]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/namespace.c
[patch 4/7] vfs: mountinfo: add mount peer group ID
[net-next-2.6.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4
LT
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
14#include <linux/smp_lock.h>
15#include <linux/init.h>
15a67dd8 16#include <linux/kernel.h>
1da177e4
LT
17#include <linux/quotaops.h>
18#include <linux/acct.h>
16f7e0fe 19#include <linux/capability.h>
3d733633 20#include <linux/cpumask.h>
1da177e4 21#include <linux/module.h>
f20a9ead 22#include <linux/sysfs.h>
1da177e4 23#include <linux/seq_file.h>
6b3286ed 24#include <linux/mnt_namespace.h>
1da177e4
LT
25#include <linux/namei.h>
26#include <linux/security.h>
27#include <linux/mount.h>
07f3f05c 28#include <linux/ramfs.h>
13f14b4d 29#include <linux/log2.h>
73cd49ec 30#include <linux/idr.h>
1da177e4
LT
31#include <asm/uaccess.h>
32#include <asm/unistd.h>
07b20889 33#include "pnode.h"
948730b0 34#include "internal.h"
1da177e4 35
13f14b4d
ED
36#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
37#define HASH_SIZE (1UL << HASH_SHIFT)
38
1da177e4 39/* spinlock for vfsmount related operations, inplace of dcache_lock */
5addc5dd
AV
40__cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
41
42static int event;
73cd49ec 43static DEFINE_IDA(mnt_id_ida);
719f5d7f 44static DEFINE_IDA(mnt_group_ida);
1da177e4 45
fa3536cc 46static struct list_head *mount_hashtable __read_mostly;
e18b890b 47static struct kmem_cache *mnt_cache __read_mostly;
390c6843 48static struct rw_semaphore namespace_sem;
1da177e4 49
f87fd4c2 50/* /sys/fs */
00d26666
GKH
51struct kobject *fs_kobj;
52EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 53
1da177e4
LT
54static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55{
b58fed8b
RP
56 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
58 tmp = tmp + (tmp >> HASH_SHIFT);
59 return tmp & (HASH_SIZE - 1);
1da177e4
LT
60}
61
3d733633
DH
62#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63
73cd49ec
MS
64/* allocation is serialized by namespace_sem */
65static int mnt_alloc_id(struct vfsmount *mnt)
66{
67 int res;
68
69retry:
70 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
71 spin_lock(&vfsmount_lock);
72 res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
73 spin_unlock(&vfsmount_lock);
74 if (res == -EAGAIN)
75 goto retry;
76
77 return res;
78}
79
80static void mnt_free_id(struct vfsmount *mnt)
81{
82 spin_lock(&vfsmount_lock);
83 ida_remove(&mnt_id_ida, mnt->mnt_id);
84 spin_unlock(&vfsmount_lock);
85}
86
719f5d7f
MS
87/*
88 * Allocate a new peer group ID
89 *
90 * mnt_group_ida is protected by namespace_sem
91 */
92static int mnt_alloc_group_id(struct vfsmount *mnt)
93{
94 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
95 return -ENOMEM;
96
97 return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
98}
99
100/*
101 * Release a peer group ID
102 */
103void mnt_release_group_id(struct vfsmount *mnt)
104{
105 ida_remove(&mnt_group_ida, mnt->mnt_group_id);
106 mnt->mnt_group_id = 0;
107}
108
1da177e4
LT
109struct vfsmount *alloc_vfsmnt(const char *name)
110{
c3762229 111 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
1da177e4 112 if (mnt) {
73cd49ec
MS
113 int err;
114
115 err = mnt_alloc_id(mnt);
116 if (err) {
117 kmem_cache_free(mnt_cache, mnt);
118 return NULL;
119 }
120
b58fed8b 121 atomic_set(&mnt->mnt_count, 1);
1da177e4
LT
122 INIT_LIST_HEAD(&mnt->mnt_hash);
123 INIT_LIST_HEAD(&mnt->mnt_child);
124 INIT_LIST_HEAD(&mnt->mnt_mounts);
125 INIT_LIST_HEAD(&mnt->mnt_list);
55e700b9 126 INIT_LIST_HEAD(&mnt->mnt_expire);
03e06e68 127 INIT_LIST_HEAD(&mnt->mnt_share);
a58b0eb8
RP
128 INIT_LIST_HEAD(&mnt->mnt_slave_list);
129 INIT_LIST_HEAD(&mnt->mnt_slave);
3d733633 130 atomic_set(&mnt->__mnt_writers, 0);
1da177e4 131 if (name) {
b58fed8b 132 int size = strlen(name) + 1;
1da177e4
LT
133 char *newname = kmalloc(size, GFP_KERNEL);
134 if (newname) {
135 memcpy(newname, name, size);
136 mnt->mnt_devname = newname;
137 }
138 }
139 }
140 return mnt;
141}
142
3d733633
DH
143/*
144 * Most r/o checks on a fs are for operations that take
145 * discrete amounts of time, like a write() or unlink().
146 * We must keep track of when those operations start
147 * (for permission checks) and when they end, so that
148 * we can determine when writes are able to occur to
149 * a filesystem.
150 */
151/*
152 * __mnt_is_readonly: check whether a mount is read-only
153 * @mnt: the mount to check for its write status
154 *
155 * This shouldn't be used directly ouside of the VFS.
156 * It does not guarantee that the filesystem will stay
157 * r/w, just that it is right *now*. This can not and
158 * should not be used in place of IS_RDONLY(inode).
159 * mnt_want/drop_write() will _keep_ the filesystem
160 * r/w.
161 */
162int __mnt_is_readonly(struct vfsmount *mnt)
163{
2e4b7fcd
DH
164 if (mnt->mnt_flags & MNT_READONLY)
165 return 1;
166 if (mnt->mnt_sb->s_flags & MS_RDONLY)
167 return 1;
168 return 0;
3d733633
DH
169}
170EXPORT_SYMBOL_GPL(__mnt_is_readonly);
171
172struct mnt_writer {
173 /*
174 * If holding multiple instances of this lock, they
175 * must be ordered by cpu number.
176 */
177 spinlock_t lock;
178 struct lock_class_key lock_class; /* compiles out with !lockdep */
179 unsigned long count;
180 struct vfsmount *mnt;
181} ____cacheline_aligned_in_smp;
182static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
183
184static int __init init_mnt_writers(void)
185{
186 int cpu;
187 for_each_possible_cpu(cpu) {
188 struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
189 spin_lock_init(&writer->lock);
190 lockdep_set_class(&writer->lock, &writer->lock_class);
191 writer->count = 0;
192 }
193 return 0;
194}
195fs_initcall(init_mnt_writers);
196
197static void unlock_mnt_writers(void)
198{
199 int cpu;
200 struct mnt_writer *cpu_writer;
201
202 for_each_possible_cpu(cpu) {
203 cpu_writer = &per_cpu(mnt_writers, cpu);
204 spin_unlock(&cpu_writer->lock);
205 }
206}
207
208static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
209{
210 if (!cpu_writer->mnt)
211 return;
212 /*
213 * This is in case anyone ever leaves an invalid,
214 * old ->mnt and a count of 0.
215 */
216 if (!cpu_writer->count)
217 return;
218 atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
219 cpu_writer->count = 0;
220}
221 /*
222 * must hold cpu_writer->lock
223 */
224static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
225 struct vfsmount *mnt)
226{
227 if (cpu_writer->mnt == mnt)
228 return;
229 __clear_mnt_count(cpu_writer);
230 cpu_writer->mnt = mnt;
231}
232
8366025e
DH
233/*
234 * Most r/o checks on a fs are for operations that take
235 * discrete amounts of time, like a write() or unlink().
236 * We must keep track of when those operations start
237 * (for permission checks) and when they end, so that
238 * we can determine when writes are able to occur to
239 * a filesystem.
240 */
241/**
242 * mnt_want_write - get write access to a mount
243 * @mnt: the mount on which to take a write
244 *
245 * This tells the low-level filesystem that a write is
246 * about to be performed to it, and makes sure that
247 * writes are allowed before returning success. When
248 * the write operation is finished, mnt_drop_write()
249 * must be called. This is effectively a refcount.
250 */
251int mnt_want_write(struct vfsmount *mnt)
252{
3d733633
DH
253 int ret = 0;
254 struct mnt_writer *cpu_writer;
255
256 cpu_writer = &get_cpu_var(mnt_writers);
257 spin_lock(&cpu_writer->lock);
258 if (__mnt_is_readonly(mnt)) {
259 ret = -EROFS;
260 goto out;
261 }
262 use_cpu_writer_for_mount(cpu_writer, mnt);
263 cpu_writer->count++;
264out:
265 spin_unlock(&cpu_writer->lock);
266 put_cpu_var(mnt_writers);
267 return ret;
8366025e
DH
268}
269EXPORT_SYMBOL_GPL(mnt_want_write);
270
3d733633
DH
271static void lock_mnt_writers(void)
272{
273 int cpu;
274 struct mnt_writer *cpu_writer;
275
276 for_each_possible_cpu(cpu) {
277 cpu_writer = &per_cpu(mnt_writers, cpu);
278 spin_lock(&cpu_writer->lock);
279 __clear_mnt_count(cpu_writer);
280 cpu_writer->mnt = NULL;
281 }
282}
283
284/*
285 * These per-cpu write counts are not guaranteed to have
286 * matched increments and decrements on any given cpu.
287 * A file open()ed for write on one cpu and close()d on
288 * another cpu will imbalance this count. Make sure it
289 * does not get too far out of whack.
290 */
291static void handle_write_count_underflow(struct vfsmount *mnt)
292{
293 if (atomic_read(&mnt->__mnt_writers) >=
294 MNT_WRITER_UNDERFLOW_LIMIT)
295 return;
296 /*
297 * It isn't necessary to hold all of the locks
298 * at the same time, but doing it this way makes
299 * us share a lot more code.
300 */
301 lock_mnt_writers();
302 /*
303 * vfsmount_lock is for mnt_flags.
304 */
305 spin_lock(&vfsmount_lock);
306 /*
307 * If coalescing the per-cpu writer counts did not
308 * get us back to a positive writer count, we have
309 * a bug.
310 */
311 if ((atomic_read(&mnt->__mnt_writers) < 0) &&
312 !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
313 printk(KERN_DEBUG "leak detected on mount(%p) writers "
314 "count: %d\n",
315 mnt, atomic_read(&mnt->__mnt_writers));
316 WARN_ON(1);
317 /* use the flag to keep the dmesg spam down */
318 mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
319 }
320 spin_unlock(&vfsmount_lock);
321 unlock_mnt_writers();
322}
323
8366025e
DH
324/**
325 * mnt_drop_write - give up write access to a mount
326 * @mnt: the mount on which to give up write access
327 *
328 * Tells the low-level filesystem that we are done
329 * performing writes to it. Must be matched with
330 * mnt_want_write() call above.
331 */
332void mnt_drop_write(struct vfsmount *mnt)
333{
3d733633
DH
334 int must_check_underflow = 0;
335 struct mnt_writer *cpu_writer;
336
337 cpu_writer = &get_cpu_var(mnt_writers);
338 spin_lock(&cpu_writer->lock);
339
340 use_cpu_writer_for_mount(cpu_writer, mnt);
341 if (cpu_writer->count > 0) {
342 cpu_writer->count--;
343 } else {
344 must_check_underflow = 1;
345 atomic_dec(&mnt->__mnt_writers);
346 }
347
348 spin_unlock(&cpu_writer->lock);
349 /*
350 * Logically, we could call this each time,
351 * but the __mnt_writers cacheline tends to
352 * be cold, and makes this expensive.
353 */
354 if (must_check_underflow)
355 handle_write_count_underflow(mnt);
356 /*
357 * This could be done right after the spinlock
358 * is taken because the spinlock keeps us on
359 * the cpu, and disables preemption. However,
360 * putting it here bounds the amount that
361 * __mnt_writers can underflow. Without it,
362 * we could theoretically wrap __mnt_writers.
363 */
364 put_cpu_var(mnt_writers);
8366025e
DH
365}
366EXPORT_SYMBOL_GPL(mnt_drop_write);
367
2e4b7fcd 368static int mnt_make_readonly(struct vfsmount *mnt)
8366025e 369{
3d733633
DH
370 int ret = 0;
371
372 lock_mnt_writers();
373 /*
374 * With all the locks held, this value is stable
375 */
376 if (atomic_read(&mnt->__mnt_writers) > 0) {
377 ret = -EBUSY;
378 goto out;
379 }
380 /*
2e4b7fcd
DH
381 * nobody can do a successful mnt_want_write() with all
382 * of the counts in MNT_DENIED_WRITE and the locks held.
3d733633 383 */
2e4b7fcd
DH
384 spin_lock(&vfsmount_lock);
385 if (!ret)
386 mnt->mnt_flags |= MNT_READONLY;
387 spin_unlock(&vfsmount_lock);
3d733633
DH
388out:
389 unlock_mnt_writers();
390 return ret;
8366025e 391}
8366025e 392
2e4b7fcd
DH
393static void __mnt_unmake_readonly(struct vfsmount *mnt)
394{
395 spin_lock(&vfsmount_lock);
396 mnt->mnt_flags &= ~MNT_READONLY;
397 spin_unlock(&vfsmount_lock);
398}
399
454e2398
DH
400int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
401{
402 mnt->mnt_sb = sb;
403 mnt->mnt_root = dget(sb->s_root);
404 return 0;
405}
406
407EXPORT_SYMBOL(simple_set_mnt);
408
1da177e4
LT
409void free_vfsmnt(struct vfsmount *mnt)
410{
411 kfree(mnt->mnt_devname);
73cd49ec 412 mnt_free_id(mnt);
1da177e4
LT
413 kmem_cache_free(mnt_cache, mnt);
414}
415
416/*
a05964f3
RP
417 * find the first or last mount at @dentry on vfsmount @mnt depending on
418 * @dir. If @dir is set return the first mount else return the last mount.
1da177e4 419 */
a05964f3
RP
420struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
421 int dir)
1da177e4 422{
b58fed8b
RP
423 struct list_head *head = mount_hashtable + hash(mnt, dentry);
424 struct list_head *tmp = head;
1da177e4
LT
425 struct vfsmount *p, *found = NULL;
426
1da177e4 427 for (;;) {
a05964f3 428 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
429 p = NULL;
430 if (tmp == head)
431 break;
432 p = list_entry(tmp, struct vfsmount, mnt_hash);
433 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
a05964f3 434 found = p;
1da177e4
LT
435 break;
436 }
437 }
1da177e4
LT
438 return found;
439}
440
a05964f3
RP
441/*
442 * lookup_mnt increments the ref count before returning
443 * the vfsmount struct.
444 */
445struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
446{
447 struct vfsmount *child_mnt;
448 spin_lock(&vfsmount_lock);
449 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
450 mntget(child_mnt);
451 spin_unlock(&vfsmount_lock);
452 return child_mnt;
453}
454
1da177e4
LT
455static inline int check_mnt(struct vfsmount *mnt)
456{
6b3286ed 457 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
458}
459
6b3286ed 460static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
461{
462 if (ns) {
463 ns->event = ++event;
464 wake_up_interruptible(&ns->poll);
465 }
466}
467
6b3286ed 468static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
469{
470 if (ns && ns->event != event) {
471 ns->event = event;
472 wake_up_interruptible(&ns->poll);
473 }
474}
475
1a390689 476static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
1da177e4 477{
1a390689
AV
478 old_path->dentry = mnt->mnt_mountpoint;
479 old_path->mnt = mnt->mnt_parent;
1da177e4
LT
480 mnt->mnt_parent = mnt;
481 mnt->mnt_mountpoint = mnt->mnt_root;
482 list_del_init(&mnt->mnt_child);
483 list_del_init(&mnt->mnt_hash);
1a390689 484 old_path->dentry->d_mounted--;
1da177e4
LT
485}
486
b90fa9ae
RP
487void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
488 struct vfsmount *child_mnt)
489{
490 child_mnt->mnt_parent = mntget(mnt);
491 child_mnt->mnt_mountpoint = dget(dentry);
492 dentry->d_mounted++;
493}
494
1a390689 495static void attach_mnt(struct vfsmount *mnt, struct path *path)
1da177e4 496{
1a390689 497 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
b90fa9ae 498 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689
AV
499 hash(path->mnt, path->dentry));
500 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
b90fa9ae
RP
501}
502
503/*
504 * the caller must hold vfsmount_lock
505 */
506static void commit_tree(struct vfsmount *mnt)
507{
508 struct vfsmount *parent = mnt->mnt_parent;
509 struct vfsmount *m;
510 LIST_HEAD(head);
6b3286ed 511 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae
RP
512
513 BUG_ON(parent == mnt);
514
515 list_add_tail(&head, &mnt->mnt_list);
516 list_for_each_entry(m, &head, mnt_list)
6b3286ed 517 m->mnt_ns = n;
b90fa9ae
RP
518 list_splice(&head, n->list.prev);
519
520 list_add_tail(&mnt->mnt_hash, mount_hashtable +
521 hash(parent, mnt->mnt_mountpoint));
522 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 523 touch_mnt_namespace(n);
1da177e4
LT
524}
525
526static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
527{
528 struct list_head *next = p->mnt_mounts.next;
529 if (next == &p->mnt_mounts) {
530 while (1) {
531 if (p == root)
532 return NULL;
533 next = p->mnt_child.next;
534 if (next != &p->mnt_parent->mnt_mounts)
535 break;
536 p = p->mnt_parent;
537 }
538 }
539 return list_entry(next, struct vfsmount, mnt_child);
540}
541
9676f0c6
RP
542static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
543{
544 struct list_head *prev = p->mnt_mounts.prev;
545 while (prev != &p->mnt_mounts) {
546 p = list_entry(prev, struct vfsmount, mnt_child);
547 prev = p->mnt_mounts.prev;
548 }
549 return p;
550}
551
36341f64
RP
552static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
553 int flag)
1da177e4
LT
554{
555 struct super_block *sb = old->mnt_sb;
556 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
557
558 if (mnt) {
719f5d7f
MS
559 if (flag & (CL_SLAVE | CL_PRIVATE))
560 mnt->mnt_group_id = 0; /* not a peer of original */
561 else
562 mnt->mnt_group_id = old->mnt_group_id;
563
564 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
565 int err = mnt_alloc_group_id(mnt);
566 if (err)
567 goto out_free;
568 }
569
1da177e4
LT
570 mnt->mnt_flags = old->mnt_flags;
571 atomic_inc(&sb->s_active);
572 mnt->mnt_sb = sb;
573 mnt->mnt_root = dget(root);
574 mnt->mnt_mountpoint = mnt->mnt_root;
575 mnt->mnt_parent = mnt;
b90fa9ae 576
5afe0022
RP
577 if (flag & CL_SLAVE) {
578 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
579 mnt->mnt_master = old;
580 CLEAR_MNT_SHARED(mnt);
8aec0809 581 } else if (!(flag & CL_PRIVATE)) {
5afe0022
RP
582 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
583 list_add(&mnt->mnt_share, &old->mnt_share);
584 if (IS_MNT_SLAVE(old))
585 list_add(&mnt->mnt_slave, &old->mnt_slave);
586 mnt->mnt_master = old->mnt_master;
587 }
b90fa9ae
RP
588 if (flag & CL_MAKE_SHARED)
589 set_mnt_shared(mnt);
1da177e4
LT
590
591 /* stick the duplicate mount on the same expiry list
592 * as the original if that was on one */
36341f64 593 if (flag & CL_EXPIRE) {
36341f64
RP
594 if (!list_empty(&old->mnt_expire))
595 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 596 }
1da177e4
LT
597 }
598 return mnt;
719f5d7f
MS
599
600 out_free:
601 free_vfsmnt(mnt);
602 return NULL;
1da177e4
LT
603}
604
7b7b1ace 605static inline void __mntput(struct vfsmount *mnt)
1da177e4 606{
3d733633 607 int cpu;
1da177e4 608 struct super_block *sb = mnt->mnt_sb;
3d733633
DH
609 /*
610 * We don't have to hold all of the locks at the
611 * same time here because we know that we're the
612 * last reference to mnt and that no new writers
613 * can come in.
614 */
615 for_each_possible_cpu(cpu) {
616 struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
617 if (cpu_writer->mnt != mnt)
618 continue;
619 spin_lock(&cpu_writer->lock);
620 atomic_add(cpu_writer->count, &mnt->__mnt_writers);
621 cpu_writer->count = 0;
622 /*
623 * Might as well do this so that no one
624 * ever sees the pointer and expects
625 * it to be valid.
626 */
627 cpu_writer->mnt = NULL;
628 spin_unlock(&cpu_writer->lock);
629 }
630 /*
631 * This probably indicates that somebody messed
632 * up a mnt_want/drop_write() pair. If this
633 * happens, the filesystem was probably unable
634 * to make r/w->r/o transitions.
635 */
636 WARN_ON(atomic_read(&mnt->__mnt_writers));
1da177e4
LT
637 dput(mnt->mnt_root);
638 free_vfsmnt(mnt);
639 deactivate_super(sb);
640}
641
7b7b1ace
AV
642void mntput_no_expire(struct vfsmount *mnt)
643{
644repeat:
645 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
646 if (likely(!mnt->mnt_pinned)) {
647 spin_unlock(&vfsmount_lock);
648 __mntput(mnt);
649 return;
650 }
651 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
652 mnt->mnt_pinned = 0;
653 spin_unlock(&vfsmount_lock);
654 acct_auto_close_mnt(mnt);
655 security_sb_umount_close(mnt);
656 goto repeat;
657 }
658}
659
660EXPORT_SYMBOL(mntput_no_expire);
661
662void mnt_pin(struct vfsmount *mnt)
663{
664 spin_lock(&vfsmount_lock);
665 mnt->mnt_pinned++;
666 spin_unlock(&vfsmount_lock);
667}
668
669EXPORT_SYMBOL(mnt_pin);
670
671void mnt_unpin(struct vfsmount *mnt)
672{
673 spin_lock(&vfsmount_lock);
674 if (mnt->mnt_pinned) {
675 atomic_inc(&mnt->mnt_count);
676 mnt->mnt_pinned--;
677 }
678 spin_unlock(&vfsmount_lock);
679}
680
681EXPORT_SYMBOL(mnt_unpin);
1da177e4 682
b3b304a2
MS
683static inline void mangle(struct seq_file *m, const char *s)
684{
685 seq_escape(m, s, " \t\n\\");
686}
687
688/*
689 * Simple .show_options callback for filesystems which don't want to
690 * implement more complex mount option showing.
691 *
692 * See also save_mount_options().
693 */
694int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
695{
696 const char *options = mnt->mnt_sb->s_options;
697
698 if (options != NULL && options[0]) {
699 seq_putc(m, ',');
700 mangle(m, options);
701 }
702
703 return 0;
704}
705EXPORT_SYMBOL(generic_show_options);
706
707/*
708 * If filesystem uses generic_show_options(), this function should be
709 * called from the fill_super() callback.
710 *
711 * The .remount_fs callback usually needs to be handled in a special
712 * way, to make sure, that previous options are not overwritten if the
713 * remount fails.
714 *
715 * Also note, that if the filesystem's .remount_fs function doesn't
716 * reset all options to their default value, but changes only newly
717 * given options, then the displayed options will not reflect reality
718 * any more.
719 */
720void save_mount_options(struct super_block *sb, char *options)
721{
722 kfree(sb->s_options);
723 sb->s_options = kstrdup(options, GFP_KERNEL);
724}
725EXPORT_SYMBOL(save_mount_options);
726
1da177e4
LT
727/* iterator */
728static void *m_start(struct seq_file *m, loff_t *pos)
729{
6b3286ed 730 struct mnt_namespace *n = m->private;
1da177e4 731
390c6843 732 down_read(&namespace_sem);
b0765fb8 733 return seq_list_start(&n->list, *pos);
1da177e4
LT
734}
735
736static void *m_next(struct seq_file *m, void *v, loff_t *pos)
737{
6b3286ed 738 struct mnt_namespace *n = m->private;
b0765fb8
PE
739
740 return seq_list_next(v, &n->list, pos);
1da177e4
LT
741}
742
743static void m_stop(struct seq_file *m, void *v)
744{
390c6843 745 up_read(&namespace_sem);
1da177e4
LT
746}
747
1da177e4
LT
748static int show_vfsmnt(struct seq_file *m, void *v)
749{
b0765fb8 750 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1da177e4
LT
751 int err = 0;
752 static struct proc_fs_info {
753 int flag;
754 char *str;
755 } fs_info[] = {
756 { MS_SYNCHRONOUS, ",sync" },
757 { MS_DIRSYNC, ",dirsync" },
758 { MS_MANDLOCK, ",mand" },
1da177e4
LT
759 { 0, NULL }
760 };
761 static struct proc_fs_info mnt_info[] = {
762 { MNT_NOSUID, ",nosuid" },
763 { MNT_NODEV, ",nodev" },
764 { MNT_NOEXEC, ",noexec" },
fc33a7bb
CH
765 { MNT_NOATIME, ",noatime" },
766 { MNT_NODIRATIME, ",nodiratime" },
47ae32d6 767 { MNT_RELATIME, ",relatime" },
1da177e4
LT
768 { 0, NULL }
769 };
770 struct proc_fs_info *fs_infop;
c32c2f63 771 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1da177e4
LT
772
773 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
774 seq_putc(m, ' ');
c32c2f63 775 seq_path(m, &mnt_path, " \t\n\\");
1da177e4
LT
776 seq_putc(m, ' ');
777 mangle(m, mnt->mnt_sb->s_type->name);
79c0b2df
MS
778 if (mnt->mnt_sb->s_subtype && mnt->mnt_sb->s_subtype[0]) {
779 seq_putc(m, '.');
780 mangle(m, mnt->mnt_sb->s_subtype);
781 }
2e4b7fcd 782 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
1da177e4
LT
783 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
784 if (mnt->mnt_sb->s_flags & fs_infop->flag)
785 seq_puts(m, fs_infop->str);
786 }
787 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
788 if (mnt->mnt_flags & fs_infop->flag)
789 seq_puts(m, fs_infop->str);
790 }
791 if (mnt->mnt_sb->s_op->show_options)
792 err = mnt->mnt_sb->s_op->show_options(m, mnt);
793 seq_puts(m, " 0 0\n");
794 return err;
795}
796
797struct seq_operations mounts_op = {
798 .start = m_start,
799 .next = m_next,
800 .stop = m_stop,
801 .show = show_vfsmnt
802};
803
b4629fe2
CL
804static int show_vfsstat(struct seq_file *m, void *v)
805{
b0765fb8 806 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
c32c2f63 807 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
b4629fe2
CL
808 int err = 0;
809
810 /* device */
811 if (mnt->mnt_devname) {
812 seq_puts(m, "device ");
813 mangle(m, mnt->mnt_devname);
814 } else
815 seq_puts(m, "no device");
816
817 /* mount point */
818 seq_puts(m, " mounted on ");
c32c2f63 819 seq_path(m, &mnt_path, " \t\n\\");
b4629fe2
CL
820 seq_putc(m, ' ');
821
822 /* file system type */
823 seq_puts(m, "with fstype ");
824 mangle(m, mnt->mnt_sb->s_type->name);
825
826 /* optional statistics */
827 if (mnt->mnt_sb->s_op->show_stats) {
828 seq_putc(m, ' ');
829 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
830 }
831
832 seq_putc(m, '\n');
833 return err;
834}
835
836struct seq_operations mountstats_op = {
837 .start = m_start,
838 .next = m_next,
839 .stop = m_stop,
840 .show = show_vfsstat,
841};
842
1da177e4
LT
843/**
844 * may_umount_tree - check if a mount tree is busy
845 * @mnt: root of mount tree
846 *
847 * This is called to check if a tree of mounts has any
848 * open files, pwds, chroots or sub mounts that are
849 * busy.
850 */
851int may_umount_tree(struct vfsmount *mnt)
852{
36341f64
RP
853 int actual_refs = 0;
854 int minimum_refs = 0;
855 struct vfsmount *p;
1da177e4
LT
856
857 spin_lock(&vfsmount_lock);
36341f64 858 for (p = mnt; p; p = next_mnt(p, mnt)) {
1da177e4
LT
859 actual_refs += atomic_read(&p->mnt_count);
860 minimum_refs += 2;
1da177e4
LT
861 }
862 spin_unlock(&vfsmount_lock);
863
864 if (actual_refs > minimum_refs)
e3474a8e 865 return 0;
1da177e4 866
e3474a8e 867 return 1;
1da177e4
LT
868}
869
870EXPORT_SYMBOL(may_umount_tree);
871
872/**
873 * may_umount - check if a mount point is busy
874 * @mnt: root of mount
875 *
876 * This is called to check if a mount point has any
877 * open files, pwds, chroots or sub mounts. If the
878 * mount has sub mounts this will return busy
879 * regardless of whether the sub mounts are busy.
880 *
881 * Doesn't take quota and stuff into account. IOW, in some cases it will
882 * give false negatives. The main reason why it's here is that we need
883 * a non-destructive way to look for easily umountable filesystems.
884 */
885int may_umount(struct vfsmount *mnt)
886{
e3474a8e 887 int ret = 1;
a05964f3
RP
888 spin_lock(&vfsmount_lock);
889 if (propagate_mount_busy(mnt, 2))
e3474a8e 890 ret = 0;
a05964f3
RP
891 spin_unlock(&vfsmount_lock);
892 return ret;
1da177e4
LT
893}
894
895EXPORT_SYMBOL(may_umount);
896
b90fa9ae 897void release_mounts(struct list_head *head)
70fbcdf4
RP
898{
899 struct vfsmount *mnt;
bf066c7d 900 while (!list_empty(head)) {
b5e61818 901 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
70fbcdf4
RP
902 list_del_init(&mnt->mnt_hash);
903 if (mnt->mnt_parent != mnt) {
904 struct dentry *dentry;
905 struct vfsmount *m;
906 spin_lock(&vfsmount_lock);
907 dentry = mnt->mnt_mountpoint;
908 m = mnt->mnt_parent;
909 mnt->mnt_mountpoint = mnt->mnt_root;
910 mnt->mnt_parent = mnt;
7c4b93d8 911 m->mnt_ghosts--;
70fbcdf4
RP
912 spin_unlock(&vfsmount_lock);
913 dput(dentry);
914 mntput(m);
915 }
916 mntput(mnt);
917 }
918}
919
a05964f3 920void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1da177e4
LT
921{
922 struct vfsmount *p;
1da177e4 923
1bfba4e8
AM
924 for (p = mnt; p; p = next_mnt(p, mnt))
925 list_move(&p->mnt_hash, kill);
1da177e4 926
a05964f3
RP
927 if (propagate)
928 propagate_umount(kill);
929
70fbcdf4
RP
930 list_for_each_entry(p, kill, mnt_hash) {
931 list_del_init(&p->mnt_expire);
932 list_del_init(&p->mnt_list);
6b3286ed
KK
933 __touch_mnt_namespace(p->mnt_ns);
934 p->mnt_ns = NULL;
70fbcdf4 935 list_del_init(&p->mnt_child);
7c4b93d8
AV
936 if (p->mnt_parent != p) {
937 p->mnt_parent->mnt_ghosts++;
f30ac319 938 p->mnt_mountpoint->d_mounted--;
7c4b93d8 939 }
a05964f3 940 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
941 }
942}
943
c35038be
AV
944static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
945
1da177e4
LT
946static int do_umount(struct vfsmount *mnt, int flags)
947{
b58fed8b 948 struct super_block *sb = mnt->mnt_sb;
1da177e4 949 int retval;
70fbcdf4 950 LIST_HEAD(umount_list);
1da177e4
LT
951
952 retval = security_sb_umount(mnt, flags);
953 if (retval)
954 return retval;
955
956 /*
957 * Allow userspace to request a mountpoint be expired rather than
958 * unmounting unconditionally. Unmount only happens if:
959 * (1) the mark is already set (the mark is cleared by mntput())
960 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
961 */
962 if (flags & MNT_EXPIRE) {
6ac08c39 963 if (mnt == current->fs->root.mnt ||
1da177e4
LT
964 flags & (MNT_FORCE | MNT_DETACH))
965 return -EINVAL;
966
967 if (atomic_read(&mnt->mnt_count) != 2)
968 return -EBUSY;
969
970 if (!xchg(&mnt->mnt_expiry_mark, 1))
971 return -EAGAIN;
972 }
973
974 /*
975 * If we may have to abort operations to get out of this
976 * mount, and they will themselves hold resources we must
977 * allow the fs to do things. In the Unix tradition of
978 * 'Gee thats tricky lets do it in userspace' the umount_begin
979 * might fail to complete on the first run through as other tasks
980 * must return, and the like. Thats for the mount program to worry
981 * about for the moment.
982 */
983
984 lock_kernel();
8b512d9a
TM
985 if (sb->s_op->umount_begin)
986 sb->s_op->umount_begin(mnt, flags);
1da177e4
LT
987 unlock_kernel();
988
989 /*
990 * No sense to grab the lock for this test, but test itself looks
991 * somewhat bogus. Suggestions for better replacement?
992 * Ho-hum... In principle, we might treat that as umount + switch
993 * to rootfs. GC would eventually take care of the old vfsmount.
994 * Actually it makes sense, especially if rootfs would contain a
995 * /reboot - static binary that would close all descriptors and
996 * call reboot(9). Then init(8) could umount root and exec /reboot.
997 */
6ac08c39 998 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
999 /*
1000 * Special case for "unmounting" root ...
1001 * we just try to remount it readonly.
1002 */
1003 down_write(&sb->s_umount);
1004 if (!(sb->s_flags & MS_RDONLY)) {
1005 lock_kernel();
1006 DQUOT_OFF(sb);
1007 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1008 unlock_kernel();
1009 }
1010 up_write(&sb->s_umount);
1011 return retval;
1012 }
1013
390c6843 1014 down_write(&namespace_sem);
1da177e4 1015 spin_lock(&vfsmount_lock);
5addc5dd 1016 event++;
1da177e4 1017
c35038be
AV
1018 if (!(flags & MNT_DETACH))
1019 shrink_submounts(mnt, &umount_list);
1020
1da177e4 1021 retval = -EBUSY;
a05964f3 1022 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1da177e4 1023 if (!list_empty(&mnt->mnt_list))
a05964f3 1024 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1025 retval = 0;
1026 }
1027 spin_unlock(&vfsmount_lock);
1028 if (retval)
1029 security_sb_umount_busy(mnt);
390c6843 1030 up_write(&namespace_sem);
70fbcdf4 1031 release_mounts(&umount_list);
1da177e4
LT
1032 return retval;
1033}
1034
1035/*
1036 * Now umount can handle mount points as well as block devices.
1037 * This is important for filesystems which use unnamed block devices.
1038 *
1039 * We now support a flag for forced unmount like the other 'big iron'
1040 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1041 */
1042
1043asmlinkage long sys_umount(char __user * name, int flags)
1044{
1045 struct nameidata nd;
1046 int retval;
1047
1048 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
1049 if (retval)
1050 goto out;
1051 retval = -EINVAL;
4ac91378 1052 if (nd.path.dentry != nd.path.mnt->mnt_root)
1da177e4 1053 goto dput_and_out;
4ac91378 1054 if (!check_mnt(nd.path.mnt))
1da177e4
LT
1055 goto dput_and_out;
1056
1057 retval = -EPERM;
1058 if (!capable(CAP_SYS_ADMIN))
1059 goto dput_and_out;
1060
4ac91378 1061 retval = do_umount(nd.path.mnt, flags);
1da177e4 1062dput_and_out:
429731b1 1063 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
4ac91378
JB
1064 dput(nd.path.dentry);
1065 mntput_no_expire(nd.path.mnt);
1da177e4
LT
1066out:
1067 return retval;
1068}
1069
1070#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1071
1072/*
b58fed8b 1073 * The 2.0 compatible umount. No flags.
1da177e4 1074 */
1da177e4
LT
1075asmlinkage long sys_oldumount(char __user * name)
1076{
b58fed8b 1077 return sys_umount(name, 0);
1da177e4
LT
1078}
1079
1080#endif
1081
1082static int mount_is_safe(struct nameidata *nd)
1083{
1084 if (capable(CAP_SYS_ADMIN))
1085 return 0;
1086 return -EPERM;
1087#ifdef notyet
4ac91378 1088 if (S_ISLNK(nd->path.dentry->d_inode->i_mode))
1da177e4 1089 return -EPERM;
4ac91378
JB
1090 if (nd->path.dentry->d_inode->i_mode & S_ISVTX) {
1091 if (current->uid != nd->path.dentry->d_inode->i_uid)
1da177e4
LT
1092 return -EPERM;
1093 }
e4543edd 1094 if (vfs_permission(nd, MAY_WRITE))
1da177e4
LT
1095 return -EPERM;
1096 return 0;
1097#endif
1098}
1099
b58fed8b 1100static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
1da177e4
LT
1101{
1102 while (1) {
1103 if (d == dentry)
1104 return 1;
1105 if (d == NULL || d == d->d_parent)
1106 return 0;
1107 d = d->d_parent;
1108 }
1109}
1110
b90fa9ae 1111struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
36341f64 1112 int flag)
1da177e4
LT
1113{
1114 struct vfsmount *res, *p, *q, *r, *s;
1a390689 1115 struct path path;
1da177e4 1116
9676f0c6
RP
1117 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1118 return NULL;
1119
36341f64 1120 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1121 if (!q)
1122 goto Enomem;
1123 q->mnt_mountpoint = mnt->mnt_mountpoint;
1124
1125 p = mnt;
fdadd65f 1126 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1da177e4
LT
1127 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
1128 continue;
1129
1130 for (s = r; s; s = next_mnt(s, r)) {
9676f0c6
RP
1131 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1132 s = skip_mnt_tree(s);
1133 continue;
1134 }
1da177e4
LT
1135 while (p != s->mnt_parent) {
1136 p = p->mnt_parent;
1137 q = q->mnt_parent;
1138 }
1139 p = s;
1a390689
AV
1140 path.mnt = q;
1141 path.dentry = p->mnt_mountpoint;
36341f64 1142 q = clone_mnt(p, p->mnt_root, flag);
1da177e4
LT
1143 if (!q)
1144 goto Enomem;
1145 spin_lock(&vfsmount_lock);
1146 list_add_tail(&q->mnt_list, &res->mnt_list);
1a390689 1147 attach_mnt(q, &path);
1da177e4
LT
1148 spin_unlock(&vfsmount_lock);
1149 }
1150 }
1151 return res;
b58fed8b 1152Enomem:
1da177e4 1153 if (res) {
70fbcdf4 1154 LIST_HEAD(umount_list);
1da177e4 1155 spin_lock(&vfsmount_lock);
a05964f3 1156 umount_tree(res, 0, &umount_list);
1da177e4 1157 spin_unlock(&vfsmount_lock);
70fbcdf4 1158 release_mounts(&umount_list);
1da177e4
LT
1159 }
1160 return NULL;
1161}
1162
8aec0809
AV
1163struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
1164{
1165 struct vfsmount *tree;
1a60a280 1166 down_write(&namespace_sem);
8aec0809 1167 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
1a60a280 1168 up_write(&namespace_sem);
8aec0809
AV
1169 return tree;
1170}
1171
1172void drop_collected_mounts(struct vfsmount *mnt)
1173{
1174 LIST_HEAD(umount_list);
1a60a280 1175 down_write(&namespace_sem);
8aec0809
AV
1176 spin_lock(&vfsmount_lock);
1177 umount_tree(mnt, 0, &umount_list);
1178 spin_unlock(&vfsmount_lock);
1a60a280 1179 up_write(&namespace_sem);
8aec0809
AV
1180 release_mounts(&umount_list);
1181}
1182
719f5d7f
MS
1183static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1184{
1185 struct vfsmount *p;
1186
1187 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1188 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1189 mnt_release_group_id(p);
1190 }
1191}
1192
1193static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1194{
1195 struct vfsmount *p;
1196
1197 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1198 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1199 int err = mnt_alloc_group_id(p);
1200 if (err) {
1201 cleanup_group_ids(mnt, p);
1202 return err;
1203 }
1204 }
1205 }
1206
1207 return 0;
1208}
1209
b90fa9ae
RP
1210/*
1211 * @source_mnt : mount tree to be attached
21444403
RP
1212 * @nd : place the mount tree @source_mnt is attached
1213 * @parent_nd : if non-null, detach the source_mnt from its parent and
1214 * store the parent mount and mountpoint dentry.
1215 * (done when source_mnt is moved)
b90fa9ae
RP
1216 *
1217 * NOTE: in the table below explains the semantics when a source mount
1218 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1219 * ---------------------------------------------------------------------------
1220 * | BIND MOUNT OPERATION |
1221 * |**************************************************************************
1222 * | source-->| shared | private | slave | unbindable |
1223 * | dest | | | | |
1224 * | | | | | | |
1225 * | v | | | | |
1226 * |**************************************************************************
1227 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1228 * | | | | | |
1229 * |non-shared| shared (+) | private | slave (*) | invalid |
1230 * ***************************************************************************
b90fa9ae
RP
1231 * A bind operation clones the source mount and mounts the clone on the
1232 * destination mount.
1233 *
1234 * (++) the cloned mount is propagated to all the mounts in the propagation
1235 * tree of the destination mount and the cloned mount is added to
1236 * the peer group of the source mount.
1237 * (+) the cloned mount is created under the destination mount and is marked
1238 * as shared. The cloned mount is added to the peer group of the source
1239 * mount.
5afe0022
RP
1240 * (+++) the mount is propagated to all the mounts in the propagation tree
1241 * of the destination mount and the cloned mount is made slave
1242 * of the same master as that of the source mount. The cloned mount
1243 * is marked as 'shared and slave'.
1244 * (*) the cloned mount is made a slave of the same master as that of the
1245 * source mount.
1246 *
9676f0c6
RP
1247 * ---------------------------------------------------------------------------
1248 * | MOVE MOUNT OPERATION |
1249 * |**************************************************************************
1250 * | source-->| shared | private | slave | unbindable |
1251 * | dest | | | | |
1252 * | | | | | | |
1253 * | v | | | | |
1254 * |**************************************************************************
1255 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1256 * | | | | | |
1257 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1258 * ***************************************************************************
5afe0022
RP
1259 *
1260 * (+) the mount is moved to the destination. And is then propagated to
1261 * all the mounts in the propagation tree of the destination mount.
21444403 1262 * (+*) the mount is moved to the destination.
5afe0022
RP
1263 * (+++) the mount is moved to the destination and is then propagated to
1264 * all the mounts belonging to the destination mount's propagation tree.
1265 * the mount is marked as 'shared and slave'.
1266 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1267 *
1268 * if the source mount is a tree, the operations explained above is
1269 * applied to each mount in the tree.
1270 * Must be called without spinlocks held, since this function can sleep
1271 * in allocations.
1272 */
1273static int attach_recursive_mnt(struct vfsmount *source_mnt,
1a390689 1274 struct path *path, struct path *parent_path)
b90fa9ae
RP
1275{
1276 LIST_HEAD(tree_list);
1a390689
AV
1277 struct vfsmount *dest_mnt = path->mnt;
1278 struct dentry *dest_dentry = path->dentry;
b90fa9ae 1279 struct vfsmount *child, *p;
719f5d7f 1280 int err;
b90fa9ae 1281
719f5d7f
MS
1282 if (IS_MNT_SHARED(dest_mnt)) {
1283 err = invent_group_ids(source_mnt, true);
1284 if (err)
1285 goto out;
1286 }
1287 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1288 if (err)
1289 goto out_cleanup_ids;
b90fa9ae
RP
1290
1291 if (IS_MNT_SHARED(dest_mnt)) {
1292 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1293 set_mnt_shared(p);
1294 }
1295
1296 spin_lock(&vfsmount_lock);
1a390689
AV
1297 if (parent_path) {
1298 detach_mnt(source_mnt, parent_path);
1299 attach_mnt(source_mnt, path);
6b3286ed 1300 touch_mnt_namespace(current->nsproxy->mnt_ns);
21444403
RP
1301 } else {
1302 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1303 commit_tree(source_mnt);
1304 }
b90fa9ae
RP
1305
1306 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1307 list_del_init(&child->mnt_hash);
1308 commit_tree(child);
1309 }
1310 spin_unlock(&vfsmount_lock);
1311 return 0;
719f5d7f
MS
1312
1313 out_cleanup_ids:
1314 if (IS_MNT_SHARED(dest_mnt))
1315 cleanup_group_ids(source_mnt, NULL);
1316 out:
1317 return err;
b90fa9ae
RP
1318}
1319
8c3ee42e 1320static int graft_tree(struct vfsmount *mnt, struct path *path)
1da177e4
LT
1321{
1322 int err;
1323 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1324 return -EINVAL;
1325
8c3ee42e 1326 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1da177e4
LT
1327 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1328 return -ENOTDIR;
1329
1330 err = -ENOENT;
8c3ee42e
AV
1331 mutex_lock(&path->dentry->d_inode->i_mutex);
1332 if (IS_DEADDIR(path->dentry->d_inode))
1da177e4
LT
1333 goto out_unlock;
1334
8c3ee42e 1335 err = security_sb_check_sb(mnt, path);
1da177e4
LT
1336 if (err)
1337 goto out_unlock;
1338
1339 err = -ENOENT;
8c3ee42e
AV
1340 if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
1341 err = attach_recursive_mnt(mnt, path, NULL);
1da177e4 1342out_unlock:
8c3ee42e 1343 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4 1344 if (!err)
8c3ee42e 1345 security_sb_post_addmount(mnt, path);
1da177e4
LT
1346 return err;
1347}
1348
07b20889
RP
1349/*
1350 * recursively change the type of the mountpoint.
2dafe1c4 1351 * noinline this do_mount helper to save do_mount stack space.
07b20889 1352 */
2dafe1c4 1353static noinline int do_change_type(struct nameidata *nd, int flag)
07b20889 1354{
4ac91378 1355 struct vfsmount *m, *mnt = nd->path.mnt;
07b20889
RP
1356 int recurse = flag & MS_REC;
1357 int type = flag & ~MS_REC;
719f5d7f 1358 int err = 0;
07b20889 1359
ee6f9582
MS
1360 if (!capable(CAP_SYS_ADMIN))
1361 return -EPERM;
1362
4ac91378 1363 if (nd->path.dentry != nd->path.mnt->mnt_root)
07b20889
RP
1364 return -EINVAL;
1365
1366 down_write(&namespace_sem);
719f5d7f
MS
1367 if (type == MS_SHARED) {
1368 err = invent_group_ids(mnt, recurse);
1369 if (err)
1370 goto out_unlock;
1371 }
1372
07b20889
RP
1373 spin_lock(&vfsmount_lock);
1374 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1375 change_mnt_propagation(m, type);
1376 spin_unlock(&vfsmount_lock);
719f5d7f
MS
1377
1378 out_unlock:
07b20889 1379 up_write(&namespace_sem);
719f5d7f 1380 return err;
07b20889
RP
1381}
1382
1da177e4
LT
1383/*
1384 * do loopback mount.
2dafe1c4 1385 * noinline this do_mount helper to save do_mount stack space.
1da177e4 1386 */
2dafe1c4
ES
1387static noinline int do_loopback(struct nameidata *nd, char *old_name,
1388 int recurse)
1da177e4
LT
1389{
1390 struct nameidata old_nd;
1391 struct vfsmount *mnt = NULL;
1392 int err = mount_is_safe(nd);
1393 if (err)
1394 return err;
1395 if (!old_name || !*old_name)
1396 return -EINVAL;
1397 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1398 if (err)
1399 return err;
1400
390c6843 1401 down_write(&namespace_sem);
1da177e4 1402 err = -EINVAL;
4ac91378
JB
1403 if (IS_MNT_UNBINDABLE(old_nd.path.mnt))
1404 goto out;
9676f0c6 1405
4ac91378 1406 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
ccd48bc7 1407 goto out;
1da177e4 1408
ccd48bc7
AV
1409 err = -ENOMEM;
1410 if (recurse)
4ac91378 1411 mnt = copy_tree(old_nd.path.mnt, old_nd.path.dentry, 0);
ccd48bc7 1412 else
4ac91378 1413 mnt = clone_mnt(old_nd.path.mnt, old_nd.path.dentry, 0);
ccd48bc7
AV
1414
1415 if (!mnt)
1416 goto out;
1417
8c3ee42e 1418 err = graft_tree(mnt, &nd->path);
ccd48bc7 1419 if (err) {
70fbcdf4 1420 LIST_HEAD(umount_list);
1da177e4 1421 spin_lock(&vfsmount_lock);
a05964f3 1422 umount_tree(mnt, 0, &umount_list);
1da177e4 1423 spin_unlock(&vfsmount_lock);
70fbcdf4 1424 release_mounts(&umount_list);
5b83d2c5 1425 }
1da177e4 1426
ccd48bc7 1427out:
390c6843 1428 up_write(&namespace_sem);
1d957f9b 1429 path_put(&old_nd.path);
1da177e4
LT
1430 return err;
1431}
1432
2e4b7fcd
DH
1433static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1434{
1435 int error = 0;
1436 int readonly_request = 0;
1437
1438 if (ms_flags & MS_RDONLY)
1439 readonly_request = 1;
1440 if (readonly_request == __mnt_is_readonly(mnt))
1441 return 0;
1442
1443 if (readonly_request)
1444 error = mnt_make_readonly(mnt);
1445 else
1446 __mnt_unmake_readonly(mnt);
1447 return error;
1448}
1449
1da177e4
LT
1450/*
1451 * change filesystem flags. dir should be a physical root of filesystem.
1452 * If you've mounted a non-root directory somewhere and want to do remount
1453 * on it - tough luck.
2dafe1c4 1454 * noinline this do_mount helper to save do_mount stack space.
1da177e4 1455 */
2dafe1c4 1456static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags,
1da177e4
LT
1457 void *data)
1458{
1459 int err;
4ac91378 1460 struct super_block *sb = nd->path.mnt->mnt_sb;
1da177e4
LT
1461
1462 if (!capable(CAP_SYS_ADMIN))
1463 return -EPERM;
1464
4ac91378 1465 if (!check_mnt(nd->path.mnt))
1da177e4
LT
1466 return -EINVAL;
1467
4ac91378 1468 if (nd->path.dentry != nd->path.mnt->mnt_root)
1da177e4
LT
1469 return -EINVAL;
1470
1471 down_write(&sb->s_umount);
2e4b7fcd
DH
1472 if (flags & MS_BIND)
1473 err = change_mount_flags(nd->path.mnt, flags);
1474 else
1475 err = do_remount_sb(sb, flags, data, 0);
1da177e4 1476 if (!err)
4ac91378 1477 nd->path.mnt->mnt_flags = mnt_flags;
1da177e4
LT
1478 up_write(&sb->s_umount);
1479 if (!err)
4ac91378 1480 security_sb_post_remount(nd->path.mnt, flags, data);
1da177e4
LT
1481 return err;
1482}
1483
9676f0c6
RP
1484static inline int tree_contains_unbindable(struct vfsmount *mnt)
1485{
1486 struct vfsmount *p;
1487 for (p = mnt; p; p = next_mnt(p, mnt)) {
1488 if (IS_MNT_UNBINDABLE(p))
1489 return 1;
1490 }
1491 return 0;
1492}
1493
2dafe1c4
ES
1494/*
1495 * noinline this do_mount helper to save do_mount stack space.
1496 */
1497static noinline int do_move_mount(struct nameidata *nd, char *old_name)
1da177e4 1498{
1a390689
AV
1499 struct nameidata old_nd;
1500 struct path parent_path;
1da177e4
LT
1501 struct vfsmount *p;
1502 int err = 0;
1503 if (!capable(CAP_SYS_ADMIN))
1504 return -EPERM;
1505 if (!old_name || !*old_name)
1506 return -EINVAL;
1507 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1508 if (err)
1509 return err;
1510
390c6843 1511 down_write(&namespace_sem);
4ac91378
JB
1512 while (d_mountpoint(nd->path.dentry) &&
1513 follow_down(&nd->path.mnt, &nd->path.dentry))
1da177e4
LT
1514 ;
1515 err = -EINVAL;
4ac91378 1516 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1da177e4
LT
1517 goto out;
1518
1519 err = -ENOENT;
4ac91378
JB
1520 mutex_lock(&nd->path.dentry->d_inode->i_mutex);
1521 if (IS_DEADDIR(nd->path.dentry->d_inode))
1da177e4
LT
1522 goto out1;
1523
4ac91378 1524 if (!IS_ROOT(nd->path.dentry) && d_unhashed(nd->path.dentry))
21444403 1525 goto out1;
1da177e4
LT
1526
1527 err = -EINVAL;
4ac91378 1528 if (old_nd.path.dentry != old_nd.path.mnt->mnt_root)
21444403 1529 goto out1;
1da177e4 1530
4ac91378 1531 if (old_nd.path.mnt == old_nd.path.mnt->mnt_parent)
21444403 1532 goto out1;
1da177e4 1533
4ac91378
JB
1534 if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
1535 S_ISDIR(old_nd.path.dentry->d_inode->i_mode))
21444403
RP
1536 goto out1;
1537 /*
1538 * Don't move a mount residing in a shared parent.
1539 */
4ac91378
JB
1540 if (old_nd.path.mnt->mnt_parent &&
1541 IS_MNT_SHARED(old_nd.path.mnt->mnt_parent))
21444403 1542 goto out1;
9676f0c6
RP
1543 /*
1544 * Don't move a mount tree containing unbindable mounts to a destination
1545 * mount which is shared.
1546 */
4ac91378
JB
1547 if (IS_MNT_SHARED(nd->path.mnt) &&
1548 tree_contains_unbindable(old_nd.path.mnt))
9676f0c6 1549 goto out1;
1da177e4 1550 err = -ELOOP;
4ac91378
JB
1551 for (p = nd->path.mnt; p->mnt_parent != p; p = p->mnt_parent)
1552 if (p == old_nd.path.mnt)
21444403 1553 goto out1;
1da177e4 1554
1a390689 1555 err = attach_recursive_mnt(old_nd.path.mnt, &nd->path, &parent_path);
4ac91378 1556 if (err)
21444403 1557 goto out1;
1da177e4
LT
1558
1559 /* if the mount is moved, it should no longer be expire
1560 * automatically */
4ac91378 1561 list_del_init(&old_nd.path.mnt->mnt_expire);
1da177e4 1562out1:
4ac91378 1563 mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
1da177e4 1564out:
390c6843 1565 up_write(&namespace_sem);
1da177e4 1566 if (!err)
1a390689 1567 path_put(&parent_path);
1d957f9b 1568 path_put(&old_nd.path);
1da177e4
LT
1569 return err;
1570}
1571
1572/*
1573 * create a new mount for userspace and request it to be added into the
1574 * namespace's tree
2dafe1c4 1575 * noinline this do_mount helper to save do_mount stack space.
1da177e4 1576 */
2dafe1c4 1577static noinline int do_new_mount(struct nameidata *nd, char *type, int flags,
1da177e4
LT
1578 int mnt_flags, char *name, void *data)
1579{
1580 struct vfsmount *mnt;
1581
1582 if (!type || !memchr(type, 0, PAGE_SIZE))
1583 return -EINVAL;
1584
1585 /* we need capabilities... */
1586 if (!capable(CAP_SYS_ADMIN))
1587 return -EPERM;
1588
1589 mnt = do_kern_mount(type, flags, name, data);
1590 if (IS_ERR(mnt))
1591 return PTR_ERR(mnt);
1592
1593 return do_add_mount(mnt, nd, mnt_flags, NULL);
1594}
1595
1596/*
1597 * add a mount into a namespace's mount tree
1598 * - provide the option of adding the new mount to an expiration list
1599 */
1600int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1601 int mnt_flags, struct list_head *fslist)
1602{
1603 int err;
1604
390c6843 1605 down_write(&namespace_sem);
1da177e4 1606 /* Something was mounted here while we slept */
4ac91378
JB
1607 while (d_mountpoint(nd->path.dentry) &&
1608 follow_down(&nd->path.mnt, &nd->path.dentry))
1da177e4
LT
1609 ;
1610 err = -EINVAL;
4ac91378 1611 if (!check_mnt(nd->path.mnt))
1da177e4
LT
1612 goto unlock;
1613
1614 /* Refuse the same filesystem on the same mount point */
1615 err = -EBUSY;
4ac91378
JB
1616 if (nd->path.mnt->mnt_sb == newmnt->mnt_sb &&
1617 nd->path.mnt->mnt_root == nd->path.dentry)
1da177e4
LT
1618 goto unlock;
1619
1620 err = -EINVAL;
1621 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1622 goto unlock;
1623
1624 newmnt->mnt_flags = mnt_flags;
8c3ee42e 1625 if ((err = graft_tree(newmnt, &nd->path)))
5b83d2c5 1626 goto unlock;
1da177e4 1627
6758f953 1628 if (fslist) /* add to the specified expiration list */
55e700b9 1629 list_add_tail(&newmnt->mnt_expire, fslist);
6758f953 1630
390c6843 1631 up_write(&namespace_sem);
5b83d2c5 1632 return 0;
1da177e4
LT
1633
1634unlock:
390c6843 1635 up_write(&namespace_sem);
1da177e4
LT
1636 mntput(newmnt);
1637 return err;
1638}
1639
1640EXPORT_SYMBOL_GPL(do_add_mount);
1641
1642/*
1643 * process a list of expirable mountpoints with the intent of discarding any
1644 * mountpoints that aren't in use and haven't been touched since last we came
1645 * here
1646 */
1647void mark_mounts_for_expiry(struct list_head *mounts)
1648{
1da177e4
LT
1649 struct vfsmount *mnt, *next;
1650 LIST_HEAD(graveyard);
bcc5c7d2 1651 LIST_HEAD(umounts);
1da177e4
LT
1652
1653 if (list_empty(mounts))
1654 return;
1655
bcc5c7d2 1656 down_write(&namespace_sem);
1da177e4
LT
1657 spin_lock(&vfsmount_lock);
1658
1659 /* extract from the expiration list every vfsmount that matches the
1660 * following criteria:
1661 * - only referenced by its parent vfsmount
1662 * - still marked for expiry (marked on the last call here; marks are
1663 * cleared by mntput())
1664 */
55e700b9 1665 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1da177e4 1666 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
bcc5c7d2 1667 propagate_mount_busy(mnt, 1))
1da177e4 1668 continue;
55e700b9 1669 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 1670 }
bcc5c7d2
AV
1671 while (!list_empty(&graveyard)) {
1672 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1673 touch_mnt_namespace(mnt->mnt_ns);
1674 umount_tree(mnt, 1, &umounts);
1675 }
5528f911 1676 spin_unlock(&vfsmount_lock);
bcc5c7d2
AV
1677 up_write(&namespace_sem);
1678
1679 release_mounts(&umounts);
5528f911
TM
1680}
1681
1682EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1683
1684/*
1685 * Ripoff of 'select_parent()'
1686 *
1687 * search the list of submounts for a given mountpoint, and move any
1688 * shrinkable submounts to the 'graveyard' list.
1689 */
1690static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1691{
1692 struct vfsmount *this_parent = parent;
1693 struct list_head *next;
1694 int found = 0;
1695
1696repeat:
1697 next = this_parent->mnt_mounts.next;
1698resume:
1699 while (next != &this_parent->mnt_mounts) {
1700 struct list_head *tmp = next;
1701 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1702
1703 next = tmp->next;
1704 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1da177e4 1705 continue;
5528f911
TM
1706 /*
1707 * Descend a level if the d_mounts list is non-empty.
1708 */
1709 if (!list_empty(&mnt->mnt_mounts)) {
1710 this_parent = mnt;
1711 goto repeat;
1712 }
1da177e4 1713
5528f911 1714 if (!propagate_mount_busy(mnt, 1)) {
5528f911
TM
1715 list_move_tail(&mnt->mnt_expire, graveyard);
1716 found++;
1717 }
1da177e4 1718 }
5528f911
TM
1719 /*
1720 * All done at this level ... ascend and resume the search
1721 */
1722 if (this_parent != parent) {
1723 next = this_parent->mnt_child.next;
1724 this_parent = this_parent->mnt_parent;
1725 goto resume;
1726 }
1727 return found;
1728}
1729
1730/*
1731 * process a list of expirable mountpoints with the intent of discarding any
1732 * submounts of a specific parent mountpoint
1733 */
c35038be 1734static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
5528f911
TM
1735{
1736 LIST_HEAD(graveyard);
c35038be 1737 struct vfsmount *m;
5528f911 1738
5528f911 1739 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 1740 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 1741 while (!list_empty(&graveyard)) {
c35038be 1742 m = list_first_entry(&graveyard, struct vfsmount,
bcc5c7d2
AV
1743 mnt_expire);
1744 touch_mnt_namespace(mnt->mnt_ns);
c35038be 1745 umount_tree(mnt, 1, umounts);
bcc5c7d2
AV
1746 }
1747 }
1da177e4
LT
1748}
1749
1da177e4
LT
1750/*
1751 * Some copy_from_user() implementations do not return the exact number of
1752 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1753 * Note that this function differs from copy_from_user() in that it will oops
1754 * on bad values of `to', rather than returning a short copy.
1755 */
b58fed8b
RP
1756static long exact_copy_from_user(void *to, const void __user * from,
1757 unsigned long n)
1da177e4
LT
1758{
1759 char *t = to;
1760 const char __user *f = from;
1761 char c;
1762
1763 if (!access_ok(VERIFY_READ, from, n))
1764 return n;
1765
1766 while (n) {
1767 if (__get_user(c, f)) {
1768 memset(t, 0, n);
1769 break;
1770 }
1771 *t++ = c;
1772 f++;
1773 n--;
1774 }
1775 return n;
1776}
1777
b58fed8b 1778int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
1779{
1780 int i;
1781 unsigned long page;
1782 unsigned long size;
b58fed8b 1783
1da177e4
LT
1784 *where = 0;
1785 if (!data)
1786 return 0;
1787
1788 if (!(page = __get_free_page(GFP_KERNEL)))
1789 return -ENOMEM;
1790
1791 /* We only care that *some* data at the address the user
1792 * gave us is valid. Just in case, we'll zero
1793 * the remainder of the page.
1794 */
1795 /* copy_from_user cannot cross TASK_SIZE ! */
1796 size = TASK_SIZE - (unsigned long)data;
1797 if (size > PAGE_SIZE)
1798 size = PAGE_SIZE;
1799
1800 i = size - exact_copy_from_user((void *)page, data, size);
1801 if (!i) {
b58fed8b 1802 free_page(page);
1da177e4
LT
1803 return -EFAULT;
1804 }
1805 if (i != PAGE_SIZE)
1806 memset((char *)page + i, 0, PAGE_SIZE - i);
1807 *where = page;
1808 return 0;
1809}
1810
1811/*
1812 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1813 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1814 *
1815 * data is a (void *) that can point to any structure up to
1816 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1817 * information (or be NULL).
1818 *
1819 * Pre-0.97 versions of mount() didn't have a flags word.
1820 * When the flags word was introduced its top half was required
1821 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1822 * Therefore, if this magic number is present, it carries no information
1823 * and must be discarded.
1824 */
b58fed8b 1825long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
1826 unsigned long flags, void *data_page)
1827{
1828 struct nameidata nd;
1829 int retval = 0;
1830 int mnt_flags = 0;
1831
1832 /* Discard magic */
1833 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1834 flags &= ~MS_MGC_MSK;
1835
1836 /* Basic sanity checks */
1837
1838 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1839 return -EINVAL;
1840 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1841 return -EINVAL;
1842
1843 if (data_page)
1844 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1845
1846 /* Separate the per-mountpoint flags */
1847 if (flags & MS_NOSUID)
1848 mnt_flags |= MNT_NOSUID;
1849 if (flags & MS_NODEV)
1850 mnt_flags |= MNT_NODEV;
1851 if (flags & MS_NOEXEC)
1852 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
1853 if (flags & MS_NOATIME)
1854 mnt_flags |= MNT_NOATIME;
1855 if (flags & MS_NODIRATIME)
1856 mnt_flags |= MNT_NODIRATIME;
47ae32d6
VH
1857 if (flags & MS_RELATIME)
1858 mnt_flags |= MNT_RELATIME;
2e4b7fcd
DH
1859 if (flags & MS_RDONLY)
1860 mnt_flags |= MNT_READONLY;
fc33a7bb
CH
1861
1862 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
8bf9725c 1863 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1da177e4
LT
1864
1865 /* ... and get the mountpoint */
1866 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1867 if (retval)
1868 return retval;
1869
b5266eb4
AV
1870 retval = security_sb_mount(dev_name, &nd.path,
1871 type_page, flags, data_page);
1da177e4
LT
1872 if (retval)
1873 goto dput_out;
1874
1875 if (flags & MS_REMOUNT)
1876 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1877 data_page);
1878 else if (flags & MS_BIND)
eee391a6 1879 retval = do_loopback(&nd, dev_name, flags & MS_REC);
9676f0c6 1880 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
07b20889 1881 retval = do_change_type(&nd, flags);
1da177e4
LT
1882 else if (flags & MS_MOVE)
1883 retval = do_move_mount(&nd, dev_name);
1884 else
1885 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1886 dev_name, data_page);
1887dput_out:
1d957f9b 1888 path_put(&nd.path);
1da177e4
LT
1889 return retval;
1890}
1891
741a2951
JD
1892/*
1893 * Allocate a new namespace structure and populate it with contents
1894 * copied from the namespace of the passed in task structure.
1895 */
e3222c4e 1896static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 1897 struct fs_struct *fs)
1da177e4 1898{
6b3286ed 1899 struct mnt_namespace *new_ns;
1da177e4 1900 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1da177e4
LT
1901 struct vfsmount *p, *q;
1902
6b3286ed 1903 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1da177e4 1904 if (!new_ns)
467e9f4b 1905 return ERR_PTR(-ENOMEM);
1da177e4
LT
1906
1907 atomic_set(&new_ns->count, 1);
1da177e4 1908 INIT_LIST_HEAD(&new_ns->list);
5addc5dd
AV
1909 init_waitqueue_head(&new_ns->poll);
1910 new_ns->event = 0;
1da177e4 1911
390c6843 1912 down_write(&namespace_sem);
1da177e4 1913 /* First pass: copy the tree topology */
6b3286ed 1914 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
9676f0c6 1915 CL_COPY_ALL | CL_EXPIRE);
1da177e4 1916 if (!new_ns->root) {
390c6843 1917 up_write(&namespace_sem);
1da177e4 1918 kfree(new_ns);
467e9f4b 1919 return ERR_PTR(-ENOMEM);;
1da177e4
LT
1920 }
1921 spin_lock(&vfsmount_lock);
1922 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1923 spin_unlock(&vfsmount_lock);
1924
1925 /*
1926 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1927 * as belonging to new namespace. We have already acquired a private
1928 * fs_struct, so tsk->fs->lock is not needed.
1929 */
6b3286ed 1930 p = mnt_ns->root;
1da177e4
LT
1931 q = new_ns->root;
1932 while (p) {
6b3286ed 1933 q->mnt_ns = new_ns;
1da177e4 1934 if (fs) {
6ac08c39 1935 if (p == fs->root.mnt) {
1da177e4 1936 rootmnt = p;
6ac08c39 1937 fs->root.mnt = mntget(q);
1da177e4 1938 }
6ac08c39 1939 if (p == fs->pwd.mnt) {
1da177e4 1940 pwdmnt = p;
6ac08c39 1941 fs->pwd.mnt = mntget(q);
1da177e4 1942 }
6ac08c39 1943 if (p == fs->altroot.mnt) {
1da177e4 1944 altrootmnt = p;
6ac08c39 1945 fs->altroot.mnt = mntget(q);
1da177e4
LT
1946 }
1947 }
6b3286ed 1948 p = next_mnt(p, mnt_ns->root);
1da177e4
LT
1949 q = next_mnt(q, new_ns->root);
1950 }
390c6843 1951 up_write(&namespace_sem);
1da177e4 1952
1da177e4
LT
1953 if (rootmnt)
1954 mntput(rootmnt);
1955 if (pwdmnt)
1956 mntput(pwdmnt);
1957 if (altrootmnt)
1958 mntput(altrootmnt);
1959
741a2951
JD
1960 return new_ns;
1961}
1962
213dd266 1963struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 1964 struct fs_struct *new_fs)
741a2951 1965{
6b3286ed 1966 struct mnt_namespace *new_ns;
741a2951 1967
e3222c4e 1968 BUG_ON(!ns);
6b3286ed 1969 get_mnt_ns(ns);
741a2951
JD
1970
1971 if (!(flags & CLONE_NEWNS))
e3222c4e 1972 return ns;
741a2951 1973
e3222c4e 1974 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 1975
6b3286ed 1976 put_mnt_ns(ns);
e3222c4e 1977 return new_ns;
1da177e4
LT
1978}
1979
1980asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1981 char __user * type, unsigned long flags,
1982 void __user * data)
1983{
1984 int retval;
1985 unsigned long data_page;
1986 unsigned long type_page;
1987 unsigned long dev_page;
1988 char *dir_page;
1989
b58fed8b 1990 retval = copy_mount_options(type, &type_page);
1da177e4
LT
1991 if (retval < 0)
1992 return retval;
1993
1994 dir_page = getname(dir_name);
1995 retval = PTR_ERR(dir_page);
1996 if (IS_ERR(dir_page))
1997 goto out1;
1998
b58fed8b 1999 retval = copy_mount_options(dev_name, &dev_page);
1da177e4
LT
2000 if (retval < 0)
2001 goto out2;
2002
b58fed8b 2003 retval = copy_mount_options(data, &data_page);
1da177e4
LT
2004 if (retval < 0)
2005 goto out3;
2006
2007 lock_kernel();
b58fed8b
RP
2008 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
2009 flags, (void *)data_page);
1da177e4
LT
2010 unlock_kernel();
2011 free_page(data_page);
2012
2013out3:
2014 free_page(dev_page);
2015out2:
2016 putname(dir_page);
2017out1:
2018 free_page(type_page);
2019 return retval;
2020}
2021
2022/*
2023 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
2024 * It can block. Requires the big lock held.
2025 */
ac748a09 2026void set_fs_root(struct fs_struct *fs, struct path *path)
1da177e4 2027{
6ac08c39
JB
2028 struct path old_root;
2029
1da177e4
LT
2030 write_lock(&fs->lock);
2031 old_root = fs->root;
ac748a09
JB
2032 fs->root = *path;
2033 path_get(path);
1da177e4 2034 write_unlock(&fs->lock);
6ac08c39
JB
2035 if (old_root.dentry)
2036 path_put(&old_root);
1da177e4
LT
2037}
2038
2039/*
2040 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
2041 * It can block. Requires the big lock held.
2042 */
ac748a09 2043void set_fs_pwd(struct fs_struct *fs, struct path *path)
1da177e4 2044{
6ac08c39 2045 struct path old_pwd;
1da177e4
LT
2046
2047 write_lock(&fs->lock);
2048 old_pwd = fs->pwd;
ac748a09
JB
2049 fs->pwd = *path;
2050 path_get(path);
1da177e4
LT
2051 write_unlock(&fs->lock);
2052
6ac08c39
JB
2053 if (old_pwd.dentry)
2054 path_put(&old_pwd);
1da177e4
LT
2055}
2056
1a390689 2057static void chroot_fs_refs(struct path *old_root, struct path *new_root)
1da177e4
LT
2058{
2059 struct task_struct *g, *p;
2060 struct fs_struct *fs;
2061
2062 read_lock(&tasklist_lock);
2063 do_each_thread(g, p) {
2064 task_lock(p);
2065 fs = p->fs;
2066 if (fs) {
2067 atomic_inc(&fs->count);
2068 task_unlock(p);
1a390689
AV
2069 if (fs->root.dentry == old_root->dentry
2070 && fs->root.mnt == old_root->mnt)
2071 set_fs_root(fs, new_root);
2072 if (fs->pwd.dentry == old_root->dentry
2073 && fs->pwd.mnt == old_root->mnt)
2074 set_fs_pwd(fs, new_root);
1da177e4
LT
2075 put_fs_struct(fs);
2076 } else
2077 task_unlock(p);
2078 } while_each_thread(g, p);
2079 read_unlock(&tasklist_lock);
2080}
2081
2082/*
2083 * pivot_root Semantics:
2084 * Moves the root file system of the current process to the directory put_old,
2085 * makes new_root as the new root file system of the current process, and sets
2086 * root/cwd of all processes which had them on the current root to new_root.
2087 *
2088 * Restrictions:
2089 * The new_root and put_old must be directories, and must not be on the
2090 * same file system as the current process root. The put_old must be
2091 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2092 * pointed to by put_old must yield the same directory as new_root. No other
2093 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2094 *
4a0d11fa
NB
2095 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2096 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2097 * in this situation.
2098 *
1da177e4
LT
2099 * Notes:
2100 * - we don't move root/cwd if they are not at the root (reason: if something
2101 * cared enough to change them, it's probably wrong to force them elsewhere)
2102 * - it's okay to pick a root that isn't the root of a file system, e.g.
2103 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2104 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2105 * first.
2106 */
b58fed8b
RP
2107asmlinkage long sys_pivot_root(const char __user * new_root,
2108 const char __user * put_old)
1da177e4
LT
2109{
2110 struct vfsmount *tmp;
8c3ee42e
AV
2111 struct nameidata new_nd, old_nd;
2112 struct path parent_path, root_parent, root;
1da177e4
LT
2113 int error;
2114
2115 if (!capable(CAP_SYS_ADMIN))
2116 return -EPERM;
2117
b58fed8b
RP
2118 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
2119 &new_nd);
1da177e4
LT
2120 if (error)
2121 goto out0;
2122 error = -EINVAL;
4ac91378 2123 if (!check_mnt(new_nd.path.mnt))
1da177e4
LT
2124 goto out1;
2125
b58fed8b 2126 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1da177e4
LT
2127 if (error)
2128 goto out1;
2129
b5266eb4 2130 error = security_sb_pivotroot(&old_nd.path, &new_nd.path);
1da177e4 2131 if (error) {
1d957f9b 2132 path_put(&old_nd.path);
1da177e4
LT
2133 goto out1;
2134 }
2135
2136 read_lock(&current->fs->lock);
8c3ee42e 2137 root = current->fs->root;
6ac08c39 2138 path_get(&current->fs->root);
1da177e4 2139 read_unlock(&current->fs->lock);
390c6843 2140 down_write(&namespace_sem);
4ac91378 2141 mutex_lock(&old_nd.path.dentry->d_inode->i_mutex);
1da177e4 2142 error = -EINVAL;
4ac91378
JB
2143 if (IS_MNT_SHARED(old_nd.path.mnt) ||
2144 IS_MNT_SHARED(new_nd.path.mnt->mnt_parent) ||
8c3ee42e 2145 IS_MNT_SHARED(root.mnt->mnt_parent))
21444403 2146 goto out2;
8c3ee42e 2147 if (!check_mnt(root.mnt))
1da177e4
LT
2148 goto out2;
2149 error = -ENOENT;
4ac91378 2150 if (IS_DEADDIR(new_nd.path.dentry->d_inode))
1da177e4 2151 goto out2;
4ac91378 2152 if (d_unhashed(new_nd.path.dentry) && !IS_ROOT(new_nd.path.dentry))
1da177e4 2153 goto out2;
4ac91378 2154 if (d_unhashed(old_nd.path.dentry) && !IS_ROOT(old_nd.path.dentry))
1da177e4
LT
2155 goto out2;
2156 error = -EBUSY;
8c3ee42e
AV
2157 if (new_nd.path.mnt == root.mnt ||
2158 old_nd.path.mnt == root.mnt)
1da177e4
LT
2159 goto out2; /* loop, on the same file system */
2160 error = -EINVAL;
8c3ee42e 2161 if (root.mnt->mnt_root != root.dentry)
1da177e4 2162 goto out2; /* not a mountpoint */
8c3ee42e 2163 if (root.mnt->mnt_parent == root.mnt)
0bb6fcc1 2164 goto out2; /* not attached */
4ac91378 2165 if (new_nd.path.mnt->mnt_root != new_nd.path.dentry)
1da177e4 2166 goto out2; /* not a mountpoint */
4ac91378 2167 if (new_nd.path.mnt->mnt_parent == new_nd.path.mnt)
0bb6fcc1 2168 goto out2; /* not attached */
4ac91378
JB
2169 /* make sure we can reach put_old from new_root */
2170 tmp = old_nd.path.mnt;
1da177e4 2171 spin_lock(&vfsmount_lock);
4ac91378 2172 if (tmp != new_nd.path.mnt) {
1da177e4
LT
2173 for (;;) {
2174 if (tmp->mnt_parent == tmp)
2175 goto out3; /* already mounted on put_old */
4ac91378 2176 if (tmp->mnt_parent == new_nd.path.mnt)
1da177e4
LT
2177 break;
2178 tmp = tmp->mnt_parent;
2179 }
4ac91378 2180 if (!is_subdir(tmp->mnt_mountpoint, new_nd.path.dentry))
1da177e4 2181 goto out3;
4ac91378 2182 } else if (!is_subdir(old_nd.path.dentry, new_nd.path.dentry))
1da177e4 2183 goto out3;
1a390689 2184 detach_mnt(new_nd.path.mnt, &parent_path);
8c3ee42e 2185 detach_mnt(root.mnt, &root_parent);
4ac91378 2186 /* mount old root on put_old */
8c3ee42e 2187 attach_mnt(root.mnt, &old_nd.path);
4ac91378
JB
2188 /* mount new_root on / */
2189 attach_mnt(new_nd.path.mnt, &root_parent);
6b3286ed 2190 touch_mnt_namespace(current->nsproxy->mnt_ns);
1da177e4 2191 spin_unlock(&vfsmount_lock);
8c3ee42e
AV
2192 chroot_fs_refs(&root, &new_nd.path);
2193 security_sb_post_pivotroot(&root, &new_nd.path);
1da177e4 2194 error = 0;
1a390689
AV
2195 path_put(&root_parent);
2196 path_put(&parent_path);
1da177e4 2197out2:
4ac91378 2198 mutex_unlock(&old_nd.path.dentry->d_inode->i_mutex);
390c6843 2199 up_write(&namespace_sem);
8c3ee42e 2200 path_put(&root);
1d957f9b 2201 path_put(&old_nd.path);
1da177e4 2202out1:
1d957f9b 2203 path_put(&new_nd.path);
1da177e4 2204out0:
1da177e4
LT
2205 return error;
2206out3:
2207 spin_unlock(&vfsmount_lock);
2208 goto out2;
2209}
2210
2211static void __init init_mount_tree(void)
2212{
2213 struct vfsmount *mnt;
6b3286ed 2214 struct mnt_namespace *ns;
ac748a09 2215 struct path root;
1da177e4
LT
2216
2217 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2218 if (IS_ERR(mnt))
2219 panic("Can't create rootfs");
6b3286ed
KK
2220 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
2221 if (!ns)
1da177e4 2222 panic("Can't allocate initial namespace");
6b3286ed
KK
2223 atomic_set(&ns->count, 1);
2224 INIT_LIST_HEAD(&ns->list);
2225 init_waitqueue_head(&ns->poll);
2226 ns->event = 0;
2227 list_add(&mnt->mnt_list, &ns->list);
2228 ns->root = mnt;
2229 mnt->mnt_ns = ns;
2230
2231 init_task.nsproxy->mnt_ns = ns;
2232 get_mnt_ns(ns);
2233
ac748a09
JB
2234 root.mnt = ns->root;
2235 root.dentry = ns->root->mnt_root;
2236
2237 set_fs_pwd(current->fs, &root);
2238 set_fs_root(current->fs, &root);
1da177e4
LT
2239}
2240
74bf17cf 2241void __init mnt_init(void)
1da177e4 2242{
13f14b4d 2243 unsigned u;
15a67dd8 2244 int err;
1da177e4 2245
390c6843
RP
2246 init_rwsem(&namespace_sem);
2247
1da177e4 2248 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
20c2df83 2249 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2250
b58fed8b 2251 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2252
2253 if (!mount_hashtable)
2254 panic("Failed to allocate mount hash table\n");
2255
13f14b4d
ED
2256 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2257
2258 for (u = 0; u < HASH_SIZE; u++)
2259 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2260
15a67dd8
RD
2261 err = sysfs_init();
2262 if (err)
2263 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2264 __FUNCTION__, err);
00d26666
GKH
2265 fs_kobj = kobject_create_and_add("fs", NULL);
2266 if (!fs_kobj)
2267 printk(KERN_WARNING "%s: kobj create error\n", __FUNCTION__);
1da177e4
LT
2268 init_rootfs();
2269 init_mount_tree();
2270}
2271
6b3286ed 2272void __put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2273{
6b3286ed 2274 struct vfsmount *root = ns->root;
70fbcdf4 2275 LIST_HEAD(umount_list);
6b3286ed 2276 ns->root = NULL;
1ce88cf4 2277 spin_unlock(&vfsmount_lock);
390c6843 2278 down_write(&namespace_sem);
1da177e4 2279 spin_lock(&vfsmount_lock);
a05964f3 2280 umount_tree(root, 0, &umount_list);
1da177e4 2281 spin_unlock(&vfsmount_lock);
390c6843 2282 up_write(&namespace_sem);
70fbcdf4 2283 release_mounts(&umount_list);
6b3286ed 2284 kfree(ns);
1da177e4 2285}