]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/namespace.c
[PATCH] introduce slave mounts
[net-next-2.6.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11#include <linux/config.h>
12#include <linux/syscalls.h>
13#include <linux/slab.h>
14#include <linux/sched.h>
15#include <linux/smp_lock.h>
16#include <linux/init.h>
17#include <linux/quotaops.h>
18#include <linux/acct.h>
19#include <linux/module.h>
20#include <linux/seq_file.h>
21#include <linux/namespace.h>
22#include <linux/namei.h>
23#include <linux/security.h>
24#include <linux/mount.h>
25#include <asm/uaccess.h>
26#include <asm/unistd.h>
07b20889 27#include "pnode.h"
1da177e4
LT
28
29extern int __init init_rootfs(void);
30
31#ifdef CONFIG_SYSFS
32extern int __init sysfs_init(void);
33#else
34static inline int sysfs_init(void)
35{
36 return 0;
37}
38#endif
39
40/* spinlock for vfsmount related operations, inplace of dcache_lock */
5addc5dd
AV
41__cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
42
43static int event;
1da177e4
LT
44
45static struct list_head *mount_hashtable;
6c231b7b 46static int hash_mask __read_mostly, hash_bits __read_mostly;
b58fed8b 47static kmem_cache_t *mnt_cache;
390c6843 48static struct rw_semaphore namespace_sem;
1da177e4
LT
49
50static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
51{
b58fed8b
RP
52 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
53 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
1da177e4
LT
54 tmp = tmp + (tmp >> hash_bits);
55 return tmp & hash_mask;
56}
57
58struct vfsmount *alloc_vfsmnt(const char *name)
59{
b58fed8b 60 struct vfsmount *mnt = kmem_cache_alloc(mnt_cache, GFP_KERNEL);
1da177e4
LT
61 if (mnt) {
62 memset(mnt, 0, sizeof(struct vfsmount));
b58fed8b 63 atomic_set(&mnt->mnt_count, 1);
1da177e4
LT
64 INIT_LIST_HEAD(&mnt->mnt_hash);
65 INIT_LIST_HEAD(&mnt->mnt_child);
66 INIT_LIST_HEAD(&mnt->mnt_mounts);
67 INIT_LIST_HEAD(&mnt->mnt_list);
55e700b9 68 INIT_LIST_HEAD(&mnt->mnt_expire);
03e06e68 69 INIT_LIST_HEAD(&mnt->mnt_share);
a58b0eb8
RP
70 INIT_LIST_HEAD(&mnt->mnt_slave_list);
71 INIT_LIST_HEAD(&mnt->mnt_slave);
1da177e4 72 if (name) {
b58fed8b 73 int size = strlen(name) + 1;
1da177e4
LT
74 char *newname = kmalloc(size, GFP_KERNEL);
75 if (newname) {
76 memcpy(newname, name, size);
77 mnt->mnt_devname = newname;
78 }
79 }
80 }
81 return mnt;
82}
83
84void free_vfsmnt(struct vfsmount *mnt)
85{
86 kfree(mnt->mnt_devname);
87 kmem_cache_free(mnt_cache, mnt);
88}
89
90/*
a05964f3
RP
91 * find the first or last mount at @dentry on vfsmount @mnt depending on
92 * @dir. If @dir is set return the first mount else return the last mount.
1da177e4 93 */
a05964f3
RP
94struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
95 int dir)
1da177e4 96{
b58fed8b
RP
97 struct list_head *head = mount_hashtable + hash(mnt, dentry);
98 struct list_head *tmp = head;
1da177e4
LT
99 struct vfsmount *p, *found = NULL;
100
1da177e4 101 for (;;) {
a05964f3 102 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
103 p = NULL;
104 if (tmp == head)
105 break;
106 p = list_entry(tmp, struct vfsmount, mnt_hash);
107 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
a05964f3 108 found = p;
1da177e4
LT
109 break;
110 }
111 }
1da177e4
LT
112 return found;
113}
114
a05964f3
RP
115/*
116 * lookup_mnt increments the ref count before returning
117 * the vfsmount struct.
118 */
119struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
120{
121 struct vfsmount *child_mnt;
122 spin_lock(&vfsmount_lock);
123 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
124 mntget(child_mnt);
125 spin_unlock(&vfsmount_lock);
126 return child_mnt;
127}
128
1da177e4
LT
129static inline int check_mnt(struct vfsmount *mnt)
130{
131 return mnt->mnt_namespace == current->namespace;
132}
133
5addc5dd
AV
134static void touch_namespace(struct namespace *ns)
135{
136 if (ns) {
137 ns->event = ++event;
138 wake_up_interruptible(&ns->poll);
139 }
140}
141
142static void __touch_namespace(struct namespace *ns)
143{
144 if (ns && ns->event != event) {
145 ns->event = event;
146 wake_up_interruptible(&ns->poll);
147 }
148}
149
1da177e4
LT
150static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
151{
152 old_nd->dentry = mnt->mnt_mountpoint;
153 old_nd->mnt = mnt->mnt_parent;
154 mnt->mnt_parent = mnt;
155 mnt->mnt_mountpoint = mnt->mnt_root;
156 list_del_init(&mnt->mnt_child);
157 list_del_init(&mnt->mnt_hash);
158 old_nd->dentry->d_mounted--;
159}
160
b90fa9ae
RP
161void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
162 struct vfsmount *child_mnt)
163{
164 child_mnt->mnt_parent = mntget(mnt);
165 child_mnt->mnt_mountpoint = dget(dentry);
166 dentry->d_mounted++;
167}
168
1da177e4
LT
169static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
170{
b90fa9ae
RP
171 mnt_set_mountpoint(nd->mnt, nd->dentry, mnt);
172 list_add_tail(&mnt->mnt_hash, mount_hashtable +
173 hash(nd->mnt, nd->dentry));
1da177e4 174 list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
b90fa9ae
RP
175}
176
177/*
178 * the caller must hold vfsmount_lock
179 */
180static void commit_tree(struct vfsmount *mnt)
181{
182 struct vfsmount *parent = mnt->mnt_parent;
183 struct vfsmount *m;
184 LIST_HEAD(head);
185 struct namespace *n = parent->mnt_namespace;
186
187 BUG_ON(parent == mnt);
188
189 list_add_tail(&head, &mnt->mnt_list);
190 list_for_each_entry(m, &head, mnt_list)
191 m->mnt_namespace = n;
192 list_splice(&head, n->list.prev);
193
194 list_add_tail(&mnt->mnt_hash, mount_hashtable +
195 hash(parent, mnt->mnt_mountpoint));
196 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
197 touch_namespace(n);
1da177e4
LT
198}
199
200static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
201{
202 struct list_head *next = p->mnt_mounts.next;
203 if (next == &p->mnt_mounts) {
204 while (1) {
205 if (p == root)
206 return NULL;
207 next = p->mnt_child.next;
208 if (next != &p->mnt_parent->mnt_mounts)
209 break;
210 p = p->mnt_parent;
211 }
212 }
213 return list_entry(next, struct vfsmount, mnt_child);
214}
215
36341f64
RP
216static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
217 int flag)
1da177e4
LT
218{
219 struct super_block *sb = old->mnt_sb;
220 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
221
222 if (mnt) {
223 mnt->mnt_flags = old->mnt_flags;
224 atomic_inc(&sb->s_active);
225 mnt->mnt_sb = sb;
226 mnt->mnt_root = dget(root);
227 mnt->mnt_mountpoint = mnt->mnt_root;
228 mnt->mnt_parent = mnt;
b90fa9ae
RP
229
230 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
231 list_add(&mnt->mnt_share, &old->mnt_share);
232 if (flag & CL_MAKE_SHARED)
233 set_mnt_shared(mnt);
1da177e4
LT
234
235 /* stick the duplicate mount on the same expiry list
236 * as the original if that was on one */
36341f64
RP
237 if (flag & CL_EXPIRE) {
238 spin_lock(&vfsmount_lock);
239 if (!list_empty(&old->mnt_expire))
240 list_add(&mnt->mnt_expire, &old->mnt_expire);
241 spin_unlock(&vfsmount_lock);
242 }
1da177e4
LT
243 }
244 return mnt;
245}
246
7b7b1ace 247static inline void __mntput(struct vfsmount *mnt)
1da177e4
LT
248{
249 struct super_block *sb = mnt->mnt_sb;
250 dput(mnt->mnt_root);
251 free_vfsmnt(mnt);
252 deactivate_super(sb);
253}
254
7b7b1ace
AV
255void mntput_no_expire(struct vfsmount *mnt)
256{
257repeat:
258 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
259 if (likely(!mnt->mnt_pinned)) {
260 spin_unlock(&vfsmount_lock);
261 __mntput(mnt);
262 return;
263 }
264 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
265 mnt->mnt_pinned = 0;
266 spin_unlock(&vfsmount_lock);
267 acct_auto_close_mnt(mnt);
268 security_sb_umount_close(mnt);
269 goto repeat;
270 }
271}
272
273EXPORT_SYMBOL(mntput_no_expire);
274
275void mnt_pin(struct vfsmount *mnt)
276{
277 spin_lock(&vfsmount_lock);
278 mnt->mnt_pinned++;
279 spin_unlock(&vfsmount_lock);
280}
281
282EXPORT_SYMBOL(mnt_pin);
283
284void mnt_unpin(struct vfsmount *mnt)
285{
286 spin_lock(&vfsmount_lock);
287 if (mnt->mnt_pinned) {
288 atomic_inc(&mnt->mnt_count);
289 mnt->mnt_pinned--;
290 }
291 spin_unlock(&vfsmount_lock);
292}
293
294EXPORT_SYMBOL(mnt_unpin);
1da177e4
LT
295
296/* iterator */
297static void *m_start(struct seq_file *m, loff_t *pos)
298{
299 struct namespace *n = m->private;
300 struct list_head *p;
301 loff_t l = *pos;
302
390c6843 303 down_read(&namespace_sem);
1da177e4
LT
304 list_for_each(p, &n->list)
305 if (!l--)
306 return list_entry(p, struct vfsmount, mnt_list);
307 return NULL;
308}
309
310static void *m_next(struct seq_file *m, void *v, loff_t *pos)
311{
312 struct namespace *n = m->private;
313 struct list_head *p = ((struct vfsmount *)v)->mnt_list.next;
314 (*pos)++;
b58fed8b 315 return p == &n->list ? NULL : list_entry(p, struct vfsmount, mnt_list);
1da177e4
LT
316}
317
318static void m_stop(struct seq_file *m, void *v)
319{
390c6843 320 up_read(&namespace_sem);
1da177e4
LT
321}
322
323static inline void mangle(struct seq_file *m, const char *s)
324{
325 seq_escape(m, s, " \t\n\\");
326}
327
328static int show_vfsmnt(struct seq_file *m, void *v)
329{
330 struct vfsmount *mnt = v;
331 int err = 0;
332 static struct proc_fs_info {
333 int flag;
334 char *str;
335 } fs_info[] = {
336 { MS_SYNCHRONOUS, ",sync" },
337 { MS_DIRSYNC, ",dirsync" },
338 { MS_MANDLOCK, ",mand" },
339 { MS_NOATIME, ",noatime" },
340 { MS_NODIRATIME, ",nodiratime" },
341 { 0, NULL }
342 };
343 static struct proc_fs_info mnt_info[] = {
344 { MNT_NOSUID, ",nosuid" },
345 { MNT_NODEV, ",nodev" },
346 { MNT_NOEXEC, ",noexec" },
347 { 0, NULL }
348 };
349 struct proc_fs_info *fs_infop;
350
351 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
352 seq_putc(m, ' ');
353 seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
354 seq_putc(m, ' ');
355 mangle(m, mnt->mnt_sb->s_type->name);
356 seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
357 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
358 if (mnt->mnt_sb->s_flags & fs_infop->flag)
359 seq_puts(m, fs_infop->str);
360 }
361 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
362 if (mnt->mnt_flags & fs_infop->flag)
363 seq_puts(m, fs_infop->str);
364 }
365 if (mnt->mnt_sb->s_op->show_options)
366 err = mnt->mnt_sb->s_op->show_options(m, mnt);
367 seq_puts(m, " 0 0\n");
368 return err;
369}
370
371struct seq_operations mounts_op = {
372 .start = m_start,
373 .next = m_next,
374 .stop = m_stop,
375 .show = show_vfsmnt
376};
377
378/**
379 * may_umount_tree - check if a mount tree is busy
380 * @mnt: root of mount tree
381 *
382 * This is called to check if a tree of mounts has any
383 * open files, pwds, chroots or sub mounts that are
384 * busy.
385 */
386int may_umount_tree(struct vfsmount *mnt)
387{
36341f64
RP
388 int actual_refs = 0;
389 int minimum_refs = 0;
390 struct vfsmount *p;
1da177e4
LT
391
392 spin_lock(&vfsmount_lock);
36341f64 393 for (p = mnt; p; p = next_mnt(p, mnt)) {
1da177e4
LT
394 actual_refs += atomic_read(&p->mnt_count);
395 minimum_refs += 2;
1da177e4
LT
396 }
397 spin_unlock(&vfsmount_lock);
398
399 if (actual_refs > minimum_refs)
400 return -EBUSY;
401
402 return 0;
403}
404
405EXPORT_SYMBOL(may_umount_tree);
406
407/**
408 * may_umount - check if a mount point is busy
409 * @mnt: root of mount
410 *
411 * This is called to check if a mount point has any
412 * open files, pwds, chroots or sub mounts. If the
413 * mount has sub mounts this will return busy
414 * regardless of whether the sub mounts are busy.
415 *
416 * Doesn't take quota and stuff into account. IOW, in some cases it will
417 * give false negatives. The main reason why it's here is that we need
418 * a non-destructive way to look for easily umountable filesystems.
419 */
420int may_umount(struct vfsmount *mnt)
421{
a05964f3
RP
422 int ret = 0;
423 spin_lock(&vfsmount_lock);
424 if (propagate_mount_busy(mnt, 2))
425 ret = -EBUSY;
426 spin_unlock(&vfsmount_lock);
427 return ret;
1da177e4
LT
428}
429
430EXPORT_SYMBOL(may_umount);
431
b90fa9ae 432void release_mounts(struct list_head *head)
70fbcdf4
RP
433{
434 struct vfsmount *mnt;
435 while(!list_empty(head)) {
436 mnt = list_entry(head->next, struct vfsmount, mnt_hash);
437 list_del_init(&mnt->mnt_hash);
438 if (mnt->mnt_parent != mnt) {
439 struct dentry *dentry;
440 struct vfsmount *m;
441 spin_lock(&vfsmount_lock);
442 dentry = mnt->mnt_mountpoint;
443 m = mnt->mnt_parent;
444 mnt->mnt_mountpoint = mnt->mnt_root;
445 mnt->mnt_parent = mnt;
446 spin_unlock(&vfsmount_lock);
447 dput(dentry);
448 mntput(m);
449 }
450 mntput(mnt);
451 }
452}
453
a05964f3 454void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1da177e4
LT
455{
456 struct vfsmount *p;
1da177e4
LT
457
458 for (p = mnt; p; p = next_mnt(p, mnt)) {
70fbcdf4
RP
459 list_del(&p->mnt_hash);
460 list_add(&p->mnt_hash, kill);
1da177e4
LT
461 }
462
a05964f3
RP
463 if (propagate)
464 propagate_umount(kill);
465
70fbcdf4
RP
466 list_for_each_entry(p, kill, mnt_hash) {
467 list_del_init(&p->mnt_expire);
468 list_del_init(&p->mnt_list);
469 __touch_namespace(p->mnt_namespace);
470 p->mnt_namespace = NULL;
471 list_del_init(&p->mnt_child);
472 if (p->mnt_parent != p)
473 mnt->mnt_mountpoint->d_mounted--;
a05964f3 474 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
475 }
476}
477
478static int do_umount(struct vfsmount *mnt, int flags)
479{
b58fed8b 480 struct super_block *sb = mnt->mnt_sb;
1da177e4 481 int retval;
70fbcdf4 482 LIST_HEAD(umount_list);
1da177e4
LT
483
484 retval = security_sb_umount(mnt, flags);
485 if (retval)
486 return retval;
487
488 /*
489 * Allow userspace to request a mountpoint be expired rather than
490 * unmounting unconditionally. Unmount only happens if:
491 * (1) the mark is already set (the mark is cleared by mntput())
492 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
493 */
494 if (flags & MNT_EXPIRE) {
495 if (mnt == current->fs->rootmnt ||
496 flags & (MNT_FORCE | MNT_DETACH))
497 return -EINVAL;
498
499 if (atomic_read(&mnt->mnt_count) != 2)
500 return -EBUSY;
501
502 if (!xchg(&mnt->mnt_expiry_mark, 1))
503 return -EAGAIN;
504 }
505
506 /*
507 * If we may have to abort operations to get out of this
508 * mount, and they will themselves hold resources we must
509 * allow the fs to do things. In the Unix tradition of
510 * 'Gee thats tricky lets do it in userspace' the umount_begin
511 * might fail to complete on the first run through as other tasks
512 * must return, and the like. Thats for the mount program to worry
513 * about for the moment.
514 */
515
516 lock_kernel();
b58fed8b 517 if ((flags & MNT_FORCE) && sb->s_op->umount_begin)
1da177e4
LT
518 sb->s_op->umount_begin(sb);
519 unlock_kernel();
520
521 /*
522 * No sense to grab the lock for this test, but test itself looks
523 * somewhat bogus. Suggestions for better replacement?
524 * Ho-hum... In principle, we might treat that as umount + switch
525 * to rootfs. GC would eventually take care of the old vfsmount.
526 * Actually it makes sense, especially if rootfs would contain a
527 * /reboot - static binary that would close all descriptors and
528 * call reboot(9). Then init(8) could umount root and exec /reboot.
529 */
530 if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
531 /*
532 * Special case for "unmounting" root ...
533 * we just try to remount it readonly.
534 */
535 down_write(&sb->s_umount);
536 if (!(sb->s_flags & MS_RDONLY)) {
537 lock_kernel();
538 DQUOT_OFF(sb);
539 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
540 unlock_kernel();
541 }
542 up_write(&sb->s_umount);
543 return retval;
544 }
545
390c6843 546 down_write(&namespace_sem);
1da177e4 547 spin_lock(&vfsmount_lock);
5addc5dd 548 event++;
1da177e4 549
1da177e4 550 retval = -EBUSY;
a05964f3 551 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1da177e4 552 if (!list_empty(&mnt->mnt_list))
a05964f3 553 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
554 retval = 0;
555 }
556 spin_unlock(&vfsmount_lock);
557 if (retval)
558 security_sb_umount_busy(mnt);
390c6843 559 up_write(&namespace_sem);
70fbcdf4 560 release_mounts(&umount_list);
1da177e4
LT
561 return retval;
562}
563
564/*
565 * Now umount can handle mount points as well as block devices.
566 * This is important for filesystems which use unnamed block devices.
567 *
568 * We now support a flag for forced unmount like the other 'big iron'
569 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
570 */
571
572asmlinkage long sys_umount(char __user * name, int flags)
573{
574 struct nameidata nd;
575 int retval;
576
577 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
578 if (retval)
579 goto out;
580 retval = -EINVAL;
581 if (nd.dentry != nd.mnt->mnt_root)
582 goto dput_and_out;
583 if (!check_mnt(nd.mnt))
584 goto dput_and_out;
585
586 retval = -EPERM;
587 if (!capable(CAP_SYS_ADMIN))
588 goto dput_and_out;
589
590 retval = do_umount(nd.mnt, flags);
591dput_and_out:
592 path_release_on_umount(&nd);
593out:
594 return retval;
595}
596
597#ifdef __ARCH_WANT_SYS_OLDUMOUNT
598
599/*
b58fed8b 600 * The 2.0 compatible umount. No flags.
1da177e4 601 */
1da177e4
LT
602asmlinkage long sys_oldumount(char __user * name)
603{
b58fed8b 604 return sys_umount(name, 0);
1da177e4
LT
605}
606
607#endif
608
609static int mount_is_safe(struct nameidata *nd)
610{
611 if (capable(CAP_SYS_ADMIN))
612 return 0;
613 return -EPERM;
614#ifdef notyet
615 if (S_ISLNK(nd->dentry->d_inode->i_mode))
616 return -EPERM;
617 if (nd->dentry->d_inode->i_mode & S_ISVTX) {
618 if (current->uid != nd->dentry->d_inode->i_uid)
619 return -EPERM;
620 }
621 if (permission(nd->dentry->d_inode, MAY_WRITE, nd))
622 return -EPERM;
623 return 0;
624#endif
625}
626
b58fed8b 627static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
1da177e4
LT
628{
629 while (1) {
630 if (d == dentry)
631 return 1;
632 if (d == NULL || d == d->d_parent)
633 return 0;
634 d = d->d_parent;
635 }
636}
637
b90fa9ae 638struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
36341f64 639 int flag)
1da177e4
LT
640{
641 struct vfsmount *res, *p, *q, *r, *s;
1da177e4
LT
642 struct nameidata nd;
643
36341f64 644 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
645 if (!q)
646 goto Enomem;
647 q->mnt_mountpoint = mnt->mnt_mountpoint;
648
649 p = mnt;
fdadd65f 650 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1da177e4
LT
651 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
652 continue;
653
654 for (s = r; s; s = next_mnt(s, r)) {
655 while (p != s->mnt_parent) {
656 p = p->mnt_parent;
657 q = q->mnt_parent;
658 }
659 p = s;
660 nd.mnt = q;
661 nd.dentry = p->mnt_mountpoint;
36341f64 662 q = clone_mnt(p, p->mnt_root, flag);
1da177e4
LT
663 if (!q)
664 goto Enomem;
665 spin_lock(&vfsmount_lock);
666 list_add_tail(&q->mnt_list, &res->mnt_list);
667 attach_mnt(q, &nd);
668 spin_unlock(&vfsmount_lock);
669 }
670 }
671 return res;
b58fed8b 672Enomem:
1da177e4 673 if (res) {
70fbcdf4 674 LIST_HEAD(umount_list);
1da177e4 675 spin_lock(&vfsmount_lock);
a05964f3 676 umount_tree(res, 0, &umount_list);
1da177e4 677 spin_unlock(&vfsmount_lock);
70fbcdf4 678 release_mounts(&umount_list);
1da177e4
LT
679 }
680 return NULL;
681}
682
b90fa9ae
RP
683/*
684 * @source_mnt : mount tree to be attached
21444403
RP
685 * @nd : place the mount tree @source_mnt is attached
686 * @parent_nd : if non-null, detach the source_mnt from its parent and
687 * store the parent mount and mountpoint dentry.
688 * (done when source_mnt is moved)
b90fa9ae
RP
689 *
690 * NOTE: in the table below explains the semantics when a source mount
691 * of a given type is attached to a destination mount of a given type.
692 * ---------------------------------------------
693 * | BIND MOUNT OPERATION |
694 * |********************************************
695 * | source-->| shared | private |
696 * | dest | | |
697 * | | | | |
698 * | v | | |
699 * |********************************************
700 * | shared | shared (++) | shared (+) |
701 * | | | |
702 * |non-shared| shared (+) | private |
703 * *********************************************
704 * A bind operation clones the source mount and mounts the clone on the
705 * destination mount.
706 *
707 * (++) the cloned mount is propagated to all the mounts in the propagation
708 * tree of the destination mount and the cloned mount is added to
709 * the peer group of the source mount.
710 * (+) the cloned mount is created under the destination mount and is marked
711 * as shared. The cloned mount is added to the peer group of the source
712 * mount.
21444403
RP
713 * ---------------------------------------------
714 * | MOVE MOUNT OPERATION |
715 * |********************************************
716 * | source-->| shared | private |
717 * | dest | | |
718 * | | | | |
719 * | v | | |
720 * |********************************************
721 * | shared | shared (+) | shared (+) |
722 * | | | |
723 * |non-shared| shared (+*) | private |
724 * *********************************************
725 * (+) the mount is moved to the destination. And is then propagated to all
726 * the mounts in the propagation tree of the destination mount.
727 * (+*) the mount is moved to the destination.
b90fa9ae
RP
728 *
729 * if the source mount is a tree, the operations explained above is
730 * applied to each mount in the tree.
731 * Must be called without spinlocks held, since this function can sleep
732 * in allocations.
733 */
734static int attach_recursive_mnt(struct vfsmount *source_mnt,
21444403 735 struct nameidata *nd, struct nameidata *parent_nd)
b90fa9ae
RP
736{
737 LIST_HEAD(tree_list);
738 struct vfsmount *dest_mnt = nd->mnt;
739 struct dentry *dest_dentry = nd->dentry;
740 struct vfsmount *child, *p;
741
742 if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
743 return -EINVAL;
744
745 if (IS_MNT_SHARED(dest_mnt)) {
746 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
747 set_mnt_shared(p);
748 }
749
750 spin_lock(&vfsmount_lock);
21444403
RP
751 if (parent_nd) {
752 detach_mnt(source_mnt, parent_nd);
753 attach_mnt(source_mnt, nd);
754 touch_namespace(current->namespace);
755 } else {
756 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
757 commit_tree(source_mnt);
758 }
b90fa9ae
RP
759
760 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
761 list_del_init(&child->mnt_hash);
762 commit_tree(child);
763 }
764 spin_unlock(&vfsmount_lock);
765 return 0;
766}
767
1da177e4
LT
768static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
769{
770 int err;
771 if (mnt->mnt_sb->s_flags & MS_NOUSER)
772 return -EINVAL;
773
774 if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
775 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
776 return -ENOTDIR;
777
778 err = -ENOENT;
779 down(&nd->dentry->d_inode->i_sem);
780 if (IS_DEADDIR(nd->dentry->d_inode))
781 goto out_unlock;
782
783 err = security_sb_check_sb(mnt, nd);
784 if (err)
785 goto out_unlock;
786
787 err = -ENOENT;
b90fa9ae 788 if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry))
21444403 789 err = attach_recursive_mnt(mnt, nd, NULL);
1da177e4
LT
790out_unlock:
791 up(&nd->dentry->d_inode->i_sem);
792 if (!err)
793 security_sb_post_addmount(mnt, nd);
794 return err;
795}
796
07b20889
RP
797/*
798 * recursively change the type of the mountpoint.
799 */
800static int do_change_type(struct nameidata *nd, int flag)
801{
802 struct vfsmount *m, *mnt = nd->mnt;
803 int recurse = flag & MS_REC;
804 int type = flag & ~MS_REC;
805
806 if (nd->dentry != nd->mnt->mnt_root)
807 return -EINVAL;
808
809 down_write(&namespace_sem);
810 spin_lock(&vfsmount_lock);
811 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
812 change_mnt_propagation(m, type);
813 spin_unlock(&vfsmount_lock);
814 up_write(&namespace_sem);
815 return 0;
816}
817
1da177e4
LT
818/*
819 * do loopback mount.
820 */
821static int do_loopback(struct nameidata *nd, char *old_name, int recurse)
822{
823 struct nameidata old_nd;
824 struct vfsmount *mnt = NULL;
825 int err = mount_is_safe(nd);
826 if (err)
827 return err;
828 if (!old_name || !*old_name)
829 return -EINVAL;
830 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
831 if (err)
832 return err;
833
390c6843 834 down_write(&namespace_sem);
1da177e4 835 err = -EINVAL;
ccd48bc7
AV
836 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
837 goto out;
1da177e4 838
ccd48bc7
AV
839 err = -ENOMEM;
840 if (recurse)
36341f64 841 mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0);
ccd48bc7 842 else
36341f64 843 mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0);
ccd48bc7
AV
844
845 if (!mnt)
846 goto out;
847
ccd48bc7
AV
848 err = graft_tree(mnt, nd);
849 if (err) {
70fbcdf4 850 LIST_HEAD(umount_list);
1da177e4 851 spin_lock(&vfsmount_lock);
a05964f3 852 umount_tree(mnt, 0, &umount_list);
1da177e4 853 spin_unlock(&vfsmount_lock);
70fbcdf4 854 release_mounts(&umount_list);
5b83d2c5 855 }
1da177e4 856
ccd48bc7 857out:
390c6843 858 up_write(&namespace_sem);
1da177e4
LT
859 path_release(&old_nd);
860 return err;
861}
862
863/*
864 * change filesystem flags. dir should be a physical root of filesystem.
865 * If you've mounted a non-root directory somewhere and want to do remount
866 * on it - tough luck.
867 */
1da177e4
LT
868static int do_remount(struct nameidata *nd, int flags, int mnt_flags,
869 void *data)
870{
871 int err;
b58fed8b 872 struct super_block *sb = nd->mnt->mnt_sb;
1da177e4
LT
873
874 if (!capable(CAP_SYS_ADMIN))
875 return -EPERM;
876
877 if (!check_mnt(nd->mnt))
878 return -EINVAL;
879
880 if (nd->dentry != nd->mnt->mnt_root)
881 return -EINVAL;
882
883 down_write(&sb->s_umount);
884 err = do_remount_sb(sb, flags, data, 0);
885 if (!err)
b58fed8b 886 nd->mnt->mnt_flags = mnt_flags;
1da177e4
LT
887 up_write(&sb->s_umount);
888 if (!err)
889 security_sb_post_remount(nd->mnt, flags, data);
890 return err;
891}
892
893static int do_move_mount(struct nameidata *nd, char *old_name)
894{
895 struct nameidata old_nd, parent_nd;
896 struct vfsmount *p;
897 int err = 0;
898 if (!capable(CAP_SYS_ADMIN))
899 return -EPERM;
900 if (!old_name || !*old_name)
901 return -EINVAL;
902 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
903 if (err)
904 return err;
905
390c6843 906 down_write(&namespace_sem);
b58fed8b 907 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1da177e4
LT
908 ;
909 err = -EINVAL;
910 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
911 goto out;
912
913 err = -ENOENT;
914 down(&nd->dentry->d_inode->i_sem);
915 if (IS_DEADDIR(nd->dentry->d_inode))
916 goto out1;
917
1da177e4 918 if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
21444403 919 goto out1;
1da177e4
LT
920
921 err = -EINVAL;
922 if (old_nd.dentry != old_nd.mnt->mnt_root)
21444403 923 goto out1;
1da177e4
LT
924
925 if (old_nd.mnt == old_nd.mnt->mnt_parent)
21444403 926 goto out1;
1da177e4
LT
927
928 if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
929 S_ISDIR(old_nd.dentry->d_inode->i_mode))
21444403
RP
930 goto out1;
931 /*
932 * Don't move a mount residing in a shared parent.
933 */
934 if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent))
935 goto out1;
1da177e4 936 err = -ELOOP;
b58fed8b 937 for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent)
1da177e4 938 if (p == old_nd.mnt)
21444403 939 goto out1;
1da177e4 940
21444403
RP
941 if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd)))
942 goto out1;
1da177e4 943
21444403 944 spin_lock(&vfsmount_lock);
1da177e4
LT
945 /* if the mount is moved, it should no longer be expire
946 * automatically */
55e700b9 947 list_del_init(&old_nd.mnt->mnt_expire);
1da177e4
LT
948 spin_unlock(&vfsmount_lock);
949out1:
950 up(&nd->dentry->d_inode->i_sem);
951out:
390c6843 952 up_write(&namespace_sem);
1da177e4
LT
953 if (!err)
954 path_release(&parent_nd);
955 path_release(&old_nd);
956 return err;
957}
958
959/*
960 * create a new mount for userspace and request it to be added into the
961 * namespace's tree
962 */
963static int do_new_mount(struct nameidata *nd, char *type, int flags,
964 int mnt_flags, char *name, void *data)
965{
966 struct vfsmount *mnt;
967
968 if (!type || !memchr(type, 0, PAGE_SIZE))
969 return -EINVAL;
970
971 /* we need capabilities... */
972 if (!capable(CAP_SYS_ADMIN))
973 return -EPERM;
974
975 mnt = do_kern_mount(type, flags, name, data);
976 if (IS_ERR(mnt))
977 return PTR_ERR(mnt);
978
979 return do_add_mount(mnt, nd, mnt_flags, NULL);
980}
981
982/*
983 * add a mount into a namespace's mount tree
984 * - provide the option of adding the new mount to an expiration list
985 */
986int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
987 int mnt_flags, struct list_head *fslist)
988{
989 int err;
990
390c6843 991 down_write(&namespace_sem);
1da177e4 992 /* Something was mounted here while we slept */
b58fed8b 993 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1da177e4
LT
994 ;
995 err = -EINVAL;
996 if (!check_mnt(nd->mnt))
997 goto unlock;
998
999 /* Refuse the same filesystem on the same mount point */
1000 err = -EBUSY;
1001 if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
1002 nd->mnt->mnt_root == nd->dentry)
1003 goto unlock;
1004
1005 err = -EINVAL;
1006 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1007 goto unlock;
1008
1009 newmnt->mnt_flags = mnt_flags;
5b83d2c5
RP
1010 if ((err = graft_tree(newmnt, nd)))
1011 goto unlock;
1da177e4 1012
5b83d2c5 1013 if (fslist) {
1da177e4
LT
1014 /* add to the specified expiration list */
1015 spin_lock(&vfsmount_lock);
55e700b9 1016 list_add_tail(&newmnt->mnt_expire, fslist);
1da177e4
LT
1017 spin_unlock(&vfsmount_lock);
1018 }
390c6843 1019 up_write(&namespace_sem);
5b83d2c5 1020 return 0;
1da177e4
LT
1021
1022unlock:
390c6843 1023 up_write(&namespace_sem);
1da177e4
LT
1024 mntput(newmnt);
1025 return err;
1026}
1027
1028EXPORT_SYMBOL_GPL(do_add_mount);
1029
70fbcdf4
RP
1030static void expire_mount(struct vfsmount *mnt, struct list_head *mounts,
1031 struct list_head *umounts)
24ca2af1
MS
1032{
1033 spin_lock(&vfsmount_lock);
1034
ed42c879
MS
1035 /*
1036 * Check if mount is still attached, if not, let whoever holds it deal
1037 * with the sucker
1038 */
1039 if (mnt->mnt_parent == mnt) {
1040 spin_unlock(&vfsmount_lock);
1041 return;
1042 }
1043
24ca2af1
MS
1044 /*
1045 * Check that it is still dead: the count should now be 2 - as
1046 * contributed by the vfsmount parent and the mntget above
1047 */
a05964f3 1048 if (!propagate_mount_busy(mnt, 2)) {
24ca2af1 1049 /* delete from the namespace */
5addc5dd 1050 touch_namespace(mnt->mnt_namespace);
24ca2af1 1051 list_del_init(&mnt->mnt_list);
ac081153 1052 mnt->mnt_namespace = NULL;
a05964f3 1053 umount_tree(mnt, 1, umounts);
24ca2af1 1054 spin_unlock(&vfsmount_lock);
24ca2af1
MS
1055 } else {
1056 /*
1057 * Someone brought it back to life whilst we didn't have any
1058 * locks held so return it to the expiration list
1059 */
55e700b9 1060 list_add_tail(&mnt->mnt_expire, mounts);
24ca2af1
MS
1061 spin_unlock(&vfsmount_lock);
1062 }
1063}
1064
1da177e4
LT
1065/*
1066 * process a list of expirable mountpoints with the intent of discarding any
1067 * mountpoints that aren't in use and haven't been touched since last we came
1068 * here
1069 */
1070void mark_mounts_for_expiry(struct list_head *mounts)
1071{
1072 struct namespace *namespace;
1073 struct vfsmount *mnt, *next;
1074 LIST_HEAD(graveyard);
1075
1076 if (list_empty(mounts))
1077 return;
1078
1079 spin_lock(&vfsmount_lock);
1080
1081 /* extract from the expiration list every vfsmount that matches the
1082 * following criteria:
1083 * - only referenced by its parent vfsmount
1084 * - still marked for expiry (marked on the last call here; marks are
1085 * cleared by mntput())
1086 */
55e700b9 1087 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1da177e4
LT
1088 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1089 atomic_read(&mnt->mnt_count) != 1)
1090 continue;
1091
1092 mntget(mnt);
55e700b9 1093 list_move(&mnt->mnt_expire, &graveyard);
1da177e4
LT
1094 }
1095
1096 /*
1097 * go through the vfsmounts we've just consigned to the graveyard to
1098 * - check that they're still dead
1099 * - delete the vfsmount from the appropriate namespace under lock
1100 * - dispose of the corpse
1101 */
1102 while (!list_empty(&graveyard)) {
70fbcdf4 1103 LIST_HEAD(umounts);
55e700b9
MS
1104 mnt = list_entry(graveyard.next, struct vfsmount, mnt_expire);
1105 list_del_init(&mnt->mnt_expire);
1da177e4
LT
1106
1107 /* don't do anything if the namespace is dead - all the
1108 * vfsmounts from it are going away anyway */
1109 namespace = mnt->mnt_namespace;
1ce88cf4 1110 if (!namespace || !namespace->root)
1da177e4
LT
1111 continue;
1112 get_namespace(namespace);
1113
1114 spin_unlock(&vfsmount_lock);
390c6843 1115 down_write(&namespace_sem);
70fbcdf4 1116 expire_mount(mnt, mounts, &umounts);
390c6843 1117 up_write(&namespace_sem);
70fbcdf4 1118 release_mounts(&umounts);
1da177e4
LT
1119 mntput(mnt);
1120 put_namespace(namespace);
1da177e4
LT
1121 spin_lock(&vfsmount_lock);
1122 }
1123
1124 spin_unlock(&vfsmount_lock);
1125}
1126
1127EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1128
1129/*
1130 * Some copy_from_user() implementations do not return the exact number of
1131 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1132 * Note that this function differs from copy_from_user() in that it will oops
1133 * on bad values of `to', rather than returning a short copy.
1134 */
b58fed8b
RP
1135static long exact_copy_from_user(void *to, const void __user * from,
1136 unsigned long n)
1da177e4
LT
1137{
1138 char *t = to;
1139 const char __user *f = from;
1140 char c;
1141
1142 if (!access_ok(VERIFY_READ, from, n))
1143 return n;
1144
1145 while (n) {
1146 if (__get_user(c, f)) {
1147 memset(t, 0, n);
1148 break;
1149 }
1150 *t++ = c;
1151 f++;
1152 n--;
1153 }
1154 return n;
1155}
1156
b58fed8b 1157int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
1158{
1159 int i;
1160 unsigned long page;
1161 unsigned long size;
b58fed8b 1162
1da177e4
LT
1163 *where = 0;
1164 if (!data)
1165 return 0;
1166
1167 if (!(page = __get_free_page(GFP_KERNEL)))
1168 return -ENOMEM;
1169
1170 /* We only care that *some* data at the address the user
1171 * gave us is valid. Just in case, we'll zero
1172 * the remainder of the page.
1173 */
1174 /* copy_from_user cannot cross TASK_SIZE ! */
1175 size = TASK_SIZE - (unsigned long)data;
1176 if (size > PAGE_SIZE)
1177 size = PAGE_SIZE;
1178
1179 i = size - exact_copy_from_user((void *)page, data, size);
1180 if (!i) {
b58fed8b 1181 free_page(page);
1da177e4
LT
1182 return -EFAULT;
1183 }
1184 if (i != PAGE_SIZE)
1185 memset((char *)page + i, 0, PAGE_SIZE - i);
1186 *where = page;
1187 return 0;
1188}
1189
1190/*
1191 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1192 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1193 *
1194 * data is a (void *) that can point to any structure up to
1195 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1196 * information (or be NULL).
1197 *
1198 * Pre-0.97 versions of mount() didn't have a flags word.
1199 * When the flags word was introduced its top half was required
1200 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1201 * Therefore, if this magic number is present, it carries no information
1202 * and must be discarded.
1203 */
b58fed8b 1204long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
1205 unsigned long flags, void *data_page)
1206{
1207 struct nameidata nd;
1208 int retval = 0;
1209 int mnt_flags = 0;
1210
1211 /* Discard magic */
1212 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1213 flags &= ~MS_MGC_MSK;
1214
1215 /* Basic sanity checks */
1216
1217 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1218 return -EINVAL;
1219 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1220 return -EINVAL;
1221
1222 if (data_page)
1223 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1224
1225 /* Separate the per-mountpoint flags */
1226 if (flags & MS_NOSUID)
1227 mnt_flags |= MNT_NOSUID;
1228 if (flags & MS_NODEV)
1229 mnt_flags |= MNT_NODEV;
1230 if (flags & MS_NOEXEC)
1231 mnt_flags |= MNT_NOEXEC;
b58fed8b 1232 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE);
1da177e4
LT
1233
1234 /* ... and get the mountpoint */
1235 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1236 if (retval)
1237 return retval;
1238
1239 retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1240 if (retval)
1241 goto dput_out;
1242
1243 if (flags & MS_REMOUNT)
1244 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1245 data_page);
1246 else if (flags & MS_BIND)
1247 retval = do_loopback(&nd, dev_name, flags & MS_REC);
a58b0eb8 1248 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE))
07b20889 1249 retval = do_change_type(&nd, flags);
1da177e4
LT
1250 else if (flags & MS_MOVE)
1251 retval = do_move_mount(&nd, dev_name);
1252 else
1253 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1254 dev_name, data_page);
1255dput_out:
1256 path_release(&nd);
1257 return retval;
1258}
1259
1260int copy_namespace(int flags, struct task_struct *tsk)
1261{
1262 struct namespace *namespace = tsk->namespace;
1263 struct namespace *new_ns;
1264 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1265 struct fs_struct *fs = tsk->fs;
1266 struct vfsmount *p, *q;
1267
1268 if (!namespace)
1269 return 0;
1270
1271 get_namespace(namespace);
1272
1273 if (!(flags & CLONE_NEWNS))
1274 return 0;
1275
1276 if (!capable(CAP_SYS_ADMIN)) {
1277 put_namespace(namespace);
1278 return -EPERM;
1279 }
1280
1281 new_ns = kmalloc(sizeof(struct namespace), GFP_KERNEL);
1282 if (!new_ns)
1283 goto out;
1284
1285 atomic_set(&new_ns->count, 1);
1da177e4 1286 INIT_LIST_HEAD(&new_ns->list);
5addc5dd
AV
1287 init_waitqueue_head(&new_ns->poll);
1288 new_ns->event = 0;
1da177e4 1289
390c6843 1290 down_write(&namespace_sem);
1da177e4 1291 /* First pass: copy the tree topology */
36341f64
RP
1292 new_ns->root = copy_tree(namespace->root, namespace->root->mnt_root,
1293 CL_EXPIRE);
1da177e4 1294 if (!new_ns->root) {
390c6843 1295 up_write(&namespace_sem);
1da177e4
LT
1296 kfree(new_ns);
1297 goto out;
1298 }
1299 spin_lock(&vfsmount_lock);
1300 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1301 spin_unlock(&vfsmount_lock);
1302
1303 /*
1304 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1305 * as belonging to new namespace. We have already acquired a private
1306 * fs_struct, so tsk->fs->lock is not needed.
1307 */
1308 p = namespace->root;
1309 q = new_ns->root;
1310 while (p) {
1311 q->mnt_namespace = new_ns;
1312 if (fs) {
1313 if (p == fs->rootmnt) {
1314 rootmnt = p;
1315 fs->rootmnt = mntget(q);
1316 }
1317 if (p == fs->pwdmnt) {
1318 pwdmnt = p;
1319 fs->pwdmnt = mntget(q);
1320 }
1321 if (p == fs->altrootmnt) {
1322 altrootmnt = p;
1323 fs->altrootmnt = mntget(q);
1324 }
1325 }
1326 p = next_mnt(p, namespace->root);
1327 q = next_mnt(q, new_ns->root);
1328 }
390c6843 1329 up_write(&namespace_sem);
1da177e4
LT
1330
1331 tsk->namespace = new_ns;
1332
1333 if (rootmnt)
1334 mntput(rootmnt);
1335 if (pwdmnt)
1336 mntput(pwdmnt);
1337 if (altrootmnt)
1338 mntput(altrootmnt);
1339
1340 put_namespace(namespace);
1341 return 0;
1342
1343out:
1344 put_namespace(namespace);
1345 return -ENOMEM;
1346}
1347
1348asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1349 char __user * type, unsigned long flags,
1350 void __user * data)
1351{
1352 int retval;
1353 unsigned long data_page;
1354 unsigned long type_page;
1355 unsigned long dev_page;
1356 char *dir_page;
1357
b58fed8b 1358 retval = copy_mount_options(type, &type_page);
1da177e4
LT
1359 if (retval < 0)
1360 return retval;
1361
1362 dir_page = getname(dir_name);
1363 retval = PTR_ERR(dir_page);
1364 if (IS_ERR(dir_page))
1365 goto out1;
1366
b58fed8b 1367 retval = copy_mount_options(dev_name, &dev_page);
1da177e4
LT
1368 if (retval < 0)
1369 goto out2;
1370
b58fed8b 1371 retval = copy_mount_options(data, &data_page);
1da177e4
LT
1372 if (retval < 0)
1373 goto out3;
1374
1375 lock_kernel();
b58fed8b
RP
1376 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1377 flags, (void *)data_page);
1da177e4
LT
1378 unlock_kernel();
1379 free_page(data_page);
1380
1381out3:
1382 free_page(dev_page);
1383out2:
1384 putname(dir_page);
1385out1:
1386 free_page(type_page);
1387 return retval;
1388}
1389
1390/*
1391 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1392 * It can block. Requires the big lock held.
1393 */
1394void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
1395 struct dentry *dentry)
1396{
1397 struct dentry *old_root;
1398 struct vfsmount *old_rootmnt;
1399 write_lock(&fs->lock);
1400 old_root = fs->root;
1401 old_rootmnt = fs->rootmnt;
1402 fs->rootmnt = mntget(mnt);
1403 fs->root = dget(dentry);
1404 write_unlock(&fs->lock);
1405 if (old_root) {
1406 dput(old_root);
1407 mntput(old_rootmnt);
1408 }
1409}
1410
1411/*
1412 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1413 * It can block. Requires the big lock held.
1414 */
1415void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
1416 struct dentry *dentry)
1417{
1418 struct dentry *old_pwd;
1419 struct vfsmount *old_pwdmnt;
1420
1421 write_lock(&fs->lock);
1422 old_pwd = fs->pwd;
1423 old_pwdmnt = fs->pwdmnt;
1424 fs->pwdmnt = mntget(mnt);
1425 fs->pwd = dget(dentry);
1426 write_unlock(&fs->lock);
1427
1428 if (old_pwd) {
1429 dput(old_pwd);
1430 mntput(old_pwdmnt);
1431 }
1432}
1433
1434static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
1435{
1436 struct task_struct *g, *p;
1437 struct fs_struct *fs;
1438
1439 read_lock(&tasklist_lock);
1440 do_each_thread(g, p) {
1441 task_lock(p);
1442 fs = p->fs;
1443 if (fs) {
1444 atomic_inc(&fs->count);
1445 task_unlock(p);
b58fed8b
RP
1446 if (fs->root == old_nd->dentry
1447 && fs->rootmnt == old_nd->mnt)
1da177e4 1448 set_fs_root(fs, new_nd->mnt, new_nd->dentry);
b58fed8b
RP
1449 if (fs->pwd == old_nd->dentry
1450 && fs->pwdmnt == old_nd->mnt)
1da177e4
LT
1451 set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
1452 put_fs_struct(fs);
1453 } else
1454 task_unlock(p);
1455 } while_each_thread(g, p);
1456 read_unlock(&tasklist_lock);
1457}
1458
1459/*
1460 * pivot_root Semantics:
1461 * Moves the root file system of the current process to the directory put_old,
1462 * makes new_root as the new root file system of the current process, and sets
1463 * root/cwd of all processes which had them on the current root to new_root.
1464 *
1465 * Restrictions:
1466 * The new_root and put_old must be directories, and must not be on the
1467 * same file system as the current process root. The put_old must be
1468 * underneath new_root, i.e. adding a non-zero number of /.. to the string
1469 * pointed to by put_old must yield the same directory as new_root. No other
1470 * file system may be mounted on put_old. After all, new_root is a mountpoint.
1471 *
1472 * Notes:
1473 * - we don't move root/cwd if they are not at the root (reason: if something
1474 * cared enough to change them, it's probably wrong to force them elsewhere)
1475 * - it's okay to pick a root that isn't the root of a file system, e.g.
1476 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1477 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1478 * first.
1479 */
b58fed8b
RP
1480asmlinkage long sys_pivot_root(const char __user * new_root,
1481 const char __user * put_old)
1da177e4
LT
1482{
1483 struct vfsmount *tmp;
1484 struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
1485 int error;
1486
1487 if (!capable(CAP_SYS_ADMIN))
1488 return -EPERM;
1489
1490 lock_kernel();
1491
b58fed8b
RP
1492 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1493 &new_nd);
1da177e4
LT
1494 if (error)
1495 goto out0;
1496 error = -EINVAL;
1497 if (!check_mnt(new_nd.mnt))
1498 goto out1;
1499
b58fed8b 1500 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1da177e4
LT
1501 if (error)
1502 goto out1;
1503
1504 error = security_sb_pivotroot(&old_nd, &new_nd);
1505 if (error) {
1506 path_release(&old_nd);
1507 goto out1;
1508 }
1509
1510 read_lock(&current->fs->lock);
1511 user_nd.mnt = mntget(current->fs->rootmnt);
1512 user_nd.dentry = dget(current->fs->root);
1513 read_unlock(&current->fs->lock);
390c6843 1514 down_write(&namespace_sem);
1da177e4
LT
1515 down(&old_nd.dentry->d_inode->i_sem);
1516 error = -EINVAL;
21444403
RP
1517 if (IS_MNT_SHARED(old_nd.mnt) ||
1518 IS_MNT_SHARED(new_nd.mnt->mnt_parent) ||
1519 IS_MNT_SHARED(user_nd.mnt->mnt_parent))
1520 goto out2;
1da177e4
LT
1521 if (!check_mnt(user_nd.mnt))
1522 goto out2;
1523 error = -ENOENT;
1524 if (IS_DEADDIR(new_nd.dentry->d_inode))
1525 goto out2;
1526 if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
1527 goto out2;
1528 if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
1529 goto out2;
1530 error = -EBUSY;
1531 if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
1532 goto out2; /* loop, on the same file system */
1533 error = -EINVAL;
1534 if (user_nd.mnt->mnt_root != user_nd.dentry)
1535 goto out2; /* not a mountpoint */
0bb6fcc1
MS
1536 if (user_nd.mnt->mnt_parent == user_nd.mnt)
1537 goto out2; /* not attached */
1da177e4
LT
1538 if (new_nd.mnt->mnt_root != new_nd.dentry)
1539 goto out2; /* not a mountpoint */
0bb6fcc1
MS
1540 if (new_nd.mnt->mnt_parent == new_nd.mnt)
1541 goto out2; /* not attached */
1da177e4
LT
1542 tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
1543 spin_lock(&vfsmount_lock);
1544 if (tmp != new_nd.mnt) {
1545 for (;;) {
1546 if (tmp->mnt_parent == tmp)
1547 goto out3; /* already mounted on put_old */
1548 if (tmp->mnt_parent == new_nd.mnt)
1549 break;
1550 tmp = tmp->mnt_parent;
1551 }
1552 if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
1553 goto out3;
1554 } else if (!is_subdir(old_nd.dentry, new_nd.dentry))
1555 goto out3;
1556 detach_mnt(new_nd.mnt, &parent_nd);
1557 detach_mnt(user_nd.mnt, &root_parent);
1558 attach_mnt(user_nd.mnt, &old_nd); /* mount old root on put_old */
1559 attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
5addc5dd 1560 touch_namespace(current->namespace);
1da177e4
LT
1561 spin_unlock(&vfsmount_lock);
1562 chroot_fs_refs(&user_nd, &new_nd);
1563 security_sb_post_pivotroot(&user_nd, &new_nd);
1564 error = 0;
1565 path_release(&root_parent);
1566 path_release(&parent_nd);
1567out2:
1568 up(&old_nd.dentry->d_inode->i_sem);
390c6843 1569 up_write(&namespace_sem);
1da177e4
LT
1570 path_release(&user_nd);
1571 path_release(&old_nd);
1572out1:
1573 path_release(&new_nd);
1574out0:
1575 unlock_kernel();
1576 return error;
1577out3:
1578 spin_unlock(&vfsmount_lock);
1579 goto out2;
1580}
1581
1582static void __init init_mount_tree(void)
1583{
1584 struct vfsmount *mnt;
1585 struct namespace *namespace;
1586 struct task_struct *g, *p;
1587
1588 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1589 if (IS_ERR(mnt))
1590 panic("Can't create rootfs");
1591 namespace = kmalloc(sizeof(*namespace), GFP_KERNEL);
1592 if (!namespace)
1593 panic("Can't allocate initial namespace");
1594 atomic_set(&namespace->count, 1);
1595 INIT_LIST_HEAD(&namespace->list);
5addc5dd
AV
1596 init_waitqueue_head(&namespace->poll);
1597 namespace->event = 0;
1da177e4
LT
1598 list_add(&mnt->mnt_list, &namespace->list);
1599 namespace->root = mnt;
1600 mnt->mnt_namespace = namespace;
1601
1602 init_task.namespace = namespace;
1603 read_lock(&tasklist_lock);
1604 do_each_thread(g, p) {
1605 get_namespace(namespace);
1606 p->namespace = namespace;
1607 } while_each_thread(g, p);
1608 read_unlock(&tasklist_lock);
1609
1610 set_fs_pwd(current->fs, namespace->root, namespace->root->mnt_root);
1611 set_fs_root(current->fs, namespace->root, namespace->root->mnt_root);
1612}
1613
1614void __init mnt_init(unsigned long mempages)
1615{
1616 struct list_head *d;
1617 unsigned int nr_hash;
1618 int i;
1619
390c6843
RP
1620 init_rwsem(&namespace_sem);
1621
1da177e4 1622 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
b58fed8b 1623 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL, NULL);
1da177e4 1624
b58fed8b 1625 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
1626
1627 if (!mount_hashtable)
1628 panic("Failed to allocate mount hash table\n");
1629
1630 /*
1631 * Find the power-of-two list-heads that can fit into the allocation..
1632 * We don't guarantee that "sizeof(struct list_head)" is necessarily
1633 * a power-of-two.
1634 */
1635 nr_hash = PAGE_SIZE / sizeof(struct list_head);
1636 hash_bits = 0;
1637 do {
1638 hash_bits++;
1639 } while ((nr_hash >> hash_bits) != 0);
1640 hash_bits--;
1641
1642 /*
1643 * Re-calculate the actual number of entries and the mask
1644 * from the number of bits we can fit.
1645 */
1646 nr_hash = 1UL << hash_bits;
b58fed8b 1647 hash_mask = nr_hash - 1;
1da177e4
LT
1648
1649 printk("Mount-cache hash table entries: %d\n", nr_hash);
1650
1651 /* And initialize the newly allocated array */
1652 d = mount_hashtable;
1653 i = nr_hash;
1654 do {
1655 INIT_LIST_HEAD(d);
1656 d++;
1657 i--;
1658 } while (i);
1659 sysfs_init();
1660 init_rootfs();
1661 init_mount_tree();
1662}
1663
1664void __put_namespace(struct namespace *namespace)
1665{
1ce88cf4 1666 struct vfsmount *root = namespace->root;
70fbcdf4 1667 LIST_HEAD(umount_list);
1ce88cf4
MS
1668 namespace->root = NULL;
1669 spin_unlock(&vfsmount_lock);
390c6843 1670 down_write(&namespace_sem);
1da177e4 1671 spin_lock(&vfsmount_lock);
a05964f3 1672 umount_tree(root, 0, &umount_list);
1da177e4 1673 spin_unlock(&vfsmount_lock);
390c6843 1674 up_write(&namespace_sem);
70fbcdf4 1675 release_mounts(&umount_list);
1da177e4
LT
1676 kfree(namespace);
1677}