]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/namespace.c
cifs: timeout dfs automounts +little fix.
[net-next-2.6.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4
LT
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
14#include <linux/smp_lock.h>
15#include <linux/init.h>
15a67dd8 16#include <linux/kernel.h>
1da177e4
LT
17#include <linux/quotaops.h>
18#include <linux/acct.h>
16f7e0fe 19#include <linux/capability.h>
3d733633 20#include <linux/cpumask.h>
1da177e4 21#include <linux/module.h>
f20a9ead 22#include <linux/sysfs.h>
1da177e4 23#include <linux/seq_file.h>
6b3286ed 24#include <linux/mnt_namespace.h>
1da177e4
LT
25#include <linux/namei.h>
26#include <linux/security.h>
27#include <linux/mount.h>
07f3f05c 28#include <linux/ramfs.h>
13f14b4d 29#include <linux/log2.h>
73cd49ec 30#include <linux/idr.h>
1da177e4
LT
31#include <asm/uaccess.h>
32#include <asm/unistd.h>
07b20889 33#include "pnode.h"
948730b0 34#include "internal.h"
1da177e4 35
13f14b4d
ED
36#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
37#define HASH_SIZE (1UL << HASH_SHIFT)
38
1da177e4 39/* spinlock for vfsmount related operations, inplace of dcache_lock */
5addc5dd
AV
40__cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
41
42static int event;
73cd49ec 43static DEFINE_IDA(mnt_id_ida);
719f5d7f 44static DEFINE_IDA(mnt_group_ida);
1da177e4 45
fa3536cc 46static struct list_head *mount_hashtable __read_mostly;
e18b890b 47static struct kmem_cache *mnt_cache __read_mostly;
390c6843 48static struct rw_semaphore namespace_sem;
1da177e4 49
f87fd4c2 50/* /sys/fs */
00d26666
GKH
51struct kobject *fs_kobj;
52EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 53
1da177e4
LT
54static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55{
b58fed8b
RP
56 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
58 tmp = tmp + (tmp >> HASH_SHIFT);
59 return tmp & (HASH_SIZE - 1);
1da177e4
LT
60}
61
3d733633
DH
62#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63
73cd49ec
MS
64/* allocation is serialized by namespace_sem */
65static int mnt_alloc_id(struct vfsmount *mnt)
66{
67 int res;
68
69retry:
70 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
71 spin_lock(&vfsmount_lock);
72 res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
73 spin_unlock(&vfsmount_lock);
74 if (res == -EAGAIN)
75 goto retry;
76
77 return res;
78}
79
80static void mnt_free_id(struct vfsmount *mnt)
81{
82 spin_lock(&vfsmount_lock);
83 ida_remove(&mnt_id_ida, mnt->mnt_id);
84 spin_unlock(&vfsmount_lock);
85}
86
719f5d7f
MS
87/*
88 * Allocate a new peer group ID
89 *
90 * mnt_group_ida is protected by namespace_sem
91 */
92static int mnt_alloc_group_id(struct vfsmount *mnt)
93{
94 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
95 return -ENOMEM;
96
97 return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
98}
99
100/*
101 * Release a peer group ID
102 */
103void mnt_release_group_id(struct vfsmount *mnt)
104{
105 ida_remove(&mnt_group_ida, mnt->mnt_group_id);
106 mnt->mnt_group_id = 0;
107}
108
1da177e4
LT
109struct vfsmount *alloc_vfsmnt(const char *name)
110{
c3762229 111 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
1da177e4 112 if (mnt) {
73cd49ec
MS
113 int err;
114
115 err = mnt_alloc_id(mnt);
116 if (err) {
117 kmem_cache_free(mnt_cache, mnt);
118 return NULL;
119 }
120
b58fed8b 121 atomic_set(&mnt->mnt_count, 1);
1da177e4
LT
122 INIT_LIST_HEAD(&mnt->mnt_hash);
123 INIT_LIST_HEAD(&mnt->mnt_child);
124 INIT_LIST_HEAD(&mnt->mnt_mounts);
125 INIT_LIST_HEAD(&mnt->mnt_list);
55e700b9 126 INIT_LIST_HEAD(&mnt->mnt_expire);
03e06e68 127 INIT_LIST_HEAD(&mnt->mnt_share);
a58b0eb8
RP
128 INIT_LIST_HEAD(&mnt->mnt_slave_list);
129 INIT_LIST_HEAD(&mnt->mnt_slave);
3d733633 130 atomic_set(&mnt->__mnt_writers, 0);
1da177e4 131 if (name) {
b58fed8b 132 int size = strlen(name) + 1;
1da177e4
LT
133 char *newname = kmalloc(size, GFP_KERNEL);
134 if (newname) {
135 memcpy(newname, name, size);
136 mnt->mnt_devname = newname;
137 }
138 }
139 }
140 return mnt;
141}
142
3d733633
DH
143/*
144 * Most r/o checks on a fs are for operations that take
145 * discrete amounts of time, like a write() or unlink().
146 * We must keep track of when those operations start
147 * (for permission checks) and when they end, so that
148 * we can determine when writes are able to occur to
149 * a filesystem.
150 */
151/*
152 * __mnt_is_readonly: check whether a mount is read-only
153 * @mnt: the mount to check for its write status
154 *
155 * This shouldn't be used directly ouside of the VFS.
156 * It does not guarantee that the filesystem will stay
157 * r/w, just that it is right *now*. This can not and
158 * should not be used in place of IS_RDONLY(inode).
159 * mnt_want/drop_write() will _keep_ the filesystem
160 * r/w.
161 */
162int __mnt_is_readonly(struct vfsmount *mnt)
163{
2e4b7fcd
DH
164 if (mnt->mnt_flags & MNT_READONLY)
165 return 1;
166 if (mnt->mnt_sb->s_flags & MS_RDONLY)
167 return 1;
168 return 0;
3d733633
DH
169}
170EXPORT_SYMBOL_GPL(__mnt_is_readonly);
171
172struct mnt_writer {
173 /*
174 * If holding multiple instances of this lock, they
175 * must be ordered by cpu number.
176 */
177 spinlock_t lock;
178 struct lock_class_key lock_class; /* compiles out with !lockdep */
179 unsigned long count;
180 struct vfsmount *mnt;
181} ____cacheline_aligned_in_smp;
182static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
183
184static int __init init_mnt_writers(void)
185{
186 int cpu;
187 for_each_possible_cpu(cpu) {
188 struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
189 spin_lock_init(&writer->lock);
190 lockdep_set_class(&writer->lock, &writer->lock_class);
191 writer->count = 0;
192 }
193 return 0;
194}
195fs_initcall(init_mnt_writers);
196
197static void unlock_mnt_writers(void)
198{
199 int cpu;
200 struct mnt_writer *cpu_writer;
201
202 for_each_possible_cpu(cpu) {
203 cpu_writer = &per_cpu(mnt_writers, cpu);
204 spin_unlock(&cpu_writer->lock);
205 }
206}
207
208static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
209{
210 if (!cpu_writer->mnt)
211 return;
212 /*
213 * This is in case anyone ever leaves an invalid,
214 * old ->mnt and a count of 0.
215 */
216 if (!cpu_writer->count)
217 return;
218 atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
219 cpu_writer->count = 0;
220}
221 /*
222 * must hold cpu_writer->lock
223 */
224static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
225 struct vfsmount *mnt)
226{
227 if (cpu_writer->mnt == mnt)
228 return;
229 __clear_mnt_count(cpu_writer);
230 cpu_writer->mnt = mnt;
231}
232
8366025e
DH
233/*
234 * Most r/o checks on a fs are for operations that take
235 * discrete amounts of time, like a write() or unlink().
236 * We must keep track of when those operations start
237 * (for permission checks) and when they end, so that
238 * we can determine when writes are able to occur to
239 * a filesystem.
240 */
241/**
242 * mnt_want_write - get write access to a mount
243 * @mnt: the mount on which to take a write
244 *
245 * This tells the low-level filesystem that a write is
246 * about to be performed to it, and makes sure that
247 * writes are allowed before returning success. When
248 * the write operation is finished, mnt_drop_write()
249 * must be called. This is effectively a refcount.
250 */
251int mnt_want_write(struct vfsmount *mnt)
252{
3d733633
DH
253 int ret = 0;
254 struct mnt_writer *cpu_writer;
255
256 cpu_writer = &get_cpu_var(mnt_writers);
257 spin_lock(&cpu_writer->lock);
258 if (__mnt_is_readonly(mnt)) {
259 ret = -EROFS;
260 goto out;
261 }
262 use_cpu_writer_for_mount(cpu_writer, mnt);
263 cpu_writer->count++;
264out:
265 spin_unlock(&cpu_writer->lock);
266 put_cpu_var(mnt_writers);
267 return ret;
8366025e
DH
268}
269EXPORT_SYMBOL_GPL(mnt_want_write);
270
3d733633
DH
271static void lock_mnt_writers(void)
272{
273 int cpu;
274 struct mnt_writer *cpu_writer;
275
276 for_each_possible_cpu(cpu) {
277 cpu_writer = &per_cpu(mnt_writers, cpu);
278 spin_lock(&cpu_writer->lock);
279 __clear_mnt_count(cpu_writer);
280 cpu_writer->mnt = NULL;
281 }
282}
283
284/*
285 * These per-cpu write counts are not guaranteed to have
286 * matched increments and decrements on any given cpu.
287 * A file open()ed for write on one cpu and close()d on
288 * another cpu will imbalance this count. Make sure it
289 * does not get too far out of whack.
290 */
291static void handle_write_count_underflow(struct vfsmount *mnt)
292{
293 if (atomic_read(&mnt->__mnt_writers) >=
294 MNT_WRITER_UNDERFLOW_LIMIT)
295 return;
296 /*
297 * It isn't necessary to hold all of the locks
298 * at the same time, but doing it this way makes
299 * us share a lot more code.
300 */
301 lock_mnt_writers();
302 /*
303 * vfsmount_lock is for mnt_flags.
304 */
305 spin_lock(&vfsmount_lock);
306 /*
307 * If coalescing the per-cpu writer counts did not
308 * get us back to a positive writer count, we have
309 * a bug.
310 */
311 if ((atomic_read(&mnt->__mnt_writers) < 0) &&
312 !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
313 printk(KERN_DEBUG "leak detected on mount(%p) writers "
314 "count: %d\n",
315 mnt, atomic_read(&mnt->__mnt_writers));
316 WARN_ON(1);
317 /* use the flag to keep the dmesg spam down */
318 mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
319 }
320 spin_unlock(&vfsmount_lock);
321 unlock_mnt_writers();
322}
323
8366025e
DH
324/**
325 * mnt_drop_write - give up write access to a mount
326 * @mnt: the mount on which to give up write access
327 *
328 * Tells the low-level filesystem that we are done
329 * performing writes to it. Must be matched with
330 * mnt_want_write() call above.
331 */
332void mnt_drop_write(struct vfsmount *mnt)
333{
3d733633
DH
334 int must_check_underflow = 0;
335 struct mnt_writer *cpu_writer;
336
337 cpu_writer = &get_cpu_var(mnt_writers);
338 spin_lock(&cpu_writer->lock);
339
340 use_cpu_writer_for_mount(cpu_writer, mnt);
341 if (cpu_writer->count > 0) {
342 cpu_writer->count--;
343 } else {
344 must_check_underflow = 1;
345 atomic_dec(&mnt->__mnt_writers);
346 }
347
348 spin_unlock(&cpu_writer->lock);
349 /*
350 * Logically, we could call this each time,
351 * but the __mnt_writers cacheline tends to
352 * be cold, and makes this expensive.
353 */
354 if (must_check_underflow)
355 handle_write_count_underflow(mnt);
356 /*
357 * This could be done right after the spinlock
358 * is taken because the spinlock keeps us on
359 * the cpu, and disables preemption. However,
360 * putting it here bounds the amount that
361 * __mnt_writers can underflow. Without it,
362 * we could theoretically wrap __mnt_writers.
363 */
364 put_cpu_var(mnt_writers);
8366025e
DH
365}
366EXPORT_SYMBOL_GPL(mnt_drop_write);
367
2e4b7fcd 368static int mnt_make_readonly(struct vfsmount *mnt)
8366025e 369{
3d733633
DH
370 int ret = 0;
371
372 lock_mnt_writers();
373 /*
374 * With all the locks held, this value is stable
375 */
376 if (atomic_read(&mnt->__mnt_writers) > 0) {
377 ret = -EBUSY;
378 goto out;
379 }
380 /*
2e4b7fcd
DH
381 * nobody can do a successful mnt_want_write() with all
382 * of the counts in MNT_DENIED_WRITE and the locks held.
3d733633 383 */
2e4b7fcd
DH
384 spin_lock(&vfsmount_lock);
385 if (!ret)
386 mnt->mnt_flags |= MNT_READONLY;
387 spin_unlock(&vfsmount_lock);
3d733633
DH
388out:
389 unlock_mnt_writers();
390 return ret;
8366025e 391}
8366025e 392
2e4b7fcd
DH
393static void __mnt_unmake_readonly(struct vfsmount *mnt)
394{
395 spin_lock(&vfsmount_lock);
396 mnt->mnt_flags &= ~MNT_READONLY;
397 spin_unlock(&vfsmount_lock);
398}
399
454e2398
DH
400int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
401{
402 mnt->mnt_sb = sb;
403 mnt->mnt_root = dget(sb->s_root);
404 return 0;
405}
406
407EXPORT_SYMBOL(simple_set_mnt);
408
1da177e4
LT
409void free_vfsmnt(struct vfsmount *mnt)
410{
411 kfree(mnt->mnt_devname);
73cd49ec 412 mnt_free_id(mnt);
1da177e4
LT
413 kmem_cache_free(mnt_cache, mnt);
414}
415
416/*
a05964f3
RP
417 * find the first or last mount at @dentry on vfsmount @mnt depending on
418 * @dir. If @dir is set return the first mount else return the last mount.
1da177e4 419 */
a05964f3
RP
420struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
421 int dir)
1da177e4 422{
b58fed8b
RP
423 struct list_head *head = mount_hashtable + hash(mnt, dentry);
424 struct list_head *tmp = head;
1da177e4
LT
425 struct vfsmount *p, *found = NULL;
426
1da177e4 427 for (;;) {
a05964f3 428 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
429 p = NULL;
430 if (tmp == head)
431 break;
432 p = list_entry(tmp, struct vfsmount, mnt_hash);
433 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
a05964f3 434 found = p;
1da177e4
LT
435 break;
436 }
437 }
1da177e4
LT
438 return found;
439}
440
a05964f3
RP
441/*
442 * lookup_mnt increments the ref count before returning
443 * the vfsmount struct.
444 */
445struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
446{
447 struct vfsmount *child_mnt;
448 spin_lock(&vfsmount_lock);
449 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
450 mntget(child_mnt);
451 spin_unlock(&vfsmount_lock);
452 return child_mnt;
453}
454
1da177e4
LT
455static inline int check_mnt(struct vfsmount *mnt)
456{
6b3286ed 457 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
458}
459
6b3286ed 460static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
461{
462 if (ns) {
463 ns->event = ++event;
464 wake_up_interruptible(&ns->poll);
465 }
466}
467
6b3286ed 468static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
469{
470 if (ns && ns->event != event) {
471 ns->event = event;
472 wake_up_interruptible(&ns->poll);
473 }
474}
475
1a390689 476static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
1da177e4 477{
1a390689
AV
478 old_path->dentry = mnt->mnt_mountpoint;
479 old_path->mnt = mnt->mnt_parent;
1da177e4
LT
480 mnt->mnt_parent = mnt;
481 mnt->mnt_mountpoint = mnt->mnt_root;
482 list_del_init(&mnt->mnt_child);
483 list_del_init(&mnt->mnt_hash);
1a390689 484 old_path->dentry->d_mounted--;
1da177e4
LT
485}
486
b90fa9ae
RP
487void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
488 struct vfsmount *child_mnt)
489{
490 child_mnt->mnt_parent = mntget(mnt);
491 child_mnt->mnt_mountpoint = dget(dentry);
492 dentry->d_mounted++;
493}
494
1a390689 495static void attach_mnt(struct vfsmount *mnt, struct path *path)
1da177e4 496{
1a390689 497 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
b90fa9ae 498 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689
AV
499 hash(path->mnt, path->dentry));
500 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
b90fa9ae
RP
501}
502
503/*
504 * the caller must hold vfsmount_lock
505 */
506static void commit_tree(struct vfsmount *mnt)
507{
508 struct vfsmount *parent = mnt->mnt_parent;
509 struct vfsmount *m;
510 LIST_HEAD(head);
6b3286ed 511 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae
RP
512
513 BUG_ON(parent == mnt);
514
515 list_add_tail(&head, &mnt->mnt_list);
516 list_for_each_entry(m, &head, mnt_list)
6b3286ed 517 m->mnt_ns = n;
b90fa9ae
RP
518 list_splice(&head, n->list.prev);
519
520 list_add_tail(&mnt->mnt_hash, mount_hashtable +
521 hash(parent, mnt->mnt_mountpoint));
522 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 523 touch_mnt_namespace(n);
1da177e4
LT
524}
525
526static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
527{
528 struct list_head *next = p->mnt_mounts.next;
529 if (next == &p->mnt_mounts) {
530 while (1) {
531 if (p == root)
532 return NULL;
533 next = p->mnt_child.next;
534 if (next != &p->mnt_parent->mnt_mounts)
535 break;
536 p = p->mnt_parent;
537 }
538 }
539 return list_entry(next, struct vfsmount, mnt_child);
540}
541
9676f0c6
RP
542static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
543{
544 struct list_head *prev = p->mnt_mounts.prev;
545 while (prev != &p->mnt_mounts) {
546 p = list_entry(prev, struct vfsmount, mnt_child);
547 prev = p->mnt_mounts.prev;
548 }
549 return p;
550}
551
36341f64
RP
552static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
553 int flag)
1da177e4
LT
554{
555 struct super_block *sb = old->mnt_sb;
556 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
557
558 if (mnt) {
719f5d7f
MS
559 if (flag & (CL_SLAVE | CL_PRIVATE))
560 mnt->mnt_group_id = 0; /* not a peer of original */
561 else
562 mnt->mnt_group_id = old->mnt_group_id;
563
564 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
565 int err = mnt_alloc_group_id(mnt);
566 if (err)
567 goto out_free;
568 }
569
1da177e4
LT
570 mnt->mnt_flags = old->mnt_flags;
571 atomic_inc(&sb->s_active);
572 mnt->mnt_sb = sb;
573 mnt->mnt_root = dget(root);
574 mnt->mnt_mountpoint = mnt->mnt_root;
575 mnt->mnt_parent = mnt;
b90fa9ae 576
5afe0022
RP
577 if (flag & CL_SLAVE) {
578 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
579 mnt->mnt_master = old;
580 CLEAR_MNT_SHARED(mnt);
8aec0809 581 } else if (!(flag & CL_PRIVATE)) {
5afe0022
RP
582 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
583 list_add(&mnt->mnt_share, &old->mnt_share);
584 if (IS_MNT_SLAVE(old))
585 list_add(&mnt->mnt_slave, &old->mnt_slave);
586 mnt->mnt_master = old->mnt_master;
587 }
b90fa9ae
RP
588 if (flag & CL_MAKE_SHARED)
589 set_mnt_shared(mnt);
1da177e4
LT
590
591 /* stick the duplicate mount on the same expiry list
592 * as the original if that was on one */
36341f64 593 if (flag & CL_EXPIRE) {
36341f64
RP
594 if (!list_empty(&old->mnt_expire))
595 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 596 }
1da177e4
LT
597 }
598 return mnt;
719f5d7f
MS
599
600 out_free:
601 free_vfsmnt(mnt);
602 return NULL;
1da177e4
LT
603}
604
7b7b1ace 605static inline void __mntput(struct vfsmount *mnt)
1da177e4 606{
3d733633 607 int cpu;
1da177e4 608 struct super_block *sb = mnt->mnt_sb;
3d733633
DH
609 /*
610 * We don't have to hold all of the locks at the
611 * same time here because we know that we're the
612 * last reference to mnt and that no new writers
613 * can come in.
614 */
615 for_each_possible_cpu(cpu) {
616 struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
617 if (cpu_writer->mnt != mnt)
618 continue;
619 spin_lock(&cpu_writer->lock);
620 atomic_add(cpu_writer->count, &mnt->__mnt_writers);
621 cpu_writer->count = 0;
622 /*
623 * Might as well do this so that no one
624 * ever sees the pointer and expects
625 * it to be valid.
626 */
627 cpu_writer->mnt = NULL;
628 spin_unlock(&cpu_writer->lock);
629 }
630 /*
631 * This probably indicates that somebody messed
632 * up a mnt_want/drop_write() pair. If this
633 * happens, the filesystem was probably unable
634 * to make r/w->r/o transitions.
635 */
636 WARN_ON(atomic_read(&mnt->__mnt_writers));
1da177e4
LT
637 dput(mnt->mnt_root);
638 free_vfsmnt(mnt);
639 deactivate_super(sb);
640}
641
7b7b1ace
AV
642void mntput_no_expire(struct vfsmount *mnt)
643{
644repeat:
645 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
646 if (likely(!mnt->mnt_pinned)) {
647 spin_unlock(&vfsmount_lock);
648 __mntput(mnt);
649 return;
650 }
651 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
652 mnt->mnt_pinned = 0;
653 spin_unlock(&vfsmount_lock);
654 acct_auto_close_mnt(mnt);
655 security_sb_umount_close(mnt);
656 goto repeat;
657 }
658}
659
660EXPORT_SYMBOL(mntput_no_expire);
661
662void mnt_pin(struct vfsmount *mnt)
663{
664 spin_lock(&vfsmount_lock);
665 mnt->mnt_pinned++;
666 spin_unlock(&vfsmount_lock);
667}
668
669EXPORT_SYMBOL(mnt_pin);
670
671void mnt_unpin(struct vfsmount *mnt)
672{
673 spin_lock(&vfsmount_lock);
674 if (mnt->mnt_pinned) {
675 atomic_inc(&mnt->mnt_count);
676 mnt->mnt_pinned--;
677 }
678 spin_unlock(&vfsmount_lock);
679}
680
681EXPORT_SYMBOL(mnt_unpin);
1da177e4 682
b3b304a2
MS
683static inline void mangle(struct seq_file *m, const char *s)
684{
685 seq_escape(m, s, " \t\n\\");
686}
687
688/*
689 * Simple .show_options callback for filesystems which don't want to
690 * implement more complex mount option showing.
691 *
692 * See also save_mount_options().
693 */
694int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
695{
696 const char *options = mnt->mnt_sb->s_options;
697
698 if (options != NULL && options[0]) {
699 seq_putc(m, ',');
700 mangle(m, options);
701 }
702
703 return 0;
704}
705EXPORT_SYMBOL(generic_show_options);
706
707/*
708 * If filesystem uses generic_show_options(), this function should be
709 * called from the fill_super() callback.
710 *
711 * The .remount_fs callback usually needs to be handled in a special
712 * way, to make sure, that previous options are not overwritten if the
713 * remount fails.
714 *
715 * Also note, that if the filesystem's .remount_fs function doesn't
716 * reset all options to their default value, but changes only newly
717 * given options, then the displayed options will not reflect reality
718 * any more.
719 */
720void save_mount_options(struct super_block *sb, char *options)
721{
722 kfree(sb->s_options);
723 sb->s_options = kstrdup(options, GFP_KERNEL);
724}
725EXPORT_SYMBOL(save_mount_options);
726
a1a2c409 727#ifdef CONFIG_PROC_FS
1da177e4
LT
728/* iterator */
729static void *m_start(struct seq_file *m, loff_t *pos)
730{
a1a2c409 731 struct proc_mounts *p = m->private;
1da177e4 732
390c6843 733 down_read(&namespace_sem);
a1a2c409 734 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
735}
736
737static void *m_next(struct seq_file *m, void *v, loff_t *pos)
738{
a1a2c409 739 struct proc_mounts *p = m->private;
b0765fb8 740
a1a2c409 741 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
742}
743
744static void m_stop(struct seq_file *m, void *v)
745{
390c6843 746 up_read(&namespace_sem);
1da177e4
LT
747}
748
2d4d4864
RP
749struct proc_fs_info {
750 int flag;
751 const char *str;
752};
753
754static void show_sb_opts(struct seq_file *m, struct super_block *sb)
1da177e4 755{
2d4d4864 756 static const struct proc_fs_info fs_info[] = {
1da177e4
LT
757 { MS_SYNCHRONOUS, ",sync" },
758 { MS_DIRSYNC, ",dirsync" },
759 { MS_MANDLOCK, ",mand" },
1da177e4
LT
760 { 0, NULL }
761 };
2d4d4864
RP
762 const struct proc_fs_info *fs_infop;
763
764 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
765 if (sb->s_flags & fs_infop->flag)
766 seq_puts(m, fs_infop->str);
767 }
768}
769
770static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
771{
772 static const struct proc_fs_info mnt_info[] = {
1da177e4
LT
773 { MNT_NOSUID, ",nosuid" },
774 { MNT_NODEV, ",nodev" },
775 { MNT_NOEXEC, ",noexec" },
fc33a7bb
CH
776 { MNT_NOATIME, ",noatime" },
777 { MNT_NODIRATIME, ",nodiratime" },
47ae32d6 778 { MNT_RELATIME, ",relatime" },
1da177e4
LT
779 { 0, NULL }
780 };
2d4d4864
RP
781 const struct proc_fs_info *fs_infop;
782
783 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
784 if (mnt->mnt_flags & fs_infop->flag)
785 seq_puts(m, fs_infop->str);
786 }
787}
788
789static void show_type(struct seq_file *m, struct super_block *sb)
790{
791 mangle(m, sb->s_type->name);
792 if (sb->s_subtype && sb->s_subtype[0]) {
793 seq_putc(m, '.');
794 mangle(m, sb->s_subtype);
795 }
796}
797
798static int show_vfsmnt(struct seq_file *m, void *v)
799{
800 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
801 int err = 0;
c32c2f63 802 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1da177e4
LT
803
804 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
805 seq_putc(m, ' ');
c32c2f63 806 seq_path(m, &mnt_path, " \t\n\\");
1da177e4 807 seq_putc(m, ' ');
2d4d4864 808 show_type(m, mnt->mnt_sb);
2e4b7fcd 809 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
2d4d4864
RP
810 show_sb_opts(m, mnt->mnt_sb);
811 show_mnt_opts(m, mnt);
1da177e4
LT
812 if (mnt->mnt_sb->s_op->show_options)
813 err = mnt->mnt_sb->s_op->show_options(m, mnt);
814 seq_puts(m, " 0 0\n");
815 return err;
816}
817
a1a2c409 818const struct seq_operations mounts_op = {
1da177e4
LT
819 .start = m_start,
820 .next = m_next,
821 .stop = m_stop,
822 .show = show_vfsmnt
823};
824
2d4d4864
RP
825static int show_mountinfo(struct seq_file *m, void *v)
826{
827 struct proc_mounts *p = m->private;
828 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
829 struct super_block *sb = mnt->mnt_sb;
830 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
831 struct path root = p->root;
832 int err = 0;
833
834 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
835 MAJOR(sb->s_dev), MINOR(sb->s_dev));
836 seq_dentry(m, mnt->mnt_root, " \t\n\\");
837 seq_putc(m, ' ');
838 seq_path_root(m, &mnt_path, &root, " \t\n\\");
839 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
840 /*
841 * Mountpoint is outside root, discard that one. Ugly,
842 * but less so than trying to do that in iterator in a
843 * race-free way (due to renames).
844 */
845 return SEQ_SKIP;
846 }
847 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
848 show_mnt_opts(m, mnt);
849
850 /* Tagged fields ("foo:X" or "bar") */
851 if (IS_MNT_SHARED(mnt))
852 seq_printf(m, " shared:%i", mnt->mnt_group_id);
97e7e0f7
MS
853 if (IS_MNT_SLAVE(mnt)) {
854 int master = mnt->mnt_master->mnt_group_id;
855 int dom = get_dominating_id(mnt, &p->root);
856 seq_printf(m, " master:%i", master);
857 if (dom && dom != master)
858 seq_printf(m, " propagate_from:%i", dom);
859 }
2d4d4864
RP
860 if (IS_MNT_UNBINDABLE(mnt))
861 seq_puts(m, " unbindable");
862
863 /* Filesystem specific data */
864 seq_puts(m, " - ");
865 show_type(m, sb);
866 seq_putc(m, ' ');
867 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
868 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
869 show_sb_opts(m, sb);
870 if (sb->s_op->show_options)
871 err = sb->s_op->show_options(m, mnt);
872 seq_putc(m, '\n');
873 return err;
874}
875
876const struct seq_operations mountinfo_op = {
877 .start = m_start,
878 .next = m_next,
879 .stop = m_stop,
880 .show = show_mountinfo,
881};
882
b4629fe2
CL
883static int show_vfsstat(struct seq_file *m, void *v)
884{
b0765fb8 885 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
c32c2f63 886 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
b4629fe2
CL
887 int err = 0;
888
889 /* device */
890 if (mnt->mnt_devname) {
891 seq_puts(m, "device ");
892 mangle(m, mnt->mnt_devname);
893 } else
894 seq_puts(m, "no device");
895
896 /* mount point */
897 seq_puts(m, " mounted on ");
c32c2f63 898 seq_path(m, &mnt_path, " \t\n\\");
b4629fe2
CL
899 seq_putc(m, ' ');
900
901 /* file system type */
902 seq_puts(m, "with fstype ");
2d4d4864 903 show_type(m, mnt->mnt_sb);
b4629fe2
CL
904
905 /* optional statistics */
906 if (mnt->mnt_sb->s_op->show_stats) {
907 seq_putc(m, ' ');
908 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
909 }
910
911 seq_putc(m, '\n');
912 return err;
913}
914
a1a2c409 915const struct seq_operations mountstats_op = {
b4629fe2
CL
916 .start = m_start,
917 .next = m_next,
918 .stop = m_stop,
919 .show = show_vfsstat,
920};
a1a2c409 921#endif /* CONFIG_PROC_FS */
b4629fe2 922
1da177e4
LT
923/**
924 * may_umount_tree - check if a mount tree is busy
925 * @mnt: root of mount tree
926 *
927 * This is called to check if a tree of mounts has any
928 * open files, pwds, chroots or sub mounts that are
929 * busy.
930 */
931int may_umount_tree(struct vfsmount *mnt)
932{
36341f64
RP
933 int actual_refs = 0;
934 int minimum_refs = 0;
935 struct vfsmount *p;
1da177e4
LT
936
937 spin_lock(&vfsmount_lock);
36341f64 938 for (p = mnt; p; p = next_mnt(p, mnt)) {
1da177e4
LT
939 actual_refs += atomic_read(&p->mnt_count);
940 minimum_refs += 2;
1da177e4
LT
941 }
942 spin_unlock(&vfsmount_lock);
943
944 if (actual_refs > minimum_refs)
e3474a8e 945 return 0;
1da177e4 946
e3474a8e 947 return 1;
1da177e4
LT
948}
949
950EXPORT_SYMBOL(may_umount_tree);
951
952/**
953 * may_umount - check if a mount point is busy
954 * @mnt: root of mount
955 *
956 * This is called to check if a mount point has any
957 * open files, pwds, chroots or sub mounts. If the
958 * mount has sub mounts this will return busy
959 * regardless of whether the sub mounts are busy.
960 *
961 * Doesn't take quota and stuff into account. IOW, in some cases it will
962 * give false negatives. The main reason why it's here is that we need
963 * a non-destructive way to look for easily umountable filesystems.
964 */
965int may_umount(struct vfsmount *mnt)
966{
e3474a8e 967 int ret = 1;
a05964f3
RP
968 spin_lock(&vfsmount_lock);
969 if (propagate_mount_busy(mnt, 2))
e3474a8e 970 ret = 0;
a05964f3
RP
971 spin_unlock(&vfsmount_lock);
972 return ret;
1da177e4
LT
973}
974
975EXPORT_SYMBOL(may_umount);
976
b90fa9ae 977void release_mounts(struct list_head *head)
70fbcdf4
RP
978{
979 struct vfsmount *mnt;
bf066c7d 980 while (!list_empty(head)) {
b5e61818 981 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
70fbcdf4
RP
982 list_del_init(&mnt->mnt_hash);
983 if (mnt->mnt_parent != mnt) {
984 struct dentry *dentry;
985 struct vfsmount *m;
986 spin_lock(&vfsmount_lock);
987 dentry = mnt->mnt_mountpoint;
988 m = mnt->mnt_parent;
989 mnt->mnt_mountpoint = mnt->mnt_root;
990 mnt->mnt_parent = mnt;
7c4b93d8 991 m->mnt_ghosts--;
70fbcdf4
RP
992 spin_unlock(&vfsmount_lock);
993 dput(dentry);
994 mntput(m);
995 }
996 mntput(mnt);
997 }
998}
999
a05964f3 1000void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1da177e4
LT
1001{
1002 struct vfsmount *p;
1da177e4 1003
1bfba4e8
AM
1004 for (p = mnt; p; p = next_mnt(p, mnt))
1005 list_move(&p->mnt_hash, kill);
1da177e4 1006
a05964f3
RP
1007 if (propagate)
1008 propagate_umount(kill);
1009
70fbcdf4
RP
1010 list_for_each_entry(p, kill, mnt_hash) {
1011 list_del_init(&p->mnt_expire);
1012 list_del_init(&p->mnt_list);
6b3286ed
KK
1013 __touch_mnt_namespace(p->mnt_ns);
1014 p->mnt_ns = NULL;
70fbcdf4 1015 list_del_init(&p->mnt_child);
7c4b93d8
AV
1016 if (p->mnt_parent != p) {
1017 p->mnt_parent->mnt_ghosts++;
f30ac319 1018 p->mnt_mountpoint->d_mounted--;
7c4b93d8 1019 }
a05964f3 1020 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1021 }
1022}
1023
c35038be
AV
1024static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1025
1da177e4
LT
1026static int do_umount(struct vfsmount *mnt, int flags)
1027{
b58fed8b 1028 struct super_block *sb = mnt->mnt_sb;
1da177e4 1029 int retval;
70fbcdf4 1030 LIST_HEAD(umount_list);
1da177e4
LT
1031
1032 retval = security_sb_umount(mnt, flags);
1033 if (retval)
1034 return retval;
1035
1036 /*
1037 * Allow userspace to request a mountpoint be expired rather than
1038 * unmounting unconditionally. Unmount only happens if:
1039 * (1) the mark is already set (the mark is cleared by mntput())
1040 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1041 */
1042 if (flags & MNT_EXPIRE) {
6ac08c39 1043 if (mnt == current->fs->root.mnt ||
1da177e4
LT
1044 flags & (MNT_FORCE | MNT_DETACH))
1045 return -EINVAL;
1046
1047 if (atomic_read(&mnt->mnt_count) != 2)
1048 return -EBUSY;
1049
1050 if (!xchg(&mnt->mnt_expiry_mark, 1))
1051 return -EAGAIN;
1052 }
1053
1054 /*
1055 * If we may have to abort operations to get out of this
1056 * mount, and they will themselves hold resources we must
1057 * allow the fs to do things. In the Unix tradition of
1058 * 'Gee thats tricky lets do it in userspace' the umount_begin
1059 * might fail to complete on the first run through as other tasks
1060 * must return, and the like. Thats for the mount program to worry
1061 * about for the moment.
1062 */
1063
1064 lock_kernel();
8b512d9a
TM
1065 if (sb->s_op->umount_begin)
1066 sb->s_op->umount_begin(mnt, flags);
1da177e4
LT
1067 unlock_kernel();
1068
1069 /*
1070 * No sense to grab the lock for this test, but test itself looks
1071 * somewhat bogus. Suggestions for better replacement?
1072 * Ho-hum... In principle, we might treat that as umount + switch
1073 * to rootfs. GC would eventually take care of the old vfsmount.
1074 * Actually it makes sense, especially if rootfs would contain a
1075 * /reboot - static binary that would close all descriptors and
1076 * call reboot(9). Then init(8) could umount root and exec /reboot.
1077 */
6ac08c39 1078 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1079 /*
1080 * Special case for "unmounting" root ...
1081 * we just try to remount it readonly.
1082 */
1083 down_write(&sb->s_umount);
1084 if (!(sb->s_flags & MS_RDONLY)) {
1085 lock_kernel();
1086 DQUOT_OFF(sb);
1087 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1088 unlock_kernel();
1089 }
1090 up_write(&sb->s_umount);
1091 return retval;
1092 }
1093
390c6843 1094 down_write(&namespace_sem);
1da177e4 1095 spin_lock(&vfsmount_lock);
5addc5dd 1096 event++;
1da177e4 1097
c35038be
AV
1098 if (!(flags & MNT_DETACH))
1099 shrink_submounts(mnt, &umount_list);
1100
1da177e4 1101 retval = -EBUSY;
a05964f3 1102 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1da177e4 1103 if (!list_empty(&mnt->mnt_list))
a05964f3 1104 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1105 retval = 0;
1106 }
1107 spin_unlock(&vfsmount_lock);
1108 if (retval)
1109 security_sb_umount_busy(mnt);
390c6843 1110 up_write(&namespace_sem);
70fbcdf4 1111 release_mounts(&umount_list);
1da177e4
LT
1112 return retval;
1113}
1114
1115/*
1116 * Now umount can handle mount points as well as block devices.
1117 * This is important for filesystems which use unnamed block devices.
1118 *
1119 * We now support a flag for forced unmount like the other 'big iron'
1120 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1121 */
1122
1123asmlinkage long sys_umount(char __user * name, int flags)
1124{
1125 struct nameidata nd;
1126 int retval;
1127
1128 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
1129 if (retval)
1130 goto out;
1131 retval = -EINVAL;
4ac91378 1132 if (nd.path.dentry != nd.path.mnt->mnt_root)
1da177e4 1133 goto dput_and_out;
4ac91378 1134 if (!check_mnt(nd.path.mnt))
1da177e4
LT
1135 goto dput_and_out;
1136
1137 retval = -EPERM;
1138 if (!capable(CAP_SYS_ADMIN))
1139 goto dput_and_out;
1140
4ac91378 1141 retval = do_umount(nd.path.mnt, flags);
1da177e4 1142dput_and_out:
429731b1 1143 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
4ac91378
JB
1144 dput(nd.path.dentry);
1145 mntput_no_expire(nd.path.mnt);
1da177e4
LT
1146out:
1147 return retval;
1148}
1149
1150#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1151
1152/*
b58fed8b 1153 * The 2.0 compatible umount. No flags.
1da177e4 1154 */
1da177e4
LT
1155asmlinkage long sys_oldumount(char __user * name)
1156{
b58fed8b 1157 return sys_umount(name, 0);
1da177e4
LT
1158}
1159
1160#endif
1161
1162static int mount_is_safe(struct nameidata *nd)
1163{
1164 if (capable(CAP_SYS_ADMIN))
1165 return 0;
1166 return -EPERM;
1167#ifdef notyet
4ac91378 1168 if (S_ISLNK(nd->path.dentry->d_inode->i_mode))
1da177e4 1169 return -EPERM;
4ac91378
JB
1170 if (nd->path.dentry->d_inode->i_mode & S_ISVTX) {
1171 if (current->uid != nd->path.dentry->d_inode->i_uid)
1da177e4
LT
1172 return -EPERM;
1173 }
e4543edd 1174 if (vfs_permission(nd, MAY_WRITE))
1da177e4
LT
1175 return -EPERM;
1176 return 0;
1177#endif
1178}
1179
b58fed8b 1180static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
1da177e4
LT
1181{
1182 while (1) {
1183 if (d == dentry)
1184 return 1;
1185 if (d == NULL || d == d->d_parent)
1186 return 0;
1187 d = d->d_parent;
1188 }
1189}
1190
b90fa9ae 1191struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
36341f64 1192 int flag)
1da177e4
LT
1193{
1194 struct vfsmount *res, *p, *q, *r, *s;
1a390689 1195 struct path path;
1da177e4 1196
9676f0c6
RP
1197 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1198 return NULL;
1199
36341f64 1200 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1201 if (!q)
1202 goto Enomem;
1203 q->mnt_mountpoint = mnt->mnt_mountpoint;
1204
1205 p = mnt;
fdadd65f 1206 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1da177e4
LT
1207 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
1208 continue;
1209
1210 for (s = r; s; s = next_mnt(s, r)) {
9676f0c6
RP
1211 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1212 s = skip_mnt_tree(s);
1213 continue;
1214 }
1da177e4
LT
1215 while (p != s->mnt_parent) {
1216 p = p->mnt_parent;
1217 q = q->mnt_parent;
1218 }
1219 p = s;
1a390689
AV
1220 path.mnt = q;
1221 path.dentry = p->mnt_mountpoint;
36341f64 1222 q = clone_mnt(p, p->mnt_root, flag);
1da177e4
LT
1223 if (!q)
1224 goto Enomem;
1225 spin_lock(&vfsmount_lock);
1226 list_add_tail(&q->mnt_list, &res->mnt_list);
1a390689 1227 attach_mnt(q, &path);
1da177e4
LT
1228 spin_unlock(&vfsmount_lock);
1229 }
1230 }
1231 return res;
b58fed8b 1232Enomem:
1da177e4 1233 if (res) {
70fbcdf4 1234 LIST_HEAD(umount_list);
1da177e4 1235 spin_lock(&vfsmount_lock);
a05964f3 1236 umount_tree(res, 0, &umount_list);
1da177e4 1237 spin_unlock(&vfsmount_lock);
70fbcdf4 1238 release_mounts(&umount_list);
1da177e4
LT
1239 }
1240 return NULL;
1241}
1242
8aec0809
AV
1243struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
1244{
1245 struct vfsmount *tree;
1a60a280 1246 down_write(&namespace_sem);
8aec0809 1247 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
1a60a280 1248 up_write(&namespace_sem);
8aec0809
AV
1249 return tree;
1250}
1251
1252void drop_collected_mounts(struct vfsmount *mnt)
1253{
1254 LIST_HEAD(umount_list);
1a60a280 1255 down_write(&namespace_sem);
8aec0809
AV
1256 spin_lock(&vfsmount_lock);
1257 umount_tree(mnt, 0, &umount_list);
1258 spin_unlock(&vfsmount_lock);
1a60a280 1259 up_write(&namespace_sem);
8aec0809
AV
1260 release_mounts(&umount_list);
1261}
1262
719f5d7f
MS
1263static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1264{
1265 struct vfsmount *p;
1266
1267 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1268 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1269 mnt_release_group_id(p);
1270 }
1271}
1272
1273static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1274{
1275 struct vfsmount *p;
1276
1277 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1278 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1279 int err = mnt_alloc_group_id(p);
1280 if (err) {
1281 cleanup_group_ids(mnt, p);
1282 return err;
1283 }
1284 }
1285 }
1286
1287 return 0;
1288}
1289
b90fa9ae
RP
1290/*
1291 * @source_mnt : mount tree to be attached
21444403
RP
1292 * @nd : place the mount tree @source_mnt is attached
1293 * @parent_nd : if non-null, detach the source_mnt from its parent and
1294 * store the parent mount and mountpoint dentry.
1295 * (done when source_mnt is moved)
b90fa9ae
RP
1296 *
1297 * NOTE: in the table below explains the semantics when a source mount
1298 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1299 * ---------------------------------------------------------------------------
1300 * | BIND MOUNT OPERATION |
1301 * |**************************************************************************
1302 * | source-->| shared | private | slave | unbindable |
1303 * | dest | | | | |
1304 * | | | | | | |
1305 * | v | | | | |
1306 * |**************************************************************************
1307 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1308 * | | | | | |
1309 * |non-shared| shared (+) | private | slave (*) | invalid |
1310 * ***************************************************************************
b90fa9ae
RP
1311 * A bind operation clones the source mount and mounts the clone on the
1312 * destination mount.
1313 *
1314 * (++) the cloned mount is propagated to all the mounts in the propagation
1315 * tree of the destination mount and the cloned mount is added to
1316 * the peer group of the source mount.
1317 * (+) the cloned mount is created under the destination mount and is marked
1318 * as shared. The cloned mount is added to the peer group of the source
1319 * mount.
5afe0022
RP
1320 * (+++) the mount is propagated to all the mounts in the propagation tree
1321 * of the destination mount and the cloned mount is made slave
1322 * of the same master as that of the source mount. The cloned mount
1323 * is marked as 'shared and slave'.
1324 * (*) the cloned mount is made a slave of the same master as that of the
1325 * source mount.
1326 *
9676f0c6
RP
1327 * ---------------------------------------------------------------------------
1328 * | MOVE MOUNT OPERATION |
1329 * |**************************************************************************
1330 * | source-->| shared | private | slave | unbindable |
1331 * | dest | | | | |
1332 * | | | | | | |
1333 * | v | | | | |
1334 * |**************************************************************************
1335 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1336 * | | | | | |
1337 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1338 * ***************************************************************************
5afe0022
RP
1339 *
1340 * (+) the mount is moved to the destination. And is then propagated to
1341 * all the mounts in the propagation tree of the destination mount.
21444403 1342 * (+*) the mount is moved to the destination.
5afe0022
RP
1343 * (+++) the mount is moved to the destination and is then propagated to
1344 * all the mounts belonging to the destination mount's propagation tree.
1345 * the mount is marked as 'shared and slave'.
1346 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1347 *
1348 * if the source mount is a tree, the operations explained above is
1349 * applied to each mount in the tree.
1350 * Must be called without spinlocks held, since this function can sleep
1351 * in allocations.
1352 */
1353static int attach_recursive_mnt(struct vfsmount *source_mnt,
1a390689 1354 struct path *path, struct path *parent_path)
b90fa9ae
RP
1355{
1356 LIST_HEAD(tree_list);
1a390689
AV
1357 struct vfsmount *dest_mnt = path->mnt;
1358 struct dentry *dest_dentry = path->dentry;
b90fa9ae 1359 struct vfsmount *child, *p;
719f5d7f 1360 int err;
b90fa9ae 1361
719f5d7f
MS
1362 if (IS_MNT_SHARED(dest_mnt)) {
1363 err = invent_group_ids(source_mnt, true);
1364 if (err)
1365 goto out;
1366 }
1367 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1368 if (err)
1369 goto out_cleanup_ids;
b90fa9ae
RP
1370
1371 if (IS_MNT_SHARED(dest_mnt)) {
1372 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1373 set_mnt_shared(p);
1374 }
1375
1376 spin_lock(&vfsmount_lock);
1a390689
AV
1377 if (parent_path) {
1378 detach_mnt(source_mnt, parent_path);
1379 attach_mnt(source_mnt, path);
6b3286ed 1380 touch_mnt_namespace(current->nsproxy->mnt_ns);
21444403
RP
1381 } else {
1382 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1383 commit_tree(source_mnt);
1384 }
b90fa9ae
RP
1385
1386 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1387 list_del_init(&child->mnt_hash);
1388 commit_tree(child);
1389 }
1390 spin_unlock(&vfsmount_lock);
1391 return 0;
719f5d7f
MS
1392
1393 out_cleanup_ids:
1394 if (IS_MNT_SHARED(dest_mnt))
1395 cleanup_group_ids(source_mnt, NULL);
1396 out:
1397 return err;
b90fa9ae
RP
1398}
1399
8c3ee42e 1400static int graft_tree(struct vfsmount *mnt, struct path *path)
1da177e4
LT
1401{
1402 int err;
1403 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1404 return -EINVAL;
1405
8c3ee42e 1406 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1da177e4
LT
1407 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1408 return -ENOTDIR;
1409
1410 err = -ENOENT;
8c3ee42e
AV
1411 mutex_lock(&path->dentry->d_inode->i_mutex);
1412 if (IS_DEADDIR(path->dentry->d_inode))
1da177e4
LT
1413 goto out_unlock;
1414
8c3ee42e 1415 err = security_sb_check_sb(mnt, path);
1da177e4
LT
1416 if (err)
1417 goto out_unlock;
1418
1419 err = -ENOENT;
8c3ee42e
AV
1420 if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
1421 err = attach_recursive_mnt(mnt, path, NULL);
1da177e4 1422out_unlock:
8c3ee42e 1423 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4 1424 if (!err)
8c3ee42e 1425 security_sb_post_addmount(mnt, path);
1da177e4
LT
1426 return err;
1427}
1428
07b20889
RP
1429/*
1430 * recursively change the type of the mountpoint.
2dafe1c4 1431 * noinline this do_mount helper to save do_mount stack space.
07b20889 1432 */
2dafe1c4 1433static noinline int do_change_type(struct nameidata *nd, int flag)
07b20889 1434{
4ac91378 1435 struct vfsmount *m, *mnt = nd->path.mnt;
07b20889
RP
1436 int recurse = flag & MS_REC;
1437 int type = flag & ~MS_REC;
719f5d7f 1438 int err = 0;
07b20889 1439
ee6f9582
MS
1440 if (!capable(CAP_SYS_ADMIN))
1441 return -EPERM;
1442
4ac91378 1443 if (nd->path.dentry != nd->path.mnt->mnt_root)
07b20889
RP
1444 return -EINVAL;
1445
1446 down_write(&namespace_sem);
719f5d7f
MS
1447 if (type == MS_SHARED) {
1448 err = invent_group_ids(mnt, recurse);
1449 if (err)
1450 goto out_unlock;
1451 }
1452
07b20889
RP
1453 spin_lock(&vfsmount_lock);
1454 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1455 change_mnt_propagation(m, type);
1456 spin_unlock(&vfsmount_lock);
719f5d7f
MS
1457
1458 out_unlock:
07b20889 1459 up_write(&namespace_sem);
719f5d7f 1460 return err;
07b20889
RP
1461}
1462
1da177e4
LT
1463/*
1464 * do loopback mount.
2dafe1c4 1465 * noinline this do_mount helper to save do_mount stack space.
1da177e4 1466 */
2dafe1c4
ES
1467static noinline int do_loopback(struct nameidata *nd, char *old_name,
1468 int recurse)
1da177e4
LT
1469{
1470 struct nameidata old_nd;
1471 struct vfsmount *mnt = NULL;
1472 int err = mount_is_safe(nd);
1473 if (err)
1474 return err;
1475 if (!old_name || !*old_name)
1476 return -EINVAL;
1477 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1478 if (err)
1479 return err;
1480
390c6843 1481 down_write(&namespace_sem);
1da177e4 1482 err = -EINVAL;
4ac91378
JB
1483 if (IS_MNT_UNBINDABLE(old_nd.path.mnt))
1484 goto out;
9676f0c6 1485
4ac91378 1486 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
ccd48bc7 1487 goto out;
1da177e4 1488
ccd48bc7
AV
1489 err = -ENOMEM;
1490 if (recurse)
4ac91378 1491 mnt = copy_tree(old_nd.path.mnt, old_nd.path.dentry, 0);
ccd48bc7 1492 else
4ac91378 1493 mnt = clone_mnt(old_nd.path.mnt, old_nd.path.dentry, 0);
ccd48bc7
AV
1494
1495 if (!mnt)
1496 goto out;
1497
8c3ee42e 1498 err = graft_tree(mnt, &nd->path);
ccd48bc7 1499 if (err) {
70fbcdf4 1500 LIST_HEAD(umount_list);
1da177e4 1501 spin_lock(&vfsmount_lock);
a05964f3 1502 umount_tree(mnt, 0, &umount_list);
1da177e4 1503 spin_unlock(&vfsmount_lock);
70fbcdf4 1504 release_mounts(&umount_list);
5b83d2c5 1505 }
1da177e4 1506
ccd48bc7 1507out:
390c6843 1508 up_write(&namespace_sem);
1d957f9b 1509 path_put(&old_nd.path);
1da177e4
LT
1510 return err;
1511}
1512
2e4b7fcd
DH
1513static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1514{
1515 int error = 0;
1516 int readonly_request = 0;
1517
1518 if (ms_flags & MS_RDONLY)
1519 readonly_request = 1;
1520 if (readonly_request == __mnt_is_readonly(mnt))
1521 return 0;
1522
1523 if (readonly_request)
1524 error = mnt_make_readonly(mnt);
1525 else
1526 __mnt_unmake_readonly(mnt);
1527 return error;
1528}
1529
1da177e4
LT
1530/*
1531 * change filesystem flags. dir should be a physical root of filesystem.
1532 * If you've mounted a non-root directory somewhere and want to do remount
1533 * on it - tough luck.
2dafe1c4 1534 * noinline this do_mount helper to save do_mount stack space.
1da177e4 1535 */
2dafe1c4 1536static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags,
1da177e4
LT
1537 void *data)
1538{
1539 int err;
4ac91378 1540 struct super_block *sb = nd->path.mnt->mnt_sb;
1da177e4
LT
1541
1542 if (!capable(CAP_SYS_ADMIN))
1543 return -EPERM;
1544
4ac91378 1545 if (!check_mnt(nd->path.mnt))
1da177e4
LT
1546 return -EINVAL;
1547
4ac91378 1548 if (nd->path.dentry != nd->path.mnt->mnt_root)
1da177e4
LT
1549 return -EINVAL;
1550
1551 down_write(&sb->s_umount);
2e4b7fcd
DH
1552 if (flags & MS_BIND)
1553 err = change_mount_flags(nd->path.mnt, flags);
1554 else
1555 err = do_remount_sb(sb, flags, data, 0);
1da177e4 1556 if (!err)
4ac91378 1557 nd->path.mnt->mnt_flags = mnt_flags;
1da177e4
LT
1558 up_write(&sb->s_umount);
1559 if (!err)
4ac91378 1560 security_sb_post_remount(nd->path.mnt, flags, data);
1da177e4
LT
1561 return err;
1562}
1563
9676f0c6
RP
1564static inline int tree_contains_unbindable(struct vfsmount *mnt)
1565{
1566 struct vfsmount *p;
1567 for (p = mnt; p; p = next_mnt(p, mnt)) {
1568 if (IS_MNT_UNBINDABLE(p))
1569 return 1;
1570 }
1571 return 0;
1572}
1573
2dafe1c4
ES
1574/*
1575 * noinline this do_mount helper to save do_mount stack space.
1576 */
1577static noinline int do_move_mount(struct nameidata *nd, char *old_name)
1da177e4 1578{
1a390689
AV
1579 struct nameidata old_nd;
1580 struct path parent_path;
1da177e4
LT
1581 struct vfsmount *p;
1582 int err = 0;
1583 if (!capable(CAP_SYS_ADMIN))
1584 return -EPERM;
1585 if (!old_name || !*old_name)
1586 return -EINVAL;
1587 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1588 if (err)
1589 return err;
1590
390c6843 1591 down_write(&namespace_sem);
4ac91378
JB
1592 while (d_mountpoint(nd->path.dentry) &&
1593 follow_down(&nd->path.mnt, &nd->path.dentry))
1da177e4
LT
1594 ;
1595 err = -EINVAL;
4ac91378 1596 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1da177e4
LT
1597 goto out;
1598
1599 err = -ENOENT;
4ac91378
JB
1600 mutex_lock(&nd->path.dentry->d_inode->i_mutex);
1601 if (IS_DEADDIR(nd->path.dentry->d_inode))
1da177e4
LT
1602 goto out1;
1603
4ac91378 1604 if (!IS_ROOT(nd->path.dentry) && d_unhashed(nd->path.dentry))
21444403 1605 goto out1;
1da177e4
LT
1606
1607 err = -EINVAL;
4ac91378 1608 if (old_nd.path.dentry != old_nd.path.mnt->mnt_root)
21444403 1609 goto out1;
1da177e4 1610
4ac91378 1611 if (old_nd.path.mnt == old_nd.path.mnt->mnt_parent)
21444403 1612 goto out1;
1da177e4 1613
4ac91378
JB
1614 if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
1615 S_ISDIR(old_nd.path.dentry->d_inode->i_mode))
21444403
RP
1616 goto out1;
1617 /*
1618 * Don't move a mount residing in a shared parent.
1619 */
4ac91378
JB
1620 if (old_nd.path.mnt->mnt_parent &&
1621 IS_MNT_SHARED(old_nd.path.mnt->mnt_parent))
21444403 1622 goto out1;
9676f0c6
RP
1623 /*
1624 * Don't move a mount tree containing unbindable mounts to a destination
1625 * mount which is shared.
1626 */
4ac91378
JB
1627 if (IS_MNT_SHARED(nd->path.mnt) &&
1628 tree_contains_unbindable(old_nd.path.mnt))
9676f0c6 1629 goto out1;
1da177e4 1630 err = -ELOOP;
4ac91378
JB
1631 for (p = nd->path.mnt; p->mnt_parent != p; p = p->mnt_parent)
1632 if (p == old_nd.path.mnt)
21444403 1633 goto out1;
1da177e4 1634
1a390689 1635 err = attach_recursive_mnt(old_nd.path.mnt, &nd->path, &parent_path);
4ac91378 1636 if (err)
21444403 1637 goto out1;
1da177e4
LT
1638
1639 /* if the mount is moved, it should no longer be expire
1640 * automatically */
4ac91378 1641 list_del_init(&old_nd.path.mnt->mnt_expire);
1da177e4 1642out1:
4ac91378 1643 mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
1da177e4 1644out:
390c6843 1645 up_write(&namespace_sem);
1da177e4 1646 if (!err)
1a390689 1647 path_put(&parent_path);
1d957f9b 1648 path_put(&old_nd.path);
1da177e4
LT
1649 return err;
1650}
1651
1652/*
1653 * create a new mount for userspace and request it to be added into the
1654 * namespace's tree
2dafe1c4 1655 * noinline this do_mount helper to save do_mount stack space.
1da177e4 1656 */
2dafe1c4 1657static noinline int do_new_mount(struct nameidata *nd, char *type, int flags,
1da177e4
LT
1658 int mnt_flags, char *name, void *data)
1659{
1660 struct vfsmount *mnt;
1661
1662 if (!type || !memchr(type, 0, PAGE_SIZE))
1663 return -EINVAL;
1664
1665 /* we need capabilities... */
1666 if (!capable(CAP_SYS_ADMIN))
1667 return -EPERM;
1668
1669 mnt = do_kern_mount(type, flags, name, data);
1670 if (IS_ERR(mnt))
1671 return PTR_ERR(mnt);
1672
1673 return do_add_mount(mnt, nd, mnt_flags, NULL);
1674}
1675
1676/*
1677 * add a mount into a namespace's mount tree
1678 * - provide the option of adding the new mount to an expiration list
1679 */
1680int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1681 int mnt_flags, struct list_head *fslist)
1682{
1683 int err;
1684
390c6843 1685 down_write(&namespace_sem);
1da177e4 1686 /* Something was mounted here while we slept */
4ac91378
JB
1687 while (d_mountpoint(nd->path.dentry) &&
1688 follow_down(&nd->path.mnt, &nd->path.dentry))
1da177e4
LT
1689 ;
1690 err = -EINVAL;
4ac91378 1691 if (!check_mnt(nd->path.mnt))
1da177e4
LT
1692 goto unlock;
1693
1694 /* Refuse the same filesystem on the same mount point */
1695 err = -EBUSY;
4ac91378
JB
1696 if (nd->path.mnt->mnt_sb == newmnt->mnt_sb &&
1697 nd->path.mnt->mnt_root == nd->path.dentry)
1da177e4
LT
1698 goto unlock;
1699
1700 err = -EINVAL;
1701 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1702 goto unlock;
1703
1704 newmnt->mnt_flags = mnt_flags;
8c3ee42e 1705 if ((err = graft_tree(newmnt, &nd->path)))
5b83d2c5 1706 goto unlock;
1da177e4 1707
6758f953 1708 if (fslist) /* add to the specified expiration list */
55e700b9 1709 list_add_tail(&newmnt->mnt_expire, fslist);
6758f953 1710
390c6843 1711 up_write(&namespace_sem);
5b83d2c5 1712 return 0;
1da177e4
LT
1713
1714unlock:
390c6843 1715 up_write(&namespace_sem);
1da177e4
LT
1716 mntput(newmnt);
1717 return err;
1718}
1719
1720EXPORT_SYMBOL_GPL(do_add_mount);
1721
1722/*
1723 * process a list of expirable mountpoints with the intent of discarding any
1724 * mountpoints that aren't in use and haven't been touched since last we came
1725 * here
1726 */
1727void mark_mounts_for_expiry(struct list_head *mounts)
1728{
1da177e4
LT
1729 struct vfsmount *mnt, *next;
1730 LIST_HEAD(graveyard);
bcc5c7d2 1731 LIST_HEAD(umounts);
1da177e4
LT
1732
1733 if (list_empty(mounts))
1734 return;
1735
bcc5c7d2 1736 down_write(&namespace_sem);
1da177e4
LT
1737 spin_lock(&vfsmount_lock);
1738
1739 /* extract from the expiration list every vfsmount that matches the
1740 * following criteria:
1741 * - only referenced by its parent vfsmount
1742 * - still marked for expiry (marked on the last call here; marks are
1743 * cleared by mntput())
1744 */
55e700b9 1745 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1da177e4 1746 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
bcc5c7d2 1747 propagate_mount_busy(mnt, 1))
1da177e4 1748 continue;
55e700b9 1749 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 1750 }
bcc5c7d2
AV
1751 while (!list_empty(&graveyard)) {
1752 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1753 touch_mnt_namespace(mnt->mnt_ns);
1754 umount_tree(mnt, 1, &umounts);
1755 }
5528f911 1756 spin_unlock(&vfsmount_lock);
bcc5c7d2
AV
1757 up_write(&namespace_sem);
1758
1759 release_mounts(&umounts);
5528f911
TM
1760}
1761
1762EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1763
1764/*
1765 * Ripoff of 'select_parent()'
1766 *
1767 * search the list of submounts for a given mountpoint, and move any
1768 * shrinkable submounts to the 'graveyard' list.
1769 */
1770static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1771{
1772 struct vfsmount *this_parent = parent;
1773 struct list_head *next;
1774 int found = 0;
1775
1776repeat:
1777 next = this_parent->mnt_mounts.next;
1778resume:
1779 while (next != &this_parent->mnt_mounts) {
1780 struct list_head *tmp = next;
1781 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1782
1783 next = tmp->next;
1784 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1da177e4 1785 continue;
5528f911
TM
1786 /*
1787 * Descend a level if the d_mounts list is non-empty.
1788 */
1789 if (!list_empty(&mnt->mnt_mounts)) {
1790 this_parent = mnt;
1791 goto repeat;
1792 }
1da177e4 1793
5528f911 1794 if (!propagate_mount_busy(mnt, 1)) {
5528f911
TM
1795 list_move_tail(&mnt->mnt_expire, graveyard);
1796 found++;
1797 }
1da177e4 1798 }
5528f911
TM
1799 /*
1800 * All done at this level ... ascend and resume the search
1801 */
1802 if (this_parent != parent) {
1803 next = this_parent->mnt_child.next;
1804 this_parent = this_parent->mnt_parent;
1805 goto resume;
1806 }
1807 return found;
1808}
1809
1810/*
1811 * process a list of expirable mountpoints with the intent of discarding any
1812 * submounts of a specific parent mountpoint
1813 */
c35038be 1814static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
5528f911
TM
1815{
1816 LIST_HEAD(graveyard);
c35038be 1817 struct vfsmount *m;
5528f911 1818
5528f911 1819 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 1820 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 1821 while (!list_empty(&graveyard)) {
c35038be 1822 m = list_first_entry(&graveyard, struct vfsmount,
bcc5c7d2
AV
1823 mnt_expire);
1824 touch_mnt_namespace(mnt->mnt_ns);
c35038be 1825 umount_tree(mnt, 1, umounts);
bcc5c7d2
AV
1826 }
1827 }
1da177e4
LT
1828}
1829
1da177e4
LT
1830/*
1831 * Some copy_from_user() implementations do not return the exact number of
1832 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1833 * Note that this function differs from copy_from_user() in that it will oops
1834 * on bad values of `to', rather than returning a short copy.
1835 */
b58fed8b
RP
1836static long exact_copy_from_user(void *to, const void __user * from,
1837 unsigned long n)
1da177e4
LT
1838{
1839 char *t = to;
1840 const char __user *f = from;
1841 char c;
1842
1843 if (!access_ok(VERIFY_READ, from, n))
1844 return n;
1845
1846 while (n) {
1847 if (__get_user(c, f)) {
1848 memset(t, 0, n);
1849 break;
1850 }
1851 *t++ = c;
1852 f++;
1853 n--;
1854 }
1855 return n;
1856}
1857
b58fed8b 1858int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
1859{
1860 int i;
1861 unsigned long page;
1862 unsigned long size;
b58fed8b 1863
1da177e4
LT
1864 *where = 0;
1865 if (!data)
1866 return 0;
1867
1868 if (!(page = __get_free_page(GFP_KERNEL)))
1869 return -ENOMEM;
1870
1871 /* We only care that *some* data at the address the user
1872 * gave us is valid. Just in case, we'll zero
1873 * the remainder of the page.
1874 */
1875 /* copy_from_user cannot cross TASK_SIZE ! */
1876 size = TASK_SIZE - (unsigned long)data;
1877 if (size > PAGE_SIZE)
1878 size = PAGE_SIZE;
1879
1880 i = size - exact_copy_from_user((void *)page, data, size);
1881 if (!i) {
b58fed8b 1882 free_page(page);
1da177e4
LT
1883 return -EFAULT;
1884 }
1885 if (i != PAGE_SIZE)
1886 memset((char *)page + i, 0, PAGE_SIZE - i);
1887 *where = page;
1888 return 0;
1889}
1890
1891/*
1892 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1893 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1894 *
1895 * data is a (void *) that can point to any structure up to
1896 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1897 * information (or be NULL).
1898 *
1899 * Pre-0.97 versions of mount() didn't have a flags word.
1900 * When the flags word was introduced its top half was required
1901 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1902 * Therefore, if this magic number is present, it carries no information
1903 * and must be discarded.
1904 */
b58fed8b 1905long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
1906 unsigned long flags, void *data_page)
1907{
1908 struct nameidata nd;
1909 int retval = 0;
1910 int mnt_flags = 0;
1911
1912 /* Discard magic */
1913 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1914 flags &= ~MS_MGC_MSK;
1915
1916 /* Basic sanity checks */
1917
1918 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1919 return -EINVAL;
1920 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1921 return -EINVAL;
1922
1923 if (data_page)
1924 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1925
1926 /* Separate the per-mountpoint flags */
1927 if (flags & MS_NOSUID)
1928 mnt_flags |= MNT_NOSUID;
1929 if (flags & MS_NODEV)
1930 mnt_flags |= MNT_NODEV;
1931 if (flags & MS_NOEXEC)
1932 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
1933 if (flags & MS_NOATIME)
1934 mnt_flags |= MNT_NOATIME;
1935 if (flags & MS_NODIRATIME)
1936 mnt_flags |= MNT_NODIRATIME;
47ae32d6
VH
1937 if (flags & MS_RELATIME)
1938 mnt_flags |= MNT_RELATIME;
2e4b7fcd
DH
1939 if (flags & MS_RDONLY)
1940 mnt_flags |= MNT_READONLY;
fc33a7bb
CH
1941
1942 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
8bf9725c 1943 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1da177e4
LT
1944
1945 /* ... and get the mountpoint */
1946 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1947 if (retval)
1948 return retval;
1949
b5266eb4
AV
1950 retval = security_sb_mount(dev_name, &nd.path,
1951 type_page, flags, data_page);
1da177e4
LT
1952 if (retval)
1953 goto dput_out;
1954
1955 if (flags & MS_REMOUNT)
1956 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1957 data_page);
1958 else if (flags & MS_BIND)
eee391a6 1959 retval = do_loopback(&nd, dev_name, flags & MS_REC);
9676f0c6 1960 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
07b20889 1961 retval = do_change_type(&nd, flags);
1da177e4
LT
1962 else if (flags & MS_MOVE)
1963 retval = do_move_mount(&nd, dev_name);
1964 else
1965 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1966 dev_name, data_page);
1967dput_out:
1d957f9b 1968 path_put(&nd.path);
1da177e4
LT
1969 return retval;
1970}
1971
741a2951
JD
1972/*
1973 * Allocate a new namespace structure and populate it with contents
1974 * copied from the namespace of the passed in task structure.
1975 */
e3222c4e 1976static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 1977 struct fs_struct *fs)
1da177e4 1978{
6b3286ed 1979 struct mnt_namespace *new_ns;
1da177e4 1980 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1da177e4
LT
1981 struct vfsmount *p, *q;
1982
6b3286ed 1983 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1da177e4 1984 if (!new_ns)
467e9f4b 1985 return ERR_PTR(-ENOMEM);
1da177e4
LT
1986
1987 atomic_set(&new_ns->count, 1);
1da177e4 1988 INIT_LIST_HEAD(&new_ns->list);
5addc5dd
AV
1989 init_waitqueue_head(&new_ns->poll);
1990 new_ns->event = 0;
1da177e4 1991
390c6843 1992 down_write(&namespace_sem);
1da177e4 1993 /* First pass: copy the tree topology */
6b3286ed 1994 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
9676f0c6 1995 CL_COPY_ALL | CL_EXPIRE);
1da177e4 1996 if (!new_ns->root) {
390c6843 1997 up_write(&namespace_sem);
1da177e4 1998 kfree(new_ns);
467e9f4b 1999 return ERR_PTR(-ENOMEM);;
1da177e4
LT
2000 }
2001 spin_lock(&vfsmount_lock);
2002 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2003 spin_unlock(&vfsmount_lock);
2004
2005 /*
2006 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2007 * as belonging to new namespace. We have already acquired a private
2008 * fs_struct, so tsk->fs->lock is not needed.
2009 */
6b3286ed 2010 p = mnt_ns->root;
1da177e4
LT
2011 q = new_ns->root;
2012 while (p) {
6b3286ed 2013 q->mnt_ns = new_ns;
1da177e4 2014 if (fs) {
6ac08c39 2015 if (p == fs->root.mnt) {
1da177e4 2016 rootmnt = p;
6ac08c39 2017 fs->root.mnt = mntget(q);
1da177e4 2018 }
6ac08c39 2019 if (p == fs->pwd.mnt) {
1da177e4 2020 pwdmnt = p;
6ac08c39 2021 fs->pwd.mnt = mntget(q);
1da177e4 2022 }
6ac08c39 2023 if (p == fs->altroot.mnt) {
1da177e4 2024 altrootmnt = p;
6ac08c39 2025 fs->altroot.mnt = mntget(q);
1da177e4
LT
2026 }
2027 }
6b3286ed 2028 p = next_mnt(p, mnt_ns->root);
1da177e4
LT
2029 q = next_mnt(q, new_ns->root);
2030 }
390c6843 2031 up_write(&namespace_sem);
1da177e4 2032
1da177e4
LT
2033 if (rootmnt)
2034 mntput(rootmnt);
2035 if (pwdmnt)
2036 mntput(pwdmnt);
2037 if (altrootmnt)
2038 mntput(altrootmnt);
2039
741a2951
JD
2040 return new_ns;
2041}
2042
213dd266 2043struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2044 struct fs_struct *new_fs)
741a2951 2045{
6b3286ed 2046 struct mnt_namespace *new_ns;
741a2951 2047
e3222c4e 2048 BUG_ON(!ns);
6b3286ed 2049 get_mnt_ns(ns);
741a2951
JD
2050
2051 if (!(flags & CLONE_NEWNS))
e3222c4e 2052 return ns;
741a2951 2053
e3222c4e 2054 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2055
6b3286ed 2056 put_mnt_ns(ns);
e3222c4e 2057 return new_ns;
1da177e4
LT
2058}
2059
2060asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
2061 char __user * type, unsigned long flags,
2062 void __user * data)
2063{
2064 int retval;
2065 unsigned long data_page;
2066 unsigned long type_page;
2067 unsigned long dev_page;
2068 char *dir_page;
2069
b58fed8b 2070 retval = copy_mount_options(type, &type_page);
1da177e4
LT
2071 if (retval < 0)
2072 return retval;
2073
2074 dir_page = getname(dir_name);
2075 retval = PTR_ERR(dir_page);
2076 if (IS_ERR(dir_page))
2077 goto out1;
2078
b58fed8b 2079 retval = copy_mount_options(dev_name, &dev_page);
1da177e4
LT
2080 if (retval < 0)
2081 goto out2;
2082
b58fed8b 2083 retval = copy_mount_options(data, &data_page);
1da177e4
LT
2084 if (retval < 0)
2085 goto out3;
2086
2087 lock_kernel();
b58fed8b
RP
2088 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
2089 flags, (void *)data_page);
1da177e4
LT
2090 unlock_kernel();
2091 free_page(data_page);
2092
2093out3:
2094 free_page(dev_page);
2095out2:
2096 putname(dir_page);
2097out1:
2098 free_page(type_page);
2099 return retval;
2100}
2101
2102/*
2103 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
2104 * It can block. Requires the big lock held.
2105 */
ac748a09 2106void set_fs_root(struct fs_struct *fs, struct path *path)
1da177e4 2107{
6ac08c39
JB
2108 struct path old_root;
2109
1da177e4
LT
2110 write_lock(&fs->lock);
2111 old_root = fs->root;
ac748a09
JB
2112 fs->root = *path;
2113 path_get(path);
1da177e4 2114 write_unlock(&fs->lock);
6ac08c39
JB
2115 if (old_root.dentry)
2116 path_put(&old_root);
1da177e4
LT
2117}
2118
2119/*
2120 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
2121 * It can block. Requires the big lock held.
2122 */
ac748a09 2123void set_fs_pwd(struct fs_struct *fs, struct path *path)
1da177e4 2124{
6ac08c39 2125 struct path old_pwd;
1da177e4
LT
2126
2127 write_lock(&fs->lock);
2128 old_pwd = fs->pwd;
ac748a09
JB
2129 fs->pwd = *path;
2130 path_get(path);
1da177e4
LT
2131 write_unlock(&fs->lock);
2132
6ac08c39
JB
2133 if (old_pwd.dentry)
2134 path_put(&old_pwd);
1da177e4
LT
2135}
2136
1a390689 2137static void chroot_fs_refs(struct path *old_root, struct path *new_root)
1da177e4
LT
2138{
2139 struct task_struct *g, *p;
2140 struct fs_struct *fs;
2141
2142 read_lock(&tasklist_lock);
2143 do_each_thread(g, p) {
2144 task_lock(p);
2145 fs = p->fs;
2146 if (fs) {
2147 atomic_inc(&fs->count);
2148 task_unlock(p);
1a390689
AV
2149 if (fs->root.dentry == old_root->dentry
2150 && fs->root.mnt == old_root->mnt)
2151 set_fs_root(fs, new_root);
2152 if (fs->pwd.dentry == old_root->dentry
2153 && fs->pwd.mnt == old_root->mnt)
2154 set_fs_pwd(fs, new_root);
1da177e4
LT
2155 put_fs_struct(fs);
2156 } else
2157 task_unlock(p);
2158 } while_each_thread(g, p);
2159 read_unlock(&tasklist_lock);
2160}
2161
2162/*
2163 * pivot_root Semantics:
2164 * Moves the root file system of the current process to the directory put_old,
2165 * makes new_root as the new root file system of the current process, and sets
2166 * root/cwd of all processes which had them on the current root to new_root.
2167 *
2168 * Restrictions:
2169 * The new_root and put_old must be directories, and must not be on the
2170 * same file system as the current process root. The put_old must be
2171 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2172 * pointed to by put_old must yield the same directory as new_root. No other
2173 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2174 *
4a0d11fa
NB
2175 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2176 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2177 * in this situation.
2178 *
1da177e4
LT
2179 * Notes:
2180 * - we don't move root/cwd if they are not at the root (reason: if something
2181 * cared enough to change them, it's probably wrong to force them elsewhere)
2182 * - it's okay to pick a root that isn't the root of a file system, e.g.
2183 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2184 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2185 * first.
2186 */
b58fed8b
RP
2187asmlinkage long sys_pivot_root(const char __user * new_root,
2188 const char __user * put_old)
1da177e4
LT
2189{
2190 struct vfsmount *tmp;
8c3ee42e
AV
2191 struct nameidata new_nd, old_nd;
2192 struct path parent_path, root_parent, root;
1da177e4
LT
2193 int error;
2194
2195 if (!capable(CAP_SYS_ADMIN))
2196 return -EPERM;
2197
b58fed8b
RP
2198 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
2199 &new_nd);
1da177e4
LT
2200 if (error)
2201 goto out0;
2202 error = -EINVAL;
4ac91378 2203 if (!check_mnt(new_nd.path.mnt))
1da177e4
LT
2204 goto out1;
2205
b58fed8b 2206 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1da177e4
LT
2207 if (error)
2208 goto out1;
2209
b5266eb4 2210 error = security_sb_pivotroot(&old_nd.path, &new_nd.path);
1da177e4 2211 if (error) {
1d957f9b 2212 path_put(&old_nd.path);
1da177e4
LT
2213 goto out1;
2214 }
2215
2216 read_lock(&current->fs->lock);
8c3ee42e 2217 root = current->fs->root;
6ac08c39 2218 path_get(&current->fs->root);
1da177e4 2219 read_unlock(&current->fs->lock);
390c6843 2220 down_write(&namespace_sem);
4ac91378 2221 mutex_lock(&old_nd.path.dentry->d_inode->i_mutex);
1da177e4 2222 error = -EINVAL;
4ac91378
JB
2223 if (IS_MNT_SHARED(old_nd.path.mnt) ||
2224 IS_MNT_SHARED(new_nd.path.mnt->mnt_parent) ||
8c3ee42e 2225 IS_MNT_SHARED(root.mnt->mnt_parent))
21444403 2226 goto out2;
8c3ee42e 2227 if (!check_mnt(root.mnt))
1da177e4
LT
2228 goto out2;
2229 error = -ENOENT;
4ac91378 2230 if (IS_DEADDIR(new_nd.path.dentry->d_inode))
1da177e4 2231 goto out2;
4ac91378 2232 if (d_unhashed(new_nd.path.dentry) && !IS_ROOT(new_nd.path.dentry))
1da177e4 2233 goto out2;
4ac91378 2234 if (d_unhashed(old_nd.path.dentry) && !IS_ROOT(old_nd.path.dentry))
1da177e4
LT
2235 goto out2;
2236 error = -EBUSY;
8c3ee42e
AV
2237 if (new_nd.path.mnt == root.mnt ||
2238 old_nd.path.mnt == root.mnt)
1da177e4
LT
2239 goto out2; /* loop, on the same file system */
2240 error = -EINVAL;
8c3ee42e 2241 if (root.mnt->mnt_root != root.dentry)
1da177e4 2242 goto out2; /* not a mountpoint */
8c3ee42e 2243 if (root.mnt->mnt_parent == root.mnt)
0bb6fcc1 2244 goto out2; /* not attached */
4ac91378 2245 if (new_nd.path.mnt->mnt_root != new_nd.path.dentry)
1da177e4 2246 goto out2; /* not a mountpoint */
4ac91378 2247 if (new_nd.path.mnt->mnt_parent == new_nd.path.mnt)
0bb6fcc1 2248 goto out2; /* not attached */
4ac91378
JB
2249 /* make sure we can reach put_old from new_root */
2250 tmp = old_nd.path.mnt;
1da177e4 2251 spin_lock(&vfsmount_lock);
4ac91378 2252 if (tmp != new_nd.path.mnt) {
1da177e4
LT
2253 for (;;) {
2254 if (tmp->mnt_parent == tmp)
2255 goto out3; /* already mounted on put_old */
4ac91378 2256 if (tmp->mnt_parent == new_nd.path.mnt)
1da177e4
LT
2257 break;
2258 tmp = tmp->mnt_parent;
2259 }
4ac91378 2260 if (!is_subdir(tmp->mnt_mountpoint, new_nd.path.dentry))
1da177e4 2261 goto out3;
4ac91378 2262 } else if (!is_subdir(old_nd.path.dentry, new_nd.path.dentry))
1da177e4 2263 goto out3;
1a390689 2264 detach_mnt(new_nd.path.mnt, &parent_path);
8c3ee42e 2265 detach_mnt(root.mnt, &root_parent);
4ac91378 2266 /* mount old root on put_old */
8c3ee42e 2267 attach_mnt(root.mnt, &old_nd.path);
4ac91378
JB
2268 /* mount new_root on / */
2269 attach_mnt(new_nd.path.mnt, &root_parent);
6b3286ed 2270 touch_mnt_namespace(current->nsproxy->mnt_ns);
1da177e4 2271 spin_unlock(&vfsmount_lock);
8c3ee42e
AV
2272 chroot_fs_refs(&root, &new_nd.path);
2273 security_sb_post_pivotroot(&root, &new_nd.path);
1da177e4 2274 error = 0;
1a390689
AV
2275 path_put(&root_parent);
2276 path_put(&parent_path);
1da177e4 2277out2:
4ac91378 2278 mutex_unlock(&old_nd.path.dentry->d_inode->i_mutex);
390c6843 2279 up_write(&namespace_sem);
8c3ee42e 2280 path_put(&root);
1d957f9b 2281 path_put(&old_nd.path);
1da177e4 2282out1:
1d957f9b 2283 path_put(&new_nd.path);
1da177e4 2284out0:
1da177e4
LT
2285 return error;
2286out3:
2287 spin_unlock(&vfsmount_lock);
2288 goto out2;
2289}
2290
2291static void __init init_mount_tree(void)
2292{
2293 struct vfsmount *mnt;
6b3286ed 2294 struct mnt_namespace *ns;
ac748a09 2295 struct path root;
1da177e4
LT
2296
2297 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2298 if (IS_ERR(mnt))
2299 panic("Can't create rootfs");
6b3286ed
KK
2300 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
2301 if (!ns)
1da177e4 2302 panic("Can't allocate initial namespace");
6b3286ed
KK
2303 atomic_set(&ns->count, 1);
2304 INIT_LIST_HEAD(&ns->list);
2305 init_waitqueue_head(&ns->poll);
2306 ns->event = 0;
2307 list_add(&mnt->mnt_list, &ns->list);
2308 ns->root = mnt;
2309 mnt->mnt_ns = ns;
2310
2311 init_task.nsproxy->mnt_ns = ns;
2312 get_mnt_ns(ns);
2313
ac748a09
JB
2314 root.mnt = ns->root;
2315 root.dentry = ns->root->mnt_root;
2316
2317 set_fs_pwd(current->fs, &root);
2318 set_fs_root(current->fs, &root);
1da177e4
LT
2319}
2320
74bf17cf 2321void __init mnt_init(void)
1da177e4 2322{
13f14b4d 2323 unsigned u;
15a67dd8 2324 int err;
1da177e4 2325
390c6843
RP
2326 init_rwsem(&namespace_sem);
2327
1da177e4 2328 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
20c2df83 2329 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2330
b58fed8b 2331 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2332
2333 if (!mount_hashtable)
2334 panic("Failed to allocate mount hash table\n");
2335
13f14b4d
ED
2336 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2337
2338 for (u = 0; u < HASH_SIZE; u++)
2339 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2340
15a67dd8
RD
2341 err = sysfs_init();
2342 if (err)
2343 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2344 __FUNCTION__, err);
00d26666
GKH
2345 fs_kobj = kobject_create_and_add("fs", NULL);
2346 if (!fs_kobj)
2347 printk(KERN_WARNING "%s: kobj create error\n", __FUNCTION__);
1da177e4
LT
2348 init_rootfs();
2349 init_mount_tree();
2350}
2351
6b3286ed 2352void __put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2353{
6b3286ed 2354 struct vfsmount *root = ns->root;
70fbcdf4 2355 LIST_HEAD(umount_list);
6b3286ed 2356 ns->root = NULL;
1ce88cf4 2357 spin_unlock(&vfsmount_lock);
390c6843 2358 down_write(&namespace_sem);
1da177e4 2359 spin_lock(&vfsmount_lock);
a05964f3 2360 umount_tree(root, 0, &umount_list);
1da177e4 2361 spin_unlock(&vfsmount_lock);
390c6843 2362 up_write(&namespace_sem);
70fbcdf4 2363 release_mounts(&umount_list);
6b3286ed 2364 kfree(ns);
1da177e4 2365}