]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
percpu: add __percpu sparse annotations to core kernel subsystems
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5 143 /* nests inside the rq lock: */
0986b11b 144 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
0986b11b 181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
0986b11b 203 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 219 }
0986b11b 220 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
ada3fa15 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
1871e52c 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
e9036b36
CG
312#ifdef CONFIG_FAIR_GROUP_SCHED
313
57310a98
PZ
314#ifdef CONFIG_SMP
315static int root_task_group_empty(void)
316{
317 return list_empty(&root_task_group.children);
318}
319#endif
320
052f1dc7
PZ
321#ifdef CONFIG_USER_SCHED
322# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 323#else /* !CONFIG_USER_SCHED */
052f1dc7 324# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 325#endif /* CONFIG_USER_SCHED */
052f1dc7 326
cb4ad1ff 327/*
2e084786
LJ
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
cb4ad1ff
MX
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
334 */
18d95a28 335#define MIN_SHARES 2
2e084786 336#define MAX_SHARES (1UL << 18)
18d95a28 337
052f1dc7
PZ
338static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339#endif
340
29f59db3 341/* Default task group.
3a252015 342 * Every task in system belong to this group at bootup.
29f59db3 343 */
434d53b0 344struct task_group init_task_group;
29f59db3
SV
345
346/* return group to which a task belongs */
4cf86d77 347static inline struct task_group *task_group(struct task_struct *p)
29f59db3 348{
4cf86d77 349 struct task_group *tg;
9b5b7751 350
052f1dc7 351#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
052f1dc7 355#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
24e377a8 358#else
41a2d6cf 359 tg = &init_task_group;
24e377a8 360#endif
9b5b7751 361 return tg;
29f59db3
SV
362}
363
364/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 366{
052f1dc7 367#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
052f1dc7 370#endif
6f505b16 371
052f1dc7 372#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 375#endif
29f59db3
SV
376}
377
378#else
379
6f505b16 380static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
381static inline struct task_group *task_group(struct task_struct *p)
382{
383 return NULL;
384}
29f59db3 385
052f1dc7 386#endif /* CONFIG_GROUP_SCHED */
29f59db3 387
6aa645ea
IM
388/* CFS-related fields in a runqueue */
389struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
6aa645ea 393 u64 exec_clock;
e9acbff6 394 u64 min_vruntime;
6aa645ea
IM
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
4a55bd5e
PZ
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
4793241b 406 struct sched_entity *curr, *next, *last;
ddc97297 407
5ac5c4d6 408 unsigned int nr_spread_over;
ddc97297 409
62160e3f 410#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
41a2d6cf
IM
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
41a2d6cf
IM
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
423
424#ifdef CONFIG_SMP
c09595f6 425 /*
c8cba857 426 * the part of load.weight contributed by tasks
c09595f6 427 */
c8cba857 428 unsigned long task_weight;
c09595f6 429
c8cba857
PZ
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
c09595f6 437
c8cba857
PZ
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
f1d239f7
PZ
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
c09595f6 447#endif
6aa645ea
IM
448#endif
449};
1da177e4 450
6aa645ea
IM
451/* Real-Time classes' related field in a runqueue: */
452struct rt_rq {
453 struct rt_prio_array active;
63489e45 454 unsigned long rt_nr_running;
052f1dc7 455#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
456 struct {
457 int curr; /* highest queued rt task prio */
398a153b 458#ifdef CONFIG_SMP
e864c499 459 int next; /* next highest */
398a153b 460#endif
e864c499 461 } highest_prio;
6f505b16 462#endif
fa85ae24 463#ifdef CONFIG_SMP
73fe6aae 464 unsigned long rt_nr_migratory;
a1ba4d8b 465 unsigned long rt_nr_total;
a22d7fc1 466 int overloaded;
917b627d 467 struct plist_head pushable_tasks;
fa85ae24 468#endif
6f505b16 469 int rt_throttled;
fa85ae24 470 u64 rt_time;
ac086bc2 471 u64 rt_runtime;
ea736ed5 472 /* Nests inside the rq lock: */
0986b11b 473 raw_spinlock_t rt_runtime_lock;
6f505b16 474
052f1dc7 475#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
476 unsigned long rt_nr_boosted;
477
6f505b16
PZ
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482#endif
6aa645ea
IM
483};
484
57d885fe
GH
485#ifdef CONFIG_SMP
486
487/*
488 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
493 *
57d885fe
GH
494 */
495struct root_domain {
496 atomic_t refcount;
c6c4927b
RR
497 cpumask_var_t span;
498 cpumask_var_t online;
637f5085 499
0eab9146 500 /*
637f5085
GH
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
c6c4927b 504 cpumask_var_t rto_mask;
0eab9146 505 atomic_t rto_count;
6e0534f2
GH
506#ifdef CONFIG_SMP
507 struct cpupri cpupri;
508#endif
57d885fe
GH
509};
510
dc938520
GH
511/*
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
514 */
57d885fe
GH
515static struct root_domain def_root_domain;
516
517#endif
518
1da177e4
LT
519/*
520 * This is the main, per-CPU runqueue data structure.
521 *
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
525 */
70b97a7f 526struct rq {
d8016491 527 /* runqueue lock: */
05fa785c 528 raw_spinlock_t lock;
1da177e4
LT
529
530 /*
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
533 */
534 unsigned long nr_running;
6aa645ea
IM
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
537#ifdef CONFIG_NO_HZ
538 unsigned char in_nohz_recently;
539#endif
d8016491
IM
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
6aa645ea
IM
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544
545 struct cfs_rq cfs;
6f505b16 546 struct rt_rq rt;
6f505b16 547
6aa645ea 548#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
551#endif
552#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 553 struct list_head leaf_rt_rq_list;
1da177e4 554#endif
1da177e4
LT
555
556 /*
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
561 */
562 unsigned long nr_uninterruptible;
563
36c8b586 564 struct task_struct *curr, *idle;
c9819f45 565 unsigned long next_balance;
1da177e4 566 struct mm_struct *prev_mm;
6aa645ea 567
3e51f33f 568 u64 clock;
6aa645ea 569
1da177e4
LT
570 atomic_t nr_iowait;
571
572#ifdef CONFIG_SMP
0eab9146 573 struct root_domain *rd;
1da177e4
LT
574 struct sched_domain *sd;
575
a0a522ce 576 unsigned char idle_at_tick;
1da177e4 577 /* For active balancing */
3f029d3c 578 int post_schedule;
1da177e4
LT
579 int active_balance;
580 int push_cpu;
d8016491
IM
581 /* cpu of this runqueue: */
582 int cpu;
1f11eb6a 583 int online;
1da177e4 584
a8a51d5e 585 unsigned long avg_load_per_task;
1da177e4 586
36c8b586 587 struct task_struct *migration_thread;
1da177e4 588 struct list_head migration_queue;
e9e9250b
PZ
589
590 u64 rt_avg;
591 u64 age_stamp;
1b9508f6
MG
592 u64 idle_stamp;
593 u64 avg_idle;
1da177e4
LT
594#endif
595
dce48a84
TG
596 /* calc_load related fields */
597 unsigned long calc_load_update;
598 long calc_load_active;
599
8f4d37ec 600#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
601#ifdef CONFIG_SMP
602 int hrtick_csd_pending;
603 struct call_single_data hrtick_csd;
604#endif
8f4d37ec
PZ
605 struct hrtimer hrtick_timer;
606#endif
607
1da177e4
LT
608#ifdef CONFIG_SCHEDSTATS
609 /* latency stats */
610 struct sched_info rq_sched_info;
9c2c4802
KC
611 unsigned long long rq_cpu_time;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
613
614 /* sys_sched_yield() stats */
480b9434 615 unsigned int yld_count;
1da177e4
LT
616
617 /* schedule() stats */
480b9434
KC
618 unsigned int sched_switch;
619 unsigned int sched_count;
620 unsigned int sched_goidle;
1da177e4
LT
621
622 /* try_to_wake_up() stats */
480b9434
KC
623 unsigned int ttwu_count;
624 unsigned int ttwu_local;
b8efb561
IM
625
626 /* BKL stats */
480b9434 627 unsigned int bkl_count;
1da177e4
LT
628#endif
629};
630
f34e3b61 631static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 632
7d478721
PZ
633static inline
634void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 635{
7d478721 636 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
637}
638
0a2966b4
CL
639static inline int cpu_of(struct rq *rq)
640{
641#ifdef CONFIG_SMP
642 return rq->cpu;
643#else
644 return 0;
645#endif
646}
647
674311d5
NP
648/*
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 650 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
651 *
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
654 */
48f24c4d
IM
655#define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
657
658#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659#define this_rq() (&__get_cpu_var(runqueues))
660#define task_rq(p) cpu_rq(task_cpu(p))
661#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 662#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 663
aa9c4c0f 664inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
665{
666 rq->clock = sched_clock_cpu(cpu_of(rq));
667}
668
bf5c91ba
IM
669/*
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 */
672#ifdef CONFIG_SCHED_DEBUG
673# define const_debug __read_mostly
674#else
675# define const_debug static const
676#endif
677
017730c1
IM
678/**
679 * runqueue_is_locked
e17b38bf 680 * @cpu: the processor in question.
017730c1
IM
681 *
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
685 */
89f19f04 686int runqueue_is_locked(int cpu)
017730c1 687{
05fa785c 688 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
689}
690
bf5c91ba
IM
691/*
692 * Debugging: various feature bits
693 */
f00b45c1
PZ
694
695#define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
697
bf5c91ba 698enum {
f00b45c1 699#include "sched_features.h"
bf5c91ba
IM
700};
701
f00b45c1
PZ
702#undef SCHED_FEAT
703
704#define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
706
bf5c91ba 707const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
708#include "sched_features.h"
709 0;
710
711#undef SCHED_FEAT
712
713#ifdef CONFIG_SCHED_DEBUG
714#define SCHED_FEAT(name, enabled) \
715 #name ,
716
983ed7a6 717static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
718#include "sched_features.h"
719 NULL
720};
721
722#undef SCHED_FEAT
723
34f3a814 724static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 725{
f00b45c1
PZ
726 int i;
727
728 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
729 if (!(sysctl_sched_features & (1UL << i)))
730 seq_puts(m, "NO_");
731 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 732 }
34f3a814 733 seq_puts(m, "\n");
f00b45c1 734
34f3a814 735 return 0;
f00b45c1
PZ
736}
737
738static ssize_t
739sched_feat_write(struct file *filp, const char __user *ubuf,
740 size_t cnt, loff_t *ppos)
741{
742 char buf[64];
743 char *cmp = buf;
744 int neg = 0;
745 int i;
746
747 if (cnt > 63)
748 cnt = 63;
749
750 if (copy_from_user(&buf, ubuf, cnt))
751 return -EFAULT;
752
753 buf[cnt] = 0;
754
c24b7c52 755 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
756 neg = 1;
757 cmp += 3;
758 }
759
760 for (i = 0; sched_feat_names[i]; i++) {
761 int len = strlen(sched_feat_names[i]);
762
763 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
764 if (neg)
765 sysctl_sched_features &= ~(1UL << i);
766 else
767 sysctl_sched_features |= (1UL << i);
768 break;
769 }
770 }
771
772 if (!sched_feat_names[i])
773 return -EINVAL;
774
42994724 775 *ppos += cnt;
f00b45c1
PZ
776
777 return cnt;
778}
779
34f3a814
LZ
780static int sched_feat_open(struct inode *inode, struct file *filp)
781{
782 return single_open(filp, sched_feat_show, NULL);
783}
784
828c0950 785static const struct file_operations sched_feat_fops = {
34f3a814
LZ
786 .open = sched_feat_open,
787 .write = sched_feat_write,
788 .read = seq_read,
789 .llseek = seq_lseek,
790 .release = single_release,
f00b45c1
PZ
791};
792
793static __init int sched_init_debug(void)
794{
f00b45c1
PZ
795 debugfs_create_file("sched_features", 0644, NULL, NULL,
796 &sched_feat_fops);
797
798 return 0;
799}
800late_initcall(sched_init_debug);
801
802#endif
803
804#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 805
b82d9fdd
PZ
806/*
807 * Number of tasks to iterate in a single balance run.
808 * Limited because this is done with IRQs disabled.
809 */
810const_debug unsigned int sysctl_sched_nr_migrate = 32;
811
2398f2c6
PZ
812/*
813 * ratelimit for updating the group shares.
55cd5340 814 * default: 0.25ms
2398f2c6 815 */
55cd5340 816unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 817unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 818
ffda12a1
PZ
819/*
820 * Inject some fuzzyness into changing the per-cpu group shares
821 * this avoids remote rq-locks at the expense of fairness.
822 * default: 4
823 */
824unsigned int sysctl_sched_shares_thresh = 4;
825
e9e9250b
PZ
826/*
827 * period over which we average the RT time consumption, measured
828 * in ms.
829 *
830 * default: 1s
831 */
832const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
833
fa85ae24 834/*
9f0c1e56 835 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
836 * default: 1s
837 */
9f0c1e56 838unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 839
6892b75e
IM
840static __read_mostly int scheduler_running;
841
9f0c1e56
PZ
842/*
843 * part of the period that we allow rt tasks to run in us.
844 * default: 0.95s
845 */
846int sysctl_sched_rt_runtime = 950000;
fa85ae24 847
d0b27fa7
PZ
848static inline u64 global_rt_period(void)
849{
850 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
851}
852
853static inline u64 global_rt_runtime(void)
854{
e26873bb 855 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
856 return RUNTIME_INF;
857
858 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
859}
fa85ae24 860
1da177e4 861#ifndef prepare_arch_switch
4866cde0
NP
862# define prepare_arch_switch(next) do { } while (0)
863#endif
864#ifndef finish_arch_switch
865# define finish_arch_switch(prev) do { } while (0)
866#endif
867
051a1d1a
DA
868static inline int task_current(struct rq *rq, struct task_struct *p)
869{
870 return rq->curr == p;
871}
872
4866cde0 873#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 874static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 875{
051a1d1a 876 return task_current(rq, p);
4866cde0
NP
877}
878
70b97a7f 879static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
880{
881}
882
70b97a7f 883static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 884{
da04c035
IM
885#ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888#endif
8a25d5de
IM
889 /*
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
893 */
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895
05fa785c 896 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
897}
898
899#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 900static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
901{
902#ifdef CONFIG_SMP
903 return p->oncpu;
904#else
051a1d1a 905 return task_current(rq, p);
4866cde0
NP
906#endif
907}
908
70b97a7f 909static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 /*
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
915 * here.
916 */
917 next->oncpu = 1;
918#endif
919#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 920 raw_spin_unlock_irq(&rq->lock);
4866cde0 921#else
05fa785c 922 raw_spin_unlock(&rq->lock);
4866cde0
NP
923#endif
924}
925
70b97a7f 926static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
927{
928#ifdef CONFIG_SMP
929 /*
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
932 * finished.
933 */
934 smp_wmb();
935 prev->oncpu = 0;
936#endif
937#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 local_irq_enable();
1da177e4 939#endif
4866cde0
NP
940}
941#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 942
b29739f9
IM
943/*
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
946 */
70b97a7f 947static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
948 __acquires(rq->lock)
949{
3a5c359a
AK
950 for (;;) {
951 struct rq *rq = task_rq(p);
05fa785c 952 raw_spin_lock(&rq->lock);
3a5c359a
AK
953 if (likely(rq == task_rq(p)))
954 return rq;
05fa785c 955 raw_spin_unlock(&rq->lock);
b29739f9 956 }
b29739f9
IM
957}
958
1da177e4
LT
959/*
960 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 961 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
962 * explicitly disabling preemption.
963 */
70b97a7f 964static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
965 __acquires(rq->lock)
966{
70b97a7f 967 struct rq *rq;
1da177e4 968
3a5c359a
AK
969 for (;;) {
970 local_irq_save(*flags);
971 rq = task_rq(p);
05fa785c 972 raw_spin_lock(&rq->lock);
3a5c359a
AK
973 if (likely(rq == task_rq(p)))
974 return rq;
05fa785c 975 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 976 }
1da177e4
LT
977}
978
ad474cac
ON
979void task_rq_unlock_wait(struct task_struct *p)
980{
981 struct rq *rq = task_rq(p);
982
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 984 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
985}
986
a9957449 987static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
988 __releases(rq->lock)
989{
05fa785c 990 raw_spin_unlock(&rq->lock);
b29739f9
IM
991}
992
70b97a7f 993static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
994 __releases(rq->lock)
995{
05fa785c 996 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
997}
998
1da177e4 999/*
cc2a73b5 1000 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1001 */
a9957449 1002static struct rq *this_rq_lock(void)
1da177e4
LT
1003 __acquires(rq->lock)
1004{
70b97a7f 1005 struct rq *rq;
1da177e4
LT
1006
1007 local_irq_disable();
1008 rq = this_rq();
05fa785c 1009 raw_spin_lock(&rq->lock);
1da177e4
LT
1010
1011 return rq;
1012}
1013
8f4d37ec
PZ
1014#ifdef CONFIG_SCHED_HRTICK
1015/*
1016 * Use HR-timers to deliver accurate preemption points.
1017 *
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * reschedule event.
1021 *
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 * rq->lock.
1024 */
8f4d37ec
PZ
1025
1026/*
1027 * Use hrtick when:
1028 * - enabled by features
1029 * - hrtimer is actually high res
1030 */
1031static inline int hrtick_enabled(struct rq *rq)
1032{
1033 if (!sched_feat(HRTICK))
1034 return 0;
ba42059f 1035 if (!cpu_active(cpu_of(rq)))
b328ca18 1036 return 0;
8f4d37ec
PZ
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038}
1039
8f4d37ec
PZ
1040static void hrtick_clear(struct rq *rq)
1041{
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1044}
1045
8f4d37ec
PZ
1046/*
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1049 */
1050static enum hrtimer_restart hrtick(struct hrtimer *timer)
1051{
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1053
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1055
05fa785c 1056 raw_spin_lock(&rq->lock);
3e51f33f 1057 update_rq_clock(rq);
8f4d37ec 1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1059 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1060
1061 return HRTIMER_NORESTART;
1062}
1063
95e904c7 1064#ifdef CONFIG_SMP
31656519
PZ
1065/*
1066 * called from hardirq (IPI) context
1067 */
1068static void __hrtick_start(void *arg)
b328ca18 1069{
31656519 1070 struct rq *rq = arg;
b328ca18 1071
05fa785c 1072 raw_spin_lock(&rq->lock);
31656519
PZ
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
05fa785c 1075 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1076}
1077
31656519
PZ
1078/*
1079 * Called to set the hrtick timer state.
1080 *
1081 * called with rq->lock held and irqs disabled
1082 */
1083static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1084{
31656519
PZ
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1087
cc584b21 1088 hrtimer_set_expires(timer, time);
31656519
PZ
1089
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
6e275637 1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1094 rq->hrtick_csd_pending = 1;
1095 }
b328ca18
PZ
1096}
1097
1098static int
1099hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1100{
1101 int cpu = (int)(long)hcpu;
1102
1103 switch (action) {
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1108 case CPU_DEAD:
1109 case CPU_DEAD_FROZEN:
31656519 1110 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1111 return NOTIFY_OK;
1112 }
1113
1114 return NOTIFY_DONE;
1115}
1116
fa748203 1117static __init void init_hrtick(void)
b328ca18
PZ
1118{
1119 hotcpu_notifier(hotplug_hrtick, 0);
1120}
31656519
PZ
1121#else
1122/*
1123 * Called to set the hrtick timer state.
1124 *
1125 * called with rq->lock held and irqs disabled
1126 */
1127static void hrtick_start(struct rq *rq, u64 delay)
1128{
7f1e2ca9 1129 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1130 HRTIMER_MODE_REL_PINNED, 0);
31656519 1131}
b328ca18 1132
006c75f1 1133static inline void init_hrtick(void)
8f4d37ec 1134{
8f4d37ec 1135}
31656519 1136#endif /* CONFIG_SMP */
8f4d37ec 1137
31656519 1138static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1139{
31656519
PZ
1140#ifdef CONFIG_SMP
1141 rq->hrtick_csd_pending = 0;
8f4d37ec 1142
31656519
PZ
1143 rq->hrtick_csd.flags = 0;
1144 rq->hrtick_csd.func = __hrtick_start;
1145 rq->hrtick_csd.info = rq;
1146#endif
8f4d37ec 1147
31656519
PZ
1148 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1149 rq->hrtick_timer.function = hrtick;
8f4d37ec 1150}
006c75f1 1151#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1152static inline void hrtick_clear(struct rq *rq)
1153{
1154}
1155
8f4d37ec
PZ
1156static inline void init_rq_hrtick(struct rq *rq)
1157{
1158}
1159
b328ca18
PZ
1160static inline void init_hrtick(void)
1161{
1162}
006c75f1 1163#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1164
c24d20db
IM
1165/*
1166 * resched_task - mark a task 'to be rescheduled now'.
1167 *
1168 * On UP this means the setting of the need_resched flag, on SMP it
1169 * might also involve a cross-CPU call to trigger the scheduler on
1170 * the target CPU.
1171 */
1172#ifdef CONFIG_SMP
1173
1174#ifndef tsk_is_polling
1175#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1176#endif
1177
31656519 1178static void resched_task(struct task_struct *p)
c24d20db
IM
1179{
1180 int cpu;
1181
05fa785c 1182 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1183
5ed0cec0 1184 if (test_tsk_need_resched(p))
c24d20db
IM
1185 return;
1186
5ed0cec0 1187 set_tsk_need_resched(p);
c24d20db
IM
1188
1189 cpu = task_cpu(p);
1190 if (cpu == smp_processor_id())
1191 return;
1192
1193 /* NEED_RESCHED must be visible before we test polling */
1194 smp_mb();
1195 if (!tsk_is_polling(p))
1196 smp_send_reschedule(cpu);
1197}
1198
1199static void resched_cpu(int cpu)
1200{
1201 struct rq *rq = cpu_rq(cpu);
1202 unsigned long flags;
1203
05fa785c 1204 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1205 return;
1206 resched_task(cpu_curr(cpu));
05fa785c 1207 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1208}
06d8308c
TG
1209
1210#ifdef CONFIG_NO_HZ
1211/*
1212 * When add_timer_on() enqueues a timer into the timer wheel of an
1213 * idle CPU then this timer might expire before the next timer event
1214 * which is scheduled to wake up that CPU. In case of a completely
1215 * idle system the next event might even be infinite time into the
1216 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1217 * leaves the inner idle loop so the newly added timer is taken into
1218 * account when the CPU goes back to idle and evaluates the timer
1219 * wheel for the next timer event.
1220 */
1221void wake_up_idle_cpu(int cpu)
1222{
1223 struct rq *rq = cpu_rq(cpu);
1224
1225 if (cpu == smp_processor_id())
1226 return;
1227
1228 /*
1229 * This is safe, as this function is called with the timer
1230 * wheel base lock of (cpu) held. When the CPU is on the way
1231 * to idle and has not yet set rq->curr to idle then it will
1232 * be serialized on the timer wheel base lock and take the new
1233 * timer into account automatically.
1234 */
1235 if (rq->curr != rq->idle)
1236 return;
1237
1238 /*
1239 * We can set TIF_RESCHED on the idle task of the other CPU
1240 * lockless. The worst case is that the other CPU runs the
1241 * idle task through an additional NOOP schedule()
1242 */
5ed0cec0 1243 set_tsk_need_resched(rq->idle);
06d8308c
TG
1244
1245 /* NEED_RESCHED must be visible before we test polling */
1246 smp_mb();
1247 if (!tsk_is_polling(rq->idle))
1248 smp_send_reschedule(cpu);
1249}
6d6bc0ad 1250#endif /* CONFIG_NO_HZ */
06d8308c 1251
e9e9250b
PZ
1252static u64 sched_avg_period(void)
1253{
1254 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1255}
1256
1257static void sched_avg_update(struct rq *rq)
1258{
1259 s64 period = sched_avg_period();
1260
1261 while ((s64)(rq->clock - rq->age_stamp) > period) {
1262 rq->age_stamp += period;
1263 rq->rt_avg /= 2;
1264 }
1265}
1266
1267static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1268{
1269 rq->rt_avg += rt_delta;
1270 sched_avg_update(rq);
1271}
1272
6d6bc0ad 1273#else /* !CONFIG_SMP */
31656519 1274static void resched_task(struct task_struct *p)
c24d20db 1275{
05fa785c 1276 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1277 set_tsk_need_resched(p);
c24d20db 1278}
e9e9250b
PZ
1279
1280static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1281{
1282}
6d6bc0ad 1283#endif /* CONFIG_SMP */
c24d20db 1284
45bf76df
IM
1285#if BITS_PER_LONG == 32
1286# define WMULT_CONST (~0UL)
1287#else
1288# define WMULT_CONST (1UL << 32)
1289#endif
1290
1291#define WMULT_SHIFT 32
1292
194081eb
IM
1293/*
1294 * Shift right and round:
1295 */
cf2ab469 1296#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1297
a7be37ac
PZ
1298/*
1299 * delta *= weight / lw
1300 */
cb1c4fc9 1301static unsigned long
45bf76df
IM
1302calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1303 struct load_weight *lw)
1304{
1305 u64 tmp;
1306
7a232e03
LJ
1307 if (!lw->inv_weight) {
1308 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1309 lw->inv_weight = 1;
1310 else
1311 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1312 / (lw->weight+1);
1313 }
45bf76df
IM
1314
1315 tmp = (u64)delta_exec * weight;
1316 /*
1317 * Check whether we'd overflow the 64-bit multiplication:
1318 */
194081eb 1319 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1320 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1321 WMULT_SHIFT/2);
1322 else
cf2ab469 1323 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1324
ecf691da 1325 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1326}
1327
1091985b 1328static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1329{
1330 lw->weight += inc;
e89996ae 1331 lw->inv_weight = 0;
45bf76df
IM
1332}
1333
1091985b 1334static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1335{
1336 lw->weight -= dec;
e89996ae 1337 lw->inv_weight = 0;
45bf76df
IM
1338}
1339
2dd73a4f
PW
1340/*
1341 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1342 * of tasks with abnormal "nice" values across CPUs the contribution that
1343 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1344 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1345 * scaled version of the new time slice allocation that they receive on time
1346 * slice expiry etc.
1347 */
1348
cce7ade8
PZ
1349#define WEIGHT_IDLEPRIO 3
1350#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1351
1352/*
1353 * Nice levels are multiplicative, with a gentle 10% change for every
1354 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1355 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1356 * that remained on nice 0.
1357 *
1358 * The "10% effect" is relative and cumulative: from _any_ nice level,
1359 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1360 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1361 * If a task goes up by ~10% and another task goes down by ~10% then
1362 * the relative distance between them is ~25%.)
dd41f596
IM
1363 */
1364static const int prio_to_weight[40] = {
254753dc
IM
1365 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1366 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1367 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1368 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1369 /* 0 */ 1024, 820, 655, 526, 423,
1370 /* 5 */ 335, 272, 215, 172, 137,
1371 /* 10 */ 110, 87, 70, 56, 45,
1372 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1373};
1374
5714d2de
IM
1375/*
1376 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1377 *
1378 * In cases where the weight does not change often, we can use the
1379 * precalculated inverse to speed up arithmetics by turning divisions
1380 * into multiplications:
1381 */
dd41f596 1382static const u32 prio_to_wmult[40] = {
254753dc
IM
1383 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1384 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1385 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1386 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1387 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1388 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1389 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1390 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1391};
2dd73a4f 1392
dd41f596
IM
1393static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1394
1395/*
1396 * runqueue iterator, to support SMP load-balancing between different
1397 * scheduling classes, without having to expose their internal data
1398 * structures to the load-balancing proper:
1399 */
1400struct rq_iterator {
1401 void *arg;
1402 struct task_struct *(*start)(void *);
1403 struct task_struct *(*next)(void *);
1404};
1405
e1d1484f
PW
1406#ifdef CONFIG_SMP
1407static unsigned long
1408balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 unsigned long max_load_move, struct sched_domain *sd,
1410 enum cpu_idle_type idle, int *all_pinned,
1411 int *this_best_prio, struct rq_iterator *iterator);
1412
1413static int
1414iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 struct sched_domain *sd, enum cpu_idle_type idle,
1416 struct rq_iterator *iterator);
e1d1484f 1417#endif
dd41f596 1418
ef12fefa
BR
1419/* Time spent by the tasks of the cpu accounting group executing in ... */
1420enum cpuacct_stat_index {
1421 CPUACCT_STAT_USER, /* ... user mode */
1422 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1423
1424 CPUACCT_STAT_NSTATS,
1425};
1426
d842de87
SV
1427#ifdef CONFIG_CGROUP_CPUACCT
1428static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1429static void cpuacct_update_stats(struct task_struct *tsk,
1430 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1431#else
1432static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1433static inline void cpuacct_update_stats(struct task_struct *tsk,
1434 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1435#endif
1436
18d95a28
PZ
1437static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1438{
1439 update_load_add(&rq->load, load);
1440}
1441
1442static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1443{
1444 update_load_sub(&rq->load, load);
1445}
1446
7940ca36 1447#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1448typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1449
1450/*
1451 * Iterate the full tree, calling @down when first entering a node and @up when
1452 * leaving it for the final time.
1453 */
eb755805 1454static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1455{
1456 struct task_group *parent, *child;
eb755805 1457 int ret;
c09595f6
PZ
1458
1459 rcu_read_lock();
1460 parent = &root_task_group;
1461down:
eb755805
PZ
1462 ret = (*down)(parent, data);
1463 if (ret)
1464 goto out_unlock;
c09595f6
PZ
1465 list_for_each_entry_rcu(child, &parent->children, siblings) {
1466 parent = child;
1467 goto down;
1468
1469up:
1470 continue;
1471 }
eb755805
PZ
1472 ret = (*up)(parent, data);
1473 if (ret)
1474 goto out_unlock;
c09595f6
PZ
1475
1476 child = parent;
1477 parent = parent->parent;
1478 if (parent)
1479 goto up;
eb755805 1480out_unlock:
c09595f6 1481 rcu_read_unlock();
eb755805
PZ
1482
1483 return ret;
c09595f6
PZ
1484}
1485
eb755805
PZ
1486static int tg_nop(struct task_group *tg, void *data)
1487{
1488 return 0;
c09595f6 1489}
eb755805
PZ
1490#endif
1491
1492#ifdef CONFIG_SMP
f5f08f39
PZ
1493/* Used instead of source_load when we know the type == 0 */
1494static unsigned long weighted_cpuload(const int cpu)
1495{
1496 return cpu_rq(cpu)->load.weight;
1497}
1498
1499/*
1500 * Return a low guess at the load of a migration-source cpu weighted
1501 * according to the scheduling class and "nice" value.
1502 *
1503 * We want to under-estimate the load of migration sources, to
1504 * balance conservatively.
1505 */
1506static unsigned long source_load(int cpu, int type)
1507{
1508 struct rq *rq = cpu_rq(cpu);
1509 unsigned long total = weighted_cpuload(cpu);
1510
1511 if (type == 0 || !sched_feat(LB_BIAS))
1512 return total;
1513
1514 return min(rq->cpu_load[type-1], total);
1515}
1516
1517/*
1518 * Return a high guess at the load of a migration-target cpu weighted
1519 * according to the scheduling class and "nice" value.
1520 */
1521static unsigned long target_load(int cpu, int type)
1522{
1523 struct rq *rq = cpu_rq(cpu);
1524 unsigned long total = weighted_cpuload(cpu);
1525
1526 if (type == 0 || !sched_feat(LB_BIAS))
1527 return total;
1528
1529 return max(rq->cpu_load[type-1], total);
1530}
1531
ae154be1
PZ
1532static struct sched_group *group_of(int cpu)
1533{
1534 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1535
1536 if (!sd)
1537 return NULL;
1538
1539 return sd->groups;
1540}
1541
1542static unsigned long power_of(int cpu)
1543{
1544 struct sched_group *group = group_of(cpu);
1545
1546 if (!group)
1547 return SCHED_LOAD_SCALE;
1548
1549 return group->cpu_power;
1550}
1551
eb755805
PZ
1552static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1553
1554static unsigned long cpu_avg_load_per_task(int cpu)
1555{
1556 struct rq *rq = cpu_rq(cpu);
af6d596f 1557 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1558
4cd42620
SR
1559 if (nr_running)
1560 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1561 else
1562 rq->avg_load_per_task = 0;
eb755805
PZ
1563
1564 return rq->avg_load_per_task;
1565}
1566
1567#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1568
43cf38eb 1569static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1570
c09595f6
PZ
1571static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1572
1573/*
1574 * Calculate and set the cpu's group shares.
1575 */
34d76c41
PZ
1576static void update_group_shares_cpu(struct task_group *tg, int cpu,
1577 unsigned long sd_shares,
1578 unsigned long sd_rq_weight,
4a6cc4bd 1579 unsigned long *usd_rq_weight)
18d95a28 1580{
34d76c41 1581 unsigned long shares, rq_weight;
a5004278 1582 int boost = 0;
c09595f6 1583
4a6cc4bd 1584 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1585 if (!rq_weight) {
1586 boost = 1;
1587 rq_weight = NICE_0_LOAD;
1588 }
c8cba857 1589
c09595f6 1590 /*
a8af7246
PZ
1591 * \Sum_j shares_j * rq_weight_i
1592 * shares_i = -----------------------------
1593 * \Sum_j rq_weight_j
c09595f6 1594 */
ec4e0e2f 1595 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1596 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1597
ffda12a1
PZ
1598 if (abs(shares - tg->se[cpu]->load.weight) >
1599 sysctl_sched_shares_thresh) {
1600 struct rq *rq = cpu_rq(cpu);
1601 unsigned long flags;
c09595f6 1602
05fa785c 1603 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1604 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1605 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1606 __set_se_shares(tg->se[cpu], shares);
05fa785c 1607 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1608 }
18d95a28 1609}
c09595f6
PZ
1610
1611/*
c8cba857
PZ
1612 * Re-compute the task group their per cpu shares over the given domain.
1613 * This needs to be done in a bottom-up fashion because the rq weight of a
1614 * parent group depends on the shares of its child groups.
c09595f6 1615 */
eb755805 1616static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1617{
cd8ad40d 1618 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1619 unsigned long *usd_rq_weight;
eb755805 1620 struct sched_domain *sd = data;
34d76c41 1621 unsigned long flags;
c8cba857 1622 int i;
c09595f6 1623
34d76c41
PZ
1624 if (!tg->se[0])
1625 return 0;
1626
1627 local_irq_save(flags);
4a6cc4bd 1628 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1629
758b2cdc 1630 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1631 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1632 usd_rq_weight[i] = weight;
34d76c41 1633
cd8ad40d 1634 rq_weight += weight;
ec4e0e2f
KC
1635 /*
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1639 */
ec4e0e2f
KC
1640 if (!weight)
1641 weight = NICE_0_LOAD;
1642
cd8ad40d 1643 sum_weight += weight;
c8cba857 1644 shares += tg->cfs_rq[i]->shares;
c09595f6 1645 }
c09595f6 1646
cd8ad40d
PZ
1647 if (!rq_weight)
1648 rq_weight = sum_weight;
1649
c8cba857
PZ
1650 if ((!shares && rq_weight) || shares > tg->shares)
1651 shares = tg->shares;
1652
1653 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1654 shares = tg->shares;
c09595f6 1655
758b2cdc 1656 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1657 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1658
1659 local_irq_restore(flags);
eb755805
PZ
1660
1661 return 0;
c09595f6
PZ
1662}
1663
1664/*
c8cba857
PZ
1665 * Compute the cpu's hierarchical load factor for each task group.
1666 * This needs to be done in a top-down fashion because the load of a child
1667 * group is a fraction of its parents load.
c09595f6 1668 */
eb755805 1669static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1670{
c8cba857 1671 unsigned long load;
eb755805 1672 long cpu = (long)data;
c09595f6 1673
c8cba857
PZ
1674 if (!tg->parent) {
1675 load = cpu_rq(cpu)->load.weight;
1676 } else {
1677 load = tg->parent->cfs_rq[cpu]->h_load;
1678 load *= tg->cfs_rq[cpu]->shares;
1679 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1680 }
c09595f6 1681
c8cba857 1682 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1683
eb755805 1684 return 0;
c09595f6
PZ
1685}
1686
c8cba857 1687static void update_shares(struct sched_domain *sd)
4d8d595d 1688{
e7097159
PZ
1689 s64 elapsed;
1690 u64 now;
1691
1692 if (root_task_group_empty())
1693 return;
1694
1695 now = cpu_clock(raw_smp_processor_id());
1696 elapsed = now - sd->last_update;
2398f2c6
PZ
1697
1698 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1699 sd->last_update = now;
eb755805 1700 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1701 }
4d8d595d
PZ
1702}
1703
3e5459b4
PZ
1704static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1705{
e7097159
PZ
1706 if (root_task_group_empty())
1707 return;
1708
05fa785c 1709 raw_spin_unlock(&rq->lock);
3e5459b4 1710 update_shares(sd);
05fa785c 1711 raw_spin_lock(&rq->lock);
3e5459b4
PZ
1712}
1713
eb755805 1714static void update_h_load(long cpu)
c09595f6 1715{
e7097159
PZ
1716 if (root_task_group_empty())
1717 return;
1718
eb755805 1719 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1720}
1721
c09595f6
PZ
1722#else
1723
c8cba857 1724static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1725{
1726}
1727
3e5459b4
PZ
1728static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1729{
1730}
1731
18d95a28
PZ
1732#endif
1733
8f45e2b5
GH
1734#ifdef CONFIG_PREEMPT
1735
b78bb868
PZ
1736static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1737
70574a99 1738/*
8f45e2b5
GH
1739 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1740 * way at the expense of forcing extra atomic operations in all
1741 * invocations. This assures that the double_lock is acquired using the
1742 * same underlying policy as the spinlock_t on this architecture, which
1743 * reduces latency compared to the unfair variant below. However, it
1744 * also adds more overhead and therefore may reduce throughput.
70574a99 1745 */
8f45e2b5
GH
1746static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1747 __releases(this_rq->lock)
1748 __acquires(busiest->lock)
1749 __acquires(this_rq->lock)
1750{
05fa785c 1751 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1752 double_rq_lock(this_rq, busiest);
1753
1754 return 1;
1755}
1756
1757#else
1758/*
1759 * Unfair double_lock_balance: Optimizes throughput at the expense of
1760 * latency by eliminating extra atomic operations when the locks are
1761 * already in proper order on entry. This favors lower cpu-ids and will
1762 * grant the double lock to lower cpus over higher ids under contention,
1763 * regardless of entry order into the function.
1764 */
1765static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1766 __releases(this_rq->lock)
1767 __acquires(busiest->lock)
1768 __acquires(this_rq->lock)
1769{
1770 int ret = 0;
1771
05fa785c 1772 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1773 if (busiest < this_rq) {
05fa785c
TG
1774 raw_spin_unlock(&this_rq->lock);
1775 raw_spin_lock(&busiest->lock);
1776 raw_spin_lock_nested(&this_rq->lock,
1777 SINGLE_DEPTH_NESTING);
70574a99
AD
1778 ret = 1;
1779 } else
05fa785c
TG
1780 raw_spin_lock_nested(&busiest->lock,
1781 SINGLE_DEPTH_NESTING);
70574a99
AD
1782 }
1783 return ret;
1784}
1785
8f45e2b5
GH
1786#endif /* CONFIG_PREEMPT */
1787
1788/*
1789 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1790 */
1791static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1792{
1793 if (unlikely(!irqs_disabled())) {
1794 /* printk() doesn't work good under rq->lock */
05fa785c 1795 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1796 BUG_ON(1);
1797 }
1798
1799 return _double_lock_balance(this_rq, busiest);
1800}
1801
70574a99
AD
1802static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1803 __releases(busiest->lock)
1804{
05fa785c 1805 raw_spin_unlock(&busiest->lock);
70574a99
AD
1806 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1807}
18d95a28
PZ
1808#endif
1809
30432094 1810#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1811static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1812{
30432094 1813#ifdef CONFIG_SMP
34e83e85
IM
1814 cfs_rq->shares = shares;
1815#endif
1816}
30432094 1817#endif
e7693a36 1818
dce48a84 1819static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1820static void update_sysctl(void);
acb4a848 1821static int get_update_sysctl_factor(void);
dce48a84 1822
cd29fe6f
PZ
1823static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1824{
1825 set_task_rq(p, cpu);
1826#ifdef CONFIG_SMP
1827 /*
1828 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1829 * successfuly executed on another CPU. We must ensure that updates of
1830 * per-task data have been completed by this moment.
1831 */
1832 smp_wmb();
1833 task_thread_info(p)->cpu = cpu;
1834#endif
1835}
dce48a84 1836
dd41f596 1837#include "sched_stats.h"
dd41f596 1838#include "sched_idletask.c"
5522d5d5
IM
1839#include "sched_fair.c"
1840#include "sched_rt.c"
dd41f596
IM
1841#ifdef CONFIG_SCHED_DEBUG
1842# include "sched_debug.c"
1843#endif
1844
1845#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1846#define for_each_class(class) \
1847 for (class = sched_class_highest; class; class = class->next)
dd41f596 1848
c09595f6 1849static void inc_nr_running(struct rq *rq)
9c217245
IM
1850{
1851 rq->nr_running++;
9c217245
IM
1852}
1853
c09595f6 1854static void dec_nr_running(struct rq *rq)
9c217245
IM
1855{
1856 rq->nr_running--;
9c217245
IM
1857}
1858
45bf76df
IM
1859static void set_load_weight(struct task_struct *p)
1860{
1861 if (task_has_rt_policy(p)) {
dd41f596
IM
1862 p->se.load.weight = prio_to_weight[0] * 2;
1863 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1864 return;
1865 }
45bf76df 1866
dd41f596
IM
1867 /*
1868 * SCHED_IDLE tasks get minimal weight:
1869 */
1870 if (p->policy == SCHED_IDLE) {
1871 p->se.load.weight = WEIGHT_IDLEPRIO;
1872 p->se.load.inv_weight = WMULT_IDLEPRIO;
1873 return;
1874 }
71f8bd46 1875
dd41f596
IM
1876 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1877 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1878}
1879
2087a1ad
GH
1880static void update_avg(u64 *avg, u64 sample)
1881{
1882 s64 diff = sample - *avg;
1883 *avg += diff >> 3;
1884}
1885
8159f87e 1886static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1887{
831451ac
PZ
1888 if (wakeup)
1889 p->se.start_runtime = p->se.sum_exec_runtime;
1890
dd41f596 1891 sched_info_queued(p);
fd390f6a 1892 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1893 p->se.on_rq = 1;
71f8bd46
IM
1894}
1895
69be72c1 1896static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1897{
831451ac
PZ
1898 if (sleep) {
1899 if (p->se.last_wakeup) {
1900 update_avg(&p->se.avg_overlap,
1901 p->se.sum_exec_runtime - p->se.last_wakeup);
1902 p->se.last_wakeup = 0;
1903 } else {
1904 update_avg(&p->se.avg_wakeup,
1905 sysctl_sched_wakeup_granularity);
1906 }
2087a1ad
GH
1907 }
1908
46ac22ba 1909 sched_info_dequeued(p);
f02231e5 1910 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1911 p->se.on_rq = 0;
71f8bd46
IM
1912}
1913
14531189 1914/*
dd41f596 1915 * __normal_prio - return the priority that is based on the static prio
14531189 1916 */
14531189
IM
1917static inline int __normal_prio(struct task_struct *p)
1918{
dd41f596 1919 return p->static_prio;
14531189
IM
1920}
1921
b29739f9
IM
1922/*
1923 * Calculate the expected normal priority: i.e. priority
1924 * without taking RT-inheritance into account. Might be
1925 * boosted by interactivity modifiers. Changes upon fork,
1926 * setprio syscalls, and whenever the interactivity
1927 * estimator recalculates.
1928 */
36c8b586 1929static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1930{
1931 int prio;
1932
e05606d3 1933 if (task_has_rt_policy(p))
b29739f9
IM
1934 prio = MAX_RT_PRIO-1 - p->rt_priority;
1935 else
1936 prio = __normal_prio(p);
1937 return prio;
1938}
1939
1940/*
1941 * Calculate the current priority, i.e. the priority
1942 * taken into account by the scheduler. This value might
1943 * be boosted by RT tasks, or might be boosted by
1944 * interactivity modifiers. Will be RT if the task got
1945 * RT-boosted. If not then it returns p->normal_prio.
1946 */
36c8b586 1947static int effective_prio(struct task_struct *p)
b29739f9
IM
1948{
1949 p->normal_prio = normal_prio(p);
1950 /*
1951 * If we are RT tasks or we were boosted to RT priority,
1952 * keep the priority unchanged. Otherwise, update priority
1953 * to the normal priority:
1954 */
1955 if (!rt_prio(p->prio))
1956 return p->normal_prio;
1957 return p->prio;
1958}
1959
1da177e4 1960/*
dd41f596 1961 * activate_task - move a task to the runqueue.
1da177e4 1962 */
dd41f596 1963static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1964{
d9514f6c 1965 if (task_contributes_to_load(p))
dd41f596 1966 rq->nr_uninterruptible--;
1da177e4 1967
8159f87e 1968 enqueue_task(rq, p, wakeup);
c09595f6 1969 inc_nr_running(rq);
1da177e4
LT
1970}
1971
1da177e4
LT
1972/*
1973 * deactivate_task - remove a task from the runqueue.
1974 */
2e1cb74a 1975static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1976{
d9514f6c 1977 if (task_contributes_to_load(p))
dd41f596
IM
1978 rq->nr_uninterruptible++;
1979
69be72c1 1980 dequeue_task(rq, p, sleep);
c09595f6 1981 dec_nr_running(rq);
1da177e4
LT
1982}
1983
1da177e4
LT
1984/**
1985 * task_curr - is this task currently executing on a CPU?
1986 * @p: the task in question.
1987 */
36c8b586 1988inline int task_curr(const struct task_struct *p)
1da177e4
LT
1989{
1990 return cpu_curr(task_cpu(p)) == p;
1991}
1992
cb469845
SR
1993static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1994 const struct sched_class *prev_class,
1995 int oldprio, int running)
1996{
1997 if (prev_class != p->sched_class) {
1998 if (prev_class->switched_from)
1999 prev_class->switched_from(rq, p, running);
2000 p->sched_class->switched_to(rq, p, running);
2001 } else
2002 p->sched_class->prio_changed(rq, p, oldprio, running);
2003}
2004
1da177e4 2005#ifdef CONFIG_SMP
cc367732
IM
2006/*
2007 * Is this task likely cache-hot:
2008 */
e7693a36 2009static int
cc367732
IM
2010task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2011{
2012 s64 delta;
2013
e6c8fba7
PZ
2014 if (p->sched_class != &fair_sched_class)
2015 return 0;
2016
f540a608
IM
2017 /*
2018 * Buddy candidates are cache hot:
2019 */
f685ceac 2020 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2021 (&p->se == cfs_rq_of(&p->se)->next ||
2022 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2023 return 1;
2024
6bc1665b
IM
2025 if (sysctl_sched_migration_cost == -1)
2026 return 1;
2027 if (sysctl_sched_migration_cost == 0)
2028 return 0;
2029
cc367732
IM
2030 delta = now - p->se.exec_start;
2031
2032 return delta < (s64)sysctl_sched_migration_cost;
2033}
2034
dd41f596 2035void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2036{
e2912009
PZ
2037#ifdef CONFIG_SCHED_DEBUG
2038 /*
2039 * We should never call set_task_cpu() on a blocked task,
2040 * ttwu() will sort out the placement.
2041 */
077614ee
PZ
2042 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2043 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2044#endif
2045
de1d7286 2046 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2047
0c69774e
PZ
2048 if (task_cpu(p) != new_cpu) {
2049 p->se.nr_migrations++;
2050 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2051 }
dd41f596
IM
2052
2053 __set_task_cpu(p, new_cpu);
c65cc870
IM
2054}
2055
70b97a7f 2056struct migration_req {
1da177e4 2057 struct list_head list;
1da177e4 2058
36c8b586 2059 struct task_struct *task;
1da177e4
LT
2060 int dest_cpu;
2061
1da177e4 2062 struct completion done;
70b97a7f 2063};
1da177e4
LT
2064
2065/*
2066 * The task's runqueue lock must be held.
2067 * Returns true if you have to wait for migration thread.
2068 */
36c8b586 2069static int
70b97a7f 2070migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2071{
70b97a7f 2072 struct rq *rq = task_rq(p);
1da177e4
LT
2073
2074 /*
2075 * If the task is not on a runqueue (and not running), then
e2912009 2076 * the next wake-up will properly place the task.
1da177e4 2077 */
e2912009 2078 if (!p->se.on_rq && !task_running(rq, p))
1da177e4 2079 return 0;
1da177e4
LT
2080
2081 init_completion(&req->done);
1da177e4
LT
2082 req->task = p;
2083 req->dest_cpu = dest_cpu;
2084 list_add(&req->list, &rq->migration_queue);
48f24c4d 2085
1da177e4
LT
2086 return 1;
2087}
2088
a26b89f0
MM
2089/*
2090 * wait_task_context_switch - wait for a thread to complete at least one
2091 * context switch.
2092 *
2093 * @p must not be current.
2094 */
2095void wait_task_context_switch(struct task_struct *p)
2096{
2097 unsigned long nvcsw, nivcsw, flags;
2098 int running;
2099 struct rq *rq;
2100
2101 nvcsw = p->nvcsw;
2102 nivcsw = p->nivcsw;
2103 for (;;) {
2104 /*
2105 * The runqueue is assigned before the actual context
2106 * switch. We need to take the runqueue lock.
2107 *
2108 * We could check initially without the lock but it is
2109 * very likely that we need to take the lock in every
2110 * iteration.
2111 */
2112 rq = task_rq_lock(p, &flags);
2113 running = task_running(rq, p);
2114 task_rq_unlock(rq, &flags);
2115
2116 if (likely(!running))
2117 break;
2118 /*
2119 * The switch count is incremented before the actual
2120 * context switch. We thus wait for two switches to be
2121 * sure at least one completed.
2122 */
2123 if ((p->nvcsw - nvcsw) > 1)
2124 break;
2125 if ((p->nivcsw - nivcsw) > 1)
2126 break;
2127
2128 cpu_relax();
2129 }
2130}
2131
1da177e4
LT
2132/*
2133 * wait_task_inactive - wait for a thread to unschedule.
2134 *
85ba2d86
RM
2135 * If @match_state is nonzero, it's the @p->state value just checked and
2136 * not expected to change. If it changes, i.e. @p might have woken up,
2137 * then return zero. When we succeed in waiting for @p to be off its CPU,
2138 * we return a positive number (its total switch count). If a second call
2139 * a short while later returns the same number, the caller can be sure that
2140 * @p has remained unscheduled the whole time.
2141 *
1da177e4
LT
2142 * The caller must ensure that the task *will* unschedule sometime soon,
2143 * else this function might spin for a *long* time. This function can't
2144 * be called with interrupts off, or it may introduce deadlock with
2145 * smp_call_function() if an IPI is sent by the same process we are
2146 * waiting to become inactive.
2147 */
85ba2d86 2148unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2149{
2150 unsigned long flags;
dd41f596 2151 int running, on_rq;
85ba2d86 2152 unsigned long ncsw;
70b97a7f 2153 struct rq *rq;
1da177e4 2154
3a5c359a
AK
2155 for (;;) {
2156 /*
2157 * We do the initial early heuristics without holding
2158 * any task-queue locks at all. We'll only try to get
2159 * the runqueue lock when things look like they will
2160 * work out!
2161 */
2162 rq = task_rq(p);
fa490cfd 2163
3a5c359a
AK
2164 /*
2165 * If the task is actively running on another CPU
2166 * still, just relax and busy-wait without holding
2167 * any locks.
2168 *
2169 * NOTE! Since we don't hold any locks, it's not
2170 * even sure that "rq" stays as the right runqueue!
2171 * But we don't care, since "task_running()" will
2172 * return false if the runqueue has changed and p
2173 * is actually now running somewhere else!
2174 */
85ba2d86
RM
2175 while (task_running(rq, p)) {
2176 if (match_state && unlikely(p->state != match_state))
2177 return 0;
3a5c359a 2178 cpu_relax();
85ba2d86 2179 }
fa490cfd 2180
3a5c359a
AK
2181 /*
2182 * Ok, time to look more closely! We need the rq
2183 * lock now, to be *sure*. If we're wrong, we'll
2184 * just go back and repeat.
2185 */
2186 rq = task_rq_lock(p, &flags);
0a16b607 2187 trace_sched_wait_task(rq, p);
3a5c359a
AK
2188 running = task_running(rq, p);
2189 on_rq = p->se.on_rq;
85ba2d86 2190 ncsw = 0;
f31e11d8 2191 if (!match_state || p->state == match_state)
93dcf55f 2192 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2193 task_rq_unlock(rq, &flags);
fa490cfd 2194
85ba2d86
RM
2195 /*
2196 * If it changed from the expected state, bail out now.
2197 */
2198 if (unlikely(!ncsw))
2199 break;
2200
3a5c359a
AK
2201 /*
2202 * Was it really running after all now that we
2203 * checked with the proper locks actually held?
2204 *
2205 * Oops. Go back and try again..
2206 */
2207 if (unlikely(running)) {
2208 cpu_relax();
2209 continue;
2210 }
fa490cfd 2211
3a5c359a
AK
2212 /*
2213 * It's not enough that it's not actively running,
2214 * it must be off the runqueue _entirely_, and not
2215 * preempted!
2216 *
80dd99b3 2217 * So if it was still runnable (but just not actively
3a5c359a
AK
2218 * running right now), it's preempted, and we should
2219 * yield - it could be a while.
2220 */
2221 if (unlikely(on_rq)) {
2222 schedule_timeout_uninterruptible(1);
2223 continue;
2224 }
fa490cfd 2225
3a5c359a
AK
2226 /*
2227 * Ahh, all good. It wasn't running, and it wasn't
2228 * runnable, which means that it will never become
2229 * running in the future either. We're all done!
2230 */
2231 break;
2232 }
85ba2d86
RM
2233
2234 return ncsw;
1da177e4
LT
2235}
2236
2237/***
2238 * kick_process - kick a running thread to enter/exit the kernel
2239 * @p: the to-be-kicked thread
2240 *
2241 * Cause a process which is running on another CPU to enter
2242 * kernel-mode, without any delay. (to get signals handled.)
2243 *
2244 * NOTE: this function doesnt have to take the runqueue lock,
2245 * because all it wants to ensure is that the remote task enters
2246 * the kernel. If the IPI races and the task has been migrated
2247 * to another CPU then no harm is done and the purpose has been
2248 * achieved as well.
2249 */
36c8b586 2250void kick_process(struct task_struct *p)
1da177e4
LT
2251{
2252 int cpu;
2253
2254 preempt_disable();
2255 cpu = task_cpu(p);
2256 if ((cpu != smp_processor_id()) && task_curr(p))
2257 smp_send_reschedule(cpu);
2258 preempt_enable();
2259}
b43e3521 2260EXPORT_SYMBOL_GPL(kick_process);
476d139c 2261#endif /* CONFIG_SMP */
1da177e4 2262
0793a61d
TG
2263/**
2264 * task_oncpu_function_call - call a function on the cpu on which a task runs
2265 * @p: the task to evaluate
2266 * @func: the function to be called
2267 * @info: the function call argument
2268 *
2269 * Calls the function @func when the task is currently running. This might
2270 * be on the current CPU, which just calls the function directly
2271 */
2272void task_oncpu_function_call(struct task_struct *p,
2273 void (*func) (void *info), void *info)
2274{
2275 int cpu;
2276
2277 preempt_disable();
2278 cpu = task_cpu(p);
2279 if (task_curr(p))
2280 smp_call_function_single(cpu, func, info, 1);
2281 preempt_enable();
2282}
2283
970b13ba 2284#ifdef CONFIG_SMP
5da9a0fb
PZ
2285static int select_fallback_rq(int cpu, struct task_struct *p)
2286{
2287 int dest_cpu;
2288 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2289
2290 /* Look for allowed, online CPU in same node. */
2291 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2292 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2293 return dest_cpu;
2294
2295 /* Any allowed, online CPU? */
2296 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2297 if (dest_cpu < nr_cpu_ids)
2298 return dest_cpu;
2299
2300 /* No more Mr. Nice Guy. */
2301 if (dest_cpu >= nr_cpu_ids) {
2302 rcu_read_lock();
2303 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2304 rcu_read_unlock();
2305 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2306
2307 /*
2308 * Don't tell them about moving exiting tasks or
2309 * kernel threads (both mm NULL), since they never
2310 * leave kernel.
2311 */
2312 if (p->mm && printk_ratelimit()) {
2313 printk(KERN_INFO "process %d (%s) no "
2314 "longer affine to cpu%d\n",
2315 task_pid_nr(p), p->comm, cpu);
2316 }
2317 }
2318
2319 return dest_cpu;
2320}
2321
e2912009 2322/*
fabf318e
PZ
2323 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2324 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2325 * by:
e2912009 2326 *
fabf318e
PZ
2327 * exec: is unstable, retry loop
2328 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
e2912009 2329 */
970b13ba
PZ
2330static inline
2331int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2332{
e2912009
PZ
2333 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2334
2335 /*
2336 * In order not to call set_task_cpu() on a blocking task we need
2337 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2338 * cpu.
2339 *
2340 * Since this is common to all placement strategies, this lives here.
2341 *
2342 * [ this allows ->select_task() to simply return task_cpu(p) and
2343 * not worry about this generic constraint ]
2344 */
2345 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2346 !cpu_online(cpu)))
5da9a0fb 2347 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2348
2349 return cpu;
970b13ba
PZ
2350}
2351#endif
2352
1da177e4
LT
2353/***
2354 * try_to_wake_up - wake up a thread
2355 * @p: the to-be-woken-up thread
2356 * @state: the mask of task states that can be woken
2357 * @sync: do a synchronous wakeup?
2358 *
2359 * Put it on the run-queue if it's not already there. The "current"
2360 * thread is always on the run-queue (except when the actual
2361 * re-schedule is in progress), and as such you're allowed to do
2362 * the simpler "current->state = TASK_RUNNING" to mark yourself
2363 * runnable without the overhead of this.
2364 *
2365 * returns failure only if the task is already active.
2366 */
7d478721
PZ
2367static int try_to_wake_up(struct task_struct *p, unsigned int state,
2368 int wake_flags)
1da177e4 2369{
cc367732 2370 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2371 unsigned long flags;
f5dc3753 2372 struct rq *rq, *orig_rq;
1da177e4 2373
b85d0667 2374 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2375 wake_flags &= ~WF_SYNC;
2398f2c6 2376
e9c84311 2377 this_cpu = get_cpu();
2398f2c6 2378
04e2f174 2379 smp_wmb();
f5dc3753 2380 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2381 update_rq_clock(rq);
e9c84311 2382 if (!(p->state & state))
1da177e4
LT
2383 goto out;
2384
dd41f596 2385 if (p->se.on_rq)
1da177e4
LT
2386 goto out_running;
2387
2388 cpu = task_cpu(p);
cc367732 2389 orig_cpu = cpu;
1da177e4
LT
2390
2391#ifdef CONFIG_SMP
2392 if (unlikely(task_running(rq, p)))
2393 goto out_activate;
2394
e9c84311
PZ
2395 /*
2396 * In order to handle concurrent wakeups and release the rq->lock
2397 * we put the task in TASK_WAKING state.
eb24073b
IM
2398 *
2399 * First fix up the nr_uninterruptible count:
e9c84311 2400 */
eb24073b
IM
2401 if (task_contributes_to_load(p))
2402 rq->nr_uninterruptible--;
e9c84311 2403 p->state = TASK_WAKING;
efbbd05a
PZ
2404
2405 if (p->sched_class->task_waking)
2406 p->sched_class->task_waking(rq, p);
2407
ab19cb23 2408 __task_rq_unlock(rq);
e9c84311 2409
970b13ba 2410 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
ab19cb23 2411 if (cpu != orig_cpu)
5d2f5a61 2412 set_task_cpu(p, cpu);
ab19cb23
PZ
2413
2414 rq = __task_rq_lock(p);
2415 update_rq_clock(rq);
f5dc3753 2416
e9c84311
PZ
2417 WARN_ON(p->state != TASK_WAKING);
2418 cpu = task_cpu(p);
1da177e4 2419
e7693a36
GH
2420#ifdef CONFIG_SCHEDSTATS
2421 schedstat_inc(rq, ttwu_count);
2422 if (cpu == this_cpu)
2423 schedstat_inc(rq, ttwu_local);
2424 else {
2425 struct sched_domain *sd;
2426 for_each_domain(this_cpu, sd) {
758b2cdc 2427 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2428 schedstat_inc(sd, ttwu_wake_remote);
2429 break;
2430 }
2431 }
2432 }
6d6bc0ad 2433#endif /* CONFIG_SCHEDSTATS */
e7693a36 2434
1da177e4
LT
2435out_activate:
2436#endif /* CONFIG_SMP */
cc367732 2437 schedstat_inc(p, se.nr_wakeups);
7d478721 2438 if (wake_flags & WF_SYNC)
cc367732
IM
2439 schedstat_inc(p, se.nr_wakeups_sync);
2440 if (orig_cpu != cpu)
2441 schedstat_inc(p, se.nr_wakeups_migrate);
2442 if (cpu == this_cpu)
2443 schedstat_inc(p, se.nr_wakeups_local);
2444 else
2445 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2446 activate_task(rq, p, 1);
1da177e4
LT
2447 success = 1;
2448
831451ac
PZ
2449 /*
2450 * Only attribute actual wakeups done by this task.
2451 */
2452 if (!in_interrupt()) {
2453 struct sched_entity *se = &current->se;
2454 u64 sample = se->sum_exec_runtime;
2455
2456 if (se->last_wakeup)
2457 sample -= se->last_wakeup;
2458 else
2459 sample -= se->start_runtime;
2460 update_avg(&se->avg_wakeup, sample);
2461
2462 se->last_wakeup = se->sum_exec_runtime;
2463 }
2464
1da177e4 2465out_running:
468a15bb 2466 trace_sched_wakeup(rq, p, success);
7d478721 2467 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2468
1da177e4 2469 p->state = TASK_RUNNING;
9a897c5a 2470#ifdef CONFIG_SMP
efbbd05a
PZ
2471 if (p->sched_class->task_woken)
2472 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2473
2474 if (unlikely(rq->idle_stamp)) {
2475 u64 delta = rq->clock - rq->idle_stamp;
2476 u64 max = 2*sysctl_sched_migration_cost;
2477
2478 if (delta > max)
2479 rq->avg_idle = max;
2480 else
2481 update_avg(&rq->avg_idle, delta);
2482 rq->idle_stamp = 0;
2483 }
9a897c5a 2484#endif
1da177e4
LT
2485out:
2486 task_rq_unlock(rq, &flags);
e9c84311 2487 put_cpu();
1da177e4
LT
2488
2489 return success;
2490}
2491
50fa610a
DH
2492/**
2493 * wake_up_process - Wake up a specific process
2494 * @p: The process to be woken up.
2495 *
2496 * Attempt to wake up the nominated process and move it to the set of runnable
2497 * processes. Returns 1 if the process was woken up, 0 if it was already
2498 * running.
2499 *
2500 * It may be assumed that this function implies a write memory barrier before
2501 * changing the task state if and only if any tasks are woken up.
2502 */
7ad5b3a5 2503int wake_up_process(struct task_struct *p)
1da177e4 2504{
d9514f6c 2505 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2506}
1da177e4
LT
2507EXPORT_SYMBOL(wake_up_process);
2508
7ad5b3a5 2509int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2510{
2511 return try_to_wake_up(p, state, 0);
2512}
2513
1da177e4
LT
2514/*
2515 * Perform scheduler related setup for a newly forked process p.
2516 * p is forked by current.
dd41f596
IM
2517 *
2518 * __sched_fork() is basic setup used by init_idle() too:
2519 */
2520static void __sched_fork(struct task_struct *p)
2521{
dd41f596
IM
2522 p->se.exec_start = 0;
2523 p->se.sum_exec_runtime = 0;
f6cf891c 2524 p->se.prev_sum_exec_runtime = 0;
6c594c21 2525 p->se.nr_migrations = 0;
4ae7d5ce
IM
2526 p->se.last_wakeup = 0;
2527 p->se.avg_overlap = 0;
831451ac
PZ
2528 p->se.start_runtime = 0;
2529 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2530
2531#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2532 p->se.wait_start = 0;
2533 p->se.wait_max = 0;
2534 p->se.wait_count = 0;
2535 p->se.wait_sum = 0;
2536
2537 p->se.sleep_start = 0;
2538 p->se.sleep_max = 0;
2539 p->se.sum_sleep_runtime = 0;
2540
2541 p->se.block_start = 0;
2542 p->se.block_max = 0;
2543 p->se.exec_max = 0;
2544 p->se.slice_max = 0;
2545
2546 p->se.nr_migrations_cold = 0;
2547 p->se.nr_failed_migrations_affine = 0;
2548 p->se.nr_failed_migrations_running = 0;
2549 p->se.nr_failed_migrations_hot = 0;
2550 p->se.nr_forced_migrations = 0;
7793527b
LDM
2551
2552 p->se.nr_wakeups = 0;
2553 p->se.nr_wakeups_sync = 0;
2554 p->se.nr_wakeups_migrate = 0;
2555 p->se.nr_wakeups_local = 0;
2556 p->se.nr_wakeups_remote = 0;
2557 p->se.nr_wakeups_affine = 0;
2558 p->se.nr_wakeups_affine_attempts = 0;
2559 p->se.nr_wakeups_passive = 0;
2560 p->se.nr_wakeups_idle = 0;
2561
6cfb0d5d 2562#endif
476d139c 2563
fa717060 2564 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2565 p->se.on_rq = 0;
4a55bd5e 2566 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2567
e107be36
AK
2568#ifdef CONFIG_PREEMPT_NOTIFIERS
2569 INIT_HLIST_HEAD(&p->preempt_notifiers);
2570#endif
dd41f596
IM
2571}
2572
2573/*
2574 * fork()/clone()-time setup:
2575 */
2576void sched_fork(struct task_struct *p, int clone_flags)
2577{
2578 int cpu = get_cpu();
2579
2580 __sched_fork(p);
06b83b5f
PZ
2581 /*
2582 * We mark the process as waking here. This guarantees that
2583 * nobody will actually run it, and a signal or other external
2584 * event cannot wake it up and insert it on the runqueue either.
2585 */
2586 p->state = TASK_WAKING;
dd41f596 2587
b9dc29e7
MG
2588 /*
2589 * Revert to default priority/policy on fork if requested.
2590 */
2591 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2592 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2593 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2594 p->normal_prio = p->static_prio;
2595 }
b9dc29e7 2596
6c697bdf
MG
2597 if (PRIO_TO_NICE(p->static_prio) < 0) {
2598 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2599 p->normal_prio = p->static_prio;
6c697bdf
MG
2600 set_load_weight(p);
2601 }
2602
b9dc29e7
MG
2603 /*
2604 * We don't need the reset flag anymore after the fork. It has
2605 * fulfilled its duty:
2606 */
2607 p->sched_reset_on_fork = 0;
2608 }
ca94c442 2609
f83f9ac2
PW
2610 /*
2611 * Make sure we do not leak PI boosting priority to the child.
2612 */
2613 p->prio = current->normal_prio;
2614
2ddbf952
HS
2615 if (!rt_prio(p->prio))
2616 p->sched_class = &fair_sched_class;
b29739f9 2617
cd29fe6f
PZ
2618 if (p->sched_class->task_fork)
2619 p->sched_class->task_fork(p);
2620
5f3edc1b
PZ
2621 set_task_cpu(p, cpu);
2622
52f17b6c 2623#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2624 if (likely(sched_info_on()))
52f17b6c 2625 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2626#endif
d6077cb8 2627#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2628 p->oncpu = 0;
2629#endif
1da177e4 2630#ifdef CONFIG_PREEMPT
4866cde0 2631 /* Want to start with kernel preemption disabled. */
a1261f54 2632 task_thread_info(p)->preempt_count = 1;
1da177e4 2633#endif
917b627d
GH
2634 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2635
476d139c 2636 put_cpu();
1da177e4
LT
2637}
2638
2639/*
2640 * wake_up_new_task - wake up a newly created task for the first time.
2641 *
2642 * This function will do some initial scheduler statistics housekeeping
2643 * that must be done for every newly created context, then puts the task
2644 * on the runqueue and wakes it.
2645 */
7ad5b3a5 2646void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2647{
2648 unsigned long flags;
dd41f596 2649 struct rq *rq;
fabf318e
PZ
2650 int cpu = get_cpu();
2651
2652#ifdef CONFIG_SMP
2653 /*
2654 * Fork balancing, do it here and not earlier because:
2655 * - cpus_allowed can change in the fork path
2656 * - any previously selected cpu might disappear through hotplug
2657 *
2658 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2659 * ->cpus_allowed is stable, we have preemption disabled, meaning
2660 * cpu_online_mask is stable.
2661 */
2662 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2663 set_task_cpu(p, cpu);
2664#endif
1da177e4
LT
2665
2666 rq = task_rq_lock(p, &flags);
06b83b5f
PZ
2667 BUG_ON(p->state != TASK_WAKING);
2668 p->state = TASK_RUNNING;
a8e504d2 2669 update_rq_clock(rq);
cd29fe6f 2670 activate_task(rq, p, 0);
c71dd42d 2671 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2672 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2673#ifdef CONFIG_SMP
efbbd05a
PZ
2674 if (p->sched_class->task_woken)
2675 p->sched_class->task_woken(rq, p);
9a897c5a 2676#endif
dd41f596 2677 task_rq_unlock(rq, &flags);
fabf318e 2678 put_cpu();
1da177e4
LT
2679}
2680
e107be36
AK
2681#ifdef CONFIG_PREEMPT_NOTIFIERS
2682
2683/**
80dd99b3 2684 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2685 * @notifier: notifier struct to register
e107be36
AK
2686 */
2687void preempt_notifier_register(struct preempt_notifier *notifier)
2688{
2689 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2690}
2691EXPORT_SYMBOL_GPL(preempt_notifier_register);
2692
2693/**
2694 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2695 * @notifier: notifier struct to unregister
e107be36
AK
2696 *
2697 * This is safe to call from within a preemption notifier.
2698 */
2699void preempt_notifier_unregister(struct preempt_notifier *notifier)
2700{
2701 hlist_del(&notifier->link);
2702}
2703EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2704
2705static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2706{
2707 struct preempt_notifier *notifier;
2708 struct hlist_node *node;
2709
2710 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2711 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2712}
2713
2714static void
2715fire_sched_out_preempt_notifiers(struct task_struct *curr,
2716 struct task_struct *next)
2717{
2718 struct preempt_notifier *notifier;
2719 struct hlist_node *node;
2720
2721 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2722 notifier->ops->sched_out(notifier, next);
2723}
2724
6d6bc0ad 2725#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2726
2727static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2728{
2729}
2730
2731static void
2732fire_sched_out_preempt_notifiers(struct task_struct *curr,
2733 struct task_struct *next)
2734{
2735}
2736
6d6bc0ad 2737#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2738
4866cde0
NP
2739/**
2740 * prepare_task_switch - prepare to switch tasks
2741 * @rq: the runqueue preparing to switch
421cee29 2742 * @prev: the current task that is being switched out
4866cde0
NP
2743 * @next: the task we are going to switch to.
2744 *
2745 * This is called with the rq lock held and interrupts off. It must
2746 * be paired with a subsequent finish_task_switch after the context
2747 * switch.
2748 *
2749 * prepare_task_switch sets up locking and calls architecture specific
2750 * hooks.
2751 */
e107be36
AK
2752static inline void
2753prepare_task_switch(struct rq *rq, struct task_struct *prev,
2754 struct task_struct *next)
4866cde0 2755{
e107be36 2756 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2757 prepare_lock_switch(rq, next);
2758 prepare_arch_switch(next);
2759}
2760
1da177e4
LT
2761/**
2762 * finish_task_switch - clean up after a task-switch
344babaa 2763 * @rq: runqueue associated with task-switch
1da177e4
LT
2764 * @prev: the thread we just switched away from.
2765 *
4866cde0
NP
2766 * finish_task_switch must be called after the context switch, paired
2767 * with a prepare_task_switch call before the context switch.
2768 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2769 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2770 *
2771 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2772 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2773 * with the lock held can cause deadlocks; see schedule() for
2774 * details.)
2775 */
a9957449 2776static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2777 __releases(rq->lock)
2778{
1da177e4 2779 struct mm_struct *mm = rq->prev_mm;
55a101f8 2780 long prev_state;
1da177e4
LT
2781
2782 rq->prev_mm = NULL;
2783
2784 /*
2785 * A task struct has one reference for the use as "current".
c394cc9f 2786 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2787 * schedule one last time. The schedule call will never return, and
2788 * the scheduled task must drop that reference.
c394cc9f 2789 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2790 * still held, otherwise prev could be scheduled on another cpu, die
2791 * there before we look at prev->state, and then the reference would
2792 * be dropped twice.
2793 * Manfred Spraul <manfred@colorfullife.com>
2794 */
55a101f8 2795 prev_state = prev->state;
4866cde0 2796 finish_arch_switch(prev);
cdd6c482 2797 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2798 finish_lock_switch(rq, prev);
e8fa1362 2799
e107be36 2800 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2801 if (mm)
2802 mmdrop(mm);
c394cc9f 2803 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2804 /*
2805 * Remove function-return probe instances associated with this
2806 * task and put them back on the free list.
9761eea8 2807 */
c6fd91f0 2808 kprobe_flush_task(prev);
1da177e4 2809 put_task_struct(prev);
c6fd91f0 2810 }
1da177e4
LT
2811}
2812
3f029d3c
GH
2813#ifdef CONFIG_SMP
2814
2815/* assumes rq->lock is held */
2816static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2817{
2818 if (prev->sched_class->pre_schedule)
2819 prev->sched_class->pre_schedule(rq, prev);
2820}
2821
2822/* rq->lock is NOT held, but preemption is disabled */
2823static inline void post_schedule(struct rq *rq)
2824{
2825 if (rq->post_schedule) {
2826 unsigned long flags;
2827
05fa785c 2828 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2829 if (rq->curr->sched_class->post_schedule)
2830 rq->curr->sched_class->post_schedule(rq);
05fa785c 2831 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2832
2833 rq->post_schedule = 0;
2834 }
2835}
2836
2837#else
da19ab51 2838
3f029d3c
GH
2839static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2840{
2841}
2842
2843static inline void post_schedule(struct rq *rq)
2844{
1da177e4
LT
2845}
2846
3f029d3c
GH
2847#endif
2848
1da177e4
LT
2849/**
2850 * schedule_tail - first thing a freshly forked thread must call.
2851 * @prev: the thread we just switched away from.
2852 */
36c8b586 2853asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2854 __releases(rq->lock)
2855{
70b97a7f
IM
2856 struct rq *rq = this_rq();
2857
4866cde0 2858 finish_task_switch(rq, prev);
da19ab51 2859
3f029d3c
GH
2860 /*
2861 * FIXME: do we need to worry about rq being invalidated by the
2862 * task_switch?
2863 */
2864 post_schedule(rq);
70b97a7f 2865
4866cde0
NP
2866#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2867 /* In this case, finish_task_switch does not reenable preemption */
2868 preempt_enable();
2869#endif
1da177e4 2870 if (current->set_child_tid)
b488893a 2871 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2872}
2873
2874/*
2875 * context_switch - switch to the new MM and the new
2876 * thread's register state.
2877 */
dd41f596 2878static inline void
70b97a7f 2879context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2880 struct task_struct *next)
1da177e4 2881{
dd41f596 2882 struct mm_struct *mm, *oldmm;
1da177e4 2883
e107be36 2884 prepare_task_switch(rq, prev, next);
0a16b607 2885 trace_sched_switch(rq, prev, next);
dd41f596
IM
2886 mm = next->mm;
2887 oldmm = prev->active_mm;
9226d125
ZA
2888 /*
2889 * For paravirt, this is coupled with an exit in switch_to to
2890 * combine the page table reload and the switch backend into
2891 * one hypercall.
2892 */
224101ed 2893 arch_start_context_switch(prev);
9226d125 2894
710390d9 2895 if (likely(!mm)) {
1da177e4
LT
2896 next->active_mm = oldmm;
2897 atomic_inc(&oldmm->mm_count);
2898 enter_lazy_tlb(oldmm, next);
2899 } else
2900 switch_mm(oldmm, mm, next);
2901
710390d9 2902 if (likely(!prev->mm)) {
1da177e4 2903 prev->active_mm = NULL;
1da177e4
LT
2904 rq->prev_mm = oldmm;
2905 }
3a5f5e48
IM
2906 /*
2907 * Since the runqueue lock will be released by the next
2908 * task (which is an invalid locking op but in the case
2909 * of the scheduler it's an obvious special-case), so we
2910 * do an early lockdep release here:
2911 */
2912#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2913 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2914#endif
1da177e4
LT
2915
2916 /* Here we just switch the register state and the stack. */
2917 switch_to(prev, next, prev);
2918
dd41f596
IM
2919 barrier();
2920 /*
2921 * this_rq must be evaluated again because prev may have moved
2922 * CPUs since it called schedule(), thus the 'rq' on its stack
2923 * frame will be invalid.
2924 */
2925 finish_task_switch(this_rq(), prev);
1da177e4
LT
2926}
2927
2928/*
2929 * nr_running, nr_uninterruptible and nr_context_switches:
2930 *
2931 * externally visible scheduler statistics: current number of runnable
2932 * threads, current number of uninterruptible-sleeping threads, total
2933 * number of context switches performed since bootup.
2934 */
2935unsigned long nr_running(void)
2936{
2937 unsigned long i, sum = 0;
2938
2939 for_each_online_cpu(i)
2940 sum += cpu_rq(i)->nr_running;
2941
2942 return sum;
2943}
2944
2945unsigned long nr_uninterruptible(void)
2946{
2947 unsigned long i, sum = 0;
2948
0a945022 2949 for_each_possible_cpu(i)
1da177e4
LT
2950 sum += cpu_rq(i)->nr_uninterruptible;
2951
2952 /*
2953 * Since we read the counters lockless, it might be slightly
2954 * inaccurate. Do not allow it to go below zero though:
2955 */
2956 if (unlikely((long)sum < 0))
2957 sum = 0;
2958
2959 return sum;
2960}
2961
2962unsigned long long nr_context_switches(void)
2963{
cc94abfc
SR
2964 int i;
2965 unsigned long long sum = 0;
1da177e4 2966
0a945022 2967 for_each_possible_cpu(i)
1da177e4
LT
2968 sum += cpu_rq(i)->nr_switches;
2969
2970 return sum;
2971}
2972
2973unsigned long nr_iowait(void)
2974{
2975 unsigned long i, sum = 0;
2976
0a945022 2977 for_each_possible_cpu(i)
1da177e4
LT
2978 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2979
2980 return sum;
2981}
2982
69d25870
AV
2983unsigned long nr_iowait_cpu(void)
2984{
2985 struct rq *this = this_rq();
2986 return atomic_read(&this->nr_iowait);
2987}
2988
2989unsigned long this_cpu_load(void)
2990{
2991 struct rq *this = this_rq();
2992 return this->cpu_load[0];
2993}
2994
2995
dce48a84
TG
2996/* Variables and functions for calc_load */
2997static atomic_long_t calc_load_tasks;
2998static unsigned long calc_load_update;
2999unsigned long avenrun[3];
3000EXPORT_SYMBOL(avenrun);
3001
2d02494f
TG
3002/**
3003 * get_avenrun - get the load average array
3004 * @loads: pointer to dest load array
3005 * @offset: offset to add
3006 * @shift: shift count to shift the result left
3007 *
3008 * These values are estimates at best, so no need for locking.
3009 */
3010void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3011{
3012 loads[0] = (avenrun[0] + offset) << shift;
3013 loads[1] = (avenrun[1] + offset) << shift;
3014 loads[2] = (avenrun[2] + offset) << shift;
3015}
3016
dce48a84
TG
3017static unsigned long
3018calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3019{
dce48a84
TG
3020 load *= exp;
3021 load += active * (FIXED_1 - exp);
3022 return load >> FSHIFT;
3023}
db1b1fef 3024
dce48a84
TG
3025/*
3026 * calc_load - update the avenrun load estimates 10 ticks after the
3027 * CPUs have updated calc_load_tasks.
3028 */
3029void calc_global_load(void)
3030{
3031 unsigned long upd = calc_load_update + 10;
3032 long active;
3033
3034 if (time_before(jiffies, upd))
3035 return;
db1b1fef 3036
dce48a84
TG
3037 active = atomic_long_read(&calc_load_tasks);
3038 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3039
dce48a84
TG
3040 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3041 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3042 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3043
3044 calc_load_update += LOAD_FREQ;
3045}
3046
3047/*
3048 * Either called from update_cpu_load() or from a cpu going idle
3049 */
3050static void calc_load_account_active(struct rq *this_rq)
3051{
3052 long nr_active, delta;
3053
3054 nr_active = this_rq->nr_running;
3055 nr_active += (long) this_rq->nr_uninterruptible;
3056
3057 if (nr_active != this_rq->calc_load_active) {
3058 delta = nr_active - this_rq->calc_load_active;
3059 this_rq->calc_load_active = nr_active;
3060 atomic_long_add(delta, &calc_load_tasks);
3061 }
db1b1fef
JS
3062}
3063
48f24c4d 3064/*
dd41f596
IM
3065 * Update rq->cpu_load[] statistics. This function is usually called every
3066 * scheduler tick (TICK_NSEC).
48f24c4d 3067 */
dd41f596 3068static void update_cpu_load(struct rq *this_rq)
48f24c4d 3069{
495eca49 3070 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3071 int i, scale;
3072
3073 this_rq->nr_load_updates++;
dd41f596
IM
3074
3075 /* Update our load: */
3076 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3077 unsigned long old_load, new_load;
3078
3079 /* scale is effectively 1 << i now, and >> i divides by scale */
3080
3081 old_load = this_rq->cpu_load[i];
3082 new_load = this_load;
a25707f3
IM
3083 /*
3084 * Round up the averaging division if load is increasing. This
3085 * prevents us from getting stuck on 9 if the load is 10, for
3086 * example.
3087 */
3088 if (new_load > old_load)
3089 new_load += scale-1;
dd41f596
IM
3090 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3091 }
dce48a84
TG
3092
3093 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3094 this_rq->calc_load_update += LOAD_FREQ;
3095 calc_load_account_active(this_rq);
3096 }
48f24c4d
IM
3097}
3098
dd41f596
IM
3099#ifdef CONFIG_SMP
3100
1da177e4
LT
3101/*
3102 * double_rq_lock - safely lock two runqueues
3103 *
3104 * Note this does not disable interrupts like task_rq_lock,
3105 * you need to do so manually before calling.
3106 */
70b97a7f 3107static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3108 __acquires(rq1->lock)
3109 __acquires(rq2->lock)
3110{
054b9108 3111 BUG_ON(!irqs_disabled());
1da177e4 3112 if (rq1 == rq2) {
05fa785c 3113 raw_spin_lock(&rq1->lock);
1da177e4
LT
3114 __acquire(rq2->lock); /* Fake it out ;) */
3115 } else {
c96d145e 3116 if (rq1 < rq2) {
05fa785c
TG
3117 raw_spin_lock(&rq1->lock);
3118 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4 3119 } else {
05fa785c
TG
3120 raw_spin_lock(&rq2->lock);
3121 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3122 }
3123 }
6e82a3be
IM
3124 update_rq_clock(rq1);
3125 update_rq_clock(rq2);
1da177e4
LT
3126}
3127
3128/*
3129 * double_rq_unlock - safely unlock two runqueues
3130 *
3131 * Note this does not restore interrupts like task_rq_unlock,
3132 * you need to do so manually after calling.
3133 */
70b97a7f 3134static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3135 __releases(rq1->lock)
3136 __releases(rq2->lock)
3137{
05fa785c 3138 raw_spin_unlock(&rq1->lock);
1da177e4 3139 if (rq1 != rq2)
05fa785c 3140 raw_spin_unlock(&rq2->lock);
1da177e4
LT
3141 else
3142 __release(rq2->lock);
3143}
3144
1da177e4 3145/*
38022906
PZ
3146 * sched_exec - execve() is a valuable balancing opportunity, because at
3147 * this point the task has the smallest effective memory and cache footprint.
1da177e4 3148 */
38022906 3149void sched_exec(void)
1da177e4 3150{
38022906 3151 struct task_struct *p = current;
70b97a7f 3152 struct migration_req req;
38022906 3153 int dest_cpu, this_cpu;
1da177e4 3154 unsigned long flags;
70b97a7f 3155 struct rq *rq;
1da177e4 3156
38022906
PZ
3157again:
3158 this_cpu = get_cpu();
3159 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3160 if (dest_cpu == this_cpu) {
3161 put_cpu();
3162 return;
3163 }
3164
1da177e4 3165 rq = task_rq_lock(p, &flags);
38022906
PZ
3166 put_cpu();
3167
3168 /*
3169 * select_task_rq() can race against ->cpus_allowed
3170 */
96f874e2 3171 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
38022906
PZ
3172 || unlikely(!cpu_active(dest_cpu))) {
3173 task_rq_unlock(rq, &flags);
3174 goto again;
3175 }
1da177e4
LT
3176
3177 /* force the process onto the specified CPU */
3178 if (migrate_task(p, dest_cpu, &req)) {
3179 /* Need to wait for migration thread (might exit: take ref). */
3180 struct task_struct *mt = rq->migration_thread;
36c8b586 3181
1da177e4
LT
3182 get_task_struct(mt);
3183 task_rq_unlock(rq, &flags);
3184 wake_up_process(mt);
3185 put_task_struct(mt);
3186 wait_for_completion(&req.done);
36c8b586 3187
1da177e4
LT
3188 return;
3189 }
1da177e4
LT
3190 task_rq_unlock(rq, &flags);
3191}
3192
1da177e4
LT
3193/*
3194 * pull_task - move a task from a remote runqueue to the local runqueue.
3195 * Both runqueues must be locked.
3196 */
dd41f596
IM
3197static void pull_task(struct rq *src_rq, struct task_struct *p,
3198 struct rq *this_rq, int this_cpu)
1da177e4 3199{
2e1cb74a 3200 deactivate_task(src_rq, p, 0);
1da177e4 3201 set_task_cpu(p, this_cpu);
dd41f596 3202 activate_task(this_rq, p, 0);
15afe09b 3203 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3204}
3205
3206/*
3207 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3208 */
858119e1 3209static
70b97a7f 3210int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3211 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3212 int *all_pinned)
1da177e4 3213{
708dc512 3214 int tsk_cache_hot = 0;
1da177e4
LT
3215 /*
3216 * We do not migrate tasks that are:
3217 * 1) running (obviously), or
3218 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3219 * 3) are cache-hot on their current CPU.
3220 */
96f874e2 3221 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3222 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3223 return 0;
cc367732 3224 }
81026794
NP
3225 *all_pinned = 0;
3226
cc367732
IM
3227 if (task_running(rq, p)) {
3228 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3229 return 0;
cc367732 3230 }
1da177e4 3231
da84d961
IM
3232 /*
3233 * Aggressive migration if:
3234 * 1) task is cache cold, or
3235 * 2) too many balance attempts have failed.
3236 */
3237
708dc512
LH
3238 tsk_cache_hot = task_hot(p, rq->clock, sd);
3239 if (!tsk_cache_hot ||
3240 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3241#ifdef CONFIG_SCHEDSTATS
708dc512 3242 if (tsk_cache_hot) {
da84d961 3243 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3244 schedstat_inc(p, se.nr_forced_migrations);
3245 }
da84d961
IM
3246#endif
3247 return 1;
3248 }
3249
708dc512 3250 if (tsk_cache_hot) {
cc367732 3251 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3252 return 0;
cc367732 3253 }
1da177e4
LT
3254 return 1;
3255}
3256
e1d1484f
PW
3257static unsigned long
3258balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3259 unsigned long max_load_move, struct sched_domain *sd,
3260 enum cpu_idle_type idle, int *all_pinned,
3261 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3262{
051c6764 3263 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3264 struct task_struct *p;
3265 long rem_load_move = max_load_move;
1da177e4 3266
e1d1484f 3267 if (max_load_move == 0)
1da177e4
LT
3268 goto out;
3269
81026794
NP
3270 pinned = 1;
3271
1da177e4 3272 /*
dd41f596 3273 * Start the load-balancing iterator:
1da177e4 3274 */
dd41f596
IM
3275 p = iterator->start(iterator->arg);
3276next:
b82d9fdd 3277 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3278 goto out;
051c6764
PZ
3279
3280 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3281 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3282 p = iterator->next(iterator->arg);
3283 goto next;
1da177e4
LT
3284 }
3285
dd41f596 3286 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3287 pulled++;
dd41f596 3288 rem_load_move -= p->se.load.weight;
1da177e4 3289
7e96fa58
GH
3290#ifdef CONFIG_PREEMPT
3291 /*
3292 * NEWIDLE balancing is a source of latency, so preemptible kernels
3293 * will stop after the first task is pulled to minimize the critical
3294 * section.
3295 */
3296 if (idle == CPU_NEWLY_IDLE)
3297 goto out;
3298#endif
3299
2dd73a4f 3300 /*
b82d9fdd 3301 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3302 */
e1d1484f 3303 if (rem_load_move > 0) {
a4ac01c3
PW
3304 if (p->prio < *this_best_prio)
3305 *this_best_prio = p->prio;
dd41f596
IM
3306 p = iterator->next(iterator->arg);
3307 goto next;
1da177e4
LT
3308 }
3309out:
3310 /*
e1d1484f 3311 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3312 * so we can safely collect pull_task() stats here rather than
3313 * inside pull_task().
3314 */
3315 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3316
3317 if (all_pinned)
3318 *all_pinned = pinned;
e1d1484f
PW
3319
3320 return max_load_move - rem_load_move;
1da177e4
LT
3321}
3322
dd41f596 3323/*
43010659
PW
3324 * move_tasks tries to move up to max_load_move weighted load from busiest to
3325 * this_rq, as part of a balancing operation within domain "sd".
3326 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3327 *
3328 * Called with both runqueues locked.
3329 */
3330static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3331 unsigned long max_load_move,
dd41f596
IM
3332 struct sched_domain *sd, enum cpu_idle_type idle,
3333 int *all_pinned)
3334{
5522d5d5 3335 const struct sched_class *class = sched_class_highest;
43010659 3336 unsigned long total_load_moved = 0;
a4ac01c3 3337 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3338
3339 do {
43010659
PW
3340 total_load_moved +=
3341 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3342 max_load_move - total_load_moved,
a4ac01c3 3343 sd, idle, all_pinned, &this_best_prio);
dd41f596 3344 class = class->next;
c4acb2c0 3345
7e96fa58
GH
3346#ifdef CONFIG_PREEMPT
3347 /*
3348 * NEWIDLE balancing is a source of latency, so preemptible
3349 * kernels will stop after the first task is pulled to minimize
3350 * the critical section.
3351 */
c4acb2c0
GH
3352 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3353 break;
7e96fa58 3354#endif
43010659 3355 } while (class && max_load_move > total_load_moved);
dd41f596 3356
43010659
PW
3357 return total_load_moved > 0;
3358}
3359
e1d1484f
PW
3360static int
3361iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3362 struct sched_domain *sd, enum cpu_idle_type idle,
3363 struct rq_iterator *iterator)
3364{
3365 struct task_struct *p = iterator->start(iterator->arg);
3366 int pinned = 0;
3367
3368 while (p) {
3369 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3370 pull_task(busiest, p, this_rq, this_cpu);
3371 /*
3372 * Right now, this is only the second place pull_task()
3373 * is called, so we can safely collect pull_task()
3374 * stats here rather than inside pull_task().
3375 */
3376 schedstat_inc(sd, lb_gained[idle]);
3377
3378 return 1;
3379 }
3380 p = iterator->next(iterator->arg);
3381 }
3382
3383 return 0;
3384}
3385
43010659
PW
3386/*
3387 * move_one_task tries to move exactly one task from busiest to this_rq, as
3388 * part of active balancing operations within "domain".
3389 * Returns 1 if successful and 0 otherwise.
3390 *
3391 * Called with both runqueues locked.
3392 */
3393static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3394 struct sched_domain *sd, enum cpu_idle_type idle)
3395{
5522d5d5 3396 const struct sched_class *class;
43010659 3397
cde7e5ca 3398 for_each_class(class) {
e1d1484f 3399 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3400 return 1;
cde7e5ca 3401 }
43010659
PW
3402
3403 return 0;
dd41f596 3404}
67bb6c03 3405/********** Helpers for find_busiest_group ************************/
1da177e4 3406/*
222d656d
GS
3407 * sd_lb_stats - Structure to store the statistics of a sched_domain
3408 * during load balancing.
1da177e4 3409 */
222d656d
GS
3410struct sd_lb_stats {
3411 struct sched_group *busiest; /* Busiest group in this sd */
3412 struct sched_group *this; /* Local group in this sd */
3413 unsigned long total_load; /* Total load of all groups in sd */
3414 unsigned long total_pwr; /* Total power of all groups in sd */
3415 unsigned long avg_load; /* Average load across all groups in sd */
3416
3417 /** Statistics of this group */
3418 unsigned long this_load;
3419 unsigned long this_load_per_task;
3420 unsigned long this_nr_running;
3421
3422 /* Statistics of the busiest group */
3423 unsigned long max_load;
3424 unsigned long busiest_load_per_task;
3425 unsigned long busiest_nr_running;
3426
3427 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3428#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3429 int power_savings_balance; /* Is powersave balance needed for this sd */
3430 struct sched_group *group_min; /* Least loaded group in sd */
3431 struct sched_group *group_leader; /* Group which relieves group_min */
3432 unsigned long min_load_per_task; /* load_per_task in group_min */
3433 unsigned long leader_nr_running; /* Nr running of group_leader */
3434 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3435#endif
222d656d 3436};
1da177e4 3437
d5ac537e 3438/*
381be78f
GS
3439 * sg_lb_stats - stats of a sched_group required for load_balancing
3440 */
3441struct sg_lb_stats {
3442 unsigned long avg_load; /*Avg load across the CPUs of the group */
3443 unsigned long group_load; /* Total load over the CPUs of the group */
3444 unsigned long sum_nr_running; /* Nr tasks running in the group */
3445 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3446 unsigned long group_capacity;
3447 int group_imb; /* Is there an imbalance in the group ? */
3448};
408ed066 3449
67bb6c03
GS
3450/**
3451 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3452 * @group: The group whose first cpu is to be returned.
3453 */
3454static inline unsigned int group_first_cpu(struct sched_group *group)
3455{
3456 return cpumask_first(sched_group_cpus(group));
3457}
3458
3459/**
3460 * get_sd_load_idx - Obtain the load index for a given sched domain.
3461 * @sd: The sched_domain whose load_idx is to be obtained.
3462 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3463 */
3464static inline int get_sd_load_idx(struct sched_domain *sd,
3465 enum cpu_idle_type idle)
3466{
3467 int load_idx;
3468
3469 switch (idle) {
3470 case CPU_NOT_IDLE:
7897986b 3471 load_idx = sd->busy_idx;
67bb6c03
GS
3472 break;
3473
3474 case CPU_NEWLY_IDLE:
7897986b 3475 load_idx = sd->newidle_idx;
67bb6c03
GS
3476 break;
3477 default:
7897986b 3478 load_idx = sd->idle_idx;
67bb6c03
GS
3479 break;
3480 }
1da177e4 3481
67bb6c03
GS
3482 return load_idx;
3483}
1da177e4 3484
1da177e4 3485
c071df18
GS
3486#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3487/**
3488 * init_sd_power_savings_stats - Initialize power savings statistics for
3489 * the given sched_domain, during load balancing.
3490 *
3491 * @sd: Sched domain whose power-savings statistics are to be initialized.
3492 * @sds: Variable containing the statistics for sd.
3493 * @idle: Idle status of the CPU at which we're performing load-balancing.
3494 */
3495static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3496 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3497{
3498 /*
3499 * Busy processors will not participate in power savings
3500 * balance.
3501 */
3502 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3503 sds->power_savings_balance = 0;
3504 else {
3505 sds->power_savings_balance = 1;
3506 sds->min_nr_running = ULONG_MAX;
3507 sds->leader_nr_running = 0;
3508 }
3509}
783609c6 3510
c071df18
GS
3511/**
3512 * update_sd_power_savings_stats - Update the power saving stats for a
3513 * sched_domain while performing load balancing.
3514 *
3515 * @group: sched_group belonging to the sched_domain under consideration.
3516 * @sds: Variable containing the statistics of the sched_domain
3517 * @local_group: Does group contain the CPU for which we're performing
3518 * load balancing ?
3519 * @sgs: Variable containing the statistics of the group.
3520 */
3521static inline void update_sd_power_savings_stats(struct sched_group *group,
3522 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3523{
408ed066 3524
c071df18
GS
3525 if (!sds->power_savings_balance)
3526 return;
1da177e4 3527
c071df18
GS
3528 /*
3529 * If the local group is idle or completely loaded
3530 * no need to do power savings balance at this domain
3531 */
3532 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3533 !sds->this_nr_running))
3534 sds->power_savings_balance = 0;
2dd73a4f 3535
c071df18
GS
3536 /*
3537 * If a group is already running at full capacity or idle,
3538 * don't include that group in power savings calculations
3539 */
3540 if (!sds->power_savings_balance ||
3541 sgs->sum_nr_running >= sgs->group_capacity ||
3542 !sgs->sum_nr_running)
3543 return;
5969fe06 3544
c071df18
GS
3545 /*
3546 * Calculate the group which has the least non-idle load.
3547 * This is the group from where we need to pick up the load
3548 * for saving power
3549 */
3550 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3551 (sgs->sum_nr_running == sds->min_nr_running &&
3552 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3553 sds->group_min = group;
3554 sds->min_nr_running = sgs->sum_nr_running;
3555 sds->min_load_per_task = sgs->sum_weighted_load /
3556 sgs->sum_nr_running;
3557 }
783609c6 3558
c071df18
GS
3559 /*
3560 * Calculate the group which is almost near its
3561 * capacity but still has some space to pick up some load
3562 * from other group and save more power
3563 */
d899a789 3564 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3565 return;
1da177e4 3566
c071df18
GS
3567 if (sgs->sum_nr_running > sds->leader_nr_running ||
3568 (sgs->sum_nr_running == sds->leader_nr_running &&
3569 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3570 sds->group_leader = group;
3571 sds->leader_nr_running = sgs->sum_nr_running;
3572 }
3573}
408ed066 3574
c071df18 3575/**
d5ac537e 3576 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3577 * @sds: Variable containing the statistics of the sched_domain
3578 * under consideration.
3579 * @this_cpu: Cpu at which we're currently performing load-balancing.
3580 * @imbalance: Variable to store the imbalance.
3581 *
d5ac537e
RD
3582 * Description:
3583 * Check if we have potential to perform some power-savings balance.
3584 * If yes, set the busiest group to be the least loaded group in the
3585 * sched_domain, so that it's CPUs can be put to idle.
3586 *
c071df18
GS
3587 * Returns 1 if there is potential to perform power-savings balance.
3588 * Else returns 0.
3589 */
3590static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3591 int this_cpu, unsigned long *imbalance)
3592{
3593 if (!sds->power_savings_balance)
3594 return 0;
1da177e4 3595
c071df18
GS
3596 if (sds->this != sds->group_leader ||
3597 sds->group_leader == sds->group_min)
3598 return 0;
783609c6 3599
c071df18
GS
3600 *imbalance = sds->min_load_per_task;
3601 sds->busiest = sds->group_min;
1da177e4 3602
c071df18 3603 return 1;
1da177e4 3604
c071df18
GS
3605}
3606#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3607static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3608 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3609{
3610 return;
3611}
408ed066 3612
c071df18
GS
3613static inline void update_sd_power_savings_stats(struct sched_group *group,
3614 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3615{
3616 return;
3617}
3618
3619static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3620 int this_cpu, unsigned long *imbalance)
3621{
3622 return 0;
3623}
3624#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3625
d6a59aa3
PZ
3626
3627unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3628{
3629 return SCHED_LOAD_SCALE;
3630}
3631
3632unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3633{
3634 return default_scale_freq_power(sd, cpu);
3635}
3636
3637unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3638{
3639 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3640 unsigned long smt_gain = sd->smt_gain;
3641
3642 smt_gain /= weight;
3643
3644 return smt_gain;
3645}
3646
d6a59aa3
PZ
3647unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3648{
3649 return default_scale_smt_power(sd, cpu);
3650}
3651
e9e9250b
PZ
3652unsigned long scale_rt_power(int cpu)
3653{
3654 struct rq *rq = cpu_rq(cpu);
3655 u64 total, available;
3656
3657 sched_avg_update(rq);
3658
3659 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3660 available = total - rq->rt_avg;
3661
3662 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3663 total = SCHED_LOAD_SCALE;
3664
3665 total >>= SCHED_LOAD_SHIFT;
3666
3667 return div_u64(available, total);
3668}
3669
ab29230e
PZ
3670static void update_cpu_power(struct sched_domain *sd, int cpu)
3671{
3672 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3673 unsigned long power = SCHED_LOAD_SCALE;
3674 struct sched_group *sdg = sd->groups;
ab29230e 3675
8e6598af
PZ
3676 if (sched_feat(ARCH_POWER))
3677 power *= arch_scale_freq_power(sd, cpu);
3678 else
3679 power *= default_scale_freq_power(sd, cpu);
3680
d6a59aa3 3681 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3682
3683 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3684 if (sched_feat(ARCH_POWER))
3685 power *= arch_scale_smt_power(sd, cpu);
3686 else
3687 power *= default_scale_smt_power(sd, cpu);
3688
ab29230e
PZ
3689 power >>= SCHED_LOAD_SHIFT;
3690 }
3691
e9e9250b
PZ
3692 power *= scale_rt_power(cpu);
3693 power >>= SCHED_LOAD_SHIFT;
3694
3695 if (!power)
3696 power = 1;
ab29230e 3697
18a3885f 3698 sdg->cpu_power = power;
ab29230e
PZ
3699}
3700
3701static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3702{
3703 struct sched_domain *child = sd->child;
3704 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3705 unsigned long power;
cc9fba7d
PZ
3706
3707 if (!child) {
ab29230e 3708 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3709 return;
3710 }
3711
d7ea17a7 3712 power = 0;
cc9fba7d
PZ
3713
3714 group = child->groups;
3715 do {
d7ea17a7 3716 power += group->cpu_power;
cc9fba7d
PZ
3717 group = group->next;
3718 } while (group != child->groups);
d7ea17a7
IM
3719
3720 sdg->cpu_power = power;
cc9fba7d 3721}
c071df18 3722
1f8c553d
GS
3723/**
3724 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3725 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3726 * @group: sched_group whose statistics are to be updated.
3727 * @this_cpu: Cpu for which load balance is currently performed.
3728 * @idle: Idle status of this_cpu
3729 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3730 * @sd_idle: Idle status of the sched_domain containing group.
3731 * @local_group: Does group contain this_cpu.
3732 * @cpus: Set of cpus considered for load balancing.
3733 * @balance: Should we balance.
3734 * @sgs: variable to hold the statistics for this group.
3735 */
cc9fba7d
PZ
3736static inline void update_sg_lb_stats(struct sched_domain *sd,
3737 struct sched_group *group, int this_cpu,
1f8c553d
GS
3738 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3739 int local_group, const struct cpumask *cpus,
3740 int *balance, struct sg_lb_stats *sgs)
3741{
3742 unsigned long load, max_cpu_load, min_cpu_load;
3743 int i;
3744 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3745 unsigned long sum_avg_load_per_task;
3746 unsigned long avg_load_per_task;
3747
cc9fba7d 3748 if (local_group) {
1f8c553d 3749 balance_cpu = group_first_cpu(group);
cc9fba7d 3750 if (balance_cpu == this_cpu)
ab29230e 3751 update_group_power(sd, this_cpu);
cc9fba7d 3752 }
1f8c553d
GS
3753
3754 /* Tally up the load of all CPUs in the group */
3755 sum_avg_load_per_task = avg_load_per_task = 0;
3756 max_cpu_load = 0;
3757 min_cpu_load = ~0UL;
408ed066 3758
1f8c553d
GS
3759 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3760 struct rq *rq = cpu_rq(i);
908a7c1b 3761
1f8c553d
GS
3762 if (*sd_idle && rq->nr_running)
3763 *sd_idle = 0;
5c45bf27 3764
1f8c553d 3765 /* Bias balancing toward cpus of our domain */
1da177e4 3766 if (local_group) {
1f8c553d
GS
3767 if (idle_cpu(i) && !first_idle_cpu) {
3768 first_idle_cpu = 1;
3769 balance_cpu = i;
3770 }
3771
3772 load = target_load(i, load_idx);
3773 } else {
3774 load = source_load(i, load_idx);
3775 if (load > max_cpu_load)
3776 max_cpu_load = load;
3777 if (min_cpu_load > load)
3778 min_cpu_load = load;
1da177e4 3779 }
5c45bf27 3780
1f8c553d
GS
3781 sgs->group_load += load;
3782 sgs->sum_nr_running += rq->nr_running;
3783 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3784
1f8c553d
GS
3785 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3786 }
5c45bf27 3787
1f8c553d
GS
3788 /*
3789 * First idle cpu or the first cpu(busiest) in this sched group
3790 * is eligible for doing load balancing at this and above
3791 * domains. In the newly idle case, we will allow all the cpu's
3792 * to do the newly idle load balance.
3793 */
3794 if (idle != CPU_NEWLY_IDLE && local_group &&
3795 balance_cpu != this_cpu && balance) {
3796 *balance = 0;
3797 return;
3798 }
5c45bf27 3799
1f8c553d 3800 /* Adjust by relative CPU power of the group */
18a3885f 3801 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3802
1f8c553d
GS
3803
3804 /*
3805 * Consider the group unbalanced when the imbalance is larger
3806 * than the average weight of two tasks.
3807 *
3808 * APZ: with cgroup the avg task weight can vary wildly and
3809 * might not be a suitable number - should we keep a
3810 * normalized nr_running number somewhere that negates
3811 * the hierarchy?
3812 */
18a3885f
PZ
3813 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3814 group->cpu_power;
1f8c553d
GS
3815
3816 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3817 sgs->group_imb = 1;
3818
bdb94aa5 3819 sgs->group_capacity =
18a3885f 3820 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3821}
dd41f596 3822
37abe198
GS
3823/**
3824 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3825 * @sd: sched_domain whose statistics are to be updated.
3826 * @this_cpu: Cpu for which load balance is currently performed.
3827 * @idle: Idle status of this_cpu
3828 * @sd_idle: Idle status of the sched_domain containing group.
3829 * @cpus: Set of cpus considered for load balancing.
3830 * @balance: Should we balance.
3831 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3832 */
37abe198
GS
3833static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3834 enum cpu_idle_type idle, int *sd_idle,
3835 const struct cpumask *cpus, int *balance,
3836 struct sd_lb_stats *sds)
1da177e4 3837{
b5d978e0 3838 struct sched_domain *child = sd->child;
222d656d 3839 struct sched_group *group = sd->groups;
37abe198 3840 struct sg_lb_stats sgs;
b5d978e0
PZ
3841 int load_idx, prefer_sibling = 0;
3842
3843 if (child && child->flags & SD_PREFER_SIBLING)
3844 prefer_sibling = 1;
222d656d 3845
c071df18 3846 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3847 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3848
3849 do {
1da177e4 3850 int local_group;
1da177e4 3851
758b2cdc
RR
3852 local_group = cpumask_test_cpu(this_cpu,
3853 sched_group_cpus(group));
381be78f 3854 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3855 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3856 local_group, cpus, balance, &sgs);
1da177e4 3857
37abe198
GS
3858 if (local_group && balance && !(*balance))
3859 return;
783609c6 3860
37abe198 3861 sds->total_load += sgs.group_load;
18a3885f 3862 sds->total_pwr += group->cpu_power;
1da177e4 3863
b5d978e0
PZ
3864 /*
3865 * In case the child domain prefers tasks go to siblings
3866 * first, lower the group capacity to one so that we'll try
3867 * and move all the excess tasks away.
3868 */
3869 if (prefer_sibling)
bdb94aa5 3870 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3871
1da177e4 3872 if (local_group) {
37abe198
GS
3873 sds->this_load = sgs.avg_load;
3874 sds->this = group;
3875 sds->this_nr_running = sgs.sum_nr_running;
3876 sds->this_load_per_task = sgs.sum_weighted_load;
3877 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3878 (sgs.sum_nr_running > sgs.group_capacity ||
3879 sgs.group_imb)) {
37abe198
GS
3880 sds->max_load = sgs.avg_load;
3881 sds->busiest = group;
3882 sds->busiest_nr_running = sgs.sum_nr_running;
3883 sds->busiest_load_per_task = sgs.sum_weighted_load;
3884 sds->group_imb = sgs.group_imb;
48f24c4d 3885 }
5c45bf27 3886
c071df18 3887 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3888 group = group->next;
3889 } while (group != sd->groups);
37abe198 3890}
1da177e4 3891
2e6f44ae
GS
3892/**
3893 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3894 * amongst the groups of a sched_domain, during
3895 * load balancing.
2e6f44ae
GS
3896 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3897 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3898 * @imbalance: Variable to store the imbalance.
3899 */
3900static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3901 int this_cpu, unsigned long *imbalance)
3902{
3903 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3904 unsigned int imbn = 2;
3905
3906 if (sds->this_nr_running) {
3907 sds->this_load_per_task /= sds->this_nr_running;
3908 if (sds->busiest_load_per_task >
3909 sds->this_load_per_task)
3910 imbn = 1;
3911 } else
3912 sds->this_load_per_task =
3913 cpu_avg_load_per_task(this_cpu);
1da177e4 3914
2e6f44ae
GS
3915 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3916 sds->busiest_load_per_task * imbn) {
3917 *imbalance = sds->busiest_load_per_task;
3918 return;
3919 }
908a7c1b 3920
1da177e4 3921 /*
2e6f44ae
GS
3922 * OK, we don't have enough imbalance to justify moving tasks,
3923 * however we may be able to increase total CPU power used by
3924 * moving them.
1da177e4 3925 */
2dd73a4f 3926
18a3885f 3927 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3928 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3929 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3930 min(sds->this_load_per_task, sds->this_load);
3931 pwr_now /= SCHED_LOAD_SCALE;
3932
3933 /* Amount of load we'd subtract */
18a3885f
PZ
3934 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3935 sds->busiest->cpu_power;
2e6f44ae 3936 if (sds->max_load > tmp)
18a3885f 3937 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3938 min(sds->busiest_load_per_task, sds->max_load - tmp);
3939
3940 /* Amount of load we'd add */
18a3885f 3941 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3942 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3943 tmp = (sds->max_load * sds->busiest->cpu_power) /
3944 sds->this->cpu_power;
2e6f44ae 3945 else
18a3885f
PZ
3946 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3947 sds->this->cpu_power;
3948 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3949 min(sds->this_load_per_task, sds->this_load + tmp);
3950 pwr_move /= SCHED_LOAD_SCALE;
3951
3952 /* Move if we gain throughput */
3953 if (pwr_move > pwr_now)
3954 *imbalance = sds->busiest_load_per_task;
3955}
dbc523a3
GS
3956
3957/**
3958 * calculate_imbalance - Calculate the amount of imbalance present within the
3959 * groups of a given sched_domain during load balance.
3960 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3961 * @this_cpu: Cpu for which currently load balance is being performed.
3962 * @imbalance: The variable to store the imbalance.
3963 */
3964static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3965 unsigned long *imbalance)
3966{
3967 unsigned long max_pull;
2dd73a4f
PW
3968 /*
3969 * In the presence of smp nice balancing, certain scenarios can have
3970 * max load less than avg load(as we skip the groups at or below
3971 * its cpu_power, while calculating max_load..)
3972 */
dbc523a3 3973 if (sds->max_load < sds->avg_load) {
2dd73a4f 3974 *imbalance = 0;
dbc523a3 3975 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3976 }
0c117f1b
SS
3977
3978 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3979 max_pull = min(sds->max_load - sds->avg_load,
3980 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3981
1da177e4 3982 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3983 *imbalance = min(max_pull * sds->busiest->cpu_power,
3984 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3985 / SCHED_LOAD_SCALE;
3986
2dd73a4f
PW
3987 /*
3988 * if *imbalance is less than the average load per runnable task
3989 * there is no gaurantee that any tasks will be moved so we'll have
3990 * a think about bumping its value to force at least one task to be
3991 * moved
3992 */
dbc523a3
GS
3993 if (*imbalance < sds->busiest_load_per_task)
3994 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3995
dbc523a3 3996}
37abe198 3997/******* find_busiest_group() helpers end here *********************/
1da177e4 3998
b7bb4c9b
GS
3999/**
4000 * find_busiest_group - Returns the busiest group within the sched_domain
4001 * if there is an imbalance. If there isn't an imbalance, and
4002 * the user has opted for power-savings, it returns a group whose
4003 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4004 * such a group exists.
4005 *
4006 * Also calculates the amount of weighted load which should be moved
4007 * to restore balance.
4008 *
4009 * @sd: The sched_domain whose busiest group is to be returned.
4010 * @this_cpu: The cpu for which load balancing is currently being performed.
4011 * @imbalance: Variable which stores amount of weighted load which should
4012 * be moved to restore balance/put a group to idle.
4013 * @idle: The idle status of this_cpu.
4014 * @sd_idle: The idleness of sd
4015 * @cpus: The set of CPUs under consideration for load-balancing.
4016 * @balance: Pointer to a variable indicating if this_cpu
4017 * is the appropriate cpu to perform load balancing at this_level.
4018 *
4019 * Returns: - the busiest group if imbalance exists.
4020 * - If no imbalance and user has opted for power-savings balance,
4021 * return the least loaded group whose CPUs can be
4022 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
4023 */
4024static struct sched_group *
4025find_busiest_group(struct sched_domain *sd, int this_cpu,
4026 unsigned long *imbalance, enum cpu_idle_type idle,
4027 int *sd_idle, const struct cpumask *cpus, int *balance)
4028{
4029 struct sd_lb_stats sds;
1da177e4 4030
37abe198 4031 memset(&sds, 0, sizeof(sds));
1da177e4 4032
37abe198
GS
4033 /*
4034 * Compute the various statistics relavent for load balancing at
4035 * this level.
4036 */
4037 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4038 balance, &sds);
4039
b7bb4c9b
GS
4040 /* Cases where imbalance does not exist from POV of this_cpu */
4041 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4042 * at this level.
4043 * 2) There is no busy sibling group to pull from.
4044 * 3) This group is the busiest group.
4045 * 4) This group is more busy than the avg busieness at this
4046 * sched_domain.
4047 * 5) The imbalance is within the specified limit.
4048 * 6) Any rebalance would lead to ping-pong
4049 */
37abe198
GS
4050 if (balance && !(*balance))
4051 goto ret;
1da177e4 4052
b7bb4c9b
GS
4053 if (!sds.busiest || sds.busiest_nr_running == 0)
4054 goto out_balanced;
1da177e4 4055
b7bb4c9b 4056 if (sds.this_load >= sds.max_load)
1da177e4 4057 goto out_balanced;
1da177e4 4058
222d656d 4059 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4060
b7bb4c9b
GS
4061 if (sds.this_load >= sds.avg_load)
4062 goto out_balanced;
4063
4064 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4065 goto out_balanced;
4066
222d656d
GS
4067 sds.busiest_load_per_task /= sds.busiest_nr_running;
4068 if (sds.group_imb)
4069 sds.busiest_load_per_task =
4070 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4071
1da177e4
LT
4072 /*
4073 * We're trying to get all the cpus to the average_load, so we don't
4074 * want to push ourselves above the average load, nor do we wish to
4075 * reduce the max loaded cpu below the average load, as either of these
4076 * actions would just result in more rebalancing later, and ping-pong
4077 * tasks around. Thus we look for the minimum possible imbalance.
4078 * Negative imbalances (*we* are more loaded than anyone else) will
4079 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4080 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4081 * appear as very large values with unsigned longs.
4082 */
222d656d 4083 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4084 goto out_balanced;
4085
dbc523a3
GS
4086 /* Looks like there is an imbalance. Compute it */
4087 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4088 return sds.busiest;
1da177e4
LT
4089
4090out_balanced:
c071df18
GS
4091 /*
4092 * There is no obvious imbalance. But check if we can do some balancing
4093 * to save power.
4094 */
4095 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4096 return sds.busiest;
783609c6 4097ret:
1da177e4
LT
4098 *imbalance = 0;
4099 return NULL;
4100}
4101
4102/*
4103 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4104 */
70b97a7f 4105static struct rq *
d15bcfdb 4106find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4107 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4108{
70b97a7f 4109 struct rq *busiest = NULL, *rq;
2dd73a4f 4110 unsigned long max_load = 0;
1da177e4
LT
4111 int i;
4112
758b2cdc 4113 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4114 unsigned long power = power_of(i);
4115 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4116 unsigned long wl;
0a2966b4 4117
96f874e2 4118 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4119 continue;
4120
48f24c4d 4121 rq = cpu_rq(i);
bdb94aa5
PZ
4122 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4123 wl /= power;
2dd73a4f 4124
bdb94aa5 4125 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4126 continue;
1da177e4 4127
dd41f596
IM
4128 if (wl > max_load) {
4129 max_load = wl;
48f24c4d 4130 busiest = rq;
1da177e4
LT
4131 }
4132 }
4133
4134 return busiest;
4135}
4136
77391d71
NP
4137/*
4138 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4139 * so long as it is large enough.
4140 */
4141#define MAX_PINNED_INTERVAL 512
4142
df7c8e84
RR
4143/* Working cpumask for load_balance and load_balance_newidle. */
4144static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4145
1da177e4
LT
4146/*
4147 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4148 * tasks if there is an imbalance.
1da177e4 4149 */
70b97a7f 4150static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4151 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4152 int *balance)
1da177e4 4153{
43010659 4154 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4155 struct sched_group *group;
1da177e4 4156 unsigned long imbalance;
70b97a7f 4157 struct rq *busiest;
fe2eea3f 4158 unsigned long flags;
df7c8e84 4159 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4160
6ad4c188 4161 cpumask_copy(cpus, cpu_active_mask);
7c16ec58 4162
89c4710e
SS
4163 /*
4164 * When power savings policy is enabled for the parent domain, idle
4165 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4166 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4167 * portraying it as CPU_NOT_IDLE.
89c4710e 4168 */
d15bcfdb 4169 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4170 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4171 sd_idle = 1;
1da177e4 4172
2d72376b 4173 schedstat_inc(sd, lb_count[idle]);
1da177e4 4174
0a2966b4 4175redo:
c8cba857 4176 update_shares(sd);
0a2966b4 4177 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4178 cpus, balance);
783609c6 4179
06066714 4180 if (*balance == 0)
783609c6 4181 goto out_balanced;
783609c6 4182
1da177e4
LT
4183 if (!group) {
4184 schedstat_inc(sd, lb_nobusyg[idle]);
4185 goto out_balanced;
4186 }
4187
7c16ec58 4188 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4189 if (!busiest) {
4190 schedstat_inc(sd, lb_nobusyq[idle]);
4191 goto out_balanced;
4192 }
4193
db935dbd 4194 BUG_ON(busiest == this_rq);
1da177e4
LT
4195
4196 schedstat_add(sd, lb_imbalance[idle], imbalance);
4197
43010659 4198 ld_moved = 0;
1da177e4
LT
4199 if (busiest->nr_running > 1) {
4200 /*
4201 * Attempt to move tasks. If find_busiest_group has found
4202 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4203 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4204 * correctly treated as an imbalance.
4205 */
fe2eea3f 4206 local_irq_save(flags);
e17224bf 4207 double_rq_lock(this_rq, busiest);
43010659 4208 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4209 imbalance, sd, idle, &all_pinned);
e17224bf 4210 double_rq_unlock(this_rq, busiest);
fe2eea3f 4211 local_irq_restore(flags);
81026794 4212
46cb4b7c
SS
4213 /*
4214 * some other cpu did the load balance for us.
4215 */
43010659 4216 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4217 resched_cpu(this_cpu);
4218
81026794 4219 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4220 if (unlikely(all_pinned)) {
96f874e2
RR
4221 cpumask_clear_cpu(cpu_of(busiest), cpus);
4222 if (!cpumask_empty(cpus))
0a2966b4 4223 goto redo;
81026794 4224 goto out_balanced;
0a2966b4 4225 }
1da177e4 4226 }
81026794 4227
43010659 4228 if (!ld_moved) {
1da177e4
LT
4229 schedstat_inc(sd, lb_failed[idle]);
4230 sd->nr_balance_failed++;
4231
4232 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4233
05fa785c 4234 raw_spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4235
4236 /* don't kick the migration_thread, if the curr
4237 * task on busiest cpu can't be moved to this_cpu
4238 */
96f874e2
RR
4239 if (!cpumask_test_cpu(this_cpu,
4240 &busiest->curr->cpus_allowed)) {
05fa785c
TG
4241 raw_spin_unlock_irqrestore(&busiest->lock,
4242 flags);
fa3b6ddc
SS
4243 all_pinned = 1;
4244 goto out_one_pinned;
4245 }
4246
1da177e4
LT
4247 if (!busiest->active_balance) {
4248 busiest->active_balance = 1;
4249 busiest->push_cpu = this_cpu;
81026794 4250 active_balance = 1;
1da177e4 4251 }
05fa785c 4252 raw_spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4253 if (active_balance)
1da177e4
LT
4254 wake_up_process(busiest->migration_thread);
4255
4256 /*
4257 * We've kicked active balancing, reset the failure
4258 * counter.
4259 */
39507451 4260 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4261 }
81026794 4262 } else
1da177e4
LT
4263 sd->nr_balance_failed = 0;
4264
81026794 4265 if (likely(!active_balance)) {
1da177e4
LT
4266 /* We were unbalanced, so reset the balancing interval */
4267 sd->balance_interval = sd->min_interval;
81026794
NP
4268 } else {
4269 /*
4270 * If we've begun active balancing, start to back off. This
4271 * case may not be covered by the all_pinned logic if there
4272 * is only 1 task on the busy runqueue (because we don't call
4273 * move_tasks).
4274 */
4275 if (sd->balance_interval < sd->max_interval)
4276 sd->balance_interval *= 2;
1da177e4
LT
4277 }
4278
43010659 4279 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4280 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4281 ld_moved = -1;
4282
4283 goto out;
1da177e4
LT
4284
4285out_balanced:
1da177e4
LT
4286 schedstat_inc(sd, lb_balanced[idle]);
4287
16cfb1c0 4288 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4289
4290out_one_pinned:
1da177e4 4291 /* tune up the balancing interval */
77391d71
NP
4292 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4293 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4294 sd->balance_interval *= 2;
4295
48f24c4d 4296 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4297 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4298 ld_moved = -1;
4299 else
4300 ld_moved = 0;
4301out:
c8cba857
PZ
4302 if (ld_moved)
4303 update_shares(sd);
c09595f6 4304 return ld_moved;
1da177e4
LT
4305}
4306
4307/*
4308 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4309 * tasks if there is an imbalance.
4310 *
d15bcfdb 4311 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4312 * this_rq is locked.
4313 */
48f24c4d 4314static int
df7c8e84 4315load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4316{
4317 struct sched_group *group;
70b97a7f 4318 struct rq *busiest = NULL;
1da177e4 4319 unsigned long imbalance;
43010659 4320 int ld_moved = 0;
5969fe06 4321 int sd_idle = 0;
969bb4e4 4322 int all_pinned = 0;
df7c8e84 4323 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4324
6ad4c188 4325 cpumask_copy(cpus, cpu_active_mask);
5969fe06 4326
89c4710e
SS
4327 /*
4328 * When power savings policy is enabled for the parent domain, idle
4329 * sibling can pick up load irrespective of busy siblings. In this case,
4330 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4331 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4332 */
4333 if (sd->flags & SD_SHARE_CPUPOWER &&
4334 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4335 sd_idle = 1;
1da177e4 4336
2d72376b 4337 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4338redo:
3e5459b4 4339 update_shares_locked(this_rq, sd);
d15bcfdb 4340 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4341 &sd_idle, cpus, NULL);
1da177e4 4342 if (!group) {
d15bcfdb 4343 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4344 goto out_balanced;
1da177e4
LT
4345 }
4346
7c16ec58 4347 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4348 if (!busiest) {
d15bcfdb 4349 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4350 goto out_balanced;
1da177e4
LT
4351 }
4352
db935dbd
NP
4353 BUG_ON(busiest == this_rq);
4354
d15bcfdb 4355 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4356
43010659 4357 ld_moved = 0;
d6d5cfaf
NP
4358 if (busiest->nr_running > 1) {
4359 /* Attempt to move tasks */
4360 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4361 /* this_rq->clock is already updated */
4362 update_rq_clock(busiest);
43010659 4363 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4364 imbalance, sd, CPU_NEWLY_IDLE,
4365 &all_pinned);
1b12bbc7 4366 double_unlock_balance(this_rq, busiest);
0a2966b4 4367
969bb4e4 4368 if (unlikely(all_pinned)) {
96f874e2
RR
4369 cpumask_clear_cpu(cpu_of(busiest), cpus);
4370 if (!cpumask_empty(cpus))
0a2966b4
CL
4371 goto redo;
4372 }
d6d5cfaf
NP
4373 }
4374
43010659 4375 if (!ld_moved) {
36dffab6 4376 int active_balance = 0;
ad273b32 4377
d15bcfdb 4378 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4379 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4380 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4381 return -1;
ad273b32
VS
4382
4383 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4384 return -1;
4385
4386 if (sd->nr_balance_failed++ < 2)
4387 return -1;
4388
4389 /*
4390 * The only task running in a non-idle cpu can be moved to this
4391 * cpu in an attempt to completely freeup the other CPU
4392 * package. The same method used to move task in load_balance()
4393 * have been extended for load_balance_newidle() to speedup
4394 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4395 *
4396 * The package power saving logic comes from
4397 * find_busiest_group(). If there are no imbalance, then
4398 * f_b_g() will return NULL. However when sched_mc={1,2} then
4399 * f_b_g() will select a group from which a running task may be
4400 * pulled to this cpu in order to make the other package idle.
4401 * If there is no opportunity to make a package idle and if
4402 * there are no imbalance, then f_b_g() will return NULL and no
4403 * action will be taken in load_balance_newidle().
4404 *
4405 * Under normal task pull operation due to imbalance, there
4406 * will be more than one task in the source run queue and
4407 * move_tasks() will succeed. ld_moved will be true and this
4408 * active balance code will not be triggered.
4409 */
4410
4411 /* Lock busiest in correct order while this_rq is held */
4412 double_lock_balance(this_rq, busiest);
4413
4414 /*
4415 * don't kick the migration_thread, if the curr
4416 * task on busiest cpu can't be moved to this_cpu
4417 */
6ca09dfc 4418 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4419 double_unlock_balance(this_rq, busiest);
4420 all_pinned = 1;
4421 return ld_moved;
4422 }
4423
4424 if (!busiest->active_balance) {
4425 busiest->active_balance = 1;
4426 busiest->push_cpu = this_cpu;
4427 active_balance = 1;
4428 }
4429
4430 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4431 /*
4432 * Should not call ttwu while holding a rq->lock
4433 */
05fa785c 4434 raw_spin_unlock(&this_rq->lock);
ad273b32
VS
4435 if (active_balance)
4436 wake_up_process(busiest->migration_thread);
05fa785c 4437 raw_spin_lock(&this_rq->lock);
ad273b32 4438
5969fe06 4439 } else
16cfb1c0 4440 sd->nr_balance_failed = 0;
1da177e4 4441
3e5459b4 4442 update_shares_locked(this_rq, sd);
43010659 4443 return ld_moved;
16cfb1c0
NP
4444
4445out_balanced:
d15bcfdb 4446 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4447 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4448 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4449 return -1;
16cfb1c0 4450 sd->nr_balance_failed = 0;
48f24c4d 4451
16cfb1c0 4452 return 0;
1da177e4
LT
4453}
4454
4455/*
4456 * idle_balance is called by schedule() if this_cpu is about to become
4457 * idle. Attempts to pull tasks from other CPUs.
4458 */
70b97a7f 4459static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4460{
4461 struct sched_domain *sd;
efbe027e 4462 int pulled_task = 0;
dd41f596 4463 unsigned long next_balance = jiffies + HZ;
1da177e4 4464
1b9508f6
MG
4465 this_rq->idle_stamp = this_rq->clock;
4466
4467 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4468 return;
4469
1da177e4 4470 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4471 unsigned long interval;
4472
4473 if (!(sd->flags & SD_LOAD_BALANCE))
4474 continue;
4475
4476 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4477 /* If we've pulled tasks over stop searching: */
7c16ec58 4478 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4479 sd);
92c4ca5c
CL
4480
4481 interval = msecs_to_jiffies(sd->balance_interval);
4482 if (time_after(next_balance, sd->last_balance + interval))
4483 next_balance = sd->last_balance + interval;
1b9508f6
MG
4484 if (pulled_task) {
4485 this_rq->idle_stamp = 0;
92c4ca5c 4486 break;
1b9508f6 4487 }
1da177e4 4488 }
dd41f596 4489 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4490 /*
4491 * We are going idle. next_balance may be set based on
4492 * a busy processor. So reset next_balance.
4493 */
4494 this_rq->next_balance = next_balance;
dd41f596 4495 }
1da177e4
LT
4496}
4497
4498/*
4499 * active_load_balance is run by migration threads. It pushes running tasks
4500 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4501 * running on each physical CPU where possible, and avoids physical /
4502 * logical imbalances.
4503 *
4504 * Called with busiest_rq locked.
4505 */
70b97a7f 4506static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4507{
39507451 4508 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4509 struct sched_domain *sd;
4510 struct rq *target_rq;
39507451 4511
48f24c4d 4512 /* Is there any task to move? */
39507451 4513 if (busiest_rq->nr_running <= 1)
39507451
NP
4514 return;
4515
4516 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4517
4518 /*
39507451 4519 * This condition is "impossible", if it occurs
41a2d6cf 4520 * we need to fix it. Originally reported by
39507451 4521 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4522 */
39507451 4523 BUG_ON(busiest_rq == target_rq);
1da177e4 4524
39507451
NP
4525 /* move a task from busiest_rq to target_rq */
4526 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4527 update_rq_clock(busiest_rq);
4528 update_rq_clock(target_rq);
39507451
NP
4529
4530 /* Search for an sd spanning us and the target CPU. */
c96d145e 4531 for_each_domain(target_cpu, sd) {
39507451 4532 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4533 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4534 break;
c96d145e 4535 }
39507451 4536
48f24c4d 4537 if (likely(sd)) {
2d72376b 4538 schedstat_inc(sd, alb_count);
39507451 4539
43010659
PW
4540 if (move_one_task(target_rq, target_cpu, busiest_rq,
4541 sd, CPU_IDLE))
48f24c4d
IM
4542 schedstat_inc(sd, alb_pushed);
4543 else
4544 schedstat_inc(sd, alb_failed);
4545 }
1b12bbc7 4546 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4547}
4548
46cb4b7c
SS
4549#ifdef CONFIG_NO_HZ
4550static struct {
4551 atomic_t load_balancer;
7d1e6a9b 4552 cpumask_var_t cpu_mask;
f711f609 4553 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4554} nohz ____cacheline_aligned = {
4555 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4556};
4557
eea08f32
AB
4558int get_nohz_load_balancer(void)
4559{
4560 return atomic_read(&nohz.load_balancer);
4561}
4562
f711f609
GS
4563#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4564/**
4565 * lowest_flag_domain - Return lowest sched_domain containing flag.
4566 * @cpu: The cpu whose lowest level of sched domain is to
4567 * be returned.
4568 * @flag: The flag to check for the lowest sched_domain
4569 * for the given cpu.
4570 *
4571 * Returns the lowest sched_domain of a cpu which contains the given flag.
4572 */
4573static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4574{
4575 struct sched_domain *sd;
4576
4577 for_each_domain(cpu, sd)
4578 if (sd && (sd->flags & flag))
4579 break;
4580
4581 return sd;
4582}
4583
4584/**
4585 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4586 * @cpu: The cpu whose domains we're iterating over.
4587 * @sd: variable holding the value of the power_savings_sd
4588 * for cpu.
4589 * @flag: The flag to filter the sched_domains to be iterated.
4590 *
4591 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4592 * set, starting from the lowest sched_domain to the highest.
4593 */
4594#define for_each_flag_domain(cpu, sd, flag) \
4595 for (sd = lowest_flag_domain(cpu, flag); \
4596 (sd && (sd->flags & flag)); sd = sd->parent)
4597
4598/**
4599 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4600 * @ilb_group: group to be checked for semi-idleness
4601 *
4602 * Returns: 1 if the group is semi-idle. 0 otherwise.
4603 *
4604 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4605 * and atleast one non-idle CPU. This helper function checks if the given
4606 * sched_group is semi-idle or not.
4607 */
4608static inline int is_semi_idle_group(struct sched_group *ilb_group)
4609{
4610 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4611 sched_group_cpus(ilb_group));
4612
4613 /*
4614 * A sched_group is semi-idle when it has atleast one busy cpu
4615 * and atleast one idle cpu.
4616 */
4617 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4618 return 0;
4619
4620 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4621 return 0;
4622
4623 return 1;
4624}
4625/**
4626 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4627 * @cpu: The cpu which is nominating a new idle_load_balancer.
4628 *
4629 * Returns: Returns the id of the idle load balancer if it exists,
4630 * Else, returns >= nr_cpu_ids.
4631 *
4632 * This algorithm picks the idle load balancer such that it belongs to a
4633 * semi-idle powersavings sched_domain. The idea is to try and avoid
4634 * completely idle packages/cores just for the purpose of idle load balancing
4635 * when there are other idle cpu's which are better suited for that job.
4636 */
4637static int find_new_ilb(int cpu)
4638{
4639 struct sched_domain *sd;
4640 struct sched_group *ilb_group;
4641
4642 /*
4643 * Have idle load balancer selection from semi-idle packages only
4644 * when power-aware load balancing is enabled
4645 */
4646 if (!(sched_smt_power_savings || sched_mc_power_savings))
4647 goto out_done;
4648
4649 /*
4650 * Optimize for the case when we have no idle CPUs or only one
4651 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4652 */
4653 if (cpumask_weight(nohz.cpu_mask) < 2)
4654 goto out_done;
4655
4656 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4657 ilb_group = sd->groups;
4658
4659 do {
4660 if (is_semi_idle_group(ilb_group))
4661 return cpumask_first(nohz.ilb_grp_nohz_mask);
4662
4663 ilb_group = ilb_group->next;
4664
4665 } while (ilb_group != sd->groups);
4666 }
4667
4668out_done:
4669 return cpumask_first(nohz.cpu_mask);
4670}
4671#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4672static inline int find_new_ilb(int call_cpu)
4673{
6e29ec57 4674 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4675}
4676#endif
4677
7835b98b 4678/*
46cb4b7c
SS
4679 * This routine will try to nominate the ilb (idle load balancing)
4680 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4681 * load balancing on behalf of all those cpus. If all the cpus in the system
4682 * go into this tickless mode, then there will be no ilb owner (as there is
4683 * no need for one) and all the cpus will sleep till the next wakeup event
4684 * arrives...
4685 *
4686 * For the ilb owner, tick is not stopped. And this tick will be used
4687 * for idle load balancing. ilb owner will still be part of
4688 * nohz.cpu_mask..
7835b98b 4689 *
46cb4b7c
SS
4690 * While stopping the tick, this cpu will become the ilb owner if there
4691 * is no other owner. And will be the owner till that cpu becomes busy
4692 * or if all cpus in the system stop their ticks at which point
4693 * there is no need for ilb owner.
4694 *
4695 * When the ilb owner becomes busy, it nominates another owner, during the
4696 * next busy scheduler_tick()
4697 */
4698int select_nohz_load_balancer(int stop_tick)
4699{
4700 int cpu = smp_processor_id();
4701
4702 if (stop_tick) {
46cb4b7c
SS
4703 cpu_rq(cpu)->in_nohz_recently = 1;
4704
483b4ee6
SS
4705 if (!cpu_active(cpu)) {
4706 if (atomic_read(&nohz.load_balancer) != cpu)
4707 return 0;
4708
4709 /*
4710 * If we are going offline and still the leader,
4711 * give up!
4712 */
46cb4b7c
SS
4713 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4714 BUG();
483b4ee6 4715
46cb4b7c
SS
4716 return 0;
4717 }
4718
483b4ee6
SS
4719 cpumask_set_cpu(cpu, nohz.cpu_mask);
4720
46cb4b7c 4721 /* time for ilb owner also to sleep */
6ad4c188 4722 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
46cb4b7c
SS
4723 if (atomic_read(&nohz.load_balancer) == cpu)
4724 atomic_set(&nohz.load_balancer, -1);
4725 return 0;
4726 }
4727
4728 if (atomic_read(&nohz.load_balancer) == -1) {
4729 /* make me the ilb owner */
4730 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4731 return 1;
e790fb0b
GS
4732 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4733 int new_ilb;
4734
4735 if (!(sched_smt_power_savings ||
4736 sched_mc_power_savings))
4737 return 1;
4738 /*
4739 * Check to see if there is a more power-efficient
4740 * ilb.
4741 */
4742 new_ilb = find_new_ilb(cpu);
4743 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4744 atomic_set(&nohz.load_balancer, -1);
4745 resched_cpu(new_ilb);
4746 return 0;
4747 }
46cb4b7c 4748 return 1;
e790fb0b 4749 }
46cb4b7c 4750 } else {
7d1e6a9b 4751 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4752 return 0;
4753
7d1e6a9b 4754 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4755
4756 if (atomic_read(&nohz.load_balancer) == cpu)
4757 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4758 BUG();
4759 }
4760 return 0;
4761}
4762#endif
4763
4764static DEFINE_SPINLOCK(balancing);
4765
4766/*
7835b98b
CL
4767 * It checks each scheduling domain to see if it is due to be balanced,
4768 * and initiates a balancing operation if so.
4769 *
4770 * Balancing parameters are set up in arch_init_sched_domains.
4771 */
a9957449 4772static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4773{
46cb4b7c
SS
4774 int balance = 1;
4775 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4776 unsigned long interval;
4777 struct sched_domain *sd;
46cb4b7c 4778 /* Earliest time when we have to do rebalance again */
c9819f45 4779 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4780 int update_next_balance = 0;
d07355f5 4781 int need_serialize;
1da177e4 4782
46cb4b7c 4783 for_each_domain(cpu, sd) {
1da177e4
LT
4784 if (!(sd->flags & SD_LOAD_BALANCE))
4785 continue;
4786
4787 interval = sd->balance_interval;
d15bcfdb 4788 if (idle != CPU_IDLE)
1da177e4
LT
4789 interval *= sd->busy_factor;
4790
4791 /* scale ms to jiffies */
4792 interval = msecs_to_jiffies(interval);
4793 if (unlikely(!interval))
4794 interval = 1;
dd41f596
IM
4795 if (interval > HZ*NR_CPUS/10)
4796 interval = HZ*NR_CPUS/10;
4797
d07355f5 4798 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4799
d07355f5 4800 if (need_serialize) {
08c183f3
CL
4801 if (!spin_trylock(&balancing))
4802 goto out;
4803 }
4804
c9819f45 4805 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4806 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4807 /*
4808 * We've pulled tasks over so either we're no
5969fe06
NP
4809 * longer idle, or one of our SMT siblings is
4810 * not idle.
4811 */
d15bcfdb 4812 idle = CPU_NOT_IDLE;
1da177e4 4813 }
1bd77f2d 4814 sd->last_balance = jiffies;
1da177e4 4815 }
d07355f5 4816 if (need_serialize)
08c183f3
CL
4817 spin_unlock(&balancing);
4818out:
f549da84 4819 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4820 next_balance = sd->last_balance + interval;
f549da84
SS
4821 update_next_balance = 1;
4822 }
783609c6
SS
4823
4824 /*
4825 * Stop the load balance at this level. There is another
4826 * CPU in our sched group which is doing load balancing more
4827 * actively.
4828 */
4829 if (!balance)
4830 break;
1da177e4 4831 }
f549da84
SS
4832
4833 /*
4834 * next_balance will be updated only when there is a need.
4835 * When the cpu is attached to null domain for ex, it will not be
4836 * updated.
4837 */
4838 if (likely(update_next_balance))
4839 rq->next_balance = next_balance;
46cb4b7c
SS
4840}
4841
4842/*
4843 * run_rebalance_domains is triggered when needed from the scheduler tick.
4844 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4845 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4846 */
4847static void run_rebalance_domains(struct softirq_action *h)
4848{
dd41f596
IM
4849 int this_cpu = smp_processor_id();
4850 struct rq *this_rq = cpu_rq(this_cpu);
4851 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4852 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4853
dd41f596 4854 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4855
4856#ifdef CONFIG_NO_HZ
4857 /*
4858 * If this cpu is the owner for idle load balancing, then do the
4859 * balancing on behalf of the other idle cpus whose ticks are
4860 * stopped.
4861 */
dd41f596
IM
4862 if (this_rq->idle_at_tick &&
4863 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4864 struct rq *rq;
4865 int balance_cpu;
4866
7d1e6a9b
RR
4867 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4868 if (balance_cpu == this_cpu)
4869 continue;
4870
46cb4b7c
SS
4871 /*
4872 * If this cpu gets work to do, stop the load balancing
4873 * work being done for other cpus. Next load
4874 * balancing owner will pick it up.
4875 */
4876 if (need_resched())
4877 break;
4878
de0cf899 4879 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4880
4881 rq = cpu_rq(balance_cpu);
dd41f596
IM
4882 if (time_after(this_rq->next_balance, rq->next_balance))
4883 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4884 }
4885 }
4886#endif
4887}
4888
8a0be9ef
FW
4889static inline int on_null_domain(int cpu)
4890{
4891 return !rcu_dereference(cpu_rq(cpu)->sd);
4892}
4893
46cb4b7c
SS
4894/*
4895 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4896 *
4897 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4898 * idle load balancing owner or decide to stop the periodic load balancing,
4899 * if the whole system is idle.
4900 */
dd41f596 4901static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4902{
46cb4b7c
SS
4903#ifdef CONFIG_NO_HZ
4904 /*
4905 * If we were in the nohz mode recently and busy at the current
4906 * scheduler tick, then check if we need to nominate new idle
4907 * load balancer.
4908 */
4909 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4910 rq->in_nohz_recently = 0;
4911
4912 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4913 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4914 atomic_set(&nohz.load_balancer, -1);
4915 }
4916
4917 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4918 int ilb = find_new_ilb(cpu);
46cb4b7c 4919
434d53b0 4920 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4921 resched_cpu(ilb);
4922 }
4923 }
4924
4925 /*
4926 * If this cpu is idle and doing idle load balancing for all the
4927 * cpus with ticks stopped, is it time for that to stop?
4928 */
4929 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4930 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4931 resched_cpu(cpu);
4932 return;
4933 }
4934
4935 /*
4936 * If this cpu is idle and the idle load balancing is done by
4937 * someone else, then no need raise the SCHED_SOFTIRQ
4938 */
4939 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4940 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4941 return;
4942#endif
8a0be9ef
FW
4943 /* Don't need to rebalance while attached to NULL domain */
4944 if (time_after_eq(jiffies, rq->next_balance) &&
4945 likely(!on_null_domain(cpu)))
46cb4b7c 4946 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4947}
dd41f596
IM
4948
4949#else /* CONFIG_SMP */
4950
1da177e4
LT
4951/*
4952 * on UP we do not need to balance between CPUs:
4953 */
70b97a7f 4954static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4955{
4956}
dd41f596 4957
1da177e4
LT
4958#endif
4959
1da177e4
LT
4960DEFINE_PER_CPU(struct kernel_stat, kstat);
4961
4962EXPORT_PER_CPU_SYMBOL(kstat);
4963
4964/*
c5f8d995 4965 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4966 * @p in case that task is currently running.
c5f8d995
HS
4967 *
4968 * Called with task_rq_lock() held on @rq.
1da177e4 4969 */
c5f8d995
HS
4970static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4971{
4972 u64 ns = 0;
4973
4974 if (task_current(rq, p)) {
4975 update_rq_clock(rq);
4976 ns = rq->clock - p->se.exec_start;
4977 if ((s64)ns < 0)
4978 ns = 0;
4979 }
4980
4981 return ns;
4982}
4983
bb34d92f 4984unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4985{
1da177e4 4986 unsigned long flags;
41b86e9c 4987 struct rq *rq;
bb34d92f 4988 u64 ns = 0;
48f24c4d 4989
41b86e9c 4990 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4991 ns = do_task_delta_exec(p, rq);
4992 task_rq_unlock(rq, &flags);
1508487e 4993
c5f8d995
HS
4994 return ns;
4995}
f06febc9 4996
c5f8d995
HS
4997/*
4998 * Return accounted runtime for the task.
4999 * In case the task is currently running, return the runtime plus current's
5000 * pending runtime that have not been accounted yet.
5001 */
5002unsigned long long task_sched_runtime(struct task_struct *p)
5003{
5004 unsigned long flags;
5005 struct rq *rq;
5006 u64 ns = 0;
5007
5008 rq = task_rq_lock(p, &flags);
5009 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
5010 task_rq_unlock(rq, &flags);
5011
5012 return ns;
5013}
48f24c4d 5014
c5f8d995
HS
5015/*
5016 * Return sum_exec_runtime for the thread group.
5017 * In case the task is currently running, return the sum plus current's
5018 * pending runtime that have not been accounted yet.
5019 *
5020 * Note that the thread group might have other running tasks as well,
5021 * so the return value not includes other pending runtime that other
5022 * running tasks might have.
5023 */
5024unsigned long long thread_group_sched_runtime(struct task_struct *p)
5025{
5026 struct task_cputime totals;
5027 unsigned long flags;
5028 struct rq *rq;
5029 u64 ns;
5030
5031 rq = task_rq_lock(p, &flags);
5032 thread_group_cputime(p, &totals);
5033 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 5034 task_rq_unlock(rq, &flags);
48f24c4d 5035
1da177e4
LT
5036 return ns;
5037}
5038
1da177e4
LT
5039/*
5040 * Account user cpu time to a process.
5041 * @p: the process that the cpu time gets accounted to
1da177e4 5042 * @cputime: the cpu time spent in user space since the last update
457533a7 5043 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 5044 */
457533a7
MS
5045void account_user_time(struct task_struct *p, cputime_t cputime,
5046 cputime_t cputime_scaled)
1da177e4
LT
5047{
5048 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5049 cputime64_t tmp;
5050
457533a7 5051 /* Add user time to process. */
1da177e4 5052 p->utime = cputime_add(p->utime, cputime);
457533a7 5053 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5054 account_group_user_time(p, cputime);
1da177e4
LT
5055
5056 /* Add user time to cpustat. */
5057 tmp = cputime_to_cputime64(cputime);
5058 if (TASK_NICE(p) > 0)
5059 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5060 else
5061 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5062
5063 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5064 /* Account for user time used */
5065 acct_update_integrals(p);
1da177e4
LT
5066}
5067
94886b84
LV
5068/*
5069 * Account guest cpu time to a process.
5070 * @p: the process that the cpu time gets accounted to
5071 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5072 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5073 */
457533a7
MS
5074static void account_guest_time(struct task_struct *p, cputime_t cputime,
5075 cputime_t cputime_scaled)
94886b84
LV
5076{
5077 cputime64_t tmp;
5078 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5079
5080 tmp = cputime_to_cputime64(cputime);
5081
457533a7 5082 /* Add guest time to process. */
94886b84 5083 p->utime = cputime_add(p->utime, cputime);
457533a7 5084 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5085 account_group_user_time(p, cputime);
94886b84
LV
5086 p->gtime = cputime_add(p->gtime, cputime);
5087
457533a7 5088 /* Add guest time to cpustat. */
ce0e7b28
RO
5089 if (TASK_NICE(p) > 0) {
5090 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5091 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5092 } else {
5093 cpustat->user = cputime64_add(cpustat->user, tmp);
5094 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5095 }
94886b84
LV
5096}
5097
1da177e4
LT
5098/*
5099 * Account system cpu time to a process.
5100 * @p: the process that the cpu time gets accounted to
5101 * @hardirq_offset: the offset to subtract from hardirq_count()
5102 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5103 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5104 */
5105void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5106 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5107{
5108 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5109 cputime64_t tmp;
5110
983ed7a6 5111 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5112 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5113 return;
5114 }
94886b84 5115
457533a7 5116 /* Add system time to process. */
1da177e4 5117 p->stime = cputime_add(p->stime, cputime);
457533a7 5118 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5119 account_group_system_time(p, cputime);
1da177e4
LT
5120
5121 /* Add system time to cpustat. */
5122 tmp = cputime_to_cputime64(cputime);
5123 if (hardirq_count() - hardirq_offset)
5124 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5125 else if (softirq_count())
5126 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5127 else
79741dd3
MS
5128 cpustat->system = cputime64_add(cpustat->system, tmp);
5129
ef12fefa
BR
5130 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5131
1da177e4
LT
5132 /* Account for system time used */
5133 acct_update_integrals(p);
1da177e4
LT
5134}
5135
c66f08be 5136/*
1da177e4 5137 * Account for involuntary wait time.
1da177e4 5138 * @steal: the cpu time spent in involuntary wait
c66f08be 5139 */
79741dd3 5140void account_steal_time(cputime_t cputime)
c66f08be 5141{
79741dd3
MS
5142 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5143 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5144
5145 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5146}
5147
1da177e4 5148/*
79741dd3
MS
5149 * Account for idle time.
5150 * @cputime: the cpu time spent in idle wait
1da177e4 5151 */
79741dd3 5152void account_idle_time(cputime_t cputime)
1da177e4
LT
5153{
5154 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5155 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5156 struct rq *rq = this_rq();
1da177e4 5157
79741dd3
MS
5158 if (atomic_read(&rq->nr_iowait) > 0)
5159 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5160 else
5161 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5162}
5163
79741dd3
MS
5164#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5165
5166/*
5167 * Account a single tick of cpu time.
5168 * @p: the process that the cpu time gets accounted to
5169 * @user_tick: indicates if the tick is a user or a system tick
5170 */
5171void account_process_tick(struct task_struct *p, int user_tick)
5172{
a42548a1 5173 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5174 struct rq *rq = this_rq();
5175
5176 if (user_tick)
a42548a1 5177 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5178 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5179 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5180 one_jiffy_scaled);
5181 else
a42548a1 5182 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5183}
5184
5185/*
5186 * Account multiple ticks of steal time.
5187 * @p: the process from which the cpu time has been stolen
5188 * @ticks: number of stolen ticks
5189 */
5190void account_steal_ticks(unsigned long ticks)
5191{
5192 account_steal_time(jiffies_to_cputime(ticks));
5193}
5194
5195/*
5196 * Account multiple ticks of idle time.
5197 * @ticks: number of stolen ticks
5198 */
5199void account_idle_ticks(unsigned long ticks)
5200{
5201 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5202}
5203
79741dd3
MS
5204#endif
5205
49048622
BS
5206/*
5207 * Use precise platform statistics if available:
5208 */
5209#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 5210void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5211{
d99ca3b9
HS
5212 *ut = p->utime;
5213 *st = p->stime;
49048622
BS
5214}
5215
0cf55e1e 5216void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5217{
0cf55e1e
HS
5218 struct task_cputime cputime;
5219
5220 thread_group_cputime(p, &cputime);
5221
5222 *ut = cputime.utime;
5223 *st = cputime.stime;
49048622
BS
5224}
5225#else
761b1d26
HS
5226
5227#ifndef nsecs_to_cputime
b7b20df9 5228# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
5229#endif
5230
d180c5bc 5231void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5232{
d99ca3b9 5233 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
5234
5235 /*
5236 * Use CFS's precise accounting:
5237 */
d180c5bc 5238 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
5239
5240 if (total) {
d180c5bc
HS
5241 u64 temp;
5242
5243 temp = (u64)(rtime * utime);
49048622 5244 do_div(temp, total);
d180c5bc
HS
5245 utime = (cputime_t)temp;
5246 } else
5247 utime = rtime;
49048622 5248
d180c5bc
HS
5249 /*
5250 * Compare with previous values, to keep monotonicity:
5251 */
761b1d26 5252 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 5253 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 5254
d99ca3b9
HS
5255 *ut = p->prev_utime;
5256 *st = p->prev_stime;
49048622
BS
5257}
5258
0cf55e1e
HS
5259/*
5260 * Must be called with siglock held.
5261 */
5262void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5263{
0cf55e1e
HS
5264 struct signal_struct *sig = p->signal;
5265 struct task_cputime cputime;
5266 cputime_t rtime, utime, total;
49048622 5267
0cf55e1e 5268 thread_group_cputime(p, &cputime);
49048622 5269
0cf55e1e
HS
5270 total = cputime_add(cputime.utime, cputime.stime);
5271 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 5272
0cf55e1e
HS
5273 if (total) {
5274 u64 temp;
49048622 5275
0cf55e1e
HS
5276 temp = (u64)(rtime * cputime.utime);
5277 do_div(temp, total);
5278 utime = (cputime_t)temp;
5279 } else
5280 utime = rtime;
5281
5282 sig->prev_utime = max(sig->prev_utime, utime);
5283 sig->prev_stime = max(sig->prev_stime,
5284 cputime_sub(rtime, sig->prev_utime));
5285
5286 *ut = sig->prev_utime;
5287 *st = sig->prev_stime;
49048622 5288}
49048622 5289#endif
49048622 5290
7835b98b
CL
5291/*
5292 * This function gets called by the timer code, with HZ frequency.
5293 * We call it with interrupts disabled.
5294 *
5295 * It also gets called by the fork code, when changing the parent's
5296 * timeslices.
5297 */
5298void scheduler_tick(void)
5299{
7835b98b
CL
5300 int cpu = smp_processor_id();
5301 struct rq *rq = cpu_rq(cpu);
dd41f596 5302 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5303
5304 sched_clock_tick();
dd41f596 5305
05fa785c 5306 raw_spin_lock(&rq->lock);
3e51f33f 5307 update_rq_clock(rq);
f1a438d8 5308 update_cpu_load(rq);
fa85ae24 5309 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 5310 raw_spin_unlock(&rq->lock);
7835b98b 5311
cdd6c482 5312 perf_event_task_tick(curr, cpu);
e220d2dc 5313
e418e1c2 5314#ifdef CONFIG_SMP
dd41f596
IM
5315 rq->idle_at_tick = idle_cpu(cpu);
5316 trigger_load_balance(rq, cpu);
e418e1c2 5317#endif
1da177e4
LT
5318}
5319
132380a0 5320notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5321{
5322 if (in_lock_functions(addr)) {
5323 addr = CALLER_ADDR2;
5324 if (in_lock_functions(addr))
5325 addr = CALLER_ADDR3;
5326 }
5327 return addr;
5328}
1da177e4 5329
7e49fcce
SR
5330#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5331 defined(CONFIG_PREEMPT_TRACER))
5332
43627582 5333void __kprobes add_preempt_count(int val)
1da177e4 5334{
6cd8a4bb 5335#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5336 /*
5337 * Underflow?
5338 */
9a11b49a
IM
5339 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5340 return;
6cd8a4bb 5341#endif
1da177e4 5342 preempt_count() += val;
6cd8a4bb 5343#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5344 /*
5345 * Spinlock count overflowing soon?
5346 */
33859f7f
MOS
5347 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5348 PREEMPT_MASK - 10);
6cd8a4bb
SR
5349#endif
5350 if (preempt_count() == val)
5351 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5352}
5353EXPORT_SYMBOL(add_preempt_count);
5354
43627582 5355void __kprobes sub_preempt_count(int val)
1da177e4 5356{
6cd8a4bb 5357#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5358 /*
5359 * Underflow?
5360 */
01e3eb82 5361 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5362 return;
1da177e4
LT
5363 /*
5364 * Is the spinlock portion underflowing?
5365 */
9a11b49a
IM
5366 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5367 !(preempt_count() & PREEMPT_MASK)))
5368 return;
6cd8a4bb 5369#endif
9a11b49a 5370
6cd8a4bb
SR
5371 if (preempt_count() == val)
5372 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5373 preempt_count() -= val;
5374}
5375EXPORT_SYMBOL(sub_preempt_count);
5376
5377#endif
5378
5379/*
dd41f596 5380 * Print scheduling while atomic bug:
1da177e4 5381 */
dd41f596 5382static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5383{
838225b4
SS
5384 struct pt_regs *regs = get_irq_regs();
5385
3df0fc5b
PZ
5386 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5387 prev->comm, prev->pid, preempt_count());
838225b4 5388
dd41f596 5389 debug_show_held_locks(prev);
e21f5b15 5390 print_modules();
dd41f596
IM
5391 if (irqs_disabled())
5392 print_irqtrace_events(prev);
838225b4
SS
5393
5394 if (regs)
5395 show_regs(regs);
5396 else
5397 dump_stack();
dd41f596 5398}
1da177e4 5399
dd41f596
IM
5400/*
5401 * Various schedule()-time debugging checks and statistics:
5402 */
5403static inline void schedule_debug(struct task_struct *prev)
5404{
1da177e4 5405 /*
41a2d6cf 5406 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5407 * schedule() atomically, we ignore that path for now.
5408 * Otherwise, whine if we are scheduling when we should not be.
5409 */
3f33a7ce 5410 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5411 __schedule_bug(prev);
5412
1da177e4
LT
5413 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5414
2d72376b 5415 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5416#ifdef CONFIG_SCHEDSTATS
5417 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5418 schedstat_inc(this_rq(), bkl_count);
5419 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5420 }
5421#endif
dd41f596
IM
5422}
5423
6cecd084 5424static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 5425{
6cecd084
PZ
5426 if (prev->state == TASK_RUNNING) {
5427 u64 runtime = prev->se.sum_exec_runtime;
df1c99d4 5428
6cecd084
PZ
5429 runtime -= prev->se.prev_sum_exec_runtime;
5430 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
df1c99d4
MG
5431
5432 /*
5433 * In order to avoid avg_overlap growing stale when we are
5434 * indeed overlapping and hence not getting put to sleep, grow
5435 * the avg_overlap on preemption.
5436 *
5437 * We use the average preemption runtime because that
5438 * correlates to the amount of cache footprint a task can
5439 * build up.
5440 */
6cecd084 5441 update_avg(&prev->se.avg_overlap, runtime);
df1c99d4 5442 }
6cecd084 5443 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
5444}
5445
dd41f596
IM
5446/*
5447 * Pick up the highest-prio task:
5448 */
5449static inline struct task_struct *
b67802ea 5450pick_next_task(struct rq *rq)
dd41f596 5451{
5522d5d5 5452 const struct sched_class *class;
dd41f596 5453 struct task_struct *p;
1da177e4
LT
5454
5455 /*
dd41f596
IM
5456 * Optimization: we know that if all tasks are in
5457 * the fair class we can call that function directly:
1da177e4 5458 */
dd41f596 5459 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5460 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5461 if (likely(p))
5462 return p;
1da177e4
LT
5463 }
5464
dd41f596
IM
5465 class = sched_class_highest;
5466 for ( ; ; ) {
fb8d4724 5467 p = class->pick_next_task(rq);
dd41f596
IM
5468 if (p)
5469 return p;
5470 /*
5471 * Will never be NULL as the idle class always
5472 * returns a non-NULL p:
5473 */
5474 class = class->next;
5475 }
5476}
1da177e4 5477
dd41f596
IM
5478/*
5479 * schedule() is the main scheduler function.
5480 */
ff743345 5481asmlinkage void __sched schedule(void)
dd41f596
IM
5482{
5483 struct task_struct *prev, *next;
67ca7bde 5484 unsigned long *switch_count;
dd41f596 5485 struct rq *rq;
31656519 5486 int cpu;
dd41f596 5487
ff743345
PZ
5488need_resched:
5489 preempt_disable();
dd41f596
IM
5490 cpu = smp_processor_id();
5491 rq = cpu_rq(cpu);
d6714c22 5492 rcu_sched_qs(cpu);
dd41f596
IM
5493 prev = rq->curr;
5494 switch_count = &prev->nivcsw;
5495
5496 release_kernel_lock(prev);
5497need_resched_nonpreemptible:
5498
5499 schedule_debug(prev);
1da177e4 5500
31656519 5501 if (sched_feat(HRTICK))
f333fdc9 5502 hrtick_clear(rq);
8f4d37ec 5503
05fa785c 5504 raw_spin_lock_irq(&rq->lock);
3e51f33f 5505 update_rq_clock(rq);
1e819950 5506 clear_tsk_need_resched(prev);
1da177e4 5507
1da177e4 5508 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5509 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5510 prev->state = TASK_RUNNING;
16882c1e 5511 else
2e1cb74a 5512 deactivate_task(rq, prev, 1);
dd41f596 5513 switch_count = &prev->nvcsw;
1da177e4
LT
5514 }
5515
3f029d3c 5516 pre_schedule(rq, prev);
f65eda4f 5517
dd41f596 5518 if (unlikely(!rq->nr_running))
1da177e4 5519 idle_balance(cpu, rq);
1da177e4 5520
df1c99d4 5521 put_prev_task(rq, prev);
b67802ea 5522 next = pick_next_task(rq);
1da177e4 5523
1da177e4 5524 if (likely(prev != next)) {
673a90a1 5525 sched_info_switch(prev, next);
cdd6c482 5526 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5527
1da177e4
LT
5528 rq->nr_switches++;
5529 rq->curr = next;
5530 ++*switch_count;
5531
dd41f596 5532 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5533 /*
5534 * the context switch might have flipped the stack from under
5535 * us, hence refresh the local variables.
5536 */
5537 cpu = smp_processor_id();
5538 rq = cpu_rq(cpu);
1da177e4 5539 } else
05fa785c 5540 raw_spin_unlock_irq(&rq->lock);
1da177e4 5541
3f029d3c 5542 post_schedule(rq);
1da177e4 5543
6d558c3a
YZ
5544 if (unlikely(reacquire_kernel_lock(current) < 0)) {
5545 prev = rq->curr;
5546 switch_count = &prev->nivcsw;
1da177e4 5547 goto need_resched_nonpreemptible;
6d558c3a 5548 }
8f4d37ec 5549
1da177e4 5550 preempt_enable_no_resched();
ff743345 5551 if (need_resched())
1da177e4
LT
5552 goto need_resched;
5553}
1da177e4
LT
5554EXPORT_SYMBOL(schedule);
5555
c08f7829 5556#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
5557/*
5558 * Look out! "owner" is an entirely speculative pointer
5559 * access and not reliable.
5560 */
5561int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5562{
5563 unsigned int cpu;
5564 struct rq *rq;
5565
5566 if (!sched_feat(OWNER_SPIN))
5567 return 0;
5568
5569#ifdef CONFIG_DEBUG_PAGEALLOC
5570 /*
5571 * Need to access the cpu field knowing that
5572 * DEBUG_PAGEALLOC could have unmapped it if
5573 * the mutex owner just released it and exited.
5574 */
5575 if (probe_kernel_address(&owner->cpu, cpu))
5576 goto out;
5577#else
5578 cpu = owner->cpu;
5579#endif
5580
5581 /*
5582 * Even if the access succeeded (likely case),
5583 * the cpu field may no longer be valid.
5584 */
5585 if (cpu >= nr_cpumask_bits)
5586 goto out;
5587
5588 /*
5589 * We need to validate that we can do a
5590 * get_cpu() and that we have the percpu area.
5591 */
5592 if (!cpu_online(cpu))
5593 goto out;
5594
5595 rq = cpu_rq(cpu);
5596
5597 for (;;) {
5598 /*
5599 * Owner changed, break to re-assess state.
5600 */
5601 if (lock->owner != owner)
5602 break;
5603
5604 /*
5605 * Is that owner really running on that cpu?
5606 */
5607 if (task_thread_info(rq->curr) != owner || need_resched())
5608 return 0;
5609
5610 cpu_relax();
5611 }
5612out:
5613 return 1;
5614}
5615#endif
5616
1da177e4
LT
5617#ifdef CONFIG_PREEMPT
5618/*
2ed6e34f 5619 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5620 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5621 * occur there and call schedule directly.
5622 */
5623asmlinkage void __sched preempt_schedule(void)
5624{
5625 struct thread_info *ti = current_thread_info();
6478d880 5626
1da177e4
LT
5627 /*
5628 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5629 * we do not want to preempt the current task. Just return..
1da177e4 5630 */
beed33a8 5631 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5632 return;
5633
3a5c359a
AK
5634 do {
5635 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5636 schedule();
3a5c359a 5637 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5638
3a5c359a
AK
5639 /*
5640 * Check again in case we missed a preemption opportunity
5641 * between schedule and now.
5642 */
5643 barrier();
5ed0cec0 5644 } while (need_resched());
1da177e4 5645}
1da177e4
LT
5646EXPORT_SYMBOL(preempt_schedule);
5647
5648/*
2ed6e34f 5649 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5650 * off of irq context.
5651 * Note, that this is called and return with irqs disabled. This will
5652 * protect us against recursive calling from irq.
5653 */
5654asmlinkage void __sched preempt_schedule_irq(void)
5655{
5656 struct thread_info *ti = current_thread_info();
6478d880 5657
2ed6e34f 5658 /* Catch callers which need to be fixed */
1da177e4
LT
5659 BUG_ON(ti->preempt_count || !irqs_disabled());
5660
3a5c359a
AK
5661 do {
5662 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5663 local_irq_enable();
5664 schedule();
5665 local_irq_disable();
3a5c359a 5666 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5667
3a5c359a
AK
5668 /*
5669 * Check again in case we missed a preemption opportunity
5670 * between schedule and now.
5671 */
5672 barrier();
5ed0cec0 5673 } while (need_resched());
1da177e4
LT
5674}
5675
5676#endif /* CONFIG_PREEMPT */
5677
63859d4f 5678int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5679 void *key)
1da177e4 5680{
63859d4f 5681 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5682}
1da177e4
LT
5683EXPORT_SYMBOL(default_wake_function);
5684
5685/*
41a2d6cf
IM
5686 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5687 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5688 * number) then we wake all the non-exclusive tasks and one exclusive task.
5689 *
5690 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5691 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5692 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5693 */
78ddb08f 5694static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5695 int nr_exclusive, int wake_flags, void *key)
1da177e4 5696{
2e45874c 5697 wait_queue_t *curr, *next;
1da177e4 5698
2e45874c 5699 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5700 unsigned flags = curr->flags;
5701
63859d4f 5702 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5703 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5704 break;
5705 }
5706}
5707
5708/**
5709 * __wake_up - wake up threads blocked on a waitqueue.
5710 * @q: the waitqueue
5711 * @mode: which threads
5712 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5713 * @key: is directly passed to the wakeup function
50fa610a
DH
5714 *
5715 * It may be assumed that this function implies a write memory barrier before
5716 * changing the task state if and only if any tasks are woken up.
1da177e4 5717 */
7ad5b3a5 5718void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5719 int nr_exclusive, void *key)
1da177e4
LT
5720{
5721 unsigned long flags;
5722
5723 spin_lock_irqsave(&q->lock, flags);
5724 __wake_up_common(q, mode, nr_exclusive, 0, key);
5725 spin_unlock_irqrestore(&q->lock, flags);
5726}
1da177e4
LT
5727EXPORT_SYMBOL(__wake_up);
5728
5729/*
5730 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5731 */
7ad5b3a5 5732void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5733{
5734 __wake_up_common(q, mode, 1, 0, NULL);
5735}
5736
4ede816a
DL
5737void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5738{
5739 __wake_up_common(q, mode, 1, 0, key);
5740}
5741
1da177e4 5742/**
4ede816a 5743 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5744 * @q: the waitqueue
5745 * @mode: which threads
5746 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5747 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5748 *
5749 * The sync wakeup differs that the waker knows that it will schedule
5750 * away soon, so while the target thread will be woken up, it will not
5751 * be migrated to another CPU - ie. the two threads are 'synchronized'
5752 * with each other. This can prevent needless bouncing between CPUs.
5753 *
5754 * On UP it can prevent extra preemption.
50fa610a
DH
5755 *
5756 * It may be assumed that this function implies a write memory barrier before
5757 * changing the task state if and only if any tasks are woken up.
1da177e4 5758 */
4ede816a
DL
5759void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5760 int nr_exclusive, void *key)
1da177e4
LT
5761{
5762 unsigned long flags;
7d478721 5763 int wake_flags = WF_SYNC;
1da177e4
LT
5764
5765 if (unlikely(!q))
5766 return;
5767
5768 if (unlikely(!nr_exclusive))
7d478721 5769 wake_flags = 0;
1da177e4
LT
5770
5771 spin_lock_irqsave(&q->lock, flags);
7d478721 5772 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5773 spin_unlock_irqrestore(&q->lock, flags);
5774}
4ede816a
DL
5775EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5776
5777/*
5778 * __wake_up_sync - see __wake_up_sync_key()
5779 */
5780void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5781{
5782 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5783}
1da177e4
LT
5784EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5785
65eb3dc6
KD
5786/**
5787 * complete: - signals a single thread waiting on this completion
5788 * @x: holds the state of this particular completion
5789 *
5790 * This will wake up a single thread waiting on this completion. Threads will be
5791 * awakened in the same order in which they were queued.
5792 *
5793 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5794 *
5795 * It may be assumed that this function implies a write memory barrier before
5796 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5797 */
b15136e9 5798void complete(struct completion *x)
1da177e4
LT
5799{
5800 unsigned long flags;
5801
5802 spin_lock_irqsave(&x->wait.lock, flags);
5803 x->done++;
d9514f6c 5804 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5805 spin_unlock_irqrestore(&x->wait.lock, flags);
5806}
5807EXPORT_SYMBOL(complete);
5808
65eb3dc6
KD
5809/**
5810 * complete_all: - signals all threads waiting on this completion
5811 * @x: holds the state of this particular completion
5812 *
5813 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5814 *
5815 * It may be assumed that this function implies a write memory barrier before
5816 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5817 */
b15136e9 5818void complete_all(struct completion *x)
1da177e4
LT
5819{
5820 unsigned long flags;
5821
5822 spin_lock_irqsave(&x->wait.lock, flags);
5823 x->done += UINT_MAX/2;
d9514f6c 5824 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5825 spin_unlock_irqrestore(&x->wait.lock, flags);
5826}
5827EXPORT_SYMBOL(complete_all);
5828
8cbbe86d
AK
5829static inline long __sched
5830do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5831{
1da177e4
LT
5832 if (!x->done) {
5833 DECLARE_WAITQUEUE(wait, current);
5834
5835 wait.flags |= WQ_FLAG_EXCLUSIVE;
5836 __add_wait_queue_tail(&x->wait, &wait);
5837 do {
94d3d824 5838 if (signal_pending_state(state, current)) {
ea71a546
ON
5839 timeout = -ERESTARTSYS;
5840 break;
8cbbe86d
AK
5841 }
5842 __set_current_state(state);
1da177e4
LT
5843 spin_unlock_irq(&x->wait.lock);
5844 timeout = schedule_timeout(timeout);
5845 spin_lock_irq(&x->wait.lock);
ea71a546 5846 } while (!x->done && timeout);
1da177e4 5847 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5848 if (!x->done)
5849 return timeout;
1da177e4
LT
5850 }
5851 x->done--;
ea71a546 5852 return timeout ?: 1;
1da177e4 5853}
1da177e4 5854
8cbbe86d
AK
5855static long __sched
5856wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5857{
1da177e4
LT
5858 might_sleep();
5859
5860 spin_lock_irq(&x->wait.lock);
8cbbe86d 5861 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5862 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5863 return timeout;
5864}
1da177e4 5865
65eb3dc6
KD
5866/**
5867 * wait_for_completion: - waits for completion of a task
5868 * @x: holds the state of this particular completion
5869 *
5870 * This waits to be signaled for completion of a specific task. It is NOT
5871 * interruptible and there is no timeout.
5872 *
5873 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5874 * and interrupt capability. Also see complete().
5875 */
b15136e9 5876void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5877{
5878 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5879}
8cbbe86d 5880EXPORT_SYMBOL(wait_for_completion);
1da177e4 5881
65eb3dc6
KD
5882/**
5883 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5884 * @x: holds the state of this particular completion
5885 * @timeout: timeout value in jiffies
5886 *
5887 * This waits for either a completion of a specific task to be signaled or for a
5888 * specified timeout to expire. The timeout is in jiffies. It is not
5889 * interruptible.
5890 */
b15136e9 5891unsigned long __sched
8cbbe86d 5892wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5893{
8cbbe86d 5894 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5895}
8cbbe86d 5896EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5897
65eb3dc6
KD
5898/**
5899 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5900 * @x: holds the state of this particular completion
5901 *
5902 * This waits for completion of a specific task to be signaled. It is
5903 * interruptible.
5904 */
8cbbe86d 5905int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5906{
51e97990
AK
5907 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5908 if (t == -ERESTARTSYS)
5909 return t;
5910 return 0;
0fec171c 5911}
8cbbe86d 5912EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5913
65eb3dc6
KD
5914/**
5915 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5916 * @x: holds the state of this particular completion
5917 * @timeout: timeout value in jiffies
5918 *
5919 * This waits for either a completion of a specific task to be signaled or for a
5920 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5921 */
b15136e9 5922unsigned long __sched
8cbbe86d
AK
5923wait_for_completion_interruptible_timeout(struct completion *x,
5924 unsigned long timeout)
0fec171c 5925{
8cbbe86d 5926 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5927}
8cbbe86d 5928EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5929
65eb3dc6
KD
5930/**
5931 * wait_for_completion_killable: - waits for completion of a task (killable)
5932 * @x: holds the state of this particular completion
5933 *
5934 * This waits to be signaled for completion of a specific task. It can be
5935 * interrupted by a kill signal.
5936 */
009e577e
MW
5937int __sched wait_for_completion_killable(struct completion *x)
5938{
5939 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5940 if (t == -ERESTARTSYS)
5941 return t;
5942 return 0;
5943}
5944EXPORT_SYMBOL(wait_for_completion_killable);
5945
be4de352
DC
5946/**
5947 * try_wait_for_completion - try to decrement a completion without blocking
5948 * @x: completion structure
5949 *
5950 * Returns: 0 if a decrement cannot be done without blocking
5951 * 1 if a decrement succeeded.
5952 *
5953 * If a completion is being used as a counting completion,
5954 * attempt to decrement the counter without blocking. This
5955 * enables us to avoid waiting if the resource the completion
5956 * is protecting is not available.
5957 */
5958bool try_wait_for_completion(struct completion *x)
5959{
7539a3b3 5960 unsigned long flags;
be4de352
DC
5961 int ret = 1;
5962
7539a3b3 5963 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5964 if (!x->done)
5965 ret = 0;
5966 else
5967 x->done--;
7539a3b3 5968 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
5969 return ret;
5970}
5971EXPORT_SYMBOL(try_wait_for_completion);
5972
5973/**
5974 * completion_done - Test to see if a completion has any waiters
5975 * @x: completion structure
5976 *
5977 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5978 * 1 if there are no waiters.
5979 *
5980 */
5981bool completion_done(struct completion *x)
5982{
7539a3b3 5983 unsigned long flags;
be4de352
DC
5984 int ret = 1;
5985
7539a3b3 5986 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5987 if (!x->done)
5988 ret = 0;
7539a3b3 5989 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
5990 return ret;
5991}
5992EXPORT_SYMBOL(completion_done);
5993
8cbbe86d
AK
5994static long __sched
5995sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5996{
0fec171c
IM
5997 unsigned long flags;
5998 wait_queue_t wait;
5999
6000 init_waitqueue_entry(&wait, current);
1da177e4 6001
8cbbe86d 6002 __set_current_state(state);
1da177e4 6003
8cbbe86d
AK
6004 spin_lock_irqsave(&q->lock, flags);
6005 __add_wait_queue(q, &wait);
6006 spin_unlock(&q->lock);
6007 timeout = schedule_timeout(timeout);
6008 spin_lock_irq(&q->lock);
6009 __remove_wait_queue(q, &wait);
6010 spin_unlock_irqrestore(&q->lock, flags);
6011
6012 return timeout;
6013}
6014
6015void __sched interruptible_sleep_on(wait_queue_head_t *q)
6016{
6017 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6018}
1da177e4
LT
6019EXPORT_SYMBOL(interruptible_sleep_on);
6020
0fec171c 6021long __sched
95cdf3b7 6022interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6023{
8cbbe86d 6024 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 6025}
1da177e4
LT
6026EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6027
0fec171c 6028void __sched sleep_on(wait_queue_head_t *q)
1da177e4 6029{
8cbbe86d 6030 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6031}
1da177e4
LT
6032EXPORT_SYMBOL(sleep_on);
6033
0fec171c 6034long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6035{
8cbbe86d 6036 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 6037}
1da177e4
LT
6038EXPORT_SYMBOL(sleep_on_timeout);
6039
b29739f9
IM
6040#ifdef CONFIG_RT_MUTEXES
6041
6042/*
6043 * rt_mutex_setprio - set the current priority of a task
6044 * @p: task
6045 * @prio: prio value (kernel-internal form)
6046 *
6047 * This function changes the 'effective' priority of a task. It does
6048 * not touch ->normal_prio like __setscheduler().
6049 *
6050 * Used by the rt_mutex code to implement priority inheritance logic.
6051 */
36c8b586 6052void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
6053{
6054 unsigned long flags;
83b699ed 6055 int oldprio, on_rq, running;
70b97a7f 6056 struct rq *rq;
cb469845 6057 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
6058
6059 BUG_ON(prio < 0 || prio > MAX_PRIO);
6060
6061 rq = task_rq_lock(p, &flags);
a8e504d2 6062 update_rq_clock(rq);
b29739f9 6063
d5f9f942 6064 oldprio = p->prio;
dd41f596 6065 on_rq = p->se.on_rq;
051a1d1a 6066 running = task_current(rq, p);
0e1f3483 6067 if (on_rq)
69be72c1 6068 dequeue_task(rq, p, 0);
0e1f3483
HS
6069 if (running)
6070 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
6071
6072 if (rt_prio(prio))
6073 p->sched_class = &rt_sched_class;
6074 else
6075 p->sched_class = &fair_sched_class;
6076
b29739f9
IM
6077 p->prio = prio;
6078
0e1f3483
HS
6079 if (running)
6080 p->sched_class->set_curr_task(rq);
dd41f596 6081 if (on_rq) {
8159f87e 6082 enqueue_task(rq, p, 0);
cb469845
SR
6083
6084 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6085 }
6086 task_rq_unlock(rq, &flags);
6087}
6088
6089#endif
6090
36c8b586 6091void set_user_nice(struct task_struct *p, long nice)
1da177e4 6092{
dd41f596 6093 int old_prio, delta, on_rq;
1da177e4 6094 unsigned long flags;
70b97a7f 6095 struct rq *rq;
1da177e4
LT
6096
6097 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6098 return;
6099 /*
6100 * We have to be careful, if called from sys_setpriority(),
6101 * the task might be in the middle of scheduling on another CPU.
6102 */
6103 rq = task_rq_lock(p, &flags);
a8e504d2 6104 update_rq_clock(rq);
1da177e4
LT
6105 /*
6106 * The RT priorities are set via sched_setscheduler(), but we still
6107 * allow the 'normal' nice value to be set - but as expected
6108 * it wont have any effect on scheduling until the task is
dd41f596 6109 * SCHED_FIFO/SCHED_RR:
1da177e4 6110 */
e05606d3 6111 if (task_has_rt_policy(p)) {
1da177e4
LT
6112 p->static_prio = NICE_TO_PRIO(nice);
6113 goto out_unlock;
6114 }
dd41f596 6115 on_rq = p->se.on_rq;
c09595f6 6116 if (on_rq)
69be72c1 6117 dequeue_task(rq, p, 0);
1da177e4 6118
1da177e4 6119 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6120 set_load_weight(p);
b29739f9
IM
6121 old_prio = p->prio;
6122 p->prio = effective_prio(p);
6123 delta = p->prio - old_prio;
1da177e4 6124
dd41f596 6125 if (on_rq) {
8159f87e 6126 enqueue_task(rq, p, 0);
1da177e4 6127 /*
d5f9f942
AM
6128 * If the task increased its priority or is running and
6129 * lowered its priority, then reschedule its CPU:
1da177e4 6130 */
d5f9f942 6131 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6132 resched_task(rq->curr);
6133 }
6134out_unlock:
6135 task_rq_unlock(rq, &flags);
6136}
1da177e4
LT
6137EXPORT_SYMBOL(set_user_nice);
6138
e43379f1
MM
6139/*
6140 * can_nice - check if a task can reduce its nice value
6141 * @p: task
6142 * @nice: nice value
6143 */
36c8b586 6144int can_nice(const struct task_struct *p, const int nice)
e43379f1 6145{
024f4747
MM
6146 /* convert nice value [19,-20] to rlimit style value [1,40] */
6147 int nice_rlim = 20 - nice;
48f24c4d 6148
e43379f1
MM
6149 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6150 capable(CAP_SYS_NICE));
6151}
6152
1da177e4
LT
6153#ifdef __ARCH_WANT_SYS_NICE
6154
6155/*
6156 * sys_nice - change the priority of the current process.
6157 * @increment: priority increment
6158 *
6159 * sys_setpriority is a more generic, but much slower function that
6160 * does similar things.
6161 */
5add95d4 6162SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6163{
48f24c4d 6164 long nice, retval;
1da177e4
LT
6165
6166 /*
6167 * Setpriority might change our priority at the same moment.
6168 * We don't have to worry. Conceptually one call occurs first
6169 * and we have a single winner.
6170 */
e43379f1
MM
6171 if (increment < -40)
6172 increment = -40;
1da177e4
LT
6173 if (increment > 40)
6174 increment = 40;
6175
2b8f836f 6176 nice = TASK_NICE(current) + increment;
1da177e4
LT
6177 if (nice < -20)
6178 nice = -20;
6179 if (nice > 19)
6180 nice = 19;
6181
e43379f1
MM
6182 if (increment < 0 && !can_nice(current, nice))
6183 return -EPERM;
6184
1da177e4
LT
6185 retval = security_task_setnice(current, nice);
6186 if (retval)
6187 return retval;
6188
6189 set_user_nice(current, nice);
6190 return 0;
6191}
6192
6193#endif
6194
6195/**
6196 * task_prio - return the priority value of a given task.
6197 * @p: the task in question.
6198 *
6199 * This is the priority value as seen by users in /proc.
6200 * RT tasks are offset by -200. Normal tasks are centered
6201 * around 0, value goes from -16 to +15.
6202 */
36c8b586 6203int task_prio(const struct task_struct *p)
1da177e4
LT
6204{
6205 return p->prio - MAX_RT_PRIO;
6206}
6207
6208/**
6209 * task_nice - return the nice value of a given task.
6210 * @p: the task in question.
6211 */
36c8b586 6212int task_nice(const struct task_struct *p)
1da177e4
LT
6213{
6214 return TASK_NICE(p);
6215}
150d8bed 6216EXPORT_SYMBOL(task_nice);
1da177e4
LT
6217
6218/**
6219 * idle_cpu - is a given cpu idle currently?
6220 * @cpu: the processor in question.
6221 */
6222int idle_cpu(int cpu)
6223{
6224 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6225}
6226
1da177e4
LT
6227/**
6228 * idle_task - return the idle task for a given cpu.
6229 * @cpu: the processor in question.
6230 */
36c8b586 6231struct task_struct *idle_task(int cpu)
1da177e4
LT
6232{
6233 return cpu_rq(cpu)->idle;
6234}
6235
6236/**
6237 * find_process_by_pid - find a process with a matching PID value.
6238 * @pid: the pid in question.
6239 */
a9957449 6240static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6241{
228ebcbe 6242 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6243}
6244
6245/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6246static void
6247__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6248{
dd41f596 6249 BUG_ON(p->se.on_rq);
48f24c4d 6250
1da177e4
LT
6251 p->policy = policy;
6252 p->rt_priority = prio;
b29739f9
IM
6253 p->normal_prio = normal_prio(p);
6254 /* we are holding p->pi_lock already */
6255 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
6256 if (rt_prio(p->prio))
6257 p->sched_class = &rt_sched_class;
6258 else
6259 p->sched_class = &fair_sched_class;
2dd73a4f 6260 set_load_weight(p);
1da177e4
LT
6261}
6262
c69e8d9c
DH
6263/*
6264 * check the target process has a UID that matches the current process's
6265 */
6266static bool check_same_owner(struct task_struct *p)
6267{
6268 const struct cred *cred = current_cred(), *pcred;
6269 bool match;
6270
6271 rcu_read_lock();
6272 pcred = __task_cred(p);
6273 match = (cred->euid == pcred->euid ||
6274 cred->euid == pcred->uid);
6275 rcu_read_unlock();
6276 return match;
6277}
6278
961ccddd
RR
6279static int __sched_setscheduler(struct task_struct *p, int policy,
6280 struct sched_param *param, bool user)
1da177e4 6281{
83b699ed 6282 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6283 unsigned long flags;
cb469845 6284 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6285 struct rq *rq;
ca94c442 6286 int reset_on_fork;
1da177e4 6287
66e5393a
SR
6288 /* may grab non-irq protected spin_locks */
6289 BUG_ON(in_interrupt());
1da177e4
LT
6290recheck:
6291 /* double check policy once rq lock held */
ca94c442
LP
6292 if (policy < 0) {
6293 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6294 policy = oldpolicy = p->policy;
ca94c442
LP
6295 } else {
6296 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6297 policy &= ~SCHED_RESET_ON_FORK;
6298
6299 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6300 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6301 policy != SCHED_IDLE)
6302 return -EINVAL;
6303 }
6304
1da177e4
LT
6305 /*
6306 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6307 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6308 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6309 */
6310 if (param->sched_priority < 0 ||
95cdf3b7 6311 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6312 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6313 return -EINVAL;
e05606d3 6314 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6315 return -EINVAL;
6316
37e4ab3f
OC
6317 /*
6318 * Allow unprivileged RT tasks to decrease priority:
6319 */
961ccddd 6320 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6321 if (rt_policy(policy)) {
8dc3e909 6322 unsigned long rlim_rtprio;
8dc3e909
ON
6323
6324 if (!lock_task_sighand(p, &flags))
6325 return -ESRCH;
6326 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6327 unlock_task_sighand(p, &flags);
6328
6329 /* can't set/change the rt policy */
6330 if (policy != p->policy && !rlim_rtprio)
6331 return -EPERM;
6332
6333 /* can't increase priority */
6334 if (param->sched_priority > p->rt_priority &&
6335 param->sched_priority > rlim_rtprio)
6336 return -EPERM;
6337 }
dd41f596
IM
6338 /*
6339 * Like positive nice levels, dont allow tasks to
6340 * move out of SCHED_IDLE either:
6341 */
6342 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6343 return -EPERM;
5fe1d75f 6344
37e4ab3f 6345 /* can't change other user's priorities */
c69e8d9c 6346 if (!check_same_owner(p))
37e4ab3f 6347 return -EPERM;
ca94c442
LP
6348
6349 /* Normal users shall not reset the sched_reset_on_fork flag */
6350 if (p->sched_reset_on_fork && !reset_on_fork)
6351 return -EPERM;
37e4ab3f 6352 }
1da177e4 6353
725aad24 6354 if (user) {
b68aa230 6355#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6356 /*
6357 * Do not allow realtime tasks into groups that have no runtime
6358 * assigned.
6359 */
9a7e0b18
PZ
6360 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6361 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6362 return -EPERM;
b68aa230
PZ
6363#endif
6364
725aad24
JF
6365 retval = security_task_setscheduler(p, policy, param);
6366 if (retval)
6367 return retval;
6368 }
6369
b29739f9
IM
6370 /*
6371 * make sure no PI-waiters arrive (or leave) while we are
6372 * changing the priority of the task:
6373 */
1d615482 6374 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6375 /*
6376 * To be able to change p->policy safely, the apropriate
6377 * runqueue lock must be held.
6378 */
b29739f9 6379 rq = __task_rq_lock(p);
1da177e4
LT
6380 /* recheck policy now with rq lock held */
6381 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6382 policy = oldpolicy = -1;
b29739f9 6383 __task_rq_unlock(rq);
1d615482 6384 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6385 goto recheck;
6386 }
2daa3577 6387 update_rq_clock(rq);
dd41f596 6388 on_rq = p->se.on_rq;
051a1d1a 6389 running = task_current(rq, p);
0e1f3483 6390 if (on_rq)
2e1cb74a 6391 deactivate_task(rq, p, 0);
0e1f3483
HS
6392 if (running)
6393 p->sched_class->put_prev_task(rq, p);
f6b53205 6394
ca94c442
LP
6395 p->sched_reset_on_fork = reset_on_fork;
6396
1da177e4 6397 oldprio = p->prio;
dd41f596 6398 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6399
0e1f3483
HS
6400 if (running)
6401 p->sched_class->set_curr_task(rq);
dd41f596
IM
6402 if (on_rq) {
6403 activate_task(rq, p, 0);
cb469845
SR
6404
6405 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6406 }
b29739f9 6407 __task_rq_unlock(rq);
1d615482 6408 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 6409
95e02ca9
TG
6410 rt_mutex_adjust_pi(p);
6411
1da177e4
LT
6412 return 0;
6413}
961ccddd
RR
6414
6415/**
6416 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6417 * @p: the task in question.
6418 * @policy: new policy.
6419 * @param: structure containing the new RT priority.
6420 *
6421 * NOTE that the task may be already dead.
6422 */
6423int sched_setscheduler(struct task_struct *p, int policy,
6424 struct sched_param *param)
6425{
6426 return __sched_setscheduler(p, policy, param, true);
6427}
1da177e4
LT
6428EXPORT_SYMBOL_GPL(sched_setscheduler);
6429
961ccddd
RR
6430/**
6431 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6432 * @p: the task in question.
6433 * @policy: new policy.
6434 * @param: structure containing the new RT priority.
6435 *
6436 * Just like sched_setscheduler, only don't bother checking if the
6437 * current context has permission. For example, this is needed in
6438 * stop_machine(): we create temporary high priority worker threads,
6439 * but our caller might not have that capability.
6440 */
6441int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6442 struct sched_param *param)
6443{
6444 return __sched_setscheduler(p, policy, param, false);
6445}
6446
95cdf3b7
IM
6447static int
6448do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6449{
1da177e4
LT
6450 struct sched_param lparam;
6451 struct task_struct *p;
36c8b586 6452 int retval;
1da177e4
LT
6453
6454 if (!param || pid < 0)
6455 return -EINVAL;
6456 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6457 return -EFAULT;
5fe1d75f
ON
6458
6459 rcu_read_lock();
6460 retval = -ESRCH;
1da177e4 6461 p = find_process_by_pid(pid);
5fe1d75f
ON
6462 if (p != NULL)
6463 retval = sched_setscheduler(p, policy, &lparam);
6464 rcu_read_unlock();
36c8b586 6465
1da177e4
LT
6466 return retval;
6467}
6468
6469/**
6470 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6471 * @pid: the pid in question.
6472 * @policy: new policy.
6473 * @param: structure containing the new RT priority.
6474 */
5add95d4
HC
6475SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6476 struct sched_param __user *, param)
1da177e4 6477{
c21761f1
JB
6478 /* negative values for policy are not valid */
6479 if (policy < 0)
6480 return -EINVAL;
6481
1da177e4
LT
6482 return do_sched_setscheduler(pid, policy, param);
6483}
6484
6485/**
6486 * sys_sched_setparam - set/change the RT priority of a thread
6487 * @pid: the pid in question.
6488 * @param: structure containing the new RT priority.
6489 */
5add95d4 6490SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6491{
6492 return do_sched_setscheduler(pid, -1, param);
6493}
6494
6495/**
6496 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6497 * @pid: the pid in question.
6498 */
5add95d4 6499SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6500{
36c8b586 6501 struct task_struct *p;
3a5c359a 6502 int retval;
1da177e4
LT
6503
6504 if (pid < 0)
3a5c359a 6505 return -EINVAL;
1da177e4
LT
6506
6507 retval = -ESRCH;
5fe85be0 6508 rcu_read_lock();
1da177e4
LT
6509 p = find_process_by_pid(pid);
6510 if (p) {
6511 retval = security_task_getscheduler(p);
6512 if (!retval)
ca94c442
LP
6513 retval = p->policy
6514 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 6515 }
5fe85be0 6516 rcu_read_unlock();
1da177e4
LT
6517 return retval;
6518}
6519
6520/**
ca94c442 6521 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6522 * @pid: the pid in question.
6523 * @param: structure containing the RT priority.
6524 */
5add95d4 6525SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6526{
6527 struct sched_param lp;
36c8b586 6528 struct task_struct *p;
3a5c359a 6529 int retval;
1da177e4
LT
6530
6531 if (!param || pid < 0)
3a5c359a 6532 return -EINVAL;
1da177e4 6533
5fe85be0 6534 rcu_read_lock();
1da177e4
LT
6535 p = find_process_by_pid(pid);
6536 retval = -ESRCH;
6537 if (!p)
6538 goto out_unlock;
6539
6540 retval = security_task_getscheduler(p);
6541 if (retval)
6542 goto out_unlock;
6543
6544 lp.sched_priority = p->rt_priority;
5fe85be0 6545 rcu_read_unlock();
1da177e4
LT
6546
6547 /*
6548 * This one might sleep, we cannot do it with a spinlock held ...
6549 */
6550 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6551
1da177e4
LT
6552 return retval;
6553
6554out_unlock:
5fe85be0 6555 rcu_read_unlock();
1da177e4
LT
6556 return retval;
6557}
6558
96f874e2 6559long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6560{
5a16f3d3 6561 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6562 struct task_struct *p;
6563 int retval;
1da177e4 6564
95402b38 6565 get_online_cpus();
23f5d142 6566 rcu_read_lock();
1da177e4
LT
6567
6568 p = find_process_by_pid(pid);
6569 if (!p) {
23f5d142 6570 rcu_read_unlock();
95402b38 6571 put_online_cpus();
1da177e4
LT
6572 return -ESRCH;
6573 }
6574
23f5d142 6575 /* Prevent p going away */
1da177e4 6576 get_task_struct(p);
23f5d142 6577 rcu_read_unlock();
1da177e4 6578
5a16f3d3
RR
6579 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6580 retval = -ENOMEM;
6581 goto out_put_task;
6582 }
6583 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6584 retval = -ENOMEM;
6585 goto out_free_cpus_allowed;
6586 }
1da177e4 6587 retval = -EPERM;
c69e8d9c 6588 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6589 goto out_unlock;
6590
e7834f8f
DQ
6591 retval = security_task_setscheduler(p, 0, NULL);
6592 if (retval)
6593 goto out_unlock;
6594
5a16f3d3
RR
6595 cpuset_cpus_allowed(p, cpus_allowed);
6596 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6597 again:
5a16f3d3 6598 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6599
8707d8b8 6600 if (!retval) {
5a16f3d3
RR
6601 cpuset_cpus_allowed(p, cpus_allowed);
6602 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6603 /*
6604 * We must have raced with a concurrent cpuset
6605 * update. Just reset the cpus_allowed to the
6606 * cpuset's cpus_allowed
6607 */
5a16f3d3 6608 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6609 goto again;
6610 }
6611 }
1da177e4 6612out_unlock:
5a16f3d3
RR
6613 free_cpumask_var(new_mask);
6614out_free_cpus_allowed:
6615 free_cpumask_var(cpus_allowed);
6616out_put_task:
1da177e4 6617 put_task_struct(p);
95402b38 6618 put_online_cpus();
1da177e4
LT
6619 return retval;
6620}
6621
6622static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6623 struct cpumask *new_mask)
1da177e4 6624{
96f874e2
RR
6625 if (len < cpumask_size())
6626 cpumask_clear(new_mask);
6627 else if (len > cpumask_size())
6628 len = cpumask_size();
6629
1da177e4
LT
6630 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6631}
6632
6633/**
6634 * sys_sched_setaffinity - set the cpu affinity of a process
6635 * @pid: pid of the process
6636 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6637 * @user_mask_ptr: user-space pointer to the new cpu mask
6638 */
5add95d4
HC
6639SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6640 unsigned long __user *, user_mask_ptr)
1da177e4 6641{
5a16f3d3 6642 cpumask_var_t new_mask;
1da177e4
LT
6643 int retval;
6644
5a16f3d3
RR
6645 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6646 return -ENOMEM;
1da177e4 6647
5a16f3d3
RR
6648 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6649 if (retval == 0)
6650 retval = sched_setaffinity(pid, new_mask);
6651 free_cpumask_var(new_mask);
6652 return retval;
1da177e4
LT
6653}
6654
96f874e2 6655long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6656{
36c8b586 6657 struct task_struct *p;
31605683
TG
6658 unsigned long flags;
6659 struct rq *rq;
1da177e4 6660 int retval;
1da177e4 6661
95402b38 6662 get_online_cpus();
23f5d142 6663 rcu_read_lock();
1da177e4
LT
6664
6665 retval = -ESRCH;
6666 p = find_process_by_pid(pid);
6667 if (!p)
6668 goto out_unlock;
6669
e7834f8f
DQ
6670 retval = security_task_getscheduler(p);
6671 if (retval)
6672 goto out_unlock;
6673
31605683 6674 rq = task_rq_lock(p, &flags);
96f874e2 6675 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 6676 task_rq_unlock(rq, &flags);
1da177e4
LT
6677
6678out_unlock:
23f5d142 6679 rcu_read_unlock();
95402b38 6680 put_online_cpus();
1da177e4 6681
9531b62f 6682 return retval;
1da177e4
LT
6683}
6684
6685/**
6686 * sys_sched_getaffinity - get the cpu affinity of a process
6687 * @pid: pid of the process
6688 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6689 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6690 */
5add95d4
HC
6691SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6692 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6693{
6694 int ret;
f17c8607 6695 cpumask_var_t mask;
1da177e4 6696
f17c8607 6697 if (len < cpumask_size())
1da177e4
LT
6698 return -EINVAL;
6699
f17c8607
RR
6700 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6701 return -ENOMEM;
1da177e4 6702
f17c8607
RR
6703 ret = sched_getaffinity(pid, mask);
6704 if (ret == 0) {
6705 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6706 ret = -EFAULT;
6707 else
6708 ret = cpumask_size();
6709 }
6710 free_cpumask_var(mask);
1da177e4 6711
f17c8607 6712 return ret;
1da177e4
LT
6713}
6714
6715/**
6716 * sys_sched_yield - yield the current processor to other threads.
6717 *
dd41f596
IM
6718 * This function yields the current CPU to other tasks. If there are no
6719 * other threads running on this CPU then this function will return.
1da177e4 6720 */
5add95d4 6721SYSCALL_DEFINE0(sched_yield)
1da177e4 6722{
70b97a7f 6723 struct rq *rq = this_rq_lock();
1da177e4 6724
2d72376b 6725 schedstat_inc(rq, yld_count);
4530d7ab 6726 current->sched_class->yield_task(rq);
1da177e4
LT
6727
6728 /*
6729 * Since we are going to call schedule() anyway, there's
6730 * no need to preempt or enable interrupts:
6731 */
6732 __release(rq->lock);
8a25d5de 6733 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 6734 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
6735 preempt_enable_no_resched();
6736
6737 schedule();
6738
6739 return 0;
6740}
6741
d86ee480
PZ
6742static inline int should_resched(void)
6743{
6744 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6745}
6746
e7b38404 6747static void __cond_resched(void)
1da177e4 6748{
e7aaaa69
FW
6749 add_preempt_count(PREEMPT_ACTIVE);
6750 schedule();
6751 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6752}
6753
02b67cc3 6754int __sched _cond_resched(void)
1da177e4 6755{
d86ee480 6756 if (should_resched()) {
1da177e4
LT
6757 __cond_resched();
6758 return 1;
6759 }
6760 return 0;
6761}
02b67cc3 6762EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6763
6764/*
613afbf8 6765 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6766 * call schedule, and on return reacquire the lock.
6767 *
41a2d6cf 6768 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6769 * operations here to prevent schedule() from being called twice (once via
6770 * spin_unlock(), once by hand).
6771 */
613afbf8 6772int __cond_resched_lock(spinlock_t *lock)
1da177e4 6773{
d86ee480 6774 int resched = should_resched();
6df3cecb
JK
6775 int ret = 0;
6776
f607c668
PZ
6777 lockdep_assert_held(lock);
6778
95c354fe 6779 if (spin_needbreak(lock) || resched) {
1da177e4 6780 spin_unlock(lock);
d86ee480 6781 if (resched)
95c354fe
NP
6782 __cond_resched();
6783 else
6784 cpu_relax();
6df3cecb 6785 ret = 1;
1da177e4 6786 spin_lock(lock);
1da177e4 6787 }
6df3cecb 6788 return ret;
1da177e4 6789}
613afbf8 6790EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6791
613afbf8 6792int __sched __cond_resched_softirq(void)
1da177e4
LT
6793{
6794 BUG_ON(!in_softirq());
6795
d86ee480 6796 if (should_resched()) {
98d82567 6797 local_bh_enable();
1da177e4
LT
6798 __cond_resched();
6799 local_bh_disable();
6800 return 1;
6801 }
6802 return 0;
6803}
613afbf8 6804EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6805
1da177e4
LT
6806/**
6807 * yield - yield the current processor to other threads.
6808 *
72fd4a35 6809 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6810 * thread runnable and calls sys_sched_yield().
6811 */
6812void __sched yield(void)
6813{
6814 set_current_state(TASK_RUNNING);
6815 sys_sched_yield();
6816}
1da177e4
LT
6817EXPORT_SYMBOL(yield);
6818
6819/*
41a2d6cf 6820 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6821 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6822 */
6823void __sched io_schedule(void)
6824{
54d35f29 6825 struct rq *rq = raw_rq();
1da177e4 6826
0ff92245 6827 delayacct_blkio_start();
1da177e4 6828 atomic_inc(&rq->nr_iowait);
8f0dfc34 6829 current->in_iowait = 1;
1da177e4 6830 schedule();
8f0dfc34 6831 current->in_iowait = 0;
1da177e4 6832 atomic_dec(&rq->nr_iowait);
0ff92245 6833 delayacct_blkio_end();
1da177e4 6834}
1da177e4
LT
6835EXPORT_SYMBOL(io_schedule);
6836
6837long __sched io_schedule_timeout(long timeout)
6838{
54d35f29 6839 struct rq *rq = raw_rq();
1da177e4
LT
6840 long ret;
6841
0ff92245 6842 delayacct_blkio_start();
1da177e4 6843 atomic_inc(&rq->nr_iowait);
8f0dfc34 6844 current->in_iowait = 1;
1da177e4 6845 ret = schedule_timeout(timeout);
8f0dfc34 6846 current->in_iowait = 0;
1da177e4 6847 atomic_dec(&rq->nr_iowait);
0ff92245 6848 delayacct_blkio_end();
1da177e4
LT
6849 return ret;
6850}
6851
6852/**
6853 * sys_sched_get_priority_max - return maximum RT priority.
6854 * @policy: scheduling class.
6855 *
6856 * this syscall returns the maximum rt_priority that can be used
6857 * by a given scheduling class.
6858 */
5add95d4 6859SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6860{
6861 int ret = -EINVAL;
6862
6863 switch (policy) {
6864 case SCHED_FIFO:
6865 case SCHED_RR:
6866 ret = MAX_USER_RT_PRIO-1;
6867 break;
6868 case SCHED_NORMAL:
b0a9499c 6869 case SCHED_BATCH:
dd41f596 6870 case SCHED_IDLE:
1da177e4
LT
6871 ret = 0;
6872 break;
6873 }
6874 return ret;
6875}
6876
6877/**
6878 * sys_sched_get_priority_min - return minimum RT priority.
6879 * @policy: scheduling class.
6880 *
6881 * this syscall returns the minimum rt_priority that can be used
6882 * by a given scheduling class.
6883 */
5add95d4 6884SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6885{
6886 int ret = -EINVAL;
6887
6888 switch (policy) {
6889 case SCHED_FIFO:
6890 case SCHED_RR:
6891 ret = 1;
6892 break;
6893 case SCHED_NORMAL:
b0a9499c 6894 case SCHED_BATCH:
dd41f596 6895 case SCHED_IDLE:
1da177e4
LT
6896 ret = 0;
6897 }
6898 return ret;
6899}
6900
6901/**
6902 * sys_sched_rr_get_interval - return the default timeslice of a process.
6903 * @pid: pid of the process.
6904 * @interval: userspace pointer to the timeslice value.
6905 *
6906 * this syscall writes the default timeslice value of a given process
6907 * into the user-space timespec buffer. A value of '0' means infinity.
6908 */
17da2bd9 6909SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6910 struct timespec __user *, interval)
1da177e4 6911{
36c8b586 6912 struct task_struct *p;
a4ec24b4 6913 unsigned int time_slice;
dba091b9
TG
6914 unsigned long flags;
6915 struct rq *rq;
3a5c359a 6916 int retval;
1da177e4 6917 struct timespec t;
1da177e4
LT
6918
6919 if (pid < 0)
3a5c359a 6920 return -EINVAL;
1da177e4
LT
6921
6922 retval = -ESRCH;
1a551ae7 6923 rcu_read_lock();
1da177e4
LT
6924 p = find_process_by_pid(pid);
6925 if (!p)
6926 goto out_unlock;
6927
6928 retval = security_task_getscheduler(p);
6929 if (retval)
6930 goto out_unlock;
6931
dba091b9
TG
6932 rq = task_rq_lock(p, &flags);
6933 time_slice = p->sched_class->get_rr_interval(rq, p);
6934 task_rq_unlock(rq, &flags);
a4ec24b4 6935
1a551ae7 6936 rcu_read_unlock();
a4ec24b4 6937 jiffies_to_timespec(time_slice, &t);
1da177e4 6938 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6939 return retval;
3a5c359a 6940
1da177e4 6941out_unlock:
1a551ae7 6942 rcu_read_unlock();
1da177e4
LT
6943 return retval;
6944}
6945
7c731e0a 6946static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6947
82a1fcb9 6948void sched_show_task(struct task_struct *p)
1da177e4 6949{
1da177e4 6950 unsigned long free = 0;
36c8b586 6951 unsigned state;
1da177e4 6952
1da177e4 6953 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 6954 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6955 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6956#if BITS_PER_LONG == 32
1da177e4 6957 if (state == TASK_RUNNING)
3df0fc5b 6958 printk(KERN_CONT " running ");
1da177e4 6959 else
3df0fc5b 6960 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6961#else
6962 if (state == TASK_RUNNING)
3df0fc5b 6963 printk(KERN_CONT " running task ");
1da177e4 6964 else
3df0fc5b 6965 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6966#endif
6967#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6968 free = stack_not_used(p);
1da177e4 6969#endif
3df0fc5b 6970 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
6971 task_pid_nr(p), task_pid_nr(p->real_parent),
6972 (unsigned long)task_thread_info(p)->flags);
1da177e4 6973
5fb5e6de 6974 show_stack(p, NULL);
1da177e4
LT
6975}
6976
e59e2ae2 6977void show_state_filter(unsigned long state_filter)
1da177e4 6978{
36c8b586 6979 struct task_struct *g, *p;
1da177e4 6980
4bd77321 6981#if BITS_PER_LONG == 32
3df0fc5b
PZ
6982 printk(KERN_INFO
6983 " task PC stack pid father\n");
1da177e4 6984#else
3df0fc5b
PZ
6985 printk(KERN_INFO
6986 " task PC stack pid father\n");
1da177e4
LT
6987#endif
6988 read_lock(&tasklist_lock);
6989 do_each_thread(g, p) {
6990 /*
6991 * reset the NMI-timeout, listing all files on a slow
6992 * console might take alot of time:
6993 */
6994 touch_nmi_watchdog();
39bc89fd 6995 if (!state_filter || (p->state & state_filter))
82a1fcb9 6996 sched_show_task(p);
1da177e4
LT
6997 } while_each_thread(g, p);
6998
04c9167f
JF
6999 touch_all_softlockup_watchdogs();
7000
dd41f596
IM
7001#ifdef CONFIG_SCHED_DEBUG
7002 sysrq_sched_debug_show();
7003#endif
1da177e4 7004 read_unlock(&tasklist_lock);
e59e2ae2
IM
7005 /*
7006 * Only show locks if all tasks are dumped:
7007 */
93335a21 7008 if (!state_filter)
e59e2ae2 7009 debug_show_all_locks();
1da177e4
LT
7010}
7011
1df21055
IM
7012void __cpuinit init_idle_bootup_task(struct task_struct *idle)
7013{
dd41f596 7014 idle->sched_class = &idle_sched_class;
1df21055
IM
7015}
7016
f340c0d1
IM
7017/**
7018 * init_idle - set up an idle thread for a given CPU
7019 * @idle: task in question
7020 * @cpu: cpu the idle task belongs to
7021 *
7022 * NOTE: this function does not set the idle thread's NEED_RESCHED
7023 * flag, to make booting more robust.
7024 */
5c1e1767 7025void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 7026{
70b97a7f 7027 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
7028 unsigned long flags;
7029
05fa785c 7030 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 7031
dd41f596 7032 __sched_fork(idle);
06b83b5f 7033 idle->state = TASK_RUNNING;
dd41f596
IM
7034 idle->se.exec_start = sched_clock();
7035
96f874e2 7036 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 7037 __set_task_cpu(idle, cpu);
1da177e4 7038
1da177e4 7039 rq->curr = rq->idle = idle;
4866cde0
NP
7040#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7041 idle->oncpu = 1;
7042#endif
05fa785c 7043 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
7044
7045 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
7046#if defined(CONFIG_PREEMPT)
7047 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7048#else
a1261f54 7049 task_thread_info(idle)->preempt_count = 0;
8e3e076c 7050#endif
dd41f596
IM
7051 /*
7052 * The idle tasks have their own, simple scheduling class:
7053 */
7054 idle->sched_class = &idle_sched_class;
fb52607a 7055 ftrace_graph_init_task(idle);
1da177e4
LT
7056}
7057
7058/*
7059 * In a system that switches off the HZ timer nohz_cpu_mask
7060 * indicates which cpus entered this state. This is used
7061 * in the rcu update to wait only for active cpus. For system
7062 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 7063 * always be CPU_BITS_NONE.
1da177e4 7064 */
6a7b3dc3 7065cpumask_var_t nohz_cpu_mask;
1da177e4 7066
19978ca6
IM
7067/*
7068 * Increase the granularity value when there are more CPUs,
7069 * because with more CPUs the 'effective latency' as visible
7070 * to users decreases. But the relationship is not linear,
7071 * so pick a second-best guess by going with the log2 of the
7072 * number of CPUs.
7073 *
7074 * This idea comes from the SD scheduler of Con Kolivas:
7075 */
acb4a848 7076static int get_update_sysctl_factor(void)
19978ca6 7077{
4ca3ef71 7078 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
7079 unsigned int factor;
7080
7081 switch (sysctl_sched_tunable_scaling) {
7082 case SCHED_TUNABLESCALING_NONE:
7083 factor = 1;
7084 break;
7085 case SCHED_TUNABLESCALING_LINEAR:
7086 factor = cpus;
7087 break;
7088 case SCHED_TUNABLESCALING_LOG:
7089 default:
7090 factor = 1 + ilog2(cpus);
7091 break;
7092 }
19978ca6 7093
acb4a848
CE
7094 return factor;
7095}
19978ca6 7096
acb4a848
CE
7097static void update_sysctl(void)
7098{
7099 unsigned int factor = get_update_sysctl_factor();
19978ca6 7100
0bcdcf28
CE
7101#define SET_SYSCTL(name) \
7102 (sysctl_##name = (factor) * normalized_sysctl_##name)
7103 SET_SYSCTL(sched_min_granularity);
7104 SET_SYSCTL(sched_latency);
7105 SET_SYSCTL(sched_wakeup_granularity);
7106 SET_SYSCTL(sched_shares_ratelimit);
7107#undef SET_SYSCTL
7108}
55cd5340 7109
0bcdcf28
CE
7110static inline void sched_init_granularity(void)
7111{
7112 update_sysctl();
19978ca6
IM
7113}
7114
1da177e4
LT
7115#ifdef CONFIG_SMP
7116/*
7117 * This is how migration works:
7118 *
70b97a7f 7119 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7120 * runqueue and wake up that CPU's migration thread.
7121 * 2) we down() the locked semaphore => thread blocks.
7122 * 3) migration thread wakes up (implicitly it forces the migrated
7123 * thread off the CPU)
7124 * 4) it gets the migration request and checks whether the migrated
7125 * task is still in the wrong runqueue.
7126 * 5) if it's in the wrong runqueue then the migration thread removes
7127 * it and puts it into the right queue.
7128 * 6) migration thread up()s the semaphore.
7129 * 7) we wake up and the migration is done.
7130 */
7131
7132/*
7133 * Change a given task's CPU affinity. Migrate the thread to a
7134 * proper CPU and schedule it away if the CPU it's executing on
7135 * is removed from the allowed bitmask.
7136 *
7137 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7138 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7139 * call is not atomic; no spinlocks may be held.
7140 */
96f874e2 7141int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7142{
70b97a7f 7143 struct migration_req req;
1da177e4 7144 unsigned long flags;
70b97a7f 7145 struct rq *rq;
48f24c4d 7146 int ret = 0;
1da177e4 7147
e2912009
PZ
7148 /*
7149 * Since we rely on wake-ups to migrate sleeping tasks, don't change
7150 * the ->cpus_allowed mask from under waking tasks, which would be
7151 * possible when we change rq->lock in ttwu(), so synchronize against
7152 * TASK_WAKING to avoid that.
fabf318e
PZ
7153 *
7154 * Make an exception for freshly cloned tasks, since cpuset namespaces
7155 * might move the task about, we have to validate the target in
7156 * wake_up_new_task() anyway since the cpu might have gone away.
e2912009
PZ
7157 */
7158again:
fabf318e 7159 while (p->state == TASK_WAKING && !(p->flags & PF_STARTING))
e2912009
PZ
7160 cpu_relax();
7161
1da177e4 7162 rq = task_rq_lock(p, &flags);
e2912009 7163
fabf318e 7164 if (p->state == TASK_WAKING && !(p->flags & PF_STARTING)) {
e2912009
PZ
7165 task_rq_unlock(rq, &flags);
7166 goto again;
7167 }
7168
6ad4c188 7169 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
7170 ret = -EINVAL;
7171 goto out;
7172 }
7173
9985b0ba 7174 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7175 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7176 ret = -EINVAL;
7177 goto out;
7178 }
7179
73fe6aae 7180 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7181 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7182 else {
96f874e2
RR
7183 cpumask_copy(&p->cpus_allowed, new_mask);
7184 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7185 }
7186
1da177e4 7187 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7188 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7189 goto out;
7190
6ad4c188 7191 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 7192 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7193 struct task_struct *mt = rq->migration_thread;
7194
7195 get_task_struct(mt);
1da177e4
LT
7196 task_rq_unlock(rq, &flags);
7197 wake_up_process(rq->migration_thread);
693525e3 7198 put_task_struct(mt);
1da177e4
LT
7199 wait_for_completion(&req.done);
7200 tlb_migrate_finish(p->mm);
7201 return 0;
7202 }
7203out:
7204 task_rq_unlock(rq, &flags);
48f24c4d 7205
1da177e4
LT
7206 return ret;
7207}
cd8ba7cd 7208EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7209
7210/*
41a2d6cf 7211 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7212 * this because either it can't run here any more (set_cpus_allowed()
7213 * away from this CPU, or CPU going down), or because we're
7214 * attempting to rebalance this task on exec (sched_exec).
7215 *
7216 * So we race with normal scheduler movements, but that's OK, as long
7217 * as the task is no longer on this CPU.
efc30814
KK
7218 *
7219 * Returns non-zero if task was successfully migrated.
1da177e4 7220 */
efc30814 7221static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7222{
70b97a7f 7223 struct rq *rq_dest, *rq_src;
e2912009 7224 int ret = 0;
1da177e4 7225
e761b772 7226 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7227 return ret;
1da177e4
LT
7228
7229 rq_src = cpu_rq(src_cpu);
7230 rq_dest = cpu_rq(dest_cpu);
7231
7232 double_rq_lock(rq_src, rq_dest);
7233 /* Already moved. */
7234 if (task_cpu(p) != src_cpu)
b1e38734 7235 goto done;
1da177e4 7236 /* Affinity changed (again). */
96f874e2 7237 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7238 goto fail;
1da177e4 7239
e2912009
PZ
7240 /*
7241 * If we're not on a rq, the next wake-up will ensure we're
7242 * placed properly.
7243 */
7244 if (p->se.on_rq) {
2e1cb74a 7245 deactivate_task(rq_src, p, 0);
e2912009 7246 set_task_cpu(p, dest_cpu);
dd41f596 7247 activate_task(rq_dest, p, 0);
15afe09b 7248 check_preempt_curr(rq_dest, p, 0);
1da177e4 7249 }
b1e38734 7250done:
efc30814 7251 ret = 1;
b1e38734 7252fail:
1da177e4 7253 double_rq_unlock(rq_src, rq_dest);
efc30814 7254 return ret;
1da177e4
LT
7255}
7256
03b042bf
PM
7257#define RCU_MIGRATION_IDLE 0
7258#define RCU_MIGRATION_NEED_QS 1
7259#define RCU_MIGRATION_GOT_QS 2
7260#define RCU_MIGRATION_MUST_SYNC 3
7261
1da177e4
LT
7262/*
7263 * migration_thread - this is a highprio system thread that performs
7264 * thread migration by bumping thread off CPU then 'pushing' onto
7265 * another runqueue.
7266 */
95cdf3b7 7267static int migration_thread(void *data)
1da177e4 7268{
03b042bf 7269 int badcpu;
1da177e4 7270 int cpu = (long)data;
70b97a7f 7271 struct rq *rq;
1da177e4
LT
7272
7273 rq = cpu_rq(cpu);
7274 BUG_ON(rq->migration_thread != current);
7275
7276 set_current_state(TASK_INTERRUPTIBLE);
7277 while (!kthread_should_stop()) {
70b97a7f 7278 struct migration_req *req;
1da177e4 7279 struct list_head *head;
1da177e4 7280
05fa785c 7281 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
7282
7283 if (cpu_is_offline(cpu)) {
05fa785c 7284 raw_spin_unlock_irq(&rq->lock);
371cbb38 7285 break;
1da177e4
LT
7286 }
7287
7288 if (rq->active_balance) {
7289 active_load_balance(rq, cpu);
7290 rq->active_balance = 0;
7291 }
7292
7293 head = &rq->migration_queue;
7294
7295 if (list_empty(head)) {
05fa785c 7296 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
7297 schedule();
7298 set_current_state(TASK_INTERRUPTIBLE);
7299 continue;
7300 }
70b97a7f 7301 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7302 list_del_init(head->next);
7303
03b042bf 7304 if (req->task != NULL) {
05fa785c 7305 raw_spin_unlock(&rq->lock);
03b042bf
PM
7306 __migrate_task(req->task, cpu, req->dest_cpu);
7307 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7308 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 7309 raw_spin_unlock(&rq->lock);
03b042bf
PM
7310 } else {
7311 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 7312 raw_spin_unlock(&rq->lock);
03b042bf
PM
7313 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7314 }
674311d5 7315 local_irq_enable();
1da177e4
LT
7316
7317 complete(&req->done);
7318 }
7319 __set_current_state(TASK_RUNNING);
1da177e4 7320
1da177e4
LT
7321 return 0;
7322}
7323
7324#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7325
7326static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7327{
7328 int ret;
7329
7330 local_irq_disable();
7331 ret = __migrate_task(p, src_cpu, dest_cpu);
7332 local_irq_enable();
7333 return ret;
7334}
7335
054b9108 7336/*
3a4fa0a2 7337 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7338 */
48f24c4d 7339static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7340{
70b97a7f 7341 int dest_cpu;
e76bd8d9
RR
7342
7343again:
5da9a0fb 7344 dest_cpu = select_fallback_rq(dead_cpu, p);
e76bd8d9 7345
e76bd8d9
RR
7346 /* It can have affinity changed while we were choosing. */
7347 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7348 goto again;
1da177e4
LT
7349}
7350
7351/*
7352 * While a dead CPU has no uninterruptible tasks queued at this point,
7353 * it might still have a nonzero ->nr_uninterruptible counter, because
7354 * for performance reasons the counter is not stricly tracking tasks to
7355 * their home CPUs. So we just add the counter to another CPU's counter,
7356 * to keep the global sum constant after CPU-down:
7357 */
70b97a7f 7358static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7359{
6ad4c188 7360 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
7361 unsigned long flags;
7362
7363 local_irq_save(flags);
7364 double_rq_lock(rq_src, rq_dest);
7365 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7366 rq_src->nr_uninterruptible = 0;
7367 double_rq_unlock(rq_src, rq_dest);
7368 local_irq_restore(flags);
7369}
7370
7371/* Run through task list and migrate tasks from the dead cpu. */
7372static void migrate_live_tasks(int src_cpu)
7373{
48f24c4d 7374 struct task_struct *p, *t;
1da177e4 7375
f7b4cddc 7376 read_lock(&tasklist_lock);
1da177e4 7377
48f24c4d
IM
7378 do_each_thread(t, p) {
7379 if (p == current)
1da177e4
LT
7380 continue;
7381
48f24c4d
IM
7382 if (task_cpu(p) == src_cpu)
7383 move_task_off_dead_cpu(src_cpu, p);
7384 } while_each_thread(t, p);
1da177e4 7385
f7b4cddc 7386 read_unlock(&tasklist_lock);
1da177e4
LT
7387}
7388
dd41f596
IM
7389/*
7390 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7391 * It does so by boosting its priority to highest possible.
7392 * Used by CPU offline code.
1da177e4
LT
7393 */
7394void sched_idle_next(void)
7395{
48f24c4d 7396 int this_cpu = smp_processor_id();
70b97a7f 7397 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7398 struct task_struct *p = rq->idle;
7399 unsigned long flags;
7400
7401 /* cpu has to be offline */
48f24c4d 7402 BUG_ON(cpu_online(this_cpu));
1da177e4 7403
48f24c4d
IM
7404 /*
7405 * Strictly not necessary since rest of the CPUs are stopped by now
7406 * and interrupts disabled on the current cpu.
1da177e4 7407 */
05fa785c 7408 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 7409
dd41f596 7410 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7411
94bc9a7b
DA
7412 update_rq_clock(rq);
7413 activate_task(rq, p, 0);
1da177e4 7414
05fa785c 7415 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
7416}
7417
48f24c4d
IM
7418/*
7419 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7420 * offline.
7421 */
7422void idle_task_exit(void)
7423{
7424 struct mm_struct *mm = current->active_mm;
7425
7426 BUG_ON(cpu_online(smp_processor_id()));
7427
7428 if (mm != &init_mm)
7429 switch_mm(mm, &init_mm, current);
7430 mmdrop(mm);
7431}
7432
054b9108 7433/* called under rq->lock with disabled interrupts */
36c8b586 7434static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7435{
70b97a7f 7436 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7437
7438 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7439 BUG_ON(!p->exit_state);
1da177e4
LT
7440
7441 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7442 BUG_ON(p->state == TASK_DEAD);
1da177e4 7443
48f24c4d 7444 get_task_struct(p);
1da177e4
LT
7445
7446 /*
7447 * Drop lock around migration; if someone else moves it,
41a2d6cf 7448 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7449 * fine.
7450 */
05fa785c 7451 raw_spin_unlock_irq(&rq->lock);
48f24c4d 7452 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 7453 raw_spin_lock_irq(&rq->lock);
1da177e4 7454
48f24c4d 7455 put_task_struct(p);
1da177e4
LT
7456}
7457
7458/* release_task() removes task from tasklist, so we won't find dead tasks. */
7459static void migrate_dead_tasks(unsigned int dead_cpu)
7460{
70b97a7f 7461 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7462 struct task_struct *next;
48f24c4d 7463
dd41f596
IM
7464 for ( ; ; ) {
7465 if (!rq->nr_running)
7466 break;
a8e504d2 7467 update_rq_clock(rq);
b67802ea 7468 next = pick_next_task(rq);
dd41f596
IM
7469 if (!next)
7470 break;
79c53799 7471 next->sched_class->put_prev_task(rq, next);
dd41f596 7472 migrate_dead(dead_cpu, next);
e692ab53 7473
1da177e4
LT
7474 }
7475}
dce48a84
TG
7476
7477/*
7478 * remove the tasks which were accounted by rq from calc_load_tasks.
7479 */
7480static void calc_global_load_remove(struct rq *rq)
7481{
7482 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7483 rq->calc_load_active = 0;
dce48a84 7484}
1da177e4
LT
7485#endif /* CONFIG_HOTPLUG_CPU */
7486
e692ab53
NP
7487#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7488
7489static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7490 {
7491 .procname = "sched_domain",
c57baf1e 7492 .mode = 0555,
e0361851 7493 },
56992309 7494 {}
e692ab53
NP
7495};
7496
7497static struct ctl_table sd_ctl_root[] = {
e0361851
AD
7498 {
7499 .procname = "kernel",
c57baf1e 7500 .mode = 0555,
e0361851
AD
7501 .child = sd_ctl_dir,
7502 },
56992309 7503 {}
e692ab53
NP
7504};
7505
7506static struct ctl_table *sd_alloc_ctl_entry(int n)
7507{
7508 struct ctl_table *entry =
5cf9f062 7509 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7510
e692ab53
NP
7511 return entry;
7512}
7513
6382bc90
MM
7514static void sd_free_ctl_entry(struct ctl_table **tablep)
7515{
cd790076 7516 struct ctl_table *entry;
6382bc90 7517
cd790076
MM
7518 /*
7519 * In the intermediate directories, both the child directory and
7520 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7521 * will always be set. In the lowest directory the names are
cd790076
MM
7522 * static strings and all have proc handlers.
7523 */
7524 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7525 if (entry->child)
7526 sd_free_ctl_entry(&entry->child);
cd790076
MM
7527 if (entry->proc_handler == NULL)
7528 kfree(entry->procname);
7529 }
6382bc90
MM
7530
7531 kfree(*tablep);
7532 *tablep = NULL;
7533}
7534
e692ab53 7535static void
e0361851 7536set_table_entry(struct ctl_table *entry,
e692ab53
NP
7537 const char *procname, void *data, int maxlen,
7538 mode_t mode, proc_handler *proc_handler)
7539{
e692ab53
NP
7540 entry->procname = procname;
7541 entry->data = data;
7542 entry->maxlen = maxlen;
7543 entry->mode = mode;
7544 entry->proc_handler = proc_handler;
7545}
7546
7547static struct ctl_table *
7548sd_alloc_ctl_domain_table(struct sched_domain *sd)
7549{
a5d8c348 7550 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7551
ad1cdc1d
MM
7552 if (table == NULL)
7553 return NULL;
7554
e0361851 7555 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7556 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7557 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7558 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7559 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7560 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7561 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7562 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7563 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7564 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7565 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7566 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7567 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7568 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7569 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7570 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7571 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7572 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7573 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7574 &sd->cache_nice_tries,
7575 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7576 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7577 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7578 set_table_entry(&table[11], "name", sd->name,
7579 CORENAME_MAX_SIZE, 0444, proc_dostring);
7580 /* &table[12] is terminator */
e692ab53
NP
7581
7582 return table;
7583}
7584
9a4e7159 7585static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7586{
7587 struct ctl_table *entry, *table;
7588 struct sched_domain *sd;
7589 int domain_num = 0, i;
7590 char buf[32];
7591
7592 for_each_domain(cpu, sd)
7593 domain_num++;
7594 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7595 if (table == NULL)
7596 return NULL;
e692ab53
NP
7597
7598 i = 0;
7599 for_each_domain(cpu, sd) {
7600 snprintf(buf, 32, "domain%d", i);
e692ab53 7601 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7602 entry->mode = 0555;
e692ab53
NP
7603 entry->child = sd_alloc_ctl_domain_table(sd);
7604 entry++;
7605 i++;
7606 }
7607 return table;
7608}
7609
7610static struct ctl_table_header *sd_sysctl_header;
6382bc90 7611static void register_sched_domain_sysctl(void)
e692ab53 7612{
6ad4c188 7613 int i, cpu_num = num_possible_cpus();
e692ab53
NP
7614 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7615 char buf[32];
7616
7378547f
MM
7617 WARN_ON(sd_ctl_dir[0].child);
7618 sd_ctl_dir[0].child = entry;
7619
ad1cdc1d
MM
7620 if (entry == NULL)
7621 return;
7622
6ad4c188 7623 for_each_possible_cpu(i) {
e692ab53 7624 snprintf(buf, 32, "cpu%d", i);
e692ab53 7625 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7626 entry->mode = 0555;
e692ab53 7627 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7628 entry++;
e692ab53 7629 }
7378547f
MM
7630
7631 WARN_ON(sd_sysctl_header);
e692ab53
NP
7632 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7633}
6382bc90 7634
7378547f 7635/* may be called multiple times per register */
6382bc90
MM
7636static void unregister_sched_domain_sysctl(void)
7637{
7378547f
MM
7638 if (sd_sysctl_header)
7639 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7640 sd_sysctl_header = NULL;
7378547f
MM
7641 if (sd_ctl_dir[0].child)
7642 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7643}
e692ab53 7644#else
6382bc90
MM
7645static void register_sched_domain_sysctl(void)
7646{
7647}
7648static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7649{
7650}
7651#endif
7652
1f11eb6a
GH
7653static void set_rq_online(struct rq *rq)
7654{
7655 if (!rq->online) {
7656 const struct sched_class *class;
7657
c6c4927b 7658 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7659 rq->online = 1;
7660
7661 for_each_class(class) {
7662 if (class->rq_online)
7663 class->rq_online(rq);
7664 }
7665 }
7666}
7667
7668static void set_rq_offline(struct rq *rq)
7669{
7670 if (rq->online) {
7671 const struct sched_class *class;
7672
7673 for_each_class(class) {
7674 if (class->rq_offline)
7675 class->rq_offline(rq);
7676 }
7677
c6c4927b 7678 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7679 rq->online = 0;
7680 }
7681}
7682
1da177e4
LT
7683/*
7684 * migration_call - callback that gets triggered when a CPU is added.
7685 * Here we can start up the necessary migration thread for the new CPU.
7686 */
48f24c4d
IM
7687static int __cpuinit
7688migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7689{
1da177e4 7690 struct task_struct *p;
48f24c4d 7691 int cpu = (long)hcpu;
1da177e4 7692 unsigned long flags;
70b97a7f 7693 struct rq *rq;
1da177e4
LT
7694
7695 switch (action) {
5be9361c 7696
1da177e4 7697 case CPU_UP_PREPARE:
8bb78442 7698 case CPU_UP_PREPARE_FROZEN:
dd41f596 7699 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7700 if (IS_ERR(p))
7701 return NOTIFY_BAD;
1da177e4
LT
7702 kthread_bind(p, cpu);
7703 /* Must be high prio: stop_machine expects to yield to it. */
7704 rq = task_rq_lock(p, &flags);
dd41f596 7705 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7706 task_rq_unlock(rq, &flags);
371cbb38 7707 get_task_struct(p);
1da177e4 7708 cpu_rq(cpu)->migration_thread = p;
a468d389 7709 rq->calc_load_update = calc_load_update;
1da177e4 7710 break;
48f24c4d 7711
1da177e4 7712 case CPU_ONLINE:
8bb78442 7713 case CPU_ONLINE_FROZEN:
3a4fa0a2 7714 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7715 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7716
7717 /* Update our root-domain */
7718 rq = cpu_rq(cpu);
05fa785c 7719 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 7720 if (rq->rd) {
c6c4927b 7721 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7722
7723 set_rq_online(rq);
1f94ef59 7724 }
05fa785c 7725 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7726 break;
48f24c4d 7727
1da177e4
LT
7728#ifdef CONFIG_HOTPLUG_CPU
7729 case CPU_UP_CANCELED:
8bb78442 7730 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7731 if (!cpu_rq(cpu)->migration_thread)
7732 break;
41a2d6cf 7733 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7734 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7735 cpumask_any(cpu_online_mask));
1da177e4 7736 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7737 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7738 cpu_rq(cpu)->migration_thread = NULL;
7739 break;
48f24c4d 7740
1da177e4 7741 case CPU_DEAD:
8bb78442 7742 case CPU_DEAD_FROZEN:
470fd646 7743 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7744 migrate_live_tasks(cpu);
7745 rq = cpu_rq(cpu);
7746 kthread_stop(rq->migration_thread);
371cbb38 7747 put_task_struct(rq->migration_thread);
1da177e4
LT
7748 rq->migration_thread = NULL;
7749 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 7750 raw_spin_lock_irq(&rq->lock);
a8e504d2 7751 update_rq_clock(rq);
2e1cb74a 7752 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
7753 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7754 rq->idle->sched_class = &idle_sched_class;
1da177e4 7755 migrate_dead_tasks(cpu);
05fa785c 7756 raw_spin_unlock_irq(&rq->lock);
470fd646 7757 cpuset_unlock();
1da177e4
LT
7758 migrate_nr_uninterruptible(rq);
7759 BUG_ON(rq->nr_running != 0);
dce48a84 7760 calc_global_load_remove(rq);
41a2d6cf
IM
7761 /*
7762 * No need to migrate the tasks: it was best-effort if
7763 * they didn't take sched_hotcpu_mutex. Just wake up
7764 * the requestors.
7765 */
05fa785c 7766 raw_spin_lock_irq(&rq->lock);
1da177e4 7767 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7768 struct migration_req *req;
7769
1da177e4 7770 req = list_entry(rq->migration_queue.next,
70b97a7f 7771 struct migration_req, list);
1da177e4 7772 list_del_init(&req->list);
05fa785c 7773 raw_spin_unlock_irq(&rq->lock);
1da177e4 7774 complete(&req->done);
05fa785c 7775 raw_spin_lock_irq(&rq->lock);
1da177e4 7776 }
05fa785c 7777 raw_spin_unlock_irq(&rq->lock);
1da177e4 7778 break;
57d885fe 7779
08f503b0
GH
7780 case CPU_DYING:
7781 case CPU_DYING_FROZEN:
57d885fe
GH
7782 /* Update our root-domain */
7783 rq = cpu_rq(cpu);
05fa785c 7784 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 7785 if (rq->rd) {
c6c4927b 7786 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7787 set_rq_offline(rq);
57d885fe 7788 }
05fa785c 7789 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 7790 break;
1da177e4
LT
7791#endif
7792 }
7793 return NOTIFY_OK;
7794}
7795
f38b0820
PM
7796/*
7797 * Register at high priority so that task migration (migrate_all_tasks)
7798 * happens before everything else. This has to be lower priority than
cdd6c482 7799 * the notifier in the perf_event subsystem, though.
1da177e4 7800 */
26c2143b 7801static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7802 .notifier_call = migration_call,
7803 .priority = 10
7804};
7805
7babe8db 7806static int __init migration_init(void)
1da177e4
LT
7807{
7808 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7809 int err;
48f24c4d
IM
7810
7811 /* Start one for the boot CPU: */
07dccf33
AM
7812 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7813 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7814 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7815 register_cpu_notifier(&migration_notifier);
7babe8db 7816
a004cd42 7817 return 0;
1da177e4 7818}
7babe8db 7819early_initcall(migration_init);
1da177e4
LT
7820#endif
7821
7822#ifdef CONFIG_SMP
476f3534 7823
3e9830dc 7824#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7825
f6630114
MT
7826static __read_mostly int sched_domain_debug_enabled;
7827
7828static int __init sched_domain_debug_setup(char *str)
7829{
7830 sched_domain_debug_enabled = 1;
7831
7832 return 0;
7833}
7834early_param("sched_debug", sched_domain_debug_setup);
7835
7c16ec58 7836static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7837 struct cpumask *groupmask)
1da177e4 7838{
4dcf6aff 7839 struct sched_group *group = sd->groups;
434d53b0 7840 char str[256];
1da177e4 7841
968ea6d8 7842 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7843 cpumask_clear(groupmask);
4dcf6aff
IM
7844
7845 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7846
7847 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 7848 printk("does not load-balance\n");
4dcf6aff 7849 if (sd->parent)
3df0fc5b
PZ
7850 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7851 " has parent");
4dcf6aff 7852 return -1;
41c7ce9a
NP
7853 }
7854
3df0fc5b 7855 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7856
758b2cdc 7857 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
7858 printk(KERN_ERR "ERROR: domain->span does not contain "
7859 "CPU%d\n", cpu);
4dcf6aff 7860 }
758b2cdc 7861 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
7862 printk(KERN_ERR "ERROR: domain->groups does not contain"
7863 " CPU%d\n", cpu);
4dcf6aff 7864 }
1da177e4 7865
4dcf6aff 7866 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7867 do {
4dcf6aff 7868 if (!group) {
3df0fc5b
PZ
7869 printk("\n");
7870 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7871 break;
7872 }
7873
18a3885f 7874 if (!group->cpu_power) {
3df0fc5b
PZ
7875 printk(KERN_CONT "\n");
7876 printk(KERN_ERR "ERROR: domain->cpu_power not "
7877 "set\n");
4dcf6aff
IM
7878 break;
7879 }
1da177e4 7880
758b2cdc 7881 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
7882 printk(KERN_CONT "\n");
7883 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
7884 break;
7885 }
1da177e4 7886
758b2cdc 7887 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
7888 printk(KERN_CONT "\n");
7889 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
7890 break;
7891 }
1da177e4 7892
758b2cdc 7893 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7894
968ea6d8 7895 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 7896
3df0fc5b 7897 printk(KERN_CONT " %s", str);
18a3885f 7898 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
7899 printk(KERN_CONT " (cpu_power = %d)",
7900 group->cpu_power);
381512cf 7901 }
1da177e4 7902
4dcf6aff
IM
7903 group = group->next;
7904 } while (group != sd->groups);
3df0fc5b 7905 printk(KERN_CONT "\n");
1da177e4 7906
758b2cdc 7907 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 7908 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7909
758b2cdc
RR
7910 if (sd->parent &&
7911 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
7912 printk(KERN_ERR "ERROR: parent span is not a superset "
7913 "of domain->span\n");
4dcf6aff
IM
7914 return 0;
7915}
1da177e4 7916
4dcf6aff
IM
7917static void sched_domain_debug(struct sched_domain *sd, int cpu)
7918{
d5dd3db1 7919 cpumask_var_t groupmask;
4dcf6aff 7920 int level = 0;
1da177e4 7921
f6630114
MT
7922 if (!sched_domain_debug_enabled)
7923 return;
7924
4dcf6aff
IM
7925 if (!sd) {
7926 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7927 return;
7928 }
1da177e4 7929
4dcf6aff
IM
7930 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7931
d5dd3db1 7932 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7933 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7934 return;
7935 }
7936
4dcf6aff 7937 for (;;) {
7c16ec58 7938 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7939 break;
1da177e4
LT
7940 level++;
7941 sd = sd->parent;
33859f7f 7942 if (!sd)
4dcf6aff
IM
7943 break;
7944 }
d5dd3db1 7945 free_cpumask_var(groupmask);
1da177e4 7946}
6d6bc0ad 7947#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7948# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7949#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7950
1a20ff27 7951static int sd_degenerate(struct sched_domain *sd)
245af2c7 7952{
758b2cdc 7953 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7954 return 1;
7955
7956 /* Following flags need at least 2 groups */
7957 if (sd->flags & (SD_LOAD_BALANCE |
7958 SD_BALANCE_NEWIDLE |
7959 SD_BALANCE_FORK |
89c4710e
SS
7960 SD_BALANCE_EXEC |
7961 SD_SHARE_CPUPOWER |
7962 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7963 if (sd->groups != sd->groups->next)
7964 return 0;
7965 }
7966
7967 /* Following flags don't use groups */
c88d5910 7968 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7969 return 0;
7970
7971 return 1;
7972}
7973
48f24c4d
IM
7974static int
7975sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7976{
7977 unsigned long cflags = sd->flags, pflags = parent->flags;
7978
7979 if (sd_degenerate(parent))
7980 return 1;
7981
758b2cdc 7982 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7983 return 0;
7984
245af2c7
SS
7985 /* Flags needing groups don't count if only 1 group in parent */
7986 if (parent->groups == parent->groups->next) {
7987 pflags &= ~(SD_LOAD_BALANCE |
7988 SD_BALANCE_NEWIDLE |
7989 SD_BALANCE_FORK |
89c4710e
SS
7990 SD_BALANCE_EXEC |
7991 SD_SHARE_CPUPOWER |
7992 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7993 if (nr_node_ids == 1)
7994 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7995 }
7996 if (~cflags & pflags)
7997 return 0;
7998
7999 return 1;
8000}
8001
c6c4927b
RR
8002static void free_rootdomain(struct root_domain *rd)
8003{
047106ad
PZ
8004 synchronize_sched();
8005
68e74568
RR
8006 cpupri_cleanup(&rd->cpupri);
8007
c6c4927b
RR
8008 free_cpumask_var(rd->rto_mask);
8009 free_cpumask_var(rd->online);
8010 free_cpumask_var(rd->span);
8011 kfree(rd);
8012}
8013
57d885fe
GH
8014static void rq_attach_root(struct rq *rq, struct root_domain *rd)
8015{
a0490fa3 8016 struct root_domain *old_rd = NULL;
57d885fe 8017 unsigned long flags;
57d885fe 8018
05fa785c 8019 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
8020
8021 if (rq->rd) {
a0490fa3 8022 old_rd = rq->rd;
57d885fe 8023
c6c4927b 8024 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 8025 set_rq_offline(rq);
57d885fe 8026
c6c4927b 8027 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 8028
a0490fa3
IM
8029 /*
8030 * If we dont want to free the old_rt yet then
8031 * set old_rd to NULL to skip the freeing later
8032 * in this function:
8033 */
8034 if (!atomic_dec_and_test(&old_rd->refcount))
8035 old_rd = NULL;
57d885fe
GH
8036 }
8037
8038 atomic_inc(&rd->refcount);
8039 rq->rd = rd;
8040
c6c4927b 8041 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 8042 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 8043 set_rq_online(rq);
57d885fe 8044
05fa785c 8045 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
8046
8047 if (old_rd)
8048 free_rootdomain(old_rd);
57d885fe
GH
8049}
8050
fd5e1b5d 8051static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 8052{
36b7b6d4
PE
8053 gfp_t gfp = GFP_KERNEL;
8054
57d885fe
GH
8055 memset(rd, 0, sizeof(*rd));
8056
36b7b6d4
PE
8057 if (bootmem)
8058 gfp = GFP_NOWAIT;
c6c4927b 8059
36b7b6d4 8060 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 8061 goto out;
36b7b6d4 8062 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 8063 goto free_span;
36b7b6d4 8064 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 8065 goto free_online;
6e0534f2 8066
0fb53029 8067 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 8068 goto free_rto_mask;
c6c4927b 8069 return 0;
6e0534f2 8070
68e74568
RR
8071free_rto_mask:
8072 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
8073free_online:
8074 free_cpumask_var(rd->online);
8075free_span:
8076 free_cpumask_var(rd->span);
0c910d28 8077out:
c6c4927b 8078 return -ENOMEM;
57d885fe
GH
8079}
8080
8081static void init_defrootdomain(void)
8082{
c6c4927b
RR
8083 init_rootdomain(&def_root_domain, true);
8084
57d885fe
GH
8085 atomic_set(&def_root_domain.refcount, 1);
8086}
8087
dc938520 8088static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
8089{
8090 struct root_domain *rd;
8091
8092 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8093 if (!rd)
8094 return NULL;
8095
c6c4927b
RR
8096 if (init_rootdomain(rd, false) != 0) {
8097 kfree(rd);
8098 return NULL;
8099 }
57d885fe
GH
8100
8101 return rd;
8102}
8103
1da177e4 8104/*
0eab9146 8105 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8106 * hold the hotplug lock.
8107 */
0eab9146
IM
8108static void
8109cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8110{
70b97a7f 8111 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8112 struct sched_domain *tmp;
8113
8114 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8115 for (tmp = sd; tmp; ) {
245af2c7
SS
8116 struct sched_domain *parent = tmp->parent;
8117 if (!parent)
8118 break;
f29c9b1c 8119
1a848870 8120 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8121 tmp->parent = parent->parent;
1a848870
SS
8122 if (parent->parent)
8123 parent->parent->child = tmp;
f29c9b1c
LZ
8124 } else
8125 tmp = tmp->parent;
245af2c7
SS
8126 }
8127
1a848870 8128 if (sd && sd_degenerate(sd)) {
245af2c7 8129 sd = sd->parent;
1a848870
SS
8130 if (sd)
8131 sd->child = NULL;
8132 }
1da177e4
LT
8133
8134 sched_domain_debug(sd, cpu);
8135
57d885fe 8136 rq_attach_root(rq, rd);
674311d5 8137 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8138}
8139
8140/* cpus with isolated domains */
dcc30a35 8141static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8142
8143/* Setup the mask of cpus configured for isolated domains */
8144static int __init isolated_cpu_setup(char *str)
8145{
bdddd296 8146 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 8147 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8148 return 1;
8149}
8150
8927f494 8151__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8152
8153/*
6711cab4
SS
8154 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8155 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8156 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8157 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8158 *
8159 * init_sched_build_groups will build a circular linked list of the groups
8160 * covered by the given span, and will set each group's ->cpumask correctly,
8161 * and ->cpu_power to 0.
8162 */
a616058b 8163static void
96f874e2
RR
8164init_sched_build_groups(const struct cpumask *span,
8165 const struct cpumask *cpu_map,
8166 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8167 struct sched_group **sg,
96f874e2
RR
8168 struct cpumask *tmpmask),
8169 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8170{
8171 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8172 int i;
8173
96f874e2 8174 cpumask_clear(covered);
7c16ec58 8175
abcd083a 8176 for_each_cpu(i, span) {
6711cab4 8177 struct sched_group *sg;
7c16ec58 8178 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8179 int j;
8180
758b2cdc 8181 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8182 continue;
8183
758b2cdc 8184 cpumask_clear(sched_group_cpus(sg));
18a3885f 8185 sg->cpu_power = 0;
1da177e4 8186
abcd083a 8187 for_each_cpu(j, span) {
7c16ec58 8188 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8189 continue;
8190
96f874e2 8191 cpumask_set_cpu(j, covered);
758b2cdc 8192 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8193 }
8194 if (!first)
8195 first = sg;
8196 if (last)
8197 last->next = sg;
8198 last = sg;
8199 }
8200 last->next = first;
8201}
8202
9c1cfda2 8203#define SD_NODES_PER_DOMAIN 16
1da177e4 8204
9c1cfda2 8205#ifdef CONFIG_NUMA
198e2f18 8206
9c1cfda2
JH
8207/**
8208 * find_next_best_node - find the next node to include in a sched_domain
8209 * @node: node whose sched_domain we're building
8210 * @used_nodes: nodes already in the sched_domain
8211 *
41a2d6cf 8212 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8213 * finds the closest node not already in the @used_nodes map.
8214 *
8215 * Should use nodemask_t.
8216 */
c5f59f08 8217static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8218{
8219 int i, n, val, min_val, best_node = 0;
8220
8221 min_val = INT_MAX;
8222
076ac2af 8223 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8224 /* Start at @node */
076ac2af 8225 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8226
8227 if (!nr_cpus_node(n))
8228 continue;
8229
8230 /* Skip already used nodes */
c5f59f08 8231 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8232 continue;
8233
8234 /* Simple min distance search */
8235 val = node_distance(node, n);
8236
8237 if (val < min_val) {
8238 min_val = val;
8239 best_node = n;
8240 }
8241 }
8242
c5f59f08 8243 node_set(best_node, *used_nodes);
9c1cfda2
JH
8244 return best_node;
8245}
8246
8247/**
8248 * sched_domain_node_span - get a cpumask for a node's sched_domain
8249 * @node: node whose cpumask we're constructing
73486722 8250 * @span: resulting cpumask
9c1cfda2 8251 *
41a2d6cf 8252 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8253 * should be one that prevents unnecessary balancing, but also spreads tasks
8254 * out optimally.
8255 */
96f874e2 8256static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8257{
c5f59f08 8258 nodemask_t used_nodes;
48f24c4d 8259 int i;
9c1cfda2 8260
6ca09dfc 8261 cpumask_clear(span);
c5f59f08 8262 nodes_clear(used_nodes);
9c1cfda2 8263
6ca09dfc 8264 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8265 node_set(node, used_nodes);
9c1cfda2
JH
8266
8267 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8268 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8269
6ca09dfc 8270 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8271 }
9c1cfda2 8272}
6d6bc0ad 8273#endif /* CONFIG_NUMA */
9c1cfda2 8274
5c45bf27 8275int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8276
6c99e9ad
RR
8277/*
8278 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8279 *
8280 * ( See the the comments in include/linux/sched.h:struct sched_group
8281 * and struct sched_domain. )
6c99e9ad
RR
8282 */
8283struct static_sched_group {
8284 struct sched_group sg;
8285 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8286};
8287
8288struct static_sched_domain {
8289 struct sched_domain sd;
8290 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8291};
8292
49a02c51
AH
8293struct s_data {
8294#ifdef CONFIG_NUMA
8295 int sd_allnodes;
8296 cpumask_var_t domainspan;
8297 cpumask_var_t covered;
8298 cpumask_var_t notcovered;
8299#endif
8300 cpumask_var_t nodemask;
8301 cpumask_var_t this_sibling_map;
8302 cpumask_var_t this_core_map;
8303 cpumask_var_t send_covered;
8304 cpumask_var_t tmpmask;
8305 struct sched_group **sched_group_nodes;
8306 struct root_domain *rd;
8307};
8308
2109b99e
AH
8309enum s_alloc {
8310 sa_sched_groups = 0,
8311 sa_rootdomain,
8312 sa_tmpmask,
8313 sa_send_covered,
8314 sa_this_core_map,
8315 sa_this_sibling_map,
8316 sa_nodemask,
8317 sa_sched_group_nodes,
8318#ifdef CONFIG_NUMA
8319 sa_notcovered,
8320 sa_covered,
8321 sa_domainspan,
8322#endif
8323 sa_none,
8324};
8325
9c1cfda2 8326/*
48f24c4d 8327 * SMT sched-domains:
9c1cfda2 8328 */
1da177e4 8329#ifdef CONFIG_SCHED_SMT
6c99e9ad 8330static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 8331static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 8332
41a2d6cf 8333static int
96f874e2
RR
8334cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8335 struct sched_group **sg, struct cpumask *unused)
1da177e4 8336{
6711cab4 8337 if (sg)
1871e52c 8338 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
8339 return cpu;
8340}
6d6bc0ad 8341#endif /* CONFIG_SCHED_SMT */
1da177e4 8342
48f24c4d
IM
8343/*
8344 * multi-core sched-domains:
8345 */
1e9f28fa 8346#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8347static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8348static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8349#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8350
8351#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8352static int
96f874e2
RR
8353cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8354 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8355{
6711cab4 8356 int group;
7c16ec58 8357
c69fc56d 8358 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8359 group = cpumask_first(mask);
6711cab4 8360 if (sg)
6c99e9ad 8361 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8362 return group;
1e9f28fa
SS
8363}
8364#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8365static int
96f874e2
RR
8366cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8367 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8368{
6711cab4 8369 if (sg)
6c99e9ad 8370 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8371 return cpu;
8372}
8373#endif
8374
6c99e9ad
RR
8375static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8376static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8377
41a2d6cf 8378static int
96f874e2
RR
8379cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8380 struct sched_group **sg, struct cpumask *mask)
1da177e4 8381{
6711cab4 8382 int group;
48f24c4d 8383#ifdef CONFIG_SCHED_MC
6ca09dfc 8384 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8385 group = cpumask_first(mask);
1e9f28fa 8386#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8387 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8388 group = cpumask_first(mask);
1da177e4 8389#else
6711cab4 8390 group = cpu;
1da177e4 8391#endif
6711cab4 8392 if (sg)
6c99e9ad 8393 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8394 return group;
1da177e4
LT
8395}
8396
8397#ifdef CONFIG_NUMA
1da177e4 8398/*
9c1cfda2
JH
8399 * The init_sched_build_groups can't handle what we want to do with node
8400 * groups, so roll our own. Now each node has its own list of groups which
8401 * gets dynamically allocated.
1da177e4 8402 */
62ea9ceb 8403static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8404static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8405
62ea9ceb 8406static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8407static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8408
96f874e2
RR
8409static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8410 struct sched_group **sg,
8411 struct cpumask *nodemask)
9c1cfda2 8412{
6711cab4
SS
8413 int group;
8414
6ca09dfc 8415 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8416 group = cpumask_first(nodemask);
6711cab4
SS
8417
8418 if (sg)
6c99e9ad 8419 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8420 return group;
1da177e4 8421}
6711cab4 8422
08069033
SS
8423static void init_numa_sched_groups_power(struct sched_group *group_head)
8424{
8425 struct sched_group *sg = group_head;
8426 int j;
8427
8428 if (!sg)
8429 return;
3a5c359a 8430 do {
758b2cdc 8431 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8432 struct sched_domain *sd;
08069033 8433
6c99e9ad 8434 sd = &per_cpu(phys_domains, j).sd;
13318a71 8435 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8436 /*
8437 * Only add "power" once for each
8438 * physical package.
8439 */
8440 continue;
8441 }
08069033 8442
18a3885f 8443 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8444 }
8445 sg = sg->next;
8446 } while (sg != group_head);
08069033 8447}
0601a88d
AH
8448
8449static int build_numa_sched_groups(struct s_data *d,
8450 const struct cpumask *cpu_map, int num)
8451{
8452 struct sched_domain *sd;
8453 struct sched_group *sg, *prev;
8454 int n, j;
8455
8456 cpumask_clear(d->covered);
8457 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8458 if (cpumask_empty(d->nodemask)) {
8459 d->sched_group_nodes[num] = NULL;
8460 goto out;
8461 }
8462
8463 sched_domain_node_span(num, d->domainspan);
8464 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8465
8466 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8467 GFP_KERNEL, num);
8468 if (!sg) {
3df0fc5b
PZ
8469 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8470 num);
0601a88d
AH
8471 return -ENOMEM;
8472 }
8473 d->sched_group_nodes[num] = sg;
8474
8475 for_each_cpu(j, d->nodemask) {
8476 sd = &per_cpu(node_domains, j).sd;
8477 sd->groups = sg;
8478 }
8479
18a3885f 8480 sg->cpu_power = 0;
0601a88d
AH
8481 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8482 sg->next = sg;
8483 cpumask_or(d->covered, d->covered, d->nodemask);
8484
8485 prev = sg;
8486 for (j = 0; j < nr_node_ids; j++) {
8487 n = (num + j) % nr_node_ids;
8488 cpumask_complement(d->notcovered, d->covered);
8489 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8490 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8491 if (cpumask_empty(d->tmpmask))
8492 break;
8493 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8494 if (cpumask_empty(d->tmpmask))
8495 continue;
8496 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8497 GFP_KERNEL, num);
8498 if (!sg) {
3df0fc5b
PZ
8499 printk(KERN_WARNING
8500 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
8501 return -ENOMEM;
8502 }
18a3885f 8503 sg->cpu_power = 0;
0601a88d
AH
8504 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8505 sg->next = prev->next;
8506 cpumask_or(d->covered, d->covered, d->tmpmask);
8507 prev->next = sg;
8508 prev = sg;
8509 }
8510out:
8511 return 0;
8512}
6d6bc0ad 8513#endif /* CONFIG_NUMA */
1da177e4 8514
a616058b 8515#ifdef CONFIG_NUMA
51888ca2 8516/* Free memory allocated for various sched_group structures */
96f874e2
RR
8517static void free_sched_groups(const struct cpumask *cpu_map,
8518 struct cpumask *nodemask)
51888ca2 8519{
a616058b 8520 int cpu, i;
51888ca2 8521
abcd083a 8522 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8523 struct sched_group **sched_group_nodes
8524 = sched_group_nodes_bycpu[cpu];
8525
51888ca2
SV
8526 if (!sched_group_nodes)
8527 continue;
8528
076ac2af 8529 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8530 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8531
6ca09dfc 8532 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8533 if (cpumask_empty(nodemask))
51888ca2
SV
8534 continue;
8535
8536 if (sg == NULL)
8537 continue;
8538 sg = sg->next;
8539next_sg:
8540 oldsg = sg;
8541 sg = sg->next;
8542 kfree(oldsg);
8543 if (oldsg != sched_group_nodes[i])
8544 goto next_sg;
8545 }
8546 kfree(sched_group_nodes);
8547 sched_group_nodes_bycpu[cpu] = NULL;
8548 }
51888ca2 8549}
6d6bc0ad 8550#else /* !CONFIG_NUMA */
96f874e2
RR
8551static void free_sched_groups(const struct cpumask *cpu_map,
8552 struct cpumask *nodemask)
a616058b
SS
8553{
8554}
6d6bc0ad 8555#endif /* CONFIG_NUMA */
51888ca2 8556
89c4710e
SS
8557/*
8558 * Initialize sched groups cpu_power.
8559 *
8560 * cpu_power indicates the capacity of sched group, which is used while
8561 * distributing the load between different sched groups in a sched domain.
8562 * Typically cpu_power for all the groups in a sched domain will be same unless
8563 * there are asymmetries in the topology. If there are asymmetries, group
8564 * having more cpu_power will pickup more load compared to the group having
8565 * less cpu_power.
89c4710e
SS
8566 */
8567static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8568{
8569 struct sched_domain *child;
8570 struct sched_group *group;
f93e65c1
PZ
8571 long power;
8572 int weight;
89c4710e
SS
8573
8574 WARN_ON(!sd || !sd->groups);
8575
13318a71 8576 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8577 return;
8578
8579 child = sd->child;
8580
18a3885f 8581 sd->groups->cpu_power = 0;
5517d86b 8582
f93e65c1
PZ
8583 if (!child) {
8584 power = SCHED_LOAD_SCALE;
8585 weight = cpumask_weight(sched_domain_span(sd));
8586 /*
8587 * SMT siblings share the power of a single core.
a52bfd73
PZ
8588 * Usually multiple threads get a better yield out of
8589 * that one core than a single thread would have,
8590 * reflect that in sd->smt_gain.
f93e65c1 8591 */
a52bfd73
PZ
8592 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8593 power *= sd->smt_gain;
f93e65c1 8594 power /= weight;
a52bfd73
PZ
8595 power >>= SCHED_LOAD_SHIFT;
8596 }
18a3885f 8597 sd->groups->cpu_power += power;
89c4710e
SS
8598 return;
8599 }
8600
89c4710e 8601 /*
f93e65c1 8602 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8603 */
8604 group = child->groups;
8605 do {
18a3885f 8606 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8607 group = group->next;
8608 } while (group != child->groups);
8609}
8610
7c16ec58
MT
8611/*
8612 * Initializers for schedule domains
8613 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8614 */
8615
a5d8c348
IM
8616#ifdef CONFIG_SCHED_DEBUG
8617# define SD_INIT_NAME(sd, type) sd->name = #type
8618#else
8619# define SD_INIT_NAME(sd, type) do { } while (0)
8620#endif
8621
7c16ec58 8622#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8623
7c16ec58
MT
8624#define SD_INIT_FUNC(type) \
8625static noinline void sd_init_##type(struct sched_domain *sd) \
8626{ \
8627 memset(sd, 0, sizeof(*sd)); \
8628 *sd = SD_##type##_INIT; \
1d3504fc 8629 sd->level = SD_LV_##type; \
a5d8c348 8630 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8631}
8632
8633SD_INIT_FUNC(CPU)
8634#ifdef CONFIG_NUMA
8635 SD_INIT_FUNC(ALLNODES)
8636 SD_INIT_FUNC(NODE)
8637#endif
8638#ifdef CONFIG_SCHED_SMT
8639 SD_INIT_FUNC(SIBLING)
8640#endif
8641#ifdef CONFIG_SCHED_MC
8642 SD_INIT_FUNC(MC)
8643#endif
8644
1d3504fc
HS
8645static int default_relax_domain_level = -1;
8646
8647static int __init setup_relax_domain_level(char *str)
8648{
30e0e178
LZ
8649 unsigned long val;
8650
8651 val = simple_strtoul(str, NULL, 0);
8652 if (val < SD_LV_MAX)
8653 default_relax_domain_level = val;
8654
1d3504fc
HS
8655 return 1;
8656}
8657__setup("relax_domain_level=", setup_relax_domain_level);
8658
8659static void set_domain_attribute(struct sched_domain *sd,
8660 struct sched_domain_attr *attr)
8661{
8662 int request;
8663
8664 if (!attr || attr->relax_domain_level < 0) {
8665 if (default_relax_domain_level < 0)
8666 return;
8667 else
8668 request = default_relax_domain_level;
8669 } else
8670 request = attr->relax_domain_level;
8671 if (request < sd->level) {
8672 /* turn off idle balance on this domain */
c88d5910 8673 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8674 } else {
8675 /* turn on idle balance on this domain */
c88d5910 8676 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8677 }
8678}
8679
2109b99e
AH
8680static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8681 const struct cpumask *cpu_map)
8682{
8683 switch (what) {
8684 case sa_sched_groups:
8685 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8686 d->sched_group_nodes = NULL;
8687 case sa_rootdomain:
8688 free_rootdomain(d->rd); /* fall through */
8689 case sa_tmpmask:
8690 free_cpumask_var(d->tmpmask); /* fall through */
8691 case sa_send_covered:
8692 free_cpumask_var(d->send_covered); /* fall through */
8693 case sa_this_core_map:
8694 free_cpumask_var(d->this_core_map); /* fall through */
8695 case sa_this_sibling_map:
8696 free_cpumask_var(d->this_sibling_map); /* fall through */
8697 case sa_nodemask:
8698 free_cpumask_var(d->nodemask); /* fall through */
8699 case sa_sched_group_nodes:
d1b55138 8700#ifdef CONFIG_NUMA
2109b99e
AH
8701 kfree(d->sched_group_nodes); /* fall through */
8702 case sa_notcovered:
8703 free_cpumask_var(d->notcovered); /* fall through */
8704 case sa_covered:
8705 free_cpumask_var(d->covered); /* fall through */
8706 case sa_domainspan:
8707 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8708#endif
2109b99e
AH
8709 case sa_none:
8710 break;
8711 }
8712}
3404c8d9 8713
2109b99e
AH
8714static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8715 const struct cpumask *cpu_map)
8716{
3404c8d9 8717#ifdef CONFIG_NUMA
2109b99e
AH
8718 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8719 return sa_none;
8720 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8721 return sa_domainspan;
8722 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8723 return sa_covered;
8724 /* Allocate the per-node list of sched groups */
8725 d->sched_group_nodes = kcalloc(nr_node_ids,
8726 sizeof(struct sched_group *), GFP_KERNEL);
8727 if (!d->sched_group_nodes) {
3df0fc5b 8728 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8729 return sa_notcovered;
d1b55138 8730 }
2109b99e 8731 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8732#endif
2109b99e
AH
8733 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8734 return sa_sched_group_nodes;
8735 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8736 return sa_nodemask;
8737 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8738 return sa_this_sibling_map;
8739 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8740 return sa_this_core_map;
8741 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8742 return sa_send_covered;
8743 d->rd = alloc_rootdomain();
8744 if (!d->rd) {
3df0fc5b 8745 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8746 return sa_tmpmask;
57d885fe 8747 }
2109b99e
AH
8748 return sa_rootdomain;
8749}
57d885fe 8750
7f4588f3
AH
8751static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8752 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8753{
8754 struct sched_domain *sd = NULL;
7c16ec58 8755#ifdef CONFIG_NUMA
7f4588f3 8756 struct sched_domain *parent;
1da177e4 8757
7f4588f3
AH
8758 d->sd_allnodes = 0;
8759 if (cpumask_weight(cpu_map) >
8760 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8761 sd = &per_cpu(allnodes_domains, i).sd;
8762 SD_INIT(sd, ALLNODES);
1d3504fc 8763 set_domain_attribute(sd, attr);
7f4588f3
AH
8764 cpumask_copy(sched_domain_span(sd), cpu_map);
8765 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8766 d->sd_allnodes = 1;
8767 }
8768 parent = sd;
8769
8770 sd = &per_cpu(node_domains, i).sd;
8771 SD_INIT(sd, NODE);
8772 set_domain_attribute(sd, attr);
8773 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8774 sd->parent = parent;
8775 if (parent)
8776 parent->child = sd;
8777 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8778#endif
7f4588f3
AH
8779 return sd;
8780}
1da177e4 8781
87cce662
AH
8782static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8783 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8784 struct sched_domain *parent, int i)
8785{
8786 struct sched_domain *sd;
8787 sd = &per_cpu(phys_domains, i).sd;
8788 SD_INIT(sd, CPU);
8789 set_domain_attribute(sd, attr);
8790 cpumask_copy(sched_domain_span(sd), d->nodemask);
8791 sd->parent = parent;
8792 if (parent)
8793 parent->child = sd;
8794 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8795 return sd;
8796}
1da177e4 8797
410c4081
AH
8798static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8799 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8800 struct sched_domain *parent, int i)
8801{
8802 struct sched_domain *sd = parent;
1e9f28fa 8803#ifdef CONFIG_SCHED_MC
410c4081
AH
8804 sd = &per_cpu(core_domains, i).sd;
8805 SD_INIT(sd, MC);
8806 set_domain_attribute(sd, attr);
8807 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8808 sd->parent = parent;
8809 parent->child = sd;
8810 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8811#endif
410c4081
AH
8812 return sd;
8813}
1e9f28fa 8814
d8173535
AH
8815static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8816 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8817 struct sched_domain *parent, int i)
8818{
8819 struct sched_domain *sd = parent;
1da177e4 8820#ifdef CONFIG_SCHED_SMT
d8173535
AH
8821 sd = &per_cpu(cpu_domains, i).sd;
8822 SD_INIT(sd, SIBLING);
8823 set_domain_attribute(sd, attr);
8824 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8825 sd->parent = parent;
8826 parent->child = sd;
8827 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8828#endif
d8173535
AH
8829 return sd;
8830}
1da177e4 8831
0e8e85c9
AH
8832static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8833 const struct cpumask *cpu_map, int cpu)
8834{
8835 switch (l) {
1da177e4 8836#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8837 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8838 cpumask_and(d->this_sibling_map, cpu_map,
8839 topology_thread_cpumask(cpu));
8840 if (cpu == cpumask_first(d->this_sibling_map))
8841 init_sched_build_groups(d->this_sibling_map, cpu_map,
8842 &cpu_to_cpu_group,
8843 d->send_covered, d->tmpmask);
8844 break;
1da177e4 8845#endif
1e9f28fa 8846#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8847 case SD_LV_MC: /* set up multi-core groups */
8848 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8849 if (cpu == cpumask_first(d->this_core_map))
8850 init_sched_build_groups(d->this_core_map, cpu_map,
8851 &cpu_to_core_group,
8852 d->send_covered, d->tmpmask);
8853 break;
1e9f28fa 8854#endif
86548096
AH
8855 case SD_LV_CPU: /* set up physical groups */
8856 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8857 if (!cpumask_empty(d->nodemask))
8858 init_sched_build_groups(d->nodemask, cpu_map,
8859 &cpu_to_phys_group,
8860 d->send_covered, d->tmpmask);
8861 break;
1da177e4 8862#ifdef CONFIG_NUMA
de616e36
AH
8863 case SD_LV_ALLNODES:
8864 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8865 d->send_covered, d->tmpmask);
8866 break;
8867#endif
0e8e85c9
AH
8868 default:
8869 break;
7c16ec58 8870 }
0e8e85c9 8871}
9c1cfda2 8872
2109b99e
AH
8873/*
8874 * Build sched domains for a given set of cpus and attach the sched domains
8875 * to the individual cpus
8876 */
8877static int __build_sched_domains(const struct cpumask *cpu_map,
8878 struct sched_domain_attr *attr)
8879{
8880 enum s_alloc alloc_state = sa_none;
8881 struct s_data d;
294b0c96 8882 struct sched_domain *sd;
2109b99e 8883 int i;
7c16ec58 8884#ifdef CONFIG_NUMA
2109b99e 8885 d.sd_allnodes = 0;
7c16ec58 8886#endif
9c1cfda2 8887
2109b99e
AH
8888 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8889 if (alloc_state != sa_rootdomain)
8890 goto error;
8891 alloc_state = sa_sched_groups;
9c1cfda2 8892
1da177e4 8893 /*
1a20ff27 8894 * Set up domains for cpus specified by the cpu_map.
1da177e4 8895 */
abcd083a 8896 for_each_cpu(i, cpu_map) {
49a02c51
AH
8897 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8898 cpu_map);
9761eea8 8899
7f4588f3 8900 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8901 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8902 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8903 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8904 }
9c1cfda2 8905
abcd083a 8906 for_each_cpu(i, cpu_map) {
0e8e85c9 8907 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8908 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8909 }
9c1cfda2 8910
1da177e4 8911 /* Set up physical groups */
86548096
AH
8912 for (i = 0; i < nr_node_ids; i++)
8913 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8914
1da177e4
LT
8915#ifdef CONFIG_NUMA
8916 /* Set up node groups */
de616e36
AH
8917 if (d.sd_allnodes)
8918 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8919
0601a88d
AH
8920 for (i = 0; i < nr_node_ids; i++)
8921 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8922 goto error;
1da177e4
LT
8923#endif
8924
8925 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8926#ifdef CONFIG_SCHED_SMT
abcd083a 8927 for_each_cpu(i, cpu_map) {
294b0c96 8928 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8929 init_sched_groups_power(i, sd);
5c45bf27 8930 }
1da177e4 8931#endif
1e9f28fa 8932#ifdef CONFIG_SCHED_MC
abcd083a 8933 for_each_cpu(i, cpu_map) {
294b0c96 8934 sd = &per_cpu(core_domains, i).sd;
89c4710e 8935 init_sched_groups_power(i, sd);
5c45bf27
SS
8936 }
8937#endif
1e9f28fa 8938
abcd083a 8939 for_each_cpu(i, cpu_map) {
294b0c96 8940 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8941 init_sched_groups_power(i, sd);
1da177e4
LT
8942 }
8943
9c1cfda2 8944#ifdef CONFIG_NUMA
076ac2af 8945 for (i = 0; i < nr_node_ids; i++)
49a02c51 8946 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8947
49a02c51 8948 if (d.sd_allnodes) {
6711cab4 8949 struct sched_group *sg;
f712c0c7 8950
96f874e2 8951 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8952 d.tmpmask);
f712c0c7
SS
8953 init_numa_sched_groups_power(sg);
8954 }
9c1cfda2
JH
8955#endif
8956
1da177e4 8957 /* Attach the domains */
abcd083a 8958 for_each_cpu(i, cpu_map) {
1da177e4 8959#ifdef CONFIG_SCHED_SMT
6c99e9ad 8960 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8961#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8962 sd = &per_cpu(core_domains, i).sd;
1da177e4 8963#else
6c99e9ad 8964 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8965#endif
49a02c51 8966 cpu_attach_domain(sd, d.rd, i);
1da177e4 8967 }
51888ca2 8968
2109b99e
AH
8969 d.sched_group_nodes = NULL; /* don't free this we still need it */
8970 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8971 return 0;
51888ca2 8972
51888ca2 8973error:
2109b99e
AH
8974 __free_domain_allocs(&d, alloc_state, cpu_map);
8975 return -ENOMEM;
1da177e4 8976}
029190c5 8977
96f874e2 8978static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8979{
8980 return __build_sched_domains(cpu_map, NULL);
8981}
8982
acc3f5d7 8983static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 8984static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8985static struct sched_domain_attr *dattr_cur;
8986 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8987
8988/*
8989 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8990 * cpumask) fails, then fallback to a single sched domain,
8991 * as determined by the single cpumask fallback_doms.
029190c5 8992 */
4212823f 8993static cpumask_var_t fallback_doms;
029190c5 8994
ee79d1bd
HC
8995/*
8996 * arch_update_cpu_topology lets virtualized architectures update the
8997 * cpu core maps. It is supposed to return 1 if the topology changed
8998 * or 0 if it stayed the same.
8999 */
9000int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 9001{
ee79d1bd 9002 return 0;
22e52b07
HC
9003}
9004
acc3f5d7
RR
9005cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
9006{
9007 int i;
9008 cpumask_var_t *doms;
9009
9010 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
9011 if (!doms)
9012 return NULL;
9013 for (i = 0; i < ndoms; i++) {
9014 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
9015 free_sched_domains(doms, i);
9016 return NULL;
9017 }
9018 }
9019 return doms;
9020}
9021
9022void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
9023{
9024 unsigned int i;
9025 for (i = 0; i < ndoms; i++)
9026 free_cpumask_var(doms[i]);
9027 kfree(doms);
9028}
9029
1a20ff27 9030/*
41a2d6cf 9031 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
9032 * For now this just excludes isolated cpus, but could be used to
9033 * exclude other special cases in the future.
1a20ff27 9034 */
96f874e2 9035static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 9036{
7378547f
MM
9037 int err;
9038
22e52b07 9039 arch_update_cpu_topology();
029190c5 9040 ndoms_cur = 1;
acc3f5d7 9041 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 9042 if (!doms_cur)
acc3f5d7
RR
9043 doms_cur = &fallback_doms;
9044 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 9045 dattr_cur = NULL;
acc3f5d7 9046 err = build_sched_domains(doms_cur[0]);
6382bc90 9047 register_sched_domain_sysctl();
7378547f
MM
9048
9049 return err;
1a20ff27
DG
9050}
9051
96f874e2
RR
9052static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9053 struct cpumask *tmpmask)
1da177e4 9054{
7c16ec58 9055 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 9056}
1da177e4 9057
1a20ff27
DG
9058/*
9059 * Detach sched domains from a group of cpus specified in cpu_map
9060 * These cpus will now be attached to the NULL domain
9061 */
96f874e2 9062static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 9063{
96f874e2
RR
9064 /* Save because hotplug lock held. */
9065 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
9066 int i;
9067
abcd083a 9068 for_each_cpu(i, cpu_map)
57d885fe 9069 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 9070 synchronize_sched();
96f874e2 9071 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
9072}
9073
1d3504fc
HS
9074/* handle null as "default" */
9075static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9076 struct sched_domain_attr *new, int idx_new)
9077{
9078 struct sched_domain_attr tmp;
9079
9080 /* fast path */
9081 if (!new && !cur)
9082 return 1;
9083
9084 tmp = SD_ATTR_INIT;
9085 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9086 new ? (new + idx_new) : &tmp,
9087 sizeof(struct sched_domain_attr));
9088}
9089
029190c5
PJ
9090/*
9091 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 9092 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
9093 * doms_new[] to the current sched domain partitioning, doms_cur[].
9094 * It destroys each deleted domain and builds each new domain.
9095 *
acc3f5d7 9096 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
9097 * The masks don't intersect (don't overlap.) We should setup one
9098 * sched domain for each mask. CPUs not in any of the cpumasks will
9099 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
9100 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9101 * it as it is.
9102 *
acc3f5d7
RR
9103 * The passed in 'doms_new' should be allocated using
9104 * alloc_sched_domains. This routine takes ownership of it and will
9105 * free_sched_domains it when done with it. If the caller failed the
9106 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9107 * and partition_sched_domains() will fallback to the single partition
9108 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 9109 *
96f874e2 9110 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
9111 * ndoms_new == 0 is a special case for destroying existing domains,
9112 * and it will not create the default domain.
dfb512ec 9113 *
029190c5
PJ
9114 * Call with hotplug lock held
9115 */
acc3f5d7 9116void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 9117 struct sched_domain_attr *dattr_new)
029190c5 9118{
dfb512ec 9119 int i, j, n;
d65bd5ec 9120 int new_topology;
029190c5 9121
712555ee 9122 mutex_lock(&sched_domains_mutex);
a1835615 9123
7378547f
MM
9124 /* always unregister in case we don't destroy any domains */
9125 unregister_sched_domain_sysctl();
9126
d65bd5ec
HC
9127 /* Let architecture update cpu core mappings. */
9128 new_topology = arch_update_cpu_topology();
9129
dfb512ec 9130 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9131
9132 /* Destroy deleted domains */
9133 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9134 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 9135 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 9136 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9137 goto match1;
9138 }
9139 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 9140 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
9141match1:
9142 ;
9143 }
9144
e761b772
MK
9145 if (doms_new == NULL) {
9146 ndoms_cur = 0;
acc3f5d7 9147 doms_new = &fallback_doms;
6ad4c188 9148 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 9149 WARN_ON_ONCE(dattr_new);
e761b772
MK
9150 }
9151
029190c5
PJ
9152 /* Build new domains */
9153 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9154 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 9155 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 9156 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9157 goto match2;
9158 }
9159 /* no match - add a new doms_new */
acc3f5d7 9160 __build_sched_domains(doms_new[i],
1d3504fc 9161 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9162match2:
9163 ;
9164 }
9165
9166 /* Remember the new sched domains */
acc3f5d7
RR
9167 if (doms_cur != &fallback_doms)
9168 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 9169 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9170 doms_cur = doms_new;
1d3504fc 9171 dattr_cur = dattr_new;
029190c5 9172 ndoms_cur = ndoms_new;
7378547f
MM
9173
9174 register_sched_domain_sysctl();
a1835615 9175
712555ee 9176 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9177}
9178
5c45bf27 9179#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9180static void arch_reinit_sched_domains(void)
5c45bf27 9181{
95402b38 9182 get_online_cpus();
dfb512ec
MK
9183
9184 /* Destroy domains first to force the rebuild */
9185 partition_sched_domains(0, NULL, NULL);
9186
e761b772 9187 rebuild_sched_domains();
95402b38 9188 put_online_cpus();
5c45bf27
SS
9189}
9190
9191static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9192{
afb8a9b7 9193 unsigned int level = 0;
5c45bf27 9194
afb8a9b7
GS
9195 if (sscanf(buf, "%u", &level) != 1)
9196 return -EINVAL;
9197
9198 /*
9199 * level is always be positive so don't check for
9200 * level < POWERSAVINGS_BALANCE_NONE which is 0
9201 * What happens on 0 or 1 byte write,
9202 * need to check for count as well?
9203 */
9204
9205 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9206 return -EINVAL;
9207
9208 if (smt)
afb8a9b7 9209 sched_smt_power_savings = level;
5c45bf27 9210 else
afb8a9b7 9211 sched_mc_power_savings = level;
5c45bf27 9212
c70f22d2 9213 arch_reinit_sched_domains();
5c45bf27 9214
c70f22d2 9215 return count;
5c45bf27
SS
9216}
9217
5c45bf27 9218#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9219static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9220 char *page)
5c45bf27
SS
9221{
9222 return sprintf(page, "%u\n", sched_mc_power_savings);
9223}
f718cd4a 9224static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9225 const char *buf, size_t count)
5c45bf27
SS
9226{
9227 return sched_power_savings_store(buf, count, 0);
9228}
f718cd4a
AK
9229static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9230 sched_mc_power_savings_show,
9231 sched_mc_power_savings_store);
5c45bf27
SS
9232#endif
9233
9234#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9235static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9236 char *page)
5c45bf27
SS
9237{
9238 return sprintf(page, "%u\n", sched_smt_power_savings);
9239}
f718cd4a 9240static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9241 const char *buf, size_t count)
5c45bf27
SS
9242{
9243 return sched_power_savings_store(buf, count, 1);
9244}
f718cd4a
AK
9245static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9246 sched_smt_power_savings_show,
6707de00
AB
9247 sched_smt_power_savings_store);
9248#endif
9249
39aac648 9250int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9251{
9252 int err = 0;
9253
9254#ifdef CONFIG_SCHED_SMT
9255 if (smt_capable())
9256 err = sysfs_create_file(&cls->kset.kobj,
9257 &attr_sched_smt_power_savings.attr);
9258#endif
9259#ifdef CONFIG_SCHED_MC
9260 if (!err && mc_capable())
9261 err = sysfs_create_file(&cls->kset.kobj,
9262 &attr_sched_mc_power_savings.attr);
9263#endif
9264 return err;
9265}
6d6bc0ad 9266#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9267
e761b772 9268#ifndef CONFIG_CPUSETS
1da177e4 9269/*
e761b772
MK
9270 * Add online and remove offline CPUs from the scheduler domains.
9271 * When cpusets are enabled they take over this function.
1da177e4
LT
9272 */
9273static int update_sched_domains(struct notifier_block *nfb,
9274 unsigned long action, void *hcpu)
e761b772
MK
9275{
9276 switch (action) {
9277 case CPU_ONLINE:
9278 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
9279 case CPU_DOWN_PREPARE:
9280 case CPU_DOWN_PREPARE_FROZEN:
9281 case CPU_DOWN_FAILED:
9282 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 9283 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9284 return NOTIFY_OK;
9285
9286 default:
9287 return NOTIFY_DONE;
9288 }
9289}
9290#endif
9291
9292static int update_runtime(struct notifier_block *nfb,
9293 unsigned long action, void *hcpu)
1da177e4 9294{
7def2be1
PZ
9295 int cpu = (int)(long)hcpu;
9296
1da177e4 9297 switch (action) {
1da177e4 9298 case CPU_DOWN_PREPARE:
8bb78442 9299 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9300 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9301 return NOTIFY_OK;
9302
1da177e4 9303 case CPU_DOWN_FAILED:
8bb78442 9304 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9305 case CPU_ONLINE:
8bb78442 9306 case CPU_ONLINE_FROZEN:
7def2be1 9307 enable_runtime(cpu_rq(cpu));
e761b772
MK
9308 return NOTIFY_OK;
9309
1da177e4
LT
9310 default:
9311 return NOTIFY_DONE;
9312 }
1da177e4 9313}
1da177e4
LT
9314
9315void __init sched_init_smp(void)
9316{
dcc30a35
RR
9317 cpumask_var_t non_isolated_cpus;
9318
9319 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9320 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9321
434d53b0
MT
9322#if defined(CONFIG_NUMA)
9323 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9324 GFP_KERNEL);
9325 BUG_ON(sched_group_nodes_bycpu == NULL);
9326#endif
95402b38 9327 get_online_cpus();
712555ee 9328 mutex_lock(&sched_domains_mutex);
6ad4c188 9329 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
9330 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9331 if (cpumask_empty(non_isolated_cpus))
9332 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9333 mutex_unlock(&sched_domains_mutex);
95402b38 9334 put_online_cpus();
e761b772
MK
9335
9336#ifndef CONFIG_CPUSETS
1da177e4
LT
9337 /* XXX: Theoretical race here - CPU may be hotplugged now */
9338 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9339#endif
9340
9341 /* RT runtime code needs to handle some hotplug events */
9342 hotcpu_notifier(update_runtime, 0);
9343
b328ca18 9344 init_hrtick();
5c1e1767
NP
9345
9346 /* Move init over to a non-isolated CPU */
dcc30a35 9347 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9348 BUG();
19978ca6 9349 sched_init_granularity();
dcc30a35 9350 free_cpumask_var(non_isolated_cpus);
4212823f 9351
0e3900e6 9352 init_sched_rt_class();
1da177e4
LT
9353}
9354#else
9355void __init sched_init_smp(void)
9356{
19978ca6 9357 sched_init_granularity();
1da177e4
LT
9358}
9359#endif /* CONFIG_SMP */
9360
cd1bb94b
AB
9361const_debug unsigned int sysctl_timer_migration = 1;
9362
1da177e4
LT
9363int in_sched_functions(unsigned long addr)
9364{
1da177e4
LT
9365 return in_lock_functions(addr) ||
9366 (addr >= (unsigned long)__sched_text_start
9367 && addr < (unsigned long)__sched_text_end);
9368}
9369
a9957449 9370static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9371{
9372 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9373 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9374#ifdef CONFIG_FAIR_GROUP_SCHED
9375 cfs_rq->rq = rq;
9376#endif
67e9fb2a 9377 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9378}
9379
fa85ae24
PZ
9380static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9381{
9382 struct rt_prio_array *array;
9383 int i;
9384
9385 array = &rt_rq->active;
9386 for (i = 0; i < MAX_RT_PRIO; i++) {
9387 INIT_LIST_HEAD(array->queue + i);
9388 __clear_bit(i, array->bitmap);
9389 }
9390 /* delimiter for bitsearch: */
9391 __set_bit(MAX_RT_PRIO, array->bitmap);
9392
052f1dc7 9393#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9394 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9395#ifdef CONFIG_SMP
e864c499 9396 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9397#endif
48d5e258 9398#endif
fa85ae24
PZ
9399#ifdef CONFIG_SMP
9400 rt_rq->rt_nr_migratory = 0;
fa85ae24 9401 rt_rq->overloaded = 0;
05fa785c 9402 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9403#endif
9404
9405 rt_rq->rt_time = 0;
9406 rt_rq->rt_throttled = 0;
ac086bc2 9407 rt_rq->rt_runtime = 0;
0986b11b 9408 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9409
052f1dc7 9410#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9411 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9412 rt_rq->rq = rq;
9413#endif
fa85ae24
PZ
9414}
9415
6f505b16 9416#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9417static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9418 struct sched_entity *se, int cpu, int add,
9419 struct sched_entity *parent)
6f505b16 9420{
ec7dc8ac 9421 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9422 tg->cfs_rq[cpu] = cfs_rq;
9423 init_cfs_rq(cfs_rq, rq);
9424 cfs_rq->tg = tg;
9425 if (add)
9426 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9427
9428 tg->se[cpu] = se;
354d60c2
DG
9429 /* se could be NULL for init_task_group */
9430 if (!se)
9431 return;
9432
ec7dc8ac
DG
9433 if (!parent)
9434 se->cfs_rq = &rq->cfs;
9435 else
9436 se->cfs_rq = parent->my_q;
9437
6f505b16
PZ
9438 se->my_q = cfs_rq;
9439 se->load.weight = tg->shares;
e05510d0 9440 se->load.inv_weight = 0;
ec7dc8ac 9441 se->parent = parent;
6f505b16 9442}
052f1dc7 9443#endif
6f505b16 9444
052f1dc7 9445#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9446static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9447 struct sched_rt_entity *rt_se, int cpu, int add,
9448 struct sched_rt_entity *parent)
6f505b16 9449{
ec7dc8ac
DG
9450 struct rq *rq = cpu_rq(cpu);
9451
6f505b16
PZ
9452 tg->rt_rq[cpu] = rt_rq;
9453 init_rt_rq(rt_rq, rq);
9454 rt_rq->tg = tg;
9455 rt_rq->rt_se = rt_se;
ac086bc2 9456 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9457 if (add)
9458 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9459
9460 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9461 if (!rt_se)
9462 return;
9463
ec7dc8ac
DG
9464 if (!parent)
9465 rt_se->rt_rq = &rq->rt;
9466 else
9467 rt_se->rt_rq = parent->my_q;
9468
6f505b16 9469 rt_se->my_q = rt_rq;
ec7dc8ac 9470 rt_se->parent = parent;
6f505b16
PZ
9471 INIT_LIST_HEAD(&rt_se->run_list);
9472}
9473#endif
9474
1da177e4
LT
9475void __init sched_init(void)
9476{
dd41f596 9477 int i, j;
434d53b0
MT
9478 unsigned long alloc_size = 0, ptr;
9479
9480#ifdef CONFIG_FAIR_GROUP_SCHED
9481 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9482#endif
9483#ifdef CONFIG_RT_GROUP_SCHED
9484 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9485#endif
9486#ifdef CONFIG_USER_SCHED
9487 alloc_size *= 2;
df7c8e84
RR
9488#endif
9489#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9490 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 9491#endif
434d53b0 9492 if (alloc_size) {
36b7b6d4 9493 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9494
9495#ifdef CONFIG_FAIR_GROUP_SCHED
9496 init_task_group.se = (struct sched_entity **)ptr;
9497 ptr += nr_cpu_ids * sizeof(void **);
9498
9499 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9500 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9501
9502#ifdef CONFIG_USER_SCHED
9503 root_task_group.se = (struct sched_entity **)ptr;
9504 ptr += nr_cpu_ids * sizeof(void **);
9505
9506 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9507 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9508#endif /* CONFIG_USER_SCHED */
9509#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9510#ifdef CONFIG_RT_GROUP_SCHED
9511 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9512 ptr += nr_cpu_ids * sizeof(void **);
9513
9514 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9515 ptr += nr_cpu_ids * sizeof(void **);
9516
9517#ifdef CONFIG_USER_SCHED
9518 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9519 ptr += nr_cpu_ids * sizeof(void **);
9520
9521 root_task_group.rt_rq = (struct rt_rq **)ptr;
9522 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9523#endif /* CONFIG_USER_SCHED */
9524#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9525#ifdef CONFIG_CPUMASK_OFFSTACK
9526 for_each_possible_cpu(i) {
9527 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9528 ptr += cpumask_size();
9529 }
9530#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9531 }
dd41f596 9532
57d885fe
GH
9533#ifdef CONFIG_SMP
9534 init_defrootdomain();
9535#endif
9536
d0b27fa7
PZ
9537 init_rt_bandwidth(&def_rt_bandwidth,
9538 global_rt_period(), global_rt_runtime());
9539
9540#ifdef CONFIG_RT_GROUP_SCHED
9541 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9542 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9543#ifdef CONFIG_USER_SCHED
9544 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9545 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9546#endif /* CONFIG_USER_SCHED */
9547#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9548
052f1dc7 9549#ifdef CONFIG_GROUP_SCHED
6f505b16 9550 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9551 INIT_LIST_HEAD(&init_task_group.children);
9552
9553#ifdef CONFIG_USER_SCHED
9554 INIT_LIST_HEAD(&root_task_group.children);
9555 init_task_group.parent = &root_task_group;
9556 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9557#endif /* CONFIG_USER_SCHED */
9558#endif /* CONFIG_GROUP_SCHED */
6f505b16 9559
4a6cc4bd
JK
9560#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9561 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9562 __alignof__(unsigned long));
9563#endif
0a945022 9564 for_each_possible_cpu(i) {
70b97a7f 9565 struct rq *rq;
1da177e4
LT
9566
9567 rq = cpu_rq(i);
05fa785c 9568 raw_spin_lock_init(&rq->lock);
7897986b 9569 rq->nr_running = 0;
dce48a84
TG
9570 rq->calc_load_active = 0;
9571 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9572 init_cfs_rq(&rq->cfs, rq);
6f505b16 9573 init_rt_rq(&rq->rt, rq);
dd41f596 9574#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9575 init_task_group.shares = init_task_group_load;
6f505b16 9576 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9577#ifdef CONFIG_CGROUP_SCHED
9578 /*
9579 * How much cpu bandwidth does init_task_group get?
9580 *
9581 * In case of task-groups formed thr' the cgroup filesystem, it
9582 * gets 100% of the cpu resources in the system. This overall
9583 * system cpu resource is divided among the tasks of
9584 * init_task_group and its child task-groups in a fair manner,
9585 * based on each entity's (task or task-group's) weight
9586 * (se->load.weight).
9587 *
9588 * In other words, if init_task_group has 10 tasks of weight
9589 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9590 * then A0's share of the cpu resource is:
9591 *
0d905bca 9592 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9593 *
9594 * We achieve this by letting init_task_group's tasks sit
9595 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9596 */
ec7dc8ac 9597 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9598#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9599 root_task_group.shares = NICE_0_LOAD;
9600 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9601 /*
9602 * In case of task-groups formed thr' the user id of tasks,
9603 * init_task_group represents tasks belonging to root user.
9604 * Hence it forms a sibling of all subsequent groups formed.
9605 * In this case, init_task_group gets only a fraction of overall
9606 * system cpu resource, based on the weight assigned to root
9607 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9608 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9609 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9610 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9611 */
ec7dc8ac 9612 init_tg_cfs_entry(&init_task_group,
84e9dabf 9613 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9614 &per_cpu(init_sched_entity, i), i, 1,
9615 root_task_group.se[i]);
6f505b16 9616
052f1dc7 9617#endif
354d60c2
DG
9618#endif /* CONFIG_FAIR_GROUP_SCHED */
9619
9620 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9621#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9622 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9623#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9624 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9625#elif defined CONFIG_USER_SCHED
eff766a6 9626 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9627 init_tg_rt_entry(&init_task_group,
1871e52c 9628 &per_cpu(init_rt_rq_var, i),
eff766a6
PZ
9629 &per_cpu(init_sched_rt_entity, i), i, 1,
9630 root_task_group.rt_se[i]);
354d60c2 9631#endif
dd41f596 9632#endif
1da177e4 9633
dd41f596
IM
9634 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9635 rq->cpu_load[j] = 0;
1da177e4 9636#ifdef CONFIG_SMP
41c7ce9a 9637 rq->sd = NULL;
57d885fe 9638 rq->rd = NULL;
3f029d3c 9639 rq->post_schedule = 0;
1da177e4 9640 rq->active_balance = 0;
dd41f596 9641 rq->next_balance = jiffies;
1da177e4 9642 rq->push_cpu = 0;
0a2966b4 9643 rq->cpu = i;
1f11eb6a 9644 rq->online = 0;
1da177e4 9645 rq->migration_thread = NULL;
eae0c9df
MG
9646 rq->idle_stamp = 0;
9647 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 9648 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9649 rq_attach_root(rq, &def_root_domain);
1da177e4 9650#endif
8f4d37ec 9651 init_rq_hrtick(rq);
1da177e4 9652 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9653 }
9654
2dd73a4f 9655 set_load_weight(&init_task);
b50f60ce 9656
e107be36
AK
9657#ifdef CONFIG_PREEMPT_NOTIFIERS
9658 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9659#endif
9660
c9819f45 9661#ifdef CONFIG_SMP
962cf36c 9662 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9663#endif
9664
b50f60ce 9665#ifdef CONFIG_RT_MUTEXES
1d615482 9666 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
9667#endif
9668
1da177e4
LT
9669 /*
9670 * The boot idle thread does lazy MMU switching as well:
9671 */
9672 atomic_inc(&init_mm.mm_count);
9673 enter_lazy_tlb(&init_mm, current);
9674
9675 /*
9676 * Make us the idle thread. Technically, schedule() should not be
9677 * called from this thread, however somewhere below it might be,
9678 * but because we are the idle thread, we just pick up running again
9679 * when this runqueue becomes "idle".
9680 */
9681 init_idle(current, smp_processor_id());
dce48a84
TG
9682
9683 calc_load_update = jiffies + LOAD_FREQ;
9684
dd41f596
IM
9685 /*
9686 * During early bootup we pretend to be a normal task:
9687 */
9688 current->sched_class = &fair_sched_class;
6892b75e 9689
6a7b3dc3 9690 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 9691 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9692#ifdef CONFIG_SMP
7d1e6a9b 9693#ifdef CONFIG_NO_HZ
49557e62 9694 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 9695 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9696#endif
bdddd296
RR
9697 /* May be allocated at isolcpus cmdline parse time */
9698 if (cpu_isolated_map == NULL)
9699 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9700#endif /* SMP */
6a7b3dc3 9701
cdd6c482 9702 perf_event_init();
0d905bca 9703
6892b75e 9704 scheduler_running = 1;
1da177e4
LT
9705}
9706
9707#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9708static inline int preempt_count_equals(int preempt_offset)
9709{
234da7bc 9710 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
9711
9712 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9713}
9714
9715void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9716{
48f24c4d 9717#ifdef in_atomic
1da177e4
LT
9718 static unsigned long prev_jiffy; /* ratelimiting */
9719
e4aafea2
FW
9720 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9721 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9722 return;
9723 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9724 return;
9725 prev_jiffy = jiffies;
9726
3df0fc5b
PZ
9727 printk(KERN_ERR
9728 "BUG: sleeping function called from invalid context at %s:%d\n",
9729 file, line);
9730 printk(KERN_ERR
9731 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9732 in_atomic(), irqs_disabled(),
9733 current->pid, current->comm);
aef745fc
IM
9734
9735 debug_show_held_locks(current);
9736 if (irqs_disabled())
9737 print_irqtrace_events(current);
9738 dump_stack();
1da177e4
LT
9739#endif
9740}
9741EXPORT_SYMBOL(__might_sleep);
9742#endif
9743
9744#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9745static void normalize_task(struct rq *rq, struct task_struct *p)
9746{
9747 int on_rq;
3e51f33f 9748
3a5e4dc1
AK
9749 update_rq_clock(rq);
9750 on_rq = p->se.on_rq;
9751 if (on_rq)
9752 deactivate_task(rq, p, 0);
9753 __setscheduler(rq, p, SCHED_NORMAL, 0);
9754 if (on_rq) {
9755 activate_task(rq, p, 0);
9756 resched_task(rq->curr);
9757 }
9758}
9759
1da177e4
LT
9760void normalize_rt_tasks(void)
9761{
a0f98a1c 9762 struct task_struct *g, *p;
1da177e4 9763 unsigned long flags;
70b97a7f 9764 struct rq *rq;
1da177e4 9765
4cf5d77a 9766 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9767 do_each_thread(g, p) {
178be793
IM
9768 /*
9769 * Only normalize user tasks:
9770 */
9771 if (!p->mm)
9772 continue;
9773
6cfb0d5d 9774 p->se.exec_start = 0;
6cfb0d5d 9775#ifdef CONFIG_SCHEDSTATS
dd41f596 9776 p->se.wait_start = 0;
dd41f596 9777 p->se.sleep_start = 0;
dd41f596 9778 p->se.block_start = 0;
6cfb0d5d 9779#endif
dd41f596
IM
9780
9781 if (!rt_task(p)) {
9782 /*
9783 * Renice negative nice level userspace
9784 * tasks back to 0:
9785 */
9786 if (TASK_NICE(p) < 0 && p->mm)
9787 set_user_nice(p, 0);
1da177e4 9788 continue;
dd41f596 9789 }
1da177e4 9790
1d615482 9791 raw_spin_lock(&p->pi_lock);
b29739f9 9792 rq = __task_rq_lock(p);
1da177e4 9793
178be793 9794 normalize_task(rq, p);
3a5e4dc1 9795
b29739f9 9796 __task_rq_unlock(rq);
1d615482 9797 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
9798 } while_each_thread(g, p);
9799
4cf5d77a 9800 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9801}
9802
9803#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9804
9805#ifdef CONFIG_IA64
9806/*
9807 * These functions are only useful for the IA64 MCA handling.
9808 *
9809 * They can only be called when the whole system has been
9810 * stopped - every CPU needs to be quiescent, and no scheduling
9811 * activity can take place. Using them for anything else would
9812 * be a serious bug, and as a result, they aren't even visible
9813 * under any other configuration.
9814 */
9815
9816/**
9817 * curr_task - return the current task for a given cpu.
9818 * @cpu: the processor in question.
9819 *
9820 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9821 */
36c8b586 9822struct task_struct *curr_task(int cpu)
1df5c10a
LT
9823{
9824 return cpu_curr(cpu);
9825}
9826
9827/**
9828 * set_curr_task - set the current task for a given cpu.
9829 * @cpu: the processor in question.
9830 * @p: the task pointer to set.
9831 *
9832 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9833 * are serviced on a separate stack. It allows the architecture to switch the
9834 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9835 * must be called with all CPU's synchronized, and interrupts disabled, the
9836 * and caller must save the original value of the current task (see
9837 * curr_task() above) and restore that value before reenabling interrupts and
9838 * re-starting the system.
9839 *
9840 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9841 */
36c8b586 9842void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9843{
9844 cpu_curr(cpu) = p;
9845}
9846
9847#endif
29f59db3 9848
bccbe08a
PZ
9849#ifdef CONFIG_FAIR_GROUP_SCHED
9850static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9851{
9852 int i;
9853
9854 for_each_possible_cpu(i) {
9855 if (tg->cfs_rq)
9856 kfree(tg->cfs_rq[i]);
9857 if (tg->se)
9858 kfree(tg->se[i]);
6f505b16
PZ
9859 }
9860
9861 kfree(tg->cfs_rq);
9862 kfree(tg->se);
6f505b16
PZ
9863}
9864
ec7dc8ac
DG
9865static
9866int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9867{
29f59db3 9868 struct cfs_rq *cfs_rq;
eab17229 9869 struct sched_entity *se;
9b5b7751 9870 struct rq *rq;
29f59db3
SV
9871 int i;
9872
434d53b0 9873 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9874 if (!tg->cfs_rq)
9875 goto err;
434d53b0 9876 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9877 if (!tg->se)
9878 goto err;
052f1dc7
PZ
9879
9880 tg->shares = NICE_0_LOAD;
29f59db3
SV
9881
9882 for_each_possible_cpu(i) {
9b5b7751 9883 rq = cpu_rq(i);
29f59db3 9884
eab17229
LZ
9885 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9886 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9887 if (!cfs_rq)
9888 goto err;
9889
eab17229
LZ
9890 se = kzalloc_node(sizeof(struct sched_entity),
9891 GFP_KERNEL, cpu_to_node(i));
29f59db3 9892 if (!se)
dfc12eb2 9893 goto err_free_rq;
29f59db3 9894
eab17229 9895 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9896 }
9897
9898 return 1;
9899
dfc12eb2
PC
9900 err_free_rq:
9901 kfree(cfs_rq);
bccbe08a
PZ
9902 err:
9903 return 0;
9904}
9905
9906static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9907{
9908 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9909 &cpu_rq(cpu)->leaf_cfs_rq_list);
9910}
9911
9912static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9913{
9914 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9915}
6d6bc0ad 9916#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9917static inline void free_fair_sched_group(struct task_group *tg)
9918{
9919}
9920
ec7dc8ac
DG
9921static inline
9922int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9923{
9924 return 1;
9925}
9926
9927static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9928{
9929}
9930
9931static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9932{
9933}
6d6bc0ad 9934#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9935
9936#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9937static void free_rt_sched_group(struct task_group *tg)
9938{
9939 int i;
9940
d0b27fa7
PZ
9941 destroy_rt_bandwidth(&tg->rt_bandwidth);
9942
bccbe08a
PZ
9943 for_each_possible_cpu(i) {
9944 if (tg->rt_rq)
9945 kfree(tg->rt_rq[i]);
9946 if (tg->rt_se)
9947 kfree(tg->rt_se[i]);
9948 }
9949
9950 kfree(tg->rt_rq);
9951 kfree(tg->rt_se);
9952}
9953
ec7dc8ac
DG
9954static
9955int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9956{
9957 struct rt_rq *rt_rq;
eab17229 9958 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9959 struct rq *rq;
9960 int i;
9961
434d53b0 9962 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9963 if (!tg->rt_rq)
9964 goto err;
434d53b0 9965 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9966 if (!tg->rt_se)
9967 goto err;
9968
d0b27fa7
PZ
9969 init_rt_bandwidth(&tg->rt_bandwidth,
9970 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9971
9972 for_each_possible_cpu(i) {
9973 rq = cpu_rq(i);
9974
eab17229
LZ
9975 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9976 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9977 if (!rt_rq)
9978 goto err;
29f59db3 9979
eab17229
LZ
9980 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9981 GFP_KERNEL, cpu_to_node(i));
6f505b16 9982 if (!rt_se)
dfc12eb2 9983 goto err_free_rq;
29f59db3 9984
eab17229 9985 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9986 }
9987
bccbe08a
PZ
9988 return 1;
9989
dfc12eb2
PC
9990 err_free_rq:
9991 kfree(rt_rq);
bccbe08a
PZ
9992 err:
9993 return 0;
9994}
9995
9996static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9997{
9998 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9999 &cpu_rq(cpu)->leaf_rt_rq_list);
10000}
10001
10002static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10003{
10004 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
10005}
6d6bc0ad 10006#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
10007static inline void free_rt_sched_group(struct task_group *tg)
10008{
10009}
10010
ec7dc8ac
DG
10011static inline
10012int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
10013{
10014 return 1;
10015}
10016
10017static inline void register_rt_sched_group(struct task_group *tg, int cpu)
10018{
10019}
10020
10021static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10022{
10023}
6d6bc0ad 10024#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 10025
d0b27fa7 10026#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
10027static void free_sched_group(struct task_group *tg)
10028{
10029 free_fair_sched_group(tg);
10030 free_rt_sched_group(tg);
10031 kfree(tg);
10032}
10033
10034/* allocate runqueue etc for a new task group */
ec7dc8ac 10035struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
10036{
10037 struct task_group *tg;
10038 unsigned long flags;
10039 int i;
10040
10041 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10042 if (!tg)
10043 return ERR_PTR(-ENOMEM);
10044
ec7dc8ac 10045 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
10046 goto err;
10047
ec7dc8ac 10048 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
10049 goto err;
10050
8ed36996 10051 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10052 for_each_possible_cpu(i) {
bccbe08a
PZ
10053 register_fair_sched_group(tg, i);
10054 register_rt_sched_group(tg, i);
9b5b7751 10055 }
6f505b16 10056 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
10057
10058 WARN_ON(!parent); /* root should already exist */
10059
10060 tg->parent = parent;
f473aa5e 10061 INIT_LIST_HEAD(&tg->children);
09f2724a 10062 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10063 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 10064
9b5b7751 10065 return tg;
29f59db3
SV
10066
10067err:
6f505b16 10068 free_sched_group(tg);
29f59db3
SV
10069 return ERR_PTR(-ENOMEM);
10070}
10071
9b5b7751 10072/* rcu callback to free various structures associated with a task group */
6f505b16 10073static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 10074{
29f59db3 10075 /* now it should be safe to free those cfs_rqs */
6f505b16 10076 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10077}
10078
9b5b7751 10079/* Destroy runqueue etc associated with a task group */
4cf86d77 10080void sched_destroy_group(struct task_group *tg)
29f59db3 10081{
8ed36996 10082 unsigned long flags;
9b5b7751 10083 int i;
29f59db3 10084
8ed36996 10085 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10086 for_each_possible_cpu(i) {
bccbe08a
PZ
10087 unregister_fair_sched_group(tg, i);
10088 unregister_rt_sched_group(tg, i);
9b5b7751 10089 }
6f505b16 10090 list_del_rcu(&tg->list);
f473aa5e 10091 list_del_rcu(&tg->siblings);
8ed36996 10092 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 10093
9b5b7751 10094 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 10095 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
10096}
10097
9b5b7751 10098/* change task's runqueue when it moves between groups.
3a252015
IM
10099 * The caller of this function should have put the task in its new group
10100 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10101 * reflect its new group.
9b5b7751
SV
10102 */
10103void sched_move_task(struct task_struct *tsk)
29f59db3
SV
10104{
10105 int on_rq, running;
10106 unsigned long flags;
10107 struct rq *rq;
10108
10109 rq = task_rq_lock(tsk, &flags);
10110
29f59db3
SV
10111 update_rq_clock(rq);
10112
051a1d1a 10113 running = task_current(rq, tsk);
29f59db3
SV
10114 on_rq = tsk->se.on_rq;
10115
0e1f3483 10116 if (on_rq)
29f59db3 10117 dequeue_task(rq, tsk, 0);
0e1f3483
HS
10118 if (unlikely(running))
10119 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 10120
6f505b16 10121 set_task_rq(tsk, task_cpu(tsk));
29f59db3 10122
810b3817
PZ
10123#ifdef CONFIG_FAIR_GROUP_SCHED
10124 if (tsk->sched_class->moved_group)
88ec22d3 10125 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
10126#endif
10127
0e1f3483
HS
10128 if (unlikely(running))
10129 tsk->sched_class->set_curr_task(rq);
10130 if (on_rq)
7074badb 10131 enqueue_task(rq, tsk, 0);
29f59db3 10132
29f59db3
SV
10133 task_rq_unlock(rq, &flags);
10134}
6d6bc0ad 10135#endif /* CONFIG_GROUP_SCHED */
29f59db3 10136
052f1dc7 10137#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10138static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10139{
10140 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10141 int on_rq;
10142
29f59db3 10143 on_rq = se->on_rq;
62fb1851 10144 if (on_rq)
29f59db3
SV
10145 dequeue_entity(cfs_rq, se, 0);
10146
10147 se->load.weight = shares;
e05510d0 10148 se->load.inv_weight = 0;
29f59db3 10149
62fb1851 10150 if (on_rq)
29f59db3 10151 enqueue_entity(cfs_rq, se, 0);
c09595f6 10152}
62fb1851 10153
c09595f6
PZ
10154static void set_se_shares(struct sched_entity *se, unsigned long shares)
10155{
10156 struct cfs_rq *cfs_rq = se->cfs_rq;
10157 struct rq *rq = cfs_rq->rq;
10158 unsigned long flags;
10159
05fa785c 10160 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 10161 __set_se_shares(se, shares);
05fa785c 10162 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10163}
10164
8ed36996
PZ
10165static DEFINE_MUTEX(shares_mutex);
10166
4cf86d77 10167int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10168{
10169 int i;
8ed36996 10170 unsigned long flags;
c61935fd 10171
ec7dc8ac
DG
10172 /*
10173 * We can't change the weight of the root cgroup.
10174 */
10175 if (!tg->se[0])
10176 return -EINVAL;
10177
18d95a28
PZ
10178 if (shares < MIN_SHARES)
10179 shares = MIN_SHARES;
cb4ad1ff
MX
10180 else if (shares > MAX_SHARES)
10181 shares = MAX_SHARES;
62fb1851 10182
8ed36996 10183 mutex_lock(&shares_mutex);
9b5b7751 10184 if (tg->shares == shares)
5cb350ba 10185 goto done;
29f59db3 10186
8ed36996 10187 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10188 for_each_possible_cpu(i)
10189 unregister_fair_sched_group(tg, i);
f473aa5e 10190 list_del_rcu(&tg->siblings);
8ed36996 10191 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10192
10193 /* wait for any ongoing reference to this group to finish */
10194 synchronize_sched();
10195
10196 /*
10197 * Now we are free to modify the group's share on each cpu
10198 * w/o tripping rebalance_share or load_balance_fair.
10199 */
9b5b7751 10200 tg->shares = shares;
c09595f6
PZ
10201 for_each_possible_cpu(i) {
10202 /*
10203 * force a rebalance
10204 */
10205 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10206 set_se_shares(tg->se[i], shares);
c09595f6 10207 }
29f59db3 10208
6b2d7700
SV
10209 /*
10210 * Enable load balance activity on this group, by inserting it back on
10211 * each cpu's rq->leaf_cfs_rq_list.
10212 */
8ed36996 10213 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10214 for_each_possible_cpu(i)
10215 register_fair_sched_group(tg, i);
f473aa5e 10216 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10217 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10218done:
8ed36996 10219 mutex_unlock(&shares_mutex);
9b5b7751 10220 return 0;
29f59db3
SV
10221}
10222
5cb350ba
DG
10223unsigned long sched_group_shares(struct task_group *tg)
10224{
10225 return tg->shares;
10226}
052f1dc7 10227#endif
5cb350ba 10228
052f1dc7 10229#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10230/*
9f0c1e56 10231 * Ensure that the real time constraints are schedulable.
6f505b16 10232 */
9f0c1e56
PZ
10233static DEFINE_MUTEX(rt_constraints_mutex);
10234
10235static unsigned long to_ratio(u64 period, u64 runtime)
10236{
10237 if (runtime == RUNTIME_INF)
9a7e0b18 10238 return 1ULL << 20;
9f0c1e56 10239
9a7e0b18 10240 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10241}
10242
9a7e0b18
PZ
10243/* Must be called with tasklist_lock held */
10244static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10245{
9a7e0b18 10246 struct task_struct *g, *p;
b40b2e8e 10247
9a7e0b18
PZ
10248 do_each_thread(g, p) {
10249 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10250 return 1;
10251 } while_each_thread(g, p);
b40b2e8e 10252
9a7e0b18
PZ
10253 return 0;
10254}
b40b2e8e 10255
9a7e0b18
PZ
10256struct rt_schedulable_data {
10257 struct task_group *tg;
10258 u64 rt_period;
10259 u64 rt_runtime;
10260};
b40b2e8e 10261
9a7e0b18
PZ
10262static int tg_schedulable(struct task_group *tg, void *data)
10263{
10264 struct rt_schedulable_data *d = data;
10265 struct task_group *child;
10266 unsigned long total, sum = 0;
10267 u64 period, runtime;
b40b2e8e 10268
9a7e0b18
PZ
10269 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10270 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10271
9a7e0b18
PZ
10272 if (tg == d->tg) {
10273 period = d->rt_period;
10274 runtime = d->rt_runtime;
b40b2e8e 10275 }
b40b2e8e 10276
98a4826b
PZ
10277#ifdef CONFIG_USER_SCHED
10278 if (tg == &root_task_group) {
10279 period = global_rt_period();
10280 runtime = global_rt_runtime();
10281 }
10282#endif
10283
4653f803
PZ
10284 /*
10285 * Cannot have more runtime than the period.
10286 */
10287 if (runtime > period && runtime != RUNTIME_INF)
10288 return -EINVAL;
6f505b16 10289
4653f803
PZ
10290 /*
10291 * Ensure we don't starve existing RT tasks.
10292 */
9a7e0b18
PZ
10293 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10294 return -EBUSY;
6f505b16 10295
9a7e0b18 10296 total = to_ratio(period, runtime);
6f505b16 10297
4653f803
PZ
10298 /*
10299 * Nobody can have more than the global setting allows.
10300 */
10301 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10302 return -EINVAL;
6f505b16 10303
4653f803
PZ
10304 /*
10305 * The sum of our children's runtime should not exceed our own.
10306 */
9a7e0b18
PZ
10307 list_for_each_entry_rcu(child, &tg->children, siblings) {
10308 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10309 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10310
9a7e0b18
PZ
10311 if (child == d->tg) {
10312 period = d->rt_period;
10313 runtime = d->rt_runtime;
10314 }
6f505b16 10315
9a7e0b18 10316 sum += to_ratio(period, runtime);
9f0c1e56 10317 }
6f505b16 10318
9a7e0b18
PZ
10319 if (sum > total)
10320 return -EINVAL;
10321
10322 return 0;
6f505b16
PZ
10323}
10324
9a7e0b18 10325static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10326{
9a7e0b18
PZ
10327 struct rt_schedulable_data data = {
10328 .tg = tg,
10329 .rt_period = period,
10330 .rt_runtime = runtime,
10331 };
10332
10333 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10334}
10335
d0b27fa7
PZ
10336static int tg_set_bandwidth(struct task_group *tg,
10337 u64 rt_period, u64 rt_runtime)
6f505b16 10338{
ac086bc2 10339 int i, err = 0;
9f0c1e56 10340
9f0c1e56 10341 mutex_lock(&rt_constraints_mutex);
521f1a24 10342 read_lock(&tasklist_lock);
9a7e0b18
PZ
10343 err = __rt_schedulable(tg, rt_period, rt_runtime);
10344 if (err)
9f0c1e56 10345 goto unlock;
ac086bc2 10346
0986b11b 10347 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10348 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10349 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10350
10351 for_each_possible_cpu(i) {
10352 struct rt_rq *rt_rq = tg->rt_rq[i];
10353
0986b11b 10354 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 10355 rt_rq->rt_runtime = rt_runtime;
0986b11b 10356 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 10357 }
0986b11b 10358 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10359 unlock:
521f1a24 10360 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10361 mutex_unlock(&rt_constraints_mutex);
10362
10363 return err;
6f505b16
PZ
10364}
10365
d0b27fa7
PZ
10366int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10367{
10368 u64 rt_runtime, rt_period;
10369
10370 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10371 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10372 if (rt_runtime_us < 0)
10373 rt_runtime = RUNTIME_INF;
10374
10375 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10376}
10377
9f0c1e56
PZ
10378long sched_group_rt_runtime(struct task_group *tg)
10379{
10380 u64 rt_runtime_us;
10381
d0b27fa7 10382 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10383 return -1;
10384
d0b27fa7 10385 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10386 do_div(rt_runtime_us, NSEC_PER_USEC);
10387 return rt_runtime_us;
10388}
d0b27fa7
PZ
10389
10390int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10391{
10392 u64 rt_runtime, rt_period;
10393
10394 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10395 rt_runtime = tg->rt_bandwidth.rt_runtime;
10396
619b0488
R
10397 if (rt_period == 0)
10398 return -EINVAL;
10399
d0b27fa7
PZ
10400 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10401}
10402
10403long sched_group_rt_period(struct task_group *tg)
10404{
10405 u64 rt_period_us;
10406
10407 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10408 do_div(rt_period_us, NSEC_PER_USEC);
10409 return rt_period_us;
10410}
10411
10412static int sched_rt_global_constraints(void)
10413{
4653f803 10414 u64 runtime, period;
d0b27fa7
PZ
10415 int ret = 0;
10416
ec5d4989
HS
10417 if (sysctl_sched_rt_period <= 0)
10418 return -EINVAL;
10419
4653f803
PZ
10420 runtime = global_rt_runtime();
10421 period = global_rt_period();
10422
10423 /*
10424 * Sanity check on the sysctl variables.
10425 */
10426 if (runtime > period && runtime != RUNTIME_INF)
10427 return -EINVAL;
10b612f4 10428
d0b27fa7 10429 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10430 read_lock(&tasklist_lock);
4653f803 10431 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10432 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10433 mutex_unlock(&rt_constraints_mutex);
10434
10435 return ret;
10436}
54e99124
DG
10437
10438int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10439{
10440 /* Don't accept realtime tasks when there is no way for them to run */
10441 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10442 return 0;
10443
10444 return 1;
10445}
10446
6d6bc0ad 10447#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10448static int sched_rt_global_constraints(void)
10449{
ac086bc2
PZ
10450 unsigned long flags;
10451 int i;
10452
ec5d4989
HS
10453 if (sysctl_sched_rt_period <= 0)
10454 return -EINVAL;
10455
60aa605d
PZ
10456 /*
10457 * There's always some RT tasks in the root group
10458 * -- migration, kstopmachine etc..
10459 */
10460 if (sysctl_sched_rt_runtime == 0)
10461 return -EBUSY;
10462
0986b11b 10463 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
10464 for_each_possible_cpu(i) {
10465 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10466
0986b11b 10467 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 10468 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 10469 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 10470 }
0986b11b 10471 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 10472
d0b27fa7
PZ
10473 return 0;
10474}
6d6bc0ad 10475#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10476
10477int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10478 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10479 loff_t *ppos)
10480{
10481 int ret;
10482 int old_period, old_runtime;
10483 static DEFINE_MUTEX(mutex);
10484
10485 mutex_lock(&mutex);
10486 old_period = sysctl_sched_rt_period;
10487 old_runtime = sysctl_sched_rt_runtime;
10488
8d65af78 10489 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10490
10491 if (!ret && write) {
10492 ret = sched_rt_global_constraints();
10493 if (ret) {
10494 sysctl_sched_rt_period = old_period;
10495 sysctl_sched_rt_runtime = old_runtime;
10496 } else {
10497 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10498 def_rt_bandwidth.rt_period =
10499 ns_to_ktime(global_rt_period());
10500 }
10501 }
10502 mutex_unlock(&mutex);
10503
10504 return ret;
10505}
68318b8e 10506
052f1dc7 10507#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10508
10509/* return corresponding task_group object of a cgroup */
2b01dfe3 10510static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10511{
2b01dfe3
PM
10512 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10513 struct task_group, css);
68318b8e
SV
10514}
10515
10516static struct cgroup_subsys_state *
2b01dfe3 10517cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10518{
ec7dc8ac 10519 struct task_group *tg, *parent;
68318b8e 10520
2b01dfe3 10521 if (!cgrp->parent) {
68318b8e 10522 /* This is early initialization for the top cgroup */
68318b8e
SV
10523 return &init_task_group.css;
10524 }
10525
ec7dc8ac
DG
10526 parent = cgroup_tg(cgrp->parent);
10527 tg = sched_create_group(parent);
68318b8e
SV
10528 if (IS_ERR(tg))
10529 return ERR_PTR(-ENOMEM);
10530
68318b8e
SV
10531 return &tg->css;
10532}
10533
41a2d6cf
IM
10534static void
10535cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10536{
2b01dfe3 10537 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10538
10539 sched_destroy_group(tg);
10540}
10541
41a2d6cf 10542static int
be367d09 10543cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10544{
b68aa230 10545#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10546 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10547 return -EINVAL;
10548#else
68318b8e
SV
10549 /* We don't support RT-tasks being in separate groups */
10550 if (tsk->sched_class != &fair_sched_class)
10551 return -EINVAL;
b68aa230 10552#endif
be367d09
BB
10553 return 0;
10554}
68318b8e 10555
be367d09
BB
10556static int
10557cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10558 struct task_struct *tsk, bool threadgroup)
10559{
10560 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10561 if (retval)
10562 return retval;
10563 if (threadgroup) {
10564 struct task_struct *c;
10565 rcu_read_lock();
10566 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10567 retval = cpu_cgroup_can_attach_task(cgrp, c);
10568 if (retval) {
10569 rcu_read_unlock();
10570 return retval;
10571 }
10572 }
10573 rcu_read_unlock();
10574 }
68318b8e
SV
10575 return 0;
10576}
10577
10578static void
2b01dfe3 10579cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10580 struct cgroup *old_cont, struct task_struct *tsk,
10581 bool threadgroup)
68318b8e
SV
10582{
10583 sched_move_task(tsk);
be367d09
BB
10584 if (threadgroup) {
10585 struct task_struct *c;
10586 rcu_read_lock();
10587 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10588 sched_move_task(c);
10589 }
10590 rcu_read_unlock();
10591 }
68318b8e
SV
10592}
10593
052f1dc7 10594#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10595static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10596 u64 shareval)
68318b8e 10597{
2b01dfe3 10598 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10599}
10600
f4c753b7 10601static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10602{
2b01dfe3 10603 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10604
10605 return (u64) tg->shares;
10606}
6d6bc0ad 10607#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10608
052f1dc7 10609#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10610static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10611 s64 val)
6f505b16 10612{
06ecb27c 10613 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10614}
10615
06ecb27c 10616static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10617{
06ecb27c 10618 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10619}
d0b27fa7
PZ
10620
10621static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10622 u64 rt_period_us)
10623{
10624 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10625}
10626
10627static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10628{
10629 return sched_group_rt_period(cgroup_tg(cgrp));
10630}
6d6bc0ad 10631#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10632
fe5c7cc2 10633static struct cftype cpu_files[] = {
052f1dc7 10634#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10635 {
10636 .name = "shares",
f4c753b7
PM
10637 .read_u64 = cpu_shares_read_u64,
10638 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10639 },
052f1dc7
PZ
10640#endif
10641#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10642 {
9f0c1e56 10643 .name = "rt_runtime_us",
06ecb27c
PM
10644 .read_s64 = cpu_rt_runtime_read,
10645 .write_s64 = cpu_rt_runtime_write,
6f505b16 10646 },
d0b27fa7
PZ
10647 {
10648 .name = "rt_period_us",
f4c753b7
PM
10649 .read_u64 = cpu_rt_period_read_uint,
10650 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10651 },
052f1dc7 10652#endif
68318b8e
SV
10653};
10654
10655static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10656{
fe5c7cc2 10657 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10658}
10659
10660struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10661 .name = "cpu",
10662 .create = cpu_cgroup_create,
10663 .destroy = cpu_cgroup_destroy,
10664 .can_attach = cpu_cgroup_can_attach,
10665 .attach = cpu_cgroup_attach,
10666 .populate = cpu_cgroup_populate,
10667 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10668 .early_init = 1,
10669};
10670
052f1dc7 10671#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10672
10673#ifdef CONFIG_CGROUP_CPUACCT
10674
10675/*
10676 * CPU accounting code for task groups.
10677 *
10678 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10679 * (balbir@in.ibm.com).
10680 */
10681
934352f2 10682/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10683struct cpuacct {
10684 struct cgroup_subsys_state css;
10685 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 10686 u64 __percpu *cpuusage;
ef12fefa 10687 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10688 struct cpuacct *parent;
d842de87
SV
10689};
10690
10691struct cgroup_subsys cpuacct_subsys;
10692
10693/* return cpu accounting group corresponding to this container */
32cd756a 10694static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10695{
32cd756a 10696 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10697 struct cpuacct, css);
10698}
10699
10700/* return cpu accounting group to which this task belongs */
10701static inline struct cpuacct *task_ca(struct task_struct *tsk)
10702{
10703 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10704 struct cpuacct, css);
10705}
10706
10707/* create a new cpu accounting group */
10708static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10709 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10710{
10711 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10712 int i;
d842de87
SV
10713
10714 if (!ca)
ef12fefa 10715 goto out;
d842de87
SV
10716
10717 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10718 if (!ca->cpuusage)
10719 goto out_free_ca;
10720
10721 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10722 if (percpu_counter_init(&ca->cpustat[i], 0))
10723 goto out_free_counters;
d842de87 10724
934352f2
BR
10725 if (cgrp->parent)
10726 ca->parent = cgroup_ca(cgrp->parent);
10727
d842de87 10728 return &ca->css;
ef12fefa
BR
10729
10730out_free_counters:
10731 while (--i >= 0)
10732 percpu_counter_destroy(&ca->cpustat[i]);
10733 free_percpu(ca->cpuusage);
10734out_free_ca:
10735 kfree(ca);
10736out:
10737 return ERR_PTR(-ENOMEM);
d842de87
SV
10738}
10739
10740/* destroy an existing cpu accounting group */
41a2d6cf 10741static void
32cd756a 10742cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10743{
32cd756a 10744 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10745 int i;
d842de87 10746
ef12fefa
BR
10747 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10748 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10749 free_percpu(ca->cpuusage);
10750 kfree(ca);
10751}
10752
720f5498
KC
10753static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10754{
b36128c8 10755 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10756 u64 data;
10757
10758#ifndef CONFIG_64BIT
10759 /*
10760 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10761 */
05fa785c 10762 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 10763 data = *cpuusage;
05fa785c 10764 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
10765#else
10766 data = *cpuusage;
10767#endif
10768
10769 return data;
10770}
10771
10772static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10773{
b36128c8 10774 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10775
10776#ifndef CONFIG_64BIT
10777 /*
10778 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10779 */
05fa785c 10780 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 10781 *cpuusage = val;
05fa785c 10782 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
10783#else
10784 *cpuusage = val;
10785#endif
10786}
10787
d842de87 10788/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10789static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10790{
32cd756a 10791 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10792 u64 totalcpuusage = 0;
10793 int i;
10794
720f5498
KC
10795 for_each_present_cpu(i)
10796 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10797
10798 return totalcpuusage;
10799}
10800
0297b803
DG
10801static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10802 u64 reset)
10803{
10804 struct cpuacct *ca = cgroup_ca(cgrp);
10805 int err = 0;
10806 int i;
10807
10808 if (reset) {
10809 err = -EINVAL;
10810 goto out;
10811 }
10812
720f5498
KC
10813 for_each_present_cpu(i)
10814 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10815
0297b803
DG
10816out:
10817 return err;
10818}
10819
e9515c3c
KC
10820static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10821 struct seq_file *m)
10822{
10823 struct cpuacct *ca = cgroup_ca(cgroup);
10824 u64 percpu;
10825 int i;
10826
10827 for_each_present_cpu(i) {
10828 percpu = cpuacct_cpuusage_read(ca, i);
10829 seq_printf(m, "%llu ", (unsigned long long) percpu);
10830 }
10831 seq_printf(m, "\n");
10832 return 0;
10833}
10834
ef12fefa
BR
10835static const char *cpuacct_stat_desc[] = {
10836 [CPUACCT_STAT_USER] = "user",
10837 [CPUACCT_STAT_SYSTEM] = "system",
10838};
10839
10840static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10841 struct cgroup_map_cb *cb)
10842{
10843 struct cpuacct *ca = cgroup_ca(cgrp);
10844 int i;
10845
10846 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10847 s64 val = percpu_counter_read(&ca->cpustat[i]);
10848 val = cputime64_to_clock_t(val);
10849 cb->fill(cb, cpuacct_stat_desc[i], val);
10850 }
10851 return 0;
10852}
10853
d842de87
SV
10854static struct cftype files[] = {
10855 {
10856 .name = "usage",
f4c753b7
PM
10857 .read_u64 = cpuusage_read,
10858 .write_u64 = cpuusage_write,
d842de87 10859 },
e9515c3c
KC
10860 {
10861 .name = "usage_percpu",
10862 .read_seq_string = cpuacct_percpu_seq_read,
10863 },
ef12fefa
BR
10864 {
10865 .name = "stat",
10866 .read_map = cpuacct_stats_show,
10867 },
d842de87
SV
10868};
10869
32cd756a 10870static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10871{
32cd756a 10872 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10873}
10874
10875/*
10876 * charge this task's execution time to its accounting group.
10877 *
10878 * called with rq->lock held.
10879 */
10880static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10881{
10882 struct cpuacct *ca;
934352f2 10883 int cpu;
d842de87 10884
c40c6f85 10885 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10886 return;
10887
934352f2 10888 cpu = task_cpu(tsk);
a18b83b7
BR
10889
10890 rcu_read_lock();
10891
d842de87 10892 ca = task_ca(tsk);
d842de87 10893
934352f2 10894 for (; ca; ca = ca->parent) {
b36128c8 10895 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10896 *cpuusage += cputime;
10897 }
a18b83b7
BR
10898
10899 rcu_read_unlock();
d842de87
SV
10900}
10901
ef12fefa
BR
10902/*
10903 * Charge the system/user time to the task's accounting group.
10904 */
10905static void cpuacct_update_stats(struct task_struct *tsk,
10906 enum cpuacct_stat_index idx, cputime_t val)
10907{
10908 struct cpuacct *ca;
10909
10910 if (unlikely(!cpuacct_subsys.active))
10911 return;
10912
10913 rcu_read_lock();
10914 ca = task_ca(tsk);
10915
10916 do {
10917 percpu_counter_add(&ca->cpustat[idx], val);
10918 ca = ca->parent;
10919 } while (ca);
10920 rcu_read_unlock();
10921}
10922
d842de87
SV
10923struct cgroup_subsys cpuacct_subsys = {
10924 .name = "cpuacct",
10925 .create = cpuacct_create,
10926 .destroy = cpuacct_destroy,
10927 .populate = cpuacct_populate,
10928 .subsys_id = cpuacct_subsys_id,
10929};
10930#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10931
10932#ifndef CONFIG_SMP
10933
10934int rcu_expedited_torture_stats(char *page)
10935{
10936 return 0;
10937}
10938EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10939
10940void synchronize_sched_expedited(void)
10941{
10942}
10943EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10944
10945#else /* #ifndef CONFIG_SMP */
10946
10947static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10948static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10949
10950#define RCU_EXPEDITED_STATE_POST -2
10951#define RCU_EXPEDITED_STATE_IDLE -1
10952
10953static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10954
10955int rcu_expedited_torture_stats(char *page)
10956{
10957 int cnt = 0;
10958 int cpu;
10959
10960 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10961 for_each_online_cpu(cpu) {
10962 cnt += sprintf(&page[cnt], " %d:%d",
10963 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10964 }
10965 cnt += sprintf(&page[cnt], "\n");
10966 return cnt;
10967}
10968EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10969
10970static long synchronize_sched_expedited_count;
10971
10972/*
10973 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10974 * approach to force grace period to end quickly. This consumes
10975 * significant time on all CPUs, and is thus not recommended for
10976 * any sort of common-case code.
10977 *
10978 * Note that it is illegal to call this function while holding any
10979 * lock that is acquired by a CPU-hotplug notifier. Failing to
10980 * observe this restriction will result in deadlock.
10981 */
10982void synchronize_sched_expedited(void)
10983{
10984 int cpu;
10985 unsigned long flags;
10986 bool need_full_sync = 0;
10987 struct rq *rq;
10988 struct migration_req *req;
10989 long snap;
10990 int trycount = 0;
10991
10992 smp_mb(); /* ensure prior mod happens before capturing snap. */
10993 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10994 get_online_cpus();
10995 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10996 put_online_cpus();
10997 if (trycount++ < 10)
10998 udelay(trycount * num_online_cpus());
10999 else {
11000 synchronize_sched();
11001 return;
11002 }
11003 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
11004 smp_mb(); /* ensure test happens before caller kfree */
11005 return;
11006 }
11007 get_online_cpus();
11008 }
11009 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
11010 for_each_online_cpu(cpu) {
11011 rq = cpu_rq(cpu);
11012 req = &per_cpu(rcu_migration_req, cpu);
11013 init_completion(&req->done);
11014 req->task = NULL;
11015 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 11016 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 11017 list_add(&req->list, &rq->migration_queue);
05fa785c 11018 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
11019 wake_up_process(rq->migration_thread);
11020 }
11021 for_each_online_cpu(cpu) {
11022 rcu_expedited_state = cpu;
11023 req = &per_cpu(rcu_migration_req, cpu);
11024 rq = cpu_rq(cpu);
11025 wait_for_completion(&req->done);
05fa785c 11026 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
11027 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11028 need_full_sync = 1;
11029 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 11030 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
11031 }
11032 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 11033 synchronize_sched_expedited_count++;
03b042bf
PM
11034 mutex_unlock(&rcu_sched_expedited_mutex);
11035 put_online_cpus();
11036 if (need_full_sync)
11037 synchronize_sched();
11038}
11039EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11040
11041#endif /* #else #ifndef CONFIG_SMP */