]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/namespace.c
switch ufs directories to ufs_sync_file()
[net-next-2.6.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4
LT
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
14#include <linux/smp_lock.h>
15#include <linux/init.h>
15a67dd8 16#include <linux/kernel.h>
1da177e4 17#include <linux/acct.h>
16f7e0fe 18#include <linux/capability.h>
3d733633 19#include <linux/cpumask.h>
1da177e4 20#include <linux/module.h>
f20a9ead 21#include <linux/sysfs.h>
1da177e4 22#include <linux/seq_file.h>
6b3286ed 23#include <linux/mnt_namespace.h>
1da177e4
LT
24#include <linux/namei.h>
25#include <linux/security.h>
26#include <linux/mount.h>
07f3f05c 27#include <linux/ramfs.h>
13f14b4d 28#include <linux/log2.h>
73cd49ec 29#include <linux/idr.h>
5ad4e53b 30#include <linux/fs_struct.h>
1da177e4
LT
31#include <asm/uaccess.h>
32#include <asm/unistd.h>
07b20889 33#include "pnode.h"
948730b0 34#include "internal.h"
1da177e4 35
13f14b4d
ED
36#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
37#define HASH_SIZE (1UL << HASH_SHIFT)
38
1da177e4 39/* spinlock for vfsmount related operations, inplace of dcache_lock */
5addc5dd
AV
40__cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
41
42static int event;
73cd49ec 43static DEFINE_IDA(mnt_id_ida);
719f5d7f 44static DEFINE_IDA(mnt_group_ida);
1da177e4 45
fa3536cc 46static struct list_head *mount_hashtable __read_mostly;
e18b890b 47static struct kmem_cache *mnt_cache __read_mostly;
390c6843 48static struct rw_semaphore namespace_sem;
1da177e4 49
f87fd4c2 50/* /sys/fs */
00d26666
GKH
51struct kobject *fs_kobj;
52EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 53
1da177e4
LT
54static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55{
b58fed8b
RP
56 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
58 tmp = tmp + (tmp >> HASH_SHIFT);
59 return tmp & (HASH_SIZE - 1);
1da177e4
LT
60}
61
3d733633
DH
62#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63
73cd49ec
MS
64/* allocation is serialized by namespace_sem */
65static int mnt_alloc_id(struct vfsmount *mnt)
66{
67 int res;
68
69retry:
70 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
71 spin_lock(&vfsmount_lock);
72 res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
73 spin_unlock(&vfsmount_lock);
74 if (res == -EAGAIN)
75 goto retry;
76
77 return res;
78}
79
80static void mnt_free_id(struct vfsmount *mnt)
81{
82 spin_lock(&vfsmount_lock);
83 ida_remove(&mnt_id_ida, mnt->mnt_id);
84 spin_unlock(&vfsmount_lock);
85}
86
719f5d7f
MS
87/*
88 * Allocate a new peer group ID
89 *
90 * mnt_group_ida is protected by namespace_sem
91 */
92static int mnt_alloc_group_id(struct vfsmount *mnt)
93{
94 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
95 return -ENOMEM;
96
97 return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
98}
99
100/*
101 * Release a peer group ID
102 */
103void mnt_release_group_id(struct vfsmount *mnt)
104{
105 ida_remove(&mnt_group_ida, mnt->mnt_group_id);
106 mnt->mnt_group_id = 0;
107}
108
1da177e4
LT
109struct vfsmount *alloc_vfsmnt(const char *name)
110{
c3762229 111 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
1da177e4 112 if (mnt) {
73cd49ec
MS
113 int err;
114
115 err = mnt_alloc_id(mnt);
88b38782
LZ
116 if (err)
117 goto out_free_cache;
118
119 if (name) {
120 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
121 if (!mnt->mnt_devname)
122 goto out_free_id;
73cd49ec
MS
123 }
124
b58fed8b 125 atomic_set(&mnt->mnt_count, 1);
1da177e4
LT
126 INIT_LIST_HEAD(&mnt->mnt_hash);
127 INIT_LIST_HEAD(&mnt->mnt_child);
128 INIT_LIST_HEAD(&mnt->mnt_mounts);
129 INIT_LIST_HEAD(&mnt->mnt_list);
55e700b9 130 INIT_LIST_HEAD(&mnt->mnt_expire);
03e06e68 131 INIT_LIST_HEAD(&mnt->mnt_share);
a58b0eb8
RP
132 INIT_LIST_HEAD(&mnt->mnt_slave_list);
133 INIT_LIST_HEAD(&mnt->mnt_slave);
3d733633 134 atomic_set(&mnt->__mnt_writers, 0);
1da177e4
LT
135 }
136 return mnt;
88b38782
LZ
137
138out_free_id:
139 mnt_free_id(mnt);
140out_free_cache:
141 kmem_cache_free(mnt_cache, mnt);
142 return NULL;
1da177e4
LT
143}
144
3d733633
DH
145/*
146 * Most r/o checks on a fs are for operations that take
147 * discrete amounts of time, like a write() or unlink().
148 * We must keep track of when those operations start
149 * (for permission checks) and when they end, so that
150 * we can determine when writes are able to occur to
151 * a filesystem.
152 */
153/*
154 * __mnt_is_readonly: check whether a mount is read-only
155 * @mnt: the mount to check for its write status
156 *
157 * This shouldn't be used directly ouside of the VFS.
158 * It does not guarantee that the filesystem will stay
159 * r/w, just that it is right *now*. This can not and
160 * should not be used in place of IS_RDONLY(inode).
161 * mnt_want/drop_write() will _keep_ the filesystem
162 * r/w.
163 */
164int __mnt_is_readonly(struct vfsmount *mnt)
165{
2e4b7fcd
DH
166 if (mnt->mnt_flags & MNT_READONLY)
167 return 1;
168 if (mnt->mnt_sb->s_flags & MS_RDONLY)
169 return 1;
170 return 0;
3d733633
DH
171}
172EXPORT_SYMBOL_GPL(__mnt_is_readonly);
173
174struct mnt_writer {
175 /*
176 * If holding multiple instances of this lock, they
177 * must be ordered by cpu number.
178 */
179 spinlock_t lock;
180 struct lock_class_key lock_class; /* compiles out with !lockdep */
181 unsigned long count;
182 struct vfsmount *mnt;
183} ____cacheline_aligned_in_smp;
184static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
185
186static int __init init_mnt_writers(void)
187{
188 int cpu;
189 for_each_possible_cpu(cpu) {
190 struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
191 spin_lock_init(&writer->lock);
192 lockdep_set_class(&writer->lock, &writer->lock_class);
193 writer->count = 0;
194 }
195 return 0;
196}
197fs_initcall(init_mnt_writers);
198
199static void unlock_mnt_writers(void)
200{
201 int cpu;
202 struct mnt_writer *cpu_writer;
203
204 for_each_possible_cpu(cpu) {
205 cpu_writer = &per_cpu(mnt_writers, cpu);
206 spin_unlock(&cpu_writer->lock);
207 }
208}
209
210static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
211{
212 if (!cpu_writer->mnt)
213 return;
214 /*
215 * This is in case anyone ever leaves an invalid,
216 * old ->mnt and a count of 0.
217 */
218 if (!cpu_writer->count)
219 return;
220 atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
221 cpu_writer->count = 0;
222}
223 /*
224 * must hold cpu_writer->lock
225 */
226static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
227 struct vfsmount *mnt)
228{
229 if (cpu_writer->mnt == mnt)
230 return;
231 __clear_mnt_count(cpu_writer);
232 cpu_writer->mnt = mnt;
233}
234
8366025e
DH
235/*
236 * Most r/o checks on a fs are for operations that take
237 * discrete amounts of time, like a write() or unlink().
238 * We must keep track of when those operations start
239 * (for permission checks) and when they end, so that
240 * we can determine when writes are able to occur to
241 * a filesystem.
242 */
243/**
244 * mnt_want_write - get write access to a mount
245 * @mnt: the mount on which to take a write
246 *
247 * This tells the low-level filesystem that a write is
248 * about to be performed to it, and makes sure that
249 * writes are allowed before returning success. When
250 * the write operation is finished, mnt_drop_write()
251 * must be called. This is effectively a refcount.
252 */
253int mnt_want_write(struct vfsmount *mnt)
254{
3d733633
DH
255 int ret = 0;
256 struct mnt_writer *cpu_writer;
257
258 cpu_writer = &get_cpu_var(mnt_writers);
259 spin_lock(&cpu_writer->lock);
260 if (__mnt_is_readonly(mnt)) {
261 ret = -EROFS;
262 goto out;
263 }
264 use_cpu_writer_for_mount(cpu_writer, mnt);
265 cpu_writer->count++;
266out:
267 spin_unlock(&cpu_writer->lock);
268 put_cpu_var(mnt_writers);
269 return ret;
8366025e
DH
270}
271EXPORT_SYMBOL_GPL(mnt_want_write);
272
3d733633
DH
273static void lock_mnt_writers(void)
274{
275 int cpu;
276 struct mnt_writer *cpu_writer;
277
278 for_each_possible_cpu(cpu) {
279 cpu_writer = &per_cpu(mnt_writers, cpu);
280 spin_lock(&cpu_writer->lock);
281 __clear_mnt_count(cpu_writer);
282 cpu_writer->mnt = NULL;
283 }
284}
285
286/*
287 * These per-cpu write counts are not guaranteed to have
288 * matched increments and decrements on any given cpu.
289 * A file open()ed for write on one cpu and close()d on
290 * another cpu will imbalance this count. Make sure it
291 * does not get too far out of whack.
292 */
293static void handle_write_count_underflow(struct vfsmount *mnt)
294{
295 if (atomic_read(&mnt->__mnt_writers) >=
296 MNT_WRITER_UNDERFLOW_LIMIT)
297 return;
298 /*
299 * It isn't necessary to hold all of the locks
300 * at the same time, but doing it this way makes
301 * us share a lot more code.
302 */
303 lock_mnt_writers();
304 /*
305 * vfsmount_lock is for mnt_flags.
306 */
307 spin_lock(&vfsmount_lock);
308 /*
309 * If coalescing the per-cpu writer counts did not
310 * get us back to a positive writer count, we have
311 * a bug.
312 */
313 if ((atomic_read(&mnt->__mnt_writers) < 0) &&
314 !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
5c752ad9 315 WARN(1, KERN_DEBUG "leak detected on mount(%p) writers "
3d733633
DH
316 "count: %d\n",
317 mnt, atomic_read(&mnt->__mnt_writers));
3d733633
DH
318 /* use the flag to keep the dmesg spam down */
319 mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
320 }
321 spin_unlock(&vfsmount_lock);
322 unlock_mnt_writers();
323}
324
8366025e
DH
325/**
326 * mnt_drop_write - give up write access to a mount
327 * @mnt: the mount on which to give up write access
328 *
329 * Tells the low-level filesystem that we are done
330 * performing writes to it. Must be matched with
331 * mnt_want_write() call above.
332 */
333void mnt_drop_write(struct vfsmount *mnt)
334{
3d733633
DH
335 int must_check_underflow = 0;
336 struct mnt_writer *cpu_writer;
337
338 cpu_writer = &get_cpu_var(mnt_writers);
339 spin_lock(&cpu_writer->lock);
340
341 use_cpu_writer_for_mount(cpu_writer, mnt);
342 if (cpu_writer->count > 0) {
343 cpu_writer->count--;
344 } else {
345 must_check_underflow = 1;
346 atomic_dec(&mnt->__mnt_writers);
347 }
348
349 spin_unlock(&cpu_writer->lock);
350 /*
351 * Logically, we could call this each time,
352 * but the __mnt_writers cacheline tends to
353 * be cold, and makes this expensive.
354 */
355 if (must_check_underflow)
356 handle_write_count_underflow(mnt);
357 /*
358 * This could be done right after the spinlock
359 * is taken because the spinlock keeps us on
360 * the cpu, and disables preemption. However,
361 * putting it here bounds the amount that
362 * __mnt_writers can underflow. Without it,
363 * we could theoretically wrap __mnt_writers.
364 */
365 put_cpu_var(mnt_writers);
8366025e
DH
366}
367EXPORT_SYMBOL_GPL(mnt_drop_write);
368
2e4b7fcd 369static int mnt_make_readonly(struct vfsmount *mnt)
8366025e 370{
3d733633
DH
371 int ret = 0;
372
373 lock_mnt_writers();
374 /*
375 * With all the locks held, this value is stable
376 */
377 if (atomic_read(&mnt->__mnt_writers) > 0) {
378 ret = -EBUSY;
379 goto out;
380 }
381 /*
2e4b7fcd
DH
382 * nobody can do a successful mnt_want_write() with all
383 * of the counts in MNT_DENIED_WRITE and the locks held.
3d733633 384 */
2e4b7fcd
DH
385 spin_lock(&vfsmount_lock);
386 if (!ret)
387 mnt->mnt_flags |= MNT_READONLY;
388 spin_unlock(&vfsmount_lock);
3d733633
DH
389out:
390 unlock_mnt_writers();
391 return ret;
8366025e 392}
8366025e 393
2e4b7fcd
DH
394static void __mnt_unmake_readonly(struct vfsmount *mnt)
395{
396 spin_lock(&vfsmount_lock);
397 mnt->mnt_flags &= ~MNT_READONLY;
398 spin_unlock(&vfsmount_lock);
399}
400
a3ec947c 401void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
454e2398
DH
402{
403 mnt->mnt_sb = sb;
404 mnt->mnt_root = dget(sb->s_root);
454e2398
DH
405}
406
407EXPORT_SYMBOL(simple_set_mnt);
408
1da177e4
LT
409void free_vfsmnt(struct vfsmount *mnt)
410{
411 kfree(mnt->mnt_devname);
73cd49ec 412 mnt_free_id(mnt);
1da177e4
LT
413 kmem_cache_free(mnt_cache, mnt);
414}
415
416/*
a05964f3
RP
417 * find the first or last mount at @dentry on vfsmount @mnt depending on
418 * @dir. If @dir is set return the first mount else return the last mount.
1da177e4 419 */
a05964f3
RP
420struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
421 int dir)
1da177e4 422{
b58fed8b
RP
423 struct list_head *head = mount_hashtable + hash(mnt, dentry);
424 struct list_head *tmp = head;
1da177e4
LT
425 struct vfsmount *p, *found = NULL;
426
1da177e4 427 for (;;) {
a05964f3 428 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
429 p = NULL;
430 if (tmp == head)
431 break;
432 p = list_entry(tmp, struct vfsmount, mnt_hash);
433 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
a05964f3 434 found = p;
1da177e4
LT
435 break;
436 }
437 }
1da177e4
LT
438 return found;
439}
440
a05964f3
RP
441/*
442 * lookup_mnt increments the ref count before returning
443 * the vfsmount struct.
444 */
445struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
446{
447 struct vfsmount *child_mnt;
448 spin_lock(&vfsmount_lock);
449 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
450 mntget(child_mnt);
451 spin_unlock(&vfsmount_lock);
452 return child_mnt;
453}
454
1da177e4
LT
455static inline int check_mnt(struct vfsmount *mnt)
456{
6b3286ed 457 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
458}
459
6b3286ed 460static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
461{
462 if (ns) {
463 ns->event = ++event;
464 wake_up_interruptible(&ns->poll);
465 }
466}
467
6b3286ed 468static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
469{
470 if (ns && ns->event != event) {
471 ns->event = event;
472 wake_up_interruptible(&ns->poll);
473 }
474}
475
1a390689 476static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
1da177e4 477{
1a390689
AV
478 old_path->dentry = mnt->mnt_mountpoint;
479 old_path->mnt = mnt->mnt_parent;
1da177e4
LT
480 mnt->mnt_parent = mnt;
481 mnt->mnt_mountpoint = mnt->mnt_root;
482 list_del_init(&mnt->mnt_child);
483 list_del_init(&mnt->mnt_hash);
1a390689 484 old_path->dentry->d_mounted--;
1da177e4
LT
485}
486
b90fa9ae
RP
487void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
488 struct vfsmount *child_mnt)
489{
490 child_mnt->mnt_parent = mntget(mnt);
491 child_mnt->mnt_mountpoint = dget(dentry);
492 dentry->d_mounted++;
493}
494
1a390689 495static void attach_mnt(struct vfsmount *mnt, struct path *path)
1da177e4 496{
1a390689 497 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
b90fa9ae 498 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689
AV
499 hash(path->mnt, path->dentry));
500 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
b90fa9ae
RP
501}
502
503/*
504 * the caller must hold vfsmount_lock
505 */
506static void commit_tree(struct vfsmount *mnt)
507{
508 struct vfsmount *parent = mnt->mnt_parent;
509 struct vfsmount *m;
510 LIST_HEAD(head);
6b3286ed 511 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae
RP
512
513 BUG_ON(parent == mnt);
514
515 list_add_tail(&head, &mnt->mnt_list);
516 list_for_each_entry(m, &head, mnt_list)
6b3286ed 517 m->mnt_ns = n;
b90fa9ae
RP
518 list_splice(&head, n->list.prev);
519
520 list_add_tail(&mnt->mnt_hash, mount_hashtable +
521 hash(parent, mnt->mnt_mountpoint));
522 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 523 touch_mnt_namespace(n);
1da177e4
LT
524}
525
526static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
527{
528 struct list_head *next = p->mnt_mounts.next;
529 if (next == &p->mnt_mounts) {
530 while (1) {
531 if (p == root)
532 return NULL;
533 next = p->mnt_child.next;
534 if (next != &p->mnt_parent->mnt_mounts)
535 break;
536 p = p->mnt_parent;
537 }
538 }
539 return list_entry(next, struct vfsmount, mnt_child);
540}
541
9676f0c6
RP
542static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
543{
544 struct list_head *prev = p->mnt_mounts.prev;
545 while (prev != &p->mnt_mounts) {
546 p = list_entry(prev, struct vfsmount, mnt_child);
547 prev = p->mnt_mounts.prev;
548 }
549 return p;
550}
551
36341f64
RP
552static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
553 int flag)
1da177e4
LT
554{
555 struct super_block *sb = old->mnt_sb;
556 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
557
558 if (mnt) {
719f5d7f
MS
559 if (flag & (CL_SLAVE | CL_PRIVATE))
560 mnt->mnt_group_id = 0; /* not a peer of original */
561 else
562 mnt->mnt_group_id = old->mnt_group_id;
563
564 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
565 int err = mnt_alloc_group_id(mnt);
566 if (err)
567 goto out_free;
568 }
569
1da177e4
LT
570 mnt->mnt_flags = old->mnt_flags;
571 atomic_inc(&sb->s_active);
572 mnt->mnt_sb = sb;
573 mnt->mnt_root = dget(root);
574 mnt->mnt_mountpoint = mnt->mnt_root;
575 mnt->mnt_parent = mnt;
b90fa9ae 576
5afe0022
RP
577 if (flag & CL_SLAVE) {
578 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
579 mnt->mnt_master = old;
580 CLEAR_MNT_SHARED(mnt);
8aec0809 581 } else if (!(flag & CL_PRIVATE)) {
5afe0022
RP
582 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
583 list_add(&mnt->mnt_share, &old->mnt_share);
584 if (IS_MNT_SLAVE(old))
585 list_add(&mnt->mnt_slave, &old->mnt_slave);
586 mnt->mnt_master = old->mnt_master;
587 }
b90fa9ae
RP
588 if (flag & CL_MAKE_SHARED)
589 set_mnt_shared(mnt);
1da177e4
LT
590
591 /* stick the duplicate mount on the same expiry list
592 * as the original if that was on one */
36341f64 593 if (flag & CL_EXPIRE) {
36341f64
RP
594 if (!list_empty(&old->mnt_expire))
595 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 596 }
1da177e4
LT
597 }
598 return mnt;
719f5d7f
MS
599
600 out_free:
601 free_vfsmnt(mnt);
602 return NULL;
1da177e4
LT
603}
604
7b7b1ace 605static inline void __mntput(struct vfsmount *mnt)
1da177e4 606{
3d733633 607 int cpu;
1da177e4 608 struct super_block *sb = mnt->mnt_sb;
3d733633
DH
609 /*
610 * We don't have to hold all of the locks at the
611 * same time here because we know that we're the
612 * last reference to mnt and that no new writers
613 * can come in.
614 */
615 for_each_possible_cpu(cpu) {
616 struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
3d733633 617 spin_lock(&cpu_writer->lock);
1a88b536
AV
618 if (cpu_writer->mnt != mnt) {
619 spin_unlock(&cpu_writer->lock);
620 continue;
621 }
3d733633
DH
622 atomic_add(cpu_writer->count, &mnt->__mnt_writers);
623 cpu_writer->count = 0;
624 /*
625 * Might as well do this so that no one
626 * ever sees the pointer and expects
627 * it to be valid.
628 */
629 cpu_writer->mnt = NULL;
630 spin_unlock(&cpu_writer->lock);
631 }
632 /*
633 * This probably indicates that somebody messed
634 * up a mnt_want/drop_write() pair. If this
635 * happens, the filesystem was probably unable
636 * to make r/w->r/o transitions.
637 */
638 WARN_ON(atomic_read(&mnt->__mnt_writers));
1da177e4
LT
639 dput(mnt->mnt_root);
640 free_vfsmnt(mnt);
641 deactivate_super(sb);
642}
643
7b7b1ace
AV
644void mntput_no_expire(struct vfsmount *mnt)
645{
646repeat:
647 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
648 if (likely(!mnt->mnt_pinned)) {
649 spin_unlock(&vfsmount_lock);
650 __mntput(mnt);
651 return;
652 }
653 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
654 mnt->mnt_pinned = 0;
655 spin_unlock(&vfsmount_lock);
656 acct_auto_close_mnt(mnt);
657 security_sb_umount_close(mnt);
658 goto repeat;
659 }
660}
661
662EXPORT_SYMBOL(mntput_no_expire);
663
664void mnt_pin(struct vfsmount *mnt)
665{
666 spin_lock(&vfsmount_lock);
667 mnt->mnt_pinned++;
668 spin_unlock(&vfsmount_lock);
669}
670
671EXPORT_SYMBOL(mnt_pin);
672
673void mnt_unpin(struct vfsmount *mnt)
674{
675 spin_lock(&vfsmount_lock);
676 if (mnt->mnt_pinned) {
677 atomic_inc(&mnt->mnt_count);
678 mnt->mnt_pinned--;
679 }
680 spin_unlock(&vfsmount_lock);
681}
682
683EXPORT_SYMBOL(mnt_unpin);
1da177e4 684
b3b304a2
MS
685static inline void mangle(struct seq_file *m, const char *s)
686{
687 seq_escape(m, s, " \t\n\\");
688}
689
690/*
691 * Simple .show_options callback for filesystems which don't want to
692 * implement more complex mount option showing.
693 *
694 * See also save_mount_options().
695 */
696int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
697{
698 const char *options = mnt->mnt_sb->s_options;
699
700 if (options != NULL && options[0]) {
701 seq_putc(m, ',');
702 mangle(m, options);
703 }
704
705 return 0;
706}
707EXPORT_SYMBOL(generic_show_options);
708
709/*
710 * If filesystem uses generic_show_options(), this function should be
711 * called from the fill_super() callback.
712 *
713 * The .remount_fs callback usually needs to be handled in a special
714 * way, to make sure, that previous options are not overwritten if the
715 * remount fails.
716 *
717 * Also note, that if the filesystem's .remount_fs function doesn't
718 * reset all options to their default value, but changes only newly
719 * given options, then the displayed options will not reflect reality
720 * any more.
721 */
722void save_mount_options(struct super_block *sb, char *options)
723{
724 kfree(sb->s_options);
725 sb->s_options = kstrdup(options, GFP_KERNEL);
726}
727EXPORT_SYMBOL(save_mount_options);
728
a1a2c409 729#ifdef CONFIG_PROC_FS
1da177e4
LT
730/* iterator */
731static void *m_start(struct seq_file *m, loff_t *pos)
732{
a1a2c409 733 struct proc_mounts *p = m->private;
1da177e4 734
390c6843 735 down_read(&namespace_sem);
a1a2c409 736 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
737}
738
739static void *m_next(struct seq_file *m, void *v, loff_t *pos)
740{
a1a2c409 741 struct proc_mounts *p = m->private;
b0765fb8 742
a1a2c409 743 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
744}
745
746static void m_stop(struct seq_file *m, void *v)
747{
390c6843 748 up_read(&namespace_sem);
1da177e4
LT
749}
750
2d4d4864
RP
751struct proc_fs_info {
752 int flag;
753 const char *str;
754};
755
2069f457 756static int show_sb_opts(struct seq_file *m, struct super_block *sb)
1da177e4 757{
2d4d4864 758 static const struct proc_fs_info fs_info[] = {
1da177e4
LT
759 { MS_SYNCHRONOUS, ",sync" },
760 { MS_DIRSYNC, ",dirsync" },
761 { MS_MANDLOCK, ",mand" },
1da177e4
LT
762 { 0, NULL }
763 };
2d4d4864
RP
764 const struct proc_fs_info *fs_infop;
765
766 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
767 if (sb->s_flags & fs_infop->flag)
768 seq_puts(m, fs_infop->str);
769 }
2069f457
EP
770
771 return security_sb_show_options(m, sb);
2d4d4864
RP
772}
773
774static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
775{
776 static const struct proc_fs_info mnt_info[] = {
1da177e4
LT
777 { MNT_NOSUID, ",nosuid" },
778 { MNT_NODEV, ",nodev" },
779 { MNT_NOEXEC, ",noexec" },
fc33a7bb
CH
780 { MNT_NOATIME, ",noatime" },
781 { MNT_NODIRATIME, ",nodiratime" },
47ae32d6 782 { MNT_RELATIME, ",relatime" },
d0adde57 783 { MNT_STRICTATIME, ",strictatime" },
1da177e4
LT
784 { 0, NULL }
785 };
2d4d4864
RP
786 const struct proc_fs_info *fs_infop;
787
788 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
789 if (mnt->mnt_flags & fs_infop->flag)
790 seq_puts(m, fs_infop->str);
791 }
792}
793
794static void show_type(struct seq_file *m, struct super_block *sb)
795{
796 mangle(m, sb->s_type->name);
797 if (sb->s_subtype && sb->s_subtype[0]) {
798 seq_putc(m, '.');
799 mangle(m, sb->s_subtype);
800 }
801}
802
803static int show_vfsmnt(struct seq_file *m, void *v)
804{
805 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
806 int err = 0;
c32c2f63 807 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1da177e4
LT
808
809 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
810 seq_putc(m, ' ');
c32c2f63 811 seq_path(m, &mnt_path, " \t\n\\");
1da177e4 812 seq_putc(m, ' ');
2d4d4864 813 show_type(m, mnt->mnt_sb);
2e4b7fcd 814 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
2069f457
EP
815 err = show_sb_opts(m, mnt->mnt_sb);
816 if (err)
817 goto out;
2d4d4864 818 show_mnt_opts(m, mnt);
1da177e4
LT
819 if (mnt->mnt_sb->s_op->show_options)
820 err = mnt->mnt_sb->s_op->show_options(m, mnt);
821 seq_puts(m, " 0 0\n");
2069f457 822out:
1da177e4
LT
823 return err;
824}
825
a1a2c409 826const struct seq_operations mounts_op = {
1da177e4
LT
827 .start = m_start,
828 .next = m_next,
829 .stop = m_stop,
830 .show = show_vfsmnt
831};
832
2d4d4864
RP
833static int show_mountinfo(struct seq_file *m, void *v)
834{
835 struct proc_mounts *p = m->private;
836 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
837 struct super_block *sb = mnt->mnt_sb;
838 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
839 struct path root = p->root;
840 int err = 0;
841
842 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
843 MAJOR(sb->s_dev), MINOR(sb->s_dev));
844 seq_dentry(m, mnt->mnt_root, " \t\n\\");
845 seq_putc(m, ' ');
846 seq_path_root(m, &mnt_path, &root, " \t\n\\");
847 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
848 /*
849 * Mountpoint is outside root, discard that one. Ugly,
850 * but less so than trying to do that in iterator in a
851 * race-free way (due to renames).
852 */
853 return SEQ_SKIP;
854 }
855 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
856 show_mnt_opts(m, mnt);
857
858 /* Tagged fields ("foo:X" or "bar") */
859 if (IS_MNT_SHARED(mnt))
860 seq_printf(m, " shared:%i", mnt->mnt_group_id);
97e7e0f7
MS
861 if (IS_MNT_SLAVE(mnt)) {
862 int master = mnt->mnt_master->mnt_group_id;
863 int dom = get_dominating_id(mnt, &p->root);
864 seq_printf(m, " master:%i", master);
865 if (dom && dom != master)
866 seq_printf(m, " propagate_from:%i", dom);
867 }
2d4d4864
RP
868 if (IS_MNT_UNBINDABLE(mnt))
869 seq_puts(m, " unbindable");
870
871 /* Filesystem specific data */
872 seq_puts(m, " - ");
873 show_type(m, sb);
874 seq_putc(m, ' ');
875 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
876 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
2069f457
EP
877 err = show_sb_opts(m, sb);
878 if (err)
879 goto out;
2d4d4864
RP
880 if (sb->s_op->show_options)
881 err = sb->s_op->show_options(m, mnt);
882 seq_putc(m, '\n');
2069f457 883out:
2d4d4864
RP
884 return err;
885}
886
887const struct seq_operations mountinfo_op = {
888 .start = m_start,
889 .next = m_next,
890 .stop = m_stop,
891 .show = show_mountinfo,
892};
893
b4629fe2
CL
894static int show_vfsstat(struct seq_file *m, void *v)
895{
b0765fb8 896 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
c32c2f63 897 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
b4629fe2
CL
898 int err = 0;
899
900 /* device */
901 if (mnt->mnt_devname) {
902 seq_puts(m, "device ");
903 mangle(m, mnt->mnt_devname);
904 } else
905 seq_puts(m, "no device");
906
907 /* mount point */
908 seq_puts(m, " mounted on ");
c32c2f63 909 seq_path(m, &mnt_path, " \t\n\\");
b4629fe2
CL
910 seq_putc(m, ' ');
911
912 /* file system type */
913 seq_puts(m, "with fstype ");
2d4d4864 914 show_type(m, mnt->mnt_sb);
b4629fe2
CL
915
916 /* optional statistics */
917 if (mnt->mnt_sb->s_op->show_stats) {
918 seq_putc(m, ' ');
919 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
920 }
921
922 seq_putc(m, '\n');
923 return err;
924}
925
a1a2c409 926const struct seq_operations mountstats_op = {
b4629fe2
CL
927 .start = m_start,
928 .next = m_next,
929 .stop = m_stop,
930 .show = show_vfsstat,
931};
a1a2c409 932#endif /* CONFIG_PROC_FS */
b4629fe2 933
1da177e4
LT
934/**
935 * may_umount_tree - check if a mount tree is busy
936 * @mnt: root of mount tree
937 *
938 * This is called to check if a tree of mounts has any
939 * open files, pwds, chroots or sub mounts that are
940 * busy.
941 */
942int may_umount_tree(struct vfsmount *mnt)
943{
36341f64
RP
944 int actual_refs = 0;
945 int minimum_refs = 0;
946 struct vfsmount *p;
1da177e4
LT
947
948 spin_lock(&vfsmount_lock);
36341f64 949 for (p = mnt; p; p = next_mnt(p, mnt)) {
1da177e4
LT
950 actual_refs += atomic_read(&p->mnt_count);
951 minimum_refs += 2;
1da177e4
LT
952 }
953 spin_unlock(&vfsmount_lock);
954
955 if (actual_refs > minimum_refs)
e3474a8e 956 return 0;
1da177e4 957
e3474a8e 958 return 1;
1da177e4
LT
959}
960
961EXPORT_SYMBOL(may_umount_tree);
962
963/**
964 * may_umount - check if a mount point is busy
965 * @mnt: root of mount
966 *
967 * This is called to check if a mount point has any
968 * open files, pwds, chroots or sub mounts. If the
969 * mount has sub mounts this will return busy
970 * regardless of whether the sub mounts are busy.
971 *
972 * Doesn't take quota and stuff into account. IOW, in some cases it will
973 * give false negatives. The main reason why it's here is that we need
974 * a non-destructive way to look for easily umountable filesystems.
975 */
976int may_umount(struct vfsmount *mnt)
977{
e3474a8e 978 int ret = 1;
a05964f3
RP
979 spin_lock(&vfsmount_lock);
980 if (propagate_mount_busy(mnt, 2))
e3474a8e 981 ret = 0;
a05964f3
RP
982 spin_unlock(&vfsmount_lock);
983 return ret;
1da177e4
LT
984}
985
986EXPORT_SYMBOL(may_umount);
987
b90fa9ae 988void release_mounts(struct list_head *head)
70fbcdf4
RP
989{
990 struct vfsmount *mnt;
bf066c7d 991 while (!list_empty(head)) {
b5e61818 992 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
70fbcdf4
RP
993 list_del_init(&mnt->mnt_hash);
994 if (mnt->mnt_parent != mnt) {
995 struct dentry *dentry;
996 struct vfsmount *m;
997 spin_lock(&vfsmount_lock);
998 dentry = mnt->mnt_mountpoint;
999 m = mnt->mnt_parent;
1000 mnt->mnt_mountpoint = mnt->mnt_root;
1001 mnt->mnt_parent = mnt;
7c4b93d8 1002 m->mnt_ghosts--;
70fbcdf4
RP
1003 spin_unlock(&vfsmount_lock);
1004 dput(dentry);
1005 mntput(m);
1006 }
1007 mntput(mnt);
1008 }
1009}
1010
a05964f3 1011void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1da177e4
LT
1012{
1013 struct vfsmount *p;
1da177e4 1014
1bfba4e8
AM
1015 for (p = mnt; p; p = next_mnt(p, mnt))
1016 list_move(&p->mnt_hash, kill);
1da177e4 1017
a05964f3
RP
1018 if (propagate)
1019 propagate_umount(kill);
1020
70fbcdf4
RP
1021 list_for_each_entry(p, kill, mnt_hash) {
1022 list_del_init(&p->mnt_expire);
1023 list_del_init(&p->mnt_list);
6b3286ed
KK
1024 __touch_mnt_namespace(p->mnt_ns);
1025 p->mnt_ns = NULL;
70fbcdf4 1026 list_del_init(&p->mnt_child);
7c4b93d8
AV
1027 if (p->mnt_parent != p) {
1028 p->mnt_parent->mnt_ghosts++;
f30ac319 1029 p->mnt_mountpoint->d_mounted--;
7c4b93d8 1030 }
a05964f3 1031 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1032 }
1033}
1034
c35038be
AV
1035static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1036
1da177e4
LT
1037static int do_umount(struct vfsmount *mnt, int flags)
1038{
b58fed8b 1039 struct super_block *sb = mnt->mnt_sb;
1da177e4 1040 int retval;
70fbcdf4 1041 LIST_HEAD(umount_list);
1da177e4
LT
1042
1043 retval = security_sb_umount(mnt, flags);
1044 if (retval)
1045 return retval;
1046
1047 /*
1048 * Allow userspace to request a mountpoint be expired rather than
1049 * unmounting unconditionally. Unmount only happens if:
1050 * (1) the mark is already set (the mark is cleared by mntput())
1051 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1052 */
1053 if (flags & MNT_EXPIRE) {
6ac08c39 1054 if (mnt == current->fs->root.mnt ||
1da177e4
LT
1055 flags & (MNT_FORCE | MNT_DETACH))
1056 return -EINVAL;
1057
1058 if (atomic_read(&mnt->mnt_count) != 2)
1059 return -EBUSY;
1060
1061 if (!xchg(&mnt->mnt_expiry_mark, 1))
1062 return -EAGAIN;
1063 }
1064
1065 /*
1066 * If we may have to abort operations to get out of this
1067 * mount, and they will themselves hold resources we must
1068 * allow the fs to do things. In the Unix tradition of
1069 * 'Gee thats tricky lets do it in userspace' the umount_begin
1070 * might fail to complete on the first run through as other tasks
1071 * must return, and the like. Thats for the mount program to worry
1072 * about for the moment.
1073 */
1074
42faad99 1075 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1076 sb->s_op->umount_begin(sb);
42faad99 1077 }
1da177e4
LT
1078
1079 /*
1080 * No sense to grab the lock for this test, but test itself looks
1081 * somewhat bogus. Suggestions for better replacement?
1082 * Ho-hum... In principle, we might treat that as umount + switch
1083 * to rootfs. GC would eventually take care of the old vfsmount.
1084 * Actually it makes sense, especially if rootfs would contain a
1085 * /reboot - static binary that would close all descriptors and
1086 * call reboot(9). Then init(8) could umount root and exec /reboot.
1087 */
6ac08c39 1088 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1089 /*
1090 * Special case for "unmounting" root ...
1091 * we just try to remount it readonly.
1092 */
1093 down_write(&sb->s_umount);
1094 if (!(sb->s_flags & MS_RDONLY)) {
1095 lock_kernel();
1da177e4
LT
1096 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1097 unlock_kernel();
1098 }
1099 up_write(&sb->s_umount);
1100 return retval;
1101 }
1102
390c6843 1103 down_write(&namespace_sem);
1da177e4 1104 spin_lock(&vfsmount_lock);
5addc5dd 1105 event++;
1da177e4 1106
c35038be
AV
1107 if (!(flags & MNT_DETACH))
1108 shrink_submounts(mnt, &umount_list);
1109
1da177e4 1110 retval = -EBUSY;
a05964f3 1111 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1da177e4 1112 if (!list_empty(&mnt->mnt_list))
a05964f3 1113 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1114 retval = 0;
1115 }
1116 spin_unlock(&vfsmount_lock);
1117 if (retval)
1118 security_sb_umount_busy(mnt);
390c6843 1119 up_write(&namespace_sem);
70fbcdf4 1120 release_mounts(&umount_list);
1da177e4
LT
1121 return retval;
1122}
1123
1124/*
1125 * Now umount can handle mount points as well as block devices.
1126 * This is important for filesystems which use unnamed block devices.
1127 *
1128 * We now support a flag for forced unmount like the other 'big iron'
1129 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1130 */
1131
bdc480e3 1132SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1133{
2d8f3038 1134 struct path path;
1da177e4
LT
1135 int retval;
1136
2d8f3038 1137 retval = user_path(name, &path);
1da177e4
LT
1138 if (retval)
1139 goto out;
1140 retval = -EINVAL;
2d8f3038 1141 if (path.dentry != path.mnt->mnt_root)
1da177e4 1142 goto dput_and_out;
2d8f3038 1143 if (!check_mnt(path.mnt))
1da177e4
LT
1144 goto dput_and_out;
1145
1146 retval = -EPERM;
1147 if (!capable(CAP_SYS_ADMIN))
1148 goto dput_and_out;
1149
2d8f3038 1150 retval = do_umount(path.mnt, flags);
1da177e4 1151dput_and_out:
429731b1 1152 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038
AV
1153 dput(path.dentry);
1154 mntput_no_expire(path.mnt);
1da177e4
LT
1155out:
1156 return retval;
1157}
1158
1159#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1160
1161/*
b58fed8b 1162 * The 2.0 compatible umount. No flags.
1da177e4 1163 */
bdc480e3 1164SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1165{
b58fed8b 1166 return sys_umount(name, 0);
1da177e4
LT
1167}
1168
1169#endif
1170
2d92ab3c 1171static int mount_is_safe(struct path *path)
1da177e4
LT
1172{
1173 if (capable(CAP_SYS_ADMIN))
1174 return 0;
1175 return -EPERM;
1176#ifdef notyet
2d92ab3c 1177 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1178 return -EPERM;
2d92ab3c 1179 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1180 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1181 return -EPERM;
1182 }
2d92ab3c 1183 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1184 return -EPERM;
1185 return 0;
1186#endif
1187}
1188
b90fa9ae 1189struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
36341f64 1190 int flag)
1da177e4
LT
1191{
1192 struct vfsmount *res, *p, *q, *r, *s;
1a390689 1193 struct path path;
1da177e4 1194
9676f0c6
RP
1195 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1196 return NULL;
1197
36341f64 1198 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1199 if (!q)
1200 goto Enomem;
1201 q->mnt_mountpoint = mnt->mnt_mountpoint;
1202
1203 p = mnt;
fdadd65f 1204 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
7ec02ef1 1205 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1206 continue;
1207
1208 for (s = r; s; s = next_mnt(s, r)) {
9676f0c6
RP
1209 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1210 s = skip_mnt_tree(s);
1211 continue;
1212 }
1da177e4
LT
1213 while (p != s->mnt_parent) {
1214 p = p->mnt_parent;
1215 q = q->mnt_parent;
1216 }
1217 p = s;
1a390689
AV
1218 path.mnt = q;
1219 path.dentry = p->mnt_mountpoint;
36341f64 1220 q = clone_mnt(p, p->mnt_root, flag);
1da177e4
LT
1221 if (!q)
1222 goto Enomem;
1223 spin_lock(&vfsmount_lock);
1224 list_add_tail(&q->mnt_list, &res->mnt_list);
1a390689 1225 attach_mnt(q, &path);
1da177e4
LT
1226 spin_unlock(&vfsmount_lock);
1227 }
1228 }
1229 return res;
b58fed8b 1230Enomem:
1da177e4 1231 if (res) {
70fbcdf4 1232 LIST_HEAD(umount_list);
1da177e4 1233 spin_lock(&vfsmount_lock);
a05964f3 1234 umount_tree(res, 0, &umount_list);
1da177e4 1235 spin_unlock(&vfsmount_lock);
70fbcdf4 1236 release_mounts(&umount_list);
1da177e4
LT
1237 }
1238 return NULL;
1239}
1240
8aec0809
AV
1241struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
1242{
1243 struct vfsmount *tree;
1a60a280 1244 down_write(&namespace_sem);
8aec0809 1245 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
1a60a280 1246 up_write(&namespace_sem);
8aec0809
AV
1247 return tree;
1248}
1249
1250void drop_collected_mounts(struct vfsmount *mnt)
1251{
1252 LIST_HEAD(umount_list);
1a60a280 1253 down_write(&namespace_sem);
8aec0809
AV
1254 spin_lock(&vfsmount_lock);
1255 umount_tree(mnt, 0, &umount_list);
1256 spin_unlock(&vfsmount_lock);
1a60a280 1257 up_write(&namespace_sem);
8aec0809
AV
1258 release_mounts(&umount_list);
1259}
1260
719f5d7f
MS
1261static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1262{
1263 struct vfsmount *p;
1264
1265 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1266 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1267 mnt_release_group_id(p);
1268 }
1269}
1270
1271static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1272{
1273 struct vfsmount *p;
1274
1275 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1276 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1277 int err = mnt_alloc_group_id(p);
1278 if (err) {
1279 cleanup_group_ids(mnt, p);
1280 return err;
1281 }
1282 }
1283 }
1284
1285 return 0;
1286}
1287
b90fa9ae
RP
1288/*
1289 * @source_mnt : mount tree to be attached
21444403
RP
1290 * @nd : place the mount tree @source_mnt is attached
1291 * @parent_nd : if non-null, detach the source_mnt from its parent and
1292 * store the parent mount and mountpoint dentry.
1293 * (done when source_mnt is moved)
b90fa9ae
RP
1294 *
1295 * NOTE: in the table below explains the semantics when a source mount
1296 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1297 * ---------------------------------------------------------------------------
1298 * | BIND MOUNT OPERATION |
1299 * |**************************************************************************
1300 * | source-->| shared | private | slave | unbindable |
1301 * | dest | | | | |
1302 * | | | | | | |
1303 * | v | | | | |
1304 * |**************************************************************************
1305 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1306 * | | | | | |
1307 * |non-shared| shared (+) | private | slave (*) | invalid |
1308 * ***************************************************************************
b90fa9ae
RP
1309 * A bind operation clones the source mount and mounts the clone on the
1310 * destination mount.
1311 *
1312 * (++) the cloned mount is propagated to all the mounts in the propagation
1313 * tree of the destination mount and the cloned mount is added to
1314 * the peer group of the source mount.
1315 * (+) the cloned mount is created under the destination mount and is marked
1316 * as shared. The cloned mount is added to the peer group of the source
1317 * mount.
5afe0022
RP
1318 * (+++) the mount is propagated to all the mounts in the propagation tree
1319 * of the destination mount and the cloned mount is made slave
1320 * of the same master as that of the source mount. The cloned mount
1321 * is marked as 'shared and slave'.
1322 * (*) the cloned mount is made a slave of the same master as that of the
1323 * source mount.
1324 *
9676f0c6
RP
1325 * ---------------------------------------------------------------------------
1326 * | MOVE MOUNT OPERATION |
1327 * |**************************************************************************
1328 * | source-->| shared | private | slave | unbindable |
1329 * | dest | | | | |
1330 * | | | | | | |
1331 * | v | | | | |
1332 * |**************************************************************************
1333 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1334 * | | | | | |
1335 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1336 * ***************************************************************************
5afe0022
RP
1337 *
1338 * (+) the mount is moved to the destination. And is then propagated to
1339 * all the mounts in the propagation tree of the destination mount.
21444403 1340 * (+*) the mount is moved to the destination.
5afe0022
RP
1341 * (+++) the mount is moved to the destination and is then propagated to
1342 * all the mounts belonging to the destination mount's propagation tree.
1343 * the mount is marked as 'shared and slave'.
1344 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1345 *
1346 * if the source mount is a tree, the operations explained above is
1347 * applied to each mount in the tree.
1348 * Must be called without spinlocks held, since this function can sleep
1349 * in allocations.
1350 */
1351static int attach_recursive_mnt(struct vfsmount *source_mnt,
1a390689 1352 struct path *path, struct path *parent_path)
b90fa9ae
RP
1353{
1354 LIST_HEAD(tree_list);
1a390689
AV
1355 struct vfsmount *dest_mnt = path->mnt;
1356 struct dentry *dest_dentry = path->dentry;
b90fa9ae 1357 struct vfsmount *child, *p;
719f5d7f 1358 int err;
b90fa9ae 1359
719f5d7f
MS
1360 if (IS_MNT_SHARED(dest_mnt)) {
1361 err = invent_group_ids(source_mnt, true);
1362 if (err)
1363 goto out;
1364 }
1365 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1366 if (err)
1367 goto out_cleanup_ids;
b90fa9ae
RP
1368
1369 if (IS_MNT_SHARED(dest_mnt)) {
1370 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1371 set_mnt_shared(p);
1372 }
1373
1374 spin_lock(&vfsmount_lock);
1a390689
AV
1375 if (parent_path) {
1376 detach_mnt(source_mnt, parent_path);
1377 attach_mnt(source_mnt, path);
e5d67f07 1378 touch_mnt_namespace(parent_path->mnt->mnt_ns);
21444403
RP
1379 } else {
1380 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1381 commit_tree(source_mnt);
1382 }
b90fa9ae
RP
1383
1384 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1385 list_del_init(&child->mnt_hash);
1386 commit_tree(child);
1387 }
1388 spin_unlock(&vfsmount_lock);
1389 return 0;
719f5d7f
MS
1390
1391 out_cleanup_ids:
1392 if (IS_MNT_SHARED(dest_mnt))
1393 cleanup_group_ids(source_mnt, NULL);
1394 out:
1395 return err;
b90fa9ae
RP
1396}
1397
8c3ee42e 1398static int graft_tree(struct vfsmount *mnt, struct path *path)
1da177e4
LT
1399{
1400 int err;
1401 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1402 return -EINVAL;
1403
8c3ee42e 1404 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1da177e4
LT
1405 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1406 return -ENOTDIR;
1407
1408 err = -ENOENT;
8c3ee42e
AV
1409 mutex_lock(&path->dentry->d_inode->i_mutex);
1410 if (IS_DEADDIR(path->dentry->d_inode))
1da177e4
LT
1411 goto out_unlock;
1412
8c3ee42e 1413 err = security_sb_check_sb(mnt, path);
1da177e4
LT
1414 if (err)
1415 goto out_unlock;
1416
1417 err = -ENOENT;
8c3ee42e
AV
1418 if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
1419 err = attach_recursive_mnt(mnt, path, NULL);
1da177e4 1420out_unlock:
8c3ee42e 1421 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4 1422 if (!err)
8c3ee42e 1423 security_sb_post_addmount(mnt, path);
1da177e4
LT
1424 return err;
1425}
1426
07b20889
RP
1427/*
1428 * recursively change the type of the mountpoint.
1429 */
0a0d8a46 1430static int do_change_type(struct path *path, int flag)
07b20889 1431{
2d92ab3c 1432 struct vfsmount *m, *mnt = path->mnt;
07b20889
RP
1433 int recurse = flag & MS_REC;
1434 int type = flag & ~MS_REC;
719f5d7f 1435 int err = 0;
07b20889 1436
ee6f9582
MS
1437 if (!capable(CAP_SYS_ADMIN))
1438 return -EPERM;
1439
2d92ab3c 1440 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1441 return -EINVAL;
1442
1443 down_write(&namespace_sem);
719f5d7f
MS
1444 if (type == MS_SHARED) {
1445 err = invent_group_ids(mnt, recurse);
1446 if (err)
1447 goto out_unlock;
1448 }
1449
07b20889
RP
1450 spin_lock(&vfsmount_lock);
1451 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1452 change_mnt_propagation(m, type);
1453 spin_unlock(&vfsmount_lock);
719f5d7f
MS
1454
1455 out_unlock:
07b20889 1456 up_write(&namespace_sem);
719f5d7f 1457 return err;
07b20889
RP
1458}
1459
1da177e4
LT
1460/*
1461 * do loopback mount.
1462 */
0a0d8a46 1463static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1464 int recurse)
1da177e4 1465{
2d92ab3c 1466 struct path old_path;
1da177e4 1467 struct vfsmount *mnt = NULL;
2d92ab3c 1468 int err = mount_is_safe(path);
1da177e4
LT
1469 if (err)
1470 return err;
1471 if (!old_name || !*old_name)
1472 return -EINVAL;
2d92ab3c 1473 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1474 if (err)
1475 return err;
1476
390c6843 1477 down_write(&namespace_sem);
1da177e4 1478 err = -EINVAL;
2d92ab3c 1479 if (IS_MNT_UNBINDABLE(old_path.mnt))
4ac91378 1480 goto out;
9676f0c6 1481
2d92ab3c 1482 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
ccd48bc7 1483 goto out;
1da177e4 1484
ccd48bc7
AV
1485 err = -ENOMEM;
1486 if (recurse)
2d92ab3c 1487 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
ccd48bc7 1488 else
2d92ab3c 1489 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
ccd48bc7
AV
1490
1491 if (!mnt)
1492 goto out;
1493
2d92ab3c 1494 err = graft_tree(mnt, path);
ccd48bc7 1495 if (err) {
70fbcdf4 1496 LIST_HEAD(umount_list);
1da177e4 1497 spin_lock(&vfsmount_lock);
a05964f3 1498 umount_tree(mnt, 0, &umount_list);
1da177e4 1499 spin_unlock(&vfsmount_lock);
70fbcdf4 1500 release_mounts(&umount_list);
5b83d2c5 1501 }
1da177e4 1502
ccd48bc7 1503out:
390c6843 1504 up_write(&namespace_sem);
2d92ab3c 1505 path_put(&old_path);
1da177e4
LT
1506 return err;
1507}
1508
2e4b7fcd
DH
1509static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1510{
1511 int error = 0;
1512 int readonly_request = 0;
1513
1514 if (ms_flags & MS_RDONLY)
1515 readonly_request = 1;
1516 if (readonly_request == __mnt_is_readonly(mnt))
1517 return 0;
1518
1519 if (readonly_request)
1520 error = mnt_make_readonly(mnt);
1521 else
1522 __mnt_unmake_readonly(mnt);
1523 return error;
1524}
1525
1da177e4
LT
1526/*
1527 * change filesystem flags. dir should be a physical root of filesystem.
1528 * If you've mounted a non-root directory somewhere and want to do remount
1529 * on it - tough luck.
1530 */
0a0d8a46 1531static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1532 void *data)
1533{
1534 int err;
2d92ab3c 1535 struct super_block *sb = path->mnt->mnt_sb;
1da177e4
LT
1536
1537 if (!capable(CAP_SYS_ADMIN))
1538 return -EPERM;
1539
2d92ab3c 1540 if (!check_mnt(path->mnt))
1da177e4
LT
1541 return -EINVAL;
1542
2d92ab3c 1543 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1544 return -EINVAL;
1545
1546 down_write(&sb->s_umount);
2e4b7fcd 1547 if (flags & MS_BIND)
2d92ab3c 1548 err = change_mount_flags(path->mnt, flags);
2e4b7fcd
DH
1549 else
1550 err = do_remount_sb(sb, flags, data, 0);
1da177e4 1551 if (!err)
2d92ab3c 1552 path->mnt->mnt_flags = mnt_flags;
1da177e4 1553 up_write(&sb->s_umount);
0e55a7cc 1554 if (!err) {
2d92ab3c 1555 security_sb_post_remount(path->mnt, flags, data);
0e55a7cc
DW
1556
1557 spin_lock(&vfsmount_lock);
1558 touch_mnt_namespace(path->mnt->mnt_ns);
1559 spin_unlock(&vfsmount_lock);
1560 }
1da177e4
LT
1561 return err;
1562}
1563
9676f0c6
RP
1564static inline int tree_contains_unbindable(struct vfsmount *mnt)
1565{
1566 struct vfsmount *p;
1567 for (p = mnt; p; p = next_mnt(p, mnt)) {
1568 if (IS_MNT_UNBINDABLE(p))
1569 return 1;
1570 }
1571 return 0;
1572}
1573
0a0d8a46 1574static int do_move_mount(struct path *path, char *old_name)
1da177e4 1575{
2d92ab3c 1576 struct path old_path, parent_path;
1da177e4
LT
1577 struct vfsmount *p;
1578 int err = 0;
1579 if (!capable(CAP_SYS_ADMIN))
1580 return -EPERM;
1581 if (!old_name || !*old_name)
1582 return -EINVAL;
2d92ab3c 1583 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1584 if (err)
1585 return err;
1586
390c6843 1587 down_write(&namespace_sem);
2d92ab3c
AV
1588 while (d_mountpoint(path->dentry) &&
1589 follow_down(&path->mnt, &path->dentry))
1da177e4
LT
1590 ;
1591 err = -EINVAL;
2d92ab3c 1592 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1da177e4
LT
1593 goto out;
1594
1595 err = -ENOENT;
2d92ab3c
AV
1596 mutex_lock(&path->dentry->d_inode->i_mutex);
1597 if (IS_DEADDIR(path->dentry->d_inode))
1da177e4
LT
1598 goto out1;
1599
2d92ab3c 1600 if (!IS_ROOT(path->dentry) && d_unhashed(path->dentry))
21444403 1601 goto out1;
1da177e4
LT
1602
1603 err = -EINVAL;
2d92ab3c 1604 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1605 goto out1;
1da177e4 1606
2d92ab3c 1607 if (old_path.mnt == old_path.mnt->mnt_parent)
21444403 1608 goto out1;
1da177e4 1609
2d92ab3c
AV
1610 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1611 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1612 goto out1;
1613 /*
1614 * Don't move a mount residing in a shared parent.
1615 */
2d92ab3c
AV
1616 if (old_path.mnt->mnt_parent &&
1617 IS_MNT_SHARED(old_path.mnt->mnt_parent))
21444403 1618 goto out1;
9676f0c6
RP
1619 /*
1620 * Don't move a mount tree containing unbindable mounts to a destination
1621 * mount which is shared.
1622 */
2d92ab3c
AV
1623 if (IS_MNT_SHARED(path->mnt) &&
1624 tree_contains_unbindable(old_path.mnt))
9676f0c6 1625 goto out1;
1da177e4 1626 err = -ELOOP;
2d92ab3c
AV
1627 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1628 if (p == old_path.mnt)
21444403 1629 goto out1;
1da177e4 1630
2d92ab3c 1631 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
4ac91378 1632 if (err)
21444403 1633 goto out1;
1da177e4
LT
1634
1635 /* if the mount is moved, it should no longer be expire
1636 * automatically */
2d92ab3c 1637 list_del_init(&old_path.mnt->mnt_expire);
1da177e4 1638out1:
2d92ab3c 1639 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4 1640out:
390c6843 1641 up_write(&namespace_sem);
1da177e4 1642 if (!err)
1a390689 1643 path_put(&parent_path);
2d92ab3c 1644 path_put(&old_path);
1da177e4
LT
1645 return err;
1646}
1647
1648/*
1649 * create a new mount for userspace and request it to be added into the
1650 * namespace's tree
1651 */
0a0d8a46 1652static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
1653 int mnt_flags, char *name, void *data)
1654{
1655 struct vfsmount *mnt;
1656
1657 if (!type || !memchr(type, 0, PAGE_SIZE))
1658 return -EINVAL;
1659
1660 /* we need capabilities... */
1661 if (!capable(CAP_SYS_ADMIN))
1662 return -EPERM;
1663
1664 mnt = do_kern_mount(type, flags, name, data);
1665 if (IS_ERR(mnt))
1666 return PTR_ERR(mnt);
1667
2d92ab3c 1668 return do_add_mount(mnt, path, mnt_flags, NULL);
1da177e4
LT
1669}
1670
1671/*
1672 * add a mount into a namespace's mount tree
1673 * - provide the option of adding the new mount to an expiration list
1674 */
8d66bf54 1675int do_add_mount(struct vfsmount *newmnt, struct path *path,
1da177e4
LT
1676 int mnt_flags, struct list_head *fslist)
1677{
1678 int err;
1679
390c6843 1680 down_write(&namespace_sem);
1da177e4 1681 /* Something was mounted here while we slept */
8d66bf54
AV
1682 while (d_mountpoint(path->dentry) &&
1683 follow_down(&path->mnt, &path->dentry))
1da177e4
LT
1684 ;
1685 err = -EINVAL;
8d66bf54 1686 if (!check_mnt(path->mnt))
1da177e4
LT
1687 goto unlock;
1688
1689 /* Refuse the same filesystem on the same mount point */
1690 err = -EBUSY;
8d66bf54
AV
1691 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1692 path->mnt->mnt_root == path->dentry)
1da177e4
LT
1693 goto unlock;
1694
1695 err = -EINVAL;
1696 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1697 goto unlock;
1698
1699 newmnt->mnt_flags = mnt_flags;
8d66bf54 1700 if ((err = graft_tree(newmnt, path)))
5b83d2c5 1701 goto unlock;
1da177e4 1702
6758f953 1703 if (fslist) /* add to the specified expiration list */
55e700b9 1704 list_add_tail(&newmnt->mnt_expire, fslist);
6758f953 1705
390c6843 1706 up_write(&namespace_sem);
5b83d2c5 1707 return 0;
1da177e4
LT
1708
1709unlock:
390c6843 1710 up_write(&namespace_sem);
1da177e4
LT
1711 mntput(newmnt);
1712 return err;
1713}
1714
1715EXPORT_SYMBOL_GPL(do_add_mount);
1716
1717/*
1718 * process a list of expirable mountpoints with the intent of discarding any
1719 * mountpoints that aren't in use and haven't been touched since last we came
1720 * here
1721 */
1722void mark_mounts_for_expiry(struct list_head *mounts)
1723{
1da177e4
LT
1724 struct vfsmount *mnt, *next;
1725 LIST_HEAD(graveyard);
bcc5c7d2 1726 LIST_HEAD(umounts);
1da177e4
LT
1727
1728 if (list_empty(mounts))
1729 return;
1730
bcc5c7d2 1731 down_write(&namespace_sem);
1da177e4
LT
1732 spin_lock(&vfsmount_lock);
1733
1734 /* extract from the expiration list every vfsmount that matches the
1735 * following criteria:
1736 * - only referenced by its parent vfsmount
1737 * - still marked for expiry (marked on the last call here; marks are
1738 * cleared by mntput())
1739 */
55e700b9 1740 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1da177e4 1741 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
bcc5c7d2 1742 propagate_mount_busy(mnt, 1))
1da177e4 1743 continue;
55e700b9 1744 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 1745 }
bcc5c7d2
AV
1746 while (!list_empty(&graveyard)) {
1747 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1748 touch_mnt_namespace(mnt->mnt_ns);
1749 umount_tree(mnt, 1, &umounts);
1750 }
5528f911 1751 spin_unlock(&vfsmount_lock);
bcc5c7d2
AV
1752 up_write(&namespace_sem);
1753
1754 release_mounts(&umounts);
5528f911
TM
1755}
1756
1757EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1758
1759/*
1760 * Ripoff of 'select_parent()'
1761 *
1762 * search the list of submounts for a given mountpoint, and move any
1763 * shrinkable submounts to the 'graveyard' list.
1764 */
1765static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1766{
1767 struct vfsmount *this_parent = parent;
1768 struct list_head *next;
1769 int found = 0;
1770
1771repeat:
1772 next = this_parent->mnt_mounts.next;
1773resume:
1774 while (next != &this_parent->mnt_mounts) {
1775 struct list_head *tmp = next;
1776 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1777
1778 next = tmp->next;
1779 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1da177e4 1780 continue;
5528f911
TM
1781 /*
1782 * Descend a level if the d_mounts list is non-empty.
1783 */
1784 if (!list_empty(&mnt->mnt_mounts)) {
1785 this_parent = mnt;
1786 goto repeat;
1787 }
1da177e4 1788
5528f911 1789 if (!propagate_mount_busy(mnt, 1)) {
5528f911
TM
1790 list_move_tail(&mnt->mnt_expire, graveyard);
1791 found++;
1792 }
1da177e4 1793 }
5528f911
TM
1794 /*
1795 * All done at this level ... ascend and resume the search
1796 */
1797 if (this_parent != parent) {
1798 next = this_parent->mnt_child.next;
1799 this_parent = this_parent->mnt_parent;
1800 goto resume;
1801 }
1802 return found;
1803}
1804
1805/*
1806 * process a list of expirable mountpoints with the intent of discarding any
1807 * submounts of a specific parent mountpoint
1808 */
c35038be 1809static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
5528f911
TM
1810{
1811 LIST_HEAD(graveyard);
c35038be 1812 struct vfsmount *m;
5528f911 1813
5528f911 1814 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 1815 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 1816 while (!list_empty(&graveyard)) {
c35038be 1817 m = list_first_entry(&graveyard, struct vfsmount,
bcc5c7d2 1818 mnt_expire);
afef80b3
EB
1819 touch_mnt_namespace(m->mnt_ns);
1820 umount_tree(m, 1, umounts);
bcc5c7d2
AV
1821 }
1822 }
1da177e4
LT
1823}
1824
1da177e4
LT
1825/*
1826 * Some copy_from_user() implementations do not return the exact number of
1827 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1828 * Note that this function differs from copy_from_user() in that it will oops
1829 * on bad values of `to', rather than returning a short copy.
1830 */
b58fed8b
RP
1831static long exact_copy_from_user(void *to, const void __user * from,
1832 unsigned long n)
1da177e4
LT
1833{
1834 char *t = to;
1835 const char __user *f = from;
1836 char c;
1837
1838 if (!access_ok(VERIFY_READ, from, n))
1839 return n;
1840
1841 while (n) {
1842 if (__get_user(c, f)) {
1843 memset(t, 0, n);
1844 break;
1845 }
1846 *t++ = c;
1847 f++;
1848 n--;
1849 }
1850 return n;
1851}
1852
b58fed8b 1853int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
1854{
1855 int i;
1856 unsigned long page;
1857 unsigned long size;
b58fed8b 1858
1da177e4
LT
1859 *where = 0;
1860 if (!data)
1861 return 0;
1862
1863 if (!(page = __get_free_page(GFP_KERNEL)))
1864 return -ENOMEM;
1865
1866 /* We only care that *some* data at the address the user
1867 * gave us is valid. Just in case, we'll zero
1868 * the remainder of the page.
1869 */
1870 /* copy_from_user cannot cross TASK_SIZE ! */
1871 size = TASK_SIZE - (unsigned long)data;
1872 if (size > PAGE_SIZE)
1873 size = PAGE_SIZE;
1874
1875 i = size - exact_copy_from_user((void *)page, data, size);
1876 if (!i) {
b58fed8b 1877 free_page(page);
1da177e4
LT
1878 return -EFAULT;
1879 }
1880 if (i != PAGE_SIZE)
1881 memset((char *)page + i, 0, PAGE_SIZE - i);
1882 *where = page;
1883 return 0;
1884}
1885
1886/*
1887 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1888 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1889 *
1890 * data is a (void *) that can point to any structure up to
1891 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1892 * information (or be NULL).
1893 *
1894 * Pre-0.97 versions of mount() didn't have a flags word.
1895 * When the flags word was introduced its top half was required
1896 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1897 * Therefore, if this magic number is present, it carries no information
1898 * and must be discarded.
1899 */
b58fed8b 1900long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
1901 unsigned long flags, void *data_page)
1902{
2d92ab3c 1903 struct path path;
1da177e4
LT
1904 int retval = 0;
1905 int mnt_flags = 0;
1906
1907 /* Discard magic */
1908 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1909 flags &= ~MS_MGC_MSK;
1910
1911 /* Basic sanity checks */
1912
1913 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1914 return -EINVAL;
1915 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1916 return -EINVAL;
1917
1918 if (data_page)
1919 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1920
613cbe3d
AK
1921 /* Default to relatime unless overriden */
1922 if (!(flags & MS_NOATIME))
1923 mnt_flags |= MNT_RELATIME;
0a1c01c9 1924
1da177e4
LT
1925 /* Separate the per-mountpoint flags */
1926 if (flags & MS_NOSUID)
1927 mnt_flags |= MNT_NOSUID;
1928 if (flags & MS_NODEV)
1929 mnt_flags |= MNT_NODEV;
1930 if (flags & MS_NOEXEC)
1931 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
1932 if (flags & MS_NOATIME)
1933 mnt_flags |= MNT_NOATIME;
1934 if (flags & MS_NODIRATIME)
1935 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
1936 if (flags & MS_STRICTATIME)
1937 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
1938 if (flags & MS_RDONLY)
1939 mnt_flags |= MNT_READONLY;
fc33a7bb
CH
1940
1941 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
d0adde57
MG
1942 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
1943 MS_STRICTATIME);
1da177e4
LT
1944
1945 /* ... and get the mountpoint */
2d92ab3c 1946 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
1da177e4
LT
1947 if (retval)
1948 return retval;
1949
2d92ab3c 1950 retval = security_sb_mount(dev_name, &path,
b5266eb4 1951 type_page, flags, data_page);
1da177e4
LT
1952 if (retval)
1953 goto dput_out;
1954
1955 if (flags & MS_REMOUNT)
2d92ab3c 1956 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
1957 data_page);
1958 else if (flags & MS_BIND)
2d92ab3c 1959 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 1960 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 1961 retval = do_change_type(&path, flags);
1da177e4 1962 else if (flags & MS_MOVE)
2d92ab3c 1963 retval = do_move_mount(&path, dev_name);
1da177e4 1964 else
2d92ab3c 1965 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
1966 dev_name, data_page);
1967dput_out:
2d92ab3c 1968 path_put(&path);
1da177e4
LT
1969 return retval;
1970}
1971
741a2951
JD
1972/*
1973 * Allocate a new namespace structure and populate it with contents
1974 * copied from the namespace of the passed in task structure.
1975 */
e3222c4e 1976static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 1977 struct fs_struct *fs)
1da177e4 1978{
6b3286ed 1979 struct mnt_namespace *new_ns;
7f2da1e7 1980 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1da177e4
LT
1981 struct vfsmount *p, *q;
1982
6b3286ed 1983 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1da177e4 1984 if (!new_ns)
467e9f4b 1985 return ERR_PTR(-ENOMEM);
1da177e4
LT
1986
1987 atomic_set(&new_ns->count, 1);
1da177e4 1988 INIT_LIST_HEAD(&new_ns->list);
5addc5dd
AV
1989 init_waitqueue_head(&new_ns->poll);
1990 new_ns->event = 0;
1da177e4 1991
390c6843 1992 down_write(&namespace_sem);
1da177e4 1993 /* First pass: copy the tree topology */
6b3286ed 1994 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
9676f0c6 1995 CL_COPY_ALL | CL_EXPIRE);
1da177e4 1996 if (!new_ns->root) {
390c6843 1997 up_write(&namespace_sem);
1da177e4 1998 kfree(new_ns);
5cc4a034 1999 return ERR_PTR(-ENOMEM);
1da177e4
LT
2000 }
2001 spin_lock(&vfsmount_lock);
2002 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2003 spin_unlock(&vfsmount_lock);
2004
2005 /*
2006 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2007 * as belonging to new namespace. We have already acquired a private
2008 * fs_struct, so tsk->fs->lock is not needed.
2009 */
6b3286ed 2010 p = mnt_ns->root;
1da177e4
LT
2011 q = new_ns->root;
2012 while (p) {
6b3286ed 2013 q->mnt_ns = new_ns;
1da177e4 2014 if (fs) {
6ac08c39 2015 if (p == fs->root.mnt) {
1da177e4 2016 rootmnt = p;
6ac08c39 2017 fs->root.mnt = mntget(q);
1da177e4 2018 }
6ac08c39 2019 if (p == fs->pwd.mnt) {
1da177e4 2020 pwdmnt = p;
6ac08c39 2021 fs->pwd.mnt = mntget(q);
1da177e4 2022 }
1da177e4 2023 }
6b3286ed 2024 p = next_mnt(p, mnt_ns->root);
1da177e4
LT
2025 q = next_mnt(q, new_ns->root);
2026 }
390c6843 2027 up_write(&namespace_sem);
1da177e4 2028
1da177e4
LT
2029 if (rootmnt)
2030 mntput(rootmnt);
2031 if (pwdmnt)
2032 mntput(pwdmnt);
1da177e4 2033
741a2951
JD
2034 return new_ns;
2035}
2036
213dd266 2037struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2038 struct fs_struct *new_fs)
741a2951 2039{
6b3286ed 2040 struct mnt_namespace *new_ns;
741a2951 2041
e3222c4e 2042 BUG_ON(!ns);
6b3286ed 2043 get_mnt_ns(ns);
741a2951
JD
2044
2045 if (!(flags & CLONE_NEWNS))
e3222c4e 2046 return ns;
741a2951 2047
e3222c4e 2048 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2049
6b3286ed 2050 put_mnt_ns(ns);
e3222c4e 2051 return new_ns;
1da177e4
LT
2052}
2053
bdc480e3
HC
2054SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2055 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4
LT
2056{
2057 int retval;
2058 unsigned long data_page;
2059 unsigned long type_page;
2060 unsigned long dev_page;
2061 char *dir_page;
2062
b58fed8b 2063 retval = copy_mount_options(type, &type_page);
1da177e4
LT
2064 if (retval < 0)
2065 return retval;
2066
2067 dir_page = getname(dir_name);
2068 retval = PTR_ERR(dir_page);
2069 if (IS_ERR(dir_page))
2070 goto out1;
2071
b58fed8b 2072 retval = copy_mount_options(dev_name, &dev_page);
1da177e4
LT
2073 if (retval < 0)
2074 goto out2;
2075
b58fed8b 2076 retval = copy_mount_options(data, &data_page);
1da177e4
LT
2077 if (retval < 0)
2078 goto out3;
2079
2080 lock_kernel();
b58fed8b
RP
2081 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
2082 flags, (void *)data_page);
1da177e4
LT
2083 unlock_kernel();
2084 free_page(data_page);
2085
2086out3:
2087 free_page(dev_page);
2088out2:
2089 putname(dir_page);
2090out1:
2091 free_page(type_page);
2092 return retval;
2093}
2094
1da177e4
LT
2095/*
2096 * pivot_root Semantics:
2097 * Moves the root file system of the current process to the directory put_old,
2098 * makes new_root as the new root file system of the current process, and sets
2099 * root/cwd of all processes which had them on the current root to new_root.
2100 *
2101 * Restrictions:
2102 * The new_root and put_old must be directories, and must not be on the
2103 * same file system as the current process root. The put_old must be
2104 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2105 * pointed to by put_old must yield the same directory as new_root. No other
2106 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2107 *
4a0d11fa
NB
2108 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2109 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2110 * in this situation.
2111 *
1da177e4
LT
2112 * Notes:
2113 * - we don't move root/cwd if they are not at the root (reason: if something
2114 * cared enough to change them, it's probably wrong to force them elsewhere)
2115 * - it's okay to pick a root that isn't the root of a file system, e.g.
2116 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2117 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2118 * first.
2119 */
3480b257
HC
2120SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2121 const char __user *, put_old)
1da177e4
LT
2122{
2123 struct vfsmount *tmp;
2d8f3038 2124 struct path new, old, parent_path, root_parent, root;
1da177e4
LT
2125 int error;
2126
2127 if (!capable(CAP_SYS_ADMIN))
2128 return -EPERM;
2129
2d8f3038 2130 error = user_path_dir(new_root, &new);
1da177e4
LT
2131 if (error)
2132 goto out0;
2133 error = -EINVAL;
2d8f3038 2134 if (!check_mnt(new.mnt))
1da177e4
LT
2135 goto out1;
2136
2d8f3038 2137 error = user_path_dir(put_old, &old);
1da177e4
LT
2138 if (error)
2139 goto out1;
2140
2d8f3038 2141 error = security_sb_pivotroot(&old, &new);
1da177e4 2142 if (error) {
2d8f3038 2143 path_put(&old);
1da177e4
LT
2144 goto out1;
2145 }
2146
2147 read_lock(&current->fs->lock);
8c3ee42e 2148 root = current->fs->root;
6ac08c39 2149 path_get(&current->fs->root);
1da177e4 2150 read_unlock(&current->fs->lock);
390c6843 2151 down_write(&namespace_sem);
2d8f3038 2152 mutex_lock(&old.dentry->d_inode->i_mutex);
1da177e4 2153 error = -EINVAL;
2d8f3038
AV
2154 if (IS_MNT_SHARED(old.mnt) ||
2155 IS_MNT_SHARED(new.mnt->mnt_parent) ||
8c3ee42e 2156 IS_MNT_SHARED(root.mnt->mnt_parent))
21444403 2157 goto out2;
8c3ee42e 2158 if (!check_mnt(root.mnt))
1da177e4
LT
2159 goto out2;
2160 error = -ENOENT;
2d8f3038 2161 if (IS_DEADDIR(new.dentry->d_inode))
1da177e4 2162 goto out2;
2d8f3038 2163 if (d_unhashed(new.dentry) && !IS_ROOT(new.dentry))
1da177e4 2164 goto out2;
2d8f3038 2165 if (d_unhashed(old.dentry) && !IS_ROOT(old.dentry))
1da177e4
LT
2166 goto out2;
2167 error = -EBUSY;
2d8f3038
AV
2168 if (new.mnt == root.mnt ||
2169 old.mnt == root.mnt)
1da177e4
LT
2170 goto out2; /* loop, on the same file system */
2171 error = -EINVAL;
8c3ee42e 2172 if (root.mnt->mnt_root != root.dentry)
1da177e4 2173 goto out2; /* not a mountpoint */
8c3ee42e 2174 if (root.mnt->mnt_parent == root.mnt)
0bb6fcc1 2175 goto out2; /* not attached */
2d8f3038 2176 if (new.mnt->mnt_root != new.dentry)
1da177e4 2177 goto out2; /* not a mountpoint */
2d8f3038 2178 if (new.mnt->mnt_parent == new.mnt)
0bb6fcc1 2179 goto out2; /* not attached */
4ac91378 2180 /* make sure we can reach put_old from new_root */
2d8f3038 2181 tmp = old.mnt;
1da177e4 2182 spin_lock(&vfsmount_lock);
2d8f3038 2183 if (tmp != new.mnt) {
1da177e4
LT
2184 for (;;) {
2185 if (tmp->mnt_parent == tmp)
2186 goto out3; /* already mounted on put_old */
2d8f3038 2187 if (tmp->mnt_parent == new.mnt)
1da177e4
LT
2188 break;
2189 tmp = tmp->mnt_parent;
2190 }
2d8f3038 2191 if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
1da177e4 2192 goto out3;
2d8f3038 2193 } else if (!is_subdir(old.dentry, new.dentry))
1da177e4 2194 goto out3;
2d8f3038 2195 detach_mnt(new.mnt, &parent_path);
8c3ee42e 2196 detach_mnt(root.mnt, &root_parent);
4ac91378 2197 /* mount old root on put_old */
2d8f3038 2198 attach_mnt(root.mnt, &old);
4ac91378 2199 /* mount new_root on / */
2d8f3038 2200 attach_mnt(new.mnt, &root_parent);
6b3286ed 2201 touch_mnt_namespace(current->nsproxy->mnt_ns);
1da177e4 2202 spin_unlock(&vfsmount_lock);
2d8f3038
AV
2203 chroot_fs_refs(&root, &new);
2204 security_sb_post_pivotroot(&root, &new);
1da177e4 2205 error = 0;
1a390689
AV
2206 path_put(&root_parent);
2207 path_put(&parent_path);
1da177e4 2208out2:
2d8f3038 2209 mutex_unlock(&old.dentry->d_inode->i_mutex);
390c6843 2210 up_write(&namespace_sem);
8c3ee42e 2211 path_put(&root);
2d8f3038 2212 path_put(&old);
1da177e4 2213out1:
2d8f3038 2214 path_put(&new);
1da177e4 2215out0:
1da177e4
LT
2216 return error;
2217out3:
2218 spin_unlock(&vfsmount_lock);
2219 goto out2;
2220}
2221
2222static void __init init_mount_tree(void)
2223{
2224 struct vfsmount *mnt;
6b3286ed 2225 struct mnt_namespace *ns;
ac748a09 2226 struct path root;
1da177e4
LT
2227
2228 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2229 if (IS_ERR(mnt))
2230 panic("Can't create rootfs");
6b3286ed
KK
2231 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
2232 if (!ns)
1da177e4 2233 panic("Can't allocate initial namespace");
6b3286ed
KK
2234 atomic_set(&ns->count, 1);
2235 INIT_LIST_HEAD(&ns->list);
2236 init_waitqueue_head(&ns->poll);
2237 ns->event = 0;
2238 list_add(&mnt->mnt_list, &ns->list);
2239 ns->root = mnt;
2240 mnt->mnt_ns = ns;
2241
2242 init_task.nsproxy->mnt_ns = ns;
2243 get_mnt_ns(ns);
2244
ac748a09
JB
2245 root.mnt = ns->root;
2246 root.dentry = ns->root->mnt_root;
2247
2248 set_fs_pwd(current->fs, &root);
2249 set_fs_root(current->fs, &root);
1da177e4
LT
2250}
2251
74bf17cf 2252void __init mnt_init(void)
1da177e4 2253{
13f14b4d 2254 unsigned u;
15a67dd8 2255 int err;
1da177e4 2256
390c6843
RP
2257 init_rwsem(&namespace_sem);
2258
1da177e4 2259 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
20c2df83 2260 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2261
b58fed8b 2262 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2263
2264 if (!mount_hashtable)
2265 panic("Failed to allocate mount hash table\n");
2266
13f14b4d
ED
2267 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2268
2269 for (u = 0; u < HASH_SIZE; u++)
2270 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2271
15a67dd8
RD
2272 err = sysfs_init();
2273 if (err)
2274 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2275 __func__, err);
00d26666
GKH
2276 fs_kobj = kobject_create_and_add("fs", NULL);
2277 if (!fs_kobj)
8e24eea7 2278 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2279 init_rootfs();
2280 init_mount_tree();
2281}
2282
6b3286ed 2283void __put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2284{
6b3286ed 2285 struct vfsmount *root = ns->root;
70fbcdf4 2286 LIST_HEAD(umount_list);
6b3286ed 2287 ns->root = NULL;
1ce88cf4 2288 spin_unlock(&vfsmount_lock);
390c6843 2289 down_write(&namespace_sem);
1da177e4 2290 spin_lock(&vfsmount_lock);
a05964f3 2291 umount_tree(root, 0, &umount_list);
1da177e4 2292 spin_unlock(&vfsmount_lock);
390c6843 2293 up_write(&namespace_sem);
70fbcdf4 2294 release_mounts(&umount_list);
6b3286ed 2295 kfree(ns);
1da177e4 2296}