]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/namespace.c
[PATCH] finally get rid of nameidata in namespace.c
[net-next-2.6.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4
LT
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
14#include <linux/smp_lock.h>
15#include <linux/init.h>
15a67dd8 16#include <linux/kernel.h>
1da177e4 17#include <linux/acct.h>
16f7e0fe 18#include <linux/capability.h>
3d733633 19#include <linux/cpumask.h>
1da177e4 20#include <linux/module.h>
f20a9ead 21#include <linux/sysfs.h>
1da177e4 22#include <linux/seq_file.h>
6b3286ed 23#include <linux/mnt_namespace.h>
1da177e4
LT
24#include <linux/namei.h>
25#include <linux/security.h>
26#include <linux/mount.h>
07f3f05c 27#include <linux/ramfs.h>
13f14b4d 28#include <linux/log2.h>
73cd49ec 29#include <linux/idr.h>
1da177e4
LT
30#include <asm/uaccess.h>
31#include <asm/unistd.h>
07b20889 32#include "pnode.h"
948730b0 33#include "internal.h"
1da177e4 34
13f14b4d
ED
35#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
36#define HASH_SIZE (1UL << HASH_SHIFT)
37
1da177e4 38/* spinlock for vfsmount related operations, inplace of dcache_lock */
5addc5dd
AV
39__cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
40
41static int event;
73cd49ec 42static DEFINE_IDA(mnt_id_ida);
719f5d7f 43static DEFINE_IDA(mnt_group_ida);
1da177e4 44
fa3536cc 45static struct list_head *mount_hashtable __read_mostly;
e18b890b 46static struct kmem_cache *mnt_cache __read_mostly;
390c6843 47static struct rw_semaphore namespace_sem;
1da177e4 48
f87fd4c2 49/* /sys/fs */
00d26666
GKH
50struct kobject *fs_kobj;
51EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 52
1da177e4
LT
53static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
54{
b58fed8b
RP
55 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
56 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
57 tmp = tmp + (tmp >> HASH_SHIFT);
58 return tmp & (HASH_SIZE - 1);
1da177e4
LT
59}
60
3d733633
DH
61#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
62
73cd49ec
MS
63/* allocation is serialized by namespace_sem */
64static int mnt_alloc_id(struct vfsmount *mnt)
65{
66 int res;
67
68retry:
69 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
70 spin_lock(&vfsmount_lock);
71 res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
72 spin_unlock(&vfsmount_lock);
73 if (res == -EAGAIN)
74 goto retry;
75
76 return res;
77}
78
79static void mnt_free_id(struct vfsmount *mnt)
80{
81 spin_lock(&vfsmount_lock);
82 ida_remove(&mnt_id_ida, mnt->mnt_id);
83 spin_unlock(&vfsmount_lock);
84}
85
719f5d7f
MS
86/*
87 * Allocate a new peer group ID
88 *
89 * mnt_group_ida is protected by namespace_sem
90 */
91static int mnt_alloc_group_id(struct vfsmount *mnt)
92{
93 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
94 return -ENOMEM;
95
96 return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
97}
98
99/*
100 * Release a peer group ID
101 */
102void mnt_release_group_id(struct vfsmount *mnt)
103{
104 ida_remove(&mnt_group_ida, mnt->mnt_group_id);
105 mnt->mnt_group_id = 0;
106}
107
1da177e4
LT
108struct vfsmount *alloc_vfsmnt(const char *name)
109{
c3762229 110 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
1da177e4 111 if (mnt) {
73cd49ec
MS
112 int err;
113
114 err = mnt_alloc_id(mnt);
88b38782
LZ
115 if (err)
116 goto out_free_cache;
117
118 if (name) {
119 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
120 if (!mnt->mnt_devname)
121 goto out_free_id;
73cd49ec
MS
122 }
123
b58fed8b 124 atomic_set(&mnt->mnt_count, 1);
1da177e4
LT
125 INIT_LIST_HEAD(&mnt->mnt_hash);
126 INIT_LIST_HEAD(&mnt->mnt_child);
127 INIT_LIST_HEAD(&mnt->mnt_mounts);
128 INIT_LIST_HEAD(&mnt->mnt_list);
55e700b9 129 INIT_LIST_HEAD(&mnt->mnt_expire);
03e06e68 130 INIT_LIST_HEAD(&mnt->mnt_share);
a58b0eb8
RP
131 INIT_LIST_HEAD(&mnt->mnt_slave_list);
132 INIT_LIST_HEAD(&mnt->mnt_slave);
3d733633 133 atomic_set(&mnt->__mnt_writers, 0);
1da177e4
LT
134 }
135 return mnt;
88b38782
LZ
136
137out_free_id:
138 mnt_free_id(mnt);
139out_free_cache:
140 kmem_cache_free(mnt_cache, mnt);
141 return NULL;
1da177e4
LT
142}
143
3d733633
DH
144/*
145 * Most r/o checks on a fs are for operations that take
146 * discrete amounts of time, like a write() or unlink().
147 * We must keep track of when those operations start
148 * (for permission checks) and when they end, so that
149 * we can determine when writes are able to occur to
150 * a filesystem.
151 */
152/*
153 * __mnt_is_readonly: check whether a mount is read-only
154 * @mnt: the mount to check for its write status
155 *
156 * This shouldn't be used directly ouside of the VFS.
157 * It does not guarantee that the filesystem will stay
158 * r/w, just that it is right *now*. This can not and
159 * should not be used in place of IS_RDONLY(inode).
160 * mnt_want/drop_write() will _keep_ the filesystem
161 * r/w.
162 */
163int __mnt_is_readonly(struct vfsmount *mnt)
164{
2e4b7fcd
DH
165 if (mnt->mnt_flags & MNT_READONLY)
166 return 1;
167 if (mnt->mnt_sb->s_flags & MS_RDONLY)
168 return 1;
169 return 0;
3d733633
DH
170}
171EXPORT_SYMBOL_GPL(__mnt_is_readonly);
172
173struct mnt_writer {
174 /*
175 * If holding multiple instances of this lock, they
176 * must be ordered by cpu number.
177 */
178 spinlock_t lock;
179 struct lock_class_key lock_class; /* compiles out with !lockdep */
180 unsigned long count;
181 struct vfsmount *mnt;
182} ____cacheline_aligned_in_smp;
183static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
184
185static int __init init_mnt_writers(void)
186{
187 int cpu;
188 for_each_possible_cpu(cpu) {
189 struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
190 spin_lock_init(&writer->lock);
191 lockdep_set_class(&writer->lock, &writer->lock_class);
192 writer->count = 0;
193 }
194 return 0;
195}
196fs_initcall(init_mnt_writers);
197
198static void unlock_mnt_writers(void)
199{
200 int cpu;
201 struct mnt_writer *cpu_writer;
202
203 for_each_possible_cpu(cpu) {
204 cpu_writer = &per_cpu(mnt_writers, cpu);
205 spin_unlock(&cpu_writer->lock);
206 }
207}
208
209static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
210{
211 if (!cpu_writer->mnt)
212 return;
213 /*
214 * This is in case anyone ever leaves an invalid,
215 * old ->mnt and a count of 0.
216 */
217 if (!cpu_writer->count)
218 return;
219 atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
220 cpu_writer->count = 0;
221}
222 /*
223 * must hold cpu_writer->lock
224 */
225static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
226 struct vfsmount *mnt)
227{
228 if (cpu_writer->mnt == mnt)
229 return;
230 __clear_mnt_count(cpu_writer);
231 cpu_writer->mnt = mnt;
232}
233
8366025e
DH
234/*
235 * Most r/o checks on a fs are for operations that take
236 * discrete amounts of time, like a write() or unlink().
237 * We must keep track of when those operations start
238 * (for permission checks) and when they end, so that
239 * we can determine when writes are able to occur to
240 * a filesystem.
241 */
242/**
243 * mnt_want_write - get write access to a mount
244 * @mnt: the mount on which to take a write
245 *
246 * This tells the low-level filesystem that a write is
247 * about to be performed to it, and makes sure that
248 * writes are allowed before returning success. When
249 * the write operation is finished, mnt_drop_write()
250 * must be called. This is effectively a refcount.
251 */
252int mnt_want_write(struct vfsmount *mnt)
253{
3d733633
DH
254 int ret = 0;
255 struct mnt_writer *cpu_writer;
256
257 cpu_writer = &get_cpu_var(mnt_writers);
258 spin_lock(&cpu_writer->lock);
259 if (__mnt_is_readonly(mnt)) {
260 ret = -EROFS;
261 goto out;
262 }
263 use_cpu_writer_for_mount(cpu_writer, mnt);
264 cpu_writer->count++;
265out:
266 spin_unlock(&cpu_writer->lock);
267 put_cpu_var(mnt_writers);
268 return ret;
8366025e
DH
269}
270EXPORT_SYMBOL_GPL(mnt_want_write);
271
3d733633
DH
272static void lock_mnt_writers(void)
273{
274 int cpu;
275 struct mnt_writer *cpu_writer;
276
277 for_each_possible_cpu(cpu) {
278 cpu_writer = &per_cpu(mnt_writers, cpu);
279 spin_lock(&cpu_writer->lock);
280 __clear_mnt_count(cpu_writer);
281 cpu_writer->mnt = NULL;
282 }
283}
284
285/*
286 * These per-cpu write counts are not guaranteed to have
287 * matched increments and decrements on any given cpu.
288 * A file open()ed for write on one cpu and close()d on
289 * another cpu will imbalance this count. Make sure it
290 * does not get too far out of whack.
291 */
292static void handle_write_count_underflow(struct vfsmount *mnt)
293{
294 if (atomic_read(&mnt->__mnt_writers) >=
295 MNT_WRITER_UNDERFLOW_LIMIT)
296 return;
297 /*
298 * It isn't necessary to hold all of the locks
299 * at the same time, but doing it this way makes
300 * us share a lot more code.
301 */
302 lock_mnt_writers();
303 /*
304 * vfsmount_lock is for mnt_flags.
305 */
306 spin_lock(&vfsmount_lock);
307 /*
308 * If coalescing the per-cpu writer counts did not
309 * get us back to a positive writer count, we have
310 * a bug.
311 */
312 if ((atomic_read(&mnt->__mnt_writers) < 0) &&
313 !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
5c752ad9 314 WARN(1, KERN_DEBUG "leak detected on mount(%p) writers "
3d733633
DH
315 "count: %d\n",
316 mnt, atomic_read(&mnt->__mnt_writers));
3d733633
DH
317 /* use the flag to keep the dmesg spam down */
318 mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
319 }
320 spin_unlock(&vfsmount_lock);
321 unlock_mnt_writers();
322}
323
8366025e
DH
324/**
325 * mnt_drop_write - give up write access to a mount
326 * @mnt: the mount on which to give up write access
327 *
328 * Tells the low-level filesystem that we are done
329 * performing writes to it. Must be matched with
330 * mnt_want_write() call above.
331 */
332void mnt_drop_write(struct vfsmount *mnt)
333{
3d733633
DH
334 int must_check_underflow = 0;
335 struct mnt_writer *cpu_writer;
336
337 cpu_writer = &get_cpu_var(mnt_writers);
338 spin_lock(&cpu_writer->lock);
339
340 use_cpu_writer_for_mount(cpu_writer, mnt);
341 if (cpu_writer->count > 0) {
342 cpu_writer->count--;
343 } else {
344 must_check_underflow = 1;
345 atomic_dec(&mnt->__mnt_writers);
346 }
347
348 spin_unlock(&cpu_writer->lock);
349 /*
350 * Logically, we could call this each time,
351 * but the __mnt_writers cacheline tends to
352 * be cold, and makes this expensive.
353 */
354 if (must_check_underflow)
355 handle_write_count_underflow(mnt);
356 /*
357 * This could be done right after the spinlock
358 * is taken because the spinlock keeps us on
359 * the cpu, and disables preemption. However,
360 * putting it here bounds the amount that
361 * __mnt_writers can underflow. Without it,
362 * we could theoretically wrap __mnt_writers.
363 */
364 put_cpu_var(mnt_writers);
8366025e
DH
365}
366EXPORT_SYMBOL_GPL(mnt_drop_write);
367
2e4b7fcd 368static int mnt_make_readonly(struct vfsmount *mnt)
8366025e 369{
3d733633
DH
370 int ret = 0;
371
372 lock_mnt_writers();
373 /*
374 * With all the locks held, this value is stable
375 */
376 if (atomic_read(&mnt->__mnt_writers) > 0) {
377 ret = -EBUSY;
378 goto out;
379 }
380 /*
2e4b7fcd
DH
381 * nobody can do a successful mnt_want_write() with all
382 * of the counts in MNT_DENIED_WRITE and the locks held.
3d733633 383 */
2e4b7fcd
DH
384 spin_lock(&vfsmount_lock);
385 if (!ret)
386 mnt->mnt_flags |= MNT_READONLY;
387 spin_unlock(&vfsmount_lock);
3d733633
DH
388out:
389 unlock_mnt_writers();
390 return ret;
8366025e 391}
8366025e 392
2e4b7fcd
DH
393static void __mnt_unmake_readonly(struct vfsmount *mnt)
394{
395 spin_lock(&vfsmount_lock);
396 mnt->mnt_flags &= ~MNT_READONLY;
397 spin_unlock(&vfsmount_lock);
398}
399
454e2398
DH
400int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
401{
402 mnt->mnt_sb = sb;
403 mnt->mnt_root = dget(sb->s_root);
404 return 0;
405}
406
407EXPORT_SYMBOL(simple_set_mnt);
408
1da177e4
LT
409void free_vfsmnt(struct vfsmount *mnt)
410{
411 kfree(mnt->mnt_devname);
73cd49ec 412 mnt_free_id(mnt);
1da177e4
LT
413 kmem_cache_free(mnt_cache, mnt);
414}
415
416/*
a05964f3
RP
417 * find the first or last mount at @dentry on vfsmount @mnt depending on
418 * @dir. If @dir is set return the first mount else return the last mount.
1da177e4 419 */
a05964f3
RP
420struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
421 int dir)
1da177e4 422{
b58fed8b
RP
423 struct list_head *head = mount_hashtable + hash(mnt, dentry);
424 struct list_head *tmp = head;
1da177e4
LT
425 struct vfsmount *p, *found = NULL;
426
1da177e4 427 for (;;) {
a05964f3 428 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
429 p = NULL;
430 if (tmp == head)
431 break;
432 p = list_entry(tmp, struct vfsmount, mnt_hash);
433 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
a05964f3 434 found = p;
1da177e4
LT
435 break;
436 }
437 }
1da177e4
LT
438 return found;
439}
440
a05964f3
RP
441/*
442 * lookup_mnt increments the ref count before returning
443 * the vfsmount struct.
444 */
445struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
446{
447 struct vfsmount *child_mnt;
448 spin_lock(&vfsmount_lock);
449 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
450 mntget(child_mnt);
451 spin_unlock(&vfsmount_lock);
452 return child_mnt;
453}
454
1da177e4
LT
455static inline int check_mnt(struct vfsmount *mnt)
456{
6b3286ed 457 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
458}
459
6b3286ed 460static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
461{
462 if (ns) {
463 ns->event = ++event;
464 wake_up_interruptible(&ns->poll);
465 }
466}
467
6b3286ed 468static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
469{
470 if (ns && ns->event != event) {
471 ns->event = event;
472 wake_up_interruptible(&ns->poll);
473 }
474}
475
1a390689 476static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
1da177e4 477{
1a390689
AV
478 old_path->dentry = mnt->mnt_mountpoint;
479 old_path->mnt = mnt->mnt_parent;
1da177e4
LT
480 mnt->mnt_parent = mnt;
481 mnt->mnt_mountpoint = mnt->mnt_root;
482 list_del_init(&mnt->mnt_child);
483 list_del_init(&mnt->mnt_hash);
1a390689 484 old_path->dentry->d_mounted--;
1da177e4
LT
485}
486
b90fa9ae
RP
487void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
488 struct vfsmount *child_mnt)
489{
490 child_mnt->mnt_parent = mntget(mnt);
491 child_mnt->mnt_mountpoint = dget(dentry);
492 dentry->d_mounted++;
493}
494
1a390689 495static void attach_mnt(struct vfsmount *mnt, struct path *path)
1da177e4 496{
1a390689 497 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
b90fa9ae 498 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689
AV
499 hash(path->mnt, path->dentry));
500 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
b90fa9ae
RP
501}
502
503/*
504 * the caller must hold vfsmount_lock
505 */
506static void commit_tree(struct vfsmount *mnt)
507{
508 struct vfsmount *parent = mnt->mnt_parent;
509 struct vfsmount *m;
510 LIST_HEAD(head);
6b3286ed 511 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae
RP
512
513 BUG_ON(parent == mnt);
514
515 list_add_tail(&head, &mnt->mnt_list);
516 list_for_each_entry(m, &head, mnt_list)
6b3286ed 517 m->mnt_ns = n;
b90fa9ae
RP
518 list_splice(&head, n->list.prev);
519
520 list_add_tail(&mnt->mnt_hash, mount_hashtable +
521 hash(parent, mnt->mnt_mountpoint));
522 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 523 touch_mnt_namespace(n);
1da177e4
LT
524}
525
526static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
527{
528 struct list_head *next = p->mnt_mounts.next;
529 if (next == &p->mnt_mounts) {
530 while (1) {
531 if (p == root)
532 return NULL;
533 next = p->mnt_child.next;
534 if (next != &p->mnt_parent->mnt_mounts)
535 break;
536 p = p->mnt_parent;
537 }
538 }
539 return list_entry(next, struct vfsmount, mnt_child);
540}
541
9676f0c6
RP
542static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
543{
544 struct list_head *prev = p->mnt_mounts.prev;
545 while (prev != &p->mnt_mounts) {
546 p = list_entry(prev, struct vfsmount, mnt_child);
547 prev = p->mnt_mounts.prev;
548 }
549 return p;
550}
551
36341f64
RP
552static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
553 int flag)
1da177e4
LT
554{
555 struct super_block *sb = old->mnt_sb;
556 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
557
558 if (mnt) {
719f5d7f
MS
559 if (flag & (CL_SLAVE | CL_PRIVATE))
560 mnt->mnt_group_id = 0; /* not a peer of original */
561 else
562 mnt->mnt_group_id = old->mnt_group_id;
563
564 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
565 int err = mnt_alloc_group_id(mnt);
566 if (err)
567 goto out_free;
568 }
569
1da177e4
LT
570 mnt->mnt_flags = old->mnt_flags;
571 atomic_inc(&sb->s_active);
572 mnt->mnt_sb = sb;
573 mnt->mnt_root = dget(root);
574 mnt->mnt_mountpoint = mnt->mnt_root;
575 mnt->mnt_parent = mnt;
b90fa9ae 576
5afe0022
RP
577 if (flag & CL_SLAVE) {
578 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
579 mnt->mnt_master = old;
580 CLEAR_MNT_SHARED(mnt);
8aec0809 581 } else if (!(flag & CL_PRIVATE)) {
5afe0022
RP
582 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
583 list_add(&mnt->mnt_share, &old->mnt_share);
584 if (IS_MNT_SLAVE(old))
585 list_add(&mnt->mnt_slave, &old->mnt_slave);
586 mnt->mnt_master = old->mnt_master;
587 }
b90fa9ae
RP
588 if (flag & CL_MAKE_SHARED)
589 set_mnt_shared(mnt);
1da177e4
LT
590
591 /* stick the duplicate mount on the same expiry list
592 * as the original if that was on one */
36341f64 593 if (flag & CL_EXPIRE) {
36341f64
RP
594 if (!list_empty(&old->mnt_expire))
595 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 596 }
1da177e4
LT
597 }
598 return mnt;
719f5d7f
MS
599
600 out_free:
601 free_vfsmnt(mnt);
602 return NULL;
1da177e4
LT
603}
604
7b7b1ace 605static inline void __mntput(struct vfsmount *mnt)
1da177e4 606{
3d733633 607 int cpu;
1da177e4 608 struct super_block *sb = mnt->mnt_sb;
3d733633
DH
609 /*
610 * We don't have to hold all of the locks at the
611 * same time here because we know that we're the
612 * last reference to mnt and that no new writers
613 * can come in.
614 */
615 for_each_possible_cpu(cpu) {
616 struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
617 if (cpu_writer->mnt != mnt)
618 continue;
619 spin_lock(&cpu_writer->lock);
620 atomic_add(cpu_writer->count, &mnt->__mnt_writers);
621 cpu_writer->count = 0;
622 /*
623 * Might as well do this so that no one
624 * ever sees the pointer and expects
625 * it to be valid.
626 */
627 cpu_writer->mnt = NULL;
628 spin_unlock(&cpu_writer->lock);
629 }
630 /*
631 * This probably indicates that somebody messed
632 * up a mnt_want/drop_write() pair. If this
633 * happens, the filesystem was probably unable
634 * to make r/w->r/o transitions.
635 */
636 WARN_ON(atomic_read(&mnt->__mnt_writers));
1da177e4
LT
637 dput(mnt->mnt_root);
638 free_vfsmnt(mnt);
639 deactivate_super(sb);
640}
641
7b7b1ace
AV
642void mntput_no_expire(struct vfsmount *mnt)
643{
644repeat:
645 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
646 if (likely(!mnt->mnt_pinned)) {
647 spin_unlock(&vfsmount_lock);
648 __mntput(mnt);
649 return;
650 }
651 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
652 mnt->mnt_pinned = 0;
653 spin_unlock(&vfsmount_lock);
654 acct_auto_close_mnt(mnt);
655 security_sb_umount_close(mnt);
656 goto repeat;
657 }
658}
659
660EXPORT_SYMBOL(mntput_no_expire);
661
662void mnt_pin(struct vfsmount *mnt)
663{
664 spin_lock(&vfsmount_lock);
665 mnt->mnt_pinned++;
666 spin_unlock(&vfsmount_lock);
667}
668
669EXPORT_SYMBOL(mnt_pin);
670
671void mnt_unpin(struct vfsmount *mnt)
672{
673 spin_lock(&vfsmount_lock);
674 if (mnt->mnt_pinned) {
675 atomic_inc(&mnt->mnt_count);
676 mnt->mnt_pinned--;
677 }
678 spin_unlock(&vfsmount_lock);
679}
680
681EXPORT_SYMBOL(mnt_unpin);
1da177e4 682
b3b304a2
MS
683static inline void mangle(struct seq_file *m, const char *s)
684{
685 seq_escape(m, s, " \t\n\\");
686}
687
688/*
689 * Simple .show_options callback for filesystems which don't want to
690 * implement more complex mount option showing.
691 *
692 * See also save_mount_options().
693 */
694int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
695{
696 const char *options = mnt->mnt_sb->s_options;
697
698 if (options != NULL && options[0]) {
699 seq_putc(m, ',');
700 mangle(m, options);
701 }
702
703 return 0;
704}
705EXPORT_SYMBOL(generic_show_options);
706
707/*
708 * If filesystem uses generic_show_options(), this function should be
709 * called from the fill_super() callback.
710 *
711 * The .remount_fs callback usually needs to be handled in a special
712 * way, to make sure, that previous options are not overwritten if the
713 * remount fails.
714 *
715 * Also note, that if the filesystem's .remount_fs function doesn't
716 * reset all options to their default value, but changes only newly
717 * given options, then the displayed options will not reflect reality
718 * any more.
719 */
720void save_mount_options(struct super_block *sb, char *options)
721{
722 kfree(sb->s_options);
723 sb->s_options = kstrdup(options, GFP_KERNEL);
724}
725EXPORT_SYMBOL(save_mount_options);
726
a1a2c409 727#ifdef CONFIG_PROC_FS
1da177e4
LT
728/* iterator */
729static void *m_start(struct seq_file *m, loff_t *pos)
730{
a1a2c409 731 struct proc_mounts *p = m->private;
1da177e4 732
390c6843 733 down_read(&namespace_sem);
a1a2c409 734 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
735}
736
737static void *m_next(struct seq_file *m, void *v, loff_t *pos)
738{
a1a2c409 739 struct proc_mounts *p = m->private;
b0765fb8 740
a1a2c409 741 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
742}
743
744static void m_stop(struct seq_file *m, void *v)
745{
390c6843 746 up_read(&namespace_sem);
1da177e4
LT
747}
748
2d4d4864
RP
749struct proc_fs_info {
750 int flag;
751 const char *str;
752};
753
2069f457 754static int show_sb_opts(struct seq_file *m, struct super_block *sb)
1da177e4 755{
2d4d4864 756 static const struct proc_fs_info fs_info[] = {
1da177e4
LT
757 { MS_SYNCHRONOUS, ",sync" },
758 { MS_DIRSYNC, ",dirsync" },
759 { MS_MANDLOCK, ",mand" },
1da177e4
LT
760 { 0, NULL }
761 };
2d4d4864
RP
762 const struct proc_fs_info *fs_infop;
763
764 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
765 if (sb->s_flags & fs_infop->flag)
766 seq_puts(m, fs_infop->str);
767 }
2069f457
EP
768
769 return security_sb_show_options(m, sb);
2d4d4864
RP
770}
771
772static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
773{
774 static const struct proc_fs_info mnt_info[] = {
1da177e4
LT
775 { MNT_NOSUID, ",nosuid" },
776 { MNT_NODEV, ",nodev" },
777 { MNT_NOEXEC, ",noexec" },
fc33a7bb
CH
778 { MNT_NOATIME, ",noatime" },
779 { MNT_NODIRATIME, ",nodiratime" },
47ae32d6 780 { MNT_RELATIME, ",relatime" },
1da177e4
LT
781 { 0, NULL }
782 };
2d4d4864
RP
783 const struct proc_fs_info *fs_infop;
784
785 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
786 if (mnt->mnt_flags & fs_infop->flag)
787 seq_puts(m, fs_infop->str);
788 }
789}
790
791static void show_type(struct seq_file *m, struct super_block *sb)
792{
793 mangle(m, sb->s_type->name);
794 if (sb->s_subtype && sb->s_subtype[0]) {
795 seq_putc(m, '.');
796 mangle(m, sb->s_subtype);
797 }
798}
799
800static int show_vfsmnt(struct seq_file *m, void *v)
801{
802 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
803 int err = 0;
c32c2f63 804 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1da177e4
LT
805
806 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
807 seq_putc(m, ' ');
c32c2f63 808 seq_path(m, &mnt_path, " \t\n\\");
1da177e4 809 seq_putc(m, ' ');
2d4d4864 810 show_type(m, mnt->mnt_sb);
2e4b7fcd 811 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
2069f457
EP
812 err = show_sb_opts(m, mnt->mnt_sb);
813 if (err)
814 goto out;
2d4d4864 815 show_mnt_opts(m, mnt);
1da177e4
LT
816 if (mnt->mnt_sb->s_op->show_options)
817 err = mnt->mnt_sb->s_op->show_options(m, mnt);
818 seq_puts(m, " 0 0\n");
2069f457 819out:
1da177e4
LT
820 return err;
821}
822
a1a2c409 823const struct seq_operations mounts_op = {
1da177e4
LT
824 .start = m_start,
825 .next = m_next,
826 .stop = m_stop,
827 .show = show_vfsmnt
828};
829
2d4d4864
RP
830static int show_mountinfo(struct seq_file *m, void *v)
831{
832 struct proc_mounts *p = m->private;
833 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
834 struct super_block *sb = mnt->mnt_sb;
835 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
836 struct path root = p->root;
837 int err = 0;
838
839 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
840 MAJOR(sb->s_dev), MINOR(sb->s_dev));
841 seq_dentry(m, mnt->mnt_root, " \t\n\\");
842 seq_putc(m, ' ');
843 seq_path_root(m, &mnt_path, &root, " \t\n\\");
844 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
845 /*
846 * Mountpoint is outside root, discard that one. Ugly,
847 * but less so than trying to do that in iterator in a
848 * race-free way (due to renames).
849 */
850 return SEQ_SKIP;
851 }
852 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
853 show_mnt_opts(m, mnt);
854
855 /* Tagged fields ("foo:X" or "bar") */
856 if (IS_MNT_SHARED(mnt))
857 seq_printf(m, " shared:%i", mnt->mnt_group_id);
97e7e0f7
MS
858 if (IS_MNT_SLAVE(mnt)) {
859 int master = mnt->mnt_master->mnt_group_id;
860 int dom = get_dominating_id(mnt, &p->root);
861 seq_printf(m, " master:%i", master);
862 if (dom && dom != master)
863 seq_printf(m, " propagate_from:%i", dom);
864 }
2d4d4864
RP
865 if (IS_MNT_UNBINDABLE(mnt))
866 seq_puts(m, " unbindable");
867
868 /* Filesystem specific data */
869 seq_puts(m, " - ");
870 show_type(m, sb);
871 seq_putc(m, ' ');
872 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
873 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
2069f457
EP
874 err = show_sb_opts(m, sb);
875 if (err)
876 goto out;
2d4d4864
RP
877 if (sb->s_op->show_options)
878 err = sb->s_op->show_options(m, mnt);
879 seq_putc(m, '\n');
2069f457 880out:
2d4d4864
RP
881 return err;
882}
883
884const struct seq_operations mountinfo_op = {
885 .start = m_start,
886 .next = m_next,
887 .stop = m_stop,
888 .show = show_mountinfo,
889};
890
b4629fe2
CL
891static int show_vfsstat(struct seq_file *m, void *v)
892{
b0765fb8 893 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
c32c2f63 894 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
b4629fe2
CL
895 int err = 0;
896
897 /* device */
898 if (mnt->mnt_devname) {
899 seq_puts(m, "device ");
900 mangle(m, mnt->mnt_devname);
901 } else
902 seq_puts(m, "no device");
903
904 /* mount point */
905 seq_puts(m, " mounted on ");
c32c2f63 906 seq_path(m, &mnt_path, " \t\n\\");
b4629fe2
CL
907 seq_putc(m, ' ');
908
909 /* file system type */
910 seq_puts(m, "with fstype ");
2d4d4864 911 show_type(m, mnt->mnt_sb);
b4629fe2
CL
912
913 /* optional statistics */
914 if (mnt->mnt_sb->s_op->show_stats) {
915 seq_putc(m, ' ');
916 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
917 }
918
919 seq_putc(m, '\n');
920 return err;
921}
922
a1a2c409 923const struct seq_operations mountstats_op = {
b4629fe2
CL
924 .start = m_start,
925 .next = m_next,
926 .stop = m_stop,
927 .show = show_vfsstat,
928};
a1a2c409 929#endif /* CONFIG_PROC_FS */
b4629fe2 930
1da177e4
LT
931/**
932 * may_umount_tree - check if a mount tree is busy
933 * @mnt: root of mount tree
934 *
935 * This is called to check if a tree of mounts has any
936 * open files, pwds, chroots or sub mounts that are
937 * busy.
938 */
939int may_umount_tree(struct vfsmount *mnt)
940{
36341f64
RP
941 int actual_refs = 0;
942 int minimum_refs = 0;
943 struct vfsmount *p;
1da177e4
LT
944
945 spin_lock(&vfsmount_lock);
36341f64 946 for (p = mnt; p; p = next_mnt(p, mnt)) {
1da177e4
LT
947 actual_refs += atomic_read(&p->mnt_count);
948 minimum_refs += 2;
1da177e4
LT
949 }
950 spin_unlock(&vfsmount_lock);
951
952 if (actual_refs > minimum_refs)
e3474a8e 953 return 0;
1da177e4 954
e3474a8e 955 return 1;
1da177e4
LT
956}
957
958EXPORT_SYMBOL(may_umount_tree);
959
960/**
961 * may_umount - check if a mount point is busy
962 * @mnt: root of mount
963 *
964 * This is called to check if a mount point has any
965 * open files, pwds, chroots or sub mounts. If the
966 * mount has sub mounts this will return busy
967 * regardless of whether the sub mounts are busy.
968 *
969 * Doesn't take quota and stuff into account. IOW, in some cases it will
970 * give false negatives. The main reason why it's here is that we need
971 * a non-destructive way to look for easily umountable filesystems.
972 */
973int may_umount(struct vfsmount *mnt)
974{
e3474a8e 975 int ret = 1;
a05964f3
RP
976 spin_lock(&vfsmount_lock);
977 if (propagate_mount_busy(mnt, 2))
e3474a8e 978 ret = 0;
a05964f3
RP
979 spin_unlock(&vfsmount_lock);
980 return ret;
1da177e4
LT
981}
982
983EXPORT_SYMBOL(may_umount);
984
b90fa9ae 985void release_mounts(struct list_head *head)
70fbcdf4
RP
986{
987 struct vfsmount *mnt;
bf066c7d 988 while (!list_empty(head)) {
b5e61818 989 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
70fbcdf4
RP
990 list_del_init(&mnt->mnt_hash);
991 if (mnt->mnt_parent != mnt) {
992 struct dentry *dentry;
993 struct vfsmount *m;
994 spin_lock(&vfsmount_lock);
995 dentry = mnt->mnt_mountpoint;
996 m = mnt->mnt_parent;
997 mnt->mnt_mountpoint = mnt->mnt_root;
998 mnt->mnt_parent = mnt;
7c4b93d8 999 m->mnt_ghosts--;
70fbcdf4
RP
1000 spin_unlock(&vfsmount_lock);
1001 dput(dentry);
1002 mntput(m);
1003 }
1004 mntput(mnt);
1005 }
1006}
1007
a05964f3 1008void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1da177e4
LT
1009{
1010 struct vfsmount *p;
1da177e4 1011
1bfba4e8
AM
1012 for (p = mnt; p; p = next_mnt(p, mnt))
1013 list_move(&p->mnt_hash, kill);
1da177e4 1014
a05964f3
RP
1015 if (propagate)
1016 propagate_umount(kill);
1017
70fbcdf4
RP
1018 list_for_each_entry(p, kill, mnt_hash) {
1019 list_del_init(&p->mnt_expire);
1020 list_del_init(&p->mnt_list);
6b3286ed
KK
1021 __touch_mnt_namespace(p->mnt_ns);
1022 p->mnt_ns = NULL;
70fbcdf4 1023 list_del_init(&p->mnt_child);
7c4b93d8
AV
1024 if (p->mnt_parent != p) {
1025 p->mnt_parent->mnt_ghosts++;
f30ac319 1026 p->mnt_mountpoint->d_mounted--;
7c4b93d8 1027 }
a05964f3 1028 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1029 }
1030}
1031
c35038be
AV
1032static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1033
1da177e4
LT
1034static int do_umount(struct vfsmount *mnt, int flags)
1035{
b58fed8b 1036 struct super_block *sb = mnt->mnt_sb;
1da177e4 1037 int retval;
70fbcdf4 1038 LIST_HEAD(umount_list);
1da177e4
LT
1039
1040 retval = security_sb_umount(mnt, flags);
1041 if (retval)
1042 return retval;
1043
1044 /*
1045 * Allow userspace to request a mountpoint be expired rather than
1046 * unmounting unconditionally. Unmount only happens if:
1047 * (1) the mark is already set (the mark is cleared by mntput())
1048 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1049 */
1050 if (flags & MNT_EXPIRE) {
6ac08c39 1051 if (mnt == current->fs->root.mnt ||
1da177e4
LT
1052 flags & (MNT_FORCE | MNT_DETACH))
1053 return -EINVAL;
1054
1055 if (atomic_read(&mnt->mnt_count) != 2)
1056 return -EBUSY;
1057
1058 if (!xchg(&mnt->mnt_expiry_mark, 1))
1059 return -EAGAIN;
1060 }
1061
1062 /*
1063 * If we may have to abort operations to get out of this
1064 * mount, and they will themselves hold resources we must
1065 * allow the fs to do things. In the Unix tradition of
1066 * 'Gee thats tricky lets do it in userspace' the umount_begin
1067 * might fail to complete on the first run through as other tasks
1068 * must return, and the like. Thats for the mount program to worry
1069 * about for the moment.
1070 */
1071
42faad99
AV
1072 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1073 lock_kernel();
1074 sb->s_op->umount_begin(sb);
1075 unlock_kernel();
1076 }
1da177e4
LT
1077
1078 /*
1079 * No sense to grab the lock for this test, but test itself looks
1080 * somewhat bogus. Suggestions for better replacement?
1081 * Ho-hum... In principle, we might treat that as umount + switch
1082 * to rootfs. GC would eventually take care of the old vfsmount.
1083 * Actually it makes sense, especially if rootfs would contain a
1084 * /reboot - static binary that would close all descriptors and
1085 * call reboot(9). Then init(8) could umount root and exec /reboot.
1086 */
6ac08c39 1087 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1088 /*
1089 * Special case for "unmounting" root ...
1090 * we just try to remount it readonly.
1091 */
1092 down_write(&sb->s_umount);
1093 if (!(sb->s_flags & MS_RDONLY)) {
1094 lock_kernel();
1da177e4
LT
1095 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1096 unlock_kernel();
1097 }
1098 up_write(&sb->s_umount);
1099 return retval;
1100 }
1101
390c6843 1102 down_write(&namespace_sem);
1da177e4 1103 spin_lock(&vfsmount_lock);
5addc5dd 1104 event++;
1da177e4 1105
c35038be
AV
1106 if (!(flags & MNT_DETACH))
1107 shrink_submounts(mnt, &umount_list);
1108
1da177e4 1109 retval = -EBUSY;
a05964f3 1110 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1da177e4 1111 if (!list_empty(&mnt->mnt_list))
a05964f3 1112 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1113 retval = 0;
1114 }
1115 spin_unlock(&vfsmount_lock);
1116 if (retval)
1117 security_sb_umount_busy(mnt);
390c6843 1118 up_write(&namespace_sem);
70fbcdf4 1119 release_mounts(&umount_list);
1da177e4
LT
1120 return retval;
1121}
1122
1123/*
1124 * Now umount can handle mount points as well as block devices.
1125 * This is important for filesystems which use unnamed block devices.
1126 *
1127 * We now support a flag for forced unmount like the other 'big iron'
1128 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1129 */
1130
1131asmlinkage long sys_umount(char __user * name, int flags)
1132{
2d8f3038 1133 struct path path;
1da177e4
LT
1134 int retval;
1135
2d8f3038 1136 retval = user_path(name, &path);
1da177e4
LT
1137 if (retval)
1138 goto out;
1139 retval = -EINVAL;
2d8f3038 1140 if (path.dentry != path.mnt->mnt_root)
1da177e4 1141 goto dput_and_out;
2d8f3038 1142 if (!check_mnt(path.mnt))
1da177e4
LT
1143 goto dput_and_out;
1144
1145 retval = -EPERM;
1146 if (!capable(CAP_SYS_ADMIN))
1147 goto dput_and_out;
1148
2d8f3038 1149 retval = do_umount(path.mnt, flags);
1da177e4 1150dput_and_out:
429731b1 1151 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038
AV
1152 dput(path.dentry);
1153 mntput_no_expire(path.mnt);
1da177e4
LT
1154out:
1155 return retval;
1156}
1157
1158#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1159
1160/*
b58fed8b 1161 * The 2.0 compatible umount. No flags.
1da177e4 1162 */
1da177e4
LT
1163asmlinkage long sys_oldumount(char __user * name)
1164{
b58fed8b 1165 return sys_umount(name, 0);
1da177e4
LT
1166}
1167
1168#endif
1169
2d92ab3c 1170static int mount_is_safe(struct path *path)
1da177e4
LT
1171{
1172 if (capable(CAP_SYS_ADMIN))
1173 return 0;
1174 return -EPERM;
1175#ifdef notyet
2d92ab3c 1176 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1177 return -EPERM;
2d92ab3c
AV
1178 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1179 if (current->uid != path->dentry->d_inode->i_uid)
1da177e4
LT
1180 return -EPERM;
1181 }
2d92ab3c 1182 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1183 return -EPERM;
1184 return 0;
1185#endif
1186}
1187
b90fa9ae 1188struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
36341f64 1189 int flag)
1da177e4
LT
1190{
1191 struct vfsmount *res, *p, *q, *r, *s;
1a390689 1192 struct path path;
1da177e4 1193
9676f0c6
RP
1194 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1195 return NULL;
1196
36341f64 1197 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1198 if (!q)
1199 goto Enomem;
1200 q->mnt_mountpoint = mnt->mnt_mountpoint;
1201
1202 p = mnt;
fdadd65f 1203 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
7ec02ef1 1204 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1205 continue;
1206
1207 for (s = r; s; s = next_mnt(s, r)) {
9676f0c6
RP
1208 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1209 s = skip_mnt_tree(s);
1210 continue;
1211 }
1da177e4
LT
1212 while (p != s->mnt_parent) {
1213 p = p->mnt_parent;
1214 q = q->mnt_parent;
1215 }
1216 p = s;
1a390689
AV
1217 path.mnt = q;
1218 path.dentry = p->mnt_mountpoint;
36341f64 1219 q = clone_mnt(p, p->mnt_root, flag);
1da177e4
LT
1220 if (!q)
1221 goto Enomem;
1222 spin_lock(&vfsmount_lock);
1223 list_add_tail(&q->mnt_list, &res->mnt_list);
1a390689 1224 attach_mnt(q, &path);
1da177e4
LT
1225 spin_unlock(&vfsmount_lock);
1226 }
1227 }
1228 return res;
b58fed8b 1229Enomem:
1da177e4 1230 if (res) {
70fbcdf4 1231 LIST_HEAD(umount_list);
1da177e4 1232 spin_lock(&vfsmount_lock);
a05964f3 1233 umount_tree(res, 0, &umount_list);
1da177e4 1234 spin_unlock(&vfsmount_lock);
70fbcdf4 1235 release_mounts(&umount_list);
1da177e4
LT
1236 }
1237 return NULL;
1238}
1239
8aec0809
AV
1240struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
1241{
1242 struct vfsmount *tree;
1a60a280 1243 down_write(&namespace_sem);
8aec0809 1244 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
1a60a280 1245 up_write(&namespace_sem);
8aec0809
AV
1246 return tree;
1247}
1248
1249void drop_collected_mounts(struct vfsmount *mnt)
1250{
1251 LIST_HEAD(umount_list);
1a60a280 1252 down_write(&namespace_sem);
8aec0809
AV
1253 spin_lock(&vfsmount_lock);
1254 umount_tree(mnt, 0, &umount_list);
1255 spin_unlock(&vfsmount_lock);
1a60a280 1256 up_write(&namespace_sem);
8aec0809
AV
1257 release_mounts(&umount_list);
1258}
1259
719f5d7f
MS
1260static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1261{
1262 struct vfsmount *p;
1263
1264 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1265 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1266 mnt_release_group_id(p);
1267 }
1268}
1269
1270static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1271{
1272 struct vfsmount *p;
1273
1274 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1275 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1276 int err = mnt_alloc_group_id(p);
1277 if (err) {
1278 cleanup_group_ids(mnt, p);
1279 return err;
1280 }
1281 }
1282 }
1283
1284 return 0;
1285}
1286
b90fa9ae
RP
1287/*
1288 * @source_mnt : mount tree to be attached
21444403
RP
1289 * @nd : place the mount tree @source_mnt is attached
1290 * @parent_nd : if non-null, detach the source_mnt from its parent and
1291 * store the parent mount and mountpoint dentry.
1292 * (done when source_mnt is moved)
b90fa9ae
RP
1293 *
1294 * NOTE: in the table below explains the semantics when a source mount
1295 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1296 * ---------------------------------------------------------------------------
1297 * | BIND MOUNT OPERATION |
1298 * |**************************************************************************
1299 * | source-->| shared | private | slave | unbindable |
1300 * | dest | | | | |
1301 * | | | | | | |
1302 * | v | | | | |
1303 * |**************************************************************************
1304 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1305 * | | | | | |
1306 * |non-shared| shared (+) | private | slave (*) | invalid |
1307 * ***************************************************************************
b90fa9ae
RP
1308 * A bind operation clones the source mount and mounts the clone on the
1309 * destination mount.
1310 *
1311 * (++) the cloned mount is propagated to all the mounts in the propagation
1312 * tree of the destination mount and the cloned mount is added to
1313 * the peer group of the source mount.
1314 * (+) the cloned mount is created under the destination mount and is marked
1315 * as shared. The cloned mount is added to the peer group of the source
1316 * mount.
5afe0022
RP
1317 * (+++) the mount is propagated to all the mounts in the propagation tree
1318 * of the destination mount and the cloned mount is made slave
1319 * of the same master as that of the source mount. The cloned mount
1320 * is marked as 'shared and slave'.
1321 * (*) the cloned mount is made a slave of the same master as that of the
1322 * source mount.
1323 *
9676f0c6
RP
1324 * ---------------------------------------------------------------------------
1325 * | MOVE MOUNT OPERATION |
1326 * |**************************************************************************
1327 * | source-->| shared | private | slave | unbindable |
1328 * | dest | | | | |
1329 * | | | | | | |
1330 * | v | | | | |
1331 * |**************************************************************************
1332 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1333 * | | | | | |
1334 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1335 * ***************************************************************************
5afe0022
RP
1336 *
1337 * (+) the mount is moved to the destination. And is then propagated to
1338 * all the mounts in the propagation tree of the destination mount.
21444403 1339 * (+*) the mount is moved to the destination.
5afe0022
RP
1340 * (+++) the mount is moved to the destination and is then propagated to
1341 * all the mounts belonging to the destination mount's propagation tree.
1342 * the mount is marked as 'shared and slave'.
1343 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1344 *
1345 * if the source mount is a tree, the operations explained above is
1346 * applied to each mount in the tree.
1347 * Must be called without spinlocks held, since this function can sleep
1348 * in allocations.
1349 */
1350static int attach_recursive_mnt(struct vfsmount *source_mnt,
1a390689 1351 struct path *path, struct path *parent_path)
b90fa9ae
RP
1352{
1353 LIST_HEAD(tree_list);
1a390689
AV
1354 struct vfsmount *dest_mnt = path->mnt;
1355 struct dentry *dest_dentry = path->dentry;
b90fa9ae 1356 struct vfsmount *child, *p;
719f5d7f 1357 int err;
b90fa9ae 1358
719f5d7f
MS
1359 if (IS_MNT_SHARED(dest_mnt)) {
1360 err = invent_group_ids(source_mnt, true);
1361 if (err)
1362 goto out;
1363 }
1364 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1365 if (err)
1366 goto out_cleanup_ids;
b90fa9ae
RP
1367
1368 if (IS_MNT_SHARED(dest_mnt)) {
1369 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1370 set_mnt_shared(p);
1371 }
1372
1373 spin_lock(&vfsmount_lock);
1a390689
AV
1374 if (parent_path) {
1375 detach_mnt(source_mnt, parent_path);
1376 attach_mnt(source_mnt, path);
6b3286ed 1377 touch_mnt_namespace(current->nsproxy->mnt_ns);
21444403
RP
1378 } else {
1379 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1380 commit_tree(source_mnt);
1381 }
b90fa9ae
RP
1382
1383 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1384 list_del_init(&child->mnt_hash);
1385 commit_tree(child);
1386 }
1387 spin_unlock(&vfsmount_lock);
1388 return 0;
719f5d7f
MS
1389
1390 out_cleanup_ids:
1391 if (IS_MNT_SHARED(dest_mnt))
1392 cleanup_group_ids(source_mnt, NULL);
1393 out:
1394 return err;
b90fa9ae
RP
1395}
1396
8c3ee42e 1397static int graft_tree(struct vfsmount *mnt, struct path *path)
1da177e4
LT
1398{
1399 int err;
1400 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1401 return -EINVAL;
1402
8c3ee42e 1403 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1da177e4
LT
1404 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1405 return -ENOTDIR;
1406
1407 err = -ENOENT;
8c3ee42e
AV
1408 mutex_lock(&path->dentry->d_inode->i_mutex);
1409 if (IS_DEADDIR(path->dentry->d_inode))
1da177e4
LT
1410 goto out_unlock;
1411
8c3ee42e 1412 err = security_sb_check_sb(mnt, path);
1da177e4
LT
1413 if (err)
1414 goto out_unlock;
1415
1416 err = -ENOENT;
8c3ee42e
AV
1417 if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
1418 err = attach_recursive_mnt(mnt, path, NULL);
1da177e4 1419out_unlock:
8c3ee42e 1420 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4 1421 if (!err)
8c3ee42e 1422 security_sb_post_addmount(mnt, path);
1da177e4
LT
1423 return err;
1424}
1425
07b20889
RP
1426/*
1427 * recursively change the type of the mountpoint.
2dafe1c4 1428 * noinline this do_mount helper to save do_mount stack space.
07b20889 1429 */
2d92ab3c 1430static noinline int do_change_type(struct path *path, int flag)
07b20889 1431{
2d92ab3c 1432 struct vfsmount *m, *mnt = path->mnt;
07b20889
RP
1433 int recurse = flag & MS_REC;
1434 int type = flag & ~MS_REC;
719f5d7f 1435 int err = 0;
07b20889 1436
ee6f9582
MS
1437 if (!capable(CAP_SYS_ADMIN))
1438 return -EPERM;
1439
2d92ab3c 1440 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1441 return -EINVAL;
1442
1443 down_write(&namespace_sem);
719f5d7f
MS
1444 if (type == MS_SHARED) {
1445 err = invent_group_ids(mnt, recurse);
1446 if (err)
1447 goto out_unlock;
1448 }
1449
07b20889
RP
1450 spin_lock(&vfsmount_lock);
1451 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1452 change_mnt_propagation(m, type);
1453 spin_unlock(&vfsmount_lock);
719f5d7f
MS
1454
1455 out_unlock:
07b20889 1456 up_write(&namespace_sem);
719f5d7f 1457 return err;
07b20889
RP
1458}
1459
1da177e4
LT
1460/*
1461 * do loopback mount.
2dafe1c4 1462 * noinline this do_mount helper to save do_mount stack space.
1da177e4 1463 */
2d92ab3c 1464static noinline int do_loopback(struct path *path, char *old_name,
2dafe1c4 1465 int recurse)
1da177e4 1466{
2d92ab3c 1467 struct path old_path;
1da177e4 1468 struct vfsmount *mnt = NULL;
2d92ab3c 1469 int err = mount_is_safe(path);
1da177e4
LT
1470 if (err)
1471 return err;
1472 if (!old_name || !*old_name)
1473 return -EINVAL;
2d92ab3c 1474 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1475 if (err)
1476 return err;
1477
390c6843 1478 down_write(&namespace_sem);
1da177e4 1479 err = -EINVAL;
2d92ab3c 1480 if (IS_MNT_UNBINDABLE(old_path.mnt))
4ac91378 1481 goto out;
9676f0c6 1482
2d92ab3c 1483 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
ccd48bc7 1484 goto out;
1da177e4 1485
ccd48bc7
AV
1486 err = -ENOMEM;
1487 if (recurse)
2d92ab3c 1488 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
ccd48bc7 1489 else
2d92ab3c 1490 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
ccd48bc7
AV
1491
1492 if (!mnt)
1493 goto out;
1494
2d92ab3c 1495 err = graft_tree(mnt, path);
ccd48bc7 1496 if (err) {
70fbcdf4 1497 LIST_HEAD(umount_list);
1da177e4 1498 spin_lock(&vfsmount_lock);
a05964f3 1499 umount_tree(mnt, 0, &umount_list);
1da177e4 1500 spin_unlock(&vfsmount_lock);
70fbcdf4 1501 release_mounts(&umount_list);
5b83d2c5 1502 }
1da177e4 1503
ccd48bc7 1504out:
390c6843 1505 up_write(&namespace_sem);
2d92ab3c 1506 path_put(&old_path);
1da177e4
LT
1507 return err;
1508}
1509
2e4b7fcd
DH
1510static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1511{
1512 int error = 0;
1513 int readonly_request = 0;
1514
1515 if (ms_flags & MS_RDONLY)
1516 readonly_request = 1;
1517 if (readonly_request == __mnt_is_readonly(mnt))
1518 return 0;
1519
1520 if (readonly_request)
1521 error = mnt_make_readonly(mnt);
1522 else
1523 __mnt_unmake_readonly(mnt);
1524 return error;
1525}
1526
1da177e4
LT
1527/*
1528 * change filesystem flags. dir should be a physical root of filesystem.
1529 * If you've mounted a non-root directory somewhere and want to do remount
1530 * on it - tough luck.
2dafe1c4 1531 * noinline this do_mount helper to save do_mount stack space.
1da177e4 1532 */
2d92ab3c 1533static noinline int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1534 void *data)
1535{
1536 int err;
2d92ab3c 1537 struct super_block *sb = path->mnt->mnt_sb;
1da177e4
LT
1538
1539 if (!capable(CAP_SYS_ADMIN))
1540 return -EPERM;
1541
2d92ab3c 1542 if (!check_mnt(path->mnt))
1da177e4
LT
1543 return -EINVAL;
1544
2d92ab3c 1545 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1546 return -EINVAL;
1547
1548 down_write(&sb->s_umount);
2e4b7fcd 1549 if (flags & MS_BIND)
2d92ab3c 1550 err = change_mount_flags(path->mnt, flags);
2e4b7fcd
DH
1551 else
1552 err = do_remount_sb(sb, flags, data, 0);
1da177e4 1553 if (!err)
2d92ab3c 1554 path->mnt->mnt_flags = mnt_flags;
1da177e4
LT
1555 up_write(&sb->s_umount);
1556 if (!err)
2d92ab3c 1557 security_sb_post_remount(path->mnt, flags, data);
1da177e4
LT
1558 return err;
1559}
1560
9676f0c6
RP
1561static inline int tree_contains_unbindable(struct vfsmount *mnt)
1562{
1563 struct vfsmount *p;
1564 for (p = mnt; p; p = next_mnt(p, mnt)) {
1565 if (IS_MNT_UNBINDABLE(p))
1566 return 1;
1567 }
1568 return 0;
1569}
1570
2dafe1c4
ES
1571/*
1572 * noinline this do_mount helper to save do_mount stack space.
1573 */
2d92ab3c 1574static noinline int do_move_mount(struct path *path, char *old_name)
1da177e4 1575{
2d92ab3c 1576 struct path old_path, parent_path;
1da177e4
LT
1577 struct vfsmount *p;
1578 int err = 0;
1579 if (!capable(CAP_SYS_ADMIN))
1580 return -EPERM;
1581 if (!old_name || !*old_name)
1582 return -EINVAL;
2d92ab3c 1583 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1584 if (err)
1585 return err;
1586
390c6843 1587 down_write(&namespace_sem);
2d92ab3c
AV
1588 while (d_mountpoint(path->dentry) &&
1589 follow_down(&path->mnt, &path->dentry))
1da177e4
LT
1590 ;
1591 err = -EINVAL;
2d92ab3c 1592 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1da177e4
LT
1593 goto out;
1594
1595 err = -ENOENT;
2d92ab3c
AV
1596 mutex_lock(&path->dentry->d_inode->i_mutex);
1597 if (IS_DEADDIR(path->dentry->d_inode))
1da177e4
LT
1598 goto out1;
1599
2d92ab3c 1600 if (!IS_ROOT(path->dentry) && d_unhashed(path->dentry))
21444403 1601 goto out1;
1da177e4
LT
1602
1603 err = -EINVAL;
2d92ab3c 1604 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1605 goto out1;
1da177e4 1606
2d92ab3c 1607 if (old_path.mnt == old_path.mnt->mnt_parent)
21444403 1608 goto out1;
1da177e4 1609
2d92ab3c
AV
1610 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1611 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1612 goto out1;
1613 /*
1614 * Don't move a mount residing in a shared parent.
1615 */
2d92ab3c
AV
1616 if (old_path.mnt->mnt_parent &&
1617 IS_MNT_SHARED(old_path.mnt->mnt_parent))
21444403 1618 goto out1;
9676f0c6
RP
1619 /*
1620 * Don't move a mount tree containing unbindable mounts to a destination
1621 * mount which is shared.
1622 */
2d92ab3c
AV
1623 if (IS_MNT_SHARED(path->mnt) &&
1624 tree_contains_unbindable(old_path.mnt))
9676f0c6 1625 goto out1;
1da177e4 1626 err = -ELOOP;
2d92ab3c
AV
1627 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1628 if (p == old_path.mnt)
21444403 1629 goto out1;
1da177e4 1630
2d92ab3c 1631 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
4ac91378 1632 if (err)
21444403 1633 goto out1;
1da177e4
LT
1634
1635 /* if the mount is moved, it should no longer be expire
1636 * automatically */
2d92ab3c 1637 list_del_init(&old_path.mnt->mnt_expire);
1da177e4 1638out1:
2d92ab3c 1639 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4 1640out:
390c6843 1641 up_write(&namespace_sem);
1da177e4 1642 if (!err)
1a390689 1643 path_put(&parent_path);
2d92ab3c 1644 path_put(&old_path);
1da177e4
LT
1645 return err;
1646}
1647
1648/*
1649 * create a new mount for userspace and request it to be added into the
1650 * namespace's tree
2dafe1c4 1651 * noinline this do_mount helper to save do_mount stack space.
1da177e4 1652 */
2d92ab3c 1653static noinline int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
1654 int mnt_flags, char *name, void *data)
1655{
1656 struct vfsmount *mnt;
1657
1658 if (!type || !memchr(type, 0, PAGE_SIZE))
1659 return -EINVAL;
1660
1661 /* we need capabilities... */
1662 if (!capable(CAP_SYS_ADMIN))
1663 return -EPERM;
1664
1665 mnt = do_kern_mount(type, flags, name, data);
1666 if (IS_ERR(mnt))
1667 return PTR_ERR(mnt);
1668
2d92ab3c 1669 return do_add_mount(mnt, path, mnt_flags, NULL);
1da177e4
LT
1670}
1671
1672/*
1673 * add a mount into a namespace's mount tree
1674 * - provide the option of adding the new mount to an expiration list
1675 */
8d66bf54 1676int do_add_mount(struct vfsmount *newmnt, struct path *path,
1da177e4
LT
1677 int mnt_flags, struct list_head *fslist)
1678{
1679 int err;
1680
390c6843 1681 down_write(&namespace_sem);
1da177e4 1682 /* Something was mounted here while we slept */
8d66bf54
AV
1683 while (d_mountpoint(path->dentry) &&
1684 follow_down(&path->mnt, &path->dentry))
1da177e4
LT
1685 ;
1686 err = -EINVAL;
8d66bf54 1687 if (!check_mnt(path->mnt))
1da177e4
LT
1688 goto unlock;
1689
1690 /* Refuse the same filesystem on the same mount point */
1691 err = -EBUSY;
8d66bf54
AV
1692 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1693 path->mnt->mnt_root == path->dentry)
1da177e4
LT
1694 goto unlock;
1695
1696 err = -EINVAL;
1697 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1698 goto unlock;
1699
1700 newmnt->mnt_flags = mnt_flags;
8d66bf54 1701 if ((err = graft_tree(newmnt, path)))
5b83d2c5 1702 goto unlock;
1da177e4 1703
6758f953 1704 if (fslist) /* add to the specified expiration list */
55e700b9 1705 list_add_tail(&newmnt->mnt_expire, fslist);
6758f953 1706
390c6843 1707 up_write(&namespace_sem);
5b83d2c5 1708 return 0;
1da177e4
LT
1709
1710unlock:
390c6843 1711 up_write(&namespace_sem);
1da177e4
LT
1712 mntput(newmnt);
1713 return err;
1714}
1715
1716EXPORT_SYMBOL_GPL(do_add_mount);
1717
1718/*
1719 * process a list of expirable mountpoints with the intent of discarding any
1720 * mountpoints that aren't in use and haven't been touched since last we came
1721 * here
1722 */
1723void mark_mounts_for_expiry(struct list_head *mounts)
1724{
1da177e4
LT
1725 struct vfsmount *mnt, *next;
1726 LIST_HEAD(graveyard);
bcc5c7d2 1727 LIST_HEAD(umounts);
1da177e4
LT
1728
1729 if (list_empty(mounts))
1730 return;
1731
bcc5c7d2 1732 down_write(&namespace_sem);
1da177e4
LT
1733 spin_lock(&vfsmount_lock);
1734
1735 /* extract from the expiration list every vfsmount that matches the
1736 * following criteria:
1737 * - only referenced by its parent vfsmount
1738 * - still marked for expiry (marked on the last call here; marks are
1739 * cleared by mntput())
1740 */
55e700b9 1741 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1da177e4 1742 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
bcc5c7d2 1743 propagate_mount_busy(mnt, 1))
1da177e4 1744 continue;
55e700b9 1745 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 1746 }
bcc5c7d2
AV
1747 while (!list_empty(&graveyard)) {
1748 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1749 touch_mnt_namespace(mnt->mnt_ns);
1750 umount_tree(mnt, 1, &umounts);
1751 }
5528f911 1752 spin_unlock(&vfsmount_lock);
bcc5c7d2
AV
1753 up_write(&namespace_sem);
1754
1755 release_mounts(&umounts);
5528f911
TM
1756}
1757
1758EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1759
1760/*
1761 * Ripoff of 'select_parent()'
1762 *
1763 * search the list of submounts for a given mountpoint, and move any
1764 * shrinkable submounts to the 'graveyard' list.
1765 */
1766static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1767{
1768 struct vfsmount *this_parent = parent;
1769 struct list_head *next;
1770 int found = 0;
1771
1772repeat:
1773 next = this_parent->mnt_mounts.next;
1774resume:
1775 while (next != &this_parent->mnt_mounts) {
1776 struct list_head *tmp = next;
1777 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1778
1779 next = tmp->next;
1780 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1da177e4 1781 continue;
5528f911
TM
1782 /*
1783 * Descend a level if the d_mounts list is non-empty.
1784 */
1785 if (!list_empty(&mnt->mnt_mounts)) {
1786 this_parent = mnt;
1787 goto repeat;
1788 }
1da177e4 1789
5528f911 1790 if (!propagate_mount_busy(mnt, 1)) {
5528f911
TM
1791 list_move_tail(&mnt->mnt_expire, graveyard);
1792 found++;
1793 }
1da177e4 1794 }
5528f911
TM
1795 /*
1796 * All done at this level ... ascend and resume the search
1797 */
1798 if (this_parent != parent) {
1799 next = this_parent->mnt_child.next;
1800 this_parent = this_parent->mnt_parent;
1801 goto resume;
1802 }
1803 return found;
1804}
1805
1806/*
1807 * process a list of expirable mountpoints with the intent of discarding any
1808 * submounts of a specific parent mountpoint
1809 */
c35038be 1810static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
5528f911
TM
1811{
1812 LIST_HEAD(graveyard);
c35038be 1813 struct vfsmount *m;
5528f911 1814
5528f911 1815 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 1816 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 1817 while (!list_empty(&graveyard)) {
c35038be 1818 m = list_first_entry(&graveyard, struct vfsmount,
bcc5c7d2
AV
1819 mnt_expire);
1820 touch_mnt_namespace(mnt->mnt_ns);
c35038be 1821 umount_tree(mnt, 1, umounts);
bcc5c7d2
AV
1822 }
1823 }
1da177e4
LT
1824}
1825
1da177e4
LT
1826/*
1827 * Some copy_from_user() implementations do not return the exact number of
1828 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1829 * Note that this function differs from copy_from_user() in that it will oops
1830 * on bad values of `to', rather than returning a short copy.
1831 */
b58fed8b
RP
1832static long exact_copy_from_user(void *to, const void __user * from,
1833 unsigned long n)
1da177e4
LT
1834{
1835 char *t = to;
1836 const char __user *f = from;
1837 char c;
1838
1839 if (!access_ok(VERIFY_READ, from, n))
1840 return n;
1841
1842 while (n) {
1843 if (__get_user(c, f)) {
1844 memset(t, 0, n);
1845 break;
1846 }
1847 *t++ = c;
1848 f++;
1849 n--;
1850 }
1851 return n;
1852}
1853
b58fed8b 1854int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
1855{
1856 int i;
1857 unsigned long page;
1858 unsigned long size;
b58fed8b 1859
1da177e4
LT
1860 *where = 0;
1861 if (!data)
1862 return 0;
1863
1864 if (!(page = __get_free_page(GFP_KERNEL)))
1865 return -ENOMEM;
1866
1867 /* We only care that *some* data at the address the user
1868 * gave us is valid. Just in case, we'll zero
1869 * the remainder of the page.
1870 */
1871 /* copy_from_user cannot cross TASK_SIZE ! */
1872 size = TASK_SIZE - (unsigned long)data;
1873 if (size > PAGE_SIZE)
1874 size = PAGE_SIZE;
1875
1876 i = size - exact_copy_from_user((void *)page, data, size);
1877 if (!i) {
b58fed8b 1878 free_page(page);
1da177e4
LT
1879 return -EFAULT;
1880 }
1881 if (i != PAGE_SIZE)
1882 memset((char *)page + i, 0, PAGE_SIZE - i);
1883 *where = page;
1884 return 0;
1885}
1886
1887/*
1888 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1889 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1890 *
1891 * data is a (void *) that can point to any structure up to
1892 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1893 * information (or be NULL).
1894 *
1895 * Pre-0.97 versions of mount() didn't have a flags word.
1896 * When the flags word was introduced its top half was required
1897 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1898 * Therefore, if this magic number is present, it carries no information
1899 * and must be discarded.
1900 */
b58fed8b 1901long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
1902 unsigned long flags, void *data_page)
1903{
2d92ab3c 1904 struct path path;
1da177e4
LT
1905 int retval = 0;
1906 int mnt_flags = 0;
1907
1908 /* Discard magic */
1909 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1910 flags &= ~MS_MGC_MSK;
1911
1912 /* Basic sanity checks */
1913
1914 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1915 return -EINVAL;
1916 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1917 return -EINVAL;
1918
1919 if (data_page)
1920 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1921
1922 /* Separate the per-mountpoint flags */
1923 if (flags & MS_NOSUID)
1924 mnt_flags |= MNT_NOSUID;
1925 if (flags & MS_NODEV)
1926 mnt_flags |= MNT_NODEV;
1927 if (flags & MS_NOEXEC)
1928 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
1929 if (flags & MS_NOATIME)
1930 mnt_flags |= MNT_NOATIME;
1931 if (flags & MS_NODIRATIME)
1932 mnt_flags |= MNT_NODIRATIME;
47ae32d6
VH
1933 if (flags & MS_RELATIME)
1934 mnt_flags |= MNT_RELATIME;
2e4b7fcd
DH
1935 if (flags & MS_RDONLY)
1936 mnt_flags |= MNT_READONLY;
fc33a7bb
CH
1937
1938 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
8bf9725c 1939 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1da177e4
LT
1940
1941 /* ... and get the mountpoint */
2d92ab3c 1942 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
1da177e4
LT
1943 if (retval)
1944 return retval;
1945
2d92ab3c 1946 retval = security_sb_mount(dev_name, &path,
b5266eb4 1947 type_page, flags, data_page);
1da177e4
LT
1948 if (retval)
1949 goto dput_out;
1950
1951 if (flags & MS_REMOUNT)
2d92ab3c 1952 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
1953 data_page);
1954 else if (flags & MS_BIND)
2d92ab3c 1955 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 1956 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 1957 retval = do_change_type(&path, flags);
1da177e4 1958 else if (flags & MS_MOVE)
2d92ab3c 1959 retval = do_move_mount(&path, dev_name);
1da177e4 1960 else
2d92ab3c 1961 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
1962 dev_name, data_page);
1963dput_out:
2d92ab3c 1964 path_put(&path);
1da177e4
LT
1965 return retval;
1966}
1967
741a2951
JD
1968/*
1969 * Allocate a new namespace structure and populate it with contents
1970 * copied from the namespace of the passed in task structure.
1971 */
e3222c4e 1972static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 1973 struct fs_struct *fs)
1da177e4 1974{
6b3286ed 1975 struct mnt_namespace *new_ns;
7f2da1e7 1976 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1da177e4
LT
1977 struct vfsmount *p, *q;
1978
6b3286ed 1979 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1da177e4 1980 if (!new_ns)
467e9f4b 1981 return ERR_PTR(-ENOMEM);
1da177e4
LT
1982
1983 atomic_set(&new_ns->count, 1);
1da177e4 1984 INIT_LIST_HEAD(&new_ns->list);
5addc5dd
AV
1985 init_waitqueue_head(&new_ns->poll);
1986 new_ns->event = 0;
1da177e4 1987
390c6843 1988 down_write(&namespace_sem);
1da177e4 1989 /* First pass: copy the tree topology */
6b3286ed 1990 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
9676f0c6 1991 CL_COPY_ALL | CL_EXPIRE);
1da177e4 1992 if (!new_ns->root) {
390c6843 1993 up_write(&namespace_sem);
1da177e4 1994 kfree(new_ns);
467e9f4b 1995 return ERR_PTR(-ENOMEM);;
1da177e4
LT
1996 }
1997 spin_lock(&vfsmount_lock);
1998 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1999 spin_unlock(&vfsmount_lock);
2000
2001 /*
2002 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2003 * as belonging to new namespace. We have already acquired a private
2004 * fs_struct, so tsk->fs->lock is not needed.
2005 */
6b3286ed 2006 p = mnt_ns->root;
1da177e4
LT
2007 q = new_ns->root;
2008 while (p) {
6b3286ed 2009 q->mnt_ns = new_ns;
1da177e4 2010 if (fs) {
6ac08c39 2011 if (p == fs->root.mnt) {
1da177e4 2012 rootmnt = p;
6ac08c39 2013 fs->root.mnt = mntget(q);
1da177e4 2014 }
6ac08c39 2015 if (p == fs->pwd.mnt) {
1da177e4 2016 pwdmnt = p;
6ac08c39 2017 fs->pwd.mnt = mntget(q);
1da177e4 2018 }
1da177e4 2019 }
6b3286ed 2020 p = next_mnt(p, mnt_ns->root);
1da177e4
LT
2021 q = next_mnt(q, new_ns->root);
2022 }
390c6843 2023 up_write(&namespace_sem);
1da177e4 2024
1da177e4
LT
2025 if (rootmnt)
2026 mntput(rootmnt);
2027 if (pwdmnt)
2028 mntput(pwdmnt);
1da177e4 2029
741a2951
JD
2030 return new_ns;
2031}
2032
213dd266 2033struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2034 struct fs_struct *new_fs)
741a2951 2035{
6b3286ed 2036 struct mnt_namespace *new_ns;
741a2951 2037
e3222c4e 2038 BUG_ON(!ns);
6b3286ed 2039 get_mnt_ns(ns);
741a2951
JD
2040
2041 if (!(flags & CLONE_NEWNS))
e3222c4e 2042 return ns;
741a2951 2043
e3222c4e 2044 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2045
6b3286ed 2046 put_mnt_ns(ns);
e3222c4e 2047 return new_ns;
1da177e4
LT
2048}
2049
2050asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
2051 char __user * type, unsigned long flags,
2052 void __user * data)
2053{
2054 int retval;
2055 unsigned long data_page;
2056 unsigned long type_page;
2057 unsigned long dev_page;
2058 char *dir_page;
2059
b58fed8b 2060 retval = copy_mount_options(type, &type_page);
1da177e4
LT
2061 if (retval < 0)
2062 return retval;
2063
2064 dir_page = getname(dir_name);
2065 retval = PTR_ERR(dir_page);
2066 if (IS_ERR(dir_page))
2067 goto out1;
2068
b58fed8b 2069 retval = copy_mount_options(dev_name, &dev_page);
1da177e4
LT
2070 if (retval < 0)
2071 goto out2;
2072
b58fed8b 2073 retval = copy_mount_options(data, &data_page);
1da177e4
LT
2074 if (retval < 0)
2075 goto out3;
2076
2077 lock_kernel();
b58fed8b
RP
2078 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
2079 flags, (void *)data_page);
1da177e4
LT
2080 unlock_kernel();
2081 free_page(data_page);
2082
2083out3:
2084 free_page(dev_page);
2085out2:
2086 putname(dir_page);
2087out1:
2088 free_page(type_page);
2089 return retval;
2090}
2091
2092/*
2093 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
2094 * It can block. Requires the big lock held.
2095 */
ac748a09 2096void set_fs_root(struct fs_struct *fs, struct path *path)
1da177e4 2097{
6ac08c39
JB
2098 struct path old_root;
2099
1da177e4
LT
2100 write_lock(&fs->lock);
2101 old_root = fs->root;
ac748a09
JB
2102 fs->root = *path;
2103 path_get(path);
1da177e4 2104 write_unlock(&fs->lock);
6ac08c39
JB
2105 if (old_root.dentry)
2106 path_put(&old_root);
1da177e4
LT
2107}
2108
2109/*
2110 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
2111 * It can block. Requires the big lock held.
2112 */
ac748a09 2113void set_fs_pwd(struct fs_struct *fs, struct path *path)
1da177e4 2114{
6ac08c39 2115 struct path old_pwd;
1da177e4
LT
2116
2117 write_lock(&fs->lock);
2118 old_pwd = fs->pwd;
ac748a09
JB
2119 fs->pwd = *path;
2120 path_get(path);
1da177e4
LT
2121 write_unlock(&fs->lock);
2122
6ac08c39
JB
2123 if (old_pwd.dentry)
2124 path_put(&old_pwd);
1da177e4
LT
2125}
2126
1a390689 2127static void chroot_fs_refs(struct path *old_root, struct path *new_root)
1da177e4
LT
2128{
2129 struct task_struct *g, *p;
2130 struct fs_struct *fs;
2131
2132 read_lock(&tasklist_lock);
2133 do_each_thread(g, p) {
2134 task_lock(p);
2135 fs = p->fs;
2136 if (fs) {
2137 atomic_inc(&fs->count);
2138 task_unlock(p);
1a390689
AV
2139 if (fs->root.dentry == old_root->dentry
2140 && fs->root.mnt == old_root->mnt)
2141 set_fs_root(fs, new_root);
2142 if (fs->pwd.dentry == old_root->dentry
2143 && fs->pwd.mnt == old_root->mnt)
2144 set_fs_pwd(fs, new_root);
1da177e4
LT
2145 put_fs_struct(fs);
2146 } else
2147 task_unlock(p);
2148 } while_each_thread(g, p);
2149 read_unlock(&tasklist_lock);
2150}
2151
2152/*
2153 * pivot_root Semantics:
2154 * Moves the root file system of the current process to the directory put_old,
2155 * makes new_root as the new root file system of the current process, and sets
2156 * root/cwd of all processes which had them on the current root to new_root.
2157 *
2158 * Restrictions:
2159 * The new_root and put_old must be directories, and must not be on the
2160 * same file system as the current process root. The put_old must be
2161 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2162 * pointed to by put_old must yield the same directory as new_root. No other
2163 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2164 *
4a0d11fa
NB
2165 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2166 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2167 * in this situation.
2168 *
1da177e4
LT
2169 * Notes:
2170 * - we don't move root/cwd if they are not at the root (reason: if something
2171 * cared enough to change them, it's probably wrong to force them elsewhere)
2172 * - it's okay to pick a root that isn't the root of a file system, e.g.
2173 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2174 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2175 * first.
2176 */
b58fed8b
RP
2177asmlinkage long sys_pivot_root(const char __user * new_root,
2178 const char __user * put_old)
1da177e4
LT
2179{
2180 struct vfsmount *tmp;
2d8f3038 2181 struct path new, old, parent_path, root_parent, root;
1da177e4
LT
2182 int error;
2183
2184 if (!capable(CAP_SYS_ADMIN))
2185 return -EPERM;
2186
2d8f3038 2187 error = user_path_dir(new_root, &new);
1da177e4
LT
2188 if (error)
2189 goto out0;
2190 error = -EINVAL;
2d8f3038 2191 if (!check_mnt(new.mnt))
1da177e4
LT
2192 goto out1;
2193
2d8f3038 2194 error = user_path_dir(put_old, &old);
1da177e4
LT
2195 if (error)
2196 goto out1;
2197
2d8f3038 2198 error = security_sb_pivotroot(&old, &new);
1da177e4 2199 if (error) {
2d8f3038 2200 path_put(&old);
1da177e4
LT
2201 goto out1;
2202 }
2203
2204 read_lock(&current->fs->lock);
8c3ee42e 2205 root = current->fs->root;
6ac08c39 2206 path_get(&current->fs->root);
1da177e4 2207 read_unlock(&current->fs->lock);
390c6843 2208 down_write(&namespace_sem);
2d8f3038 2209 mutex_lock(&old.dentry->d_inode->i_mutex);
1da177e4 2210 error = -EINVAL;
2d8f3038
AV
2211 if (IS_MNT_SHARED(old.mnt) ||
2212 IS_MNT_SHARED(new.mnt->mnt_parent) ||
8c3ee42e 2213 IS_MNT_SHARED(root.mnt->mnt_parent))
21444403 2214 goto out2;
8c3ee42e 2215 if (!check_mnt(root.mnt))
1da177e4
LT
2216 goto out2;
2217 error = -ENOENT;
2d8f3038 2218 if (IS_DEADDIR(new.dentry->d_inode))
1da177e4 2219 goto out2;
2d8f3038 2220 if (d_unhashed(new.dentry) && !IS_ROOT(new.dentry))
1da177e4 2221 goto out2;
2d8f3038 2222 if (d_unhashed(old.dentry) && !IS_ROOT(old.dentry))
1da177e4
LT
2223 goto out2;
2224 error = -EBUSY;
2d8f3038
AV
2225 if (new.mnt == root.mnt ||
2226 old.mnt == root.mnt)
1da177e4
LT
2227 goto out2; /* loop, on the same file system */
2228 error = -EINVAL;
8c3ee42e 2229 if (root.mnt->mnt_root != root.dentry)
1da177e4 2230 goto out2; /* not a mountpoint */
8c3ee42e 2231 if (root.mnt->mnt_parent == root.mnt)
0bb6fcc1 2232 goto out2; /* not attached */
2d8f3038 2233 if (new.mnt->mnt_root != new.dentry)
1da177e4 2234 goto out2; /* not a mountpoint */
2d8f3038 2235 if (new.mnt->mnt_parent == new.mnt)
0bb6fcc1 2236 goto out2; /* not attached */
4ac91378 2237 /* make sure we can reach put_old from new_root */
2d8f3038 2238 tmp = old.mnt;
1da177e4 2239 spin_lock(&vfsmount_lock);
2d8f3038 2240 if (tmp != new.mnt) {
1da177e4
LT
2241 for (;;) {
2242 if (tmp->mnt_parent == tmp)
2243 goto out3; /* already mounted on put_old */
2d8f3038 2244 if (tmp->mnt_parent == new.mnt)
1da177e4
LT
2245 break;
2246 tmp = tmp->mnt_parent;
2247 }
2d8f3038 2248 if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
1da177e4 2249 goto out3;
2d8f3038 2250 } else if (!is_subdir(old.dentry, new.dentry))
1da177e4 2251 goto out3;
2d8f3038 2252 detach_mnt(new.mnt, &parent_path);
8c3ee42e 2253 detach_mnt(root.mnt, &root_parent);
4ac91378 2254 /* mount old root on put_old */
2d8f3038 2255 attach_mnt(root.mnt, &old);
4ac91378 2256 /* mount new_root on / */
2d8f3038 2257 attach_mnt(new.mnt, &root_parent);
6b3286ed 2258 touch_mnt_namespace(current->nsproxy->mnt_ns);
1da177e4 2259 spin_unlock(&vfsmount_lock);
2d8f3038
AV
2260 chroot_fs_refs(&root, &new);
2261 security_sb_post_pivotroot(&root, &new);
1da177e4 2262 error = 0;
1a390689
AV
2263 path_put(&root_parent);
2264 path_put(&parent_path);
1da177e4 2265out2:
2d8f3038 2266 mutex_unlock(&old.dentry->d_inode->i_mutex);
390c6843 2267 up_write(&namespace_sem);
8c3ee42e 2268 path_put(&root);
2d8f3038 2269 path_put(&old);
1da177e4 2270out1:
2d8f3038 2271 path_put(&new);
1da177e4 2272out0:
1da177e4
LT
2273 return error;
2274out3:
2275 spin_unlock(&vfsmount_lock);
2276 goto out2;
2277}
2278
2279static void __init init_mount_tree(void)
2280{
2281 struct vfsmount *mnt;
6b3286ed 2282 struct mnt_namespace *ns;
ac748a09 2283 struct path root;
1da177e4
LT
2284
2285 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2286 if (IS_ERR(mnt))
2287 panic("Can't create rootfs");
6b3286ed
KK
2288 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
2289 if (!ns)
1da177e4 2290 panic("Can't allocate initial namespace");
6b3286ed
KK
2291 atomic_set(&ns->count, 1);
2292 INIT_LIST_HEAD(&ns->list);
2293 init_waitqueue_head(&ns->poll);
2294 ns->event = 0;
2295 list_add(&mnt->mnt_list, &ns->list);
2296 ns->root = mnt;
2297 mnt->mnt_ns = ns;
2298
2299 init_task.nsproxy->mnt_ns = ns;
2300 get_mnt_ns(ns);
2301
ac748a09
JB
2302 root.mnt = ns->root;
2303 root.dentry = ns->root->mnt_root;
2304
2305 set_fs_pwd(current->fs, &root);
2306 set_fs_root(current->fs, &root);
1da177e4
LT
2307}
2308
74bf17cf 2309void __init mnt_init(void)
1da177e4 2310{
13f14b4d 2311 unsigned u;
15a67dd8 2312 int err;
1da177e4 2313
390c6843
RP
2314 init_rwsem(&namespace_sem);
2315
1da177e4 2316 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
20c2df83 2317 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2318
b58fed8b 2319 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2320
2321 if (!mount_hashtable)
2322 panic("Failed to allocate mount hash table\n");
2323
13f14b4d
ED
2324 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2325
2326 for (u = 0; u < HASH_SIZE; u++)
2327 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2328
15a67dd8
RD
2329 err = sysfs_init();
2330 if (err)
2331 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2332 __func__, err);
00d26666
GKH
2333 fs_kobj = kobject_create_and_add("fs", NULL);
2334 if (!fs_kobj)
8e24eea7 2335 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2336 init_rootfs();
2337 init_mount_tree();
2338}
2339
6b3286ed 2340void __put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2341{
6b3286ed 2342 struct vfsmount *root = ns->root;
70fbcdf4 2343 LIST_HEAD(umount_list);
6b3286ed 2344 ns->root = NULL;
1ce88cf4 2345 spin_unlock(&vfsmount_lock);
390c6843 2346 down_write(&namespace_sem);
1da177e4 2347 spin_lock(&vfsmount_lock);
a05964f3 2348 umount_tree(root, 0, &umount_list);
1da177e4 2349 spin_unlock(&vfsmount_lock);
390c6843 2350 up_write(&namespace_sem);
70fbcdf4 2351 release_mounts(&umount_list);
6b3286ed 2352 kfree(ns);
1da177e4 2353}