]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/namespace.c
cachefiles: use path_get instead of lone dget
[net-next-2.6.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4
LT
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
14#include <linux/smp_lock.h>
15#include <linux/init.h>
15a67dd8 16#include <linux/kernel.h>
1da177e4 17#include <linux/acct.h>
16f7e0fe 18#include <linux/capability.h>
3d733633 19#include <linux/cpumask.h>
1da177e4 20#include <linux/module.h>
f20a9ead 21#include <linux/sysfs.h>
1da177e4 22#include <linux/seq_file.h>
6b3286ed 23#include <linux/mnt_namespace.h>
1da177e4 24#include <linux/namei.h>
b43f3cbd 25#include <linux/nsproxy.h>
1da177e4
LT
26#include <linux/security.h>
27#include <linux/mount.h>
07f3f05c 28#include <linux/ramfs.h>
13f14b4d 29#include <linux/log2.h>
73cd49ec 30#include <linux/idr.h>
5ad4e53b 31#include <linux/fs_struct.h>
2504c5d6 32#include <linux/fsnotify.h>
1da177e4
LT
33#include <asm/uaccess.h>
34#include <asm/unistd.h>
07b20889 35#include "pnode.h"
948730b0 36#include "internal.h"
1da177e4 37
13f14b4d
ED
38#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
39#define HASH_SIZE (1UL << HASH_SHIFT)
40
1da177e4 41/* spinlock for vfsmount related operations, inplace of dcache_lock */
5addc5dd
AV
42__cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
43
44static int event;
73cd49ec 45static DEFINE_IDA(mnt_id_ida);
719f5d7f 46static DEFINE_IDA(mnt_group_ida);
f21f6220
AV
47static int mnt_id_start = 0;
48static int mnt_group_start = 1;
1da177e4 49
fa3536cc 50static struct list_head *mount_hashtable __read_mostly;
e18b890b 51static struct kmem_cache *mnt_cache __read_mostly;
390c6843 52static struct rw_semaphore namespace_sem;
1da177e4 53
f87fd4c2 54/* /sys/fs */
00d26666
GKH
55struct kobject *fs_kobj;
56EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 57
1da177e4
LT
58static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
59{
b58fed8b
RP
60 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
61 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
62 tmp = tmp + (tmp >> HASH_SHIFT);
63 return tmp & (HASH_SIZE - 1);
1da177e4
LT
64}
65
3d733633
DH
66#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
67
73cd49ec
MS
68/* allocation is serialized by namespace_sem */
69static int mnt_alloc_id(struct vfsmount *mnt)
70{
71 int res;
72
73retry:
74 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
75 spin_lock(&vfsmount_lock);
f21f6220
AV
76 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
77 if (!res)
78 mnt_id_start = mnt->mnt_id + 1;
73cd49ec
MS
79 spin_unlock(&vfsmount_lock);
80 if (res == -EAGAIN)
81 goto retry;
82
83 return res;
84}
85
86static void mnt_free_id(struct vfsmount *mnt)
87{
f21f6220 88 int id = mnt->mnt_id;
73cd49ec 89 spin_lock(&vfsmount_lock);
f21f6220
AV
90 ida_remove(&mnt_id_ida, id);
91 if (mnt_id_start > id)
92 mnt_id_start = id;
73cd49ec
MS
93 spin_unlock(&vfsmount_lock);
94}
95
719f5d7f
MS
96/*
97 * Allocate a new peer group ID
98 *
99 * mnt_group_ida is protected by namespace_sem
100 */
101static int mnt_alloc_group_id(struct vfsmount *mnt)
102{
f21f6220
AV
103 int res;
104
719f5d7f
MS
105 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
106 return -ENOMEM;
107
f21f6220
AV
108 res = ida_get_new_above(&mnt_group_ida,
109 mnt_group_start,
110 &mnt->mnt_group_id);
111 if (!res)
112 mnt_group_start = mnt->mnt_group_id + 1;
113
114 return res;
719f5d7f
MS
115}
116
117/*
118 * Release a peer group ID
119 */
120void mnt_release_group_id(struct vfsmount *mnt)
121{
f21f6220
AV
122 int id = mnt->mnt_group_id;
123 ida_remove(&mnt_group_ida, id);
124 if (mnt_group_start > id)
125 mnt_group_start = id;
719f5d7f
MS
126 mnt->mnt_group_id = 0;
127}
128
1da177e4
LT
129struct vfsmount *alloc_vfsmnt(const char *name)
130{
c3762229 131 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
1da177e4 132 if (mnt) {
73cd49ec
MS
133 int err;
134
135 err = mnt_alloc_id(mnt);
88b38782
LZ
136 if (err)
137 goto out_free_cache;
138
139 if (name) {
140 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
141 if (!mnt->mnt_devname)
142 goto out_free_id;
73cd49ec
MS
143 }
144
b58fed8b 145 atomic_set(&mnt->mnt_count, 1);
1da177e4
LT
146 INIT_LIST_HEAD(&mnt->mnt_hash);
147 INIT_LIST_HEAD(&mnt->mnt_child);
148 INIT_LIST_HEAD(&mnt->mnt_mounts);
149 INIT_LIST_HEAD(&mnt->mnt_list);
55e700b9 150 INIT_LIST_HEAD(&mnt->mnt_expire);
03e06e68 151 INIT_LIST_HEAD(&mnt->mnt_share);
a58b0eb8
RP
152 INIT_LIST_HEAD(&mnt->mnt_slave_list);
153 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
154#ifdef CONFIG_FSNOTIFY
155 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
156#endif
d3ef3d73 157#ifdef CONFIG_SMP
158 mnt->mnt_writers = alloc_percpu(int);
159 if (!mnt->mnt_writers)
160 goto out_free_devname;
161#else
162 mnt->mnt_writers = 0;
163#endif
1da177e4
LT
164 }
165 return mnt;
88b38782 166
d3ef3d73 167#ifdef CONFIG_SMP
168out_free_devname:
169 kfree(mnt->mnt_devname);
170#endif
88b38782
LZ
171out_free_id:
172 mnt_free_id(mnt);
173out_free_cache:
174 kmem_cache_free(mnt_cache, mnt);
175 return NULL;
1da177e4
LT
176}
177
3d733633
DH
178/*
179 * Most r/o checks on a fs are for operations that take
180 * discrete amounts of time, like a write() or unlink().
181 * We must keep track of when those operations start
182 * (for permission checks) and when they end, so that
183 * we can determine when writes are able to occur to
184 * a filesystem.
185 */
186/*
187 * __mnt_is_readonly: check whether a mount is read-only
188 * @mnt: the mount to check for its write status
189 *
190 * This shouldn't be used directly ouside of the VFS.
191 * It does not guarantee that the filesystem will stay
192 * r/w, just that it is right *now*. This can not and
193 * should not be used in place of IS_RDONLY(inode).
194 * mnt_want/drop_write() will _keep_ the filesystem
195 * r/w.
196 */
197int __mnt_is_readonly(struct vfsmount *mnt)
198{
2e4b7fcd
DH
199 if (mnt->mnt_flags & MNT_READONLY)
200 return 1;
201 if (mnt->mnt_sb->s_flags & MS_RDONLY)
202 return 1;
203 return 0;
3d733633
DH
204}
205EXPORT_SYMBOL_GPL(__mnt_is_readonly);
206
d3ef3d73 207static inline void inc_mnt_writers(struct vfsmount *mnt)
208{
209#ifdef CONFIG_SMP
210 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))++;
211#else
212 mnt->mnt_writers++;
213#endif
214}
3d733633 215
d3ef3d73 216static inline void dec_mnt_writers(struct vfsmount *mnt)
3d733633 217{
d3ef3d73 218#ifdef CONFIG_SMP
219 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))--;
220#else
221 mnt->mnt_writers--;
222#endif
3d733633 223}
3d733633 224
d3ef3d73 225static unsigned int count_mnt_writers(struct vfsmount *mnt)
3d733633 226{
d3ef3d73 227#ifdef CONFIG_SMP
228 unsigned int count = 0;
3d733633 229 int cpu;
3d733633
DH
230
231 for_each_possible_cpu(cpu) {
d3ef3d73 232 count += *per_cpu_ptr(mnt->mnt_writers, cpu);
3d733633 233 }
3d733633 234
d3ef3d73 235 return count;
236#else
237 return mnt->mnt_writers;
238#endif
3d733633
DH
239}
240
8366025e
DH
241/*
242 * Most r/o checks on a fs are for operations that take
243 * discrete amounts of time, like a write() or unlink().
244 * We must keep track of when those operations start
245 * (for permission checks) and when they end, so that
246 * we can determine when writes are able to occur to
247 * a filesystem.
248 */
249/**
250 * mnt_want_write - get write access to a mount
251 * @mnt: the mount on which to take a write
252 *
253 * This tells the low-level filesystem that a write is
254 * about to be performed to it, and makes sure that
255 * writes are allowed before returning success. When
256 * the write operation is finished, mnt_drop_write()
257 * must be called. This is effectively a refcount.
258 */
259int mnt_want_write(struct vfsmount *mnt)
260{
3d733633 261 int ret = 0;
3d733633 262
d3ef3d73 263 preempt_disable();
264 inc_mnt_writers(mnt);
265 /*
266 * The store to inc_mnt_writers must be visible before we pass
267 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
268 * incremented count after it has set MNT_WRITE_HOLD.
269 */
270 smp_mb();
271 while (mnt->mnt_flags & MNT_WRITE_HOLD)
272 cpu_relax();
273 /*
274 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
275 * be set to match its requirements. So we must not load that until
276 * MNT_WRITE_HOLD is cleared.
277 */
278 smp_rmb();
3d733633 279 if (__mnt_is_readonly(mnt)) {
d3ef3d73 280 dec_mnt_writers(mnt);
3d733633
DH
281 ret = -EROFS;
282 goto out;
283 }
3d733633 284out:
d3ef3d73 285 preempt_enable();
3d733633 286 return ret;
8366025e
DH
287}
288EXPORT_SYMBOL_GPL(mnt_want_write);
289
96029c4e 290/**
291 * mnt_clone_write - get write access to a mount
292 * @mnt: the mount on which to take a write
293 *
294 * This is effectively like mnt_want_write, except
295 * it must only be used to take an extra write reference
296 * on a mountpoint that we already know has a write reference
297 * on it. This allows some optimisation.
298 *
299 * After finished, mnt_drop_write must be called as usual to
300 * drop the reference.
301 */
302int mnt_clone_write(struct vfsmount *mnt)
303{
304 /* superblock may be r/o */
305 if (__mnt_is_readonly(mnt))
306 return -EROFS;
307 preempt_disable();
308 inc_mnt_writers(mnt);
309 preempt_enable();
310 return 0;
311}
312EXPORT_SYMBOL_GPL(mnt_clone_write);
313
314/**
315 * mnt_want_write_file - get write access to a file's mount
316 * @file: the file who's mount on which to take a write
317 *
318 * This is like mnt_want_write, but it takes a file and can
319 * do some optimisations if the file is open for write already
320 */
321int mnt_want_write_file(struct file *file)
322{
2d8dd38a
OH
323 struct inode *inode = file->f_dentry->d_inode;
324 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
96029c4e 325 return mnt_want_write(file->f_path.mnt);
326 else
327 return mnt_clone_write(file->f_path.mnt);
328}
329EXPORT_SYMBOL_GPL(mnt_want_write_file);
330
8366025e
DH
331/**
332 * mnt_drop_write - give up write access to a mount
333 * @mnt: the mount on which to give up write access
334 *
335 * Tells the low-level filesystem that we are done
336 * performing writes to it. Must be matched with
337 * mnt_want_write() call above.
338 */
339void mnt_drop_write(struct vfsmount *mnt)
340{
d3ef3d73 341 preempt_disable();
342 dec_mnt_writers(mnt);
343 preempt_enable();
8366025e
DH
344}
345EXPORT_SYMBOL_GPL(mnt_drop_write);
346
2e4b7fcd 347static int mnt_make_readonly(struct vfsmount *mnt)
8366025e 348{
3d733633
DH
349 int ret = 0;
350
d3ef3d73 351 spin_lock(&vfsmount_lock);
352 mnt->mnt_flags |= MNT_WRITE_HOLD;
3d733633 353 /*
d3ef3d73 354 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
355 * should be visible before we do.
3d733633 356 */
d3ef3d73 357 smp_mb();
358
3d733633 359 /*
d3ef3d73 360 * With writers on hold, if this value is zero, then there are
361 * definitely no active writers (although held writers may subsequently
362 * increment the count, they'll have to wait, and decrement it after
363 * seeing MNT_READONLY).
364 *
365 * It is OK to have counter incremented on one CPU and decremented on
366 * another: the sum will add up correctly. The danger would be when we
367 * sum up each counter, if we read a counter before it is incremented,
368 * but then read another CPU's count which it has been subsequently
369 * decremented from -- we would see more decrements than we should.
370 * MNT_WRITE_HOLD protects against this scenario, because
371 * mnt_want_write first increments count, then smp_mb, then spins on
372 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
373 * we're counting up here.
3d733633 374 */
d3ef3d73 375 if (count_mnt_writers(mnt) > 0)
376 ret = -EBUSY;
377 else
2e4b7fcd 378 mnt->mnt_flags |= MNT_READONLY;
d3ef3d73 379 /*
380 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
381 * that become unheld will see MNT_READONLY.
382 */
383 smp_wmb();
384 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
2e4b7fcd 385 spin_unlock(&vfsmount_lock);
3d733633 386 return ret;
8366025e 387}
8366025e 388
2e4b7fcd
DH
389static void __mnt_unmake_readonly(struct vfsmount *mnt)
390{
391 spin_lock(&vfsmount_lock);
392 mnt->mnt_flags &= ~MNT_READONLY;
393 spin_unlock(&vfsmount_lock);
394}
395
a3ec947c 396void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
454e2398
DH
397{
398 mnt->mnt_sb = sb;
399 mnt->mnt_root = dget(sb->s_root);
454e2398
DH
400}
401
402EXPORT_SYMBOL(simple_set_mnt);
403
1da177e4
LT
404void free_vfsmnt(struct vfsmount *mnt)
405{
406 kfree(mnt->mnt_devname);
73cd49ec 407 mnt_free_id(mnt);
d3ef3d73 408#ifdef CONFIG_SMP
409 free_percpu(mnt->mnt_writers);
410#endif
1da177e4
LT
411 kmem_cache_free(mnt_cache, mnt);
412}
413
414/*
a05964f3
RP
415 * find the first or last mount at @dentry on vfsmount @mnt depending on
416 * @dir. If @dir is set return the first mount else return the last mount.
1da177e4 417 */
a05964f3
RP
418struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
419 int dir)
1da177e4 420{
b58fed8b
RP
421 struct list_head *head = mount_hashtable + hash(mnt, dentry);
422 struct list_head *tmp = head;
1da177e4
LT
423 struct vfsmount *p, *found = NULL;
424
1da177e4 425 for (;;) {
a05964f3 426 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
427 p = NULL;
428 if (tmp == head)
429 break;
430 p = list_entry(tmp, struct vfsmount, mnt_hash);
431 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
a05964f3 432 found = p;
1da177e4
LT
433 break;
434 }
435 }
1da177e4
LT
436 return found;
437}
438
a05964f3
RP
439/*
440 * lookup_mnt increments the ref count before returning
441 * the vfsmount struct.
442 */
1c755af4 443struct vfsmount *lookup_mnt(struct path *path)
a05964f3
RP
444{
445 struct vfsmount *child_mnt;
446 spin_lock(&vfsmount_lock);
1c755af4 447 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
a05964f3
RP
448 mntget(child_mnt);
449 spin_unlock(&vfsmount_lock);
450 return child_mnt;
451}
452
1da177e4
LT
453static inline int check_mnt(struct vfsmount *mnt)
454{
6b3286ed 455 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
456}
457
6b3286ed 458static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
459{
460 if (ns) {
461 ns->event = ++event;
462 wake_up_interruptible(&ns->poll);
463 }
464}
465
6b3286ed 466static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
467{
468 if (ns && ns->event != event) {
469 ns->event = event;
470 wake_up_interruptible(&ns->poll);
471 }
472}
473
1a390689 474static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
1da177e4 475{
1a390689
AV
476 old_path->dentry = mnt->mnt_mountpoint;
477 old_path->mnt = mnt->mnt_parent;
1da177e4
LT
478 mnt->mnt_parent = mnt;
479 mnt->mnt_mountpoint = mnt->mnt_root;
480 list_del_init(&mnt->mnt_child);
481 list_del_init(&mnt->mnt_hash);
1a390689 482 old_path->dentry->d_mounted--;
1da177e4
LT
483}
484
b90fa9ae
RP
485void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
486 struct vfsmount *child_mnt)
487{
488 child_mnt->mnt_parent = mntget(mnt);
489 child_mnt->mnt_mountpoint = dget(dentry);
490 dentry->d_mounted++;
491}
492
1a390689 493static void attach_mnt(struct vfsmount *mnt, struct path *path)
1da177e4 494{
1a390689 495 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
b90fa9ae 496 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689
AV
497 hash(path->mnt, path->dentry));
498 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
b90fa9ae
RP
499}
500
501/*
502 * the caller must hold vfsmount_lock
503 */
504static void commit_tree(struct vfsmount *mnt)
505{
506 struct vfsmount *parent = mnt->mnt_parent;
507 struct vfsmount *m;
508 LIST_HEAD(head);
6b3286ed 509 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae
RP
510
511 BUG_ON(parent == mnt);
512
513 list_add_tail(&head, &mnt->mnt_list);
514 list_for_each_entry(m, &head, mnt_list)
6b3286ed 515 m->mnt_ns = n;
b90fa9ae
RP
516 list_splice(&head, n->list.prev);
517
518 list_add_tail(&mnt->mnt_hash, mount_hashtable +
519 hash(parent, mnt->mnt_mountpoint));
520 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 521 touch_mnt_namespace(n);
1da177e4
LT
522}
523
524static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
525{
526 struct list_head *next = p->mnt_mounts.next;
527 if (next == &p->mnt_mounts) {
528 while (1) {
529 if (p == root)
530 return NULL;
531 next = p->mnt_child.next;
532 if (next != &p->mnt_parent->mnt_mounts)
533 break;
534 p = p->mnt_parent;
535 }
536 }
537 return list_entry(next, struct vfsmount, mnt_child);
538}
539
9676f0c6
RP
540static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
541{
542 struct list_head *prev = p->mnt_mounts.prev;
543 while (prev != &p->mnt_mounts) {
544 p = list_entry(prev, struct vfsmount, mnt_child);
545 prev = p->mnt_mounts.prev;
546 }
547 return p;
548}
549
36341f64
RP
550static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
551 int flag)
1da177e4
LT
552{
553 struct super_block *sb = old->mnt_sb;
554 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
555
556 if (mnt) {
719f5d7f
MS
557 if (flag & (CL_SLAVE | CL_PRIVATE))
558 mnt->mnt_group_id = 0; /* not a peer of original */
559 else
560 mnt->mnt_group_id = old->mnt_group_id;
561
562 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
563 int err = mnt_alloc_group_id(mnt);
564 if (err)
565 goto out_free;
566 }
567
1da177e4
LT
568 mnt->mnt_flags = old->mnt_flags;
569 atomic_inc(&sb->s_active);
570 mnt->mnt_sb = sb;
571 mnt->mnt_root = dget(root);
572 mnt->mnt_mountpoint = mnt->mnt_root;
573 mnt->mnt_parent = mnt;
b90fa9ae 574
5afe0022
RP
575 if (flag & CL_SLAVE) {
576 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
577 mnt->mnt_master = old;
578 CLEAR_MNT_SHARED(mnt);
8aec0809 579 } else if (!(flag & CL_PRIVATE)) {
796a6b52 580 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
5afe0022
RP
581 list_add(&mnt->mnt_share, &old->mnt_share);
582 if (IS_MNT_SLAVE(old))
583 list_add(&mnt->mnt_slave, &old->mnt_slave);
584 mnt->mnt_master = old->mnt_master;
585 }
b90fa9ae
RP
586 if (flag & CL_MAKE_SHARED)
587 set_mnt_shared(mnt);
1da177e4
LT
588
589 /* stick the duplicate mount on the same expiry list
590 * as the original if that was on one */
36341f64 591 if (flag & CL_EXPIRE) {
36341f64
RP
592 if (!list_empty(&old->mnt_expire))
593 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 594 }
1da177e4
LT
595 }
596 return mnt;
719f5d7f
MS
597
598 out_free:
599 free_vfsmnt(mnt);
600 return NULL;
1da177e4
LT
601}
602
7b7b1ace 603static inline void __mntput(struct vfsmount *mnt)
1da177e4
LT
604{
605 struct super_block *sb = mnt->mnt_sb;
3d733633
DH
606 /*
607 * This probably indicates that somebody messed
608 * up a mnt_want/drop_write() pair. If this
609 * happens, the filesystem was probably unable
610 * to make r/w->r/o transitions.
611 */
d3ef3d73 612 /*
613 * atomic_dec_and_lock() used to deal with ->mnt_count decrements
614 * provides barriers, so count_mnt_writers() below is safe. AV
615 */
616 WARN_ON(count_mnt_writers(mnt));
ca9c726e 617 fsnotify_vfsmount_delete(mnt);
1da177e4
LT
618 dput(mnt->mnt_root);
619 free_vfsmnt(mnt);
620 deactivate_super(sb);
621}
622
7b7b1ace
AV
623void mntput_no_expire(struct vfsmount *mnt)
624{
625repeat:
626 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
627 if (likely(!mnt->mnt_pinned)) {
628 spin_unlock(&vfsmount_lock);
629 __mntput(mnt);
630 return;
631 }
632 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
633 mnt->mnt_pinned = 0;
634 spin_unlock(&vfsmount_lock);
635 acct_auto_close_mnt(mnt);
7b7b1ace
AV
636 goto repeat;
637 }
638}
639
640EXPORT_SYMBOL(mntput_no_expire);
641
642void mnt_pin(struct vfsmount *mnt)
643{
644 spin_lock(&vfsmount_lock);
645 mnt->mnt_pinned++;
646 spin_unlock(&vfsmount_lock);
647}
648
649EXPORT_SYMBOL(mnt_pin);
650
651void mnt_unpin(struct vfsmount *mnt)
652{
653 spin_lock(&vfsmount_lock);
654 if (mnt->mnt_pinned) {
655 atomic_inc(&mnt->mnt_count);
656 mnt->mnt_pinned--;
657 }
658 spin_unlock(&vfsmount_lock);
659}
660
661EXPORT_SYMBOL(mnt_unpin);
1da177e4 662
b3b304a2
MS
663static inline void mangle(struct seq_file *m, const char *s)
664{
665 seq_escape(m, s, " \t\n\\");
666}
667
668/*
669 * Simple .show_options callback for filesystems which don't want to
670 * implement more complex mount option showing.
671 *
672 * See also save_mount_options().
673 */
674int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
675{
2a32cebd
AV
676 const char *options;
677
678 rcu_read_lock();
679 options = rcu_dereference(mnt->mnt_sb->s_options);
b3b304a2
MS
680
681 if (options != NULL && options[0]) {
682 seq_putc(m, ',');
683 mangle(m, options);
684 }
2a32cebd 685 rcu_read_unlock();
b3b304a2
MS
686
687 return 0;
688}
689EXPORT_SYMBOL(generic_show_options);
690
691/*
692 * If filesystem uses generic_show_options(), this function should be
693 * called from the fill_super() callback.
694 *
695 * The .remount_fs callback usually needs to be handled in a special
696 * way, to make sure, that previous options are not overwritten if the
697 * remount fails.
698 *
699 * Also note, that if the filesystem's .remount_fs function doesn't
700 * reset all options to their default value, but changes only newly
701 * given options, then the displayed options will not reflect reality
702 * any more.
703 */
704void save_mount_options(struct super_block *sb, char *options)
705{
2a32cebd
AV
706 BUG_ON(sb->s_options);
707 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
708}
709EXPORT_SYMBOL(save_mount_options);
710
2a32cebd
AV
711void replace_mount_options(struct super_block *sb, char *options)
712{
713 char *old = sb->s_options;
714 rcu_assign_pointer(sb->s_options, options);
715 if (old) {
716 synchronize_rcu();
717 kfree(old);
718 }
719}
720EXPORT_SYMBOL(replace_mount_options);
721
a1a2c409 722#ifdef CONFIG_PROC_FS
1da177e4
LT
723/* iterator */
724static void *m_start(struct seq_file *m, loff_t *pos)
725{
a1a2c409 726 struct proc_mounts *p = m->private;
1da177e4 727
390c6843 728 down_read(&namespace_sem);
a1a2c409 729 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
730}
731
732static void *m_next(struct seq_file *m, void *v, loff_t *pos)
733{
a1a2c409 734 struct proc_mounts *p = m->private;
b0765fb8 735
a1a2c409 736 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
737}
738
739static void m_stop(struct seq_file *m, void *v)
740{
390c6843 741 up_read(&namespace_sem);
1da177e4
LT
742}
743
9f5596af
AV
744int mnt_had_events(struct proc_mounts *p)
745{
746 struct mnt_namespace *ns = p->ns;
747 int res = 0;
748
749 spin_lock(&vfsmount_lock);
750 if (p->event != ns->event) {
751 p->event = ns->event;
752 res = 1;
753 }
754 spin_unlock(&vfsmount_lock);
755
756 return res;
757}
758
2d4d4864
RP
759struct proc_fs_info {
760 int flag;
761 const char *str;
762};
763
2069f457 764static int show_sb_opts(struct seq_file *m, struct super_block *sb)
1da177e4 765{
2d4d4864 766 static const struct proc_fs_info fs_info[] = {
1da177e4
LT
767 { MS_SYNCHRONOUS, ",sync" },
768 { MS_DIRSYNC, ",dirsync" },
769 { MS_MANDLOCK, ",mand" },
1da177e4
LT
770 { 0, NULL }
771 };
2d4d4864
RP
772 const struct proc_fs_info *fs_infop;
773
774 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
775 if (sb->s_flags & fs_infop->flag)
776 seq_puts(m, fs_infop->str);
777 }
2069f457
EP
778
779 return security_sb_show_options(m, sb);
2d4d4864
RP
780}
781
782static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
783{
784 static const struct proc_fs_info mnt_info[] = {
1da177e4
LT
785 { MNT_NOSUID, ",nosuid" },
786 { MNT_NODEV, ",nodev" },
787 { MNT_NOEXEC, ",noexec" },
fc33a7bb
CH
788 { MNT_NOATIME, ",noatime" },
789 { MNT_NODIRATIME, ",nodiratime" },
47ae32d6 790 { MNT_RELATIME, ",relatime" },
d0adde57 791 { MNT_STRICTATIME, ",strictatime" },
1da177e4
LT
792 { 0, NULL }
793 };
2d4d4864
RP
794 const struct proc_fs_info *fs_infop;
795
796 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
797 if (mnt->mnt_flags & fs_infop->flag)
798 seq_puts(m, fs_infop->str);
799 }
800}
801
802static void show_type(struct seq_file *m, struct super_block *sb)
803{
804 mangle(m, sb->s_type->name);
805 if (sb->s_subtype && sb->s_subtype[0]) {
806 seq_putc(m, '.');
807 mangle(m, sb->s_subtype);
808 }
809}
810
811static int show_vfsmnt(struct seq_file *m, void *v)
812{
813 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
814 int err = 0;
c32c2f63 815 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1da177e4
LT
816
817 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
818 seq_putc(m, ' ');
c32c2f63 819 seq_path(m, &mnt_path, " \t\n\\");
1da177e4 820 seq_putc(m, ' ');
2d4d4864 821 show_type(m, mnt->mnt_sb);
2e4b7fcd 822 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
2069f457
EP
823 err = show_sb_opts(m, mnt->mnt_sb);
824 if (err)
825 goto out;
2d4d4864 826 show_mnt_opts(m, mnt);
1da177e4
LT
827 if (mnt->mnt_sb->s_op->show_options)
828 err = mnt->mnt_sb->s_op->show_options(m, mnt);
829 seq_puts(m, " 0 0\n");
2069f457 830out:
1da177e4
LT
831 return err;
832}
833
a1a2c409 834const struct seq_operations mounts_op = {
1da177e4
LT
835 .start = m_start,
836 .next = m_next,
837 .stop = m_stop,
838 .show = show_vfsmnt
839};
840
2d4d4864
RP
841static int show_mountinfo(struct seq_file *m, void *v)
842{
843 struct proc_mounts *p = m->private;
844 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
845 struct super_block *sb = mnt->mnt_sb;
846 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
847 struct path root = p->root;
848 int err = 0;
849
850 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
851 MAJOR(sb->s_dev), MINOR(sb->s_dev));
852 seq_dentry(m, mnt->mnt_root, " \t\n\\");
853 seq_putc(m, ' ');
854 seq_path_root(m, &mnt_path, &root, " \t\n\\");
855 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
856 /*
857 * Mountpoint is outside root, discard that one. Ugly,
858 * but less so than trying to do that in iterator in a
859 * race-free way (due to renames).
860 */
861 return SEQ_SKIP;
862 }
863 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
864 show_mnt_opts(m, mnt);
865
866 /* Tagged fields ("foo:X" or "bar") */
867 if (IS_MNT_SHARED(mnt))
868 seq_printf(m, " shared:%i", mnt->mnt_group_id);
97e7e0f7
MS
869 if (IS_MNT_SLAVE(mnt)) {
870 int master = mnt->mnt_master->mnt_group_id;
871 int dom = get_dominating_id(mnt, &p->root);
872 seq_printf(m, " master:%i", master);
873 if (dom && dom != master)
874 seq_printf(m, " propagate_from:%i", dom);
875 }
2d4d4864
RP
876 if (IS_MNT_UNBINDABLE(mnt))
877 seq_puts(m, " unbindable");
878
879 /* Filesystem specific data */
880 seq_puts(m, " - ");
881 show_type(m, sb);
882 seq_putc(m, ' ');
883 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
884 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
2069f457
EP
885 err = show_sb_opts(m, sb);
886 if (err)
887 goto out;
2d4d4864
RP
888 if (sb->s_op->show_options)
889 err = sb->s_op->show_options(m, mnt);
890 seq_putc(m, '\n');
2069f457 891out:
2d4d4864
RP
892 return err;
893}
894
895const struct seq_operations mountinfo_op = {
896 .start = m_start,
897 .next = m_next,
898 .stop = m_stop,
899 .show = show_mountinfo,
900};
901
b4629fe2
CL
902static int show_vfsstat(struct seq_file *m, void *v)
903{
b0765fb8 904 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
c32c2f63 905 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
b4629fe2
CL
906 int err = 0;
907
908 /* device */
909 if (mnt->mnt_devname) {
910 seq_puts(m, "device ");
911 mangle(m, mnt->mnt_devname);
912 } else
913 seq_puts(m, "no device");
914
915 /* mount point */
916 seq_puts(m, " mounted on ");
c32c2f63 917 seq_path(m, &mnt_path, " \t\n\\");
b4629fe2
CL
918 seq_putc(m, ' ');
919
920 /* file system type */
921 seq_puts(m, "with fstype ");
2d4d4864 922 show_type(m, mnt->mnt_sb);
b4629fe2
CL
923
924 /* optional statistics */
925 if (mnt->mnt_sb->s_op->show_stats) {
926 seq_putc(m, ' ');
927 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
928 }
929
930 seq_putc(m, '\n');
931 return err;
932}
933
a1a2c409 934const struct seq_operations mountstats_op = {
b4629fe2
CL
935 .start = m_start,
936 .next = m_next,
937 .stop = m_stop,
938 .show = show_vfsstat,
939};
a1a2c409 940#endif /* CONFIG_PROC_FS */
b4629fe2 941
1da177e4
LT
942/**
943 * may_umount_tree - check if a mount tree is busy
944 * @mnt: root of mount tree
945 *
946 * This is called to check if a tree of mounts has any
947 * open files, pwds, chroots or sub mounts that are
948 * busy.
949 */
950int may_umount_tree(struct vfsmount *mnt)
951{
36341f64
RP
952 int actual_refs = 0;
953 int minimum_refs = 0;
954 struct vfsmount *p;
1da177e4
LT
955
956 spin_lock(&vfsmount_lock);
36341f64 957 for (p = mnt; p; p = next_mnt(p, mnt)) {
1da177e4
LT
958 actual_refs += atomic_read(&p->mnt_count);
959 minimum_refs += 2;
1da177e4
LT
960 }
961 spin_unlock(&vfsmount_lock);
962
963 if (actual_refs > minimum_refs)
e3474a8e 964 return 0;
1da177e4 965
e3474a8e 966 return 1;
1da177e4
LT
967}
968
969EXPORT_SYMBOL(may_umount_tree);
970
971/**
972 * may_umount - check if a mount point is busy
973 * @mnt: root of mount
974 *
975 * This is called to check if a mount point has any
976 * open files, pwds, chroots or sub mounts. If the
977 * mount has sub mounts this will return busy
978 * regardless of whether the sub mounts are busy.
979 *
980 * Doesn't take quota and stuff into account. IOW, in some cases it will
981 * give false negatives. The main reason why it's here is that we need
982 * a non-destructive way to look for easily umountable filesystems.
983 */
984int may_umount(struct vfsmount *mnt)
985{
e3474a8e 986 int ret = 1;
8ad08d8a 987 down_read(&namespace_sem);
a05964f3
RP
988 spin_lock(&vfsmount_lock);
989 if (propagate_mount_busy(mnt, 2))
e3474a8e 990 ret = 0;
a05964f3 991 spin_unlock(&vfsmount_lock);
8ad08d8a 992 up_read(&namespace_sem);
a05964f3 993 return ret;
1da177e4
LT
994}
995
996EXPORT_SYMBOL(may_umount);
997
b90fa9ae 998void release_mounts(struct list_head *head)
70fbcdf4
RP
999{
1000 struct vfsmount *mnt;
bf066c7d 1001 while (!list_empty(head)) {
b5e61818 1002 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
70fbcdf4
RP
1003 list_del_init(&mnt->mnt_hash);
1004 if (mnt->mnt_parent != mnt) {
1005 struct dentry *dentry;
1006 struct vfsmount *m;
1007 spin_lock(&vfsmount_lock);
1008 dentry = mnt->mnt_mountpoint;
1009 m = mnt->mnt_parent;
1010 mnt->mnt_mountpoint = mnt->mnt_root;
1011 mnt->mnt_parent = mnt;
7c4b93d8 1012 m->mnt_ghosts--;
70fbcdf4
RP
1013 spin_unlock(&vfsmount_lock);
1014 dput(dentry);
1015 mntput(m);
1016 }
1017 mntput(mnt);
1018 }
1019}
1020
a05964f3 1021void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1da177e4
LT
1022{
1023 struct vfsmount *p;
1da177e4 1024
1bfba4e8
AM
1025 for (p = mnt; p; p = next_mnt(p, mnt))
1026 list_move(&p->mnt_hash, kill);
1da177e4 1027
a05964f3
RP
1028 if (propagate)
1029 propagate_umount(kill);
1030
70fbcdf4
RP
1031 list_for_each_entry(p, kill, mnt_hash) {
1032 list_del_init(&p->mnt_expire);
1033 list_del_init(&p->mnt_list);
6b3286ed
KK
1034 __touch_mnt_namespace(p->mnt_ns);
1035 p->mnt_ns = NULL;
70fbcdf4 1036 list_del_init(&p->mnt_child);
7c4b93d8
AV
1037 if (p->mnt_parent != p) {
1038 p->mnt_parent->mnt_ghosts++;
f30ac319 1039 p->mnt_mountpoint->d_mounted--;
7c4b93d8 1040 }
a05964f3 1041 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1042 }
1043}
1044
c35038be
AV
1045static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1046
1da177e4
LT
1047static int do_umount(struct vfsmount *mnt, int flags)
1048{
b58fed8b 1049 struct super_block *sb = mnt->mnt_sb;
1da177e4 1050 int retval;
70fbcdf4 1051 LIST_HEAD(umount_list);
1da177e4
LT
1052
1053 retval = security_sb_umount(mnt, flags);
1054 if (retval)
1055 return retval;
1056
1057 /*
1058 * Allow userspace to request a mountpoint be expired rather than
1059 * unmounting unconditionally. Unmount only happens if:
1060 * (1) the mark is already set (the mark is cleared by mntput())
1061 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1062 */
1063 if (flags & MNT_EXPIRE) {
6ac08c39 1064 if (mnt == current->fs->root.mnt ||
1da177e4
LT
1065 flags & (MNT_FORCE | MNT_DETACH))
1066 return -EINVAL;
1067
1068 if (atomic_read(&mnt->mnt_count) != 2)
1069 return -EBUSY;
1070
1071 if (!xchg(&mnt->mnt_expiry_mark, 1))
1072 return -EAGAIN;
1073 }
1074
1075 /*
1076 * If we may have to abort operations to get out of this
1077 * mount, and they will themselves hold resources we must
1078 * allow the fs to do things. In the Unix tradition of
1079 * 'Gee thats tricky lets do it in userspace' the umount_begin
1080 * might fail to complete on the first run through as other tasks
1081 * must return, and the like. Thats for the mount program to worry
1082 * about for the moment.
1083 */
1084
42faad99 1085 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1086 sb->s_op->umount_begin(sb);
42faad99 1087 }
1da177e4
LT
1088
1089 /*
1090 * No sense to grab the lock for this test, but test itself looks
1091 * somewhat bogus. Suggestions for better replacement?
1092 * Ho-hum... In principle, we might treat that as umount + switch
1093 * to rootfs. GC would eventually take care of the old vfsmount.
1094 * Actually it makes sense, especially if rootfs would contain a
1095 * /reboot - static binary that would close all descriptors and
1096 * call reboot(9). Then init(8) could umount root and exec /reboot.
1097 */
6ac08c39 1098 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1099 /*
1100 * Special case for "unmounting" root ...
1101 * we just try to remount it readonly.
1102 */
1103 down_write(&sb->s_umount);
4aa98cf7 1104 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1105 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1106 up_write(&sb->s_umount);
1107 return retval;
1108 }
1109
390c6843 1110 down_write(&namespace_sem);
1da177e4 1111 spin_lock(&vfsmount_lock);
5addc5dd 1112 event++;
1da177e4 1113
c35038be
AV
1114 if (!(flags & MNT_DETACH))
1115 shrink_submounts(mnt, &umount_list);
1116
1da177e4 1117 retval = -EBUSY;
a05964f3 1118 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1da177e4 1119 if (!list_empty(&mnt->mnt_list))
a05964f3 1120 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1121 retval = 0;
1122 }
1123 spin_unlock(&vfsmount_lock);
390c6843 1124 up_write(&namespace_sem);
70fbcdf4 1125 release_mounts(&umount_list);
1da177e4
LT
1126 return retval;
1127}
1128
1129/*
1130 * Now umount can handle mount points as well as block devices.
1131 * This is important for filesystems which use unnamed block devices.
1132 *
1133 * We now support a flag for forced unmount like the other 'big iron'
1134 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1135 */
1136
bdc480e3 1137SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1138{
2d8f3038 1139 struct path path;
1da177e4 1140 int retval;
db1f05bb 1141 int lookup_flags = 0;
1da177e4 1142
db1f05bb
MS
1143 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1144 return -EINVAL;
1145
1146 if (!(flags & UMOUNT_NOFOLLOW))
1147 lookup_flags |= LOOKUP_FOLLOW;
1148
1149 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1150 if (retval)
1151 goto out;
1152 retval = -EINVAL;
2d8f3038 1153 if (path.dentry != path.mnt->mnt_root)
1da177e4 1154 goto dput_and_out;
2d8f3038 1155 if (!check_mnt(path.mnt))
1da177e4
LT
1156 goto dput_and_out;
1157
1158 retval = -EPERM;
1159 if (!capable(CAP_SYS_ADMIN))
1160 goto dput_and_out;
1161
2d8f3038 1162 retval = do_umount(path.mnt, flags);
1da177e4 1163dput_and_out:
429731b1 1164 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038
AV
1165 dput(path.dentry);
1166 mntput_no_expire(path.mnt);
1da177e4
LT
1167out:
1168 return retval;
1169}
1170
1171#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1172
1173/*
b58fed8b 1174 * The 2.0 compatible umount. No flags.
1da177e4 1175 */
bdc480e3 1176SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1177{
b58fed8b 1178 return sys_umount(name, 0);
1da177e4
LT
1179}
1180
1181#endif
1182
2d92ab3c 1183static int mount_is_safe(struct path *path)
1da177e4
LT
1184{
1185 if (capable(CAP_SYS_ADMIN))
1186 return 0;
1187 return -EPERM;
1188#ifdef notyet
2d92ab3c 1189 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1190 return -EPERM;
2d92ab3c 1191 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1192 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1193 return -EPERM;
1194 }
2d92ab3c 1195 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1196 return -EPERM;
1197 return 0;
1198#endif
1199}
1200
b90fa9ae 1201struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
36341f64 1202 int flag)
1da177e4
LT
1203{
1204 struct vfsmount *res, *p, *q, *r, *s;
1a390689 1205 struct path path;
1da177e4 1206
9676f0c6
RP
1207 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1208 return NULL;
1209
36341f64 1210 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1211 if (!q)
1212 goto Enomem;
1213 q->mnt_mountpoint = mnt->mnt_mountpoint;
1214
1215 p = mnt;
fdadd65f 1216 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
7ec02ef1 1217 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1218 continue;
1219
1220 for (s = r; s; s = next_mnt(s, r)) {
9676f0c6
RP
1221 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1222 s = skip_mnt_tree(s);
1223 continue;
1224 }
1da177e4
LT
1225 while (p != s->mnt_parent) {
1226 p = p->mnt_parent;
1227 q = q->mnt_parent;
1228 }
1229 p = s;
1a390689
AV
1230 path.mnt = q;
1231 path.dentry = p->mnt_mountpoint;
36341f64 1232 q = clone_mnt(p, p->mnt_root, flag);
1da177e4
LT
1233 if (!q)
1234 goto Enomem;
1235 spin_lock(&vfsmount_lock);
1236 list_add_tail(&q->mnt_list, &res->mnt_list);
1a390689 1237 attach_mnt(q, &path);
1da177e4
LT
1238 spin_unlock(&vfsmount_lock);
1239 }
1240 }
1241 return res;
b58fed8b 1242Enomem:
1da177e4 1243 if (res) {
70fbcdf4 1244 LIST_HEAD(umount_list);
1da177e4 1245 spin_lock(&vfsmount_lock);
a05964f3 1246 umount_tree(res, 0, &umount_list);
1da177e4 1247 spin_unlock(&vfsmount_lock);
70fbcdf4 1248 release_mounts(&umount_list);
1da177e4
LT
1249 }
1250 return NULL;
1251}
1252
589ff870 1253struct vfsmount *collect_mounts(struct path *path)
8aec0809
AV
1254{
1255 struct vfsmount *tree;
1a60a280 1256 down_write(&namespace_sem);
589ff870 1257 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1a60a280 1258 up_write(&namespace_sem);
8aec0809
AV
1259 return tree;
1260}
1261
1262void drop_collected_mounts(struct vfsmount *mnt)
1263{
1264 LIST_HEAD(umount_list);
1a60a280 1265 down_write(&namespace_sem);
8aec0809
AV
1266 spin_lock(&vfsmount_lock);
1267 umount_tree(mnt, 0, &umount_list);
1268 spin_unlock(&vfsmount_lock);
1a60a280 1269 up_write(&namespace_sem);
8aec0809
AV
1270 release_mounts(&umount_list);
1271}
1272
1f707137
AV
1273int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1274 struct vfsmount *root)
1275{
1276 struct vfsmount *mnt;
1277 int res = f(root, arg);
1278 if (res)
1279 return res;
1280 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1281 res = f(mnt, arg);
1282 if (res)
1283 return res;
1284 }
1285 return 0;
1286}
1287
719f5d7f
MS
1288static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1289{
1290 struct vfsmount *p;
1291
1292 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1293 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1294 mnt_release_group_id(p);
1295 }
1296}
1297
1298static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1299{
1300 struct vfsmount *p;
1301
1302 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1303 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1304 int err = mnt_alloc_group_id(p);
1305 if (err) {
1306 cleanup_group_ids(mnt, p);
1307 return err;
1308 }
1309 }
1310 }
1311
1312 return 0;
1313}
1314
b90fa9ae
RP
1315/*
1316 * @source_mnt : mount tree to be attached
21444403
RP
1317 * @nd : place the mount tree @source_mnt is attached
1318 * @parent_nd : if non-null, detach the source_mnt from its parent and
1319 * store the parent mount and mountpoint dentry.
1320 * (done when source_mnt is moved)
b90fa9ae
RP
1321 *
1322 * NOTE: in the table below explains the semantics when a source mount
1323 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1324 * ---------------------------------------------------------------------------
1325 * | BIND MOUNT OPERATION |
1326 * |**************************************************************************
1327 * | source-->| shared | private | slave | unbindable |
1328 * | dest | | | | |
1329 * | | | | | | |
1330 * | v | | | | |
1331 * |**************************************************************************
1332 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1333 * | | | | | |
1334 * |non-shared| shared (+) | private | slave (*) | invalid |
1335 * ***************************************************************************
b90fa9ae
RP
1336 * A bind operation clones the source mount and mounts the clone on the
1337 * destination mount.
1338 *
1339 * (++) the cloned mount is propagated to all the mounts in the propagation
1340 * tree of the destination mount and the cloned mount is added to
1341 * the peer group of the source mount.
1342 * (+) the cloned mount is created under the destination mount and is marked
1343 * as shared. The cloned mount is added to the peer group of the source
1344 * mount.
5afe0022
RP
1345 * (+++) the mount is propagated to all the mounts in the propagation tree
1346 * of the destination mount and the cloned mount is made slave
1347 * of the same master as that of the source mount. The cloned mount
1348 * is marked as 'shared and slave'.
1349 * (*) the cloned mount is made a slave of the same master as that of the
1350 * source mount.
1351 *
9676f0c6
RP
1352 * ---------------------------------------------------------------------------
1353 * | MOVE MOUNT OPERATION |
1354 * |**************************************************************************
1355 * | source-->| shared | private | slave | unbindable |
1356 * | dest | | | | |
1357 * | | | | | | |
1358 * | v | | | | |
1359 * |**************************************************************************
1360 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1361 * | | | | | |
1362 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1363 * ***************************************************************************
5afe0022
RP
1364 *
1365 * (+) the mount is moved to the destination. And is then propagated to
1366 * all the mounts in the propagation tree of the destination mount.
21444403 1367 * (+*) the mount is moved to the destination.
5afe0022
RP
1368 * (+++) the mount is moved to the destination and is then propagated to
1369 * all the mounts belonging to the destination mount's propagation tree.
1370 * the mount is marked as 'shared and slave'.
1371 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1372 *
1373 * if the source mount is a tree, the operations explained above is
1374 * applied to each mount in the tree.
1375 * Must be called without spinlocks held, since this function can sleep
1376 * in allocations.
1377 */
1378static int attach_recursive_mnt(struct vfsmount *source_mnt,
1a390689 1379 struct path *path, struct path *parent_path)
b90fa9ae
RP
1380{
1381 LIST_HEAD(tree_list);
1a390689
AV
1382 struct vfsmount *dest_mnt = path->mnt;
1383 struct dentry *dest_dentry = path->dentry;
b90fa9ae 1384 struct vfsmount *child, *p;
719f5d7f 1385 int err;
b90fa9ae 1386
719f5d7f
MS
1387 if (IS_MNT_SHARED(dest_mnt)) {
1388 err = invent_group_ids(source_mnt, true);
1389 if (err)
1390 goto out;
1391 }
1392 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1393 if (err)
1394 goto out_cleanup_ids;
b90fa9ae 1395
df1a1ad2
AV
1396 spin_lock(&vfsmount_lock);
1397
b90fa9ae
RP
1398 if (IS_MNT_SHARED(dest_mnt)) {
1399 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1400 set_mnt_shared(p);
1401 }
1a390689
AV
1402 if (parent_path) {
1403 detach_mnt(source_mnt, parent_path);
1404 attach_mnt(source_mnt, path);
e5d67f07 1405 touch_mnt_namespace(parent_path->mnt->mnt_ns);
21444403
RP
1406 } else {
1407 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1408 commit_tree(source_mnt);
1409 }
b90fa9ae
RP
1410
1411 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1412 list_del_init(&child->mnt_hash);
1413 commit_tree(child);
1414 }
1415 spin_unlock(&vfsmount_lock);
1416 return 0;
719f5d7f
MS
1417
1418 out_cleanup_ids:
1419 if (IS_MNT_SHARED(dest_mnt))
1420 cleanup_group_ids(source_mnt, NULL);
1421 out:
1422 return err;
b90fa9ae
RP
1423}
1424
8c3ee42e 1425static int graft_tree(struct vfsmount *mnt, struct path *path)
1da177e4
LT
1426{
1427 int err;
1428 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1429 return -EINVAL;
1430
8c3ee42e 1431 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1da177e4
LT
1432 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1433 return -ENOTDIR;
1434
1435 err = -ENOENT;
8c3ee42e 1436 mutex_lock(&path->dentry->d_inode->i_mutex);
d83c49f3 1437 if (cant_mount(path->dentry))
1da177e4
LT
1438 goto out_unlock;
1439
f3da392e 1440 if (!d_unlinked(path->dentry))
8c3ee42e 1441 err = attach_recursive_mnt(mnt, path, NULL);
1da177e4 1442out_unlock:
8c3ee42e 1443 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4
LT
1444 return err;
1445}
1446
07b20889
RP
1447/*
1448 * recursively change the type of the mountpoint.
1449 */
0a0d8a46 1450static int do_change_type(struct path *path, int flag)
07b20889 1451{
2d92ab3c 1452 struct vfsmount *m, *mnt = path->mnt;
07b20889
RP
1453 int recurse = flag & MS_REC;
1454 int type = flag & ~MS_REC;
719f5d7f 1455 int err = 0;
07b20889 1456
ee6f9582
MS
1457 if (!capable(CAP_SYS_ADMIN))
1458 return -EPERM;
1459
2d92ab3c 1460 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1461 return -EINVAL;
1462
1463 down_write(&namespace_sem);
719f5d7f
MS
1464 if (type == MS_SHARED) {
1465 err = invent_group_ids(mnt, recurse);
1466 if (err)
1467 goto out_unlock;
1468 }
1469
07b20889
RP
1470 spin_lock(&vfsmount_lock);
1471 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1472 change_mnt_propagation(m, type);
1473 spin_unlock(&vfsmount_lock);
719f5d7f
MS
1474
1475 out_unlock:
07b20889 1476 up_write(&namespace_sem);
719f5d7f 1477 return err;
07b20889
RP
1478}
1479
1da177e4
LT
1480/*
1481 * do loopback mount.
1482 */
0a0d8a46 1483static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1484 int recurse)
1da177e4 1485{
2d92ab3c 1486 struct path old_path;
1da177e4 1487 struct vfsmount *mnt = NULL;
2d92ab3c 1488 int err = mount_is_safe(path);
1da177e4
LT
1489 if (err)
1490 return err;
1491 if (!old_name || !*old_name)
1492 return -EINVAL;
2d92ab3c 1493 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1494 if (err)
1495 return err;
1496
390c6843 1497 down_write(&namespace_sem);
1da177e4 1498 err = -EINVAL;
2d92ab3c 1499 if (IS_MNT_UNBINDABLE(old_path.mnt))
4ac91378 1500 goto out;
9676f0c6 1501
2d92ab3c 1502 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
ccd48bc7 1503 goto out;
1da177e4 1504
ccd48bc7
AV
1505 err = -ENOMEM;
1506 if (recurse)
2d92ab3c 1507 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
ccd48bc7 1508 else
2d92ab3c 1509 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
ccd48bc7
AV
1510
1511 if (!mnt)
1512 goto out;
1513
2d92ab3c 1514 err = graft_tree(mnt, path);
ccd48bc7 1515 if (err) {
70fbcdf4 1516 LIST_HEAD(umount_list);
1da177e4 1517 spin_lock(&vfsmount_lock);
a05964f3 1518 umount_tree(mnt, 0, &umount_list);
1da177e4 1519 spin_unlock(&vfsmount_lock);
70fbcdf4 1520 release_mounts(&umount_list);
5b83d2c5 1521 }
1da177e4 1522
ccd48bc7 1523out:
390c6843 1524 up_write(&namespace_sem);
2d92ab3c 1525 path_put(&old_path);
1da177e4
LT
1526 return err;
1527}
1528
2e4b7fcd
DH
1529static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1530{
1531 int error = 0;
1532 int readonly_request = 0;
1533
1534 if (ms_flags & MS_RDONLY)
1535 readonly_request = 1;
1536 if (readonly_request == __mnt_is_readonly(mnt))
1537 return 0;
1538
1539 if (readonly_request)
1540 error = mnt_make_readonly(mnt);
1541 else
1542 __mnt_unmake_readonly(mnt);
1543 return error;
1544}
1545
1da177e4
LT
1546/*
1547 * change filesystem flags. dir should be a physical root of filesystem.
1548 * If you've mounted a non-root directory somewhere and want to do remount
1549 * on it - tough luck.
1550 */
0a0d8a46 1551static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1552 void *data)
1553{
1554 int err;
2d92ab3c 1555 struct super_block *sb = path->mnt->mnt_sb;
1da177e4
LT
1556
1557 if (!capable(CAP_SYS_ADMIN))
1558 return -EPERM;
1559
2d92ab3c 1560 if (!check_mnt(path->mnt))
1da177e4
LT
1561 return -EINVAL;
1562
2d92ab3c 1563 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1564 return -EINVAL;
1565
1566 down_write(&sb->s_umount);
2e4b7fcd 1567 if (flags & MS_BIND)
2d92ab3c 1568 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1569 else
2e4b7fcd 1570 err = do_remount_sb(sb, flags, data, 0);
7b43a79f
AV
1571 if (!err) {
1572 spin_lock(&vfsmount_lock);
495d6c9c 1573 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
2d92ab3c 1574 path->mnt->mnt_flags = mnt_flags;
7b43a79f
AV
1575 spin_unlock(&vfsmount_lock);
1576 }
1da177e4 1577 up_write(&sb->s_umount);
0e55a7cc 1578 if (!err) {
0e55a7cc
DW
1579 spin_lock(&vfsmount_lock);
1580 touch_mnt_namespace(path->mnt->mnt_ns);
1581 spin_unlock(&vfsmount_lock);
1582 }
1da177e4
LT
1583 return err;
1584}
1585
9676f0c6
RP
1586static inline int tree_contains_unbindable(struct vfsmount *mnt)
1587{
1588 struct vfsmount *p;
1589 for (p = mnt; p; p = next_mnt(p, mnt)) {
1590 if (IS_MNT_UNBINDABLE(p))
1591 return 1;
1592 }
1593 return 0;
1594}
1595
0a0d8a46 1596static int do_move_mount(struct path *path, char *old_name)
1da177e4 1597{
2d92ab3c 1598 struct path old_path, parent_path;
1da177e4
LT
1599 struct vfsmount *p;
1600 int err = 0;
1601 if (!capable(CAP_SYS_ADMIN))
1602 return -EPERM;
1603 if (!old_name || !*old_name)
1604 return -EINVAL;
2d92ab3c 1605 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1606 if (err)
1607 return err;
1608
390c6843 1609 down_write(&namespace_sem);
2d92ab3c 1610 while (d_mountpoint(path->dentry) &&
9393bd07 1611 follow_down(path))
1da177e4
LT
1612 ;
1613 err = -EINVAL;
2d92ab3c 1614 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1da177e4
LT
1615 goto out;
1616
1617 err = -ENOENT;
2d92ab3c 1618 mutex_lock(&path->dentry->d_inode->i_mutex);
d83c49f3 1619 if (cant_mount(path->dentry))
1da177e4
LT
1620 goto out1;
1621
f3da392e 1622 if (d_unlinked(path->dentry))
21444403 1623 goto out1;
1da177e4
LT
1624
1625 err = -EINVAL;
2d92ab3c 1626 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1627 goto out1;
1da177e4 1628
2d92ab3c 1629 if (old_path.mnt == old_path.mnt->mnt_parent)
21444403 1630 goto out1;
1da177e4 1631
2d92ab3c
AV
1632 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1633 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1634 goto out1;
1635 /*
1636 * Don't move a mount residing in a shared parent.
1637 */
2d92ab3c
AV
1638 if (old_path.mnt->mnt_parent &&
1639 IS_MNT_SHARED(old_path.mnt->mnt_parent))
21444403 1640 goto out1;
9676f0c6
RP
1641 /*
1642 * Don't move a mount tree containing unbindable mounts to a destination
1643 * mount which is shared.
1644 */
2d92ab3c
AV
1645 if (IS_MNT_SHARED(path->mnt) &&
1646 tree_contains_unbindable(old_path.mnt))
9676f0c6 1647 goto out1;
1da177e4 1648 err = -ELOOP;
2d92ab3c
AV
1649 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1650 if (p == old_path.mnt)
21444403 1651 goto out1;
1da177e4 1652
2d92ab3c 1653 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
4ac91378 1654 if (err)
21444403 1655 goto out1;
1da177e4
LT
1656
1657 /* if the mount is moved, it should no longer be expire
1658 * automatically */
2d92ab3c 1659 list_del_init(&old_path.mnt->mnt_expire);
1da177e4 1660out1:
2d92ab3c 1661 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4 1662out:
390c6843 1663 up_write(&namespace_sem);
1da177e4 1664 if (!err)
1a390689 1665 path_put(&parent_path);
2d92ab3c 1666 path_put(&old_path);
1da177e4
LT
1667 return err;
1668}
1669
1670/*
1671 * create a new mount for userspace and request it to be added into the
1672 * namespace's tree
1673 */
0a0d8a46 1674static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
1675 int mnt_flags, char *name, void *data)
1676{
1677 struct vfsmount *mnt;
1678
eca6f534 1679 if (!type)
1da177e4
LT
1680 return -EINVAL;
1681
1682 /* we need capabilities... */
1683 if (!capable(CAP_SYS_ADMIN))
1684 return -EPERM;
1685
7f78d4cd 1686 lock_kernel();
1da177e4 1687 mnt = do_kern_mount(type, flags, name, data);
7f78d4cd 1688 unlock_kernel();
1da177e4
LT
1689 if (IS_ERR(mnt))
1690 return PTR_ERR(mnt);
1691
2d92ab3c 1692 return do_add_mount(mnt, path, mnt_flags, NULL);
1da177e4
LT
1693}
1694
1695/*
1696 * add a mount into a namespace's mount tree
1697 * - provide the option of adding the new mount to an expiration list
1698 */
8d66bf54 1699int do_add_mount(struct vfsmount *newmnt, struct path *path,
1da177e4
LT
1700 int mnt_flags, struct list_head *fslist)
1701{
1702 int err;
1703
8089352a 1704 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
27d55f1f 1705
390c6843 1706 down_write(&namespace_sem);
1da177e4 1707 /* Something was mounted here while we slept */
8d66bf54 1708 while (d_mountpoint(path->dentry) &&
9393bd07 1709 follow_down(path))
1da177e4
LT
1710 ;
1711 err = -EINVAL;
dd5cae6e 1712 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1da177e4
LT
1713 goto unlock;
1714
1715 /* Refuse the same filesystem on the same mount point */
1716 err = -EBUSY;
8d66bf54
AV
1717 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1718 path->mnt->mnt_root == path->dentry)
1da177e4
LT
1719 goto unlock;
1720
1721 err = -EINVAL;
1722 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1723 goto unlock;
1724
1725 newmnt->mnt_flags = mnt_flags;
8d66bf54 1726 if ((err = graft_tree(newmnt, path)))
5b83d2c5 1727 goto unlock;
1da177e4 1728
6758f953 1729 if (fslist) /* add to the specified expiration list */
55e700b9 1730 list_add_tail(&newmnt->mnt_expire, fslist);
6758f953 1731
390c6843 1732 up_write(&namespace_sem);
5b83d2c5 1733 return 0;
1da177e4
LT
1734
1735unlock:
390c6843 1736 up_write(&namespace_sem);
1da177e4
LT
1737 mntput(newmnt);
1738 return err;
1739}
1740
1741EXPORT_SYMBOL_GPL(do_add_mount);
1742
1743/*
1744 * process a list of expirable mountpoints with the intent of discarding any
1745 * mountpoints that aren't in use and haven't been touched since last we came
1746 * here
1747 */
1748void mark_mounts_for_expiry(struct list_head *mounts)
1749{
1da177e4
LT
1750 struct vfsmount *mnt, *next;
1751 LIST_HEAD(graveyard);
bcc5c7d2 1752 LIST_HEAD(umounts);
1da177e4
LT
1753
1754 if (list_empty(mounts))
1755 return;
1756
bcc5c7d2 1757 down_write(&namespace_sem);
1da177e4
LT
1758 spin_lock(&vfsmount_lock);
1759
1760 /* extract from the expiration list every vfsmount that matches the
1761 * following criteria:
1762 * - only referenced by its parent vfsmount
1763 * - still marked for expiry (marked on the last call here; marks are
1764 * cleared by mntput())
1765 */
55e700b9 1766 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1da177e4 1767 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
bcc5c7d2 1768 propagate_mount_busy(mnt, 1))
1da177e4 1769 continue;
55e700b9 1770 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 1771 }
bcc5c7d2
AV
1772 while (!list_empty(&graveyard)) {
1773 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1774 touch_mnt_namespace(mnt->mnt_ns);
1775 umount_tree(mnt, 1, &umounts);
1776 }
5528f911 1777 spin_unlock(&vfsmount_lock);
bcc5c7d2
AV
1778 up_write(&namespace_sem);
1779
1780 release_mounts(&umounts);
5528f911
TM
1781}
1782
1783EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1784
1785/*
1786 * Ripoff of 'select_parent()'
1787 *
1788 * search the list of submounts for a given mountpoint, and move any
1789 * shrinkable submounts to the 'graveyard' list.
1790 */
1791static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1792{
1793 struct vfsmount *this_parent = parent;
1794 struct list_head *next;
1795 int found = 0;
1796
1797repeat:
1798 next = this_parent->mnt_mounts.next;
1799resume:
1800 while (next != &this_parent->mnt_mounts) {
1801 struct list_head *tmp = next;
1802 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1803
1804 next = tmp->next;
1805 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1da177e4 1806 continue;
5528f911
TM
1807 /*
1808 * Descend a level if the d_mounts list is non-empty.
1809 */
1810 if (!list_empty(&mnt->mnt_mounts)) {
1811 this_parent = mnt;
1812 goto repeat;
1813 }
1da177e4 1814
5528f911 1815 if (!propagate_mount_busy(mnt, 1)) {
5528f911
TM
1816 list_move_tail(&mnt->mnt_expire, graveyard);
1817 found++;
1818 }
1da177e4 1819 }
5528f911
TM
1820 /*
1821 * All done at this level ... ascend and resume the search
1822 */
1823 if (this_parent != parent) {
1824 next = this_parent->mnt_child.next;
1825 this_parent = this_parent->mnt_parent;
1826 goto resume;
1827 }
1828 return found;
1829}
1830
1831/*
1832 * process a list of expirable mountpoints with the intent of discarding any
1833 * submounts of a specific parent mountpoint
1834 */
c35038be 1835static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
5528f911
TM
1836{
1837 LIST_HEAD(graveyard);
c35038be 1838 struct vfsmount *m;
5528f911 1839
5528f911 1840 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 1841 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 1842 while (!list_empty(&graveyard)) {
c35038be 1843 m = list_first_entry(&graveyard, struct vfsmount,
bcc5c7d2 1844 mnt_expire);
afef80b3
EB
1845 touch_mnt_namespace(m->mnt_ns);
1846 umount_tree(m, 1, umounts);
bcc5c7d2
AV
1847 }
1848 }
1da177e4
LT
1849}
1850
1da177e4
LT
1851/*
1852 * Some copy_from_user() implementations do not return the exact number of
1853 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1854 * Note that this function differs from copy_from_user() in that it will oops
1855 * on bad values of `to', rather than returning a short copy.
1856 */
b58fed8b
RP
1857static long exact_copy_from_user(void *to, const void __user * from,
1858 unsigned long n)
1da177e4
LT
1859{
1860 char *t = to;
1861 const char __user *f = from;
1862 char c;
1863
1864 if (!access_ok(VERIFY_READ, from, n))
1865 return n;
1866
1867 while (n) {
1868 if (__get_user(c, f)) {
1869 memset(t, 0, n);
1870 break;
1871 }
1872 *t++ = c;
1873 f++;
1874 n--;
1875 }
1876 return n;
1877}
1878
b58fed8b 1879int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
1880{
1881 int i;
1882 unsigned long page;
1883 unsigned long size;
b58fed8b 1884
1da177e4
LT
1885 *where = 0;
1886 if (!data)
1887 return 0;
1888
1889 if (!(page = __get_free_page(GFP_KERNEL)))
1890 return -ENOMEM;
1891
1892 /* We only care that *some* data at the address the user
1893 * gave us is valid. Just in case, we'll zero
1894 * the remainder of the page.
1895 */
1896 /* copy_from_user cannot cross TASK_SIZE ! */
1897 size = TASK_SIZE - (unsigned long)data;
1898 if (size > PAGE_SIZE)
1899 size = PAGE_SIZE;
1900
1901 i = size - exact_copy_from_user((void *)page, data, size);
1902 if (!i) {
b58fed8b 1903 free_page(page);
1da177e4
LT
1904 return -EFAULT;
1905 }
1906 if (i != PAGE_SIZE)
1907 memset((char *)page + i, 0, PAGE_SIZE - i);
1908 *where = page;
1909 return 0;
1910}
1911
eca6f534
VN
1912int copy_mount_string(const void __user *data, char **where)
1913{
1914 char *tmp;
1915
1916 if (!data) {
1917 *where = NULL;
1918 return 0;
1919 }
1920
1921 tmp = strndup_user(data, PAGE_SIZE);
1922 if (IS_ERR(tmp))
1923 return PTR_ERR(tmp);
1924
1925 *where = tmp;
1926 return 0;
1927}
1928
1da177e4
LT
1929/*
1930 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1931 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1932 *
1933 * data is a (void *) that can point to any structure up to
1934 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1935 * information (or be NULL).
1936 *
1937 * Pre-0.97 versions of mount() didn't have a flags word.
1938 * When the flags word was introduced its top half was required
1939 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1940 * Therefore, if this magic number is present, it carries no information
1941 * and must be discarded.
1942 */
b58fed8b 1943long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
1944 unsigned long flags, void *data_page)
1945{
2d92ab3c 1946 struct path path;
1da177e4
LT
1947 int retval = 0;
1948 int mnt_flags = 0;
1949
1950 /* Discard magic */
1951 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1952 flags &= ~MS_MGC_MSK;
1953
1954 /* Basic sanity checks */
1955
1956 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1957 return -EINVAL;
1da177e4
LT
1958
1959 if (data_page)
1960 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1961
a27ab9f2
TH
1962 /* ... and get the mountpoint */
1963 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
1964 if (retval)
1965 return retval;
1966
1967 retval = security_sb_mount(dev_name, &path,
1968 type_page, flags, data_page);
1969 if (retval)
1970 goto dput_out;
1971
613cbe3d
AK
1972 /* Default to relatime unless overriden */
1973 if (!(flags & MS_NOATIME))
1974 mnt_flags |= MNT_RELATIME;
0a1c01c9 1975
1da177e4
LT
1976 /* Separate the per-mountpoint flags */
1977 if (flags & MS_NOSUID)
1978 mnt_flags |= MNT_NOSUID;
1979 if (flags & MS_NODEV)
1980 mnt_flags |= MNT_NODEV;
1981 if (flags & MS_NOEXEC)
1982 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
1983 if (flags & MS_NOATIME)
1984 mnt_flags |= MNT_NOATIME;
1985 if (flags & MS_NODIRATIME)
1986 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
1987 if (flags & MS_STRICTATIME)
1988 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
1989 if (flags & MS_RDONLY)
1990 mnt_flags |= MNT_READONLY;
fc33a7bb 1991
7a4dec53 1992 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
1993 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
1994 MS_STRICTATIME);
1da177e4 1995
1da177e4 1996 if (flags & MS_REMOUNT)
2d92ab3c 1997 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
1998 data_page);
1999 else if (flags & MS_BIND)
2d92ab3c 2000 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2001 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2002 retval = do_change_type(&path, flags);
1da177e4 2003 else if (flags & MS_MOVE)
2d92ab3c 2004 retval = do_move_mount(&path, dev_name);
1da177e4 2005 else
2d92ab3c 2006 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2007 dev_name, data_page);
2008dput_out:
2d92ab3c 2009 path_put(&path);
1da177e4
LT
2010 return retval;
2011}
2012
cf8d2c11
TM
2013static struct mnt_namespace *alloc_mnt_ns(void)
2014{
2015 struct mnt_namespace *new_ns;
2016
2017 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2018 if (!new_ns)
2019 return ERR_PTR(-ENOMEM);
2020 atomic_set(&new_ns->count, 1);
2021 new_ns->root = NULL;
2022 INIT_LIST_HEAD(&new_ns->list);
2023 init_waitqueue_head(&new_ns->poll);
2024 new_ns->event = 0;
2025 return new_ns;
2026}
2027
741a2951
JD
2028/*
2029 * Allocate a new namespace structure and populate it with contents
2030 * copied from the namespace of the passed in task structure.
2031 */
e3222c4e 2032static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 2033 struct fs_struct *fs)
1da177e4 2034{
6b3286ed 2035 struct mnt_namespace *new_ns;
7f2da1e7 2036 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1da177e4
LT
2037 struct vfsmount *p, *q;
2038
cf8d2c11
TM
2039 new_ns = alloc_mnt_ns();
2040 if (IS_ERR(new_ns))
2041 return new_ns;
1da177e4 2042
390c6843 2043 down_write(&namespace_sem);
1da177e4 2044 /* First pass: copy the tree topology */
6b3286ed 2045 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
9676f0c6 2046 CL_COPY_ALL | CL_EXPIRE);
1da177e4 2047 if (!new_ns->root) {
390c6843 2048 up_write(&namespace_sem);
1da177e4 2049 kfree(new_ns);
5cc4a034 2050 return ERR_PTR(-ENOMEM);
1da177e4
LT
2051 }
2052 spin_lock(&vfsmount_lock);
2053 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2054 spin_unlock(&vfsmount_lock);
2055
2056 /*
2057 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2058 * as belonging to new namespace. We have already acquired a private
2059 * fs_struct, so tsk->fs->lock is not needed.
2060 */
6b3286ed 2061 p = mnt_ns->root;
1da177e4
LT
2062 q = new_ns->root;
2063 while (p) {
6b3286ed 2064 q->mnt_ns = new_ns;
1da177e4 2065 if (fs) {
6ac08c39 2066 if (p == fs->root.mnt) {
1da177e4 2067 rootmnt = p;
6ac08c39 2068 fs->root.mnt = mntget(q);
1da177e4 2069 }
6ac08c39 2070 if (p == fs->pwd.mnt) {
1da177e4 2071 pwdmnt = p;
6ac08c39 2072 fs->pwd.mnt = mntget(q);
1da177e4 2073 }
1da177e4 2074 }
6b3286ed 2075 p = next_mnt(p, mnt_ns->root);
1da177e4
LT
2076 q = next_mnt(q, new_ns->root);
2077 }
390c6843 2078 up_write(&namespace_sem);
1da177e4 2079
1da177e4
LT
2080 if (rootmnt)
2081 mntput(rootmnt);
2082 if (pwdmnt)
2083 mntput(pwdmnt);
1da177e4 2084
741a2951
JD
2085 return new_ns;
2086}
2087
213dd266 2088struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2089 struct fs_struct *new_fs)
741a2951 2090{
6b3286ed 2091 struct mnt_namespace *new_ns;
741a2951 2092
e3222c4e 2093 BUG_ON(!ns);
6b3286ed 2094 get_mnt_ns(ns);
741a2951
JD
2095
2096 if (!(flags & CLONE_NEWNS))
e3222c4e 2097 return ns;
741a2951 2098
e3222c4e 2099 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2100
6b3286ed 2101 put_mnt_ns(ns);
e3222c4e 2102 return new_ns;
1da177e4
LT
2103}
2104
cf8d2c11
TM
2105/**
2106 * create_mnt_ns - creates a private namespace and adds a root filesystem
2107 * @mnt: pointer to the new root filesystem mountpoint
2108 */
a2770d86 2109struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
cf8d2c11
TM
2110{
2111 struct mnt_namespace *new_ns;
2112
2113 new_ns = alloc_mnt_ns();
2114 if (!IS_ERR(new_ns)) {
2115 mnt->mnt_ns = new_ns;
2116 new_ns->root = mnt;
2117 list_add(&new_ns->list, &new_ns->root->mnt_list);
2118 }
2119 return new_ns;
2120}
a2770d86 2121EXPORT_SYMBOL(create_mnt_ns);
cf8d2c11 2122
bdc480e3
HC
2123SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2124 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2125{
eca6f534
VN
2126 int ret;
2127 char *kernel_type;
2128 char *kernel_dir;
2129 char *kernel_dev;
1da177e4 2130 unsigned long data_page;
1da177e4 2131
eca6f534
VN
2132 ret = copy_mount_string(type, &kernel_type);
2133 if (ret < 0)
2134 goto out_type;
1da177e4 2135
eca6f534
VN
2136 kernel_dir = getname(dir_name);
2137 if (IS_ERR(kernel_dir)) {
2138 ret = PTR_ERR(kernel_dir);
2139 goto out_dir;
2140 }
1da177e4 2141
eca6f534
VN
2142 ret = copy_mount_string(dev_name, &kernel_dev);
2143 if (ret < 0)
2144 goto out_dev;
1da177e4 2145
eca6f534
VN
2146 ret = copy_mount_options(data, &data_page);
2147 if (ret < 0)
2148 goto out_data;
1da177e4 2149
eca6f534
VN
2150 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2151 (void *) data_page);
1da177e4 2152
eca6f534
VN
2153 free_page(data_page);
2154out_data:
2155 kfree(kernel_dev);
2156out_dev:
2157 putname(kernel_dir);
2158out_dir:
2159 kfree(kernel_type);
2160out_type:
2161 return ret;
1da177e4
LT
2162}
2163
1da177e4
LT
2164/*
2165 * pivot_root Semantics:
2166 * Moves the root file system of the current process to the directory put_old,
2167 * makes new_root as the new root file system of the current process, and sets
2168 * root/cwd of all processes which had them on the current root to new_root.
2169 *
2170 * Restrictions:
2171 * The new_root and put_old must be directories, and must not be on the
2172 * same file system as the current process root. The put_old must be
2173 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2174 * pointed to by put_old must yield the same directory as new_root. No other
2175 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2176 *
4a0d11fa
NB
2177 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2178 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2179 * in this situation.
2180 *
1da177e4
LT
2181 * Notes:
2182 * - we don't move root/cwd if they are not at the root (reason: if something
2183 * cared enough to change them, it's probably wrong to force them elsewhere)
2184 * - it's okay to pick a root that isn't the root of a file system, e.g.
2185 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2186 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2187 * first.
2188 */
3480b257
HC
2189SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2190 const char __user *, put_old)
1da177e4
LT
2191{
2192 struct vfsmount *tmp;
2d8f3038 2193 struct path new, old, parent_path, root_parent, root;
1da177e4
LT
2194 int error;
2195
2196 if (!capable(CAP_SYS_ADMIN))
2197 return -EPERM;
2198
2d8f3038 2199 error = user_path_dir(new_root, &new);
1da177e4
LT
2200 if (error)
2201 goto out0;
2202 error = -EINVAL;
2d8f3038 2203 if (!check_mnt(new.mnt))
1da177e4
LT
2204 goto out1;
2205
2d8f3038 2206 error = user_path_dir(put_old, &old);
1da177e4
LT
2207 if (error)
2208 goto out1;
2209
2d8f3038 2210 error = security_sb_pivotroot(&old, &new);
1da177e4 2211 if (error) {
2d8f3038 2212 path_put(&old);
1da177e4
LT
2213 goto out1;
2214 }
2215
2216 read_lock(&current->fs->lock);
8c3ee42e 2217 root = current->fs->root;
6ac08c39 2218 path_get(&current->fs->root);
1da177e4 2219 read_unlock(&current->fs->lock);
390c6843 2220 down_write(&namespace_sem);
2d8f3038 2221 mutex_lock(&old.dentry->d_inode->i_mutex);
1da177e4 2222 error = -EINVAL;
2d8f3038
AV
2223 if (IS_MNT_SHARED(old.mnt) ||
2224 IS_MNT_SHARED(new.mnt->mnt_parent) ||
8c3ee42e 2225 IS_MNT_SHARED(root.mnt->mnt_parent))
21444403 2226 goto out2;
8c3ee42e 2227 if (!check_mnt(root.mnt))
1da177e4
LT
2228 goto out2;
2229 error = -ENOENT;
d83c49f3 2230 if (cant_mount(old.dentry))
1da177e4 2231 goto out2;
f3da392e 2232 if (d_unlinked(new.dentry))
1da177e4 2233 goto out2;
f3da392e 2234 if (d_unlinked(old.dentry))
1da177e4
LT
2235 goto out2;
2236 error = -EBUSY;
2d8f3038
AV
2237 if (new.mnt == root.mnt ||
2238 old.mnt == root.mnt)
1da177e4
LT
2239 goto out2; /* loop, on the same file system */
2240 error = -EINVAL;
8c3ee42e 2241 if (root.mnt->mnt_root != root.dentry)
1da177e4 2242 goto out2; /* not a mountpoint */
8c3ee42e 2243 if (root.mnt->mnt_parent == root.mnt)
0bb6fcc1 2244 goto out2; /* not attached */
2d8f3038 2245 if (new.mnt->mnt_root != new.dentry)
1da177e4 2246 goto out2; /* not a mountpoint */
2d8f3038 2247 if (new.mnt->mnt_parent == new.mnt)
0bb6fcc1 2248 goto out2; /* not attached */
4ac91378 2249 /* make sure we can reach put_old from new_root */
2d8f3038 2250 tmp = old.mnt;
1da177e4 2251 spin_lock(&vfsmount_lock);
2d8f3038 2252 if (tmp != new.mnt) {
1da177e4
LT
2253 for (;;) {
2254 if (tmp->mnt_parent == tmp)
2255 goto out3; /* already mounted on put_old */
2d8f3038 2256 if (tmp->mnt_parent == new.mnt)
1da177e4
LT
2257 break;
2258 tmp = tmp->mnt_parent;
2259 }
2d8f3038 2260 if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
1da177e4 2261 goto out3;
2d8f3038 2262 } else if (!is_subdir(old.dentry, new.dentry))
1da177e4 2263 goto out3;
2d8f3038 2264 detach_mnt(new.mnt, &parent_path);
8c3ee42e 2265 detach_mnt(root.mnt, &root_parent);
4ac91378 2266 /* mount old root on put_old */
2d8f3038 2267 attach_mnt(root.mnt, &old);
4ac91378 2268 /* mount new_root on / */
2d8f3038 2269 attach_mnt(new.mnt, &root_parent);
6b3286ed 2270 touch_mnt_namespace(current->nsproxy->mnt_ns);
1da177e4 2271 spin_unlock(&vfsmount_lock);
2d8f3038 2272 chroot_fs_refs(&root, &new);
1da177e4 2273 error = 0;
1a390689
AV
2274 path_put(&root_parent);
2275 path_put(&parent_path);
1da177e4 2276out2:
2d8f3038 2277 mutex_unlock(&old.dentry->d_inode->i_mutex);
390c6843 2278 up_write(&namespace_sem);
8c3ee42e 2279 path_put(&root);
2d8f3038 2280 path_put(&old);
1da177e4 2281out1:
2d8f3038 2282 path_put(&new);
1da177e4 2283out0:
1da177e4
LT
2284 return error;
2285out3:
2286 spin_unlock(&vfsmount_lock);
2287 goto out2;
2288}
2289
2290static void __init init_mount_tree(void)
2291{
2292 struct vfsmount *mnt;
6b3286ed 2293 struct mnt_namespace *ns;
ac748a09 2294 struct path root;
1da177e4
LT
2295
2296 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2297 if (IS_ERR(mnt))
2298 panic("Can't create rootfs");
3b22edc5
TM
2299 ns = create_mnt_ns(mnt);
2300 if (IS_ERR(ns))
1da177e4 2301 panic("Can't allocate initial namespace");
6b3286ed
KK
2302
2303 init_task.nsproxy->mnt_ns = ns;
2304 get_mnt_ns(ns);
2305
ac748a09
JB
2306 root.mnt = ns->root;
2307 root.dentry = ns->root->mnt_root;
2308
2309 set_fs_pwd(current->fs, &root);
2310 set_fs_root(current->fs, &root);
1da177e4
LT
2311}
2312
74bf17cf 2313void __init mnt_init(void)
1da177e4 2314{
13f14b4d 2315 unsigned u;
15a67dd8 2316 int err;
1da177e4 2317
390c6843
RP
2318 init_rwsem(&namespace_sem);
2319
1da177e4 2320 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
20c2df83 2321 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2322
b58fed8b 2323 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2324
2325 if (!mount_hashtable)
2326 panic("Failed to allocate mount hash table\n");
2327
13f14b4d
ED
2328 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2329
2330 for (u = 0; u < HASH_SIZE; u++)
2331 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2332
15a67dd8
RD
2333 err = sysfs_init();
2334 if (err)
2335 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2336 __func__, err);
00d26666
GKH
2337 fs_kobj = kobject_create_and_add("fs", NULL);
2338 if (!fs_kobj)
8e24eea7 2339 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2340 init_rootfs();
2341 init_mount_tree();
2342}
2343
616511d0 2344void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2345{
70fbcdf4 2346 LIST_HEAD(umount_list);
616511d0 2347
d498b25a 2348 if (!atomic_dec_and_test(&ns->count))
616511d0 2349 return;
390c6843 2350 down_write(&namespace_sem);
1da177e4 2351 spin_lock(&vfsmount_lock);
d498b25a 2352 umount_tree(ns->root, 0, &umount_list);
1da177e4 2353 spin_unlock(&vfsmount_lock);
390c6843 2354 up_write(&namespace_sem);
70fbcdf4 2355 release_mounts(&umount_list);
6b3286ed 2356 kfree(ns);
1da177e4 2357}
cf8d2c11 2358EXPORT_SYMBOL(put_mnt_ns);