigned long next_balance = jiffies + HZ;
1da177e4 4424
1b9508f6
MG
4425 this_rq->idle_stamp = this_rq->clock;
4426
4427 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4428 return;
4429
1da177e4 4430 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4431 unsigned long interval;
4432
4433 if (!(sd->flags & SD_LOAD_BALANCE))
4434 continue;
4435
4436 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4437 /* If we've pulled tasks over stop searching: */
7c16ec58 4438 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4439 sd);
92c4ca5c
CL
4440
4441 interval = msecs_to_jiffies(sd->balance_interval);
4442 if (time_after(next_balance, sd->last_balance + interval))
4443 next_balance = sd->last_balance + interval;
1b9508f6
MG
4444 if (pulled_task) {
4445 this_rq->idle_stamp = 0;
92c4ca5c 4446 break;
1b9508f6 4447 }
1da177e4 4448 }
dd41f596 4449 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4450 /*
4451 * We are going idle. next_balance may be set based on
4452 * a busy processor. So reset next_balance.
4453 */
4454 this_rq->next_balance = next_balance;
dd41f596 4455 }
1da177e4
LT
4456}
4457
4458/*
4459 * active_load_balance is run by migration threads. It pushes running tasks
4460 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4461 * running on each physical CPU where possible, and avoids physical /
4462 * logical imbalances.
4463 *
4464 * Called with busiest_rq locked.
4465 */
70b97a7f 4466static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4467{
39507451 4468 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4469 struct sched_domain *sd;
4470 struct rq *target_rq;
39507451 4471
48f24c4d 4472 /* Is there any task to move? */
39507451 4473 if (busiest_rq->nr_running <= 1)
39507451
NP
4474 return;
4475
4476 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4477
4478 /*
39507451 4479 * This condition is "impossible", if it occurs
41a2d6cf 4480 * we need to fix it. Originally reported by
39507451 4481 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4482 */
39507451 4483 BUG_ON(busiest_rq == target_rq);
1da177e4 4484
39507451
NP
4485 /* move a task from busiest_rq to target_rq */
4486 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4487 update_rq_clock(busiest_rq);
4488 update_rq_clock(target_rq);
39507451
NP
4489
4490 /* Search for an sd spanning us and the target CPU. */
c96d145e 4491 for_each_domain(target_cpu, sd) {
39507451 4492 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4493 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4494 break;
c96d145e 4495 }
39507451 4496
48f24c4d 4497 if (likely(sd)) {
2d72376b 4498 schedstat_inc(sd, alb_count);
39507451 4499
43010659
PW
4500 if (move_one_task(target_rq, target_cpu, busiest_rq,
4501 sd, CPU_IDLE))
48f24c4d
IM
4502 schedstat_inc(sd, alb_pushed);
4503 else
4504 schedstat_inc(sd, alb_failed);
4505 }
1b12bbc7 4506 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4507}
4508
46cb4b7c
SS
4509#ifdef CONFIG_NO_HZ
4510static struct {
4511 atomic_t load_balancer;
7d1e6a9b 4512 cpumask_var_t cpu_mask;
f711f609 4513 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4514} nohz ____cacheline_aligned = {
4515 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4516};
4517
eea08f32
AB
4518int get_nohz_load_balancer(void)
4519{
4520 return atomic_read(&nohz.load_balancer);
4521}
4522
f711f609
GS
4523#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4524/**
4525 * lowest_flag_domain - Return lowest sched_domain containing flag.
4526 * @cpu: The cpu whose lowest level of sched domain is to
4527 * be returned.
4528 * @flag: The flag to check for the lowest sched_domain
4529 * for the given cpu.
4530 *
4531 * Returns the lowest sched_domain of a cpu which contains the given flag.
4532 */
4533static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4534{
4535 struct sched_domain *sd;
4536
4537 for_each_domain(cpu, sd)
4538 if (sd && (sd->flags & flag))
4539 break;
4540
4541 return sd;
4542}
4543
4544/**
4545 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4546 * @cpu: The cpu whose domains we're iterating over.
4547 * @sd: variable holding the value of the power_savings_sd
4548 * for cpu.
4549 * @flag: The flag to filter the sched_domains to be iterated.
4550 *
4551 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4552 * set, starting from the lowest sched_domain to the highest.
4553 */
4554#define for_each_flag_domain(cpu, sd, flag) \
4555 for (sd = lowest_flag_domain(cpu, flag); \
4556 (sd && (sd->flags & flag)); sd = sd->parent)
4557
4558/**
4559 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4560 * @ilb_group: group to be checked for semi-idleness
4561 *
4562 * Returns: 1 if the group is semi-idle. 0 otherwise.
4563 *
4564 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4565 * and atleast one non-idle CPU. This helper function checks if the given
4566 * sched_group is semi-idle or not.
4567 */
4568static inline int is_semi_idle_group(struct sched_group *ilb_group)
4569{
4570 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4571 sched_group_cpus(ilb_group));
4572
4573 /*
4574 * A sched_group is semi-idle when it has atleast one busy cpu
4575 * and atleast one idle cpu.
4576 */
4577 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4578 return 0;
4579
4580 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4581 return 0;
4582
4583 return 1;
4584}
4585/**
4586 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4587 * @cpu: The cpu which is nominating a new idle_load_balancer.
4588 *
4589 * Returns: Returns the id of the idle load balancer if it exists,
4590 * Else, returns >= nr_cpu_ids.
4591 *
4592 * This algorithm picks the idle load balancer such that it belongs to a
4593 * semi-idle powersavings sched_domain. The idea is to try and avoid
4594 * completely idle packages/cores just for the purpose of idle load balancing
4595 * when there are other idle cpu's which are better suited for that job.
4596 */
4597static int find_new_ilb(int cpu)
4598{
4599 struct sched_domain *sd;
4600 struct sched_group *ilb_group;
4601
4602 /*
4603 * Have idle load balancer selection from semi-idle packages only
4604 * when power-aware load balancing is enabled
4605 */
4606 if (!(sched_smt_power_savings || sched_mc_power_savings))
4607 goto out_done;
4608
4609 /*
4610 * Optimize for the case when we have no idle CPUs or only one
4611 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4612 */
4613 if (cpumask_weight(nohz.cpu_mask) < 2)
4614 goto out_done;
4615
4616 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4617 ilb_group = sd->groups;
4618
4619 do {
4620 if (is_semi_idle_group(ilb_group))
4621 return cpumask_first(nohz.ilb_grp_nohz_mask);
4622
4623 ilb_group = ilb_group->next;
4624
4625 } while (ilb_group != sd->groups);
4626 }
4627
4628out_done:
4629 return cpumask_first(nohz.cpu_mask);
4630}
4631#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4632static inline int find_new_ilb(int call_cpu)
4633{
6e29ec57 4634 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4635}
4636#endif
4637
7835b98b 4638/*
46cb4b7c
SS
4639 * This routine will try to nominate the ilb (idle load balancing)
4640 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4641 * load balancing on behalf of all those cpus. If all the cpus in the system
4642 * go into this tickless mode, then there will be no ilb owner (as there is
4643 * no need for one) and all the cpus will sleep till the next wakeup event
4644 * arrives...
4645 *
4646 * For the ilb owner, tick is not stopped. And this tick will be used
4647 * for idle load balancing. ilb owner will still be part of
4648 * nohz.cpu_mask..
7835b98b 4649 *
46cb4b7c
SS
4650 * While stopping the tick, this cpu will become the ilb owner if there
4651 * is no other owner. And will be the owner till that cpu becomes busy
4652 * or if all cpus in the system stop their ticks at which point
4653 * there is no need for ilb owner.
4654 *
4655 * When the ilb owner becomes busy, it nominates another owner, during the
4656 * next busy scheduler_tick()
4657 */
4658int select_nohz_load_balancer(int stop_tick)
4659{
4660 int cpu = smp_processor_id();
4661
4662 if (stop_tick) {
46cb4b7c
SS
4663 cpu_rq(cpu)->in_nohz_recently = 1;
4664
483b4ee6
SS
4665 if (!cpu_active(cpu)) {
4666 if (atomic_read(&nohz.load_balancer) != cpu)
4667 return 0;
4668
4669 /*
4670 * If we are going offline and still the leader,
4671 * give up!
4672 */
46cb4b7c
SS
4673 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4674 BUG();
483b4ee6 4675
46cb4b7c
SS
4676 return 0;
4677 }
4678
483b4ee6
SS
4679 cpumask_set_cpu(cpu, nohz.cpu_mask);
4680
46cb4b7c 4681 /* time for ilb owner also to sleep */
6ad4c188 4682 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
46cb4b7c
SS
4683 if (atomic_read(&nohz.load_balancer) == cpu)
4684 atomic_set(&nohz.load_balancer, -1);
4685 return 0;
4686 }
4687
4688 if (atomic_read(&nohz.load_balancer) == -1) {
4689 /* make me the ilb owner */
4690 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4691 return 1;
e790fb0b
GS
4692 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4693 int new_ilb;
4694
4695 if (!(sched_smt_power_savings ||
4696 sched_mc_power_savings))
4697 return 1;
4698 /*
4699 * Check to see if there is a more power-efficient
4700 * ilb.
4701 */
4702 new_ilb = find_new_ilb(cpu);
4703 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4704 atomic_set(&nohz.load_balancer, -1);
4705 resched_cpu(new_ilb);
4706 return 0;
4707 }
46cb4b7c 4708 return 1;
e790fb0b 4709 }
46cb4b7c 4710 } else {
7d1e6a9b 4711 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4712 return 0;
4713
7d1e6a9b 4714 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4715
4716 if (atomic_read(&nohz.load_balancer) == cpu)
4717 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4718 BUG();
4719 }
4720 return 0;
4721}
4722#endif
4723
4724static DEFINE_SPINLOCK(balancing);
4725
4726/*
7835b98b
CL
4727 * It checks each scheduling domain to see if it is due to be balanced,
4728 * and initiates a balancing operation if so.
4729 *
4730 * Balancing parameters are set up in arch_init_sched_domains.
4731 */
a9957449 4732static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4733{
46cb4b7c
SS
4734 int balance = 1;
4735 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4736 unsigned long interval;
4737 struct sched_domain *sd;
46cb4b7c 4738 /* Earliest time when we have to do rebalance again */
c9819f45 4739 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4740 int update_next_balance = 0;
d07355f5 4741 int need_serialize;
1da177e4 4742
46cb4b7c 4743 for_each_domain(cpu, sd) {
1da177e4
LT
4744 if (!(sd->flags & SD_LOAD_BALANCE))
4745 continue;
4746
4747 interval = sd->balance_interval;
d15bcfdb 4748 if (idle != CPU_IDLE)
1da177e4
LT
4749 interval *= sd->busy_factor;
4750
4751 /* scale ms to jiffies */
4752 interval = msecs_to_jiffies(interval);
4753 if (unlikely(!interval))
4754 interval = 1;
dd41f596
IM
4755 if (interval > HZ*NR_CPUS/10)
4756 interval = HZ*NR_CPUS/10;
4757
d07355f5 4758 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4759
d07355f5 4760 if (need_serialize) {
08c183f3
CL
4761 if (!spin_trylock(&balancing))
4762 goto out;
4763 }
4764
c9819f45 4765 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4766 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4767 /*
4768 * We've pulled tasks over so either we're no
5969fe06
NP
4769 * longer idle, or one of our SMT siblings is
4770 * not idle.
4771 */
d15bcfdb 4772 idle = CPU_NOT_IDLE;
1da177e4 4773 }
1bd77f2d 4774 sd->last_balance = jiffies;
1da177e4 4775 }
d07355f5 4776 if (need_serialize)
08c183f3
CL
4777 spin_unlock(&balancing);
4778out:
f549da84 4779 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4780 next_balance = sd->last_balance + interval;
f549da84
SS
4781 update_next_balance = 1;
4782 }
783609c6
SS
4783
4784 /*
4785 * Stop the load balance at this level. There is another
4786 * CPU in our sched group which is doing load balancing more
4787 * actively.
4788 */
4789 if (!balance)
4790 break;
1da177e4 4791 }
f549da84
SS
4792
4793 /*
4794 * next_balance will be updated only when there is a need.
4795 * When the cpu is attached to null domain for ex, it will not be
4796 * updated.
4797 */
4798 if (likely(update_next_balance))
4799 rq->next_balance = next_balance;
46cb4b7c
SS
4800}
4801
4802/*
4803 * run_rebalance_domains is triggered when needed from the scheduler tick.
4804 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4805 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4806 */
4807static void run_rebalance_domains(struct softirq_action *h)
4808{
dd41f596
IM
4809 int this_cpu = smp_processor_id();
4810 struct rq *this_rq = cpu_rq(this_cpu);
4811 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4812 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4813
dd41f596 4814 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4815
4816#ifdef CONFIG_NO_HZ
4817 /*
4818 * If this cpu is the owner for idle load balancing, then do the
4819 * balancing on behalf of the other idle cpus whose ticks are
4820 * stopped.
4821 */
dd41f596
IM
4822 if (this_rq->idle_at_tick &&
4823 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4824 struct rq *rq;
4825 int balance_cpu;
4826
7d1e6a9b
RR
4827 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4828 if (balance_cpu == this_cpu)
4829 continue;
4830
46cb4b7c
SS
4831 /*
4832 * If this cpu gets work to do, stop the load balancing
4833 * work being done for other cpus. Next load
4834 * balancing owner will pick it up.
4835 */
4836 if (need_resched())
4837 break;
4838
de0cf899 4839 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4840
4841 rq = cpu_rq(balance_cpu);
dd41f596
IM
4842 if (time_after(this_rq->next_balance, rq->next_balance))
4843 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4844 }
4845 }
4846#endif
4847}
4848
8a0be9ef
FW
4849static inline int on_null_domain(int cpu)
4850{
4851 return !rcu_dereference(cpu_rq(cpu)->sd);
4852}
4853
46cb4b7c
SS
4854/*
4855 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4856 *
4857 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4858 * idle load balancing owner or decide to stop the periodic load balancing,
4859 * if the whole system is idle.
4860 */
dd41f596 4861static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4862{
46cb4b7c
SS
4863#ifdef CONFIG_NO_HZ
4864 /*
4865 * If we were in the nohz mode recently and busy at the current
4866 * scheduler tick, then check if we need to nominate new idle
4867 * load balancer.
4868 */
4869 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4870 rq->in_nohz_recently = 0;
4871
4872 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4873 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4874 atomic_set(&nohz.load_balancer, -1);
4875 }
4876
4877 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4878 int ilb = find_new_ilb(cpu);
46cb4b7c 4879
434d53b0 4880 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4881 resched_cpu(ilb);
4882 }
4883 }
4884
4885 /*
4886 * If this cpu is idle and doing idle load balancing for all the
4887 * cpus with ticks stopped, is it time for that to stop?
4888 */
4889 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4890 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4891 resched_cpu(cpu);
4892 return;
4893 }
4894
4895 /*
4896 * If this cpu is idle and the idle load balancing is done by
4897 * someone else, then no need raise the SCHED_SOFTIRQ
4898 */
4899 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4900 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4901 return;
4902#endif
8a0be9ef
FW
4903 /* Don't need to rebalance while attached to NULL domain */
4904 if (time_after_eq(jiffies, rq->next_balance) &&
4905 likely(!on_null_domain(cpu)))
46cb4b7c 4906 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4907}
dd41f596
IM
4908
4909#else /* CONFIG_SMP */
4910
1da177e4
LT
4911/*
4912 * on UP we do not need to balance between CPUs:
4913 */
70b97a7f 4914static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4915{
4916}
dd41f596 4917
1da177e4
LT
4918#endif
4919
1da177e4
LT
4920DEFINE_PER_CPU(struct kernel_stat, kstat);
4921
4922EXPORT_PER_CPU_SYMBOL(kstat);
4923
4924/*
c5f8d995 4925 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4926 * @p in case that task is currently running.
c5f8d995
HS
4927 *
4928 * Called with task_rq_lock() held on @rq.
1da177e4 4929 */
c5f8d995
HS
4930static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4931{
4932 u64 ns = 0;
4933
4934 if (task_current(rq, p)) {
4935 update_rq_clock(rq);
4936 ns = rq->clock - p->se.exec_start;
4937 if ((s64)ns < 0)
4938 ns = 0;
4939 }
4940
4941 return ns;
4942}
4943
bb34d92f 4944unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4945{
1da177e4 4946 unsigned long flags;
41b86e9c 4947 struct rq *rq;
bb34d92f 4948 u64 ns = 0;
48f24c4d 4949
41b86e9c 4950 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4951 ns = do_task_delta_exec(p, rq);
4952 task_rq_unlock(rq, &flags);
1508487e 4953
c5f8d995
HS
4954 return ns;
4955}
f06febc9 4956
c5f8d995
HS
4957/*
4958 * Return accounted runtime for the task.
4959 * In case the task is currently running, return the runtime plus current's
4960 * pending runtime that have not been accounted yet.
4961 */
4962unsigned long long task_sched_runtime(struct task_struct *p)
4963{
4964 unsigned long flags;
4965 struct rq *rq;
4966 u64 ns = 0;
4967
4968 rq = task_rq_lock(p, &flags);
4969 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4970 task_rq_unlock(rq, &flags);
4971
4972 return ns;
4973}
48f24c4d 4974
c5f8d995
HS
4975/*
4976 * Return sum_exec_runtime for the thread group.
4977 * In case the task is currently running, return the sum plus current's
4978 * pending runtime that have not been accounted yet.
4979 *
4980 * Note that the thread group might have other running tasks as well,
4981 * so the return value not includes other pending runtime that other
4982 * running tasks might have.
4983 */
4984unsigned long long thread_group_sched_runtime(struct task_struct *p)
4985{
4986 struct task_cputime totals;
4987 unsigned long flags;
4988 struct rq *rq;
4989 u64 ns;
4990
4991 rq = task_rq_lock(p, &flags);
4992 thread_group_cputime(p, &totals);
4993 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4994 task_rq_unlock(rq, &flags);
48f24c4d 4995
1da177e4
LT
4996 return ns;
4997}
4998
1da177e4
LT
4999/*
5000 * Account user cpu time to a process.
5001 * @p: the process that the cpu time gets accounted to
1da177e4 5002 * @cputime: the cpu time spent in user space since the last update
457533a7 5003 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 5004 */
457533a7
MS
5005void account_user_time(struct task_struct *p, cputime_t cputime,
5006 cputime_t cputime_scaled)
1da177e4
LT
5007{
5008 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5009 cputime64_t tmp;
5010
457533a7 5011 /* Add user time to process. */
1da177e4 5012 p->utime = cputime_add(p->utime, cputime);
457533a7 5013 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5014 account_group_user_time(p, cputime);
1da177e4
LT
5015
5016 /* Add user time to cpustat. */
5017 tmp = cputime_to_cputime64(cputime);
5018 if (TASK_NICE(p) > 0)
5019 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5020 else
5021 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5022
5023 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5024 /* Account for user time used */
5025 acct_update_integrals(p);
1da177e4
LT
5026}
5027
94886b84
LV
5028/*
5029 * Account guest cpu time to a process.
5030 * @p: the process that the cpu time gets accounted to
5031 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5032 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5033 */
457533a7
MS
5034static void account_guest_time(struct task_struct *p, cputime_t cputime,
5035 cputime_t cputime_scaled)
94886b84
LV
5036{
5037 cputime64_t tmp;
5038 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5039
5040 tmp = cputime_to_cputime64(cputime);
5041
457533a7 5042 /* Add guest time to process. */
94886b84 5043 p->utime = cputime_add(p->utime, cputime);
457533a7 5044 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5045 account_group_user_time(p, cputime);
94886b84
LV
5046 p->gtime = cputime_add(p->gtime, cputime);
5047
457533a7 5048 /* Add guest time to cpustat. */
ce0e7b28
RO
5049 if (TASK_NICE(p) > 0) {
5050 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5051 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5052 } else {
5053 cpustat->user = cputime64_add(cpustat->user, tmp);
5054 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5055 }
94886b84
LV
5056}
5057
1da177e4
LT
5058/*
5059 * Account system cpu time to a process.
5060 * @p: the process that the cpu time gets accounted to
5061 * @hardirq_offset: the offset to subtract from hardirq_count()
5062 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5063 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5064 */
5065void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5066 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5067{
5068 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5069 cputime64_t tmp;
5070
983ed7a6 5071 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5072 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5073 return;
5074 }
94886b84 5075
457533a7 5076 /* Add system time to process. */
1da177e4 5077 p->stime = cputime_add(p->stime, cputime);
457533a7 5078 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5079 account_group_system_time(p, cputime);
1da177e4
LT
5080
5081 /* Add system time to cpustat. */
5082 tmp = cputime_to_cputime64(cputime);
5083 if (hardirq_count() - hardirq_offset)
5084 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5085 else if (softirq_count())
5086 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5087 else
79741dd3
MS
5088 cpustat->system = cputime64_add(cpustat->system, tmp);
5089
ef12fefa
BR
5090 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5091
1da177e4
LT
5092 /* Account for system time used */
5093 acct_update_integrals(p);
1da177e4
LT
5094}
5095
c66f08be 5096/*
1da177e4 5097 * Account for involuntary wait time.
1da177e4 5098 * @steal: the cpu time spent in involuntary wait
c66f08be 5099 */
79741dd3 5100void account_steal_time(cputime_t cputime)
c66f08be 5101{
79741dd3
MS
5102 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5103 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5104
5105 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5106}
5107
1da177e4 5108/*
79741dd3
MS
5109 * Account for idle time.
5110 * @cputime: the cpu time spent in idle wait
1da177e4 5111 */
79741dd3 5112void account_idle_time(cputime_t cputime)
1da177e4
LT
5113{
5114 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5115 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5116 struct rq *rq = this_rq();
1da177e4 5117
79741dd3
MS
5118 if (atomic_read(&rq->nr_iowait) > 0)
5119 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5120 else
5121 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5122}
5123
79741dd3
MS
5124#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5125
5126/*
5127 * Account a single tick of cpu time.
5128 * @p: the process that the cpu time gets accounted to
5129 * @user_tick: indicates if the tick is a user or a system tick
5130 */
5131void account_process_tick(struct task_struct *p, int user_tick)
5132{
a42548a1 5133 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5134 struct rq *rq = this_rq();
5135
5136 if (user_tick)
a42548a1 5137 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5138 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5139 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5140 one_jiffy_scaled);
5141 else
a42548a1 5142 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5143}
5144
5145/*
5146 * Account multiple ticks of steal time.
5147 * @p: the process from which the cpu time has been stolen
5148 * @ticks: number of stolen ticks
5149 */
5150void account_steal_ticks(unsigned long ticks)
5151{
5152 account_steal_time(jiffies_to_cputime(ticks));
5153}
5154
5155/*
5156 * Account multiple ticks of idle time.
5157 * @ticks: number of stolen ticks
5158 */
5159void account_idle_ticks(unsigned long ticks)
5160{
5161 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5162}
5163
79741dd3
MS
5164#endif
5165
49048622
BS
5166/*
5167 * Use precise platform statistics if available:
5168 */
5169#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 5170void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5171{
d99ca3b9
HS
5172 *ut = p->utime;
5173 *st = p->stime;
49048622
BS
5174}
5175
0cf55e1e 5176void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5177{
0cf55e1e
HS
5178 struct task_cputime cputime;
5179
5180 thread_group_cputime(p, &cputime);
5181
5182 *ut = cputime.utime;
5183 *st = cputime.stime;
49048622
BS
5184}
5185#else
761b1d26
HS
5186
5187#ifndef nsecs_to_cputime
b7b20df9 5188# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
5189#endif
5190
d180c5bc 5191void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5192{
d99ca3b9 5193 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
5194
5195 /*
5196 * Use CFS's precise accounting:
5197 */
d180c5bc 5198 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
5199
5200 if (total) {
d180c5bc
HS
5201 u64 temp;
5202
5203 temp = (u64)(rtime * utime);
49048622 5204 do_div(temp, total);
d180c5bc
HS
5205 utime = (cputime_t)temp;
5206 } else
5207 utime = rtime;
49048622 5208
d180c5bc
HS
5209 /*
5210 * Compare with previous values, to keep monotonicity:
5211 */
761b1d26 5212 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 5213 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 5214
d99ca3b9
HS
5215 *ut = p->prev_utime;
5216 *st = p->prev_stime;
49048622
BS
5217}
5218
0cf55e1e
HS
5219/*
5220 * Must be called with siglock held.
5221 */
5222void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5223{
0cf55e1e
HS
5224 struct signal_struct *sig = p->signal;
5225 struct task_cputime cputime;
5226 cputime_t rtime, utime, total;
49048622 5227
0cf55e1e 5228 thread_group_cputime(p, &cputime);
49048622 5229
0cf55e1e
HS
5230 total = cputime_add(cputime.utime, cputime.stime);
5231 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 5232
0cf55e1e
HS
5233 if (total) {
5234 u64 temp;
49048622 5235
0cf55e1e
HS
5236 temp = (u64)(rtime * cputime.utime);
5237 do_div(temp, total);
5238 utime = (cputime_t)temp;
5239 } else
5240 utime = rtime;
5241
5242 sig->prev_utime = max(sig->prev_utime, utime);
5243 sig->prev_stime = max(sig->prev_stime,
5244 cputime_sub(rtime, sig->prev_utime));
5245
5246 *ut = sig->prev_utime;
5247 *st = sig->prev_stime;
49048622 5248}
49048622 5249#endif
49048622 5250
7835b98b
CL
5251/*
5252 * This function gets called by the timer code, with HZ frequency.
5253 * We call it with interrupts disabled.
5254 *
5255 * It also gets called by the fork code, when changing the parent's
5256 * timeslices.
5257 */
5258void scheduler_tick(void)
5259{
7835b98b
CL
5260 int cpu = smp_processor_id();
5261 struct rq *rq = cpu_rq(cpu);
dd41f596 5262 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5263
5264 sched_clock_tick();
dd41f596
IM
5265
5266 spin_lock(&rq->lock);
3e51f33f 5267 update_rq_clock(rq);
f1a438d8 5268 update_cpu_load(rq);
fa85ae24 5269 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5270 spin_unlock(&rq->lock);
7835b98b 5271
cdd6c482 5272 perf_event_task_tick(curr, cpu);
e220d2dc 5273
e418e1c2 5274#ifdef CONFIG_SMP
dd41f596
IM
5275 rq->idle_at_tick = idle_cpu(cpu);
5276 trigger_load_balance(rq, cpu);
e418e1c2 5277#endif
1da177e4
LT
5278}
5279
132380a0 5280notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5281{
5282 if (in_lock_functions(addr)) {
5283 addr = CALLER_ADDR2;
5284 if (in_lock_functions(addr))
5285 addr = CALLER_ADDR3;
5286 }
5287 return addr;
5288}
1da177e4 5289
7e49fcce
SR
5290#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5291 defined(CONFIG_PREEMPT_TRACER))
5292
43627582 5293void __kprobes add_preempt_count(int val)
1da177e4 5294{
6cd8a4bb 5295#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5296 /*
5297 * Underflow?
5298 */
9a11b49a
IM
5299 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5300 return;
6cd8a4bb 5301#endif
1da177e4 5302 preempt_count() += val;
6cd8a4bb 5303#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5304 /*
5305 * Spinlock count overflowing soon?
5306 */
33859f7f
MOS
5307 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5308 PREEMPT_MASK - 10);
6cd8a4bb
SR
5309#endif
5310 if (preempt_count() == val)
5311 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5312}
5313EXPORT_SYMBOL(add_preempt_count);
5314
43627582 5315void __kprobes sub_preempt_count(int val)
1da177e4 5316{
6cd8a4bb 5317#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5318 /*
5319 * Underflow?
5320 */
01e3eb82 5321 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5322 return;
1da177e4
LT
5323 /*
5324 * Is the spinlock portion underflowing?
5325 */
9a11b49a
IM
5326 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5327 !(preempt_count() & PREEMPT_MASK)))
5328 return;
6cd8a4bb 5329#endif
9a11b49a 5330
6cd8a4bb
SR
5331 if (preempt_count() == val)
5332 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5333 preempt_count() -= val;
5334}
5335EXPORT_SYMBOL(sub_preempt_count);
5336
5337#endif
5338
5339/*
dd41f596 5340 * Print scheduling while atomic bug:
1da177e4 5341 */
dd41f596 5342static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5343{
838225b4
SS
5344 struct pt_regs *regs = get_irq_regs();
5345
5346 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5347 prev->comm, prev->pid, preempt_count());
5348
dd41f596 5349 debug_show_held_locks(prev);
e21f5b15 5350 print_modules();
dd41f596
IM
5351 if (irqs_disabled())
5352 print_irqtrace_events(prev);
838225b4
SS
5353
5354 if (regs)
5355 show_regs(regs);
5356 else
5357 dump_stack();
dd41f596 5358}
1da177e4 5359
dd41f596
IM
5360/*
5361 * Various schedule()-time debugging checks and statistics:
5362 */
5363static inline void schedule_debug(struct task_struct *prev)
5364{
1da177e4 5365 /*
41a2d6cf 5366 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5367 * schedule() atomically, we ignore that path for now.
5368 * Otherwise, whine if we are scheduling when we should not be.
5369 */
3f33a7ce 5370 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5371 __schedule_bug(prev);
5372
1da177e4
LT
5373 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5374
2d72376b 5375 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5376#ifdef CONFIG_SCHEDSTATS
5377 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5378 schedstat_inc(this_rq(), bkl_count);
5379 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5380 }
5381#endif
dd41f596
IM
5382}
5383
6cecd084 5384static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 5385{
6cecd084
PZ
5386 if (prev->state == TASK_RUNNING) {
5387 u64 runtime = prev->se.sum_exec_runtime;
df1c99d4 5388
6cecd084
PZ
5389 runtime -= prev->se.prev_sum_exec_runtime;
5390 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
df1c99d4
MG
5391
5392 /*
5393 * In order to avoid avg_overlap growing stale when we are
5394 * indeed overlapping and hence not getting put to sleep, grow
5395 * the avg_overlap on preemption.
5396 *
5397 * We use the average preemption runtime because that
5398 * correlates to the amount of cache footprint a task can
5399 * build up.
5400 */
6cecd084 5401 update_avg(&prev->se.avg_overlap, runtime);
df1c99d4 5402 }
6cecd084 5403 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
5404}
5405
dd41f596
IM
5406/*
5407 * Pick up the highest-prio task:
5408 */
5409static inline struct task_struct *
b67802ea 5410pick_next_task(struct rq *rq)
dd41f596 5411{
5522d5d5 5412 const struct sched_class *class;
dd41f596 5413 struct task_struct *p;
1da177e4
LT
5414
5415 /*
dd41f596
IM
5416 * Optimization: we know that if all tasks are in
5417 * the fair class we can call that function directly:
1da177e4 5418 */
dd41f596 5419 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5420 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5421 if (likely(p))
5422 return p;
1da177e4
LT
5423 }
5424
dd41f596
IM
5425 class = sched_class_highest;
5426 for ( ; ; ) {
fb8d4724 5427 p = class->pick_next_task(rq);
dd41f596
IM
5428 if (p)
5429 return p;
5430 /*
5431 * Will never be NULL as the idle class always
5432 * returns a non-NULL p:
5433 */
5434 class = class->next;
5435 }
5436}
1da177e4 5437
dd41f596
IM
5438/*
5439 * schedule() is the main scheduler function.
5440 */
ff743345 5441asmlinkage void __sched schedule(void)
dd41f596
IM
5442{
5443 struct task_struct *prev, *next;
67ca7bde 5444 unsigned long *switch_count;
dd41f596 5445 struct rq *rq;
31656519 5446 int cpu;
dd41f596 5447
ff743345
PZ
5448need_resched:
5449 preempt_disable();
dd41f596
IM
5450 cpu = smp_processor_id();
5451 rq = cpu_rq(cpu);
d6714c22 5452 rcu_sched_qs(cpu);
dd41f596
IM
5453 prev = rq->curr;
5454 switch_count = &prev->nivcsw;
5455
5456 release_kernel_lock(prev);
5457need_resched_nonpreemptible:
5458
5459 schedule_debug(prev);
1da177e4 5460
31656519 5461 if (sched_feat(HRTICK))
f333fdc9 5462 hrtick_clear(rq);
8f4d37ec 5463
8cd162ce 5464 spin_lock_irq(&rq->lock);
3e51f33f 5465 update_rq_clock(rq);
1e819950 5466 clear_tsk_need_resched(prev);
1da177e4 5467
1da177e4 5468 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5469 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5470 prev->state = TASK_RUNNING;
16882c1e 5471 else
2e1cb74a 5472 deactivate_task(rq, prev, 1);
dd41f596 5473 switch_count = &prev->nvcsw;
1da177e4
LT
5474 }
5475
3f029d3c 5476 pre_schedule(rq, prev);
f65eda4f 5477
dd41f596 5478 if (unlikely(!rq->nr_running))
1da177e4 5479 idle_balance(cpu, rq);
1da177e4 5480
df1c99d4 5481 put_prev_task(rq, prev);
b67802ea 5482 next = pick_next_task(rq);
1da177e4 5483
1da177e4 5484 if (likely(prev != next)) {
673a90a1 5485 sched_info_switch(prev, next);
cdd6c482 5486 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5487
1da177e4
LT
5488 rq->nr_switches++;
5489 rq->curr = next;
5490 ++*switch_count;
5491
dd41f596 5492 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5493 /*
5494 * the context switch might have flipped the stack from under
5495 * us, hence refresh the local variables.
5496 */
5497 cpu = smp_processor_id();
5498 rq = cpu_rq(cpu);
1da177e4
LT
5499 } else
5500 spin_unlock_irq(&rq->lock);
5501
3f029d3c 5502 post_schedule(rq);
1da177e4 5503
8f4d37ec 5504 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5505 goto need_resched_nonpreemptible;
8f4d37ec 5506
1da177e4 5507 preempt_enable_no_resched();
ff743345 5508 if (need_resched())
1da177e4
LT
5509 goto need_resched;
5510}
1da177e4
LT
5511EXPORT_SYMBOL(schedule);
5512
c08f7829 5513#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
5514/*
5515 * Look out! "owner" is an entirely speculative pointer
5516 * access and not reliable.
5517 */
5518int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5519{
5520 unsigned int cpu;
5521 struct rq *rq;
5522
5523 if (!sched_feat(OWNER_SPIN))
5524 return 0;
5525
5526#ifdef CONFIG_DEBUG_PAGEALLOC
5527 /*
5528 * Need to access the cpu field knowing that
5529 * DEBUG_PAGEALLOC could have unmapped it if
5530 * the mutex owner just released it and exited.
5531 */
5532 if (probe_kernel_address(&owner->cpu, cpu))
5533 goto out;
5534#else
5535 cpu = owner->cpu;
5536#endif
5537
5538 /*
5539 * Even if the access succeeded (likely case),
5540 * the cpu field may no longer be valid.
5541 */
5542 if (cpu >= nr_cpumask_bits)
5543 goto out;
5544
5545 /*
5546 * We need to validate that we can do a
5547 * get_cpu() and that we have the percpu area.
5548 */
5549 if (!cpu_online(cpu))
5550 goto out;
5551
5552 rq = cpu_rq(cpu);
5553
5554 for (;;) {
5555 /*
5556 * Owner changed, break to re-assess state.
5557 */
5558 if (lock->owner != owner)
5559 break;
5560
5561 /*
5562 * Is that owner really running on that cpu?
5563 */
5564 if (task_thread_info(rq->curr) != owner || need_resched())
5565 return 0;
5566
5567 cpu_relax();
5568 }
5569out:
5570 return 1;
5571}
5572#endif
5573
1da177e4
LT
5574#ifdef CONFIG_PREEMPT
5575/*
2ed6e34f 5576 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5577 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5578 * occur there and call schedule directly.
5579 */
5580asmlinkage void __sched preempt_schedule(void)
5581{
5582 struct thread_info *ti = current_thread_info();
6478d880 5583
1da177e4
LT
5584 /*
5585 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5586 * we do not want to preempt the current task. Just return..
1da177e4 5587 */
beed33a8 5588 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5589 return;
5590
3a5c359a
AK
5591 do {
5592 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5593 schedule();
3a5c359a 5594 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5595
3a5c359a
AK
5596 /*
5597 * Check again in case we missed a preemption opportunity
5598 * between schedule and now.
5599 */
5600 barrier();
5ed0cec0 5601 } while (need_resched());
1da177e4 5602}
1da177e4
LT
5603EXPORT_SYMBOL(preempt_schedule);
5604
5605/*
2ed6e34f 5606 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5607 * off of irq context.
5608 * Note, that this is called and return with irqs disabled. This will
5609 * protect us against recursive calling from irq.
5610 */
5611asmlinkage void __sched preempt_schedule_irq(void)
5612{
5613 struct thread_info *ti = current_thread_info();
6478d880 5614
2ed6e34f 5615 /* Catch callers which need to be fixed */
1da177e4
LT
5616 BUG_ON(ti->preempt_count || !irqs_disabled());
5617
3a5c359a
AK
5618 do {
5619 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5620 local_irq_enable();
5621 schedule();
5622 local_irq_disable();
3a5c359a 5623 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5624
3a5c359a
AK
5625 /*
5626 * Check again in case we missed a preemption opportunity
5627 * between schedule and now.
5628 */
5629 barrier();
5ed0cec0 5630 } while (need_resched());
1da177e4
LT
5631}
5632
5633#endif /* CONFIG_PREEMPT */
5634
63859d4f 5635int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5636 void *key)
1da177e4 5637{
63859d4f 5638 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5639}
1da177e4
LT
5640EXPORT_SYMBOL(default_wake_function);
5641
5642/*
41a2d6cf
IM
5643 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5644 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5645 * number) then we wake all the non-exclusive tasks and one exclusive task.
5646 *
5647 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5648 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5649 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5650 */
78ddb08f 5651static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5652 int nr_exclusive, int wake_flags, void *key)
1da177e4 5653{
2e45874c 5654 wait_queue_t *curr, *next;
1da177e4 5655
2e45874c 5656 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5657 unsigned flags = curr->flags;
5658
63859d4f 5659 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5660 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5661 break;
5662 }
5663}
5664
5665/**
5666 * __wake_up - wake up threads blocked on a waitqueue.
5667 * @q: the waitqueue
5668 * @mode: which threads
5669 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5670 * @key: is directly passed to the wakeup function
50fa610a
DH
5671 *
5672 * It may be assumed that this function implies a write memory barrier before
5673 * changing the task state if and only if any tasks are woken up.
1da177e4 5674 */
7ad5b3a5 5675void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5676 int nr_exclusive, void *key)
1da177e4
LT
5677{
5678 unsigned long flags;
5679
5680 spin_lock_irqsave(&q->lock, flags);
5681 __wake_up_common(q, mode, nr_exclusive, 0, key);
5682 spin_unlock_irqrestore(&q->lock, flags);
5683}
1da177e4
LT
5684EXPORT_SYMBOL(__wake_up);
5685
5686/*
5687 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5688 */
7ad5b3a5 5689void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5690{
5691 __wake_up_common(q, mode, 1, 0, NULL);
5692}
5693
4ede816a
DL
5694void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5695{
5696 __wake_up_common(q, mode, 1, 0, key);
5697}
5698
1da177e4 5699/**
4ede816a 5700 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5701 * @q: the waitqueue
5702 * @mode: which threads
5703 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5704 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5705 *
5706 * The sync wakeup differs that the waker knows that it will schedule
5707 * away soon, so while the target thread will be woken up, it will not
5708 * be migrated to another CPU - ie. the two threads are 'synchronized'
5709 * with each other. This can prevent needless bouncing between CPUs.
5710 *
5711 * On UP it can prevent extra preemption.
50fa610a
DH
5712 *
5713 * It may be assumed that this function implies a write memory barrier before
5714 * changing the task state if and only if any tasks are woken up.
1da177e4 5715 */
4ede816a
DL
5716void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5717 int nr_exclusive, void *key)
1da177e4
LT
5718{
5719 unsigned long flags;
7d478721 5720 int wake_flags = WF_SYNC;
1da177e4
LT
5721
5722 if (unlikely(!q))
5723 return;
5724
5725 if (unlikely(!nr_exclusive))
7d478721 5726 wake_flags = 0;
1da177e4
LT
5727
5728 spin_lock_irqsave(&q->lock, flags);
7d478721 5729 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5730 spin_unlock_irqrestore(&q->lock, flags);
5731}
4ede816a
DL
5732EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5733
5734/*
5735 * __wake_up_sync - see __wake_up_sync_key()
5736 */
5737void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5738{
5739 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5740}
1da177e4
LT
5741EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5742
65eb3dc6
KD
5743/**
5744 * complete: - signals a single thread waiting on this completion
5745 * @x: holds the state of this particular completion
5746 *
5747 * This will wake up a single thread waiting on this completion. Threads will be
5748 * awakened in the same order in which they were queued.
5749 *
5750 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5751 *
5752 * It may be assumed that this function implies a write memory barrier before
5753 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5754 */
b15136e9 5755void complete(struct completion *x)
1da177e4
LT
5756{
5757 unsigned long flags;
5758
5759 spin_lock_irqsave(&x->wait.lock, flags);
5760 x->done++;
d9514f6c 5761 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5762 spin_unlock_irqrestore(&x->wait.lock, flags);
5763}
5764EXPORT_SYMBOL(complete);
5765
65eb3dc6
KD
5766/**
5767 * complete_all: - signals all threads waiting on this completion
5768 * @x: holds the state of this particular completion
5769 *
5770 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5771 *
5772 * It may be assumed that this function implies a write memory barrier before
5773 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5774 */
b15136e9 5775void complete_all(struct completion *x)
1da177e4
LT
5776{
5777 unsigned long flags;
5778
5779 spin_lock_irqsave(&x->wait.lock, flags);
5780 x->done += UINT_MAX/2;
d9514f6c 5781 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5782 spin_unlock_irqrestore(&x->wait.lock, flags);
5783}
5784EXPORT_SYMBOL(complete_all);
5785
8cbbe86d
AK
5786static inline long __sched
5787do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5788{
1da177e4
LT
5789 if (!x->done) {
5790 DECLARE_WAITQUEUE(wait, current);
5791
5792 wait.flags |= WQ_FLAG_EXCLUSIVE;
5793 __add_wait_queue_tail(&x->wait, &wait);
5794 do {
94d3d824 5795 if (signal_pending_state(state, current)) {
ea71a546
ON
5796 timeout = -ERESTARTSYS;
5797 break;
8cbbe86d
AK
5798 }
5799 __set_current_state(state);
1da177e4
LT
5800 spin_unlock_irq(&x->wait.lock);
5801 timeout = schedule_timeout(timeout);
5802 spin_lock_irq(&x->wait.lock);
ea71a546 5803 } while (!x->done && timeout);
1da177e4 5804 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5805 if (!x->done)
5806 return timeout;
1da177e4
LT
5807 }
5808 x->done--;
ea71a546 5809 return timeout ?: 1;
1da177e4 5810}
1da177e4 5811
8cbbe86d
AK
5812static long __sched
5813wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5814{
1da177e4
LT
5815 might_sleep();
5816
5817 spin_lock_irq(&x->wait.lock);
8cbbe86d 5818 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5819 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5820 return timeout;
5821}
1da177e4 5822
65eb3dc6
KD
5823/**
5824 * wait_for_completion: - waits for completion of a task
5825 * @x: holds the state of this particular completion
5826 *
5827 * This waits to be signaled for completion of a specific task. It is NOT
5828 * interruptible and there is no timeout.
5829 *
5830 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5831 * and interrupt capability. Also see complete().
5832 */
b15136e9 5833void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5834{
5835 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5836}
8cbbe86d 5837EXPORT_SYMBOL(wait_for_completion);
1da177e4 5838
65eb3dc6
KD
5839/**
5840 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5841 * @x: holds the state of this particular completion
5842 * @timeout: timeout value in jiffies
5843 *
5844 * This waits for either a completion of a specific task to be signaled or for a
5845 * specified timeout to expire. The timeout is in jiffies. It is not
5846 * interruptible.
5847 */
b15136e9 5848unsigned long __sched
8cbbe86d 5849wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5850{
8cbbe86d 5851 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5852}
8cbbe86d 5853EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5854
65eb3dc6
KD
5855/**
5856 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5857 * @x: holds the state of this particular completion
5858 *
5859 * This waits for completion of a specific task to be signaled. It is
5860 * interruptible.
5861 */
8cbbe86d 5862int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5863{
51e97990
AK
5864 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5865 if (t == -ERESTARTSYS)
5866 return t;
5867 return 0;
0fec171c 5868}
8cbbe86d 5869EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5870
65eb3dc6
KD
5871/**
5872 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5873 * @x: holds the state of this particular completion
5874 * @timeout: timeout value in jiffies
5875 *
5876 * This waits for either a completion of a specific task to be signaled or for a
5877 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5878 */
b15136e9 5879unsigned long __sched
8cbbe86d
AK
5880wait_for_completion_interruptible_timeout(struct completion *x,
5881 unsigned long timeout)
0fec171c 5882{
8cbbe86d 5883 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5884}
8cbbe86d 5885EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5886
65eb3dc6
KD
5887/**
5888 * wait_for_completion_killable: - waits for completion of a task (killable)
5889 * @x: holds the state of this particular completion
5890 *
5891 * This waits to be signaled for completion of a specific task. It can be
5892 * interrupted by a kill signal.
5893 */
009e577e
MW
5894int __sched wait_for_completion_killable(struct completion *x)
5895{
5896 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5897 if (t == -ERESTARTSYS)
5898 return t;
5899 return 0;
5900}
5901EXPORT_SYMBOL(wait_for_completion_killable);
5902
be4de352
DC
5903/**
5904 * try_wait_for_completion - try to decrement a completion without blocking
5905 * @x: completion structure
5906 *
5907 * Returns: 0 if a decrement cannot be done without blocking
5908 * 1 if a decrement succeeded.
5909 *
5910 * If a completion is being used as a counting completion,
5911 * attempt to decrement the counter without blocking. This
5912 * enables us to avoid waiting if the resource the completion
5913 * is protecting is not available.
5914 */
5915bool try_wait_for_completion(struct completion *x)
5916{
5917 int ret = 1;
5918
5919 spin_lock_irq(&x->wait.lock);
5920 if (!x->done)
5921 ret = 0;
5922 else
5923 x->done--;
5924 spin_unlock_irq(&x->wait.lock);
5925 return ret;
5926}
5927EXPORT_SYMBOL(try_wait_for_completion);
5928
5929/**
5930 * completion_done - Test to see if a completion has any waiters
5931 * @x: completion structure
5932 *
5933 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5934 * 1 if there are no waiters.
5935 *
5936 */
5937bool completion_done(struct completion *x)
5938{
5939 int ret = 1;
5940
5941 spin_lock_irq(&x->wait.lock);
5942 if (!x->done)
5943 ret = 0;
5944 spin_unlock_irq(&x->wait.lock);
5945 return ret;
5946}
5947EXPORT_SYMBOL(completion_done);
5948
8cbbe86d
AK
5949static long __sched
5950sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5951{
0fec171c
IM
5952 unsigned long flags;
5953 wait_queue_t wait;
5954
5955 init_waitqueue_entry(&wait, current);
1da177e4 5956
8cbbe86d 5957 __set_current_state(state);
1da177e4 5958
8cbbe86d
AK
5959 spin_lock_irqsave(&q->lock, flags);
5960 __add_wait_queue(q, &wait);
5961 spin_unlock(&q->lock);
5962 timeout = schedule_timeout(timeout);
5963 spin_lock_irq(&q->lock);
5964 __remove_wait_queue(q, &wait);
5965 spin_unlock_irqrestore(&q->lock, flags);
5966
5967 return timeout;
5968}
5969
5970void __sched interruptible_sleep_on(wait_queue_head_t *q)
5971{
5972 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5973}
1da177e4
LT
5974EXPORT_SYMBOL(interruptible_sleep_on);
5975
0fec171c 5976long __sched
95cdf3b7 5977interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5978{
8cbbe86d 5979 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5980}
1da177e4
LT
5981EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5982
0fec171c 5983void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5984{
8cbbe86d 5985 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5986}
1da177e4
LT
5987EXPORT_SYMBOL(sleep_on);
5988
0fec171c 5989long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5990{
8cbbe86d 5991 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5992}
1da177e4
LT
5993EXPORT_SYMBOL(sleep_on_timeout);
5994
b29739f9
IM
5995#ifdef CONFIG_RT_MUTEXES
5996
5997/*
5998 * rt_mutex_setprio - set the current priority of a task
5999 * @p: task
6000 * @prio: prio value (kernel-internal form)
6001 *
6002 * This function changes the 'effective' priority of a task. It does
6003 * not touch ->normal_prio like __setscheduler().
6004 *
6005 * Used by the rt_mutex code to implement priority inheritance logic.
6006 */
36c8b586 6007void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
6008{
6009 unsigned long flags;
83b699ed 6010 int oldprio, on_rq, running;
70b97a7f 6011 struct rq *rq;
cb469845 6012 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
6013
6014 BUG_ON(prio < 0 || prio > MAX_PRIO);
6015
6016 rq = task_rq_lock(p, &flags);
a8e504d2 6017 update_rq_clock(rq);
b29739f9 6018
d5f9f942 6019 oldprio = p->prio;
dd41f596 6020 on_rq = p->se.on_rq;
051a1d1a 6021 running = task_current(rq, p);
0e1f3483 6022 if (on_rq)
69be72c1 6023 dequeue_task(rq, p, 0);
0e1f3483
HS
6024 if (running)
6025 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
6026
6027 if (rt_prio(prio))
6028 p->sched_class = &rt_sched_class;
6029 else
6030 p->sched_class = &fair_sched_class;
6031
b29739f9
IM
6032 p->prio = prio;
6033
0e1f3483
HS
6034 if (running)
6035 p->sched_class->set_curr_task(rq);
dd41f596 6036 if (on_rq) {
8159f87e 6037 enqueue_task(rq, p, 0);
cb469845
SR
6038
6039 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6040 }
6041 task_rq_unlock(rq, &flags);
6042}
6043
6044#endif
6045
36c8b586 6046void set_user_nice(struct task_struct *p, long nice)
1da177e4 6047{
dd41f596 6048 int old_prio, delta, on_rq;
1da177e4 6049 unsigned long flags;
70b97a7f 6050 struct rq *rq;
1da177e4
LT
6051
6052 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6053 return;
6054 /*
6055 * We have to be careful, if called from sys_setpriority(),
6056 * the task might be in the middle of scheduling on another CPU.
6057 */
6058 rq = task_rq_lock(p, &flags);
a8e504d2 6059 update_rq_clock(rq);
1da177e4
LT
6060 /*
6061 * The RT priorities are set via sched_setscheduler(), but we still
6062 * allow the 'normal' nice value to be set - but as expected
6063 * it wont have any effect on scheduling until the task is
dd41f596 6064 * SCHED_FIFO/SCHED_RR:
1da177e4 6065 */
e05606d3 6066 if (task_has_rt_policy(p)) {
1da177e4
LT
6067 p->static_prio = NICE_TO_PRIO(nice);
6068 goto out_unlock;
6069 }
dd41f596 6070 on_rq = p->se.on_rq;
c09595f6 6071 if (on_rq)
69be72c1 6072 dequeue_task(rq, p, 0);
1da177e4 6073
1da177e4 6074 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6075 set_load_weight(p);
b29739f9
IM
6076 old_prio = p->prio;
6077 p->prio = effective_prio(p);
6078 delta = p->prio - old_prio;
1da177e4 6079
dd41f596 6080 if (on_rq) {
8159f87e 6081 enqueue_task(rq, p, 0);
1da177e4 6082 /*
d5f9f942
AM
6083 * If the task increased its priority or is running and
6084 * lowered its priority, then reschedule its CPU:
1da177e4 6085 */
d5f9f942 6086 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6087 resched_task(rq->curr);
6088 }
6089out_unlock:
6090 task_rq_unlock(rq, &flags);
6091}
1da177e4
LT
6092EXPORT_SYMBOL(set_user_nice);
6093
e43379f1
MM
6094/*
6095 * can_nice - check if a task can reduce its nice value
6096 * @p: task
6097 * @nice: nice value
6098 */
36c8b586 6099int can_nice(const struct task_struct *p, const int nice)
e43379f1 6100{
024f4747
MM
6101 /* convert nice value [19,-20] to rlimit style value [1,40] */
6102 int nice_rlim = 20 - nice;
48f24c4d 6103
e43379f1
MM
6104 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6105 capable(CAP_SYS_NICE));
6106}
6107
1da177e4
LT
6108#ifdef __ARCH_WANT_SYS_NICE
6109
6110/*
6111 * sys_nice - change the priority of the current process.
6112 * @increment: priority increment
6113 *
6114 * sys_setpriority is a more generic, but much slower function that
6115 * does similar things.
6116 */
5add95d4 6117SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6118{
48f24c4d 6119 long nice, retval;
1da177e4
LT
6120
6121 /*
6122 * Setpriority might change our priority at the same moment.
6123 * We don't have to worry. Conceptually one call occurs first
6124 * and we have a single winner.
6125 */
e43379f1
MM
6126 if (increment < -40)
6127 increment = -40;
1da177e4
LT
6128 if (increment > 40)
6129 increment = 40;
6130
2b8f836f 6131 nice = TASK_NICE(current) + increment;
1da177e4
LT
6132 if (nice < -20)
6133 nice = -20;
6134 if (nice > 19)
6135 nice = 19;
6136
e43379f1
MM
6137 if (increment < 0 && !can_nice(current, nice))
6138 return -EPERM;
6139
1da177e4
LT
6140 retval = security_task_setnice(current, nice);
6141 if (retval)
6142 return retval;
6143
6144 set_user_nice(current, nice);
6145 return 0;
6146}
6147
6148#endif
6149
6150/**
6151 * task_prio - return the priority value of a given task.
6152 * @p: the task in question.
6153 *
6154 * This is the priority value as seen by users in /proc.
6155 * RT tasks are offset by -200. Normal tasks are centered
6156 * around 0, value goes from -16 to +15.
6157 */
36c8b586 6158int task_prio(const struct task_struct *p)
1da177e4
LT
6159{
6160 return p->prio - MAX_RT_PRIO;
6161}
6162
6163/**
6164 * task_nice - return the nice value of a given task.
6165 * @p: the task in question.
6166 */
36c8b586 6167int task_nice(const struct task_struct *p)
1da177e4
LT
6168{
6169 return TASK_NICE(p);
6170}
150d8bed 6171EXPORT_SYMBOL(task_nice);
1da177e4
LT
6172
6173/**
6174 * idle_cpu - is a given cpu idle currently?
6175 * @cpu: the processor in question.
6176 */
6177int idle_cpu(int cpu)
6178{
6179 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6180}
6181
1da177e4
LT
6182/**
6183 * idle_task - return the idle task for a given cpu.
6184 * @cpu: the processor in question.
6185 */
36c8b586 6186struct task_struct *idle_task(int cpu)
1da177e4
LT
6187{
6188 return cpu_rq(cpu)->idle;
6189}
6190
6191/**
6192 * find_process_by_pid - find a process with a matching PID value.
6193 * @pid: the pid in question.
6194 */
a9957449 6195static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6196{
228ebcbe 6197 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6198}
6199
6200/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6201static void
6202__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6203{
dd41f596 6204 BUG_ON(p->se.on_rq);
48f24c4d 6205
1da177e4
LT
6206 p->policy = policy;
6207 p->rt_priority = prio;
b29739f9
IM
6208 p->normal_prio = normal_prio(p);
6209 /* we are holding p->pi_lock already */
6210 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
6211 if (rt_prio(p->prio))
6212 p->sched_class = &rt_sched_class;
6213 else
6214 p->sched_class = &fair_sched_class;
2dd73a4f 6215 set_load_weight(p);
1da177e4
LT
6216}
6217
c69e8d9c
DH
6218/*
6219 * check the target process has a UID that matches the current process's
6220 */
6221static bool check_same_owner(struct task_struct *p)
6222{
6223 const struct cred *cred = current_cred(), *pcred;
6224 bool match;
6225
6226 rcu_read_lock();
6227 pcred = __task_cred(p);
6228 match = (cred->euid == pcred->euid ||
6229 cred->euid == pcred->uid);
6230 rcu_read_unlock();
6231 return match;
6232}
6233
961ccddd
RR
6234static int __sched_setscheduler(struct task_struct *p, int policy,
6235 struct sched_param *param, bool user)
1da177e4 6236{
83b699ed 6237 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6238 unsigned long flags;
cb469845 6239 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6240 struct rq *rq;
ca94c442 6241 int reset_on_fork;
1da177e4 6242
66e5393a
SR
6243 /* may grab non-irq protected spin_locks */
6244 BUG_ON(in_interrupt());
1da177e4
LT
6245recheck:
6246 /* double check policy once rq lock held */
ca94c442
LP
6247 if (policy < 0) {
6248 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6249 policy = oldpolicy = p->policy;
ca94c442
LP
6250 } else {
6251 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6252 policy &= ~SCHED_RESET_ON_FORK;
6253
6254 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6255 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6256 policy != SCHED_IDLE)
6257 return -EINVAL;
6258 }
6259
1da177e4
LT
6260 /*
6261 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6262 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6263 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6264 */
6265 if (param->sched_priority < 0 ||
95cdf3b7 6266 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6267 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6268 return -EINVAL;
e05606d3 6269 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6270 return -EINVAL;
6271
37e4ab3f
OC
6272 /*
6273 * Allow unprivileged RT tasks to decrease priority:
6274 */
961ccddd 6275 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6276 if (rt_policy(policy)) {
8dc3e909 6277 unsigned long rlim_rtprio;
8dc3e909
ON
6278
6279 if (!lock_task_sighand(p, &flags))
6280 return -ESRCH;
6281 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6282 unlock_task_sighand(p, &flags);
6283
6284 /* can't set/change the rt policy */
6285 if (policy != p->policy && !rlim_rtprio)
6286 return -EPERM;
6287
6288 /* can't increase priority */
6289 if (param->sched_priority > p->rt_priority &&
6290 param->sched_priority > rlim_rtprio)
6291 return -EPERM;
6292 }
dd41f596
IM
6293 /*
6294 * Like positive nice levels, dont allow tasks to
6295 * move out of SCHED_IDLE either:
6296 */
6297 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6298 return -EPERM;
5fe1d75f 6299
37e4ab3f 6300 /* can't change other user's priorities */
c69e8d9c 6301 if (!check_same_owner(p))
37e4ab3f 6302 return -EPERM;
ca94c442
LP
6303
6304 /* Normal users shall not reset the sched_reset_on_fork flag */
6305 if (p->sched_reset_on_fork && !reset_on_fork)
6306 return -EPERM;
37e4ab3f 6307 }
1da177e4 6308
725aad24 6309 if (user) {
b68aa230 6310#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6311 /*
6312 * Do not allow realtime tasks into groups that have no runtime
6313 * assigned.
6314 */
9a7e0b18
PZ
6315 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6316 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6317 return -EPERM;
b68aa230
PZ
6318#endif
6319
725aad24
JF
6320 retval = security_task_setscheduler(p, policy, param);
6321 if (retval)
6322 return retval;
6323 }
6324
b29739f9
IM
6325 /*
6326 * make sure no PI-waiters arrive (or leave) while we are
6327 * changing the priority of the task:
6328 */
6329 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6330 /*
6331 * To be able to change p->policy safely, the apropriate
6332 * runqueue lock must be held.
6333 */
b29739f9 6334 rq = __task_rq_lock(p);
1da177e4
LT
6335 /* recheck policy now with rq lock held */
6336 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6337 policy = oldpolicy = -1;
b29739f9
IM
6338 __task_rq_unlock(rq);
6339 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6340 goto recheck;
6341 }
2daa3577 6342 update_rq_clock(rq);
dd41f596 6343 on_rq = p->se.on_rq;
051a1d1a 6344 running = task_current(rq, p);
0e1f3483 6345 if (on_rq)
2e1cb74a 6346 deactivate_task(rq, p, 0);
0e1f3483
HS
6347 if (running)
6348 p->sched_class->put_prev_task(rq, p);
f6b53205 6349
ca94c442
LP
6350 p->sched_reset_on_fork = reset_on_fork;
6351
1da177e4 6352 oldprio = p->prio;
dd41f596 6353 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6354
0e1f3483
HS
6355 if (running)
6356 p->sched_class->set_curr_task(rq);
dd41f596
IM
6357 if (on_rq) {
6358 activate_task(rq, p, 0);
cb469845
SR
6359
6360 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6361 }
b29739f9
IM
6362 __task_rq_unlock(rq);
6363 spin_unlock_irqrestore(&p->pi_lock, flags);
6364
95e02ca9
TG
6365 rt_mutex_adjust_pi(p);
6366
1da177e4
LT
6367 return 0;
6368}
961ccddd
RR
6369
6370/**
6371 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6372 * @p: the task in question.
6373 * @policy: new policy.
6374 * @param: structure containing the new RT priority.
6375 *
6376 * NOTE that the task may be already dead.
6377 */
6378int sched_setscheduler(struct task_struct *p, int policy,
6379 struct sched_param *param)
6380{
6381 return __sched_setscheduler(p, policy, param, true);
6382}
1da177e4
LT
6383EXPORT_SYMBOL_GPL(sched_setscheduler);
6384
961ccddd
RR
6385/**
6386 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6387 * @p: the task in question.
6388 * @policy: new policy.
6389 * @param: structure containing the new RT priority.
6390 *
6391 * Just like sched_setscheduler, only don't bother checking if the
6392 * current context has permission. For example, this is needed in
6393 * stop_machine(): we create temporary high priority worker threads,
6394 * but our caller might not have that capability.
6395 */
6396int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6397 struct sched_param *param)
6398{
6399 return __sched_setscheduler(p, policy, param, false);
6400}
6401
95cdf3b7
IM
6402static int
6403do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6404{
1da177e4
LT
6405 struct sched_param lparam;
6406 struct task_struct *p;
36c8b586 6407 int retval;
1da177e4
LT
6408
6409 if (!param || pid < 0)
6410 return -EINVAL;
6411 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6412 return -EFAULT;
5fe1d75f
ON
6413
6414 rcu_read_lock();
6415 retval = -ESRCH;
1da177e4 6416 p = find_process_by_pid(pid);
5fe1d75f
ON
6417 if (p != NULL)
6418 retval = sched_setscheduler(p, policy, &lparam);
6419 rcu_read_unlock();
36c8b586 6420
1da177e4
LT
6421 return retval;
6422}
6423
6424/**
6425 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6426 * @pid: the pid in question.
6427 * @policy: new policy.
6428 * @param: structure containing the new RT priority.
6429 */
5add95d4
HC
6430SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6431 struct sched_param __user *, param)
1da177e4 6432{
c21761f1
JB
6433 /* negative values for policy are not valid */
6434 if (policy < 0)
6435 return -EINVAL;
6436
1da177e4
LT
6437 return do_sched_setscheduler(pid, policy, param);
6438}
6439
6440/**
6441 * sys_sched_setparam - set/change the RT priority of a thread
6442 * @pid: the pid in question.
6443 * @param: structure containing the new RT priority.
6444 */
5add95d4 6445SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6446{
6447 return do_sched_setscheduler(pid, -1, param);
6448}
6449
6450/**
6451 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6452 * @pid: the pid in question.
6453 */
5add95d4 6454SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6455{
36c8b586 6456 struct task_struct *p;
3a5c359a 6457 int retval;
1da177e4
LT
6458
6459 if (pid < 0)
3a5c359a 6460 return -EINVAL;
1da177e4
LT
6461
6462 retval = -ESRCH;
6463 read_lock(&tasklist_lock);
6464 p = find_process_by_pid(pid);
6465 if (p) {
6466 retval = security_task_getscheduler(p);
6467 if (!retval)
ca94c442
LP
6468 retval = p->policy
6469 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6470 }
6471 read_unlock(&tasklist_lock);
1da177e4
LT
6472 return retval;
6473}
6474
6475/**
ca94c442 6476 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6477 * @pid: the pid in question.
6478 * @param: structure containing the RT priority.
6479 */
5add95d4 6480SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6481{
6482 struct sched_param lp;
36c8b586 6483 struct task_struct *p;
3a5c359a 6484 int retval;
1da177e4
LT
6485
6486 if (!param || pid < 0)
3a5c359a 6487 return -EINVAL;
1da177e4
LT
6488
6489 read_lock(&tasklist_lock);
6490 p = find_process_by_pid(pid);
6491 retval = -ESRCH;
6492 if (!p)
6493 goto out_unlock;
6494
6495 retval = security_task_getscheduler(p);
6496 if (retval)
6497 goto out_unlock;
6498
6499 lp.sched_priority = p->rt_priority;
6500 read_unlock(&tasklist_lock);
6501
6502 /*
6503 * This one might sleep, we cannot do it with a spinlock held ...
6504 */
6505 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6506
1da177e4
LT
6507 return retval;
6508
6509out_unlock:
6510 read_unlock(&tasklist_lock);
6511 return retval;
6512}
6513
96f874e2 6514long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6515{
5a16f3d3 6516 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6517 struct task_struct *p;
6518 int retval;
1da177e4 6519
95402b38 6520 get_online_cpus();
1da177e4
LT
6521 read_lock(&tasklist_lock);
6522
6523 p = find_process_by_pid(pid);
6524 if (!p) {
6525 read_unlock(&tasklist_lock);
95402b38 6526 put_online_cpus();
1da177e4
LT
6527 return -ESRCH;
6528 }
6529
6530 /*
6531 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6532 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6533 * usage count and then drop tasklist_lock.
6534 */
6535 get_task_struct(p);
6536 read_unlock(&tasklist_lock);
6537
5a16f3d3
RR
6538 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6539 retval = -ENOMEM;
6540 goto out_put_task;
6541 }
6542 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6543 retval = -ENOMEM;
6544 goto out_free_cpus_allowed;
6545 }
1da177e4 6546 retval = -EPERM;
c69e8d9c 6547 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6548 goto out_unlock;
6549
e7834f8f
DQ
6550 retval = security_task_setscheduler(p, 0, NULL);
6551 if (retval)
6552 goto out_unlock;
6553
5a16f3d3
RR
6554 cpuset_cpus_allowed(p, cpus_allowed);
6555 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6556 again:
5a16f3d3 6557 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6558
8707d8b8 6559 if (!retval) {
5a16f3d3
RR
6560 cpuset_cpus_allowed(p, cpus_allowed);
6561 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6562 /*
6563 * We must have raced with a concurrent cpuset
6564 * update. Just reset the cpus_allowed to the
6565 * cpuset's cpus_allowed
6566 */
5a16f3d3 6567 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6568 goto again;
6569 }
6570 }
1da177e4 6571out_unlock:
5a16f3d3
RR
6572 free_cpumask_var(new_mask);
6573out_free_cpus_allowed:
6574 free_cpumask_var(cpus_allowed);
6575out_put_task:
1da177e4 6576 put_task_struct(p);
95402b38 6577 put_online_cpus();
1da177e4
LT
6578 return retval;
6579}
6580
6581static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6582 struct cpumask *new_mask)
1da177e4 6583{
96f874e2
RR
6584 if (len < cpumask_size())
6585 cpumask_clear(new_mask);
6586 else if (len > cpumask_size())
6587 len = cpumask_size();
6588
1da177e4
LT
6589 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6590}
6591
6592/**
6593 * sys_sched_setaffinity - set the cpu affinity of a process
6594 * @pid: pid of the process
6595 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6596 * @user_mask_ptr: user-space pointer to the new cpu mask
6597 */
5add95d4
HC
6598SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6599 unsigned long __user *, user_mask_ptr)
1da177e4 6600{
5a16f3d3 6601 cpumask_var_t new_mask;
1da177e4
LT
6602 int retval;
6603
5a16f3d3
RR
6604 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6605 return -ENOMEM;
1da177e4 6606
5a16f3d3
RR
6607 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6608 if (retval == 0)
6609 retval = sched_setaffinity(pid, new_mask);
6610 free_cpumask_var(new_mask);
6611 return retval;
1da177e4
LT
6612}
6613
96f874e2 6614long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6615{
36c8b586 6616 struct task_struct *p;
31605683
TG
6617 unsigned long flags;
6618 struct rq *rq;
1da177e4 6619 int retval;
1da177e4 6620
95402b38 6621 get_online_cpus();
1da177e4
LT
6622 read_lock(&tasklist_lock);
6623
6624 retval = -ESRCH;
6625 p = find_process_by_pid(pid);
6626 if (!p)
6627 goto out_unlock;
6628
e7834f8f
DQ
6629 retval = security_task_getscheduler(p);
6630 if (retval)
6631 goto out_unlock;
6632
31605683 6633 rq = task_rq_lock(p, &flags);
96f874e2 6634 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 6635 task_rq_unlock(rq, &flags);
1da177e4
LT
6636
6637out_unlock:
6638 read_unlock(&tasklist_lock);
95402b38 6639 put_online_cpus();
1da177e4 6640
9531b62f 6641 return retval;
1da177e4
LT
6642}
6643
6644/**
6645 * sys_sched_getaffinity - get the cpu affinity of a process
6646 * @pid: pid of the process
6647 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6648 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6649 */
5add95d4
HC
6650SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6651 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6652{
6653 int ret;
f17c8607 6654 cpumask_var_t mask;
1da177e4 6655
f17c8607 6656 if (len < cpumask_size())
1da177e4
LT
6657 return -EINVAL;
6658
f17c8607
RR
6659 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6660 return -ENOMEM;
1da177e4 6661
f17c8607
RR
6662 ret = sched_getaffinity(pid, mask);
6663 if (ret == 0) {
6664 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6665 ret = -EFAULT;
6666 else
6667 ret = cpumask_size();
6668 }
6669 free_cpumask_var(mask);
1da177e4 6670
f17c8607 6671 return ret;
1da177e4
LT
6672}
6673
6674/**
6675 * sys_sched_yield - yield the current processor to other threads.
6676 *
dd41f596
IM
6677 * This function yields the current CPU to other tasks. If there are no
6678 * other threads running on this CPU then this function will return.
1da177e4 6679 */
5add95d4 6680SYSCALL_DEFINE0(sched_yield)
1da177e4 6681{
70b97a7f 6682 struct rq *rq = this_rq_lock();
1da177e4 6683
2d72376b 6684 schedstat_inc(rq, yld_count);
4530d7ab 6685 current->sched_class->yield_task(rq);
1da177e4
LT
6686
6687 /*
6688 * Since we are going to call schedule() anyway, there's
6689 * no need to preempt or enable interrupts:
6690 */
6691 __release(rq->lock);
8a25d5de 6692 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6693 _raw_spin_unlock(&rq->lock);
6694 preempt_enable_no_resched();
6695
6696 schedule();
6697
6698 return 0;
6699}
6700
d86ee480
PZ
6701static inline int should_resched(void)
6702{
6703 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6704}
6705
e7b38404 6706static void __cond_resched(void)
1da177e4 6707{
e7aaaa69
FW
6708 add_preempt_count(PREEMPT_ACTIVE);
6709 schedule();
6710 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6711}
6712
02b67cc3 6713int __sched _cond_resched(void)
1da177e4 6714{
d86ee480 6715 if (should_resched()) {
1da177e4
LT
6716 __cond_resched();
6717 return 1;
6718 }
6719 return 0;
6720}
02b67cc3 6721EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6722
6723/*
613afbf8 6724 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6725 * call schedule, and on return reacquire the lock.
6726 *
41a2d6cf 6727 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6728 * operations here to prevent schedule() from being called twice (once via
6729 * spin_unlock(), once by hand).
6730 */
613afbf8 6731int __cond_resched_lock(spinlock_t *lock)
1da177e4 6732{
d86ee480 6733 int resched = should_resched();
6df3cecb
JK
6734 int ret = 0;
6735
f607c668
PZ
6736 lockdep_assert_held(lock);
6737
95c354fe 6738 if (spin_needbreak(lock) || resched) {
1da177e4 6739 spin_unlock(lock);
d86ee480 6740 if (resched)
95c354fe
NP
6741 __cond_resched();
6742 else
6743 cpu_relax();
6df3cecb 6744 ret = 1;
1da177e4 6745 spin_lock(lock);
1da177e4 6746 }
6df3cecb 6747 return ret;
1da177e4 6748}
613afbf8 6749EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6750
613afbf8 6751int __sched __cond_resched_softirq(void)
1da177e4
LT
6752{
6753 BUG_ON(!in_softirq());
6754
d86ee480 6755 if (should_resched()) {
98d82567 6756 local_bh_enable();
1da177e4
LT
6757 __cond_resched();
6758 local_bh_disable();
6759 return 1;
6760 }
6761 return 0;
6762}
613afbf8 6763EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6764
1da177e4
LT
6765/**
6766 * yield - yield the current processor to other threads.
6767 *
72fd4a35 6768 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6769 * thread runnable and calls sys_sched_yield().
6770 */
6771void __sched yield(void)
6772{
6773 set_current_state(TASK_RUNNING);
6774 sys_sched_yield();
6775}
1da177e4
LT
6776EXPORT_SYMBOL(yield);
6777
6778/*
41a2d6cf 6779 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6780 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6781 */
6782void __sched io_schedule(void)
6783{
54d35f29 6784 struct rq *rq = raw_rq();
1da177e4 6785
0ff92245 6786 delayacct_blkio_start();
1da177e4 6787 atomic_inc(&rq->nr_iowait);
8f0dfc34 6788 current->in_iowait = 1;
1da177e4 6789 schedule();
8f0dfc34 6790 current->in_iowait = 0;
1da177e4 6791 atomic_dec(&rq->nr_iowait);
0ff92245 6792 delayacct_blkio_end();
1da177e4 6793}
1da177e4
LT
6794EXPORT_SYMBOL(io_schedule);
6795
6796long __sched io_schedule_timeout(long timeout)
6797{
54d35f29 6798 struct rq *rq = raw_rq();
1da177e4
LT
6799 long ret;
6800
0ff92245 6801 delayacct_blkio_start();
1da177e4 6802 atomic_inc(&rq->nr_iowait);
8f0dfc34 6803 current->in_iowait = 1;
1da177e4 6804 ret = schedule_timeout(timeout);
8f0dfc34 6805 current->in_iowait = 0;
1da177e4 6806 atomic_dec(&rq->nr_iowait);
0ff92245 6807 delayacct_blkio_end();
1da177e4
LT
6808 return ret;
6809}
6810
6811/**
6812 * sys_sched_get_priority_max - return maximum RT priority.
6813 * @policy: scheduling class.
6814 *
6815 * this syscall returns the maximum rt_priority that can be used
6816 * by a given scheduling class.
6817 */
5add95d4 6818SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6819{
6820 int ret = -EINVAL;
6821
6822 switch (policy) {
6823 case SCHED_FIFO:
6824 case SCHED_RR:
6825 ret = MAX_USER_RT_PRIO-1;
6826 break;
6827 case SCHED_NORMAL:
b0a9499c 6828 case SCHED_BATCH:
dd41f596 6829 case SCHED_IDLE:
1da177e4
LT
6830 ret = 0;
6831 break;
6832 }
6833 return ret;
6834}
6835
6836/**
6837 * sys_sched_get_priority_min - return minimum RT priority.
6838 * @policy: scheduling class.
6839 *
6840 * this syscall returns the minimum rt_priority that can be used
6841 * by a given scheduling class.
6842 */
5add95d4 6843SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6844{
6845 int ret = -EINVAL;
6846
6847 switch (policy) {
6848 case SCHED_FIFO:
6849 case SCHED_RR:
6850 ret = 1;
6851 break;
6852 case SCHED_NORMAL:
b0a9499c 6853 case SCHED_BATCH:
dd41f596 6854 case SCHED_IDLE:
1da177e4
LT
6855 ret = 0;
6856 }
6857 return ret;
6858}
6859
6860/**
6861 * sys_sched_rr_get_interval - return the default timeslice of a process.
6862 * @pid: pid of the process.
6863 * @interval: userspace pointer to the timeslice value.
6864 *
6865 * this syscall writes the default timeslice value of a given process
6866 * into the user-space timespec buffer. A value of '0' means infinity.
6867 */
17da2bd9 6868SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6869 struct timespec __user *, interval)
1da177e4 6870{
36c8b586 6871 struct task_struct *p;
a4ec24b4 6872 unsigned int time_slice;
dba091b9
TG
6873 unsigned long flags;
6874 struct rq *rq;
3a5c359a 6875 int retval;
1da177e4 6876 struct timespec t;
1da177e4
LT
6877
6878 if (pid < 0)
3a5c359a 6879 return -EINVAL;
1da177e4
LT
6880
6881 retval = -ESRCH;
6882 read_lock(&tasklist_lock);
6883 p = find_process_by_pid(pid);
6884 if (!p)
6885 goto out_unlock;
6886
6887 retval = security_task_getscheduler(p);
6888 if (retval)
6889 goto out_unlock;
6890
dba091b9
TG
6891 rq = task_rq_lock(p, &flags);
6892 time_slice = p->sched_class->get_rr_interval(rq, p);
6893 task_rq_unlock(rq, &flags);
a4ec24b4 6894
1da177e4 6895 read_unlock(&tasklist_lock);
a4ec24b4 6896 jiffies_to_timespec(time_slice, &t);
1da177e4 6897 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6898 return retval;
3a5c359a 6899
1da177e4
LT
6900out_unlock:
6901 read_unlock(&tasklist_lock);
6902 return retval;
6903}
6904
7c731e0a 6905static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6906
82a1fcb9 6907void sched_show_task(struct task_struct *p)
1da177e4 6908{
1da177e4 6909 unsigned long free = 0;
36c8b586 6910 unsigned state;
1da177e4 6911
1da177e4 6912 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6913 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6914 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6915#if BITS_PER_LONG == 32
1da177e4 6916 if (state == TASK_RUNNING)
cc4ea795 6917 printk(KERN_CONT " running ");
1da177e4 6918 else
cc4ea795 6919 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6920#else
6921 if (state == TASK_RUNNING)
cc4ea795 6922 printk(KERN_CONT " running task ");
1da177e4 6923 else
cc4ea795 6924 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6925#endif
6926#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6927 free = stack_not_used(p);
1da177e4 6928#endif
aa47b7e0
DR
6929 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6930 task_pid_nr(p), task_pid_nr(p->real_parent),
6931 (unsigned long)task_thread_info(p)->flags);
1da177e4 6932
5fb5e6de 6933 show_stack(p, NULL);
1da177e4
LT
6934}
6935
e59e2ae2 6936void show_state_filter(unsigned long state_filter)
1da177e4 6937{
36c8b586 6938 struct task_struct *g, *p;
1da177e4 6939
4bd77321
IM
6940#if BITS_PER_LONG == 32
6941 printk(KERN_INFO
6942 " task PC stack pid father\n");
1da177e4 6943#else
4bd77321
IM
6944 printk(KERN_INFO
6945 " task PC stack pid father\n");
1da177e4
LT
6946#endif
6947 read_lock(&tasklist_lock);
6948 do_each_thread(g, p) {
6949 /*
6950 * reset the NMI-timeout, listing all files on a slow
6951 * console might take alot of time:
6952 */
6953 touch_nmi_watchdog();
39bc89fd 6954 if (!state_filter || (p->state & state_filter))
82a1fcb9 6955 sched_show_task(p);
1da177e4
LT
6956 } while_each_thread(g, p);
6957
04c9167f
JF
6958 touch_all_softlockup_watchdogs();
6959
dd41f596
IM
6960#ifdef CONFIG_SCHED_DEBUG
6961 sysrq_sched_debug_show();
6962#endif
1da177e4 6963 read_unlock(&tasklist_lock);
e59e2ae2
IM
6964 /*
6965 * Only show locks if all tasks are dumped:
6966 */
93335a21 6967 if (!state_filter)
e59e2ae2 6968 debug_show_all_locks();
1da177e4
LT
6969}
6970
1df21055
IM
6971void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6972{
dd41f596 6973 idle->sched_class = &idle_sched_class;
1df21055
IM
6974}
6975
f340c0d1
IM
6976/**
6977 * init_idle - set up an idle thread for a given CPU
6978 * @idle: task in question
6979 * @cpu: cpu the idle task belongs to
6980 *
6981 * NOTE: this function does not set the idle thread's NEED_RESCHED
6982 * flag, to make booting more robust.
6983 */
5c1e1767 6984void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6985{
70b97a7f 6986 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6987 unsigned long flags;
6988
5cbd54ef
IM
6989 spin_lock_irqsave(&rq->lock, flags);
6990
dd41f596
IM
6991 __sched_fork(idle);
6992 idle->se.exec_start = sched_clock();
6993
96f874e2 6994 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6995 __set_task_cpu(idle, cpu);
1da177e4 6996
1da177e4 6997 rq->curr = rq->idle = idle;
4866cde0
NP
6998#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6999 idle->oncpu = 1;
7000#endif
1da177e4
LT
7001 spin_unlock_irqrestore(&rq->lock, flags);
7002
7003 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
7004#if defined(CONFIG_PREEMPT)
7005 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7006#else
a1261f54 7007 task_thread_info(idle)->preempt_count = 0;
8e3e076c 7008#endif
dd41f596
IM
7009 /*
7010 * The idle tasks have their own, simple scheduling class:
7011 */
7012 idle->sched_class = &idle_sched_class;
fb52607a 7013 ftrace_graph_init_task(idle);
1da177e4
LT
7014}
7015
7016/*
7017 * In a system that switches off the HZ timer nohz_cpu_mask
7018 * indicates which cpus entered this state. This is used
7019 * in the rcu update to wait only for active cpus. For system
7020 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 7021 * always be CPU_BITS_NONE.
1da177e4 7022 */
6a7b3dc3 7023cpumask_var_t nohz_cpu_mask;
1da177e4 7024
19978ca6
IM
7025/*
7026 * Increase the granularity value when there are more CPUs,
7027 * because with more CPUs the 'effective latency' as visible
7028 * to users decreases. But the relationship is not linear,
7029 * so pick a second-best guess by going with the log2 of the
7030 * number of CPUs.
7031 *
7032 * This idea comes from the SD scheduler of Con Kolivas:
7033 */
acb4a848 7034static int get_update_sysctl_factor(void)
19978ca6 7035{
4ca3ef71 7036 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
7037 unsigned int factor;
7038
7039 switch (sysctl_sched_tunable_scaling) {
7040 case SCHED_TUNABLESCALING_NONE:
7041 factor = 1;
7042 break;
7043 case SCHED_TUNABLESCALING_LINEAR:
7044 factor = cpus;
7045 break;
7046 case SCHED_TUNABLESCALING_LOG:
7047 default:
7048 factor = 1 + ilog2(cpus);
7049 break;
7050 }
19978ca6 7051
acb4a848
CE
7052 return factor;
7053}
7054
7055static void update_sysctl(void)
7056{
7057 unsigned int factor = get_update_sysctl_factor();
7058
0bcdcf28
CE
7059#define SET_SYSCTL(name) \
7060 (sysctl_##name = (factor) * normalized_sysctl_##name)
7061 SET_SYSCTL(sched_min_granularity);
7062 SET_SYSCTL(sched_latency);
7063 SET_SYSCTL(sched_wakeup_granularity);
7064 SET_SYSCTL(sched_shares_ratelimit);
7065#undef SET_SYSCTL
7066}
55cd5340 7067
0bcdcf28
CE
7068static inline void sched_init_granularity(void)
7069{
7070 update_sysctl();
19978ca6
IM
7071}
7072
1da177e4
LT
7073#ifdef CONFIG_SMP
7074/*
7075 * This is how migration works:
7076 *
70b97a7f 7077 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7078 * runqueue and wake up that CPU's migration thread.
7079 * 2) we down() the locked semaphore => thread blocks.
7080 * 3) migration thread wakes up (implicitly it forces the migrated
7081 * thread off the CPU)
7082 * 4) it gets the migration request and checks whether the migrated
7083 * task is still in the wrong runqueue.
7084 * 5) if it's in the wrong runqueue then the migration thread removes
7085 * it and puts it into the right queue.
7086 * 6) migration thread up()s the semaphore.
7087 * 7) we wake up and the migration is done.
7088 */
7089
7090/*
7091 * Change a given task's CPU affinity. Migrate the thread to a
7092 * proper CPU and schedule it away if the CPU it's executing on
7093 * is removed from the allowed bitmask.
7094 *
7095 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7096 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7097 * call is not atomic; no spinlocks may be held.
7098 */
96f874e2 7099int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7100{
70b97a7f 7101 struct migration_req req;
1da177e4 7102 unsigned long flags;
70b97a7f 7103 struct rq *rq;
48f24c4d 7104 int ret = 0;
1da177e4
LT
7105
7106 rq = task_rq_lock(p, &flags);
6ad4c188 7107 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
7108 ret = -EINVAL;
7109 goto out;
7110 }
7111
9985b0ba 7112 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7113 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7114 ret = -EINVAL;
7115 goto out;
7116 }
7117
73fe6aae 7118 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7119 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7120 else {
96f874e2
RR
7121 cpumask_copy(&p->cpus_allowed, new_mask);
7122 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7123 }
7124
1da177e4 7125 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7126 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7127 goto out;
7128
6ad4c188 7129 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 7130 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7131 struct task_struct *mt = rq->migration_thread;
7132
7133 get_task_struct(mt);
1da177e4
LT
7134 task_rq_unlock(rq, &flags);
7135 wake_up_process(rq->migration_thread);
693525e3 7136 put_task_struct(mt);
1da177e4
LT
7137 wait_for_completion(&req.done);
7138 tlb_migrate_finish(p->mm);
7139 return 0;
7140 }
7141out:
7142 task_rq_unlock(rq, &flags);
48f24c4d 7143
1da177e4
LT
7144 return ret;
7145}
cd8ba7cd 7146EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7147
7148/*
41a2d6cf 7149 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7150 * this because either it can't run here any more (set_cpus_allowed()
7151 * away from this CPU, or CPU going down), or because we're
7152 * attempting to rebalance this task on exec (sched_exec).
7153 *
7154 * So we race with normal scheduler movements, but that's OK, as long
7155 * as the task is no longer on this CPU.
efc30814
KK
7156 *
7157 * Returns non-zero if task was successfully migrated.
1da177e4 7158 */
efc30814 7159static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7160{
70b97a7f 7161 struct rq *rq_dest, *rq_src;
dd41f596 7162 int ret = 0, on_rq;
1da177e4 7163
e761b772 7164 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7165 return ret;
1da177e4
LT
7166
7167 rq_src = cpu_rq(src_cpu);
7168 rq_dest = cpu_rq(dest_cpu);
7169
7170 double_rq_lock(rq_src, rq_dest);
7171 /* Already moved. */
7172 if (task_cpu(p) != src_cpu)
b1e38734 7173 goto done;
1da177e4 7174 /* Affinity changed (again). */
96f874e2 7175 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7176 goto fail;
1da177e4 7177
dd41f596 7178 on_rq = p->se.on_rq;
6e82a3be 7179 if (on_rq)
2e1cb74a 7180 deactivate_task(rq_src, p, 0);
6e82a3be 7181
1da177e4 7182 set_task_cpu(p, dest_cpu);
dd41f596
IM
7183 if (on_rq) {
7184 activate_task(rq_dest, p, 0);
15afe09b 7185 check_preempt_curr(rq_dest, p, 0);
1da177e4 7186 }
b1e38734 7187done:
efc30814 7188 ret = 1;
b1e38734 7189fail:
1da177e4 7190 double_rq_unlock(rq_src, rq_dest);
efc30814 7191 return ret;
1da177e4
LT
7192}
7193
03b042bf
PM
7194#define RCU_MIGRATION_IDLE 0
7195#define RCU_MIGRATION_NEED_QS 1
7196#define RCU_MIGRATION_GOT_QS 2
7197#define RCU_MIGRATION_MUST_SYNC 3
7198
1da177e4
LT
7199/*
7200 * migration_thread - this is a highprio system thread that performs
7201 * thread migration by bumping thread off CPU then 'pushing' onto
7202 * another runqueue.
7203 */
95cdf3b7 7204static int migration_thread(void *data)
1da177e4 7205{
03b042bf 7206 int badcpu;
1da177e4 7207 int cpu = (long)data;
70b97a7f 7208 struct rq *rq;
1da177e4
LT
7209
7210 rq = cpu_rq(cpu);
7211 BUG_ON(rq->migration_thread != current);
7212
7213 set_current_state(TASK_INTERRUPTIBLE);
7214 while (!kthread_should_stop()) {
70b97a7f 7215 struct migration_req *req;
1da177e4 7216 struct list_head *head;
1da177e4 7217
1da177e4
LT
7218 spin_lock_irq(&rq->lock);
7219
7220 if (cpu_is_offline(cpu)) {
7221 spin_unlock_irq(&rq->lock);
371cbb38 7222 break;
1da177e4
LT
7223 }
7224
7225 if (rq->active_balance) {
7226 active_load_balance(rq, cpu);
7227 rq->active_balance = 0;
7228 }
7229
7230 head = &rq->migration_queue;
7231
7232 if (list_empty(head)) {
7233 spin_unlock_irq(&rq->lock);
7234 schedule();
7235 set_current_state(TASK_INTERRUPTIBLE);
7236 continue;
7237 }
70b97a7f 7238 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7239 list_del_init(head->next);
7240
03b042bf
PM
7241 if (req->task != NULL) {
7242 spin_unlock(&rq->lock);
7243 __migrate_task(req->task, cpu, req->dest_cpu);
7244 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7245 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7246 spin_unlock(&rq->lock);
7247 } else {
7248 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7249 spin_unlock(&rq->lock);
7250 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7251 }
674311d5 7252 local_irq_enable();
1da177e4
LT
7253
7254 complete(&req->done);
7255 }
7256 __set_current_state(TASK_RUNNING);
1da177e4 7257
1da177e4
LT
7258 return 0;
7259}
7260
7261#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7262
7263static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7264{
7265 int ret;
7266
7267 local_irq_disable();
7268 ret = __migrate_task(p, src_cpu, dest_cpu);
7269 local_irq_enable();
7270 return ret;
7271}
7272
054b9108 7273/*
3a4fa0a2 7274 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7275 */
48f24c4d 7276static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7277{
70b97a7f 7278 int dest_cpu;
6ca09dfc 7279 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7280
7281again:
7282 /* Look for allowed, online CPU in same node. */
6ad4c188 7283 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
e76bd8d9
RR
7284 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7285 goto move;
7286
7287 /* Any allowed, online CPU? */
6ad4c188 7288 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
e76bd8d9
RR
7289 if (dest_cpu < nr_cpu_ids)
7290 goto move;
7291
7292 /* No more Mr. Nice Guy. */
7293 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9 7294 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6ad4c188 7295 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
1da177e4 7296
e76bd8d9
RR
7297 /*
7298 * Don't tell them about moving exiting tasks or
7299 * kernel threads (both mm NULL), since they never
7300 * leave kernel.
7301 */
7302 if (p->mm && printk_ratelimit()) {
7303 printk(KERN_INFO "process %d (%s) no "
7304 "longer affine to cpu%d\n",
7305 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7306 }
e76bd8d9
RR
7307 }
7308
7309move:
7310 /* It can have affinity changed while we were choosing. */
7311 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7312 goto again;
1da177e4
LT
7313}
7314
7315/*
7316 * While a dead CPU has no uninterruptible tasks queued at this point,
7317 * it might still have a nonzero ->nr_uninterruptible counter, because
7318 * for performance reasons the counter is not stricly tracking tasks to
7319 * their home CPUs. So we just add the counter to another CPU's counter,
7320 * to keep the global sum constant after CPU-down:
7321 */
70b97a7f 7322static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7323{
6ad4c188 7324 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
7325 unsigned long flags;
7326
7327 local_irq_save(flags);
7328 double_rq_lock(rq_src, rq_dest);
7329 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7330 rq_src->nr_uninterruptible = 0;
7331 double_rq_unlock(rq_src, rq_dest);
7332 local_irq_restore(flags);
7333}
7334
7335/* Run through task list and migrate tasks from the dead cpu. */
7336static void migrate_live_tasks(int src_cpu)
7337{
48f24c4d 7338 struct task_struct *p, *t;
1da177e4 7339
f7b4cddc 7340 read_lock(&tasklist_lock);
1da177e4 7341
48f24c4d
IM
7342 do_each_thread(t, p) {
7343 if (p == current)
1da177e4
LT
7344 continue;
7345
48f24c4d
IM
7346 if (task_cpu(p) == src_cpu)
7347 move_task_off_dead_cpu(src_cpu, p);
7348 } while_each_thread(t, p);
1da177e4 7349
f7b4cddc 7350 read_unlock(&tasklist_lock);
1da177e4
LT
7351}
7352
dd41f596
IM
7353/*
7354 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7355 * It does so by boosting its priority to highest possible.
7356 * Used by CPU offline code.
1da177e4
LT
7357 */
7358void sched_idle_next(void)
7359{
48f24c4d 7360 int this_cpu = smp_processor_id();
70b97a7f 7361 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7362 struct task_struct *p = rq->idle;
7363 unsigned long flags;
7364
7365 /* cpu has to be offline */
48f24c4d 7366 BUG_ON(cpu_online(this_cpu));
1da177e4 7367
48f24c4d
IM
7368 /*
7369 * Strictly not necessary since rest of the CPUs are stopped by now
7370 * and interrupts disabled on the current cpu.
1da177e4
LT
7371 */
7372 spin_lock_irqsave(&rq->lock, flags);
7373
dd41f596 7374 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7375
94bc9a7b
DA
7376 update_rq_clock(rq);
7377 activate_task(rq, p, 0);
1da177e4
LT
7378
7379 spin_unlock_irqrestore(&rq->lock, flags);
7380}
7381
48f24c4d
IM
7382/*
7383 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7384 * offline.
7385 */
7386void idle_task_exit(void)
7387{
7388 struct mm_struct *mm = current->active_mm;
7389
7390 BUG_ON(cpu_online(smp_processor_id()));
7391
7392 if (mm != &init_mm)
7393 switch_mm(mm, &init_mm, current);
7394 mmdrop(mm);
7395}
7396
054b9108 7397/* called under rq->lock with disabled interrupts */
36c8b586 7398static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7399{
70b97a7f 7400 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7401
7402 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7403 BUG_ON(!p->exit_state);
1da177e4
LT
7404
7405 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7406 BUG_ON(p->state == TASK_DEAD);
1da177e4 7407
48f24c4d 7408 get_task_struct(p);
1da177e4
LT
7409
7410 /*
7411 * Drop lock around migration; if someone else moves it,
41a2d6cf 7412 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7413 * fine.
7414 */
f7b4cddc 7415 spin_unlock_irq(&rq->lock);
48f24c4d 7416 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7417 spin_lock_irq(&rq->lock);
1da177e4 7418
48f24c4d 7419 put_task_struct(p);
1da177e4
LT
7420}
7421
7422/* release_task() removes task from tasklist, so we won't find dead tasks. */
7423static void migrate_dead_tasks(unsigned int dead_cpu)
7424{
70b97a7f 7425 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7426 struct task_struct *next;
48f24c4d 7427
dd41f596
IM
7428 for ( ; ; ) {
7429 if (!rq->nr_running)
7430 break;
a8e504d2 7431 update_rq_clock(rq);
b67802ea 7432 next = pick_next_task(rq);
dd41f596
IM
7433 if (!next)
7434 break;
79c53799 7435 next->sched_class->put_prev_task(rq, next);
dd41f596 7436 migrate_dead(dead_cpu, next);
e692ab53 7437
1da177e4
LT
7438 }
7439}
dce48a84
TG
7440
7441/*
7442 * remove the tasks which were accounted by rq from calc_load_tasks.
7443 */
7444static void calc_global_load_remove(struct rq *rq)
7445{
7446 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7447 rq->calc_load_active = 0;
dce48a84 7448}
1da177e4
LT
7449#endif /* CONFIG_HOTPLUG_CPU */
7450
e692ab53
NP
7451#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7452
7453static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7454 {
7455 .procname = "sched_domain",
c57baf1e 7456 .mode = 0555,
e0361851 7457 },
38605cae 7458 {0, },
e692ab53
NP
7459};
7460
7461static struct ctl_table sd_ctl_root[] = {
e0361851 7462 {
c57baf1e 7463 .ctl_name = CTL_KERN,
e0361851 7464 .procname = "kernel",
c57baf1e 7465 .mode = 0555,
e0361851
AD
7466 .child = sd_ctl_dir,
7467 },
38605cae 7468 {0, },
e692ab53
NP
7469};
7470
7471static struct ctl_table *sd_alloc_ctl_entry(int n)
7472{
7473 struct ctl_table *entry =
5cf9f062 7474 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7475
e692ab53
NP
7476 return entry;
7477}
7478
6382bc90
MM
7479static void sd_free_ctl_entry(struct ctl_table **tablep)
7480{
cd790076 7481 struct ctl_table *entry;
6382bc90 7482
cd790076
MM
7483 /*
7484 * In the intermediate directories, both the child directory and
7485 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7486 * will always be set. In the lowest directory the names are
cd790076
MM
7487 * static strings and all have proc handlers.
7488 */
7489 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7490 if (entry->child)
7491 sd_free_ctl_entry(&entry->child);
cd790076
MM
7492 if (entry->proc_handler == NULL)
7493 kfree(entry->procname);
7494 }
6382bc90
MM
7495
7496 kfree(*tablep);
7497 *tablep = NULL;
7498}
7499
e692ab53 7500static void
e0361851 7501set_table_entry(struct ctl_table *entry,
e692ab53
NP
7502 const char *procname, void *data, int maxlen,
7503 mode_t mode, proc_handler *proc_handler)
7504{
e692ab53
NP
7505 entry->procname = procname;
7506 entry->data = data;
7507 entry->maxlen = maxlen;
7508 entry->mode = mode;
7509 entry->proc_handler = proc_handler;
7510}
7511
7512static struct ctl_table *
7513sd_alloc_ctl_domain_table(struct sched_domain *sd)
7514{
a5d8c348 7515 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7516
ad1cdc1d
MM
7517 if (table == NULL)
7518 return NULL;
7519
e0361851 7520 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7521 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7522 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7523 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7524 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7525 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7526 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7527 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7528 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7529 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7530 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7531 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7532 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7533 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7534 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7535 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7536 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7537 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7538 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7539 &sd->cache_nice_tries,
7540 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7541 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7542 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7543 set_table_entry(&table[11], "name", sd->name,
7544 CORENAME_MAX_SIZE, 0444, proc_dostring);
7545 /* &table[12] is terminator */
e692ab53
NP
7546
7547 return table;
7548}
7549
9a4e7159 7550static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7551{
7552 struct ctl_table *entry, *table;
7553 struct sched_domain *sd;
7554 int domain_num = 0, i;
7555 char buf[32];
7556
7557 for_each_domain(cpu, sd)
7558 domain_num++;
7559 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7560 if (table == NULL)
7561 return NULL;
e692ab53
NP
7562
7563 i = 0;
7564 for_each_domain(cpu, sd) {
7565 snprintf(buf, 32, "domain%d", i);
e692ab53 7566 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7567 entry->mode = 0555;
e692ab53
NP
7568 entry->child = sd_alloc_ctl_domain_table(sd);
7569 entry++;
7570 i++;
7571 }
7572 return table;
7573}
7574
7575static struct ctl_table_header *sd_sysctl_header;
6382bc90 7576static void register_sched_domain_sysctl(void)
e692ab53 7577{
6ad4c188 7578 int i, cpu_num = num_possible_cpus();
e692ab53
NP
7579 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7580 char buf[32];
7581
7378547f
MM
7582 WARN_ON(sd_ctl_dir[0].child);
7583 sd_ctl_dir[0].child = entry;
7584
ad1cdc1d
MM
7585 if (entry == NULL)
7586 return;
7587
6ad4c188 7588 for_each_possible_cpu(i) {
e692ab53 7589 snprintf(buf, 32, "cpu%d", i);
e692ab53 7590 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7591 entry->mode = 0555;
e692ab53 7592 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7593 entry++;
e692ab53 7594 }
7378547f
MM
7595
7596 WARN_ON(sd_sysctl_header);
e692ab53
NP
7597 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7598}
6382bc90 7599
7378547f 7600/* may be called multiple times per register */
6382bc90
MM
7601static void unregister_sched_domain_sysctl(void)
7602{
7378547f
MM
7603 if (sd_sysctl_header)
7604 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7605 sd_sysctl_header = NULL;
7378547f
MM
7606 if (sd_ctl_dir[0].child)
7607 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7608}
e692ab53 7609#else
6382bc90
MM
7610static void register_sched_domain_sysctl(void)
7611{
7612}
7613static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7614{
7615}
7616#endif
7617
1f11eb6a
GH
7618static void set_rq_online(struct rq *rq)
7619{
7620 if (!rq->online) {
7621 const struct sched_class *class;
7622
c6c4927b 7623 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7624 rq->online = 1;
7625
7626 for_each_class(class) {
7627 if (class->rq_online)
7628 class->rq_online(rq);
7629 }
7630 }
7631}
7632
7633static void set_rq_offline(struct rq *rq)
7634{
7635 if (rq->online) {
7636 const struct sched_class *class;
7637
7638 for_each_class(class) {
7639 if (class->rq_offline)
7640 class->rq_offline(rq);
7641 }
7642
c6c4927b 7643 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7644 rq->online = 0;
7645 }
7646}
7647
1da177e4
LT
7648/*
7649 * migration_call - callback that gets triggered when a CPU is added.
7650 * Here we can start up the necessary migration thread for the new CPU.
7651 */
48f24c4d
IM
7652static int __cpuinit
7653migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7654{
1da177e4 7655 struct task_struct *p;
48f24c4d 7656 int cpu = (long)hcpu;
1da177e4 7657 unsigned long flags;
70b97a7f 7658 struct rq *rq;
1da177e4
LT
7659
7660 switch (action) {
5be9361c 7661
1da177e4 7662 case CPU_UP_PREPARE:
8bb78442 7663 case CPU_UP_PREPARE_FROZEN:
dd41f596 7664 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7665 if (IS_ERR(p))
7666 return NOTIFY_BAD;
1da177e4
LT
7667 kthread_bind(p, cpu);
7668 /* Must be high prio: stop_machine expects to yield to it. */
7669 rq = task_rq_lock(p, &flags);
dd41f596 7670 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7671 task_rq_unlock(rq, &flags);
371cbb38 7672 get_task_struct(p);
1da177e4 7673 cpu_rq(cpu)->migration_thread = p;
a468d389 7674 rq->calc_load_update = calc_load_update;
1da177e4 7675 break;
48f24c4d 7676
1da177e4 7677 case CPU_ONLINE:
8bb78442 7678 case CPU_ONLINE_FROZEN:
3a4fa0a2 7679 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7680 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7681
7682 /* Update our root-domain */
7683 rq = cpu_rq(cpu);
7684 spin_lock_irqsave(&rq->lock, flags);
7685 if (rq->rd) {
c6c4927b 7686 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7687
7688 set_rq_online(rq);
1f94ef59
GH
7689 }
7690 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7691 break;
48f24c4d 7692
1da177e4
LT
7693#ifdef CONFIG_HOTPLUG_CPU
7694 case CPU_UP_CANCELED:
8bb78442 7695 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7696 if (!cpu_rq(cpu)->migration_thread)
7697 break;
41a2d6cf 7698 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7699 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7700 cpumask_any(cpu_online_mask));
1da177e4 7701 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7702 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7703 cpu_rq(cpu)->migration_thread = NULL;
7704 break;
48f24c4d 7705
1da177e4 7706 case CPU_DEAD:
8bb78442 7707 case CPU_DEAD_FROZEN:
470fd646 7708 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7709 migrate_live_tasks(cpu);
7710 rq = cpu_rq(cpu);
7711 kthread_stop(rq->migration_thread);
371cbb38 7712 put_task_struct(rq->migration_thread);
1da177e4
LT
7713 rq->migration_thread = NULL;
7714 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7715 spin_lock_irq(&rq->lock);
a8e504d2 7716 update_rq_clock(rq);
2e1cb74a 7717 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
7718 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7719 rq->idle->sched_class = &idle_sched_class;
1da177e4 7720 migrate_dead_tasks(cpu);
d2da272a 7721 spin_unlock_irq(&rq->lock);
470fd646 7722 cpuset_unlock();
1da177e4
LT
7723 migrate_nr_uninterruptible(rq);
7724 BUG_ON(rq->nr_running != 0);
dce48a84 7725 calc_global_load_remove(rq);
41a2d6cf
IM
7726 /*
7727 * No need to migrate the tasks: it was best-effort if
7728 * they didn't take sched_hotcpu_mutex. Just wake up
7729 * the requestors.
7730 */
1da177e4
LT
7731 spin_lock_irq(&rq->lock);
7732 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7733 struct migration_req *req;
7734
1da177e4 7735 req = list_entry(rq->migration_queue.next,
70b97a7f 7736 struct migration_req, list);
1da177e4 7737 list_del_init(&req->list);
9a2bd244 7738 spin_unlock_irq(&rq->lock);
1da177e4 7739 complete(&req->done);
9a2bd244 7740 spin_lock_irq(&rq->lock);
1da177e4
LT
7741 }
7742 spin_unlock_irq(&rq->lock);
7743 break;
57d885fe 7744
08f503b0
GH
7745 case CPU_DYING:
7746 case CPU_DYING_FROZEN:
57d885fe
GH
7747 /* Update our root-domain */
7748 rq = cpu_rq(cpu);
7749 spin_lock_irqsave(&rq->lock, flags);
7750 if (rq->rd) {
c6c4927b 7751 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7752 set_rq_offline(rq);
57d885fe
GH
7753 }
7754 spin_unlock_irqrestore(&rq->lock, flags);
7755 break;
1da177e4
LT
7756#endif
7757 }
7758 return NOTIFY_OK;
7759}
7760
f38b0820
PM
7761/*
7762 * Register at high priority so that task migration (migrate_all_tasks)
7763 * happens before everything else. This has to be lower priority than
cdd6c482 7764 * the notifier in the perf_event subsystem, though.
1da177e4 7765 */
26c2143b 7766static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7767 .notifier_call = migration_call,
7768 .priority = 10
7769};
7770
7babe8db 7771static int __init migration_init(void)
1da177e4
LT
7772{
7773 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7774 int err;
48f24c4d
IM
7775
7776 /* Start one for the boot CPU: */
07dccf33
AM
7777 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7778 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7779 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7780 register_cpu_notifier(&migration_notifier);
7babe8db 7781
a004cd42 7782 return 0;
1da177e4 7783}
7babe8db 7784early_initcall(migration_init);
1da177e4
LT
7785#endif
7786
7787#ifdef CONFIG_SMP
476f3534 7788
3e9830dc 7789#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7790
f6630114
MT
7791static __read_mostly int sched_domain_debug_enabled;
7792
7793static int __init sched_domain_debug_setup(char *str)
7794{
7795 sched_domain_debug_enabled = 1;
7796
7797 return 0;
7798}
7799early_param("sched_debug", sched_domain_debug_setup);
7800
7c16ec58 7801static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7802 struct cpumask *groupmask)
1da177e4 7803{
4dcf6aff 7804 struct sched_group *group = sd->groups;
434d53b0 7805 char str[256];
1da177e4 7806
968ea6d8 7807 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7808 cpumask_clear(groupmask);
4dcf6aff
IM
7809
7810 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7811
7812 if (!(sd->flags & SD_LOAD_BALANCE)) {
7813 printk("does not load-balance\n");
7814 if (sd->parent)
7815 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7816 " has parent");
7817 return -1;
41c7ce9a
NP
7818 }
7819
eefd796a 7820 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7821
758b2cdc 7822 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7823 printk(KERN_ERR "ERROR: domain->span does not contain "
7824 "CPU%d\n", cpu);
7825 }
758b2cdc 7826 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7827 printk(KERN_ERR "ERROR: domain->groups does not contain"
7828 " CPU%d\n", cpu);
7829 }
1da177e4 7830
4dcf6aff 7831 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7832 do {
4dcf6aff
IM
7833 if (!group) {
7834 printk("\n");
7835 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7836 break;
7837 }
7838
18a3885f 7839 if (!group->cpu_power) {
4dcf6aff
IM
7840 printk(KERN_CONT "\n");
7841 printk(KERN_ERR "ERROR: domain->cpu_power not "
7842 "set\n");
7843 break;
7844 }
1da177e4 7845
758b2cdc 7846 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7847 printk(KERN_CONT "\n");
7848 printk(KERN_ERR "ERROR: empty group\n");
7849 break;
7850 }
1da177e4 7851
758b2cdc 7852 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7853 printk(KERN_CONT "\n");
7854 printk(KERN_ERR "ERROR: repeated CPUs\n");
7855 break;
7856 }
1da177e4 7857
758b2cdc 7858 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7859
968ea6d8 7860 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7861
7862 printk(KERN_CONT " %s", str);
18a3885f
PZ
7863 if (group->cpu_power != SCHED_LOAD_SCALE) {
7864 printk(KERN_CONT " (cpu_power = %d)",
7865 group->cpu_power);
381512cf 7866 }
1da177e4 7867
4dcf6aff
IM
7868 group = group->next;
7869 } while (group != sd->groups);
7870 printk(KERN_CONT "\n");
1da177e4 7871
758b2cdc 7872 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7873 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7874
758b2cdc
RR
7875 if (sd->parent &&
7876 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7877 printk(KERN_ERR "ERROR: parent span is not a superset "
7878 "of domain->span\n");
7879 return 0;
7880}
1da177e4 7881
4dcf6aff
IM
7882static void sched_domain_debug(struct sched_domain *sd, int cpu)
7883{
d5dd3db1 7884 cpumask_var_t groupmask;
4dcf6aff 7885 int level = 0;
1da177e4 7886
f6630114
MT
7887 if (!sched_domain_debug_enabled)
7888 return;
7889
4dcf6aff
IM
7890 if (!sd) {
7891 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7892 return;
7893 }
1da177e4 7894
4dcf6aff
IM
7895 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7896
d5dd3db1 7897 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7898 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7899 return;
7900 }
7901
4dcf6aff 7902 for (;;) {
7c16ec58 7903 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7904 break;
1da177e4
LT
7905 level++;
7906 sd = sd->parent;
33859f7f 7907 if (!sd)
4dcf6aff
IM
7908 break;
7909 }
d5dd3db1 7910 free_cpumask_var(groupmask);
1da177e4 7911}
6d6bc0ad 7912#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7913# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7914#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7915
1a20ff27 7916static int sd_degenerate(struct sched_domain *sd)
245af2c7 7917{
758b2cdc 7918 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7919 return 1;
7920
7921 /* Following flags need at least 2 groups */
7922 if (sd->flags & (SD_LOAD_BALANCE |
7923 SD_BALANCE_NEWIDLE |
7924 SD_BALANCE_FORK |
89c4710e
SS
7925 SD_BALANCE_EXEC |
7926 SD_SHARE_CPUPOWER |
7927 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7928 if (sd->groups != sd->groups->next)
7929 return 0;
7930 }
7931
7932 /* Following flags don't use groups */
c88d5910 7933 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7934 return 0;
7935
7936 return 1;
7937}
7938
48f24c4d
IM
7939static int
7940sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7941{
7942 unsigned long cflags = sd->flags, pflags = parent->flags;
7943
7944 if (sd_degenerate(parent))
7945 return 1;
7946
758b2cdc 7947 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7948 return 0;
7949
245af2c7
SS
7950 /* Flags needing groups don't count if only 1 group in parent */
7951 if (parent->groups == parent->groups->next) {
7952 pflags &= ~(SD_LOAD_BALANCE |
7953 SD_BALANCE_NEWIDLE |
7954 SD_BALANCE_FORK |
89c4710e
SS
7955 SD_BALANCE_EXEC |
7956 SD_SHARE_CPUPOWER |
7957 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7958 if (nr_node_ids == 1)
7959 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7960 }
7961 if (~cflags & pflags)
7962 return 0;
7963
7964 return 1;
7965}
7966
c6c4927b
RR
7967static void free_rootdomain(struct root_domain *rd)
7968{
047106ad
PZ
7969 synchronize_sched();
7970
68e74568
RR
7971 cpupri_cleanup(&rd->cpupri);
7972
c6c4927b
RR
7973 free_cpumask_var(rd->rto_mask);
7974 free_cpumask_var(rd->online);
7975 free_cpumask_var(rd->span);
7976 kfree(rd);
7977}
7978
57d885fe
GH
7979static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7980{
a0490fa3 7981 struct root_domain *old_rd = NULL;
57d885fe 7982 unsigned long flags;
57d885fe
GH
7983
7984 spin_lock_irqsave(&rq->lock, flags);
7985
7986 if (rq->rd) {
a0490fa3 7987 old_rd = rq->rd;
57d885fe 7988
c6c4927b 7989 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7990 set_rq_offline(rq);
57d885fe 7991
c6c4927b 7992 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7993
a0490fa3
IM
7994 /*
7995 * If we dont want to free the old_rt yet then
7996 * set old_rd to NULL to skip the freeing later
7997 * in this function:
7998 */
7999 if (!atomic_dec_and_test(&old_rd->refcount))
8000 old_rd = NULL;
57d885fe
GH
8001 }
8002
8003 atomic_inc(&rd->refcount);
8004 rq->rd = rd;
8005
c6c4927b 8006 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 8007 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 8008 set_rq_online(rq);
57d885fe
GH
8009
8010 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
8011
8012 if (old_rd)
8013 free_rootdomain(old_rd);
57d885fe
GH
8014}
8015
fd5e1b5d 8016static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 8017{
36b7b6d4
PE
8018 gfp_t gfp = GFP_KERNEL;
8019
57d885fe
GH
8020 memset(rd, 0, sizeof(*rd));
8021
36b7b6d4
PE
8022 if (bootmem)
8023 gfp = GFP_NOWAIT;
c6c4927b 8024
36b7b6d4 8025 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 8026 goto out;
36b7b6d4 8027 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 8028 goto free_span;
36b7b6d4 8029 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 8030 goto free_online;
6e0534f2 8031
0fb53029 8032 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 8033 goto free_rto_mask;
c6c4927b 8034 return 0;
6e0534f2 8035
68e74568
RR
8036free_rto_mask:
8037 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
8038free_online:
8039 free_cpumask_var(rd->online);
8040free_span:
8041 free_cpumask_var(rd->span);
0c910d28 8042out:
c6c4927b 8043 return -ENOMEM;
57d885fe
GH
8044}
8045
8046static void init_defrootdomain(void)
8047{
c6c4927b
RR
8048 init_rootdomain(&def_root_domain, true);
8049
57d885fe
GH
8050 atomic_set(&def_root_domain.refcount, 1);
8051}
8052
dc938520 8053static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
8054{
8055 struct root_domain *rd;
8056
8057 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8058 if (!rd)
8059 return NULL;
8060
c6c4927b
RR
8061 if (init_rootdomain(rd, false) != 0) {
8062 kfree(rd);
8063 return NULL;
8064 }
57d885fe
GH
8065
8066 return rd;
8067}
8068
1da177e4 8069/*
0eab9146 8070 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8071 * hold the hotplug lock.
8072 */
0eab9146
IM
8073static void
8074cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8075{
70b97a7f 8076 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8077 struct sched_domain *tmp;
8078
8079 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8080 for (tmp = sd; tmp; ) {
245af2c7
SS
8081 struct sched_domain *parent = tmp->parent;
8082 if (!parent)
8083 break;
f29c9b1c 8084
1a848870 8085 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8086 tmp->parent = parent->parent;
1a848870
SS
8087 if (parent->parent)
8088 parent->parent->child = tmp;
f29c9b1c
LZ
8089 } else
8090 tmp = tmp->parent;
245af2c7
SS
8091 }
8092
1a848870 8093 if (sd && sd_degenerate(sd)) {
245af2c7 8094 sd = sd->parent;
1a848870
SS
8095 if (sd)
8096 sd->child = NULL;
8097 }
1da177e4
LT
8098
8099 sched_domain_debug(sd, cpu);
8100
57d885fe 8101 rq_attach_root(rq, rd);
674311d5 8102 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8103}
8104
8105/* cpus with isolated domains */
dcc30a35 8106static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8107
8108/* Setup the mask of cpus configured for isolated domains */
8109static int __init isolated_cpu_setup(char *str)
8110{
bdddd296 8111 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 8112 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8113 return 1;
8114}
8115
8927f494 8116__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8117
8118/*
6711cab4
SS
8119 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8120 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8121 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8122 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8123 *
8124 * init_sched_build_groups will build a circular linked list of the groups
8125 * covered by the given span, and will set each group's ->cpumask correctly,
8126 * and ->cpu_power to 0.
8127 */
a616058b 8128static void
96f874e2
RR
8129init_sched_build_groups(const struct cpumask *span,
8130 const struct cpumask *cpu_map,
8131 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8132 struct sched_group **sg,
96f874e2
RR
8133 struct cpumask *tmpmask),
8134 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8135{
8136 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8137 int i;
8138
96f874e2 8139 cpumask_clear(covered);
7c16ec58 8140
abcd083a 8141 for_each_cpu(i, span) {
6711cab4 8142 struct sched_group *sg;
7c16ec58 8143 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8144 int j;
8145
758b2cdc 8146 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8147 continue;
8148
758b2cdc 8149 cpumask_clear(sched_group_cpus(sg));
18a3885f 8150 sg->cpu_power = 0;
1da177e4 8151
abcd083a 8152 for_each_cpu(j, span) {
7c16ec58 8153 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8154 continue;
8155
96f874e2 8156 cpumask_set_cpu(j, covered);
758b2cdc 8157 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8158 }
8159 if (!first)
8160 first = sg;
8161 if (last)
8162 last->next = sg;
8163 last = sg;
8164 }
8165 last->next = first;
8166}
8167
9c1cfda2 8168#define SD_NODES_PER_DOMAIN 16
1da177e4 8169
9c1cfda2 8170#ifdef CONFIG_NUMA
198e2f18 8171
9c1cfda2
JH
8172/**
8173 * find_next_best_node - find the next node to include in a sched_domain
8174 * @node: node whose sched_domain we're building
8175 * @used_nodes: nodes already in the sched_domain
8176 *
41a2d6cf 8177 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8178 * finds the closest node not already in the @used_nodes map.
8179 *
8180 * Should use nodemask_t.
8181 */
c5f59f08 8182static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8183{
8184 int i, n, val, min_val, best_node = 0;
8185
8186 min_val = INT_MAX;
8187
076ac2af 8188 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8189 /* Start at @node */
076ac2af 8190 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8191
8192 if (!nr_cpus_node(n))
8193 continue;
8194
8195 /* Skip already used nodes */
c5f59f08 8196 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8197 continue;
8198
8199 /* Simple min distance search */
8200 val = node_distance(node, n);
8201
8202 if (val < min_val) {
8203 min_val = val;
8204 best_node = n;
8205 }
8206 }
8207
c5f59f08 8208 node_set(best_node, *used_nodes);
9c1cfda2
JH
8209 return best_node;
8210}
8211
8212/**
8213 * sched_domain_node_span - get a cpumask for a node's sched_domain
8214 * @node: node whose cpumask we're constructing
73486722 8215 * @span: resulting cpumask
9c1cfda2 8216 *
41a2d6cf 8217 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8218 * should be one that prevents unnecessary balancing, but also spreads tasks
8219 * out optimally.
8220 */
96f874e2 8221static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8222{
c5f59f08 8223 nodemask_t used_nodes;
48f24c4d 8224 int i;
9c1cfda2 8225
6ca09dfc 8226 cpumask_clear(span);
c5f59f08 8227 nodes_clear(used_nodes);
9c1cfda2 8228
6ca09dfc 8229 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8230 node_set(node, used_nodes);
9c1cfda2
JH
8231
8232 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8233 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8234
6ca09dfc 8235 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8236 }
9c1cfda2 8237}
6d6bc0ad 8238#endif /* CONFIG_NUMA */
9c1cfda2 8239
5c45bf27 8240int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8241
6c99e9ad
RR
8242/*
8243 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8244 *
8245 * ( See the the comments in include/linux/sched.h:struct sched_group
8246 * and struct sched_domain. )
6c99e9ad
RR
8247 */
8248struct static_sched_group {
8249 struct sched_group sg;
8250 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8251};
8252
8253struct static_sched_domain {
8254 struct sched_domain sd;
8255 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8256};
8257
49a02c51
AH
8258struct s_data {
8259#ifdef CONFIG_NUMA
8260 int sd_allnodes;
8261 cpumask_var_t domainspan;
8262 cpumask_var_t covered;
8263 cpumask_var_t notcovered;
8264#endif
8265 cpumask_var_t nodemask;
8266 cpumask_var_t this_sibling_map;
8267 cpumask_var_t this_core_map;
8268 cpumask_var_t send_covered;
8269 cpumask_var_t tmpmask;
8270 struct sched_group **sched_group_nodes;
8271 struct root_domain *rd;
8272};
8273
2109b99e
AH
8274enum s_alloc {
8275 sa_sched_groups = 0,
8276 sa_rootdomain,
8277 sa_tmpmask,
8278 sa_send_covered,
8279 sa_this_core_map,
8280 sa_this_sibling_map,
8281 sa_nodemask,
8282 sa_sched_group_nodes,
8283#ifdef CONFIG_NUMA
8284 sa_notcovered,
8285 sa_covered,
8286 sa_domainspan,
8287#endif
8288 sa_none,
8289};
8290
9c1cfda2 8291/*
48f24c4d 8292 * SMT sched-domains:
9c1cfda2 8293 */
1da177e4 8294#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8295static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8296static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8297
41a2d6cf 8298static int
96f874e2
RR
8299cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8300 struct sched_group **sg, struct cpumask *unused)
1da177e4 8301{
6711cab4 8302 if (sg)
6c99e9ad 8303 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8304 return cpu;
8305}
6d6bc0ad 8306#endif /* CONFIG_SCHED_SMT */
1da177e4 8307
48f24c4d
IM
8308/*
8309 * multi-core sched-domains:
8310 */
1e9f28fa 8311#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8312static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8313static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8314#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8315
8316#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8317static int
96f874e2
RR
8318cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8319 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8320{
6711cab4 8321 int group;
7c16ec58 8322
c69fc56d 8323 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8324 group = cpumask_first(mask);
6711cab4 8325 if (sg)
6c99e9ad 8326 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8327 return group;
1e9f28fa
SS
8328}
8329#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8330static int
96f874e2
RR
8331cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8332 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8333{
6711cab4 8334 if (sg)
6c99e9ad 8335 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8336 return cpu;
8337}
8338#endif
8339
6c99e9ad
RR
8340static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8341static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8342
41a2d6cf 8343static int
96f874e2
RR
8344cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8345 struct sched_group **sg, struct cpumask *mask)
1da177e4 8346{
6711cab4 8347 int group;
48f24c4d 8348#ifdef CONFIG_SCHED_MC
6ca09dfc 8349 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8350 group = cpumask_first(mask);
1e9f28fa 8351#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8352 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8353 group = cpumask_first(mask);
1da177e4 8354#else
6711cab4 8355 group = cpu;
1da177e4 8356#endif
6711cab4 8357 if (sg)
6c99e9ad 8358 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8359 return group;
1da177e4
LT
8360}
8361
8362#ifdef CONFIG_NUMA
1da177e4 8363/*
9c1cfda2
JH
8364 * The init_sched_build_groups can't handle what we want to do with node
8365 * groups, so roll our own. Now each node has its own list of groups which
8366 * gets dynamically allocated.
1da177e4 8367 */
62ea9ceb 8368static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8369static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8370
62ea9ceb 8371static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8372static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8373
96f874e2
RR
8374static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8375 struct sched_group **sg,
8376 struct cpumask *nodemask)
9c1cfda2 8377{
6711cab4
SS
8378 int group;
8379
6ca09dfc 8380 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8381 group = cpumask_first(nodemask);
6711cab4
SS
8382
8383 if (sg)
6c99e9ad 8384 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8385 return group;
1da177e4 8386}
6711cab4 8387
08069033
SS
8388static void init_numa_sched_groups_power(struct sched_group *group_head)
8389{
8390 struct sched_group *sg = group_head;
8391 int j;
8392
8393 if (!sg)
8394 return;
3a5c359a 8395 do {
758b2cdc 8396 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8397 struct sched_domain *sd;
08069033 8398
6c99e9ad 8399 sd = &per_cpu(phys_domains, j).sd;
13318a71 8400 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8401 /*
8402 * Only add "power" once for each
8403 * physical package.
8404 */
8405 continue;
8406 }
08069033 8407
18a3885f 8408 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8409 }
8410 sg = sg->next;
8411 } while (sg != group_head);
08069033 8412}
0601a88d
AH
8413
8414static int build_numa_sched_groups(struct s_data *d,
8415 const struct cpumask *cpu_map, int num)
8416{
8417 struct sched_domain *sd;
8418 struct sched_group *sg, *prev;
8419 int n, j;
8420
8421 cpumask_clear(d->covered);
8422 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8423 if (cpumask_empty(d->nodemask)) {
8424 d->sched_group_nodes[num] = NULL;
8425 goto out;
8426 }
8427
8428 sched_domain_node_span(num, d->domainspan);
8429 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8430
8431 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8432 GFP_KERNEL, num);
8433 if (!sg) {
8434 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8435 num);
8436 return -ENOMEM;
8437 }
8438 d->sched_group_nodes[num] = sg;
8439
8440 for_each_cpu(j, d->nodemask) {
8441 sd = &per_cpu(node_domains, j).sd;
8442 sd->groups = sg;
8443 }
8444
18a3885f 8445 sg->cpu_power = 0;
0601a88d
AH
8446 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8447 sg->next = sg;
8448 cpumask_or(d->covered, d->covered, d->nodemask);
8449
8450 prev = sg;
8451 for (j = 0; j < nr_node_ids; j++) {
8452 n = (num + j) % nr_node_ids;
8453 cpumask_complement(d->notcovered, d->covered);
8454 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8455 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8456 if (cpumask_empty(d->tmpmask))
8457 break;
8458 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8459 if (cpumask_empty(d->tmpmask))
8460 continue;
8461 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8462 GFP_KERNEL, num);
8463 if (!sg) {
8464 printk(KERN_WARNING
8465 "Can not alloc domain group for node %d\n", j);
8466 return -ENOMEM;
8467 }
18a3885f 8468 sg->cpu_power = 0;
0601a88d
AH
8469 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8470 sg->next = prev->next;
8471 cpumask_or(d->covered, d->covered, d->tmpmask);
8472 prev->next = sg;
8473 prev = sg;
8474 }
8475out:
8476 return 0;
8477}
6d6bc0ad 8478#endif /* CONFIG_NUMA */
1da177e4 8479
a616058b 8480#ifdef CONFIG_NUMA
51888ca2 8481/* Free memory allocated for various sched_group structures */
96f874e2
RR
8482static void free_sched_groups(const struct cpumask *cpu_map,
8483 struct cpumask *nodemask)
51888ca2 8484{
a616058b 8485 int cpu, i;
51888ca2 8486
abcd083a 8487 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8488 struct sched_group **sched_group_nodes
8489 = sched_group_nodes_bycpu[cpu];
8490
51888ca2
SV
8491 if (!sched_group_nodes)
8492 continue;
8493
076ac2af 8494 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8495 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8496
6ca09dfc 8497 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8498 if (cpumask_empty(nodemask))
51888ca2
SV
8499 continue;
8500
8501 if (sg == NULL)
8502 continue;
8503 sg = sg->next;
8504next_sg:
8505 oldsg = sg;
8506 sg = sg->next;
8507 kfree(oldsg);
8508 if (oldsg != sched_group_nodes[i])
8509 goto next_sg;
8510 }
8511 kfree(sched_group_nodes);
8512 sched_group_nodes_bycpu[cpu] = NULL;
8513 }
51888ca2 8514}
6d6bc0ad 8515#else /* !CONFIG_NUMA */
96f874e2
RR
8516static void free_sched_groups(const struct cpumask *cpu_map,
8517 struct cpumask *nodemask)
a616058b
SS
8518{
8519}
6d6bc0ad 8520#endif /* CONFIG_NUMA */
51888ca2 8521
89c4710e
SS
8522/*
8523 * Initialize sched groups cpu_power.
8524 *
8525 * cpu_power indicates the capacity of sched group, which is used while
8526 * distributing the load between different sched groups in a sched domain.
8527 * Typically cpu_power for all the groups in a sched domain will be same unless
8528 * there are asymmetries in the topology. If there are asymmetries, group
8529 * having more cpu_power will pickup more load compared to the group having
8530 * less cpu_power.
89c4710e
SS
8531 */
8532static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8533{
8534 struct sched_domain *child;
8535 struct sched_group *group;
f93e65c1
PZ
8536 long power;
8537 int weight;
89c4710e
SS
8538
8539 WARN_ON(!sd || !sd->groups);
8540
13318a71 8541 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8542 return;
8543
8544 child = sd->child;
8545
18a3885f 8546 sd->groups->cpu_power = 0;
5517d86b 8547
f93e65c1
PZ
8548 if (!child) {
8549 power = SCHED_LOAD_SCALE;
8550 weight = cpumask_weight(sched_domain_span(sd));
8551 /*
8552 * SMT siblings share the power of a single core.
a52bfd73
PZ
8553 * Usually multiple threads get a better yield out of
8554 * that one core than a single thread would have,
8555 * reflect that in sd->smt_gain.
f93e65c1 8556 */
a52bfd73
PZ
8557 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8558 power *= sd->smt_gain;
f93e65c1 8559 power /= weight;
a52bfd73
PZ
8560 power >>= SCHED_LOAD_SHIFT;
8561 }
18a3885f 8562 sd->groups->cpu_power += power;
89c4710e
SS
8563 return;
8564 }
8565
89c4710e 8566 /*
f93e65c1 8567 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8568 */
8569 group = child->groups;
8570 do {
18a3885f 8571 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8572 group = group->next;
8573 } while (group != child->groups);
8574}
8575
7c16ec58
MT
8576/*
8577 * Initializers for schedule domains
8578 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8579 */
8580
a5d8c348
IM
8581#ifdef CONFIG_SCHED_DEBUG
8582# define SD_INIT_NAME(sd, type) sd->name = #type
8583#else
8584# define SD_INIT_NAME(sd, type) do { } while (0)
8585#endif
8586
7c16ec58 8587#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8588
7c16ec58
MT
8589#define SD_INIT_FUNC(type) \
8590static noinline void sd_init_##type(struct sched_domain *sd) \
8591{ \
8592 memset(sd, 0, sizeof(*sd)); \
8593 *sd = SD_##type##_INIT; \
1d3504fc 8594 sd->level = SD_LV_##type; \
a5d8c348 8595 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8596}
8597
8598SD_INIT_FUNC(CPU)
8599#ifdef CONFIG_NUMA
8600 SD_INIT_FUNC(ALLNODES)
8601 SD_INIT_FUNC(NODE)
8602#endif
8603#ifdef CONFIG_SCHED_SMT
8604 SD_INIT_FUNC(SIBLING)
8605#endif
8606#ifdef CONFIG_SCHED_MC
8607 SD_INIT_FUNC(MC)
8608#endif
8609
1d3504fc
HS
8610static int default_relax_domain_level = -1;
8611
8612static int __init setup_relax_domain_level(char *str)
8613{
30e0e178
LZ
8614 unsigned long val;
8615
8616 val = simple_strtoul(str, NULL, 0);
8617 if (val < SD_LV_MAX)
8618 default_relax_domain_level = val;
8619
1d3504fc
HS
8620 return 1;
8621}
8622__setup("relax_domain_level=", setup_relax_domain_level);
8623
8624static void set_domain_attribute(struct sched_domain *sd,
8625 struct sched_domain_attr *attr)
8626{
8627 int request;
8628
8629 if (!attr || attr->relax_domain_level < 0) {
8630 if (default_relax_domain_level < 0)
8631 return;
8632 else
8633 request = default_relax_domain_level;
8634 } else
8635 request = attr->relax_domain_level;
8636 if (request < sd->level) {
8637 /* turn off idle balance on this domain */
c88d5910 8638 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8639 } else {
8640 /* turn on idle balance on this domain */
c88d5910 8641 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8642 }
8643}
8644
2109b99e
AH
8645static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8646 const struct cpumask *cpu_map)
8647{
8648 switch (what) {
8649 case sa_sched_groups:
8650 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8651 d->sched_group_nodes = NULL;
8652 case sa_rootdomain:
8653 free_rootdomain(d->rd); /* fall through */
8654 case sa_tmpmask:
8655 free_cpumask_var(d->tmpmask); /* fall through */
8656 case sa_send_covered:
8657 free_cpumask_var(d->send_covered); /* fall through */
8658 case sa_this_core_map:
8659 free_cpumask_var(d->this_core_map); /* fall through */
8660 case sa_this_sibling_map:
8661 free_cpumask_var(d->this_sibling_map); /* fall through */
8662 case sa_nodemask:
8663 free_cpumask_var(d->nodemask); /* fall through */
8664 case sa_sched_group_nodes:
d1b55138 8665#ifdef CONFIG_NUMA
2109b99e
AH
8666 kfree(d->sched_group_nodes); /* fall through */
8667 case sa_notcovered:
8668 free_cpumask_var(d->notcovered); /* fall through */
8669 case sa_covered:
8670 free_cpumask_var(d->covered); /* fall through */
8671 case sa_domainspan:
8672 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8673#endif
2109b99e
AH
8674 case sa_none:
8675 break;
8676 }
8677}
3404c8d9 8678
2109b99e
AH
8679static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8680 const struct cpumask *cpu_map)
8681{
3404c8d9 8682#ifdef CONFIG_NUMA
2109b99e
AH
8683 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8684 return sa_none;
8685 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8686 return sa_domainspan;
8687 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8688 return sa_covered;
8689 /* Allocate the per-node list of sched groups */
8690 d->sched_group_nodes = kcalloc(nr_node_ids,
8691 sizeof(struct sched_group *), GFP_KERNEL);
8692 if (!d->sched_group_nodes) {
d1b55138 8693 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8694 return sa_notcovered;
d1b55138 8695 }
2109b99e 8696 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8697#endif
2109b99e
AH
8698 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8699 return sa_sched_group_nodes;
8700 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8701 return sa_nodemask;
8702 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8703 return sa_this_sibling_map;
8704 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8705 return sa_this_core_map;
8706 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8707 return sa_send_covered;
8708 d->rd = alloc_rootdomain();
8709 if (!d->rd) {
57d885fe 8710 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8711 return sa_tmpmask;
57d885fe 8712 }
2109b99e
AH
8713 return sa_rootdomain;
8714}
57d885fe 8715
7f4588f3
AH
8716static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8717 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8718{
8719 struct sched_domain *sd = NULL;
7c16ec58 8720#ifdef CONFIG_NUMA
7f4588f3 8721 struct sched_domain *parent;
1da177e4 8722
7f4588f3
AH
8723 d->sd_allnodes = 0;
8724 if (cpumask_weight(cpu_map) >
8725 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8726 sd = &per_cpu(allnodes_domains, i).sd;
8727 SD_INIT(sd, ALLNODES);
1d3504fc 8728 set_domain_attribute(sd, attr);
7f4588f3
AH
8729 cpumask_copy(sched_domain_span(sd), cpu_map);
8730 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8731 d->sd_allnodes = 1;
8732 }
8733 parent = sd;
8734
8735 sd = &per_cpu(node_domains, i).sd;
8736 SD_INIT(sd, NODE);
8737 set_domain_attribute(sd, attr);
8738 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8739 sd->parent = parent;
8740 if (parent)
8741 parent->child = sd;
8742 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8743#endif
7f4588f3
AH
8744 return sd;
8745}
1da177e4 8746
87cce662
AH
8747static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8748 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8749 struct sched_domain *parent, int i)
8750{
8751 struct sched_domain *sd;
8752 sd = &per_cpu(phys_domains, i).sd;
8753 SD_INIT(sd, CPU);
8754 set_domain_attribute(sd, attr);
8755 cpumask_copy(sched_domain_span(sd), d->nodemask);
8756 sd->parent = parent;
8757 if (parent)
8758 parent->child = sd;
8759 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8760 return sd;
8761}
1da177e4 8762
410c4081
AH
8763static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8764 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8765 struct sched_domain *parent, int i)
8766{
8767 struct sched_domain *sd = parent;
1e9f28fa 8768#ifdef CONFIG_SCHED_MC
410c4081
AH
8769 sd = &per_cpu(core_domains, i).sd;
8770 SD_INIT(sd, MC);
8771 set_domain_attribute(sd, attr);
8772 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8773 sd->parent = parent;
8774 parent->child = sd;
8775 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8776#endif
410c4081
AH
8777 return sd;
8778}
1e9f28fa 8779
d8173535
AH
8780static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8781 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8782 struct sched_domain *parent, int i)
8783{
8784 struct sched_domain *sd = parent;
1da177e4 8785#ifdef CONFIG_SCHED_SMT
d8173535
AH
8786 sd = &per_cpu(cpu_domains, i).sd;
8787 SD_INIT(sd, SIBLING);
8788 set_domain_attribute(sd, attr);
8789 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8790 sd->parent = parent;
8791 parent->child = sd;
8792 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8793#endif
d8173535
AH
8794 return sd;
8795}
1da177e4 8796
0e8e85c9
AH
8797static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8798 const struct cpumask *cpu_map, int cpu)
8799{
8800 switch (l) {
1da177e4 8801#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8802 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8803 cpumask_and(d->this_sibling_map, cpu_map,
8804 topology_thread_cpumask(cpu));
8805 if (cpu == cpumask_first(d->this_sibling_map))
8806 init_sched_build_groups(d->this_sibling_map, cpu_map,
8807 &cpu_to_cpu_group,
8808 d->send_covered, d->tmpmask);
8809 break;
1da177e4 8810#endif
1e9f28fa 8811#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8812 case SD_LV_MC: /* set up multi-core groups */
8813 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8814 if (cpu == cpumask_first(d->this_core_map))
8815 init_sched_build_groups(d->this_core_map, cpu_map,
8816 &cpu_to_core_group,
8817 d->send_covered, d->tmpmask);
8818 break;
1e9f28fa 8819#endif
86548096
AH
8820 case SD_LV_CPU: /* set up physical groups */
8821 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8822 if (!cpumask_empty(d->nodemask))
8823 init_sched_build_groups(d->nodemask, cpu_map,
8824 &cpu_to_phys_group,
8825 d->send_covered, d->tmpmask);
8826 break;
1da177e4 8827#ifdef CONFIG_NUMA
de616e36
AH
8828 case SD_LV_ALLNODES:
8829 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8830 d->send_covered, d->tmpmask);
8831 break;
8832#endif
0e8e85c9
AH
8833 default:
8834 break;
7c16ec58 8835 }
0e8e85c9 8836}
9c1cfda2 8837
2109b99e
AH
8838/*
8839 * Build sched domains for a given set of cpus and attach the sched domains
8840 * to the individual cpus
8841 */
8842static int __build_sched_domains(const struct cpumask *cpu_map,
8843 struct sched_domain_attr *attr)
8844{
8845 enum s_alloc alloc_state = sa_none;
8846 struct s_data d;
294b0c96 8847 struct sched_domain *sd;
2109b99e 8848 int i;
7c16ec58 8849#ifdef CONFIG_NUMA
2109b99e 8850 d.sd_allnodes = 0;
7c16ec58 8851#endif
9c1cfda2 8852
2109b99e
AH
8853 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8854 if (alloc_state != sa_rootdomain)
8855 goto error;
8856 alloc_state = sa_sched_groups;
9c1cfda2 8857
1da177e4 8858 /*
1a20ff27 8859 * Set up domains for cpus specified by the cpu_map.
1da177e4 8860 */
abcd083a 8861 for_each_cpu(i, cpu_map) {
49a02c51
AH
8862 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8863 cpu_map);
9761eea8 8864
7f4588f3 8865 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8866 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8867 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8868 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8869 }
9c1cfda2 8870
abcd083a 8871 for_each_cpu(i, cpu_map) {
0e8e85c9 8872 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8873 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8874 }
9c1cfda2 8875
1da177e4 8876 /* Set up physical groups */
86548096
AH
8877 for (i = 0; i < nr_node_ids; i++)
8878 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8879
1da177e4
LT
8880#ifdef CONFIG_NUMA
8881 /* Set up node groups */
de616e36
AH
8882 if (d.sd_allnodes)
8883 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8884
0601a88d
AH
8885 for (i = 0; i < nr_node_ids; i++)
8886 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8887 goto error;
1da177e4
LT
8888#endif
8889
8890 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8891#ifdef CONFIG_SCHED_SMT
abcd083a 8892 for_each_cpu(i, cpu_map) {
294b0c96 8893 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8894 init_sched_groups_power(i, sd);
5c45bf27 8895 }
1da177e4 8896#endif
1e9f28fa 8897#ifdef CONFIG_SCHED_MC
abcd083a 8898 for_each_cpu(i, cpu_map) {
294b0c96 8899 sd = &per_cpu(core_domains, i).sd;
89c4710e 8900 init_sched_groups_power(i, sd);
5c45bf27
SS
8901 }
8902#endif
1e9f28fa 8903
abcd083a 8904 for_each_cpu(i, cpu_map) {
294b0c96 8905 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8906 init_sched_groups_power(i, sd);
1da177e4
LT
8907 }
8908
9c1cfda2 8909#ifdef CONFIG_NUMA
076ac2af 8910 for (i = 0; i < nr_node_ids; i++)
49a02c51 8911 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8912
49a02c51 8913 if (d.sd_allnodes) {
6711cab4 8914 struct sched_group *sg;
f712c0c7 8915
96f874e2 8916 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8917 d.tmpmask);
f712c0c7
SS
8918 init_numa_sched_groups_power(sg);
8919 }
9c1cfda2
JH
8920#endif
8921
1da177e4 8922 /* Attach the domains */
abcd083a 8923 for_each_cpu(i, cpu_map) {
1da177e4 8924#ifdef CONFIG_SCHED_SMT
6c99e9ad 8925 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8926#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8927 sd = &per_cpu(core_domains, i).sd;
1da177e4 8928#else
6c99e9ad 8929 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8930#endif
49a02c51 8931 cpu_attach_domain(sd, d.rd, i);
1da177e4 8932 }
51888ca2 8933
2109b99e
AH
8934 d.sched_group_nodes = NULL; /* don't free this we still need it */
8935 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8936 return 0;
51888ca2 8937
51888ca2 8938error:
2109b99e
AH
8939 __free_domain_allocs(&d, alloc_state, cpu_map);
8940 return -ENOMEM;
1da177e4 8941}
029190c5 8942
96f874e2 8943static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8944{
8945 return __build_sched_domains(cpu_map, NULL);
8946}
8947
acc3f5d7 8948static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 8949static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8950static struct sched_domain_attr *dattr_cur;
8951 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8952
8953/*
8954 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8955 * cpumask) fails, then fallback to a single sched domain,
8956 * as determined by the single cpumask fallback_doms.
029190c5 8957 */
4212823f 8958static cpumask_var_t fallback_doms;
029190c5 8959
ee79d1bd
HC
8960/*
8961 * arch_update_cpu_topology lets virtualized architectures update the
8962 * cpu core maps. It is supposed to return 1 if the topology changed
8963 * or 0 if it stayed the same.
8964 */
8965int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8966{
ee79d1bd 8967 return 0;
22e52b07
HC
8968}
8969
acc3f5d7
RR
8970cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8971{
8972 int i;
8973 cpumask_var_t *doms;
8974
8975 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8976 if (!doms)
8977 return NULL;
8978 for (i = 0; i < ndoms; i++) {
8979 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8980 free_sched_domains(doms, i);
8981 return NULL;
8982 }
8983 }
8984 return doms;
8985}
8986
8987void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
8988{
8989 unsigned int i;
8990 for (i = 0; i < ndoms; i++)
8991 free_cpumask_var(doms[i]);
8992 kfree(doms);
8993}
8994
1a20ff27 8995/*
41a2d6cf 8996 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8997 * For now this just excludes isolated cpus, but could be used to
8998 * exclude other special cases in the future.
1a20ff27 8999 */
96f874e2 9000static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 9001{
7378547f
MM
9002 int err;
9003
22e52b07 9004 arch_update_cpu_topology();
029190c5 9005 ndoms_cur = 1;
acc3f5d7 9006 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 9007 if (!doms_cur)
acc3f5d7
RR
9008 doms_cur = &fallback_doms;
9009 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 9010 dattr_cur = NULL;
acc3f5d7 9011 err = build_sched_domains(doms_cur[0]);
6382bc90 9012 register_sched_domain_sysctl();
7378547f
MM
9013
9014 return err;
1a20ff27
DG
9015}
9016
96f874e2
RR
9017static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9018 struct cpumask *tmpmask)
1da177e4 9019{
7c16ec58 9020 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 9021}
1da177e4 9022
1a20ff27
DG
9023/*
9024 * Detach sched domains from a group of cpus specified in cpu_map
9025 * These cpus will now be attached to the NULL domain
9026 */
96f874e2 9027static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 9028{
96f874e2
RR
9029 /* Save because hotplug lock held. */
9030 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
9031 int i;
9032
abcd083a 9033 for_each_cpu(i, cpu_map)
57d885fe 9034 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 9035 synchronize_sched();
96f874e2 9036 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
9037}
9038
1d3504fc
HS
9039/* handle null as "default" */
9040static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9041 struct sched_domain_attr *new, int idx_new)
9042{
9043 struct sched_domain_attr tmp;
9044
9045 /* fast path */
9046 if (!new && !cur)
9047 return 1;
9048
9049 tmp = SD_ATTR_INIT;
9050 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9051 new ? (new + idx_new) : &tmp,
9052 sizeof(struct sched_domain_attr));
9053}
9054
029190c5
PJ
9055/*
9056 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 9057 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
9058 * doms_new[] to the current sched domain partitioning, doms_cur[].
9059 * It destroys each deleted domain and builds each new domain.
9060 *
acc3f5d7 9061 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
9062 * The masks don't intersect (don't overlap.) We should setup one
9063 * sched domain for each mask. CPUs not in any of the cpumasks will
9064 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
9065 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9066 * it as it is.
9067 *
acc3f5d7
RR
9068 * The passed in 'doms_new' should be allocated using
9069 * alloc_sched_domains. This routine takes ownership of it and will
9070 * free_sched_domains it when done with it. If the caller failed the
9071 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9072 * and partition_sched_domains() will fallback to the single partition
9073 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 9074 *
96f874e2 9075 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
9076 * ndoms_new == 0 is a special case for destroying existing domains,
9077 * and it will not create the default domain.
dfb512ec 9078 *
029190c5
PJ
9079 * Call with hotplug lock held
9080 */
acc3f5d7 9081void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 9082 struct sched_domain_attr *dattr_new)
029190c5 9083{
dfb512ec 9084 int i, j, n;
d65bd5ec 9085 int new_topology;
029190c5 9086
712555ee 9087 mutex_lock(&sched_domains_mutex);
a1835615 9088
7378547f
MM
9089 /* always unregister in case we don't destroy any domains */
9090 unregister_sched_domain_sysctl();
9091
d65bd5ec
HC
9092 /* Let architecture update cpu core mappings. */
9093 new_topology = arch_update_cpu_topology();
9094
dfb512ec 9095 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9096
9097 /* Destroy deleted domains */
9098 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9099 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 9100 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 9101 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9102 goto match1;
9103 }
9104 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 9105 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
9106match1:
9107 ;
9108 }
9109
e761b772
MK
9110 if (doms_new == NULL) {
9111 ndoms_cur = 0;
acc3f5d7 9112 doms_new = &fallback_doms;
6ad4c188 9113 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 9114 WARN_ON_ONCE(dattr_new);
e761b772
MK
9115 }
9116
029190c5
PJ
9117 /* Build new domains */
9118 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9119 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 9120 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 9121 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9122 goto match2;
9123 }
9124 /* no match - add a new doms_new */
acc3f5d7 9125 __build_sched_domains(doms_new[i],
1d3504fc 9126 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9127match2:
9128 ;
9129 }
9130
9131 /* Remember the new sched domains */
acc3f5d7
RR
9132 if (doms_cur != &fallback_doms)
9133 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 9134 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9135 doms_cur = doms_new;
1d3504fc 9136 dattr_cur = dattr_new;
029190c5 9137 ndoms_cur = ndoms_new;
7378547f
MM
9138
9139 register_sched_domain_sysctl();
a1835615 9140
712555ee 9141 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9142}
9143
5c45bf27 9144#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9145static void arch_reinit_sched_domains(void)
5c45bf27 9146{
95402b38 9147 get_online_cpus();
dfb512ec
MK
9148
9149 /* Destroy domains first to force the rebuild */
9150 partition_sched_domains(0, NULL, NULL);
9151
e761b772 9152 rebuild_sched_domains();
95402b38 9153 put_online_cpus();
5c45bf27
SS
9154}
9155
9156static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9157{
afb8a9b7 9158 unsigned int level = 0;
5c45bf27 9159
afb8a9b7
GS
9160 if (sscanf(buf, "%u", &level) != 1)
9161 return -EINVAL;
9162
9163 /*
9164 * level is always be positive so don't check for
9165 * level < POWERSAVINGS_BALANCE_NONE which is 0
9166 * What happens on 0 or 1 byte write,
9167 * need to check for count as well?
9168 */
9169
9170 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9171 return -EINVAL;
9172
9173 if (smt)
afb8a9b7 9174 sched_smt_power_savings = level;
5c45bf27 9175 else
afb8a9b7 9176 sched_mc_power_savings = level;
5c45bf27 9177
c70f22d2 9178 arch_reinit_sched_domains();
5c45bf27 9179
c70f22d2 9180 return count;
5c45bf27
SS
9181}
9182
5c45bf27 9183#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9184static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9185 char *page)
5c45bf27
SS
9186{
9187 return sprintf(page, "%u\n", sched_mc_power_savings);
9188}
f718cd4a 9189static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9190 const char *buf, size_t count)
5c45bf27
SS
9191{
9192 return sched_power_savings_store(buf, count, 0);
9193}
f718cd4a
AK
9194static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9195 sched_mc_power_savings_show,
9196 sched_mc_power_savings_store);
5c45bf27
SS
9197#endif
9198
9199#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9200static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9201 char *page)
5c45bf27
SS
9202{
9203 return sprintf(page, "%u\n", sched_smt_power_savings);
9204}
f718cd4a 9205static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9206 const char *buf, size_t count)
5c45bf27
SS
9207{
9208 return sched_power_savings_store(buf, count, 1);
9209}
f718cd4a
AK
9210static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9211 sched_smt_power_savings_show,
6707de00
AB
9212 sched_smt_power_savings_store);
9213#endif
9214
39aac648 9215int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9216{
9217 int err = 0;
9218
9219#ifdef CONFIG_SCHED_SMT
9220 if (smt_capable())
9221 err = sysfs_create_file(&cls->kset.kobj,
9222 &attr_sched_smt_power_savings.attr);
9223#endif
9224#ifdef CONFIG_SCHED_MC
9225 if (!err && mc_capable())
9226 err = sysfs_create_file(&cls->kset.kobj,
9227 &attr_sched_mc_power_savings.attr);
9228#endif
9229 return err;
9230}
6d6bc0ad 9231#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9232
e761b772 9233#ifndef CONFIG_CPUSETS
1da177e4 9234/*
e761b772
MK
9235 * Add online and remove offline CPUs from the scheduler domains.
9236 * When cpusets are enabled they take over this function.
1da177e4
LT
9237 */
9238static int update_sched_domains(struct notifier_block *nfb,
9239 unsigned long action, void *hcpu)
e761b772
MK
9240{
9241 switch (action) {
9242 case CPU_ONLINE:
9243 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
9244 case CPU_DOWN_PREPARE:
9245 case CPU_DOWN_PREPARE_FROZEN:
9246 case CPU_DOWN_FAILED:
9247 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 9248 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9249 return NOTIFY_OK;
9250
9251 default:
9252 return NOTIFY_DONE;
9253 }
9254}
9255#endif
9256
9257static int update_runtime(struct notifier_block *nfb,
9258 unsigned long action, void *hcpu)
1da177e4 9259{
7def2be1
PZ
9260 int cpu = (int)(long)hcpu;
9261
1da177e4 9262 switch (action) {
1da177e4 9263 case CPU_DOWN_PREPARE:
8bb78442 9264 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9265 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9266 return NOTIFY_OK;
9267
1da177e4 9268 case CPU_DOWN_FAILED:
8bb78442 9269 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9270 case CPU_ONLINE:
8bb78442 9271 case CPU_ONLINE_FROZEN:
7def2be1 9272 enable_runtime(cpu_rq(cpu));
e761b772
MK
9273 return NOTIFY_OK;
9274
1da177e4
LT
9275 default:
9276 return NOTIFY_DONE;
9277 }
1da177e4 9278}
1da177e4
LT
9279
9280void __init sched_init_smp(void)
9281{
dcc30a35
RR
9282 cpumask_var_t non_isolated_cpus;
9283
9284 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9285 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9286
434d53b0
MT
9287#if defined(CONFIG_NUMA)
9288 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9289 GFP_KERNEL);
9290 BUG_ON(sched_group_nodes_bycpu == NULL);
9291#endif
95402b38 9292 get_online_cpus();
712555ee 9293 mutex_lock(&sched_domains_mutex);
6ad4c188 9294 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
9295 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9296 if (cpumask_empty(non_isolated_cpus))
9297 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9298 mutex_unlock(&sched_domains_mutex);
95402b38 9299 put_online_cpus();
e761b772
MK
9300
9301#ifndef CONFIG_CPUSETS
1da177e4
LT
9302 /* XXX: Theoretical race here - CPU may be hotplugged now */
9303 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9304#endif
9305
9306 /* RT runtime code needs to handle some hotplug events */
9307 hotcpu_notifier(update_runtime, 0);
9308
b328ca18 9309 init_hrtick();
5c1e1767
NP
9310
9311 /* Move init over to a non-isolated CPU */
dcc30a35 9312 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9313 BUG();
19978ca6 9314 sched_init_granularity();
dcc30a35 9315 free_cpumask_var(non_isolated_cpus);
4212823f 9316
0e3900e6 9317 init_sched_rt_class();
1da177e4
LT
9318}
9319#else
9320void __init sched_init_smp(void)
9321{
19978ca6 9322 sched_init_granularity();
1da177e4
LT
9323}
9324#endif /* CONFIG_SMP */
9325
cd1bb94b
AB
9326const_debug unsigned int sysctl_timer_migration = 1;
9327
1da177e4
LT
9328int in_sched_functions(unsigned long addr)
9329{
1da177e4
LT
9330 return in_lock_functions(addr) ||
9331 (addr >= (unsigned long)__sched_text_start
9332 && addr < (unsigned long)__sched_text_end);
9333}
9334
a9957449 9335static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9336{
9337 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9338 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9339#ifdef CONFIG_FAIR_GROUP_SCHED
9340 cfs_rq->rq = rq;
9341#endif
67e9fb2a 9342 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9343}
9344
fa85ae24
PZ
9345static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9346{
9347 struct rt_prio_array *array;
9348 int i;
9349
9350 array = &rt_rq->active;
9351 for (i = 0; i < MAX_RT_PRIO; i++) {
9352 INIT_LIST_HEAD(array->queue + i);
9353 __clear_bit(i, array->bitmap);
9354 }
9355 /* delimiter for bitsearch: */
9356 __set_bit(MAX_RT_PRIO, array->bitmap);
9357
052f1dc7 9358#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9359 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9360#ifdef CONFIG_SMP
e864c499 9361 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9362#endif
48d5e258 9363#endif
fa85ae24
PZ
9364#ifdef CONFIG_SMP
9365 rt_rq->rt_nr_migratory = 0;
fa85ae24 9366 rt_rq->overloaded = 0;
c20b08e3 9367 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9368#endif
9369
9370 rt_rq->rt_time = 0;
9371 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9372 rt_rq->rt_runtime = 0;
9373 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9374
052f1dc7 9375#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9376 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9377 rt_rq->rq = rq;
9378#endif
fa85ae24
PZ
9379}
9380
6f505b16 9381#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9382static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9383 struct sched_entity *se, int cpu, int add,
9384 struct sched_entity *parent)
6f505b16 9385{
ec7dc8ac 9386 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9387 tg->cfs_rq[cpu] = cfs_rq;
9388 init_cfs_rq(cfs_rq, rq);
9389 cfs_rq->tg = tg;
9390 if (add)
9391 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9392
9393 tg->se[cpu] = se;
354d60c2
DG
9394 /* se could be NULL for init_task_group */
9395 if (!se)
9396 return;
9397
ec7dc8ac
DG
9398 if (!parent)
9399 se->cfs_rq = &rq->cfs;
9400 else
9401 se->cfs_rq = parent->my_q;
9402
6f505b16
PZ
9403 se->my_q = cfs_rq;
9404 se->load.weight = tg->shares;
e05510d0 9405 se->load.inv_weight = 0;
ec7dc8ac 9406 se->parent = parent;
6f505b16 9407}
052f1dc7 9408#endif
6f505b16 9409
052f1dc7 9410#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9411static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9412 struct sched_rt_entity *rt_se, int cpu, int add,
9413 struct sched_rt_entity *parent)
6f505b16 9414{
ec7dc8ac
DG
9415 struct rq *rq = cpu_rq(cpu);
9416
6f505b16
PZ
9417 tg->rt_rq[cpu] = rt_rq;
9418 init_rt_rq(rt_rq, rq);
9419 rt_rq->tg = tg;
9420 rt_rq->rt_se = rt_se;
ac086bc2 9421 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9422 if (add)
9423 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9424
9425 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9426 if (!rt_se)
9427 return;
9428
ec7dc8ac
DG
9429 if (!parent)
9430 rt_se->rt_rq = &rq->rt;
9431 else
9432 rt_se->rt_rq = parent->my_q;
9433
6f505b16 9434 rt_se->my_q = rt_rq;
ec7dc8ac 9435 rt_se->parent = parent;
6f505b16
PZ
9436 INIT_LIST_HEAD(&rt_se->run_list);
9437}
9438#endif
9439
1da177e4
LT
9440void __init sched_init(void)
9441{
dd41f596 9442 int i, j;
434d53b0
MT
9443 unsigned long alloc_size = 0, ptr;
9444
9445#ifdef CONFIG_FAIR_GROUP_SCHED
9446 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9447#endif
9448#ifdef CONFIG_RT_GROUP_SCHED
9449 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9450#endif
9451#ifdef CONFIG_USER_SCHED
9452 alloc_size *= 2;
df7c8e84
RR
9453#endif
9454#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9455 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 9456#endif
434d53b0 9457 if (alloc_size) {
36b7b6d4 9458 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9459
9460#ifdef CONFIG_FAIR_GROUP_SCHED
9461 init_task_group.se = (struct sched_entity **)ptr;
9462 ptr += nr_cpu_ids * sizeof(void **);
9463
9464 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9465 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9466
9467#ifdef CONFIG_USER_SCHED
9468 root_task_group.se = (struct sched_entity **)ptr;
9469 ptr += nr_cpu_ids * sizeof(void **);
9470
9471 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9472 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9473#endif /* CONFIG_USER_SCHED */
9474#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9475#ifdef CONFIG_RT_GROUP_SCHED
9476 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9477 ptr += nr_cpu_ids * sizeof(void **);
9478
9479 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9480 ptr += nr_cpu_ids * sizeof(void **);
9481
9482#ifdef CONFIG_USER_SCHED
9483 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9484 ptr += nr_cpu_ids * sizeof(void **);
9485
9486 root_task_group.rt_rq = (struct rt_rq **)ptr;
9487 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9488#endif /* CONFIG_USER_SCHED */
9489#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9490#ifdef CONFIG_CPUMASK_OFFSTACK
9491 for_each_possible_cpu(i) {
9492 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9493 ptr += cpumask_size();
9494 }
9495#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9496 }
dd41f596 9497
57d885fe
GH
9498#ifdef CONFIG_SMP
9499 init_defrootdomain();
9500#endif
9501
d0b27fa7
PZ
9502 init_rt_bandwidth(&def_rt_bandwidth,
9503 global_rt_period(), global_rt_runtime());
9504
9505#ifdef CONFIG_RT_GROUP_SCHED
9506 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9507 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9508#ifdef CONFIG_USER_SCHED
9509 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9510 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9511#endif /* CONFIG_USER_SCHED */
9512#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9513
052f1dc7 9514#ifdef CONFIG_GROUP_SCHED
6f505b16 9515 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9516 INIT_LIST_HEAD(&init_task_group.children);
9517
9518#ifdef CONFIG_USER_SCHED
9519 INIT_LIST_HEAD(&root_task_group.children);
9520 init_task_group.parent = &root_task_group;
9521 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9522#endif /* CONFIG_USER_SCHED */
9523#endif /* CONFIG_GROUP_SCHED */
6f505b16 9524
4a6cc4bd
JK
9525#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9526 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9527 __alignof__(unsigned long));
9528#endif
0a945022 9529 for_each_possible_cpu(i) {
70b97a7f 9530 struct rq *rq;
1da177e4
LT
9531
9532 rq = cpu_rq(i);
9533 spin_lock_init(&rq->lock);
7897986b 9534 rq->nr_running = 0;
dce48a84
TG
9535 rq->calc_load_active = 0;
9536 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9537 init_cfs_rq(&rq->cfs, rq);
6f505b16 9538 init_rt_rq(&rq->rt, rq);
dd41f596 9539#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9540 init_task_group.shares = init_task_group_load;
6f505b16 9541 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9542#ifdef CONFIG_CGROUP_SCHED
9543 /*
9544 * How much cpu bandwidth does init_task_group get?
9545 *
9546 * In case of task-groups formed thr' the cgroup filesystem, it
9547 * gets 100% of the cpu resources in the system. This overall
9548 * system cpu resource is divided among the tasks of
9549 * init_task_group and its child task-groups in a fair manner,
9550 * based on each entity's (task or task-group's) weight
9551 * (se->load.weight).
9552 *
9553 * In other words, if init_task_group has 10 tasks of weight
9554 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9555 * then A0's share of the cpu resource is:
9556 *
0d905bca 9557 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9558 *
9559 * We achieve this by letting init_task_group's tasks sit
9560 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9561 */
ec7dc8ac 9562 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9563#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9564 root_task_group.shares = NICE_0_LOAD;
9565 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9566 /*
9567 * In case of task-groups formed thr' the user id of tasks,
9568 * init_task_group represents tasks belonging to root user.
9569 * Hence it forms a sibling of all subsequent groups formed.
9570 * In this case, init_task_group gets only a fraction of overall
9571 * system cpu resource, based on the weight assigned to root
9572 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9573 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9574 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9575 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9576 */
ec7dc8ac 9577 init_tg_cfs_entry(&init_task_group,
84e9dabf 9578 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9579 &per_cpu(init_sched_entity, i), i, 1,
9580 root_task_group.se[i]);
6f505b16 9581
052f1dc7 9582#endif
354d60c2
DG
9583#endif /* CONFIG_FAIR_GROUP_SCHED */
9584
9585 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9586#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9587 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9588#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9589 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9590#elif defined CONFIG_USER_SCHED
eff766a6 9591 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9592 init_tg_rt_entry(&init_task_group,
6f505b16 9593 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9594 &per_cpu(init_sched_rt_entity, i), i, 1,
9595 root_task_group.rt_se[i]);
354d60c2 9596#endif
dd41f596 9597#endif
1da177e4 9598
dd41f596
IM
9599 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9600 rq->cpu_load[j] = 0;
1da177e4 9601#ifdef CONFIG_SMP
41c7ce9a 9602 rq->sd = NULL;
57d885fe 9603 rq->rd = NULL;
3f029d3c 9604 rq->post_schedule = 0;
1da177e4 9605 rq->active_balance = 0;
dd41f596 9606 rq->next_balance = jiffies;
1da177e4 9607 rq->push_cpu = 0;
0a2966b4 9608 rq->cpu = i;
1f11eb6a 9609 rq->online = 0;
1da177e4 9610 rq->migration_thread = NULL;
eae0c9df
MG
9611 rq->idle_stamp = 0;
9612 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 9613 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9614 rq_attach_root(rq, &def_root_domain);
1da177e4 9615#endif
8f4d37ec 9616 init_rq_hrtick(rq);
1da177e4 9617 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9618 }
9619
2dd73a4f 9620 set_load_weight(&init_task);
b50f60ce 9621
e107be36
AK
9622#ifdef CONFIG_PREEMPT_NOTIFIERS
9623 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9624#endif
9625
c9819f45 9626#ifdef CONFIG_SMP
962cf36c 9627 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9628#endif
9629
b50f60ce
HC
9630#ifdef CONFIG_RT_MUTEXES
9631 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9632#endif
9633
1da177e4
LT
9634 /*
9635 * The boot idle thread does lazy MMU switching as well:
9636 */
9637 atomic_inc(&init_mm.mm_count);
9638 enter_lazy_tlb(&init_mm, current);
9639
9640 /*
9641 * Make us the idle thread. Technically, schedule() should not be
9642 * called from this thread, however somewhere below it might be,
9643 * but because we are the idle thread, we just pick up running again
9644 * when this runqueue becomes "idle".
9645 */
9646 init_idle(current, smp_processor_id());
dce48a84
TG
9647
9648 calc_load_update = jiffies + LOAD_FREQ;
9649
dd41f596
IM
9650 /*
9651 * During early bootup we pretend to be a normal task:
9652 */
9653 current->sched_class = &fair_sched_class;
6892b75e 9654
6a7b3dc3 9655 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 9656 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9657#ifdef CONFIG_SMP
7d1e6a9b 9658#ifdef CONFIG_NO_HZ
49557e62 9659 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 9660 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9661#endif
bdddd296
RR
9662 /* May be allocated at isolcpus cmdline parse time */
9663 if (cpu_isolated_map == NULL)
9664 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9665#endif /* SMP */
6a7b3dc3 9666
cdd6c482 9667 perf_event_init();
0d905bca 9668
6892b75e 9669 scheduler_running = 1;
1da177e4
LT
9670}
9671
9672#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9673static inline int preempt_count_equals(int preempt_offset)
9674{
9675 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9676
9677 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9678}
9679
9680void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9681{
48f24c4d 9682#ifdef in_atomic
1da177e4
LT
9683 static unsigned long prev_jiffy; /* ratelimiting */
9684
e4aafea2
FW
9685 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9686 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9687 return;
9688 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9689 return;
9690 prev_jiffy = jiffies;
9691
9692 printk(KERN_ERR
9693 "BUG: sleeping function called from invalid context at %s:%d\n",
9694 file, line);
9695 printk(KERN_ERR
9696 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9697 in_atomic(), irqs_disabled(),
9698 current->pid, current->comm);
9699
9700 debug_show_held_locks(current);
9701 if (irqs_disabled())
9702 print_irqtrace_events(current);
9703 dump_stack();
1da177e4
LT
9704#endif
9705}
9706EXPORT_SYMBOL(__might_sleep);
9707#endif
9708
9709#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9710static void normalize_task(struct rq *rq, struct task_struct *p)
9711{
9712 int on_rq;
3e51f33f 9713
3a5e4dc1
AK
9714 update_rq_clock(rq);
9715 on_rq = p->se.on_rq;
9716 if (on_rq)
9717 deactivate_task(rq, p, 0);
9718 __setscheduler(rq, p, SCHED_NORMAL, 0);
9719 if (on_rq) {
9720 activate_task(rq, p, 0);
9721 resched_task(rq->curr);
9722 }
9723}
9724
1da177e4
LT
9725void normalize_rt_tasks(void)
9726{
a0f98a1c 9727 struct task_struct *g, *p;
1da177e4 9728 unsigned long flags;
70b97a7f 9729 struct rq *rq;
1da177e4 9730
4cf5d77a 9731 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9732 do_each_thread(g, p) {
178be793
IM
9733 /*
9734 * Only normalize user tasks:
9735 */
9736 if (!p->mm)
9737 continue;
9738
6cfb0d5d 9739 p->se.exec_start = 0;
6cfb0d5d 9740#ifdef CONFIG_SCHEDSTATS
dd41f596 9741 p->se.wait_start = 0;
dd41f596 9742 p->se.sleep_start = 0;
dd41f596 9743 p->se.block_start = 0;
6cfb0d5d 9744#endif
dd41f596
IM
9745
9746 if (!rt_task(p)) {
9747 /*
9748 * Renice negative nice level userspace
9749 * tasks back to 0:
9750 */
9751 if (TASK_NICE(p) < 0 && p->mm)
9752 set_user_nice(p, 0);
1da177e4 9753 continue;
dd41f596 9754 }
1da177e4 9755
4cf5d77a 9756 spin_lock(&p->pi_lock);
b29739f9 9757 rq = __task_rq_lock(p);
1da177e4 9758
178be793 9759 normalize_task(rq, p);
3a5e4dc1 9760
b29739f9 9761 __task_rq_unlock(rq);
4cf5d77a 9762 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9763 } while_each_thread(g, p);
9764
4cf5d77a 9765 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9766}
9767
9768#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9769
9770#ifdef CONFIG_IA64
9771/*
9772 * These functions are only useful for the IA64 MCA handling.
9773 *
9774 * They can only be called when the whole system has been
9775 * stopped - every CPU needs to be quiescent, and no scheduling
9776 * activity can take place. Using them for anything else would
9777 * be a serious bug, and as a result, they aren't even visible
9778 * under any other configuration.
9779 */
9780
9781/**
9782 * curr_task - return the current task for a given cpu.
9783 * @cpu: the processor in question.
9784 *
9785 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9786 */
36c8b586 9787struct task_struct *curr_task(int cpu)
1df5c10a
LT
9788{
9789 return cpu_curr(cpu);
9790}
9791
9792/**
9793 * set_curr_task - set the current task for a given cpu.
9794 * @cpu: the processor in question.
9795 * @p: the task pointer to set.
9796 *
9797 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9798 * are serviced on a separate stack. It allows the architecture to switch the
9799 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9800 * must be called with all CPU's synchronized, and interrupts disabled, the
9801 * and caller must save the original value of the current task (see
9802 * curr_task() above) and restore that value before reenabling interrupts and
9803 * re-starting the system.
9804 *
9805 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9806 */
36c8b586 9807void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9808{
9809 cpu_curr(cpu) = p;
9810}
9811
9812#endif
29f59db3 9813
bccbe08a
PZ
9814#ifdef CONFIG_FAIR_GROUP_SCHED
9815static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9816{
9817 int i;
9818
9819 for_each_possible_cpu(i) {
9820 if (tg->cfs_rq)
9821 kfree(tg->cfs_rq[i]);
9822 if (tg->se)
9823 kfree(tg->se[i]);
6f505b16
PZ
9824 }
9825
9826 kfree(tg->cfs_rq);
9827 kfree(tg->se);
6f505b16
PZ
9828}
9829
ec7dc8ac
DG
9830static
9831int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9832{
29f59db3 9833 struct cfs_rq *cfs_rq;
eab17229 9834 struct sched_entity *se;
9b5b7751 9835 struct rq *rq;
29f59db3
SV
9836 int i;
9837
434d53b0 9838 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9839 if (!tg->cfs_rq)
9840 goto err;
434d53b0 9841 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9842 if (!tg->se)
9843 goto err;
052f1dc7
PZ
9844
9845 tg->shares = NICE_0_LOAD;
29f59db3
SV
9846
9847 for_each_possible_cpu(i) {
9b5b7751 9848 rq = cpu_rq(i);
29f59db3 9849
eab17229
LZ
9850 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9851 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9852 if (!cfs_rq)
9853 goto err;
9854
eab17229
LZ
9855 se = kzalloc_node(sizeof(struct sched_entity),
9856 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9857 if (!se)
9858 goto err;
9859
eab17229 9860 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9861 }
9862
9863 return 1;
9864
9865 err:
9866 return 0;
9867}
9868
9869static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9870{
9871 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9872 &cpu_rq(cpu)->leaf_cfs_rq_list);
9873}
9874
9875static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9876{
9877 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9878}
6d6bc0ad 9879#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9880static inline void free_fair_sched_group(struct task_group *tg)
9881{
9882}
9883
ec7dc8ac
DG
9884static inline
9885int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9886{
9887 return 1;
9888}
9889
9890static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9891{
9892}
9893
9894static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9895{
9896}
6d6bc0ad 9897#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9898
9899#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9900static void free_rt_sched_group(struct task_group *tg)
9901{
9902 int i;
9903
d0b27fa7
PZ
9904 destroy_rt_bandwidth(&tg->rt_bandwidth);
9905
bccbe08a
PZ
9906 for_each_possible_cpu(i) {
9907 if (tg->rt_rq)
9908 kfree(tg->rt_rq[i]);
9909 if (tg->rt_se)
9910 kfree(tg->rt_se[i]);
9911 }
9912
9913 kfree(tg->rt_rq);
9914 kfree(tg->rt_se);
9915}
9916
ec7dc8ac
DG
9917static
9918int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9919{
9920 struct rt_rq *rt_rq;
eab17229 9921 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9922 struct rq *rq;
9923 int i;
9924
434d53b0 9925 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9926 if (!tg->rt_rq)
9927 goto err;
434d53b0 9928 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9929 if (!tg->rt_se)
9930 goto err;
9931
d0b27fa7
PZ
9932 init_rt_bandwidth(&tg->rt_bandwidth,
9933 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9934
9935 for_each_possible_cpu(i) {
9936 rq = cpu_rq(i);
9937
eab17229
LZ
9938 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9939 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9940 if (!rt_rq)
9941 goto err;
29f59db3 9942
eab17229
LZ
9943 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9944 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9945 if (!rt_se)
9946 goto err;
29f59db3 9947
eab17229 9948 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9949 }
9950
bccbe08a
PZ
9951 return 1;
9952
9953 err:
9954 return 0;
9955}
9956
9957static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9958{
9959 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9960 &cpu_rq(cpu)->leaf_rt_rq_list);
9961}
9962
9963static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9964{
9965 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9966}
6d6bc0ad 9967#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9968static inline void free_rt_sched_group(struct task_group *tg)
9969{
9970}
9971
ec7dc8ac
DG
9972static inline
9973int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9974{
9975 return 1;
9976}
9977
9978static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9979{
9980}
9981
9982static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9983{
9984}
6d6bc0ad 9985#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9986
d0b27fa7 9987#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9988static void free_sched_group(struct task_group *tg)
9989{
9990 free_fair_sched_group(tg);
9991 free_rt_sched_group(tg);
9992 kfree(tg);
9993}
9994
9995/* allocate runqueue etc for a new task group */
ec7dc8ac 9996struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9997{
9998 struct task_group *tg;
9999 unsigned long flags;
10000 int i;
10001
10002 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10003 if (!tg)
10004 return ERR_PTR(-ENOMEM);
10005
ec7dc8ac 10006 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
10007 goto err;
10008
ec7dc8ac 10009 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
10010 goto err;
10011
8ed36996 10012 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10013 for_each_possible_cpu(i) {
bccbe08a
PZ
10014 register_fair_sched_group(tg, i);
10015 register_rt_sched_group(tg, i);
9b5b7751 10016 }
6f505b16 10017 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
10018
10019 WARN_ON(!parent); /* root should already exist */
10020
10021 tg->parent = parent;
f473aa5e 10022 INIT_LIST_HEAD(&tg->children);
09f2724a 10023 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10024 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 10025
9b5b7751 10026 return tg;
29f59db3
SV
10027
10028err:
6f505b16 10029 free_sched_group(tg);
29f59db3
SV
10030 return ERR_PTR(-ENOMEM);
10031}
10032
9b5b7751 10033/* rcu callback to free various structures associated with a task group */
6f505b16 10034static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 10035{
29f59db3 10036 /* now it should be safe to free those cfs_rqs */
6f505b16 10037 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10038}
10039
9b5b7751 10040/* Destroy runqueue etc associated with a task group */
4cf86d77 10041void sched_destroy_group(struct task_group *tg)
29f59db3 10042{
8ed36996 10043 unsigned long flags;
9b5b7751 10044 int i;
29f59db3 10045
8ed36996 10046 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10047 for_each_possible_cpu(i) {
bccbe08a
PZ
10048 unregister_fair_sched_group(tg, i);
10049 unregister_rt_sched_group(tg, i);
9b5b7751 10050 }
6f505b16 10051 list_del_rcu(&tg->list);
f473aa5e 10052 list_del_rcu(&tg->siblings);
8ed36996 10053 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 10054
9b5b7751 10055 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 10056 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
10057}
10058
9b5b7751 10059/* change task's runqueue when it moves between groups.
3a252015
IM
10060 * The caller of this function should have put the task in its new group
10061 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10062 * reflect its new group.
9b5b7751
SV
10063 */
10064void sched_move_task(struct task_struct *tsk)
29f59db3
SV
10065{
10066 int on_rq, running;
10067 unsigned long flags;
10068 struct rq *rq;
10069
10070 rq = task_rq_lock(tsk, &flags);
10071
29f59db3
SV
10072 update_rq_clock(rq);
10073
051a1d1a 10074 running = task_current(rq, tsk);
29f59db3
SV
10075 on_rq = tsk->se.on_rq;
10076
0e1f3483 10077 if (on_rq)
29f59db3 10078 dequeue_task(rq, tsk, 0);
0e1f3483
HS
10079 if (unlikely(running))
10080 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 10081
6f505b16 10082 set_task_rq(tsk, task_cpu(tsk));
29f59db3 10083
810b3817
PZ
10084#ifdef CONFIG_FAIR_GROUP_SCHED
10085 if (tsk->sched_class->moved_group)
10086 tsk->sched_class->moved_group(tsk);
10087#endif
10088
0e1f3483
HS
10089 if (unlikely(running))
10090 tsk->sched_class->set_curr_task(rq);
10091 if (on_rq)
7074badb 10092 enqueue_task(rq, tsk, 0);
29f59db3 10093
29f59db3
SV
10094 task_rq_unlock(rq, &flags);
10095}
6d6bc0ad 10096#endif /* CONFIG_GROUP_SCHED */
29f59db3 10097
052f1dc7 10098#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10099static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10100{
10101 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10102 int on_rq;
10103
29f59db3 10104 on_rq = se->on_rq;
62fb1851 10105 if (on_rq)
29f59db3
SV
10106 dequeue_entity(cfs_rq, se, 0);
10107
10108 se->load.weight = shares;
e05510d0 10109 se->load.inv_weight = 0;
29f59db3 10110
62fb1851 10111 if (on_rq)
29f59db3 10112 enqueue_entity(cfs_rq, se, 0);
c09595f6 10113}
62fb1851 10114
c09595f6
PZ
10115static void set_se_shares(struct sched_entity *se, unsigned long shares)
10116{
10117 struct cfs_rq *cfs_rq = se->cfs_rq;
10118 struct rq *rq = cfs_rq->rq;
10119 unsigned long flags;
10120
10121 spin_lock_irqsave(&rq->lock, flags);
10122 __set_se_shares(se, shares);
10123 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10124}
10125
8ed36996
PZ
10126static DEFINE_MUTEX(shares_mutex);
10127
4cf86d77 10128int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10129{
10130 int i;
8ed36996 10131 unsigned long flags;
c61935fd 10132
ec7dc8ac
DG
10133 /*
10134 * We can't change the weight of the root cgroup.
10135 */
10136 if (!tg->se[0])
10137 return -EINVAL;
10138
18d95a28
PZ
10139 if (shares < MIN_SHARES)
10140 shares = MIN_SHARES;
cb4ad1ff
MX
10141 else if (shares > MAX_SHARES)
10142 shares = MAX_SHARES;
62fb1851 10143
8ed36996 10144 mutex_lock(&shares_mutex);
9b5b7751 10145 if (tg->shares == shares)
5cb350ba 10146 goto done;
29f59db3 10147
8ed36996 10148 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10149 for_each_possible_cpu(i)
10150 unregister_fair_sched_group(tg, i);
f473aa5e 10151 list_del_rcu(&tg->siblings);
8ed36996 10152 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10153
10154 /* wait for any ongoing reference to this group to finish */
10155 synchronize_sched();
10156
10157 /*
10158 * Now we are free to modify the group's share on each cpu
10159 * w/o tripping rebalance_share or load_balance_fair.
10160 */
9b5b7751 10161 tg->shares = shares;
c09595f6
PZ
10162 for_each_possible_cpu(i) {
10163 /*
10164 * force a rebalance
10165 */
10166 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10167 set_se_shares(tg->se[i], shares);
c09595f6 10168 }
29f59db3 10169
6b2d7700
SV
10170 /*
10171 * Enable load balance activity on this group, by inserting it back on
10172 * each cpu's rq->leaf_cfs_rq_list.
10173 */
8ed36996 10174 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10175 for_each_possible_cpu(i)
10176 register_fair_sched_group(tg, i);
f473aa5e 10177 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10178 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10179done:
8ed36996 10180 mutex_unlock(&shares_mutex);
9b5b7751 10181 return 0;
29f59db3
SV
10182}
10183
5cb350ba
DG
10184unsigned long sched_group_shares(struct task_group *tg)
10185{
10186 return tg->shares;
10187}
052f1dc7 10188#endif
5cb350ba 10189
052f1dc7 10190#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10191/*
9f0c1e56 10192 * Ensure that the real time constraints are schedulable.
6f505b16 10193 */
9f0c1e56
PZ
10194static DEFINE_MUTEX(rt_constraints_mutex);
10195
10196static unsigned long to_ratio(u64 period, u64 runtime)
10197{
10198 if (runtime == RUNTIME_INF)
9a7e0b18 10199 return 1ULL << 20;
9f0c1e56 10200
9a7e0b18 10201 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10202}
10203
9a7e0b18
PZ
10204/* Must be called with tasklist_lock held */
10205static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10206{
9a7e0b18 10207 struct task_struct *g, *p;
b40b2e8e 10208
9a7e0b18
PZ
10209 do_each_thread(g, p) {
10210 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10211 return 1;
10212 } while_each_thread(g, p);
b40b2e8e 10213
9a7e0b18
PZ
10214 return 0;
10215}
b40b2e8e 10216
9a7e0b18
PZ
10217struct rt_schedulable_data {
10218 struct task_group *tg;
10219 u64 rt_period;
10220 u64 rt_runtime;
10221};
b40b2e8e 10222
9a7e0b18
PZ
10223static int tg_schedulable(struct task_group *tg, void *data)
10224{
10225 struct rt_schedulable_data *d = data;
10226 struct task_group *child;
10227 unsigned long total, sum = 0;
10228 u64 period, runtime;
b40b2e8e 10229
9a7e0b18
PZ
10230 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10231 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10232
9a7e0b18
PZ
10233 if (tg == d->tg) {
10234 period = d->rt_period;
10235 runtime = d->rt_runtime;
b40b2e8e 10236 }
b40b2e8e 10237
98a4826b
PZ
10238#ifdef CONFIG_USER_SCHED
10239 if (tg == &root_task_group) {
10240 period = global_rt_period();
10241 runtime = global_rt_runtime();
10242 }
10243#endif
10244
4653f803
PZ
10245 /*
10246 * Cannot have more runtime than the period.
10247 */
10248 if (runtime > period && runtime != RUNTIME_INF)
10249 return -EINVAL;
6f505b16 10250
4653f803
PZ
10251 /*
10252 * Ensure we don't starve existing RT tasks.
10253 */
9a7e0b18
PZ
10254 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10255 return -EBUSY;
6f505b16 10256
9a7e0b18 10257 total = to_ratio(period, runtime);
6f505b16 10258
4653f803
PZ
10259 /*
10260 * Nobody can have more than the global setting allows.
10261 */
10262 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10263 return -EINVAL;
6f505b16 10264
4653f803
PZ
10265 /*
10266 * The sum of our children's runtime should not exceed our own.
10267 */
9a7e0b18
PZ
10268 list_for_each_entry_rcu(child, &tg->children, siblings) {
10269 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10270 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10271
9a7e0b18
PZ
10272 if (child == d->tg) {
10273 period = d->rt_period;
10274 runtime = d->rt_runtime;
10275 }
6f505b16 10276
9a7e0b18 10277 sum += to_ratio(period, runtime);
9f0c1e56 10278 }
6f505b16 10279
9a7e0b18
PZ
10280 if (sum > total)
10281 return -EINVAL;
10282
10283 return 0;
6f505b16
PZ
10284}
10285
9a7e0b18 10286static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10287{
9a7e0b18
PZ
10288 struct rt_schedulable_data data = {
10289 .tg = tg,
10290 .rt_period = period,
10291 .rt_runtime = runtime,
10292 };
10293
10294 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10295}
10296
d0b27fa7
PZ
10297static int tg_set_bandwidth(struct task_group *tg,
10298 u64 rt_period, u64 rt_runtime)
6f505b16 10299{
ac086bc2 10300 int i, err = 0;
9f0c1e56 10301
9f0c1e56 10302 mutex_lock(&rt_constraints_mutex);
521f1a24 10303 read_lock(&tasklist_lock);
9a7e0b18
PZ
10304 err = __rt_schedulable(tg, rt_period, rt_runtime);
10305 if (err)
9f0c1e56 10306 goto unlock;
ac086bc2
PZ
10307
10308 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10309 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10310 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10311
10312 for_each_possible_cpu(i) {
10313 struct rt_rq *rt_rq = tg->rt_rq[i];
10314
10315 spin_lock(&rt_rq->rt_runtime_lock);
10316 rt_rq->rt_runtime = rt_runtime;
10317 spin_unlock(&rt_rq->rt_runtime_lock);
10318 }
10319 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10320 unlock:
521f1a24 10321 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10322 mutex_unlock(&rt_constraints_mutex);
10323
10324 return err;
6f505b16
PZ
10325}
10326
d0b27fa7
PZ
10327int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10328{
10329 u64 rt_runtime, rt_period;
10330
10331 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10332 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10333 if (rt_runtime_us < 0)
10334 rt_runtime = RUNTIME_INF;
10335
10336 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10337}
10338
9f0c1e56
PZ
10339long sched_group_rt_runtime(struct task_group *tg)
10340{
10341 u64 rt_runtime_us;
10342
d0b27fa7 10343 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10344 return -1;
10345
d0b27fa7 10346 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10347 do_div(rt_runtime_us, NSEC_PER_USEC);
10348 return rt_runtime_us;
10349}
d0b27fa7
PZ
10350
10351int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10352{
10353 u64 rt_runtime, rt_period;
10354
10355 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10356 rt_runtime = tg->rt_bandwidth.rt_runtime;
10357
619b0488
R
10358 if (rt_period == 0)
10359 return -EINVAL;
10360
d0b27fa7
PZ
10361 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10362}
10363
10364long sched_group_rt_period(struct task_group *tg)
10365{
10366 u64 rt_period_us;
10367
10368 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10369 do_div(rt_period_us, NSEC_PER_USEC);
10370 return rt_period_us;
10371}
10372
10373static int sched_rt_global_constraints(void)
10374{
4653f803 10375 u64 runtime, period;
d0b27fa7
PZ
10376 int ret = 0;
10377
ec5d4989
HS
10378 if (sysctl_sched_rt_period <= 0)
10379 return -EINVAL;
10380
4653f803
PZ
10381 runtime = global_rt_runtime();
10382 period = global_rt_period();
10383
10384 /*
10385 * Sanity check on the sysctl variables.
10386 */
10387 if (runtime > period && runtime != RUNTIME_INF)
10388 return -EINVAL;
10b612f4 10389
d0b27fa7 10390 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10391 read_lock(&tasklist_lock);
4653f803 10392 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10393 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10394 mutex_unlock(&rt_constraints_mutex);
10395
10396 return ret;
10397}
54e99124
DG
10398
10399int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10400{
10401 /* Don't accept realtime tasks when there is no way for them to run */
10402 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10403 return 0;
10404
10405 return 1;
10406}
10407
6d6bc0ad 10408#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10409static int sched_rt_global_constraints(void)
10410{
ac086bc2
PZ
10411 unsigned long flags;
10412 int i;
10413
ec5d4989
HS
10414 if (sysctl_sched_rt_period <= 0)
10415 return -EINVAL;
10416
60aa605d
PZ
10417 /*
10418 * There's always some RT tasks in the root group
10419 * -- migration, kstopmachine etc..
10420 */
10421 if (sysctl_sched_rt_runtime == 0)
10422 return -EBUSY;
10423
ac086bc2
PZ
10424 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10425 for_each_possible_cpu(i) {
10426 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10427
10428 spin_lock(&rt_rq->rt_runtime_lock);
10429 rt_rq->rt_runtime = global_rt_runtime();
10430 spin_unlock(&rt_rq->rt_runtime_lock);
10431 }
10432 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10433
d0b27fa7
PZ
10434 return 0;
10435}
6d6bc0ad 10436#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10437
10438int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10439 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10440 loff_t *ppos)
10441{
10442 int ret;
10443 int old_period, old_runtime;
10444 static DEFINE_MUTEX(mutex);
10445
10446 mutex_lock(&mutex);
10447 old_period = sysctl_sched_rt_period;
10448 old_runtime = sysctl_sched_rt_runtime;
10449
8d65af78 10450 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10451
10452 if (!ret && write) {
10453 ret = sched_rt_global_constraints();
10454 if (ret) {
10455 sysctl_sched_rt_period = old_period;
10456 sysctl_sched_rt_runtime = old_runtime;
10457 } else {
10458 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10459 def_rt_bandwidth.rt_period =
10460 ns_to_ktime(global_rt_period());
10461 }
10462 }
10463 mutex_unlock(&mutex);
10464
10465 return ret;
10466}
68318b8e 10467
052f1dc7 10468#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10469
10470/* return corresponding task_group object of a cgroup */
2b01dfe3 10471static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10472{
2b01dfe3
PM
10473 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10474 struct task_group, css);
68318b8e
SV
10475}
10476
10477static struct cgroup_subsys_state *
2b01dfe3 10478cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10479{
ec7dc8ac 10480 struct task_group *tg, *parent;
68318b8e 10481
2b01dfe3 10482 if (!cgrp->parent) {
68318b8e 10483 /* This is early initialization for the top cgroup */
68318b8e
SV
10484 return &init_task_group.css;
10485 }
10486
ec7dc8ac
DG
10487 parent = cgroup_tg(cgrp->parent);
10488 tg = sched_create_group(parent);
68318b8e
SV
10489 if (IS_ERR(tg))
10490 return ERR_PTR(-ENOMEM);
10491
68318b8e
SV
10492 return &tg->css;
10493}
10494
41a2d6cf
IM
10495static void
10496cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10497{
2b01dfe3 10498 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10499
10500 sched_destroy_group(tg);
10501}
10502
41a2d6cf 10503static int
be367d09 10504cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10505{
b68aa230 10506#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10507 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10508 return -EINVAL;
10509#else
68318b8e
SV
10510 /* We don't support RT-tasks being in separate groups */
10511 if (tsk->sched_class != &fair_sched_class)
10512 return -EINVAL;
b68aa230 10513#endif
be367d09
BB
10514 return 0;
10515}
68318b8e 10516
be367d09
BB
10517static int
10518cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10519 struct task_struct *tsk, bool threadgroup)
10520{
10521 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10522 if (retval)
10523 return retval;
10524 if (threadgroup) {
10525 struct task_struct *c;
10526 rcu_read_lock();
10527 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10528 retval = cpu_cgroup_can_attach_task(cgrp, c);
10529 if (retval) {
10530 rcu_read_unlock();
10531 return retval;
10532 }
10533 }
10534 rcu_read_unlock();
10535 }
68318b8e
SV
10536 return 0;
10537}
10538
10539static void
2b01dfe3 10540cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10541 struct cgroup *old_cont, struct task_struct *tsk,
10542 bool threadgroup)
68318b8e
SV
10543{
10544 sched_move_task(tsk);
be367d09
BB
10545 if (threadgroup) {
10546 struct task_struct *c;
10547 rcu_read_lock();
10548 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10549 sched_move_task(c);
10550 }
10551 rcu_read_unlock();
10552 }
68318b8e
SV
10553}
10554
052f1dc7 10555#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10556static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10557 u64 shareval)
68318b8e 10558{
2b01dfe3 10559 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10560}
10561
f4c753b7 10562static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10563{
2b01dfe3 10564 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10565
10566 return (u64) tg->shares;
10567}
6d6bc0ad 10568#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10569
052f1dc7 10570#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10571static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10572 s64 val)
6f505b16 10573{
06ecb27c 10574 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10575}
10576
06ecb27c 10577static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10578{
06ecb27c 10579 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10580}
d0b27fa7
PZ
10581
10582static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10583 u64 rt_period_us)
10584{
10585 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10586}
10587
10588static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10589{
10590 return sched_group_rt_period(cgroup_tg(cgrp));
10591}
6d6bc0ad 10592#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10593
fe5c7cc2 10594static struct cftype cpu_files[] = {
052f1dc7 10595#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10596 {
10597 .name = "shares",
f4c753b7
PM
10598 .read_u64 = cpu_shares_read_u64,
10599 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10600 },
052f1dc7
PZ
10601#endif
10602#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10603 {
9f0c1e56 10604 .name = "rt_runtime_us",
06ecb27c
PM
10605 .read_s64 = cpu_rt_runtime_read,
10606 .write_s64 = cpu_rt_runtime_write,
6f505b16 10607 },
d0b27fa7
PZ
10608 {
10609 .name = "rt_period_us",
f4c753b7
PM
10610 .read_u64 = cpu_rt_period_read_uint,
10611 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10612 },
052f1dc7 10613#endif
68318b8e
SV
10614};
10615
10616static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10617{
fe5c7cc2 10618 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10619}
10620
10621struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10622 .name = "cpu",
10623 .create = cpu_cgroup_create,
10624 .destroy = cpu_cgroup_destroy,
10625 .can_attach = cpu_cgroup_can_attach,
10626 .attach = cpu_cgroup_attach,
10627 .populate = cpu_cgroup_populate,
10628 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10629 .early_init = 1,
10630};
10631
052f1dc7 10632#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10633
10634#ifdef CONFIG_CGROUP_CPUACCT
10635
10636/*
10637 * CPU accounting code for task groups.
10638 *
10639 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10640 * (balbir@in.ibm.com).
10641 */
10642
934352f2 10643/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10644struct cpuacct {
10645 struct cgroup_subsys_state css;
10646 /* cpuusage holds pointer to a u64-type object on every cpu */
10647 u64 *cpuusage;
ef12fefa 10648 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10649 struct cpuacct *parent;
d842de87
SV
10650};
10651
10652struct cgroup_subsys cpuacct_subsys;
10653
10654/* return cpu accounting group corresponding to this container */
32cd756a 10655static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10656{
32cd756a 10657 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10658 struct cpuacct, css);
10659}
10660
10661/* return cpu accounting group to which this task belongs */
10662static inline struct cpuacct *task_ca(struct task_struct *tsk)
10663{
10664 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10665 struct cpuacct, css);
10666}
10667
10668/* create a new cpu accounting group */
10669static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10670 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10671{
10672 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10673 int i;
d842de87
SV
10674
10675 if (!ca)
ef12fefa 10676 goto out;
d842de87
SV
10677
10678 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10679 if (!ca->cpuusage)
10680 goto out_free_ca;
10681
10682 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10683 if (percpu_counter_init(&ca->cpustat[i], 0))
10684 goto out_free_counters;
d842de87 10685
934352f2
BR
10686 if (cgrp->parent)
10687 ca->parent = cgroup_ca(cgrp->parent);
10688
d842de87 10689 return &ca->css;
ef12fefa
BR
10690
10691out_free_counters:
10692 while (--i >= 0)
10693 percpu_counter_destroy(&ca->cpustat[i]);
10694 free_percpu(ca->cpuusage);
10695out_free_ca:
10696 kfree(ca);
10697out:
10698 return ERR_PTR(-ENOMEM);
d842de87
SV
10699}
10700
10701/* destroy an existing cpu accounting group */
41a2d6cf 10702static void
32cd756a 10703cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10704{
32cd756a 10705 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10706 int i;
d842de87 10707
ef12fefa
BR
10708 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10709 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10710 free_percpu(ca->cpuusage);
10711 kfree(ca);
10712}
10713
720f5498
KC
10714static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10715{
b36128c8 10716 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10717 u64 data;
10718
10719#ifndef CONFIG_64BIT
10720 /*
10721 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10722 */
10723 spin_lock_irq(&cpu_rq(cpu)->lock);
10724 data = *cpuusage;
10725 spin_unlock_irq(&cpu_rq(cpu)->lock);
10726#else
10727 data = *cpuusage;
10728#endif
10729
10730 return data;
10731}
10732
10733static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10734{
b36128c8 10735 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10736
10737#ifndef CONFIG_64BIT
10738 /*
10739 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10740 */
10741 spin_lock_irq(&cpu_rq(cpu)->lock);
10742 *cpuusage = val;
10743 spin_unlock_irq(&cpu_rq(cpu)->lock);
10744#else
10745 *cpuusage = val;
10746#endif
10747}
10748
d842de87 10749/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10750static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10751{
32cd756a 10752 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10753 u64 totalcpuusage = 0;
10754 int i;
10755
720f5498
KC
10756 for_each_present_cpu(i)
10757 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10758
10759 return totalcpuusage;
10760}
10761
0297b803
DG
10762static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10763 u64 reset)
10764{
10765 struct cpuacct *ca = cgroup_ca(cgrp);
10766 int err = 0;
10767 int i;
10768
10769 if (reset) {
10770 err = -EINVAL;
10771 goto out;
10772 }
10773
720f5498
KC
10774 for_each_present_cpu(i)
10775 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10776
0297b803
DG
10777out:
10778 return err;
10779}
10780
e9515c3c
KC
10781static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10782 struct seq_file *m)
10783{
10784 struct cpuacct *ca = cgroup_ca(cgroup);
10785 u64 percpu;
10786 int i;
10787
10788 for_each_present_cpu(i) {
10789 percpu = cpuacct_cpuusage_read(ca, i);
10790 seq_printf(m, "%llu ", (unsigned long long) percpu);
10791 }
10792 seq_printf(m, "\n");
10793 return 0;
10794}
10795
ef12fefa
BR
10796static const char *cpuacct_stat_desc[] = {
10797 [CPUACCT_STAT_USER] = "user",
10798 [CPUACCT_STAT_SYSTEM] = "system",
10799};
10800
10801static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10802 struct cgroup_map_cb *cb)
10803{
10804 struct cpuacct *ca = cgroup_ca(cgrp);
10805 int i;
10806
10807 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10808 s64 val = percpu_counter_read(&ca->cpustat[i]);
10809 val = cputime64_to_clock_t(val);
10810 cb->fill(cb, cpuacct_stat_desc[i], val);
10811 }
10812 return 0;
10813}
10814
d842de87
SV
10815static struct cftype files[] = {
10816 {
10817 .name = "usage",
f4c753b7
PM
10818 .read_u64 = cpuusage_read,
10819 .write_u64 = cpuusage_write,
d842de87 10820 },
e9515c3c
KC
10821 {
10822 .name = "usage_percpu",
10823 .read_seq_string = cpuacct_percpu_seq_read,
10824 },
ef12fefa
BR
10825 {
10826 .name = "stat",
10827 .read_map = cpuacct_stats_show,
10828 },
d842de87
SV
10829};
10830
32cd756a 10831static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10832{
32cd756a 10833 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10834}
10835
10836/*
10837 * charge this task's execution time to its accounting group.
10838 *
10839 * called with rq->lock held.
10840 */
10841static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10842{
10843 struct cpuacct *ca;
934352f2 10844 int cpu;
d842de87 10845
c40c6f85 10846 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10847 return;
10848
934352f2 10849 cpu = task_cpu(tsk);
a18b83b7
BR
10850
10851 rcu_read_lock();
10852
d842de87 10853 ca = task_ca(tsk);
d842de87 10854
934352f2 10855 for (; ca; ca = ca->parent) {
b36128c8 10856 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10857 *cpuusage += cputime;
10858 }
a18b83b7
BR
10859
10860 rcu_read_unlock();
d842de87
SV
10861}
10862
ef12fefa
BR
10863/*
10864 * Charge the system/user time to the task's accounting group.
10865 */
10866static void cpuacct_update_stats(struct task_struct *tsk,
10867 enum cpuacct_stat_index idx, cputime_t val)
10868{
10869 struct cpuacct *ca;
10870
10871 if (unlikely(!cpuacct_subsys.active))
10872 return;
10873
10874 rcu_read_lock();
10875 ca = task_ca(tsk);
10876
10877 do {
10878 percpu_counter_add(&ca->cpustat[idx], val);
10879 ca = ca->parent;
10880 } while (ca);
10881 rcu_read_unlock();
10882}
10883
d842de87
SV
10884struct cgroup_subsys cpuacct_subsys = {
10885 .name = "cpuacct",
10886 .create = cpuacct_create,
10887 .destroy = cpuacct_destroy,
10888 .populate = cpuacct_populate,
10889 .subsys_id = cpuacct_subsys_id,
10890};
10891#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10892
10893#ifndef CONFIG_SMP
10894
10895int rcu_expedited_torture_stats(char *page)
10896{
10897 return 0;
10898}
10899EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10900
10901void synchronize_sched_expedited(void)
10902{
10903}
10904EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10905
10906#else /* #ifndef CONFIG_SMP */
10907
10908static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10909static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10910
10911#define RCU_EXPEDITED_STATE_POST -2
10912#define RCU_EXPEDITED_STATE_IDLE -1
10913
10914static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10915
10916int rcu_expedited_torture_stats(char *page)
10917{
10918 int cnt = 0;
10919 int cpu;
10920
10921 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10922 for_each_online_cpu(cpu) {
10923 cnt += sprintf(&page[cnt], " %d:%d",
10924 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10925 }
10926 cnt += sprintf(&page[cnt], "\n");
10927 return cnt;
10928}
10929EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10930
10931static long synchronize_sched_expedited_count;
10932
10933/*
10934 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10935 * approach to force grace period to end quickly. This consumes
10936 * significant time on all CPUs, and is thus not recommended for
10937 * any sort of common-case code.
10938 *
10939 * Note that it is illegal to call this function while holding any
10940 * lock that is acquired by a CPU-hotplug notifier. Failing to
10941 * observe this restriction will result in deadlock.
10942 */
10943void synchronize_sched_expedited(void)
10944{
10945 int cpu;
10946 unsigned long flags;
10947 bool need_full_sync = 0;
10948 struct rq *rq;
10949 struct migration_req *req;
10950 long snap;
10951 int trycount = 0;
10952
10953 smp_mb(); /* ensure prior mod happens before capturing snap. */
10954 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10955 get_online_cpus();
10956 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10957 put_online_cpus();
10958 if (trycount++ < 10)
10959 udelay(trycount * num_online_cpus());
10960 else {
10961 synchronize_sched();
10962 return;
10963 }
10964 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10965 smp_mb(); /* ensure test happens before caller kfree */
10966 return;
10967 }
10968 get_online_cpus();
10969 }
10970 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10971 for_each_online_cpu(cpu) {
10972 rq = cpu_rq(cpu);
10973 req = &per_cpu(rcu_migration_req, cpu);
10974 init_completion(&req->done);
10975 req->task = NULL;
10976 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10977 spin_lock_irqsave(&rq->lock, flags);
10978 list_add(&req->list, &rq->migration_queue);
10979 spin_unlock_irqrestore(&rq->lock, flags);
10980 wake_up_process(rq->migration_thread);
10981 }
10982 for_each_online_cpu(cpu) {
10983 rcu_expedited_state = cpu;
10984 req = &per_cpu(rcu_migration_req, cpu);
10985 rq = cpu_rq(cpu);
10986 wait_for_completion(&req->done);
10987 spin_lock_irqsave(&rq->lock, flags);
10988 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10989 need_full_sync = 1;
10990 req->dest_cpu = RCU_MIGRATION_IDLE;
10991 spin_unlock_irqrestore(&rq->lock, flags);
10992 }
10993 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 10994 synchronize_sched_expedited_count++;
03b042bf
PM
10995 mutex_unlock(&rcu_sched_expedited_mutex);
10996 put_online_cpus();
10997 if (need_full_sync)
10998 synchronize_sched();
10999}
11000EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11001
11002#endif /* #else #ifndef CONFIG_SMP */