]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/namespace.c
fs/inode.c: use hlist_for_each_entry()
[net-next-2.6.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4
LT
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
14#include <linux/smp_lock.h>
15#include <linux/init.h>
15a67dd8 16#include <linux/kernel.h>
1da177e4 17#include <linux/acct.h>
16f7e0fe 18#include <linux/capability.h>
3d733633 19#include <linux/cpumask.h>
1da177e4 20#include <linux/module.h>
f20a9ead 21#include <linux/sysfs.h>
1da177e4 22#include <linux/seq_file.h>
6b3286ed 23#include <linux/mnt_namespace.h>
1da177e4
LT
24#include <linux/namei.h>
25#include <linux/security.h>
26#include <linux/mount.h>
07f3f05c 27#include <linux/ramfs.h>
13f14b4d 28#include <linux/log2.h>
73cd49ec 29#include <linux/idr.h>
1da177e4
LT
30#include <asm/uaccess.h>
31#include <asm/unistd.h>
07b20889 32#include "pnode.h"
948730b0 33#include "internal.h"
1da177e4 34
13f14b4d
ED
35#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
36#define HASH_SIZE (1UL << HASH_SHIFT)
37
1da177e4 38/* spinlock for vfsmount related operations, inplace of dcache_lock */
5addc5dd
AV
39__cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
40
41static int event;
73cd49ec 42static DEFINE_IDA(mnt_id_ida);
719f5d7f 43static DEFINE_IDA(mnt_group_ida);
1da177e4 44
fa3536cc 45static struct list_head *mount_hashtable __read_mostly;
e18b890b 46static struct kmem_cache *mnt_cache __read_mostly;
390c6843 47static struct rw_semaphore namespace_sem;
1da177e4 48
f87fd4c2 49/* /sys/fs */
00d26666
GKH
50struct kobject *fs_kobj;
51EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 52
1da177e4
LT
53static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
54{
b58fed8b
RP
55 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
56 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
57 tmp = tmp + (tmp >> HASH_SHIFT);
58 return tmp & (HASH_SIZE - 1);
1da177e4
LT
59}
60
3d733633
DH
61#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
62
73cd49ec
MS
63/* allocation is serialized by namespace_sem */
64static int mnt_alloc_id(struct vfsmount *mnt)
65{
66 int res;
67
68retry:
69 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
70 spin_lock(&vfsmount_lock);
71 res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
72 spin_unlock(&vfsmount_lock);
73 if (res == -EAGAIN)
74 goto retry;
75
76 return res;
77}
78
79static void mnt_free_id(struct vfsmount *mnt)
80{
81 spin_lock(&vfsmount_lock);
82 ida_remove(&mnt_id_ida, mnt->mnt_id);
83 spin_unlock(&vfsmount_lock);
84}
85
719f5d7f
MS
86/*
87 * Allocate a new peer group ID
88 *
89 * mnt_group_ida is protected by namespace_sem
90 */
91static int mnt_alloc_group_id(struct vfsmount *mnt)
92{
93 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
94 return -ENOMEM;
95
96 return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
97}
98
99/*
100 * Release a peer group ID
101 */
102void mnt_release_group_id(struct vfsmount *mnt)
103{
104 ida_remove(&mnt_group_ida, mnt->mnt_group_id);
105 mnt->mnt_group_id = 0;
106}
107
1da177e4
LT
108struct vfsmount *alloc_vfsmnt(const char *name)
109{
c3762229 110 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
1da177e4 111 if (mnt) {
73cd49ec
MS
112 int err;
113
114 err = mnt_alloc_id(mnt);
115 if (err) {
116 kmem_cache_free(mnt_cache, mnt);
117 return NULL;
118 }
119
b58fed8b 120 atomic_set(&mnt->mnt_count, 1);
1da177e4
LT
121 INIT_LIST_HEAD(&mnt->mnt_hash);
122 INIT_LIST_HEAD(&mnt->mnt_child);
123 INIT_LIST_HEAD(&mnt->mnt_mounts);
124 INIT_LIST_HEAD(&mnt->mnt_list);
55e700b9 125 INIT_LIST_HEAD(&mnt->mnt_expire);
03e06e68 126 INIT_LIST_HEAD(&mnt->mnt_share);
a58b0eb8
RP
127 INIT_LIST_HEAD(&mnt->mnt_slave_list);
128 INIT_LIST_HEAD(&mnt->mnt_slave);
3d733633 129 atomic_set(&mnt->__mnt_writers, 0);
1da177e4 130 if (name) {
b58fed8b 131 int size = strlen(name) + 1;
1da177e4
LT
132 char *newname = kmalloc(size, GFP_KERNEL);
133 if (newname) {
134 memcpy(newname, name, size);
135 mnt->mnt_devname = newname;
136 }
137 }
138 }
139 return mnt;
140}
141
3d733633
DH
142/*
143 * Most r/o checks on a fs are for operations that take
144 * discrete amounts of time, like a write() or unlink().
145 * We must keep track of when those operations start
146 * (for permission checks) and when they end, so that
147 * we can determine when writes are able to occur to
148 * a filesystem.
149 */
150/*
151 * __mnt_is_readonly: check whether a mount is read-only
152 * @mnt: the mount to check for its write status
153 *
154 * This shouldn't be used directly ouside of the VFS.
155 * It does not guarantee that the filesystem will stay
156 * r/w, just that it is right *now*. This can not and
157 * should not be used in place of IS_RDONLY(inode).
158 * mnt_want/drop_write() will _keep_ the filesystem
159 * r/w.
160 */
161int __mnt_is_readonly(struct vfsmount *mnt)
162{
2e4b7fcd
DH
163 if (mnt->mnt_flags & MNT_READONLY)
164 return 1;
165 if (mnt->mnt_sb->s_flags & MS_RDONLY)
166 return 1;
167 return 0;
3d733633
DH
168}
169EXPORT_SYMBOL_GPL(__mnt_is_readonly);
170
171struct mnt_writer {
172 /*
173 * If holding multiple instances of this lock, they
174 * must be ordered by cpu number.
175 */
176 spinlock_t lock;
177 struct lock_class_key lock_class; /* compiles out with !lockdep */
178 unsigned long count;
179 struct vfsmount *mnt;
180} ____cacheline_aligned_in_smp;
181static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
182
183static int __init init_mnt_writers(void)
184{
185 int cpu;
186 for_each_possible_cpu(cpu) {
187 struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
188 spin_lock_init(&writer->lock);
189 lockdep_set_class(&writer->lock, &writer->lock_class);
190 writer->count = 0;
191 }
192 return 0;
193}
194fs_initcall(init_mnt_writers);
195
196static void unlock_mnt_writers(void)
197{
198 int cpu;
199 struct mnt_writer *cpu_writer;
200
201 for_each_possible_cpu(cpu) {
202 cpu_writer = &per_cpu(mnt_writers, cpu);
203 spin_unlock(&cpu_writer->lock);
204 }
205}
206
207static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
208{
209 if (!cpu_writer->mnt)
210 return;
211 /*
212 * This is in case anyone ever leaves an invalid,
213 * old ->mnt and a count of 0.
214 */
215 if (!cpu_writer->count)
216 return;
217 atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
218 cpu_writer->count = 0;
219}
220 /*
221 * must hold cpu_writer->lock
222 */
223static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
224 struct vfsmount *mnt)
225{
226 if (cpu_writer->mnt == mnt)
227 return;
228 __clear_mnt_count(cpu_writer);
229 cpu_writer->mnt = mnt;
230}
231
8366025e
DH
232/*
233 * Most r/o checks on a fs are for operations that take
234 * discrete amounts of time, like a write() or unlink().
235 * We must keep track of when those operations start
236 * (for permission checks) and when they end, so that
237 * we can determine when writes are able to occur to
238 * a filesystem.
239 */
240/**
241 * mnt_want_write - get write access to a mount
242 * @mnt: the mount on which to take a write
243 *
244 * This tells the low-level filesystem that a write is
245 * about to be performed to it, and makes sure that
246 * writes are allowed before returning success. When
247 * the write operation is finished, mnt_drop_write()
248 * must be called. This is effectively a refcount.
249 */
250int mnt_want_write(struct vfsmount *mnt)
251{
3d733633
DH
252 int ret = 0;
253 struct mnt_writer *cpu_writer;
254
255 cpu_writer = &get_cpu_var(mnt_writers);
256 spin_lock(&cpu_writer->lock);
257 if (__mnt_is_readonly(mnt)) {
258 ret = -EROFS;
259 goto out;
260 }
261 use_cpu_writer_for_mount(cpu_writer, mnt);
262 cpu_writer->count++;
263out:
264 spin_unlock(&cpu_writer->lock);
265 put_cpu_var(mnt_writers);
266 return ret;
8366025e
DH
267}
268EXPORT_SYMBOL_GPL(mnt_want_write);
269
3d733633
DH
270static void lock_mnt_writers(void)
271{
272 int cpu;
273 struct mnt_writer *cpu_writer;
274
275 for_each_possible_cpu(cpu) {
276 cpu_writer = &per_cpu(mnt_writers, cpu);
277 spin_lock(&cpu_writer->lock);
278 __clear_mnt_count(cpu_writer);
279 cpu_writer->mnt = NULL;
280 }
281}
282
283/*
284 * These per-cpu write counts are not guaranteed to have
285 * matched increments and decrements on any given cpu.
286 * A file open()ed for write on one cpu and close()d on
287 * another cpu will imbalance this count. Make sure it
288 * does not get too far out of whack.
289 */
290static void handle_write_count_underflow(struct vfsmount *mnt)
291{
292 if (atomic_read(&mnt->__mnt_writers) >=
293 MNT_WRITER_UNDERFLOW_LIMIT)
294 return;
295 /*
296 * It isn't necessary to hold all of the locks
297 * at the same time, but doing it this way makes
298 * us share a lot more code.
299 */
300 lock_mnt_writers();
301 /*
302 * vfsmount_lock is for mnt_flags.
303 */
304 spin_lock(&vfsmount_lock);
305 /*
306 * If coalescing the per-cpu writer counts did not
307 * get us back to a positive writer count, we have
308 * a bug.
309 */
310 if ((atomic_read(&mnt->__mnt_writers) < 0) &&
311 !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
312 printk(KERN_DEBUG "leak detected on mount(%p) writers "
313 "count: %d\n",
314 mnt, atomic_read(&mnt->__mnt_writers));
315 WARN_ON(1);
316 /* use the flag to keep the dmesg spam down */
317 mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
318 }
319 spin_unlock(&vfsmount_lock);
320 unlock_mnt_writers();
321}
322
8366025e
DH
323/**
324 * mnt_drop_write - give up write access to a mount
325 * @mnt: the mount on which to give up write access
326 *
327 * Tells the low-level filesystem that we are done
328 * performing writes to it. Must be matched with
329 * mnt_want_write() call above.
330 */
331void mnt_drop_write(struct vfsmount *mnt)
332{
3d733633
DH
333 int must_check_underflow = 0;
334 struct mnt_writer *cpu_writer;
335
336 cpu_writer = &get_cpu_var(mnt_writers);
337 spin_lock(&cpu_writer->lock);
338
339 use_cpu_writer_for_mount(cpu_writer, mnt);
340 if (cpu_writer->count > 0) {
341 cpu_writer->count--;
342 } else {
343 must_check_underflow = 1;
344 atomic_dec(&mnt->__mnt_writers);
345 }
346
347 spin_unlock(&cpu_writer->lock);
348 /*
349 * Logically, we could call this each time,
350 * but the __mnt_writers cacheline tends to
351 * be cold, and makes this expensive.
352 */
353 if (must_check_underflow)
354 handle_write_count_underflow(mnt);
355 /*
356 * This could be done right after the spinlock
357 * is taken because the spinlock keeps us on
358 * the cpu, and disables preemption. However,
359 * putting it here bounds the amount that
360 * __mnt_writers can underflow. Without it,
361 * we could theoretically wrap __mnt_writers.
362 */
363 put_cpu_var(mnt_writers);
8366025e
DH
364}
365EXPORT_SYMBOL_GPL(mnt_drop_write);
366
2e4b7fcd 367static int mnt_make_readonly(struct vfsmount *mnt)
8366025e 368{
3d733633
DH
369 int ret = 0;
370
371 lock_mnt_writers();
372 /*
373 * With all the locks held, this value is stable
374 */
375 if (atomic_read(&mnt->__mnt_writers) > 0) {
376 ret = -EBUSY;
377 goto out;
378 }
379 /*
2e4b7fcd
DH
380 * nobody can do a successful mnt_want_write() with all
381 * of the counts in MNT_DENIED_WRITE and the locks held.
3d733633 382 */
2e4b7fcd
DH
383 spin_lock(&vfsmount_lock);
384 if (!ret)
385 mnt->mnt_flags |= MNT_READONLY;
386 spin_unlock(&vfsmount_lock);
3d733633
DH
387out:
388 unlock_mnt_writers();
389 return ret;
8366025e 390}
8366025e 391
2e4b7fcd
DH
392static void __mnt_unmake_readonly(struct vfsmount *mnt)
393{
394 spin_lock(&vfsmount_lock);
395 mnt->mnt_flags &= ~MNT_READONLY;
396 spin_unlock(&vfsmount_lock);
397}
398
454e2398
DH
399int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
400{
401 mnt->mnt_sb = sb;
402 mnt->mnt_root = dget(sb->s_root);
403 return 0;
404}
405
406EXPORT_SYMBOL(simple_set_mnt);
407
1da177e4
LT
408void free_vfsmnt(struct vfsmount *mnt)
409{
410 kfree(mnt->mnt_devname);
73cd49ec 411 mnt_free_id(mnt);
1da177e4
LT
412 kmem_cache_free(mnt_cache, mnt);
413}
414
415/*
a05964f3
RP
416 * find the first or last mount at @dentry on vfsmount @mnt depending on
417 * @dir. If @dir is set return the first mount else return the last mount.
1da177e4 418 */
a05964f3
RP
419struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
420 int dir)
1da177e4 421{
b58fed8b
RP
422 struct list_head *head = mount_hashtable + hash(mnt, dentry);
423 struct list_head *tmp = head;
1da177e4
LT
424 struct vfsmount *p, *found = NULL;
425
1da177e4 426 for (;;) {
a05964f3 427 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
428 p = NULL;
429 if (tmp == head)
430 break;
431 p = list_entry(tmp, struct vfsmount, mnt_hash);
432 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
a05964f3 433 found = p;
1da177e4
LT
434 break;
435 }
436 }
1da177e4
LT
437 return found;
438}
439
a05964f3
RP
440/*
441 * lookup_mnt increments the ref count before returning
442 * the vfsmount struct.
443 */
444struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
445{
446 struct vfsmount *child_mnt;
447 spin_lock(&vfsmount_lock);
448 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
449 mntget(child_mnt);
450 spin_unlock(&vfsmount_lock);
451 return child_mnt;
452}
453
1da177e4
LT
454static inline int check_mnt(struct vfsmount *mnt)
455{
6b3286ed 456 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
457}
458
6b3286ed 459static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
460{
461 if (ns) {
462 ns->event = ++event;
463 wake_up_interruptible(&ns->poll);
464 }
465}
466
6b3286ed 467static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
468{
469 if (ns && ns->event != event) {
470 ns->event = event;
471 wake_up_interruptible(&ns->poll);
472 }
473}
474
1a390689 475static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
1da177e4 476{
1a390689
AV
477 old_path->dentry = mnt->mnt_mountpoint;
478 old_path->mnt = mnt->mnt_parent;
1da177e4
LT
479 mnt->mnt_parent = mnt;
480 mnt->mnt_mountpoint = mnt->mnt_root;
481 list_del_init(&mnt->mnt_child);
482 list_del_init(&mnt->mnt_hash);
1a390689 483 old_path->dentry->d_mounted--;
1da177e4
LT
484}
485
b90fa9ae
RP
486void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
487 struct vfsmount *child_mnt)
488{
489 child_mnt->mnt_parent = mntget(mnt);
490 child_mnt->mnt_mountpoint = dget(dentry);
491 dentry->d_mounted++;
492}
493
1a390689 494static void attach_mnt(struct vfsmount *mnt, struct path *path)
1da177e4 495{
1a390689 496 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
b90fa9ae 497 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689
AV
498 hash(path->mnt, path->dentry));
499 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
b90fa9ae
RP
500}
501
502/*
503 * the caller must hold vfsmount_lock
504 */
505static void commit_tree(struct vfsmount *mnt)
506{
507 struct vfsmount *parent = mnt->mnt_parent;
508 struct vfsmount *m;
509 LIST_HEAD(head);
6b3286ed 510 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae
RP
511
512 BUG_ON(parent == mnt);
513
514 list_add_tail(&head, &mnt->mnt_list);
515 list_for_each_entry(m, &head, mnt_list)
6b3286ed 516 m->mnt_ns = n;
b90fa9ae
RP
517 list_splice(&head, n->list.prev);
518
519 list_add_tail(&mnt->mnt_hash, mount_hashtable +
520 hash(parent, mnt->mnt_mountpoint));
521 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 522 touch_mnt_namespace(n);
1da177e4
LT
523}
524
525static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
526{
527 struct list_head *next = p->mnt_mounts.next;
528 if (next == &p->mnt_mounts) {
529 while (1) {
530 if (p == root)
531 return NULL;
532 next = p->mnt_child.next;
533 if (next != &p->mnt_parent->mnt_mounts)
534 break;
535 p = p->mnt_parent;
536 }
537 }
538 return list_entry(next, struct vfsmount, mnt_child);
539}
540
9676f0c6
RP
541static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
542{
543 struct list_head *prev = p->mnt_mounts.prev;
544 while (prev != &p->mnt_mounts) {
545 p = list_entry(prev, struct vfsmount, mnt_child);
546 prev = p->mnt_mounts.prev;
547 }
548 return p;
549}
550
36341f64
RP
551static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
552 int flag)
1da177e4
LT
553{
554 struct super_block *sb = old->mnt_sb;
555 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
556
557 if (mnt) {
719f5d7f
MS
558 if (flag & (CL_SLAVE | CL_PRIVATE))
559 mnt->mnt_group_id = 0; /* not a peer of original */
560 else
561 mnt->mnt_group_id = old->mnt_group_id;
562
563 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
564 int err = mnt_alloc_group_id(mnt);
565 if (err)
566 goto out_free;
567 }
568
1da177e4
LT
569 mnt->mnt_flags = old->mnt_flags;
570 atomic_inc(&sb->s_active);
571 mnt->mnt_sb = sb;
572 mnt->mnt_root = dget(root);
573 mnt->mnt_mountpoint = mnt->mnt_root;
574 mnt->mnt_parent = mnt;
b90fa9ae 575
5afe0022
RP
576 if (flag & CL_SLAVE) {
577 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
578 mnt->mnt_master = old;
579 CLEAR_MNT_SHARED(mnt);
8aec0809 580 } else if (!(flag & CL_PRIVATE)) {
5afe0022
RP
581 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
582 list_add(&mnt->mnt_share, &old->mnt_share);
583 if (IS_MNT_SLAVE(old))
584 list_add(&mnt->mnt_slave, &old->mnt_slave);
585 mnt->mnt_master = old->mnt_master;
586 }
b90fa9ae
RP
587 if (flag & CL_MAKE_SHARED)
588 set_mnt_shared(mnt);
1da177e4
LT
589
590 /* stick the duplicate mount on the same expiry list
591 * as the original if that was on one */
36341f64 592 if (flag & CL_EXPIRE) {
36341f64
RP
593 if (!list_empty(&old->mnt_expire))
594 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 595 }
1da177e4
LT
596 }
597 return mnt;
719f5d7f
MS
598
599 out_free:
600 free_vfsmnt(mnt);
601 return NULL;
1da177e4
LT
602}
603
7b7b1ace 604static inline void __mntput(struct vfsmount *mnt)
1da177e4 605{
3d733633 606 int cpu;
1da177e4 607 struct super_block *sb = mnt->mnt_sb;
3d733633
DH
608 /*
609 * We don't have to hold all of the locks at the
610 * same time here because we know that we're the
611 * last reference to mnt and that no new writers
612 * can come in.
613 */
614 for_each_possible_cpu(cpu) {
615 struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
616 if (cpu_writer->mnt != mnt)
617 continue;
618 spin_lock(&cpu_writer->lock);
619 atomic_add(cpu_writer->count, &mnt->__mnt_writers);
620 cpu_writer->count = 0;
621 /*
622 * Might as well do this so that no one
623 * ever sees the pointer and expects
624 * it to be valid.
625 */
626 cpu_writer->mnt = NULL;
627 spin_unlock(&cpu_writer->lock);
628 }
629 /*
630 * This probably indicates that somebody messed
631 * up a mnt_want/drop_write() pair. If this
632 * happens, the filesystem was probably unable
633 * to make r/w->r/o transitions.
634 */
635 WARN_ON(atomic_read(&mnt->__mnt_writers));
1da177e4
LT
636 dput(mnt->mnt_root);
637 free_vfsmnt(mnt);
638 deactivate_super(sb);
639}
640
7b7b1ace
AV
641void mntput_no_expire(struct vfsmount *mnt)
642{
643repeat:
644 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
645 if (likely(!mnt->mnt_pinned)) {
646 spin_unlock(&vfsmount_lock);
647 __mntput(mnt);
648 return;
649 }
650 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
651 mnt->mnt_pinned = 0;
652 spin_unlock(&vfsmount_lock);
653 acct_auto_close_mnt(mnt);
654 security_sb_umount_close(mnt);
655 goto repeat;
656 }
657}
658
659EXPORT_SYMBOL(mntput_no_expire);
660
661void mnt_pin(struct vfsmount *mnt)
662{
663 spin_lock(&vfsmount_lock);
664 mnt->mnt_pinned++;
665 spin_unlock(&vfsmount_lock);
666}
667
668EXPORT_SYMBOL(mnt_pin);
669
670void mnt_unpin(struct vfsmount *mnt)
671{
672 spin_lock(&vfsmount_lock);
673 if (mnt->mnt_pinned) {
674 atomic_inc(&mnt->mnt_count);
675 mnt->mnt_pinned--;
676 }
677 spin_unlock(&vfsmount_lock);
678}
679
680EXPORT_SYMBOL(mnt_unpin);
1da177e4 681
b3b304a2
MS
682static inline void mangle(struct seq_file *m, const char *s)
683{
684 seq_escape(m, s, " \t\n\\");
685}
686
687/*
688 * Simple .show_options callback for filesystems which don't want to
689 * implement more complex mount option showing.
690 *
691 * See also save_mount_options().
692 */
693int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
694{
695 const char *options = mnt->mnt_sb->s_options;
696
697 if (options != NULL && options[0]) {
698 seq_putc(m, ',');
699 mangle(m, options);
700 }
701
702 return 0;
703}
704EXPORT_SYMBOL(generic_show_options);
705
706/*
707 * If filesystem uses generic_show_options(), this function should be
708 * called from the fill_super() callback.
709 *
710 * The .remount_fs callback usually needs to be handled in a special
711 * way, to make sure, that previous options are not overwritten if the
712 * remount fails.
713 *
714 * Also note, that if the filesystem's .remount_fs function doesn't
715 * reset all options to their default value, but changes only newly
716 * given options, then the displayed options will not reflect reality
717 * any more.
718 */
719void save_mount_options(struct super_block *sb, char *options)
720{
721 kfree(sb->s_options);
722 sb->s_options = kstrdup(options, GFP_KERNEL);
723}
724EXPORT_SYMBOL(save_mount_options);
725
a1a2c409 726#ifdef CONFIG_PROC_FS
1da177e4
LT
727/* iterator */
728static void *m_start(struct seq_file *m, loff_t *pos)
729{
a1a2c409 730 struct proc_mounts *p = m->private;
1da177e4 731
390c6843 732 down_read(&namespace_sem);
a1a2c409 733 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
734}
735
736static void *m_next(struct seq_file *m, void *v, loff_t *pos)
737{
a1a2c409 738 struct proc_mounts *p = m->private;
b0765fb8 739
a1a2c409 740 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
741}
742
743static void m_stop(struct seq_file *m, void *v)
744{
390c6843 745 up_read(&namespace_sem);
1da177e4
LT
746}
747
2d4d4864
RP
748struct proc_fs_info {
749 int flag;
750 const char *str;
751};
752
753static void show_sb_opts(struct seq_file *m, struct super_block *sb)
1da177e4 754{
2d4d4864 755 static const struct proc_fs_info fs_info[] = {
1da177e4
LT
756 { MS_SYNCHRONOUS, ",sync" },
757 { MS_DIRSYNC, ",dirsync" },
758 { MS_MANDLOCK, ",mand" },
1da177e4
LT
759 { 0, NULL }
760 };
2d4d4864
RP
761 const struct proc_fs_info *fs_infop;
762
763 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
764 if (sb->s_flags & fs_infop->flag)
765 seq_puts(m, fs_infop->str);
766 }
767}
768
769static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
770{
771 static const struct proc_fs_info mnt_info[] = {
1da177e4
LT
772 { MNT_NOSUID, ",nosuid" },
773 { MNT_NODEV, ",nodev" },
774 { MNT_NOEXEC, ",noexec" },
fc33a7bb
CH
775 { MNT_NOATIME, ",noatime" },
776 { MNT_NODIRATIME, ",nodiratime" },
47ae32d6 777 { MNT_RELATIME, ",relatime" },
1da177e4
LT
778 { 0, NULL }
779 };
2d4d4864
RP
780 const struct proc_fs_info *fs_infop;
781
782 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
783 if (mnt->mnt_flags & fs_infop->flag)
784 seq_puts(m, fs_infop->str);
785 }
786}
787
788static void show_type(struct seq_file *m, struct super_block *sb)
789{
790 mangle(m, sb->s_type->name);
791 if (sb->s_subtype && sb->s_subtype[0]) {
792 seq_putc(m, '.');
793 mangle(m, sb->s_subtype);
794 }
795}
796
797static int show_vfsmnt(struct seq_file *m, void *v)
798{
799 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
800 int err = 0;
c32c2f63 801 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1da177e4
LT
802
803 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
804 seq_putc(m, ' ');
c32c2f63 805 seq_path(m, &mnt_path, " \t\n\\");
1da177e4 806 seq_putc(m, ' ');
2d4d4864 807 show_type(m, mnt->mnt_sb);
2e4b7fcd 808 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
2d4d4864
RP
809 show_sb_opts(m, mnt->mnt_sb);
810 show_mnt_opts(m, mnt);
1da177e4
LT
811 if (mnt->mnt_sb->s_op->show_options)
812 err = mnt->mnt_sb->s_op->show_options(m, mnt);
813 seq_puts(m, " 0 0\n");
814 return err;
815}
816
a1a2c409 817const struct seq_operations mounts_op = {
1da177e4
LT
818 .start = m_start,
819 .next = m_next,
820 .stop = m_stop,
821 .show = show_vfsmnt
822};
823
2d4d4864
RP
824static int show_mountinfo(struct seq_file *m, void *v)
825{
826 struct proc_mounts *p = m->private;
827 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
828 struct super_block *sb = mnt->mnt_sb;
829 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
830 struct path root = p->root;
831 int err = 0;
832
833 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
834 MAJOR(sb->s_dev), MINOR(sb->s_dev));
835 seq_dentry(m, mnt->mnt_root, " \t\n\\");
836 seq_putc(m, ' ');
837 seq_path_root(m, &mnt_path, &root, " \t\n\\");
838 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
839 /*
840 * Mountpoint is outside root, discard that one. Ugly,
841 * but less so than trying to do that in iterator in a
842 * race-free way (due to renames).
843 */
844 return SEQ_SKIP;
845 }
846 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
847 show_mnt_opts(m, mnt);
848
849 /* Tagged fields ("foo:X" or "bar") */
850 if (IS_MNT_SHARED(mnt))
851 seq_printf(m, " shared:%i", mnt->mnt_group_id);
97e7e0f7
MS
852 if (IS_MNT_SLAVE(mnt)) {
853 int master = mnt->mnt_master->mnt_group_id;
854 int dom = get_dominating_id(mnt, &p->root);
855 seq_printf(m, " master:%i", master);
856 if (dom && dom != master)
857 seq_printf(m, " propagate_from:%i", dom);
858 }
2d4d4864
RP
859 if (IS_MNT_UNBINDABLE(mnt))
860 seq_puts(m, " unbindable");
861
862 /* Filesystem specific data */
863 seq_puts(m, " - ");
864 show_type(m, sb);
865 seq_putc(m, ' ');
866 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
867 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
868 show_sb_opts(m, sb);
869 if (sb->s_op->show_options)
870 err = sb->s_op->show_options(m, mnt);
871 seq_putc(m, '\n');
872 return err;
873}
874
875const struct seq_operations mountinfo_op = {
876 .start = m_start,
877 .next = m_next,
878 .stop = m_stop,
879 .show = show_mountinfo,
880};
881
b4629fe2
CL
882static int show_vfsstat(struct seq_file *m, void *v)
883{
b0765fb8 884 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
c32c2f63 885 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
b4629fe2
CL
886 int err = 0;
887
888 /* device */
889 if (mnt->mnt_devname) {
890 seq_puts(m, "device ");
891 mangle(m, mnt->mnt_devname);
892 } else
893 seq_puts(m, "no device");
894
895 /* mount point */
896 seq_puts(m, " mounted on ");
c32c2f63 897 seq_path(m, &mnt_path, " \t\n\\");
b4629fe2
CL
898 seq_putc(m, ' ');
899
900 /* file system type */
901 seq_puts(m, "with fstype ");
2d4d4864 902 show_type(m, mnt->mnt_sb);
b4629fe2
CL
903
904 /* optional statistics */
905 if (mnt->mnt_sb->s_op->show_stats) {
906 seq_putc(m, ' ');
907 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
908 }
909
910 seq_putc(m, '\n');
911 return err;
912}
913
a1a2c409 914const struct seq_operations mountstats_op = {
b4629fe2
CL
915 .start = m_start,
916 .next = m_next,
917 .stop = m_stop,
918 .show = show_vfsstat,
919};
a1a2c409 920#endif /* CONFIG_PROC_FS */
b4629fe2 921
1da177e4
LT
922/**
923 * may_umount_tree - check if a mount tree is busy
924 * @mnt: root of mount tree
925 *
926 * This is called to check if a tree of mounts has any
927 * open files, pwds, chroots or sub mounts that are
928 * busy.
929 */
930int may_umount_tree(struct vfsmount *mnt)
931{
36341f64
RP
932 int actual_refs = 0;
933 int minimum_refs = 0;
934 struct vfsmount *p;
1da177e4
LT
935
936 spin_lock(&vfsmount_lock);
36341f64 937 for (p = mnt; p; p = next_mnt(p, mnt)) {
1da177e4
LT
938 actual_refs += atomic_read(&p->mnt_count);
939 minimum_refs += 2;
1da177e4
LT
940 }
941 spin_unlock(&vfsmount_lock);
942
943 if (actual_refs > minimum_refs)
e3474a8e 944 return 0;
1da177e4 945
e3474a8e 946 return 1;
1da177e4
LT
947}
948
949EXPORT_SYMBOL(may_umount_tree);
950
951/**
952 * may_umount - check if a mount point is busy
953 * @mnt: root of mount
954 *
955 * This is called to check if a mount point has any
956 * open files, pwds, chroots or sub mounts. If the
957 * mount has sub mounts this will return busy
958 * regardless of whether the sub mounts are busy.
959 *
960 * Doesn't take quota and stuff into account. IOW, in some cases it will
961 * give false negatives. The main reason why it's here is that we need
962 * a non-destructive way to look for easily umountable filesystems.
963 */
964int may_umount(struct vfsmount *mnt)
965{
e3474a8e 966 int ret = 1;
a05964f3
RP
967 spin_lock(&vfsmount_lock);
968 if (propagate_mount_busy(mnt, 2))
e3474a8e 969 ret = 0;
a05964f3
RP
970 spin_unlock(&vfsmount_lock);
971 return ret;
1da177e4
LT
972}
973
974EXPORT_SYMBOL(may_umount);
975
b90fa9ae 976void release_mounts(struct list_head *head)
70fbcdf4
RP
977{
978 struct vfsmount *mnt;
bf066c7d 979 while (!list_empty(head)) {
b5e61818 980 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
70fbcdf4
RP
981 list_del_init(&mnt->mnt_hash);
982 if (mnt->mnt_parent != mnt) {
983 struct dentry *dentry;
984 struct vfsmount *m;
985 spin_lock(&vfsmount_lock);
986 dentry = mnt->mnt_mountpoint;
987 m = mnt->mnt_parent;
988 mnt->mnt_mountpoint = mnt->mnt_root;
989 mnt->mnt_parent = mnt;
7c4b93d8 990 m->mnt_ghosts--;
70fbcdf4
RP
991 spin_unlock(&vfsmount_lock);
992 dput(dentry);
993 mntput(m);
994 }
995 mntput(mnt);
996 }
997}
998
a05964f3 999void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1da177e4
LT
1000{
1001 struct vfsmount *p;
1da177e4 1002
1bfba4e8
AM
1003 for (p = mnt; p; p = next_mnt(p, mnt))
1004 list_move(&p->mnt_hash, kill);
1da177e4 1005
a05964f3
RP
1006 if (propagate)
1007 propagate_umount(kill);
1008
70fbcdf4
RP
1009 list_for_each_entry(p, kill, mnt_hash) {
1010 list_del_init(&p->mnt_expire);
1011 list_del_init(&p->mnt_list);
6b3286ed
KK
1012 __touch_mnt_namespace(p->mnt_ns);
1013 p->mnt_ns = NULL;
70fbcdf4 1014 list_del_init(&p->mnt_child);
7c4b93d8
AV
1015 if (p->mnt_parent != p) {
1016 p->mnt_parent->mnt_ghosts++;
f30ac319 1017 p->mnt_mountpoint->d_mounted--;
7c4b93d8 1018 }
a05964f3 1019 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1020 }
1021}
1022
c35038be
AV
1023static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1024
1da177e4
LT
1025static int do_umount(struct vfsmount *mnt, int flags)
1026{
b58fed8b 1027 struct super_block *sb = mnt->mnt_sb;
1da177e4 1028 int retval;
70fbcdf4 1029 LIST_HEAD(umount_list);
1da177e4
LT
1030
1031 retval = security_sb_umount(mnt, flags);
1032 if (retval)
1033 return retval;
1034
1035 /*
1036 * Allow userspace to request a mountpoint be expired rather than
1037 * unmounting unconditionally. Unmount only happens if:
1038 * (1) the mark is already set (the mark is cleared by mntput())
1039 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1040 */
1041 if (flags & MNT_EXPIRE) {
6ac08c39 1042 if (mnt == current->fs->root.mnt ||
1da177e4
LT
1043 flags & (MNT_FORCE | MNT_DETACH))
1044 return -EINVAL;
1045
1046 if (atomic_read(&mnt->mnt_count) != 2)
1047 return -EBUSY;
1048
1049 if (!xchg(&mnt->mnt_expiry_mark, 1))
1050 return -EAGAIN;
1051 }
1052
1053 /*
1054 * If we may have to abort operations to get out of this
1055 * mount, and they will themselves hold resources we must
1056 * allow the fs to do things. In the Unix tradition of
1057 * 'Gee thats tricky lets do it in userspace' the umount_begin
1058 * might fail to complete on the first run through as other tasks
1059 * must return, and the like. Thats for the mount program to worry
1060 * about for the moment.
1061 */
1062
42faad99
AV
1063 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1064 lock_kernel();
1065 sb->s_op->umount_begin(sb);
1066 unlock_kernel();
1067 }
1da177e4
LT
1068
1069 /*
1070 * No sense to grab the lock for this test, but test itself looks
1071 * somewhat bogus. Suggestions for better replacement?
1072 * Ho-hum... In principle, we might treat that as umount + switch
1073 * to rootfs. GC would eventually take care of the old vfsmount.
1074 * Actually it makes sense, especially if rootfs would contain a
1075 * /reboot - static binary that would close all descriptors and
1076 * call reboot(9). Then init(8) could umount root and exec /reboot.
1077 */
6ac08c39 1078 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1079 /*
1080 * Special case for "unmounting" root ...
1081 * we just try to remount it readonly.
1082 */
1083 down_write(&sb->s_umount);
1084 if (!(sb->s_flags & MS_RDONLY)) {
1085 lock_kernel();
1da177e4
LT
1086 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1087 unlock_kernel();
1088 }
1089 up_write(&sb->s_umount);
1090 return retval;
1091 }
1092
390c6843 1093 down_write(&namespace_sem);
1da177e4 1094 spin_lock(&vfsmount_lock);
5addc5dd 1095 event++;
1da177e4 1096
c35038be
AV
1097 if (!(flags & MNT_DETACH))
1098 shrink_submounts(mnt, &umount_list);
1099
1da177e4 1100 retval = -EBUSY;
a05964f3 1101 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1da177e4 1102 if (!list_empty(&mnt->mnt_list))
a05964f3 1103 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1104 retval = 0;
1105 }
1106 spin_unlock(&vfsmount_lock);
1107 if (retval)
1108 security_sb_umount_busy(mnt);
390c6843 1109 up_write(&namespace_sem);
70fbcdf4 1110 release_mounts(&umount_list);
1da177e4
LT
1111 return retval;
1112}
1113
1114/*
1115 * Now umount can handle mount points as well as block devices.
1116 * This is important for filesystems which use unnamed block devices.
1117 *
1118 * We now support a flag for forced unmount like the other 'big iron'
1119 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1120 */
1121
1122asmlinkage long sys_umount(char __user * name, int flags)
1123{
1124 struct nameidata nd;
1125 int retval;
1126
1127 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
1128 if (retval)
1129 goto out;
1130 retval = -EINVAL;
4ac91378 1131 if (nd.path.dentry != nd.path.mnt->mnt_root)
1da177e4 1132 goto dput_and_out;
4ac91378 1133 if (!check_mnt(nd.path.mnt))
1da177e4
LT
1134 goto dput_and_out;
1135
1136 retval = -EPERM;
1137 if (!capable(CAP_SYS_ADMIN))
1138 goto dput_and_out;
1139
4ac91378 1140 retval = do_umount(nd.path.mnt, flags);
1da177e4 1141dput_and_out:
429731b1 1142 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
4ac91378
JB
1143 dput(nd.path.dentry);
1144 mntput_no_expire(nd.path.mnt);
1da177e4
LT
1145out:
1146 return retval;
1147}
1148
1149#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1150
1151/*
b58fed8b 1152 * The 2.0 compatible umount. No flags.
1da177e4 1153 */
1da177e4
LT
1154asmlinkage long sys_oldumount(char __user * name)
1155{
b58fed8b 1156 return sys_umount(name, 0);
1da177e4
LT
1157}
1158
1159#endif
1160
1161static int mount_is_safe(struct nameidata *nd)
1162{
1163 if (capable(CAP_SYS_ADMIN))
1164 return 0;
1165 return -EPERM;
1166#ifdef notyet
4ac91378 1167 if (S_ISLNK(nd->path.dentry->d_inode->i_mode))
1da177e4 1168 return -EPERM;
4ac91378
JB
1169 if (nd->path.dentry->d_inode->i_mode & S_ISVTX) {
1170 if (current->uid != nd->path.dentry->d_inode->i_uid)
1da177e4
LT
1171 return -EPERM;
1172 }
e4543edd 1173 if (vfs_permission(nd, MAY_WRITE))
1da177e4
LT
1174 return -EPERM;
1175 return 0;
1176#endif
1177}
1178
b58fed8b 1179static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
1da177e4
LT
1180{
1181 while (1) {
1182 if (d == dentry)
1183 return 1;
1184 if (d == NULL || d == d->d_parent)
1185 return 0;
1186 d = d->d_parent;
1187 }
1188}
1189
b90fa9ae 1190struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
36341f64 1191 int flag)
1da177e4
LT
1192{
1193 struct vfsmount *res, *p, *q, *r, *s;
1a390689 1194 struct path path;
1da177e4 1195
9676f0c6
RP
1196 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1197 return NULL;
1198
36341f64 1199 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1200 if (!q)
1201 goto Enomem;
1202 q->mnt_mountpoint = mnt->mnt_mountpoint;
1203
1204 p = mnt;
fdadd65f 1205 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1da177e4
LT
1206 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
1207 continue;
1208
1209 for (s = r; s; s = next_mnt(s, r)) {
9676f0c6
RP
1210 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1211 s = skip_mnt_tree(s);
1212 continue;
1213 }
1da177e4
LT
1214 while (p != s->mnt_parent) {
1215 p = p->mnt_parent;
1216 q = q->mnt_parent;
1217 }
1218 p = s;
1a390689
AV
1219 path.mnt = q;
1220 path.dentry = p->mnt_mountpoint;
36341f64 1221 q = clone_mnt(p, p->mnt_root, flag);
1da177e4
LT
1222 if (!q)
1223 goto Enomem;
1224 spin_lock(&vfsmount_lock);
1225 list_add_tail(&q->mnt_list, &res->mnt_list);
1a390689 1226 attach_mnt(q, &path);
1da177e4
LT
1227 spin_unlock(&vfsmount_lock);
1228 }
1229 }
1230 return res;
b58fed8b 1231Enomem:
1da177e4 1232 if (res) {
70fbcdf4 1233 LIST_HEAD(umount_list);
1da177e4 1234 spin_lock(&vfsmount_lock);
a05964f3 1235 umount_tree(res, 0, &umount_list);
1da177e4 1236 spin_unlock(&vfsmount_lock);
70fbcdf4 1237 release_mounts(&umount_list);
1da177e4
LT
1238 }
1239 return NULL;
1240}
1241
8aec0809
AV
1242struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
1243{
1244 struct vfsmount *tree;
1a60a280 1245 down_write(&namespace_sem);
8aec0809 1246 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
1a60a280 1247 up_write(&namespace_sem);
8aec0809
AV
1248 return tree;
1249}
1250
1251void drop_collected_mounts(struct vfsmount *mnt)
1252{
1253 LIST_HEAD(umount_list);
1a60a280 1254 down_write(&namespace_sem);
8aec0809
AV
1255 spin_lock(&vfsmount_lock);
1256 umount_tree(mnt, 0, &umount_list);
1257 spin_unlock(&vfsmount_lock);
1a60a280 1258 up_write(&namespace_sem);
8aec0809
AV
1259 release_mounts(&umount_list);
1260}
1261
719f5d7f
MS
1262static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1263{
1264 struct vfsmount *p;
1265
1266 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1267 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1268 mnt_release_group_id(p);
1269 }
1270}
1271
1272static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1273{
1274 struct vfsmount *p;
1275
1276 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1277 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1278 int err = mnt_alloc_group_id(p);
1279 if (err) {
1280 cleanup_group_ids(mnt, p);
1281 return err;
1282 }
1283 }
1284 }
1285
1286 return 0;
1287}
1288
b90fa9ae
RP
1289/*
1290 * @source_mnt : mount tree to be attached
21444403
RP
1291 * @nd : place the mount tree @source_mnt is attached
1292 * @parent_nd : if non-null, detach the source_mnt from its parent and
1293 * store the parent mount and mountpoint dentry.
1294 * (done when source_mnt is moved)
b90fa9ae
RP
1295 *
1296 * NOTE: in the table below explains the semantics when a source mount
1297 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1298 * ---------------------------------------------------------------------------
1299 * | BIND MOUNT OPERATION |
1300 * |**************************************************************************
1301 * | source-->| shared | private | slave | unbindable |
1302 * | dest | | | | |
1303 * | | | | | | |
1304 * | v | | | | |
1305 * |**************************************************************************
1306 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1307 * | | | | | |
1308 * |non-shared| shared (+) | private | slave (*) | invalid |
1309 * ***************************************************************************
b90fa9ae
RP
1310 * A bind operation clones the source mount and mounts the clone on the
1311 * destination mount.
1312 *
1313 * (++) the cloned mount is propagated to all the mounts in the propagation
1314 * tree of the destination mount and the cloned mount is added to
1315 * the peer group of the source mount.
1316 * (+) the cloned mount is created under the destination mount and is marked
1317 * as shared. The cloned mount is added to the peer group of the source
1318 * mount.
5afe0022
RP
1319 * (+++) the mount is propagated to all the mounts in the propagation tree
1320 * of the destination mount and the cloned mount is made slave
1321 * of the same master as that of the source mount. The cloned mount
1322 * is marked as 'shared and slave'.
1323 * (*) the cloned mount is made a slave of the same master as that of the
1324 * source mount.
1325 *
9676f0c6
RP
1326 * ---------------------------------------------------------------------------
1327 * | MOVE MOUNT OPERATION |
1328 * |**************************************************************************
1329 * | source-->| shared | private | slave | unbindable |
1330 * | dest | | | | |
1331 * | | | | | | |
1332 * | v | | | | |
1333 * |**************************************************************************
1334 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1335 * | | | | | |
1336 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1337 * ***************************************************************************
5afe0022
RP
1338 *
1339 * (+) the mount is moved to the destination. And is then propagated to
1340 * all the mounts in the propagation tree of the destination mount.
21444403 1341 * (+*) the mount is moved to the destination.
5afe0022
RP
1342 * (+++) the mount is moved to the destination and is then propagated to
1343 * all the mounts belonging to the destination mount's propagation tree.
1344 * the mount is marked as 'shared and slave'.
1345 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1346 *
1347 * if the source mount is a tree, the operations explained above is
1348 * applied to each mount in the tree.
1349 * Must be called without spinlocks held, since this function can sleep
1350 * in allocations.
1351 */
1352static int attach_recursive_mnt(struct vfsmount *source_mnt,
1a390689 1353 struct path *path, struct path *parent_path)
b90fa9ae
RP
1354{
1355 LIST_HEAD(tree_list);
1a390689
AV
1356 struct vfsmount *dest_mnt = path->mnt;
1357 struct dentry *dest_dentry = path->dentry;
b90fa9ae 1358 struct vfsmount *child, *p;
719f5d7f 1359 int err;
b90fa9ae 1360
719f5d7f
MS
1361 if (IS_MNT_SHARED(dest_mnt)) {
1362 err = invent_group_ids(source_mnt, true);
1363 if (err)
1364 goto out;
1365 }
1366 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1367 if (err)
1368 goto out_cleanup_ids;
b90fa9ae
RP
1369
1370 if (IS_MNT_SHARED(dest_mnt)) {
1371 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1372 set_mnt_shared(p);
1373 }
1374
1375 spin_lock(&vfsmount_lock);
1a390689
AV
1376 if (parent_path) {
1377 detach_mnt(source_mnt, parent_path);
1378 attach_mnt(source_mnt, path);
6b3286ed 1379 touch_mnt_namespace(current->nsproxy->mnt_ns);
21444403
RP
1380 } else {
1381 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1382 commit_tree(source_mnt);
1383 }
b90fa9ae
RP
1384
1385 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1386 list_del_init(&child->mnt_hash);
1387 commit_tree(child);
1388 }
1389 spin_unlock(&vfsmount_lock);
1390 return 0;
719f5d7f
MS
1391
1392 out_cleanup_ids:
1393 if (IS_MNT_SHARED(dest_mnt))
1394 cleanup_group_ids(source_mnt, NULL);
1395 out:
1396 return err;
b90fa9ae
RP
1397}
1398
8c3ee42e 1399static int graft_tree(struct vfsmount *mnt, struct path *path)
1da177e4
LT
1400{
1401 int err;
1402 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1403 return -EINVAL;
1404
8c3ee42e 1405 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1da177e4
LT
1406 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1407 return -ENOTDIR;
1408
1409 err = -ENOENT;
8c3ee42e
AV
1410 mutex_lock(&path->dentry->d_inode->i_mutex);
1411 if (IS_DEADDIR(path->dentry->d_inode))
1da177e4
LT
1412 goto out_unlock;
1413
8c3ee42e 1414 err = security_sb_check_sb(mnt, path);
1da177e4
LT
1415 if (err)
1416 goto out_unlock;
1417
1418 err = -ENOENT;
8c3ee42e
AV
1419 if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
1420 err = attach_recursive_mnt(mnt, path, NULL);
1da177e4 1421out_unlock:
8c3ee42e 1422 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4 1423 if (!err)
8c3ee42e 1424 security_sb_post_addmount(mnt, path);
1da177e4
LT
1425 return err;
1426}
1427
07b20889
RP
1428/*
1429 * recursively change the type of the mountpoint.
2dafe1c4 1430 * noinline this do_mount helper to save do_mount stack space.
07b20889 1431 */
2dafe1c4 1432static noinline int do_change_type(struct nameidata *nd, int flag)
07b20889 1433{
4ac91378 1434 struct vfsmount *m, *mnt = nd->path.mnt;
07b20889
RP
1435 int recurse = flag & MS_REC;
1436 int type = flag & ~MS_REC;
719f5d7f 1437 int err = 0;
07b20889 1438
ee6f9582
MS
1439 if (!capable(CAP_SYS_ADMIN))
1440 return -EPERM;
1441
4ac91378 1442 if (nd->path.dentry != nd->path.mnt->mnt_root)
07b20889
RP
1443 return -EINVAL;
1444
1445 down_write(&namespace_sem);
719f5d7f
MS
1446 if (type == MS_SHARED) {
1447 err = invent_group_ids(mnt, recurse);
1448 if (err)
1449 goto out_unlock;
1450 }
1451
07b20889
RP
1452 spin_lock(&vfsmount_lock);
1453 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1454 change_mnt_propagation(m, type);
1455 spin_unlock(&vfsmount_lock);
719f5d7f
MS
1456
1457 out_unlock:
07b20889 1458 up_write(&namespace_sem);
719f5d7f 1459 return err;
07b20889
RP
1460}
1461
1da177e4
LT
1462/*
1463 * do loopback mount.
2dafe1c4 1464 * noinline this do_mount helper to save do_mount stack space.
1da177e4 1465 */
2dafe1c4
ES
1466static noinline int do_loopback(struct nameidata *nd, char *old_name,
1467 int recurse)
1da177e4
LT
1468{
1469 struct nameidata old_nd;
1470 struct vfsmount *mnt = NULL;
1471 int err = mount_is_safe(nd);
1472 if (err)
1473 return err;
1474 if (!old_name || !*old_name)
1475 return -EINVAL;
1476 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1477 if (err)
1478 return err;
1479
390c6843 1480 down_write(&namespace_sem);
1da177e4 1481 err = -EINVAL;
4ac91378
JB
1482 if (IS_MNT_UNBINDABLE(old_nd.path.mnt))
1483 goto out;
9676f0c6 1484
4ac91378 1485 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
ccd48bc7 1486 goto out;
1da177e4 1487
ccd48bc7
AV
1488 err = -ENOMEM;
1489 if (recurse)
4ac91378 1490 mnt = copy_tree(old_nd.path.mnt, old_nd.path.dentry, 0);
ccd48bc7 1491 else
4ac91378 1492 mnt = clone_mnt(old_nd.path.mnt, old_nd.path.dentry, 0);
ccd48bc7
AV
1493
1494 if (!mnt)
1495 goto out;
1496
8c3ee42e 1497 err = graft_tree(mnt, &nd->path);
ccd48bc7 1498 if (err) {
70fbcdf4 1499 LIST_HEAD(umount_list);
1da177e4 1500 spin_lock(&vfsmount_lock);
a05964f3 1501 umount_tree(mnt, 0, &umount_list);
1da177e4 1502 spin_unlock(&vfsmount_lock);
70fbcdf4 1503 release_mounts(&umount_list);
5b83d2c5 1504 }
1da177e4 1505
ccd48bc7 1506out:
390c6843 1507 up_write(&namespace_sem);
1d957f9b 1508 path_put(&old_nd.path);
1da177e4
LT
1509 return err;
1510}
1511
2e4b7fcd
DH
1512static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1513{
1514 int error = 0;
1515 int readonly_request = 0;
1516
1517 if (ms_flags & MS_RDONLY)
1518 readonly_request = 1;
1519 if (readonly_request == __mnt_is_readonly(mnt))
1520 return 0;
1521
1522 if (readonly_request)
1523 error = mnt_make_readonly(mnt);
1524 else
1525 __mnt_unmake_readonly(mnt);
1526 return error;
1527}
1528
1da177e4
LT
1529/*
1530 * change filesystem flags. dir should be a physical root of filesystem.
1531 * If you've mounted a non-root directory somewhere and want to do remount
1532 * on it - tough luck.
2dafe1c4 1533 * noinline this do_mount helper to save do_mount stack space.
1da177e4 1534 */
2dafe1c4 1535static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags,
1da177e4
LT
1536 void *data)
1537{
1538 int err;
4ac91378 1539 struct super_block *sb = nd->path.mnt->mnt_sb;
1da177e4
LT
1540
1541 if (!capable(CAP_SYS_ADMIN))
1542 return -EPERM;
1543
4ac91378 1544 if (!check_mnt(nd->path.mnt))
1da177e4
LT
1545 return -EINVAL;
1546
4ac91378 1547 if (nd->path.dentry != nd->path.mnt->mnt_root)
1da177e4
LT
1548 return -EINVAL;
1549
1550 down_write(&sb->s_umount);
2e4b7fcd
DH
1551 if (flags & MS_BIND)
1552 err = change_mount_flags(nd->path.mnt, flags);
1553 else
1554 err = do_remount_sb(sb, flags, data, 0);
1da177e4 1555 if (!err)
4ac91378 1556 nd->path.mnt->mnt_flags = mnt_flags;
1da177e4
LT
1557 up_write(&sb->s_umount);
1558 if (!err)
4ac91378 1559 security_sb_post_remount(nd->path.mnt, flags, data);
1da177e4
LT
1560 return err;
1561}
1562
9676f0c6
RP
1563static inline int tree_contains_unbindable(struct vfsmount *mnt)
1564{
1565 struct vfsmount *p;
1566 for (p = mnt; p; p = next_mnt(p, mnt)) {
1567 if (IS_MNT_UNBINDABLE(p))
1568 return 1;
1569 }
1570 return 0;
1571}
1572
2dafe1c4
ES
1573/*
1574 * noinline this do_mount helper to save do_mount stack space.
1575 */
1576static noinline int do_move_mount(struct nameidata *nd, char *old_name)
1da177e4 1577{
1a390689
AV
1578 struct nameidata old_nd;
1579 struct path parent_path;
1da177e4
LT
1580 struct vfsmount *p;
1581 int err = 0;
1582 if (!capable(CAP_SYS_ADMIN))
1583 return -EPERM;
1584 if (!old_name || !*old_name)
1585 return -EINVAL;
1586 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1587 if (err)
1588 return err;
1589
390c6843 1590 down_write(&namespace_sem);
4ac91378
JB
1591 while (d_mountpoint(nd->path.dentry) &&
1592 follow_down(&nd->path.mnt, &nd->path.dentry))
1da177e4
LT
1593 ;
1594 err = -EINVAL;
4ac91378 1595 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1da177e4
LT
1596 goto out;
1597
1598 err = -ENOENT;
4ac91378
JB
1599 mutex_lock(&nd->path.dentry->d_inode->i_mutex);
1600 if (IS_DEADDIR(nd->path.dentry->d_inode))
1da177e4
LT
1601 goto out1;
1602
4ac91378 1603 if (!IS_ROOT(nd->path.dentry) && d_unhashed(nd->path.dentry))
21444403 1604 goto out1;
1da177e4
LT
1605
1606 err = -EINVAL;
4ac91378 1607 if (old_nd.path.dentry != old_nd.path.mnt->mnt_root)
21444403 1608 goto out1;
1da177e4 1609
4ac91378 1610 if (old_nd.path.mnt == old_nd.path.mnt->mnt_parent)
21444403 1611 goto out1;
1da177e4 1612
4ac91378
JB
1613 if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
1614 S_ISDIR(old_nd.path.dentry->d_inode->i_mode))
21444403
RP
1615 goto out1;
1616 /*
1617 * Don't move a mount residing in a shared parent.
1618 */
4ac91378
JB
1619 if (old_nd.path.mnt->mnt_parent &&
1620 IS_MNT_SHARED(old_nd.path.mnt->mnt_parent))
21444403 1621 goto out1;
9676f0c6
RP
1622 /*
1623 * Don't move a mount tree containing unbindable mounts to a destination
1624 * mount which is shared.
1625 */
4ac91378
JB
1626 if (IS_MNT_SHARED(nd->path.mnt) &&
1627 tree_contains_unbindable(old_nd.path.mnt))
9676f0c6 1628 goto out1;
1da177e4 1629 err = -ELOOP;
4ac91378
JB
1630 for (p = nd->path.mnt; p->mnt_parent != p; p = p->mnt_parent)
1631 if (p == old_nd.path.mnt)
21444403 1632 goto out1;
1da177e4 1633
1a390689 1634 err = attach_recursive_mnt(old_nd.path.mnt, &nd->path, &parent_path);
4ac91378 1635 if (err)
21444403 1636 goto out1;
1da177e4
LT
1637
1638 /* if the mount is moved, it should no longer be expire
1639 * automatically */
4ac91378 1640 list_del_init(&old_nd.path.mnt->mnt_expire);
1da177e4 1641out1:
4ac91378 1642 mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
1da177e4 1643out:
390c6843 1644 up_write(&namespace_sem);
1da177e4 1645 if (!err)
1a390689 1646 path_put(&parent_path);
1d957f9b 1647 path_put(&old_nd.path);
1da177e4
LT
1648 return err;
1649}
1650
1651/*
1652 * create a new mount for userspace and request it to be added into the
1653 * namespace's tree
2dafe1c4 1654 * noinline this do_mount helper to save do_mount stack space.
1da177e4 1655 */
2dafe1c4 1656static noinline int do_new_mount(struct nameidata *nd, char *type, int flags,
1da177e4
LT
1657 int mnt_flags, char *name, void *data)
1658{
1659 struct vfsmount *mnt;
1660
1661 if (!type || !memchr(type, 0, PAGE_SIZE))
1662 return -EINVAL;
1663
1664 /* we need capabilities... */
1665 if (!capable(CAP_SYS_ADMIN))
1666 return -EPERM;
1667
1668 mnt = do_kern_mount(type, flags, name, data);
1669 if (IS_ERR(mnt))
1670 return PTR_ERR(mnt);
1671
1672 return do_add_mount(mnt, nd, mnt_flags, NULL);
1673}
1674
1675/*
1676 * add a mount into a namespace's mount tree
1677 * - provide the option of adding the new mount to an expiration list
1678 */
1679int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1680 int mnt_flags, struct list_head *fslist)
1681{
1682 int err;
1683
390c6843 1684 down_write(&namespace_sem);
1da177e4 1685 /* Something was mounted here while we slept */
4ac91378
JB
1686 while (d_mountpoint(nd->path.dentry) &&
1687 follow_down(&nd->path.mnt, &nd->path.dentry))
1da177e4
LT
1688 ;
1689 err = -EINVAL;
4ac91378 1690 if (!check_mnt(nd->path.mnt))
1da177e4
LT
1691 goto unlock;
1692
1693 /* Refuse the same filesystem on the same mount point */
1694 err = -EBUSY;
4ac91378
JB
1695 if (nd->path.mnt->mnt_sb == newmnt->mnt_sb &&
1696 nd->path.mnt->mnt_root == nd->path.dentry)
1da177e4
LT
1697 goto unlock;
1698
1699 err = -EINVAL;
1700 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1701 goto unlock;
1702
1703 newmnt->mnt_flags = mnt_flags;
8c3ee42e 1704 if ((err = graft_tree(newmnt, &nd->path)))
5b83d2c5 1705 goto unlock;
1da177e4 1706
6758f953 1707 if (fslist) /* add to the specified expiration list */
55e700b9 1708 list_add_tail(&newmnt->mnt_expire, fslist);
6758f953 1709
390c6843 1710 up_write(&namespace_sem);
5b83d2c5 1711 return 0;
1da177e4
LT
1712
1713unlock:
390c6843 1714 up_write(&namespace_sem);
1da177e4
LT
1715 mntput(newmnt);
1716 return err;
1717}
1718
1719EXPORT_SYMBOL_GPL(do_add_mount);
1720
1721/*
1722 * process a list of expirable mountpoints with the intent of discarding any
1723 * mountpoints that aren't in use and haven't been touched since last we came
1724 * here
1725 */
1726void mark_mounts_for_expiry(struct list_head *mounts)
1727{
1da177e4
LT
1728 struct vfsmount *mnt, *next;
1729 LIST_HEAD(graveyard);
bcc5c7d2 1730 LIST_HEAD(umounts);
1da177e4
LT
1731
1732 if (list_empty(mounts))
1733 return;
1734
bcc5c7d2 1735 down_write(&namespace_sem);
1da177e4
LT
1736 spin_lock(&vfsmount_lock);
1737
1738 /* extract from the expiration list every vfsmount that matches the
1739 * following criteria:
1740 * - only referenced by its parent vfsmount
1741 * - still marked for expiry (marked on the last call here; marks are
1742 * cleared by mntput())
1743 */
55e700b9 1744 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1da177e4 1745 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
bcc5c7d2 1746 propagate_mount_busy(mnt, 1))
1da177e4 1747 continue;
55e700b9 1748 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 1749 }
bcc5c7d2
AV
1750 while (!list_empty(&graveyard)) {
1751 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1752 touch_mnt_namespace(mnt->mnt_ns);
1753 umount_tree(mnt, 1, &umounts);
1754 }
5528f911 1755 spin_unlock(&vfsmount_lock);
bcc5c7d2
AV
1756 up_write(&namespace_sem);
1757
1758 release_mounts(&umounts);
5528f911
TM
1759}
1760
1761EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1762
1763/*
1764 * Ripoff of 'select_parent()'
1765 *
1766 * search the list of submounts for a given mountpoint, and move any
1767 * shrinkable submounts to the 'graveyard' list.
1768 */
1769static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1770{
1771 struct vfsmount *this_parent = parent;
1772 struct list_head *next;
1773 int found = 0;
1774
1775repeat:
1776 next = this_parent->mnt_mounts.next;
1777resume:
1778 while (next != &this_parent->mnt_mounts) {
1779 struct list_head *tmp = next;
1780 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1781
1782 next = tmp->next;
1783 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1da177e4 1784 continue;
5528f911
TM
1785 /*
1786 * Descend a level if the d_mounts list is non-empty.
1787 */
1788 if (!list_empty(&mnt->mnt_mounts)) {
1789 this_parent = mnt;
1790 goto repeat;
1791 }
1da177e4 1792
5528f911 1793 if (!propagate_mount_busy(mnt, 1)) {
5528f911
TM
1794 list_move_tail(&mnt->mnt_expire, graveyard);
1795 found++;
1796 }
1da177e4 1797 }
5528f911
TM
1798 /*
1799 * All done at this level ... ascend and resume the search
1800 */
1801 if (this_parent != parent) {
1802 next = this_parent->mnt_child.next;
1803 this_parent = this_parent->mnt_parent;
1804 goto resume;
1805 }
1806 return found;
1807}
1808
1809/*
1810 * process a list of expirable mountpoints with the intent of discarding any
1811 * submounts of a specific parent mountpoint
1812 */
c35038be 1813static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
5528f911
TM
1814{
1815 LIST_HEAD(graveyard);
c35038be 1816 struct vfsmount *m;
5528f911 1817
5528f911 1818 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 1819 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 1820 while (!list_empty(&graveyard)) {
c35038be 1821 m = list_first_entry(&graveyard, struct vfsmount,
bcc5c7d2
AV
1822 mnt_expire);
1823 touch_mnt_namespace(mnt->mnt_ns);
c35038be 1824 umount_tree(mnt, 1, umounts);
bcc5c7d2
AV
1825 }
1826 }
1da177e4
LT
1827}
1828
1da177e4
LT
1829/*
1830 * Some copy_from_user() implementations do not return the exact number of
1831 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1832 * Note that this function differs from copy_from_user() in that it will oops
1833 * on bad values of `to', rather than returning a short copy.
1834 */
b58fed8b
RP
1835static long exact_copy_from_user(void *to, const void __user * from,
1836 unsigned long n)
1da177e4
LT
1837{
1838 char *t = to;
1839 const char __user *f = from;
1840 char c;
1841
1842 if (!access_ok(VERIFY_READ, from, n))
1843 return n;
1844
1845 while (n) {
1846 if (__get_user(c, f)) {
1847 memset(t, 0, n);
1848 break;
1849 }
1850 *t++ = c;
1851 f++;
1852 n--;
1853 }
1854 return n;
1855}
1856
b58fed8b 1857int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
1858{
1859 int i;
1860 unsigned long page;
1861 unsigned long size;
b58fed8b 1862
1da177e4
LT
1863 *where = 0;
1864 if (!data)
1865 return 0;
1866
1867 if (!(page = __get_free_page(GFP_KERNEL)))
1868 return -ENOMEM;
1869
1870 /* We only care that *some* data at the address the user
1871 * gave us is valid. Just in case, we'll zero
1872 * the remainder of the page.
1873 */
1874 /* copy_from_user cannot cross TASK_SIZE ! */
1875 size = TASK_SIZE - (unsigned long)data;
1876 if (size > PAGE_SIZE)
1877 size = PAGE_SIZE;
1878
1879 i = size - exact_copy_from_user((void *)page, data, size);
1880 if (!i) {
b58fed8b 1881 free_page(page);
1da177e4
LT
1882 return -EFAULT;
1883 }
1884 if (i != PAGE_SIZE)
1885 memset((char *)page + i, 0, PAGE_SIZE - i);
1886 *where = page;
1887 return 0;
1888}
1889
1890/*
1891 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1892 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1893 *
1894 * data is a (void *) that can point to any structure up to
1895 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1896 * information (or be NULL).
1897 *
1898 * Pre-0.97 versions of mount() didn't have a flags word.
1899 * When the flags word was introduced its top half was required
1900 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1901 * Therefore, if this magic number is present, it carries no information
1902 * and must be discarded.
1903 */
b58fed8b 1904long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
1905 unsigned long flags, void *data_page)
1906{
1907 struct nameidata nd;
1908 int retval = 0;
1909 int mnt_flags = 0;
1910
1911 /* Discard magic */
1912 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1913 flags &= ~MS_MGC_MSK;
1914
1915 /* Basic sanity checks */
1916
1917 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1918 return -EINVAL;
1919 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1920 return -EINVAL;
1921
1922 if (data_page)
1923 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1924
1925 /* Separate the per-mountpoint flags */
1926 if (flags & MS_NOSUID)
1927 mnt_flags |= MNT_NOSUID;
1928 if (flags & MS_NODEV)
1929 mnt_flags |= MNT_NODEV;
1930 if (flags & MS_NOEXEC)
1931 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
1932 if (flags & MS_NOATIME)
1933 mnt_flags |= MNT_NOATIME;
1934 if (flags & MS_NODIRATIME)
1935 mnt_flags |= MNT_NODIRATIME;
47ae32d6
VH
1936 if (flags & MS_RELATIME)
1937 mnt_flags |= MNT_RELATIME;
2e4b7fcd
DH
1938 if (flags & MS_RDONLY)
1939 mnt_flags |= MNT_READONLY;
fc33a7bb
CH
1940
1941 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
8bf9725c 1942 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1da177e4
LT
1943
1944 /* ... and get the mountpoint */
1945 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1946 if (retval)
1947 return retval;
1948
b5266eb4
AV
1949 retval = security_sb_mount(dev_name, &nd.path,
1950 type_page, flags, data_page);
1da177e4
LT
1951 if (retval)
1952 goto dput_out;
1953
1954 if (flags & MS_REMOUNT)
1955 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1956 data_page);
1957 else if (flags & MS_BIND)
eee391a6 1958 retval = do_loopback(&nd, dev_name, flags & MS_REC);
9676f0c6 1959 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
07b20889 1960 retval = do_change_type(&nd, flags);
1da177e4
LT
1961 else if (flags & MS_MOVE)
1962 retval = do_move_mount(&nd, dev_name);
1963 else
1964 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1965 dev_name, data_page);
1966dput_out:
1d957f9b 1967 path_put(&nd.path);
1da177e4
LT
1968 return retval;
1969}
1970
741a2951
JD
1971/*
1972 * Allocate a new namespace structure and populate it with contents
1973 * copied from the namespace of the passed in task structure.
1974 */
e3222c4e 1975static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 1976 struct fs_struct *fs)
1da177e4 1977{
6b3286ed 1978 struct mnt_namespace *new_ns;
1da177e4 1979 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1da177e4
LT
1980 struct vfsmount *p, *q;
1981
6b3286ed 1982 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1da177e4 1983 if (!new_ns)
467e9f4b 1984 return ERR_PTR(-ENOMEM);
1da177e4
LT
1985
1986 atomic_set(&new_ns->count, 1);
1da177e4 1987 INIT_LIST_HEAD(&new_ns->list);
5addc5dd
AV
1988 init_waitqueue_head(&new_ns->poll);
1989 new_ns->event = 0;
1da177e4 1990
390c6843 1991 down_write(&namespace_sem);
1da177e4 1992 /* First pass: copy the tree topology */
6b3286ed 1993 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
9676f0c6 1994 CL_COPY_ALL | CL_EXPIRE);
1da177e4 1995 if (!new_ns->root) {
390c6843 1996 up_write(&namespace_sem);
1da177e4 1997 kfree(new_ns);
467e9f4b 1998 return ERR_PTR(-ENOMEM);;
1da177e4
LT
1999 }
2000 spin_lock(&vfsmount_lock);
2001 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2002 spin_unlock(&vfsmount_lock);
2003
2004 /*
2005 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2006 * as belonging to new namespace. We have already acquired a private
2007 * fs_struct, so tsk->fs->lock is not needed.
2008 */
6b3286ed 2009 p = mnt_ns->root;
1da177e4
LT
2010 q = new_ns->root;
2011 while (p) {
6b3286ed 2012 q->mnt_ns = new_ns;
1da177e4 2013 if (fs) {
6ac08c39 2014 if (p == fs->root.mnt) {
1da177e4 2015 rootmnt = p;
6ac08c39 2016 fs->root.mnt = mntget(q);
1da177e4 2017 }
6ac08c39 2018 if (p == fs->pwd.mnt) {
1da177e4 2019 pwdmnt = p;
6ac08c39 2020 fs->pwd.mnt = mntget(q);
1da177e4 2021 }
6ac08c39 2022 if (p == fs->altroot.mnt) {
1da177e4 2023 altrootmnt = p;
6ac08c39 2024 fs->altroot.mnt = mntget(q);
1da177e4
LT
2025 }
2026 }
6b3286ed 2027 p = next_mnt(p, mnt_ns->root);
1da177e4
LT
2028 q = next_mnt(q, new_ns->root);
2029 }
390c6843 2030 up_write(&namespace_sem);
1da177e4 2031
1da177e4
LT
2032 if (rootmnt)
2033 mntput(rootmnt);
2034 if (pwdmnt)
2035 mntput(pwdmnt);
2036 if (altrootmnt)
2037 mntput(altrootmnt);
2038
741a2951
JD
2039 return new_ns;
2040}
2041
213dd266 2042struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2043 struct fs_struct *new_fs)
741a2951 2044{
6b3286ed 2045 struct mnt_namespace *new_ns;
741a2951 2046
e3222c4e 2047 BUG_ON(!ns);
6b3286ed 2048 get_mnt_ns(ns);
741a2951
JD
2049
2050 if (!(flags & CLONE_NEWNS))
e3222c4e 2051 return ns;
741a2951 2052
e3222c4e 2053 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2054
6b3286ed 2055 put_mnt_ns(ns);
e3222c4e 2056 return new_ns;
1da177e4
LT
2057}
2058
2059asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
2060 char __user * type, unsigned long flags,
2061 void __user * data)
2062{
2063 int retval;
2064 unsigned long data_page;
2065 unsigned long type_page;
2066 unsigned long dev_page;
2067 char *dir_page;
2068
b58fed8b 2069 retval = copy_mount_options(type, &type_page);
1da177e4
LT
2070 if (retval < 0)
2071 return retval;
2072
2073 dir_page = getname(dir_name);
2074 retval = PTR_ERR(dir_page);
2075 if (IS_ERR(dir_page))
2076 goto out1;
2077
b58fed8b 2078 retval = copy_mount_options(dev_name, &dev_page);
1da177e4
LT
2079 if (retval < 0)
2080 goto out2;
2081
b58fed8b 2082 retval = copy_mount_options(data, &data_page);
1da177e4
LT
2083 if (retval < 0)
2084 goto out3;
2085
2086 lock_kernel();
b58fed8b
RP
2087 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
2088 flags, (void *)data_page);
1da177e4
LT
2089 unlock_kernel();
2090 free_page(data_page);
2091
2092out3:
2093 free_page(dev_page);
2094out2:
2095 putname(dir_page);
2096out1:
2097 free_page(type_page);
2098 return retval;
2099}
2100
2101/*
2102 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
2103 * It can block. Requires the big lock held.
2104 */
ac748a09 2105void set_fs_root(struct fs_struct *fs, struct path *path)
1da177e4 2106{
6ac08c39
JB
2107 struct path old_root;
2108
1da177e4
LT
2109 write_lock(&fs->lock);
2110 old_root = fs->root;
ac748a09
JB
2111 fs->root = *path;
2112 path_get(path);
1da177e4 2113 write_unlock(&fs->lock);
6ac08c39
JB
2114 if (old_root.dentry)
2115 path_put(&old_root);
1da177e4
LT
2116}
2117
2118/*
2119 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
2120 * It can block. Requires the big lock held.
2121 */
ac748a09 2122void set_fs_pwd(struct fs_struct *fs, struct path *path)
1da177e4 2123{
6ac08c39 2124 struct path old_pwd;
1da177e4
LT
2125
2126 write_lock(&fs->lock);
2127 old_pwd = fs->pwd;
ac748a09
JB
2128 fs->pwd = *path;
2129 path_get(path);
1da177e4
LT
2130 write_unlock(&fs->lock);
2131
6ac08c39
JB
2132 if (old_pwd.dentry)
2133 path_put(&old_pwd);
1da177e4
LT
2134}
2135
1a390689 2136static void chroot_fs_refs(struct path *old_root, struct path *new_root)
1da177e4
LT
2137{
2138 struct task_struct *g, *p;
2139 struct fs_struct *fs;
2140
2141 read_lock(&tasklist_lock);
2142 do_each_thread(g, p) {
2143 task_lock(p);
2144 fs = p->fs;
2145 if (fs) {
2146 atomic_inc(&fs->count);
2147 task_unlock(p);
1a390689
AV
2148 if (fs->root.dentry == old_root->dentry
2149 && fs->root.mnt == old_root->mnt)
2150 set_fs_root(fs, new_root);
2151 if (fs->pwd.dentry == old_root->dentry
2152 && fs->pwd.mnt == old_root->mnt)
2153 set_fs_pwd(fs, new_root);
1da177e4
LT
2154 put_fs_struct(fs);
2155 } else
2156 task_unlock(p);
2157 } while_each_thread(g, p);
2158 read_unlock(&tasklist_lock);
2159}
2160
2161/*
2162 * pivot_root Semantics:
2163 * Moves the root file system of the current process to the directory put_old,
2164 * makes new_root as the new root file system of the current process, and sets
2165 * root/cwd of all processes which had them on the current root to new_root.
2166 *
2167 * Restrictions:
2168 * The new_root and put_old must be directories, and must not be on the
2169 * same file system as the current process root. The put_old must be
2170 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2171 * pointed to by put_old must yield the same directory as new_root. No other
2172 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2173 *
4a0d11fa
NB
2174 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2175 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2176 * in this situation.
2177 *
1da177e4
LT
2178 * Notes:
2179 * - we don't move root/cwd if they are not at the root (reason: if something
2180 * cared enough to change them, it's probably wrong to force them elsewhere)
2181 * - it's okay to pick a root that isn't the root of a file system, e.g.
2182 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2183 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2184 * first.
2185 */
b58fed8b
RP
2186asmlinkage long sys_pivot_root(const char __user * new_root,
2187 const char __user * put_old)
1da177e4
LT
2188{
2189 struct vfsmount *tmp;
8c3ee42e
AV
2190 struct nameidata new_nd, old_nd;
2191 struct path parent_path, root_parent, root;
1da177e4
LT
2192 int error;
2193
2194 if (!capable(CAP_SYS_ADMIN))
2195 return -EPERM;
2196
b58fed8b
RP
2197 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
2198 &new_nd);
1da177e4
LT
2199 if (error)
2200 goto out0;
2201 error = -EINVAL;
4ac91378 2202 if (!check_mnt(new_nd.path.mnt))
1da177e4
LT
2203 goto out1;
2204
b58fed8b 2205 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1da177e4
LT
2206 if (error)
2207 goto out1;
2208
b5266eb4 2209 error = security_sb_pivotroot(&old_nd.path, &new_nd.path);
1da177e4 2210 if (error) {
1d957f9b 2211 path_put(&old_nd.path);
1da177e4
LT
2212 goto out1;
2213 }
2214
2215 read_lock(&current->fs->lock);
8c3ee42e 2216 root = current->fs->root;
6ac08c39 2217 path_get(&current->fs->root);
1da177e4 2218 read_unlock(&current->fs->lock);
390c6843 2219 down_write(&namespace_sem);
4ac91378 2220 mutex_lock(&old_nd.path.dentry->d_inode->i_mutex);
1da177e4 2221 error = -EINVAL;
4ac91378
JB
2222 if (IS_MNT_SHARED(old_nd.path.mnt) ||
2223 IS_MNT_SHARED(new_nd.path.mnt->mnt_parent) ||
8c3ee42e 2224 IS_MNT_SHARED(root.mnt->mnt_parent))
21444403 2225 goto out2;
8c3ee42e 2226 if (!check_mnt(root.mnt))
1da177e4
LT
2227 goto out2;
2228 error = -ENOENT;
4ac91378 2229 if (IS_DEADDIR(new_nd.path.dentry->d_inode))
1da177e4 2230 goto out2;
4ac91378 2231 if (d_unhashed(new_nd.path.dentry) && !IS_ROOT(new_nd.path.dentry))
1da177e4 2232 goto out2;
4ac91378 2233 if (d_unhashed(old_nd.path.dentry) && !IS_ROOT(old_nd.path.dentry))
1da177e4
LT
2234 goto out2;
2235 error = -EBUSY;
8c3ee42e
AV
2236 if (new_nd.path.mnt == root.mnt ||
2237 old_nd.path.mnt == root.mnt)
1da177e4
LT
2238 goto out2; /* loop, on the same file system */
2239 error = -EINVAL;
8c3ee42e 2240 if (root.mnt->mnt_root != root.dentry)
1da177e4 2241 goto out2; /* not a mountpoint */
8c3ee42e 2242 if (root.mnt->mnt_parent == root.mnt)
0bb6fcc1 2243 goto out2; /* not attached */
4ac91378 2244 if (new_nd.path.mnt->mnt_root != new_nd.path.dentry)
1da177e4 2245 goto out2; /* not a mountpoint */
4ac91378 2246 if (new_nd.path.mnt->mnt_parent == new_nd.path.mnt)
0bb6fcc1 2247 goto out2; /* not attached */
4ac91378
JB
2248 /* make sure we can reach put_old from new_root */
2249 tmp = old_nd.path.mnt;
1da177e4 2250 spin_lock(&vfsmount_lock);
4ac91378 2251 if (tmp != new_nd.path.mnt) {
1da177e4
LT
2252 for (;;) {
2253 if (tmp->mnt_parent == tmp)
2254 goto out3; /* already mounted on put_old */
4ac91378 2255 if (tmp->mnt_parent == new_nd.path.mnt)
1da177e4
LT
2256 break;
2257 tmp = tmp->mnt_parent;
2258 }
4ac91378 2259 if (!is_subdir(tmp->mnt_mountpoint, new_nd.path.dentry))
1da177e4 2260 goto out3;
4ac91378 2261 } else if (!is_subdir(old_nd.path.dentry, new_nd.path.dentry))
1da177e4 2262 goto out3;
1a390689 2263 detach_mnt(new_nd.path.mnt, &parent_path);
8c3ee42e 2264 detach_mnt(root.mnt, &root_parent);
4ac91378 2265 /* mount old root on put_old */
8c3ee42e 2266 attach_mnt(root.mnt, &old_nd.path);
4ac91378
JB
2267 /* mount new_root on / */
2268 attach_mnt(new_nd.path.mnt, &root_parent);
6b3286ed 2269 touch_mnt_namespace(current->nsproxy->mnt_ns);
1da177e4 2270 spin_unlock(&vfsmount_lock);
8c3ee42e
AV
2271 chroot_fs_refs(&root, &new_nd.path);
2272 security_sb_post_pivotroot(&root, &new_nd.path);
1da177e4 2273 error = 0;
1a390689
AV
2274 path_put(&root_parent);
2275 path_put(&parent_path);
1da177e4 2276out2:
4ac91378 2277 mutex_unlock(&old_nd.path.dentry->d_inode->i_mutex);
390c6843 2278 up_write(&namespace_sem);
8c3ee42e 2279 path_put(&root);
1d957f9b 2280 path_put(&old_nd.path);
1da177e4 2281out1:
1d957f9b 2282 path_put(&new_nd.path);
1da177e4 2283out0:
1da177e4
LT
2284 return error;
2285out3:
2286 spin_unlock(&vfsmount_lock);
2287 goto out2;
2288}
2289
2290static void __init init_mount_tree(void)
2291{
2292 struct vfsmount *mnt;
6b3286ed 2293 struct mnt_namespace *ns;
ac748a09 2294 struct path root;
1da177e4
LT
2295
2296 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2297 if (IS_ERR(mnt))
2298 panic("Can't create rootfs");
6b3286ed
KK
2299 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
2300 if (!ns)
1da177e4 2301 panic("Can't allocate initial namespace");
6b3286ed
KK
2302 atomic_set(&ns->count, 1);
2303 INIT_LIST_HEAD(&ns->list);
2304 init_waitqueue_head(&ns->poll);
2305 ns->event = 0;
2306 list_add(&mnt->mnt_list, &ns->list);
2307 ns->root = mnt;
2308 mnt->mnt_ns = ns;
2309
2310 init_task.nsproxy->mnt_ns = ns;
2311 get_mnt_ns(ns);
2312
ac748a09
JB
2313 root.mnt = ns->root;
2314 root.dentry = ns->root->mnt_root;
2315
2316 set_fs_pwd(current->fs, &root);
2317 set_fs_root(current->fs, &root);
1da177e4
LT
2318}
2319
74bf17cf 2320void __init mnt_init(void)
1da177e4 2321{
13f14b4d 2322 unsigned u;
15a67dd8 2323 int err;
1da177e4 2324
390c6843
RP
2325 init_rwsem(&namespace_sem);
2326
1da177e4 2327 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
20c2df83 2328 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2329
b58fed8b 2330 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2331
2332 if (!mount_hashtable)
2333 panic("Failed to allocate mount hash table\n");
2334
13f14b4d
ED
2335 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2336
2337 for (u = 0; u < HASH_SIZE; u++)
2338 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2339
15a67dd8
RD
2340 err = sysfs_init();
2341 if (err)
2342 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2343 __FUNCTION__, err);
00d26666
GKH
2344 fs_kobj = kobject_create_and_add("fs", NULL);
2345 if (!fs_kobj)
2346 printk(KERN_WARNING "%s: kobj create error\n", __FUNCTION__);
1da177e4
LT
2347 init_rootfs();
2348 init_mount_tree();
2349}
2350
6b3286ed 2351void __put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2352{
6b3286ed 2353 struct vfsmount *root = ns->root;
70fbcdf4 2354 LIST_HEAD(umount_list);
6b3286ed 2355 ns->root = NULL;
1ce88cf4 2356 spin_unlock(&vfsmount_lock);
390c6843 2357 down_write(&namespace_sem);
1da177e4 2358 spin_lock(&vfsmount_lock);
a05964f3 2359 umount_tree(root, 0, &umount_list);
1da177e4 2360 spin_unlock(&vfsmount_lock);
390c6843 2361 up_write(&namespace_sem);
70fbcdf4 2362 release_mounts(&umount_list);
6b3286ed 2363 kfree(ns);
1da177e4 2364}