]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/namespace.c
[PATCH] r/o bind mounts: track numbers of writers to mounts
[net-next-2.6.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4
LT
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
14#include <linux/smp_lock.h>
15#include <linux/init.h>
15a67dd8 16#include <linux/kernel.h>
1da177e4
LT
17#include <linux/quotaops.h>
18#include <linux/acct.h>
16f7e0fe 19#include <linux/capability.h>
3d733633 20#include <linux/cpumask.h>
1da177e4 21#include <linux/module.h>
f20a9ead 22#include <linux/sysfs.h>
1da177e4 23#include <linux/seq_file.h>
6b3286ed 24#include <linux/mnt_namespace.h>
1da177e4
LT
25#include <linux/namei.h>
26#include <linux/security.h>
27#include <linux/mount.h>
07f3f05c 28#include <linux/ramfs.h>
13f14b4d 29#include <linux/log2.h>
1da177e4
LT
30#include <asm/uaccess.h>
31#include <asm/unistd.h>
07b20889 32#include "pnode.h"
948730b0 33#include "internal.h"
1da177e4 34
13f14b4d
ED
35#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
36#define HASH_SIZE (1UL << HASH_SHIFT)
37
1da177e4 38/* spinlock for vfsmount related operations, inplace of dcache_lock */
5addc5dd
AV
39__cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
40
41static int event;
1da177e4 42
fa3536cc 43static struct list_head *mount_hashtable __read_mostly;
e18b890b 44static struct kmem_cache *mnt_cache __read_mostly;
390c6843 45static struct rw_semaphore namespace_sem;
1da177e4 46
f87fd4c2 47/* /sys/fs */
00d26666
GKH
48struct kobject *fs_kobj;
49EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 50
1da177e4
LT
51static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
52{
b58fed8b
RP
53 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
54 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
55 tmp = tmp + (tmp >> HASH_SHIFT);
56 return tmp & (HASH_SIZE - 1);
1da177e4
LT
57}
58
3d733633
DH
59#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
60
1da177e4
LT
61struct vfsmount *alloc_vfsmnt(const char *name)
62{
c3762229 63 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
1da177e4 64 if (mnt) {
b58fed8b 65 atomic_set(&mnt->mnt_count, 1);
1da177e4
LT
66 INIT_LIST_HEAD(&mnt->mnt_hash);
67 INIT_LIST_HEAD(&mnt->mnt_child);
68 INIT_LIST_HEAD(&mnt->mnt_mounts);
69 INIT_LIST_HEAD(&mnt->mnt_list);
55e700b9 70 INIT_LIST_HEAD(&mnt->mnt_expire);
03e06e68 71 INIT_LIST_HEAD(&mnt->mnt_share);
a58b0eb8
RP
72 INIT_LIST_HEAD(&mnt->mnt_slave_list);
73 INIT_LIST_HEAD(&mnt->mnt_slave);
3d733633 74 atomic_set(&mnt->__mnt_writers, 0);
1da177e4 75 if (name) {
b58fed8b 76 int size = strlen(name) + 1;
1da177e4
LT
77 char *newname = kmalloc(size, GFP_KERNEL);
78 if (newname) {
79 memcpy(newname, name, size);
80 mnt->mnt_devname = newname;
81 }
82 }
83 }
84 return mnt;
85}
86
3d733633
DH
87/*
88 * Most r/o checks on a fs are for operations that take
89 * discrete amounts of time, like a write() or unlink().
90 * We must keep track of when those operations start
91 * (for permission checks) and when they end, so that
92 * we can determine when writes are able to occur to
93 * a filesystem.
94 */
95/*
96 * __mnt_is_readonly: check whether a mount is read-only
97 * @mnt: the mount to check for its write status
98 *
99 * This shouldn't be used directly ouside of the VFS.
100 * It does not guarantee that the filesystem will stay
101 * r/w, just that it is right *now*. This can not and
102 * should not be used in place of IS_RDONLY(inode).
103 * mnt_want/drop_write() will _keep_ the filesystem
104 * r/w.
105 */
106int __mnt_is_readonly(struct vfsmount *mnt)
107{
108 return (mnt->mnt_sb->s_flags & MS_RDONLY);
109}
110EXPORT_SYMBOL_GPL(__mnt_is_readonly);
111
112struct mnt_writer {
113 /*
114 * If holding multiple instances of this lock, they
115 * must be ordered by cpu number.
116 */
117 spinlock_t lock;
118 struct lock_class_key lock_class; /* compiles out with !lockdep */
119 unsigned long count;
120 struct vfsmount *mnt;
121} ____cacheline_aligned_in_smp;
122static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
123
124static int __init init_mnt_writers(void)
125{
126 int cpu;
127 for_each_possible_cpu(cpu) {
128 struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
129 spin_lock_init(&writer->lock);
130 lockdep_set_class(&writer->lock, &writer->lock_class);
131 writer->count = 0;
132 }
133 return 0;
134}
135fs_initcall(init_mnt_writers);
136
137static void unlock_mnt_writers(void)
138{
139 int cpu;
140 struct mnt_writer *cpu_writer;
141
142 for_each_possible_cpu(cpu) {
143 cpu_writer = &per_cpu(mnt_writers, cpu);
144 spin_unlock(&cpu_writer->lock);
145 }
146}
147
148static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
149{
150 if (!cpu_writer->mnt)
151 return;
152 /*
153 * This is in case anyone ever leaves an invalid,
154 * old ->mnt and a count of 0.
155 */
156 if (!cpu_writer->count)
157 return;
158 atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
159 cpu_writer->count = 0;
160}
161 /*
162 * must hold cpu_writer->lock
163 */
164static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
165 struct vfsmount *mnt)
166{
167 if (cpu_writer->mnt == mnt)
168 return;
169 __clear_mnt_count(cpu_writer);
170 cpu_writer->mnt = mnt;
171}
172
8366025e
DH
173/*
174 * Most r/o checks on a fs are for operations that take
175 * discrete amounts of time, like a write() or unlink().
176 * We must keep track of when those operations start
177 * (for permission checks) and when they end, so that
178 * we can determine when writes are able to occur to
179 * a filesystem.
180 */
181/**
182 * mnt_want_write - get write access to a mount
183 * @mnt: the mount on which to take a write
184 *
185 * This tells the low-level filesystem that a write is
186 * about to be performed to it, and makes sure that
187 * writes are allowed before returning success. When
188 * the write operation is finished, mnt_drop_write()
189 * must be called. This is effectively a refcount.
190 */
191int mnt_want_write(struct vfsmount *mnt)
192{
3d733633
DH
193 int ret = 0;
194 struct mnt_writer *cpu_writer;
195
196 cpu_writer = &get_cpu_var(mnt_writers);
197 spin_lock(&cpu_writer->lock);
198 if (__mnt_is_readonly(mnt)) {
199 ret = -EROFS;
200 goto out;
201 }
202 use_cpu_writer_for_mount(cpu_writer, mnt);
203 cpu_writer->count++;
204out:
205 spin_unlock(&cpu_writer->lock);
206 put_cpu_var(mnt_writers);
207 return ret;
8366025e
DH
208}
209EXPORT_SYMBOL_GPL(mnt_want_write);
210
3d733633
DH
211static void lock_mnt_writers(void)
212{
213 int cpu;
214 struct mnt_writer *cpu_writer;
215
216 for_each_possible_cpu(cpu) {
217 cpu_writer = &per_cpu(mnt_writers, cpu);
218 spin_lock(&cpu_writer->lock);
219 __clear_mnt_count(cpu_writer);
220 cpu_writer->mnt = NULL;
221 }
222}
223
224/*
225 * These per-cpu write counts are not guaranteed to have
226 * matched increments and decrements on any given cpu.
227 * A file open()ed for write on one cpu and close()d on
228 * another cpu will imbalance this count. Make sure it
229 * does not get too far out of whack.
230 */
231static void handle_write_count_underflow(struct vfsmount *mnt)
232{
233 if (atomic_read(&mnt->__mnt_writers) >=
234 MNT_WRITER_UNDERFLOW_LIMIT)
235 return;
236 /*
237 * It isn't necessary to hold all of the locks
238 * at the same time, but doing it this way makes
239 * us share a lot more code.
240 */
241 lock_mnt_writers();
242 /*
243 * vfsmount_lock is for mnt_flags.
244 */
245 spin_lock(&vfsmount_lock);
246 /*
247 * If coalescing the per-cpu writer counts did not
248 * get us back to a positive writer count, we have
249 * a bug.
250 */
251 if ((atomic_read(&mnt->__mnt_writers) < 0) &&
252 !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
253 printk(KERN_DEBUG "leak detected on mount(%p) writers "
254 "count: %d\n",
255 mnt, atomic_read(&mnt->__mnt_writers));
256 WARN_ON(1);
257 /* use the flag to keep the dmesg spam down */
258 mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
259 }
260 spin_unlock(&vfsmount_lock);
261 unlock_mnt_writers();
262}
263
8366025e
DH
264/**
265 * mnt_drop_write - give up write access to a mount
266 * @mnt: the mount on which to give up write access
267 *
268 * Tells the low-level filesystem that we are done
269 * performing writes to it. Must be matched with
270 * mnt_want_write() call above.
271 */
272void mnt_drop_write(struct vfsmount *mnt)
273{
3d733633
DH
274 int must_check_underflow = 0;
275 struct mnt_writer *cpu_writer;
276
277 cpu_writer = &get_cpu_var(mnt_writers);
278 spin_lock(&cpu_writer->lock);
279
280 use_cpu_writer_for_mount(cpu_writer, mnt);
281 if (cpu_writer->count > 0) {
282 cpu_writer->count--;
283 } else {
284 must_check_underflow = 1;
285 atomic_dec(&mnt->__mnt_writers);
286 }
287
288 spin_unlock(&cpu_writer->lock);
289 /*
290 * Logically, we could call this each time,
291 * but the __mnt_writers cacheline tends to
292 * be cold, and makes this expensive.
293 */
294 if (must_check_underflow)
295 handle_write_count_underflow(mnt);
296 /*
297 * This could be done right after the spinlock
298 * is taken because the spinlock keeps us on
299 * the cpu, and disables preemption. However,
300 * putting it here bounds the amount that
301 * __mnt_writers can underflow. Without it,
302 * we could theoretically wrap __mnt_writers.
303 */
304 put_cpu_var(mnt_writers);
8366025e
DH
305}
306EXPORT_SYMBOL_GPL(mnt_drop_write);
307
3d733633 308int mnt_make_readonly(struct vfsmount *mnt)
8366025e 309{
3d733633
DH
310 int ret = 0;
311
312 lock_mnt_writers();
313 /*
314 * With all the locks held, this value is stable
315 */
316 if (atomic_read(&mnt->__mnt_writers) > 0) {
317 ret = -EBUSY;
318 goto out;
319 }
320 /*
321 * actually set mount's r/o flag here to make
322 * __mnt_is_readonly() true, which keeps anyone
323 * from doing a successful mnt_want_write().
324 */
325out:
326 unlock_mnt_writers();
327 return ret;
8366025e 328}
8366025e 329
454e2398
DH
330int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
331{
332 mnt->mnt_sb = sb;
333 mnt->mnt_root = dget(sb->s_root);
334 return 0;
335}
336
337EXPORT_SYMBOL(simple_set_mnt);
338
1da177e4
LT
339void free_vfsmnt(struct vfsmount *mnt)
340{
341 kfree(mnt->mnt_devname);
342 kmem_cache_free(mnt_cache, mnt);
343}
344
345/*
a05964f3
RP
346 * find the first or last mount at @dentry on vfsmount @mnt depending on
347 * @dir. If @dir is set return the first mount else return the last mount.
1da177e4 348 */
a05964f3
RP
349struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
350 int dir)
1da177e4 351{
b58fed8b
RP
352 struct list_head *head = mount_hashtable + hash(mnt, dentry);
353 struct list_head *tmp = head;
1da177e4
LT
354 struct vfsmount *p, *found = NULL;
355
1da177e4 356 for (;;) {
a05964f3 357 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
358 p = NULL;
359 if (tmp == head)
360 break;
361 p = list_entry(tmp, struct vfsmount, mnt_hash);
362 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
a05964f3 363 found = p;
1da177e4
LT
364 break;
365 }
366 }
1da177e4
LT
367 return found;
368}
369
a05964f3
RP
370/*
371 * lookup_mnt increments the ref count before returning
372 * the vfsmount struct.
373 */
374struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
375{
376 struct vfsmount *child_mnt;
377 spin_lock(&vfsmount_lock);
378 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
379 mntget(child_mnt);
380 spin_unlock(&vfsmount_lock);
381 return child_mnt;
382}
383
1da177e4
LT
384static inline int check_mnt(struct vfsmount *mnt)
385{
6b3286ed 386 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
387}
388
6b3286ed 389static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
390{
391 if (ns) {
392 ns->event = ++event;
393 wake_up_interruptible(&ns->poll);
394 }
395}
396
6b3286ed 397static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
398{
399 if (ns && ns->event != event) {
400 ns->event = event;
401 wake_up_interruptible(&ns->poll);
402 }
403}
404
1a390689 405static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
1da177e4 406{
1a390689
AV
407 old_path->dentry = mnt->mnt_mountpoint;
408 old_path->mnt = mnt->mnt_parent;
1da177e4
LT
409 mnt->mnt_parent = mnt;
410 mnt->mnt_mountpoint = mnt->mnt_root;
411 list_del_init(&mnt->mnt_child);
412 list_del_init(&mnt->mnt_hash);
1a390689 413 old_path->dentry->d_mounted--;
1da177e4
LT
414}
415
b90fa9ae
RP
416void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
417 struct vfsmount *child_mnt)
418{
419 child_mnt->mnt_parent = mntget(mnt);
420 child_mnt->mnt_mountpoint = dget(dentry);
421 dentry->d_mounted++;
422}
423
1a390689 424static void attach_mnt(struct vfsmount *mnt, struct path *path)
1da177e4 425{
1a390689 426 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
b90fa9ae 427 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689
AV
428 hash(path->mnt, path->dentry));
429 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
b90fa9ae
RP
430}
431
432/*
433 * the caller must hold vfsmount_lock
434 */
435static void commit_tree(struct vfsmount *mnt)
436{
437 struct vfsmount *parent = mnt->mnt_parent;
438 struct vfsmount *m;
439 LIST_HEAD(head);
6b3286ed 440 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae
RP
441
442 BUG_ON(parent == mnt);
443
444 list_add_tail(&head, &mnt->mnt_list);
445 list_for_each_entry(m, &head, mnt_list)
6b3286ed 446 m->mnt_ns = n;
b90fa9ae
RP
447 list_splice(&head, n->list.prev);
448
449 list_add_tail(&mnt->mnt_hash, mount_hashtable +
450 hash(parent, mnt->mnt_mountpoint));
451 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 452 touch_mnt_namespace(n);
1da177e4
LT
453}
454
455static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
456{
457 struct list_head *next = p->mnt_mounts.next;
458 if (next == &p->mnt_mounts) {
459 while (1) {
460 if (p == root)
461 return NULL;
462 next = p->mnt_child.next;
463 if (next != &p->mnt_parent->mnt_mounts)
464 break;
465 p = p->mnt_parent;
466 }
467 }
468 return list_entry(next, struct vfsmount, mnt_child);
469}
470
9676f0c6
RP
471static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
472{
473 struct list_head *prev = p->mnt_mounts.prev;
474 while (prev != &p->mnt_mounts) {
475 p = list_entry(prev, struct vfsmount, mnt_child);
476 prev = p->mnt_mounts.prev;
477 }
478 return p;
479}
480
36341f64
RP
481static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
482 int flag)
1da177e4
LT
483{
484 struct super_block *sb = old->mnt_sb;
485 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
486
487 if (mnt) {
488 mnt->mnt_flags = old->mnt_flags;
489 atomic_inc(&sb->s_active);
490 mnt->mnt_sb = sb;
491 mnt->mnt_root = dget(root);
492 mnt->mnt_mountpoint = mnt->mnt_root;
493 mnt->mnt_parent = mnt;
b90fa9ae 494
5afe0022
RP
495 if (flag & CL_SLAVE) {
496 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
497 mnt->mnt_master = old;
498 CLEAR_MNT_SHARED(mnt);
8aec0809 499 } else if (!(flag & CL_PRIVATE)) {
5afe0022
RP
500 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
501 list_add(&mnt->mnt_share, &old->mnt_share);
502 if (IS_MNT_SLAVE(old))
503 list_add(&mnt->mnt_slave, &old->mnt_slave);
504 mnt->mnt_master = old->mnt_master;
505 }
b90fa9ae
RP
506 if (flag & CL_MAKE_SHARED)
507 set_mnt_shared(mnt);
1da177e4
LT
508
509 /* stick the duplicate mount on the same expiry list
510 * as the original if that was on one */
36341f64 511 if (flag & CL_EXPIRE) {
36341f64
RP
512 if (!list_empty(&old->mnt_expire))
513 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 514 }
1da177e4
LT
515 }
516 return mnt;
517}
518
7b7b1ace 519static inline void __mntput(struct vfsmount *mnt)
1da177e4 520{
3d733633 521 int cpu;
1da177e4 522 struct super_block *sb = mnt->mnt_sb;
3d733633
DH
523 /*
524 * We don't have to hold all of the locks at the
525 * same time here because we know that we're the
526 * last reference to mnt and that no new writers
527 * can come in.
528 */
529 for_each_possible_cpu(cpu) {
530 struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
531 if (cpu_writer->mnt != mnt)
532 continue;
533 spin_lock(&cpu_writer->lock);
534 atomic_add(cpu_writer->count, &mnt->__mnt_writers);
535 cpu_writer->count = 0;
536 /*
537 * Might as well do this so that no one
538 * ever sees the pointer and expects
539 * it to be valid.
540 */
541 cpu_writer->mnt = NULL;
542 spin_unlock(&cpu_writer->lock);
543 }
544 /*
545 * This probably indicates that somebody messed
546 * up a mnt_want/drop_write() pair. If this
547 * happens, the filesystem was probably unable
548 * to make r/w->r/o transitions.
549 */
550 WARN_ON(atomic_read(&mnt->__mnt_writers));
1da177e4
LT
551 dput(mnt->mnt_root);
552 free_vfsmnt(mnt);
553 deactivate_super(sb);
554}
555
7b7b1ace
AV
556void mntput_no_expire(struct vfsmount *mnt)
557{
558repeat:
559 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
560 if (likely(!mnt->mnt_pinned)) {
561 spin_unlock(&vfsmount_lock);
562 __mntput(mnt);
563 return;
564 }
565 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
566 mnt->mnt_pinned = 0;
567 spin_unlock(&vfsmount_lock);
568 acct_auto_close_mnt(mnt);
569 security_sb_umount_close(mnt);
570 goto repeat;
571 }
572}
573
574EXPORT_SYMBOL(mntput_no_expire);
575
576void mnt_pin(struct vfsmount *mnt)
577{
578 spin_lock(&vfsmount_lock);
579 mnt->mnt_pinned++;
580 spin_unlock(&vfsmount_lock);
581}
582
583EXPORT_SYMBOL(mnt_pin);
584
585void mnt_unpin(struct vfsmount *mnt)
586{
587 spin_lock(&vfsmount_lock);
588 if (mnt->mnt_pinned) {
589 atomic_inc(&mnt->mnt_count);
590 mnt->mnt_pinned--;
591 }
592 spin_unlock(&vfsmount_lock);
593}
594
595EXPORT_SYMBOL(mnt_unpin);
1da177e4 596
b3b304a2
MS
597static inline void mangle(struct seq_file *m, const char *s)
598{
599 seq_escape(m, s, " \t\n\\");
600}
601
602/*
603 * Simple .show_options callback for filesystems which don't want to
604 * implement more complex mount option showing.
605 *
606 * See also save_mount_options().
607 */
608int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
609{
610 const char *options = mnt->mnt_sb->s_options;
611
612 if (options != NULL && options[0]) {
613 seq_putc(m, ',');
614 mangle(m, options);
615 }
616
617 return 0;
618}
619EXPORT_SYMBOL(generic_show_options);
620
621/*
622 * If filesystem uses generic_show_options(), this function should be
623 * called from the fill_super() callback.
624 *
625 * The .remount_fs callback usually needs to be handled in a special
626 * way, to make sure, that previous options are not overwritten if the
627 * remount fails.
628 *
629 * Also note, that if the filesystem's .remount_fs function doesn't
630 * reset all options to their default value, but changes only newly
631 * given options, then the displayed options will not reflect reality
632 * any more.
633 */
634void save_mount_options(struct super_block *sb, char *options)
635{
636 kfree(sb->s_options);
637 sb->s_options = kstrdup(options, GFP_KERNEL);
638}
639EXPORT_SYMBOL(save_mount_options);
640
1da177e4
LT
641/* iterator */
642static void *m_start(struct seq_file *m, loff_t *pos)
643{
6b3286ed 644 struct mnt_namespace *n = m->private;
1da177e4 645
390c6843 646 down_read(&namespace_sem);
b0765fb8 647 return seq_list_start(&n->list, *pos);
1da177e4
LT
648}
649
650static void *m_next(struct seq_file *m, void *v, loff_t *pos)
651{
6b3286ed 652 struct mnt_namespace *n = m->private;
b0765fb8
PE
653
654 return seq_list_next(v, &n->list, pos);
1da177e4
LT
655}
656
657static void m_stop(struct seq_file *m, void *v)
658{
390c6843 659 up_read(&namespace_sem);
1da177e4
LT
660}
661
1da177e4
LT
662static int show_vfsmnt(struct seq_file *m, void *v)
663{
b0765fb8 664 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1da177e4
LT
665 int err = 0;
666 static struct proc_fs_info {
667 int flag;
668 char *str;
669 } fs_info[] = {
670 { MS_SYNCHRONOUS, ",sync" },
671 { MS_DIRSYNC, ",dirsync" },
672 { MS_MANDLOCK, ",mand" },
1da177e4
LT
673 { 0, NULL }
674 };
675 static struct proc_fs_info mnt_info[] = {
676 { MNT_NOSUID, ",nosuid" },
677 { MNT_NODEV, ",nodev" },
678 { MNT_NOEXEC, ",noexec" },
fc33a7bb
CH
679 { MNT_NOATIME, ",noatime" },
680 { MNT_NODIRATIME, ",nodiratime" },
47ae32d6 681 { MNT_RELATIME, ",relatime" },
1da177e4
LT
682 { 0, NULL }
683 };
684 struct proc_fs_info *fs_infop;
c32c2f63 685 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1da177e4
LT
686
687 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
688 seq_putc(m, ' ');
c32c2f63 689 seq_path(m, &mnt_path, " \t\n\\");
1da177e4
LT
690 seq_putc(m, ' ');
691 mangle(m, mnt->mnt_sb->s_type->name);
79c0b2df
MS
692 if (mnt->mnt_sb->s_subtype && mnt->mnt_sb->s_subtype[0]) {
693 seq_putc(m, '.');
694 mangle(m, mnt->mnt_sb->s_subtype);
695 }
1da177e4
LT
696 seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
697 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
698 if (mnt->mnt_sb->s_flags & fs_infop->flag)
699 seq_puts(m, fs_infop->str);
700 }
701 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
702 if (mnt->mnt_flags & fs_infop->flag)
703 seq_puts(m, fs_infop->str);
704 }
705 if (mnt->mnt_sb->s_op->show_options)
706 err = mnt->mnt_sb->s_op->show_options(m, mnt);
707 seq_puts(m, " 0 0\n");
708 return err;
709}
710
711struct seq_operations mounts_op = {
712 .start = m_start,
713 .next = m_next,
714 .stop = m_stop,
715 .show = show_vfsmnt
716};
717
b4629fe2
CL
718static int show_vfsstat(struct seq_file *m, void *v)
719{
b0765fb8 720 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
c32c2f63 721 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
b4629fe2
CL
722 int err = 0;
723
724 /* device */
725 if (mnt->mnt_devname) {
726 seq_puts(m, "device ");
727 mangle(m, mnt->mnt_devname);
728 } else
729 seq_puts(m, "no device");
730
731 /* mount point */
732 seq_puts(m, " mounted on ");
c32c2f63 733 seq_path(m, &mnt_path, " \t\n\\");
b4629fe2
CL
734 seq_putc(m, ' ');
735
736 /* file system type */
737 seq_puts(m, "with fstype ");
738 mangle(m, mnt->mnt_sb->s_type->name);
739
740 /* optional statistics */
741 if (mnt->mnt_sb->s_op->show_stats) {
742 seq_putc(m, ' ');
743 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
744 }
745
746 seq_putc(m, '\n');
747 return err;
748}
749
750struct seq_operations mountstats_op = {
751 .start = m_start,
752 .next = m_next,
753 .stop = m_stop,
754 .show = show_vfsstat,
755};
756
1da177e4
LT
757/**
758 * may_umount_tree - check if a mount tree is busy
759 * @mnt: root of mount tree
760 *
761 * This is called to check if a tree of mounts has any
762 * open files, pwds, chroots or sub mounts that are
763 * busy.
764 */
765int may_umount_tree(struct vfsmount *mnt)
766{
36341f64
RP
767 int actual_refs = 0;
768 int minimum_refs = 0;
769 struct vfsmount *p;
1da177e4
LT
770
771 spin_lock(&vfsmount_lock);
36341f64 772 for (p = mnt; p; p = next_mnt(p, mnt)) {
1da177e4
LT
773 actual_refs += atomic_read(&p->mnt_count);
774 minimum_refs += 2;
1da177e4
LT
775 }
776 spin_unlock(&vfsmount_lock);
777
778 if (actual_refs > minimum_refs)
e3474a8e 779 return 0;
1da177e4 780
e3474a8e 781 return 1;
1da177e4
LT
782}
783
784EXPORT_SYMBOL(may_umount_tree);
785
786/**
787 * may_umount - check if a mount point is busy
788 * @mnt: root of mount
789 *
790 * This is called to check if a mount point has any
791 * open files, pwds, chroots or sub mounts. If the
792 * mount has sub mounts this will return busy
793 * regardless of whether the sub mounts are busy.
794 *
795 * Doesn't take quota and stuff into account. IOW, in some cases it will
796 * give false negatives. The main reason why it's here is that we need
797 * a non-destructive way to look for easily umountable filesystems.
798 */
799int may_umount(struct vfsmount *mnt)
800{
e3474a8e 801 int ret = 1;
a05964f3
RP
802 spin_lock(&vfsmount_lock);
803 if (propagate_mount_busy(mnt, 2))
e3474a8e 804 ret = 0;
a05964f3
RP
805 spin_unlock(&vfsmount_lock);
806 return ret;
1da177e4
LT
807}
808
809EXPORT_SYMBOL(may_umount);
810
b90fa9ae 811void release_mounts(struct list_head *head)
70fbcdf4
RP
812{
813 struct vfsmount *mnt;
bf066c7d 814 while (!list_empty(head)) {
b5e61818 815 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
70fbcdf4
RP
816 list_del_init(&mnt->mnt_hash);
817 if (mnt->mnt_parent != mnt) {
818 struct dentry *dentry;
819 struct vfsmount *m;
820 spin_lock(&vfsmount_lock);
821 dentry = mnt->mnt_mountpoint;
822 m = mnt->mnt_parent;
823 mnt->mnt_mountpoint = mnt->mnt_root;
824 mnt->mnt_parent = mnt;
7c4b93d8 825 m->mnt_ghosts--;
70fbcdf4
RP
826 spin_unlock(&vfsmount_lock);
827 dput(dentry);
828 mntput(m);
829 }
830 mntput(mnt);
831 }
832}
833
a05964f3 834void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1da177e4
LT
835{
836 struct vfsmount *p;
1da177e4 837
1bfba4e8
AM
838 for (p = mnt; p; p = next_mnt(p, mnt))
839 list_move(&p->mnt_hash, kill);
1da177e4 840
a05964f3
RP
841 if (propagate)
842 propagate_umount(kill);
843
70fbcdf4
RP
844 list_for_each_entry(p, kill, mnt_hash) {
845 list_del_init(&p->mnt_expire);
846 list_del_init(&p->mnt_list);
6b3286ed
KK
847 __touch_mnt_namespace(p->mnt_ns);
848 p->mnt_ns = NULL;
70fbcdf4 849 list_del_init(&p->mnt_child);
7c4b93d8
AV
850 if (p->mnt_parent != p) {
851 p->mnt_parent->mnt_ghosts++;
f30ac319 852 p->mnt_mountpoint->d_mounted--;
7c4b93d8 853 }
a05964f3 854 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
855 }
856}
857
c35038be
AV
858static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
859
1da177e4
LT
860static int do_umount(struct vfsmount *mnt, int flags)
861{
b58fed8b 862 struct super_block *sb = mnt->mnt_sb;
1da177e4 863 int retval;
70fbcdf4 864 LIST_HEAD(umount_list);
1da177e4
LT
865
866 retval = security_sb_umount(mnt, flags);
867 if (retval)
868 return retval;
869
870 /*
871 * Allow userspace to request a mountpoint be expired rather than
872 * unmounting unconditionally. Unmount only happens if:
873 * (1) the mark is already set (the mark is cleared by mntput())
874 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
875 */
876 if (flags & MNT_EXPIRE) {
6ac08c39 877 if (mnt == current->fs->root.mnt ||
1da177e4
LT
878 flags & (MNT_FORCE | MNT_DETACH))
879 return -EINVAL;
880
881 if (atomic_read(&mnt->mnt_count) != 2)
882 return -EBUSY;
883
884 if (!xchg(&mnt->mnt_expiry_mark, 1))
885 return -EAGAIN;
886 }
887
888 /*
889 * If we may have to abort operations to get out of this
890 * mount, and they will themselves hold resources we must
891 * allow the fs to do things. In the Unix tradition of
892 * 'Gee thats tricky lets do it in userspace' the umount_begin
893 * might fail to complete on the first run through as other tasks
894 * must return, and the like. Thats for the mount program to worry
895 * about for the moment.
896 */
897
898 lock_kernel();
8b512d9a
TM
899 if (sb->s_op->umount_begin)
900 sb->s_op->umount_begin(mnt, flags);
1da177e4
LT
901 unlock_kernel();
902
903 /*
904 * No sense to grab the lock for this test, but test itself looks
905 * somewhat bogus. Suggestions for better replacement?
906 * Ho-hum... In principle, we might treat that as umount + switch
907 * to rootfs. GC would eventually take care of the old vfsmount.
908 * Actually it makes sense, especially if rootfs would contain a
909 * /reboot - static binary that would close all descriptors and
910 * call reboot(9). Then init(8) could umount root and exec /reboot.
911 */
6ac08c39 912 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
913 /*
914 * Special case for "unmounting" root ...
915 * we just try to remount it readonly.
916 */
917 down_write(&sb->s_umount);
918 if (!(sb->s_flags & MS_RDONLY)) {
919 lock_kernel();
920 DQUOT_OFF(sb);
921 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
922 unlock_kernel();
923 }
924 up_write(&sb->s_umount);
925 return retval;
926 }
927
390c6843 928 down_write(&namespace_sem);
1da177e4 929 spin_lock(&vfsmount_lock);
5addc5dd 930 event++;
1da177e4 931
c35038be
AV
932 if (!(flags & MNT_DETACH))
933 shrink_submounts(mnt, &umount_list);
934
1da177e4 935 retval = -EBUSY;
a05964f3 936 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1da177e4 937 if (!list_empty(&mnt->mnt_list))
a05964f3 938 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
939 retval = 0;
940 }
941 spin_unlock(&vfsmount_lock);
942 if (retval)
943 security_sb_umount_busy(mnt);
390c6843 944 up_write(&namespace_sem);
70fbcdf4 945 release_mounts(&umount_list);
1da177e4
LT
946 return retval;
947}
948
949/*
950 * Now umount can handle mount points as well as block devices.
951 * This is important for filesystems which use unnamed block devices.
952 *
953 * We now support a flag for forced unmount like the other 'big iron'
954 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
955 */
956
957asmlinkage long sys_umount(char __user * name, int flags)
958{
959 struct nameidata nd;
960 int retval;
961
962 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
963 if (retval)
964 goto out;
965 retval = -EINVAL;
4ac91378 966 if (nd.path.dentry != nd.path.mnt->mnt_root)
1da177e4 967 goto dput_and_out;
4ac91378 968 if (!check_mnt(nd.path.mnt))
1da177e4
LT
969 goto dput_and_out;
970
971 retval = -EPERM;
972 if (!capable(CAP_SYS_ADMIN))
973 goto dput_and_out;
974
4ac91378 975 retval = do_umount(nd.path.mnt, flags);
1da177e4 976dput_and_out:
429731b1 977 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
4ac91378
JB
978 dput(nd.path.dentry);
979 mntput_no_expire(nd.path.mnt);
1da177e4
LT
980out:
981 return retval;
982}
983
984#ifdef __ARCH_WANT_SYS_OLDUMOUNT
985
986/*
b58fed8b 987 * The 2.0 compatible umount. No flags.
1da177e4 988 */
1da177e4
LT
989asmlinkage long sys_oldumount(char __user * name)
990{
b58fed8b 991 return sys_umount(name, 0);
1da177e4
LT
992}
993
994#endif
995
996static int mount_is_safe(struct nameidata *nd)
997{
998 if (capable(CAP_SYS_ADMIN))
999 return 0;
1000 return -EPERM;
1001#ifdef notyet
4ac91378 1002 if (S_ISLNK(nd->path.dentry->d_inode->i_mode))
1da177e4 1003 return -EPERM;
4ac91378
JB
1004 if (nd->path.dentry->d_inode->i_mode & S_ISVTX) {
1005 if (current->uid != nd->path.dentry->d_inode->i_uid)
1da177e4
LT
1006 return -EPERM;
1007 }
e4543edd 1008 if (vfs_permission(nd, MAY_WRITE))
1da177e4
LT
1009 return -EPERM;
1010 return 0;
1011#endif
1012}
1013
b58fed8b 1014static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
1da177e4
LT
1015{
1016 while (1) {
1017 if (d == dentry)
1018 return 1;
1019 if (d == NULL || d == d->d_parent)
1020 return 0;
1021 d = d->d_parent;
1022 }
1023}
1024
b90fa9ae 1025struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
36341f64 1026 int flag)
1da177e4
LT
1027{
1028 struct vfsmount *res, *p, *q, *r, *s;
1a390689 1029 struct path path;
1da177e4 1030
9676f0c6
RP
1031 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1032 return NULL;
1033
36341f64 1034 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1035 if (!q)
1036 goto Enomem;
1037 q->mnt_mountpoint = mnt->mnt_mountpoint;
1038
1039 p = mnt;
fdadd65f 1040 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1da177e4
LT
1041 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
1042 continue;
1043
1044 for (s = r; s; s = next_mnt(s, r)) {
9676f0c6
RP
1045 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1046 s = skip_mnt_tree(s);
1047 continue;
1048 }
1da177e4
LT
1049 while (p != s->mnt_parent) {
1050 p = p->mnt_parent;
1051 q = q->mnt_parent;
1052 }
1053 p = s;
1a390689
AV
1054 path.mnt = q;
1055 path.dentry = p->mnt_mountpoint;
36341f64 1056 q = clone_mnt(p, p->mnt_root, flag);
1da177e4
LT
1057 if (!q)
1058 goto Enomem;
1059 spin_lock(&vfsmount_lock);
1060 list_add_tail(&q->mnt_list, &res->mnt_list);
1a390689 1061 attach_mnt(q, &path);
1da177e4
LT
1062 spin_unlock(&vfsmount_lock);
1063 }
1064 }
1065 return res;
b58fed8b 1066Enomem:
1da177e4 1067 if (res) {
70fbcdf4 1068 LIST_HEAD(umount_list);
1da177e4 1069 spin_lock(&vfsmount_lock);
a05964f3 1070 umount_tree(res, 0, &umount_list);
1da177e4 1071 spin_unlock(&vfsmount_lock);
70fbcdf4 1072 release_mounts(&umount_list);
1da177e4
LT
1073 }
1074 return NULL;
1075}
1076
8aec0809
AV
1077struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
1078{
1079 struct vfsmount *tree;
1080 down_read(&namespace_sem);
1081 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
1082 up_read(&namespace_sem);
1083 return tree;
1084}
1085
1086void drop_collected_mounts(struct vfsmount *mnt)
1087{
1088 LIST_HEAD(umount_list);
1089 down_read(&namespace_sem);
1090 spin_lock(&vfsmount_lock);
1091 umount_tree(mnt, 0, &umount_list);
1092 spin_unlock(&vfsmount_lock);
1093 up_read(&namespace_sem);
1094 release_mounts(&umount_list);
1095}
1096
b90fa9ae
RP
1097/*
1098 * @source_mnt : mount tree to be attached
21444403
RP
1099 * @nd : place the mount tree @source_mnt is attached
1100 * @parent_nd : if non-null, detach the source_mnt from its parent and
1101 * store the parent mount and mountpoint dentry.
1102 * (done when source_mnt is moved)
b90fa9ae
RP
1103 *
1104 * NOTE: in the table below explains the semantics when a source mount
1105 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1106 * ---------------------------------------------------------------------------
1107 * | BIND MOUNT OPERATION |
1108 * |**************************************************************************
1109 * | source-->| shared | private | slave | unbindable |
1110 * | dest | | | | |
1111 * | | | | | | |
1112 * | v | | | | |
1113 * |**************************************************************************
1114 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1115 * | | | | | |
1116 * |non-shared| shared (+) | private | slave (*) | invalid |
1117 * ***************************************************************************
b90fa9ae
RP
1118 * A bind operation clones the source mount and mounts the clone on the
1119 * destination mount.
1120 *
1121 * (++) the cloned mount is propagated to all the mounts in the propagation
1122 * tree of the destination mount and the cloned mount is added to
1123 * the peer group of the source mount.
1124 * (+) the cloned mount is created under the destination mount and is marked
1125 * as shared. The cloned mount is added to the peer group of the source
1126 * mount.
5afe0022
RP
1127 * (+++) the mount is propagated to all the mounts in the propagation tree
1128 * of the destination mount and the cloned mount is made slave
1129 * of the same master as that of the source mount. The cloned mount
1130 * is marked as 'shared and slave'.
1131 * (*) the cloned mount is made a slave of the same master as that of the
1132 * source mount.
1133 *
9676f0c6
RP
1134 * ---------------------------------------------------------------------------
1135 * | MOVE MOUNT OPERATION |
1136 * |**************************************************************************
1137 * | source-->| shared | private | slave | unbindable |
1138 * | dest | | | | |
1139 * | | | | | | |
1140 * | v | | | | |
1141 * |**************************************************************************
1142 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1143 * | | | | | |
1144 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1145 * ***************************************************************************
5afe0022
RP
1146 *
1147 * (+) the mount is moved to the destination. And is then propagated to
1148 * all the mounts in the propagation tree of the destination mount.
21444403 1149 * (+*) the mount is moved to the destination.
5afe0022
RP
1150 * (+++) the mount is moved to the destination and is then propagated to
1151 * all the mounts belonging to the destination mount's propagation tree.
1152 * the mount is marked as 'shared and slave'.
1153 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1154 *
1155 * if the source mount is a tree, the operations explained above is
1156 * applied to each mount in the tree.
1157 * Must be called without spinlocks held, since this function can sleep
1158 * in allocations.
1159 */
1160static int attach_recursive_mnt(struct vfsmount *source_mnt,
1a390689 1161 struct path *path, struct path *parent_path)
b90fa9ae
RP
1162{
1163 LIST_HEAD(tree_list);
1a390689
AV
1164 struct vfsmount *dest_mnt = path->mnt;
1165 struct dentry *dest_dentry = path->dentry;
b90fa9ae
RP
1166 struct vfsmount *child, *p;
1167
1168 if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
1169 return -EINVAL;
1170
1171 if (IS_MNT_SHARED(dest_mnt)) {
1172 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1173 set_mnt_shared(p);
1174 }
1175
1176 spin_lock(&vfsmount_lock);
1a390689
AV
1177 if (parent_path) {
1178 detach_mnt(source_mnt, parent_path);
1179 attach_mnt(source_mnt, path);
6b3286ed 1180 touch_mnt_namespace(current->nsproxy->mnt_ns);
21444403
RP
1181 } else {
1182 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1183 commit_tree(source_mnt);
1184 }
b90fa9ae
RP
1185
1186 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1187 list_del_init(&child->mnt_hash);
1188 commit_tree(child);
1189 }
1190 spin_unlock(&vfsmount_lock);
1191 return 0;
1192}
1193
1da177e4
LT
1194static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
1195{
1196 int err;
1197 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1198 return -EINVAL;
1199
4ac91378 1200 if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
1da177e4
LT
1201 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1202 return -ENOTDIR;
1203
1204 err = -ENOENT;
4ac91378
JB
1205 mutex_lock(&nd->path.dentry->d_inode->i_mutex);
1206 if (IS_DEADDIR(nd->path.dentry->d_inode))
1da177e4
LT
1207 goto out_unlock;
1208
1209 err = security_sb_check_sb(mnt, nd);
1210 if (err)
1211 goto out_unlock;
1212
1213 err = -ENOENT;
4ac91378 1214 if (IS_ROOT(nd->path.dentry) || !d_unhashed(nd->path.dentry))
1a390689 1215 err = attach_recursive_mnt(mnt, &nd->path, NULL);
1da177e4 1216out_unlock:
4ac91378 1217 mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
1da177e4
LT
1218 if (!err)
1219 security_sb_post_addmount(mnt, nd);
1220 return err;
1221}
1222
07b20889
RP
1223/*
1224 * recursively change the type of the mountpoint.
2dafe1c4 1225 * noinline this do_mount helper to save do_mount stack space.
07b20889 1226 */
2dafe1c4 1227static noinline int do_change_type(struct nameidata *nd, int flag)
07b20889 1228{
4ac91378 1229 struct vfsmount *m, *mnt = nd->path.mnt;
07b20889
RP
1230 int recurse = flag & MS_REC;
1231 int type = flag & ~MS_REC;
1232
ee6f9582
MS
1233 if (!capable(CAP_SYS_ADMIN))
1234 return -EPERM;
1235
4ac91378 1236 if (nd->path.dentry != nd->path.mnt->mnt_root)
07b20889
RP
1237 return -EINVAL;
1238
1239 down_write(&namespace_sem);
1240 spin_lock(&vfsmount_lock);
1241 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1242 change_mnt_propagation(m, type);
1243 spin_unlock(&vfsmount_lock);
1244 up_write(&namespace_sem);
1245 return 0;
1246}
1247
1da177e4
LT
1248/*
1249 * do loopback mount.
2dafe1c4 1250 * noinline this do_mount helper to save do_mount stack space.
1da177e4 1251 */
2dafe1c4
ES
1252static noinline int do_loopback(struct nameidata *nd, char *old_name,
1253 int recurse)
1da177e4
LT
1254{
1255 struct nameidata old_nd;
1256 struct vfsmount *mnt = NULL;
1257 int err = mount_is_safe(nd);
1258 if (err)
1259 return err;
1260 if (!old_name || !*old_name)
1261 return -EINVAL;
1262 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1263 if (err)
1264 return err;
1265
390c6843 1266 down_write(&namespace_sem);
1da177e4 1267 err = -EINVAL;
4ac91378
JB
1268 if (IS_MNT_UNBINDABLE(old_nd.path.mnt))
1269 goto out;
9676f0c6 1270
4ac91378 1271 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
ccd48bc7 1272 goto out;
1da177e4 1273
ccd48bc7
AV
1274 err = -ENOMEM;
1275 if (recurse)
4ac91378 1276 mnt = copy_tree(old_nd.path.mnt, old_nd.path.dentry, 0);
ccd48bc7 1277 else
4ac91378 1278 mnt = clone_mnt(old_nd.path.mnt, old_nd.path.dentry, 0);
ccd48bc7
AV
1279
1280 if (!mnt)
1281 goto out;
1282
ccd48bc7
AV
1283 err = graft_tree(mnt, nd);
1284 if (err) {
70fbcdf4 1285 LIST_HEAD(umount_list);
1da177e4 1286 spin_lock(&vfsmount_lock);
a05964f3 1287 umount_tree(mnt, 0, &umount_list);
1da177e4 1288 spin_unlock(&vfsmount_lock);
70fbcdf4 1289 release_mounts(&umount_list);
5b83d2c5 1290 }
1da177e4 1291
ccd48bc7 1292out:
390c6843 1293 up_write(&namespace_sem);
1d957f9b 1294 path_put(&old_nd.path);
1da177e4
LT
1295 return err;
1296}
1297
1298/*
1299 * change filesystem flags. dir should be a physical root of filesystem.
1300 * If you've mounted a non-root directory somewhere and want to do remount
1301 * on it - tough luck.
2dafe1c4 1302 * noinline this do_mount helper to save do_mount stack space.
1da177e4 1303 */
2dafe1c4 1304static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags,
1da177e4
LT
1305 void *data)
1306{
1307 int err;
4ac91378 1308 struct super_block *sb = nd->path.mnt->mnt_sb;
1da177e4
LT
1309
1310 if (!capable(CAP_SYS_ADMIN))
1311 return -EPERM;
1312
4ac91378 1313 if (!check_mnt(nd->path.mnt))
1da177e4
LT
1314 return -EINVAL;
1315
4ac91378 1316 if (nd->path.dentry != nd->path.mnt->mnt_root)
1da177e4
LT
1317 return -EINVAL;
1318
1319 down_write(&sb->s_umount);
1320 err = do_remount_sb(sb, flags, data, 0);
1321 if (!err)
4ac91378 1322 nd->path.mnt->mnt_flags = mnt_flags;
1da177e4
LT
1323 up_write(&sb->s_umount);
1324 if (!err)
4ac91378 1325 security_sb_post_remount(nd->path.mnt, flags, data);
1da177e4
LT
1326 return err;
1327}
1328
9676f0c6
RP
1329static inline int tree_contains_unbindable(struct vfsmount *mnt)
1330{
1331 struct vfsmount *p;
1332 for (p = mnt; p; p = next_mnt(p, mnt)) {
1333 if (IS_MNT_UNBINDABLE(p))
1334 return 1;
1335 }
1336 return 0;
1337}
1338
2dafe1c4
ES
1339/*
1340 * noinline this do_mount helper to save do_mount stack space.
1341 */
1342static noinline int do_move_mount(struct nameidata *nd, char *old_name)
1da177e4 1343{
1a390689
AV
1344 struct nameidata old_nd;
1345 struct path parent_path;
1da177e4
LT
1346 struct vfsmount *p;
1347 int err = 0;
1348 if (!capable(CAP_SYS_ADMIN))
1349 return -EPERM;
1350 if (!old_name || !*old_name)
1351 return -EINVAL;
1352 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1353 if (err)
1354 return err;
1355
390c6843 1356 down_write(&namespace_sem);
4ac91378
JB
1357 while (d_mountpoint(nd->path.dentry) &&
1358 follow_down(&nd->path.mnt, &nd->path.dentry))
1da177e4
LT
1359 ;
1360 err = -EINVAL;
4ac91378 1361 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1da177e4
LT
1362 goto out;
1363
1364 err = -ENOENT;
4ac91378
JB
1365 mutex_lock(&nd->path.dentry->d_inode->i_mutex);
1366 if (IS_DEADDIR(nd->path.dentry->d_inode))
1da177e4
LT
1367 goto out1;
1368
4ac91378 1369 if (!IS_ROOT(nd->path.dentry) && d_unhashed(nd->path.dentry))
21444403 1370 goto out1;
1da177e4
LT
1371
1372 err = -EINVAL;
4ac91378 1373 if (old_nd.path.dentry != old_nd.path.mnt->mnt_root)
21444403 1374 goto out1;
1da177e4 1375
4ac91378 1376 if (old_nd.path.mnt == old_nd.path.mnt->mnt_parent)
21444403 1377 goto out1;
1da177e4 1378
4ac91378
JB
1379 if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
1380 S_ISDIR(old_nd.path.dentry->d_inode->i_mode))
21444403
RP
1381 goto out1;
1382 /*
1383 * Don't move a mount residing in a shared parent.
1384 */
4ac91378
JB
1385 if (old_nd.path.mnt->mnt_parent &&
1386 IS_MNT_SHARED(old_nd.path.mnt->mnt_parent))
21444403 1387 goto out1;
9676f0c6
RP
1388 /*
1389 * Don't move a mount tree containing unbindable mounts to a destination
1390 * mount which is shared.
1391 */
4ac91378
JB
1392 if (IS_MNT_SHARED(nd->path.mnt) &&
1393 tree_contains_unbindable(old_nd.path.mnt))
9676f0c6 1394 goto out1;
1da177e4 1395 err = -ELOOP;
4ac91378
JB
1396 for (p = nd->path.mnt; p->mnt_parent != p; p = p->mnt_parent)
1397 if (p == old_nd.path.mnt)
21444403 1398 goto out1;
1da177e4 1399
1a390689 1400 err = attach_recursive_mnt(old_nd.path.mnt, &nd->path, &parent_path);
4ac91378 1401 if (err)
21444403 1402 goto out1;
1da177e4
LT
1403
1404 /* if the mount is moved, it should no longer be expire
1405 * automatically */
4ac91378 1406 list_del_init(&old_nd.path.mnt->mnt_expire);
1da177e4 1407out1:
4ac91378 1408 mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
1da177e4 1409out:
390c6843 1410 up_write(&namespace_sem);
1da177e4 1411 if (!err)
1a390689 1412 path_put(&parent_path);
1d957f9b 1413 path_put(&old_nd.path);
1da177e4
LT
1414 return err;
1415}
1416
1417/*
1418 * create a new mount for userspace and request it to be added into the
1419 * namespace's tree
2dafe1c4 1420 * noinline this do_mount helper to save do_mount stack space.
1da177e4 1421 */
2dafe1c4 1422static noinline int do_new_mount(struct nameidata *nd, char *type, int flags,
1da177e4
LT
1423 int mnt_flags, char *name, void *data)
1424{
1425 struct vfsmount *mnt;
1426
1427 if (!type || !memchr(type, 0, PAGE_SIZE))
1428 return -EINVAL;
1429
1430 /* we need capabilities... */
1431 if (!capable(CAP_SYS_ADMIN))
1432 return -EPERM;
1433
1434 mnt = do_kern_mount(type, flags, name, data);
1435 if (IS_ERR(mnt))
1436 return PTR_ERR(mnt);
1437
1438 return do_add_mount(mnt, nd, mnt_flags, NULL);
1439}
1440
1441/*
1442 * add a mount into a namespace's mount tree
1443 * - provide the option of adding the new mount to an expiration list
1444 */
1445int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1446 int mnt_flags, struct list_head *fslist)
1447{
1448 int err;
1449
390c6843 1450 down_write(&namespace_sem);
1da177e4 1451 /* Something was mounted here while we slept */
4ac91378
JB
1452 while (d_mountpoint(nd->path.dentry) &&
1453 follow_down(&nd->path.mnt, &nd->path.dentry))
1da177e4
LT
1454 ;
1455 err = -EINVAL;
4ac91378 1456 if (!check_mnt(nd->path.mnt))
1da177e4
LT
1457 goto unlock;
1458
1459 /* Refuse the same filesystem on the same mount point */
1460 err = -EBUSY;
4ac91378
JB
1461 if (nd->path.mnt->mnt_sb == newmnt->mnt_sb &&
1462 nd->path.mnt->mnt_root == nd->path.dentry)
1da177e4
LT
1463 goto unlock;
1464
1465 err = -EINVAL;
1466 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1467 goto unlock;
1468
1469 newmnt->mnt_flags = mnt_flags;
5b83d2c5
RP
1470 if ((err = graft_tree(newmnt, nd)))
1471 goto unlock;
1da177e4 1472
6758f953 1473 if (fslist) /* add to the specified expiration list */
55e700b9 1474 list_add_tail(&newmnt->mnt_expire, fslist);
6758f953 1475
390c6843 1476 up_write(&namespace_sem);
5b83d2c5 1477 return 0;
1da177e4
LT
1478
1479unlock:
390c6843 1480 up_write(&namespace_sem);
1da177e4
LT
1481 mntput(newmnt);
1482 return err;
1483}
1484
1485EXPORT_SYMBOL_GPL(do_add_mount);
1486
1487/*
1488 * process a list of expirable mountpoints with the intent of discarding any
1489 * mountpoints that aren't in use and haven't been touched since last we came
1490 * here
1491 */
1492void mark_mounts_for_expiry(struct list_head *mounts)
1493{
1da177e4
LT
1494 struct vfsmount *mnt, *next;
1495 LIST_HEAD(graveyard);
bcc5c7d2 1496 LIST_HEAD(umounts);
1da177e4
LT
1497
1498 if (list_empty(mounts))
1499 return;
1500
bcc5c7d2 1501 down_write(&namespace_sem);
1da177e4
LT
1502 spin_lock(&vfsmount_lock);
1503
1504 /* extract from the expiration list every vfsmount that matches the
1505 * following criteria:
1506 * - only referenced by its parent vfsmount
1507 * - still marked for expiry (marked on the last call here; marks are
1508 * cleared by mntput())
1509 */
55e700b9 1510 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1da177e4 1511 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
bcc5c7d2 1512 propagate_mount_busy(mnt, 1))
1da177e4 1513 continue;
55e700b9 1514 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 1515 }
bcc5c7d2
AV
1516 while (!list_empty(&graveyard)) {
1517 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1518 touch_mnt_namespace(mnt->mnt_ns);
1519 umount_tree(mnt, 1, &umounts);
1520 }
5528f911 1521 spin_unlock(&vfsmount_lock);
bcc5c7d2
AV
1522 up_write(&namespace_sem);
1523
1524 release_mounts(&umounts);
5528f911
TM
1525}
1526
1527EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1528
1529/*
1530 * Ripoff of 'select_parent()'
1531 *
1532 * search the list of submounts for a given mountpoint, and move any
1533 * shrinkable submounts to the 'graveyard' list.
1534 */
1535static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1536{
1537 struct vfsmount *this_parent = parent;
1538 struct list_head *next;
1539 int found = 0;
1540
1541repeat:
1542 next = this_parent->mnt_mounts.next;
1543resume:
1544 while (next != &this_parent->mnt_mounts) {
1545 struct list_head *tmp = next;
1546 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1547
1548 next = tmp->next;
1549 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1da177e4 1550 continue;
5528f911
TM
1551 /*
1552 * Descend a level if the d_mounts list is non-empty.
1553 */
1554 if (!list_empty(&mnt->mnt_mounts)) {
1555 this_parent = mnt;
1556 goto repeat;
1557 }
1da177e4 1558
5528f911 1559 if (!propagate_mount_busy(mnt, 1)) {
5528f911
TM
1560 list_move_tail(&mnt->mnt_expire, graveyard);
1561 found++;
1562 }
1da177e4 1563 }
5528f911
TM
1564 /*
1565 * All done at this level ... ascend and resume the search
1566 */
1567 if (this_parent != parent) {
1568 next = this_parent->mnt_child.next;
1569 this_parent = this_parent->mnt_parent;
1570 goto resume;
1571 }
1572 return found;
1573}
1574
1575/*
1576 * process a list of expirable mountpoints with the intent of discarding any
1577 * submounts of a specific parent mountpoint
1578 */
c35038be 1579static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
5528f911
TM
1580{
1581 LIST_HEAD(graveyard);
c35038be 1582 struct vfsmount *m;
5528f911 1583
5528f911 1584 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 1585 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 1586 while (!list_empty(&graveyard)) {
c35038be 1587 m = list_first_entry(&graveyard, struct vfsmount,
bcc5c7d2
AV
1588 mnt_expire);
1589 touch_mnt_namespace(mnt->mnt_ns);
c35038be 1590 umount_tree(mnt, 1, umounts);
bcc5c7d2
AV
1591 }
1592 }
1da177e4
LT
1593}
1594
1da177e4
LT
1595/*
1596 * Some copy_from_user() implementations do not return the exact number of
1597 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1598 * Note that this function differs from copy_from_user() in that it will oops
1599 * on bad values of `to', rather than returning a short copy.
1600 */
b58fed8b
RP
1601static long exact_copy_from_user(void *to, const void __user * from,
1602 unsigned long n)
1da177e4
LT
1603{
1604 char *t = to;
1605 const char __user *f = from;
1606 char c;
1607
1608 if (!access_ok(VERIFY_READ, from, n))
1609 return n;
1610
1611 while (n) {
1612 if (__get_user(c, f)) {
1613 memset(t, 0, n);
1614 break;
1615 }
1616 *t++ = c;
1617 f++;
1618 n--;
1619 }
1620 return n;
1621}
1622
b58fed8b 1623int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
1624{
1625 int i;
1626 unsigned long page;
1627 unsigned long size;
b58fed8b 1628
1da177e4
LT
1629 *where = 0;
1630 if (!data)
1631 return 0;
1632
1633 if (!(page = __get_free_page(GFP_KERNEL)))
1634 return -ENOMEM;
1635
1636 /* We only care that *some* data at the address the user
1637 * gave us is valid. Just in case, we'll zero
1638 * the remainder of the page.
1639 */
1640 /* copy_from_user cannot cross TASK_SIZE ! */
1641 size = TASK_SIZE - (unsigned long)data;
1642 if (size > PAGE_SIZE)
1643 size = PAGE_SIZE;
1644
1645 i = size - exact_copy_from_user((void *)page, data, size);
1646 if (!i) {
b58fed8b 1647 free_page(page);
1da177e4
LT
1648 return -EFAULT;
1649 }
1650 if (i != PAGE_SIZE)
1651 memset((char *)page + i, 0, PAGE_SIZE - i);
1652 *where = page;
1653 return 0;
1654}
1655
1656/*
1657 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1658 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1659 *
1660 * data is a (void *) that can point to any structure up to
1661 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1662 * information (or be NULL).
1663 *
1664 * Pre-0.97 versions of mount() didn't have a flags word.
1665 * When the flags word was introduced its top half was required
1666 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1667 * Therefore, if this magic number is present, it carries no information
1668 * and must be discarded.
1669 */
b58fed8b 1670long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
1671 unsigned long flags, void *data_page)
1672{
1673 struct nameidata nd;
1674 int retval = 0;
1675 int mnt_flags = 0;
1676
1677 /* Discard magic */
1678 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1679 flags &= ~MS_MGC_MSK;
1680
1681 /* Basic sanity checks */
1682
1683 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1684 return -EINVAL;
1685 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1686 return -EINVAL;
1687
1688 if (data_page)
1689 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1690
1691 /* Separate the per-mountpoint flags */
1692 if (flags & MS_NOSUID)
1693 mnt_flags |= MNT_NOSUID;
1694 if (flags & MS_NODEV)
1695 mnt_flags |= MNT_NODEV;
1696 if (flags & MS_NOEXEC)
1697 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
1698 if (flags & MS_NOATIME)
1699 mnt_flags |= MNT_NOATIME;
1700 if (flags & MS_NODIRATIME)
1701 mnt_flags |= MNT_NODIRATIME;
47ae32d6
VH
1702 if (flags & MS_RELATIME)
1703 mnt_flags |= MNT_RELATIME;
fc33a7bb
CH
1704
1705 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
8bf9725c 1706 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1da177e4
LT
1707
1708 /* ... and get the mountpoint */
1709 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1710 if (retval)
1711 return retval;
1712
1713 retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1714 if (retval)
1715 goto dput_out;
1716
1717 if (flags & MS_REMOUNT)
1718 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1719 data_page);
1720 else if (flags & MS_BIND)
eee391a6 1721 retval = do_loopback(&nd, dev_name, flags & MS_REC);
9676f0c6 1722 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
07b20889 1723 retval = do_change_type(&nd, flags);
1da177e4
LT
1724 else if (flags & MS_MOVE)
1725 retval = do_move_mount(&nd, dev_name);
1726 else
1727 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1728 dev_name, data_page);
1729dput_out:
1d957f9b 1730 path_put(&nd.path);
1da177e4
LT
1731 return retval;
1732}
1733
741a2951
JD
1734/*
1735 * Allocate a new namespace structure and populate it with contents
1736 * copied from the namespace of the passed in task structure.
1737 */
e3222c4e 1738static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 1739 struct fs_struct *fs)
1da177e4 1740{
6b3286ed 1741 struct mnt_namespace *new_ns;
1da177e4 1742 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1da177e4
LT
1743 struct vfsmount *p, *q;
1744
6b3286ed 1745 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1da177e4 1746 if (!new_ns)
467e9f4b 1747 return ERR_PTR(-ENOMEM);
1da177e4
LT
1748
1749 atomic_set(&new_ns->count, 1);
1da177e4 1750 INIT_LIST_HEAD(&new_ns->list);
5addc5dd
AV
1751 init_waitqueue_head(&new_ns->poll);
1752 new_ns->event = 0;
1da177e4 1753
390c6843 1754 down_write(&namespace_sem);
1da177e4 1755 /* First pass: copy the tree topology */
6b3286ed 1756 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
9676f0c6 1757 CL_COPY_ALL | CL_EXPIRE);
1da177e4 1758 if (!new_ns->root) {
390c6843 1759 up_write(&namespace_sem);
1da177e4 1760 kfree(new_ns);
467e9f4b 1761 return ERR_PTR(-ENOMEM);;
1da177e4
LT
1762 }
1763 spin_lock(&vfsmount_lock);
1764 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1765 spin_unlock(&vfsmount_lock);
1766
1767 /*
1768 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1769 * as belonging to new namespace. We have already acquired a private
1770 * fs_struct, so tsk->fs->lock is not needed.
1771 */
6b3286ed 1772 p = mnt_ns->root;
1da177e4
LT
1773 q = new_ns->root;
1774 while (p) {
6b3286ed 1775 q->mnt_ns = new_ns;
1da177e4 1776 if (fs) {
6ac08c39 1777 if (p == fs->root.mnt) {
1da177e4 1778 rootmnt = p;
6ac08c39 1779 fs->root.mnt = mntget(q);
1da177e4 1780 }
6ac08c39 1781 if (p == fs->pwd.mnt) {
1da177e4 1782 pwdmnt = p;
6ac08c39 1783 fs->pwd.mnt = mntget(q);
1da177e4 1784 }
6ac08c39 1785 if (p == fs->altroot.mnt) {
1da177e4 1786 altrootmnt = p;
6ac08c39 1787 fs->altroot.mnt = mntget(q);
1da177e4
LT
1788 }
1789 }
6b3286ed 1790 p = next_mnt(p, mnt_ns->root);
1da177e4
LT
1791 q = next_mnt(q, new_ns->root);
1792 }
390c6843 1793 up_write(&namespace_sem);
1da177e4 1794
1da177e4
LT
1795 if (rootmnt)
1796 mntput(rootmnt);
1797 if (pwdmnt)
1798 mntput(pwdmnt);
1799 if (altrootmnt)
1800 mntput(altrootmnt);
1801
741a2951
JD
1802 return new_ns;
1803}
1804
213dd266 1805struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 1806 struct fs_struct *new_fs)
741a2951 1807{
6b3286ed 1808 struct mnt_namespace *new_ns;
741a2951 1809
e3222c4e 1810 BUG_ON(!ns);
6b3286ed 1811 get_mnt_ns(ns);
741a2951
JD
1812
1813 if (!(flags & CLONE_NEWNS))
e3222c4e 1814 return ns;
741a2951 1815
e3222c4e 1816 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 1817
6b3286ed 1818 put_mnt_ns(ns);
e3222c4e 1819 return new_ns;
1da177e4
LT
1820}
1821
1822asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1823 char __user * type, unsigned long flags,
1824 void __user * data)
1825{
1826 int retval;
1827 unsigned long data_page;
1828 unsigned long type_page;
1829 unsigned long dev_page;
1830 char *dir_page;
1831
b58fed8b 1832 retval = copy_mount_options(type, &type_page);
1da177e4
LT
1833 if (retval < 0)
1834 return retval;
1835
1836 dir_page = getname(dir_name);
1837 retval = PTR_ERR(dir_page);
1838 if (IS_ERR(dir_page))
1839 goto out1;
1840
b58fed8b 1841 retval = copy_mount_options(dev_name, &dev_page);
1da177e4
LT
1842 if (retval < 0)
1843 goto out2;
1844
b58fed8b 1845 retval = copy_mount_options(data, &data_page);
1da177e4
LT
1846 if (retval < 0)
1847 goto out3;
1848
1849 lock_kernel();
b58fed8b
RP
1850 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1851 flags, (void *)data_page);
1da177e4
LT
1852 unlock_kernel();
1853 free_page(data_page);
1854
1855out3:
1856 free_page(dev_page);
1857out2:
1858 putname(dir_page);
1859out1:
1860 free_page(type_page);
1861 return retval;
1862}
1863
1864/*
1865 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1866 * It can block. Requires the big lock held.
1867 */
ac748a09 1868void set_fs_root(struct fs_struct *fs, struct path *path)
1da177e4 1869{
6ac08c39
JB
1870 struct path old_root;
1871
1da177e4
LT
1872 write_lock(&fs->lock);
1873 old_root = fs->root;
ac748a09
JB
1874 fs->root = *path;
1875 path_get(path);
1da177e4 1876 write_unlock(&fs->lock);
6ac08c39
JB
1877 if (old_root.dentry)
1878 path_put(&old_root);
1da177e4
LT
1879}
1880
1881/*
1882 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1883 * It can block. Requires the big lock held.
1884 */
ac748a09 1885void set_fs_pwd(struct fs_struct *fs, struct path *path)
1da177e4 1886{
6ac08c39 1887 struct path old_pwd;
1da177e4
LT
1888
1889 write_lock(&fs->lock);
1890 old_pwd = fs->pwd;
ac748a09
JB
1891 fs->pwd = *path;
1892 path_get(path);
1da177e4
LT
1893 write_unlock(&fs->lock);
1894
6ac08c39
JB
1895 if (old_pwd.dentry)
1896 path_put(&old_pwd);
1da177e4
LT
1897}
1898
1a390689 1899static void chroot_fs_refs(struct path *old_root, struct path *new_root)
1da177e4
LT
1900{
1901 struct task_struct *g, *p;
1902 struct fs_struct *fs;
1903
1904 read_lock(&tasklist_lock);
1905 do_each_thread(g, p) {
1906 task_lock(p);
1907 fs = p->fs;
1908 if (fs) {
1909 atomic_inc(&fs->count);
1910 task_unlock(p);
1a390689
AV
1911 if (fs->root.dentry == old_root->dentry
1912 && fs->root.mnt == old_root->mnt)
1913 set_fs_root(fs, new_root);
1914 if (fs->pwd.dentry == old_root->dentry
1915 && fs->pwd.mnt == old_root->mnt)
1916 set_fs_pwd(fs, new_root);
1da177e4
LT
1917 put_fs_struct(fs);
1918 } else
1919 task_unlock(p);
1920 } while_each_thread(g, p);
1921 read_unlock(&tasklist_lock);
1922}
1923
1924/*
1925 * pivot_root Semantics:
1926 * Moves the root file system of the current process to the directory put_old,
1927 * makes new_root as the new root file system of the current process, and sets
1928 * root/cwd of all processes which had them on the current root to new_root.
1929 *
1930 * Restrictions:
1931 * The new_root and put_old must be directories, and must not be on the
1932 * same file system as the current process root. The put_old must be
1933 * underneath new_root, i.e. adding a non-zero number of /.. to the string
1934 * pointed to by put_old must yield the same directory as new_root. No other
1935 * file system may be mounted on put_old. After all, new_root is a mountpoint.
1936 *
4a0d11fa
NB
1937 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1938 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1939 * in this situation.
1940 *
1da177e4
LT
1941 * Notes:
1942 * - we don't move root/cwd if they are not at the root (reason: if something
1943 * cared enough to change them, it's probably wrong to force them elsewhere)
1944 * - it's okay to pick a root that isn't the root of a file system, e.g.
1945 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1946 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1947 * first.
1948 */
b58fed8b
RP
1949asmlinkage long sys_pivot_root(const char __user * new_root,
1950 const char __user * put_old)
1da177e4
LT
1951{
1952 struct vfsmount *tmp;
1a390689
AV
1953 struct nameidata new_nd, old_nd, user_nd;
1954 struct path parent_path, root_parent;
1da177e4
LT
1955 int error;
1956
1957 if (!capable(CAP_SYS_ADMIN))
1958 return -EPERM;
1959
1960 lock_kernel();
1961
b58fed8b
RP
1962 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1963 &new_nd);
1da177e4
LT
1964 if (error)
1965 goto out0;
1966 error = -EINVAL;
4ac91378 1967 if (!check_mnt(new_nd.path.mnt))
1da177e4
LT
1968 goto out1;
1969
b58fed8b 1970 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1da177e4
LT
1971 if (error)
1972 goto out1;
1973
1974 error = security_sb_pivotroot(&old_nd, &new_nd);
1975 if (error) {
1d957f9b 1976 path_put(&old_nd.path);
1da177e4
LT
1977 goto out1;
1978 }
1979
1980 read_lock(&current->fs->lock);
6ac08c39
JB
1981 user_nd.path = current->fs->root;
1982 path_get(&current->fs->root);
1da177e4 1983 read_unlock(&current->fs->lock);
390c6843 1984 down_write(&namespace_sem);
4ac91378 1985 mutex_lock(&old_nd.path.dentry->d_inode->i_mutex);
1da177e4 1986 error = -EINVAL;
4ac91378
JB
1987 if (IS_MNT_SHARED(old_nd.path.mnt) ||
1988 IS_MNT_SHARED(new_nd.path.mnt->mnt_parent) ||
1989 IS_MNT_SHARED(user_nd.path.mnt->mnt_parent))
21444403 1990 goto out2;
4ac91378 1991 if (!check_mnt(user_nd.path.mnt))
1da177e4
LT
1992 goto out2;
1993 error = -ENOENT;
4ac91378 1994 if (IS_DEADDIR(new_nd.path.dentry->d_inode))
1da177e4 1995 goto out2;
4ac91378 1996 if (d_unhashed(new_nd.path.dentry) && !IS_ROOT(new_nd.path.dentry))
1da177e4 1997 goto out2;
4ac91378 1998 if (d_unhashed(old_nd.path.dentry) && !IS_ROOT(old_nd.path.dentry))
1da177e4
LT
1999 goto out2;
2000 error = -EBUSY;
4ac91378
JB
2001 if (new_nd.path.mnt == user_nd.path.mnt ||
2002 old_nd.path.mnt == user_nd.path.mnt)
1da177e4
LT
2003 goto out2; /* loop, on the same file system */
2004 error = -EINVAL;
4ac91378 2005 if (user_nd.path.mnt->mnt_root != user_nd.path.dentry)
1da177e4 2006 goto out2; /* not a mountpoint */
4ac91378 2007 if (user_nd.path.mnt->mnt_parent == user_nd.path.mnt)
0bb6fcc1 2008 goto out2; /* not attached */
4ac91378 2009 if (new_nd.path.mnt->mnt_root != new_nd.path.dentry)
1da177e4 2010 goto out2; /* not a mountpoint */
4ac91378 2011 if (new_nd.path.mnt->mnt_parent == new_nd.path.mnt)
0bb6fcc1 2012 goto out2; /* not attached */
4ac91378
JB
2013 /* make sure we can reach put_old from new_root */
2014 tmp = old_nd.path.mnt;
1da177e4 2015 spin_lock(&vfsmount_lock);
4ac91378 2016 if (tmp != new_nd.path.mnt) {
1da177e4
LT
2017 for (;;) {
2018 if (tmp->mnt_parent == tmp)
2019 goto out3; /* already mounted on put_old */
4ac91378 2020 if (tmp->mnt_parent == new_nd.path.mnt)
1da177e4
LT
2021 break;
2022 tmp = tmp->mnt_parent;
2023 }
4ac91378 2024 if (!is_subdir(tmp->mnt_mountpoint, new_nd.path.dentry))
1da177e4 2025 goto out3;
4ac91378 2026 } else if (!is_subdir(old_nd.path.dentry, new_nd.path.dentry))
1da177e4 2027 goto out3;
1a390689 2028 detach_mnt(new_nd.path.mnt, &parent_path);
4ac91378
JB
2029 detach_mnt(user_nd.path.mnt, &root_parent);
2030 /* mount old root on put_old */
1a390689 2031 attach_mnt(user_nd.path.mnt, &old_nd.path);
4ac91378
JB
2032 /* mount new_root on / */
2033 attach_mnt(new_nd.path.mnt, &root_parent);
6b3286ed 2034 touch_mnt_namespace(current->nsproxy->mnt_ns);
1da177e4 2035 spin_unlock(&vfsmount_lock);
1a390689 2036 chroot_fs_refs(&user_nd.path, &new_nd.path);
1da177e4
LT
2037 security_sb_post_pivotroot(&user_nd, &new_nd);
2038 error = 0;
1a390689
AV
2039 path_put(&root_parent);
2040 path_put(&parent_path);
1da177e4 2041out2:
4ac91378 2042 mutex_unlock(&old_nd.path.dentry->d_inode->i_mutex);
390c6843 2043 up_write(&namespace_sem);
1d957f9b
JB
2044 path_put(&user_nd.path);
2045 path_put(&old_nd.path);
1da177e4 2046out1:
1d957f9b 2047 path_put(&new_nd.path);
1da177e4
LT
2048out0:
2049 unlock_kernel();
2050 return error;
2051out3:
2052 spin_unlock(&vfsmount_lock);
2053 goto out2;
2054}
2055
2056static void __init init_mount_tree(void)
2057{
2058 struct vfsmount *mnt;
6b3286ed 2059 struct mnt_namespace *ns;
ac748a09 2060 struct path root;
1da177e4
LT
2061
2062 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2063 if (IS_ERR(mnt))
2064 panic("Can't create rootfs");
6b3286ed
KK
2065 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
2066 if (!ns)
1da177e4 2067 panic("Can't allocate initial namespace");
6b3286ed
KK
2068 atomic_set(&ns->count, 1);
2069 INIT_LIST_HEAD(&ns->list);
2070 init_waitqueue_head(&ns->poll);
2071 ns->event = 0;
2072 list_add(&mnt->mnt_list, &ns->list);
2073 ns->root = mnt;
2074 mnt->mnt_ns = ns;
2075
2076 init_task.nsproxy->mnt_ns = ns;
2077 get_mnt_ns(ns);
2078
ac748a09
JB
2079 root.mnt = ns->root;
2080 root.dentry = ns->root->mnt_root;
2081
2082 set_fs_pwd(current->fs, &root);
2083 set_fs_root(current->fs, &root);
1da177e4
LT
2084}
2085
74bf17cf 2086void __init mnt_init(void)
1da177e4 2087{
13f14b4d 2088 unsigned u;
15a67dd8 2089 int err;
1da177e4 2090
390c6843
RP
2091 init_rwsem(&namespace_sem);
2092
1da177e4 2093 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
20c2df83 2094 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2095
b58fed8b 2096 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2097
2098 if (!mount_hashtable)
2099 panic("Failed to allocate mount hash table\n");
2100
13f14b4d
ED
2101 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2102
2103 for (u = 0; u < HASH_SIZE; u++)
2104 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2105
15a67dd8
RD
2106 err = sysfs_init();
2107 if (err)
2108 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2109 __FUNCTION__, err);
00d26666
GKH
2110 fs_kobj = kobject_create_and_add("fs", NULL);
2111 if (!fs_kobj)
2112 printk(KERN_WARNING "%s: kobj create error\n", __FUNCTION__);
1da177e4
LT
2113 init_rootfs();
2114 init_mount_tree();
2115}
2116
6b3286ed 2117void __put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2118{
6b3286ed 2119 struct vfsmount *root = ns->root;
70fbcdf4 2120 LIST_HEAD(umount_list);
6b3286ed 2121 ns->root = NULL;
1ce88cf4 2122 spin_unlock(&vfsmount_lock);
390c6843 2123 down_write(&namespace_sem);
1da177e4 2124 spin_lock(&vfsmount_lock);
a05964f3 2125 umount_tree(root, 0, &umount_list);
1da177e4 2126 spin_unlock(&vfsmount_lock);
390c6843 2127 up_write(&namespace_sem);
70fbcdf4 2128 release_mounts(&umount_list);
6b3286ed 2129 kfree(ns);
1da177e4 2130}