]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/namespace.c
Take vfsmount_lock to fs/internal.h
[net-next-2.6.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4
LT
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
14#include <linux/smp_lock.h>
15#include <linux/init.h>
15a67dd8 16#include <linux/kernel.h>
1da177e4 17#include <linux/acct.h>
16f7e0fe 18#include <linux/capability.h>
3d733633 19#include <linux/cpumask.h>
1da177e4 20#include <linux/module.h>
f20a9ead 21#include <linux/sysfs.h>
1da177e4 22#include <linux/seq_file.h>
6b3286ed 23#include <linux/mnt_namespace.h>
1da177e4 24#include <linux/namei.h>
b43f3cbd 25#include <linux/nsproxy.h>
1da177e4
LT
26#include <linux/security.h>
27#include <linux/mount.h>
07f3f05c 28#include <linux/ramfs.h>
13f14b4d 29#include <linux/log2.h>
73cd49ec 30#include <linux/idr.h>
5ad4e53b 31#include <linux/fs_struct.h>
1da177e4
LT
32#include <asm/uaccess.h>
33#include <asm/unistd.h>
07b20889 34#include "pnode.h"
948730b0 35#include "internal.h"
1da177e4 36
13f14b4d
ED
37#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
38#define HASH_SIZE (1UL << HASH_SHIFT)
39
1da177e4 40/* spinlock for vfsmount related operations, inplace of dcache_lock */
5addc5dd
AV
41__cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
42
43static int event;
73cd49ec 44static DEFINE_IDA(mnt_id_ida);
719f5d7f 45static DEFINE_IDA(mnt_group_ida);
f21f6220
AV
46static int mnt_id_start = 0;
47static int mnt_group_start = 1;
1da177e4 48
fa3536cc 49static struct list_head *mount_hashtable __read_mostly;
e18b890b 50static struct kmem_cache *mnt_cache __read_mostly;
390c6843 51static struct rw_semaphore namespace_sem;
1da177e4 52
f87fd4c2 53/* /sys/fs */
00d26666
GKH
54struct kobject *fs_kobj;
55EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 56
1da177e4
LT
57static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
58{
b58fed8b
RP
59 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
60 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
61 tmp = tmp + (tmp >> HASH_SHIFT);
62 return tmp & (HASH_SIZE - 1);
1da177e4
LT
63}
64
3d733633
DH
65#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
66
73cd49ec
MS
67/* allocation is serialized by namespace_sem */
68static int mnt_alloc_id(struct vfsmount *mnt)
69{
70 int res;
71
72retry:
73 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
74 spin_lock(&vfsmount_lock);
f21f6220
AV
75 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
76 if (!res)
77 mnt_id_start = mnt->mnt_id + 1;
73cd49ec
MS
78 spin_unlock(&vfsmount_lock);
79 if (res == -EAGAIN)
80 goto retry;
81
82 return res;
83}
84
85static void mnt_free_id(struct vfsmount *mnt)
86{
f21f6220 87 int id = mnt->mnt_id;
73cd49ec 88 spin_lock(&vfsmount_lock);
f21f6220
AV
89 ida_remove(&mnt_id_ida, id);
90 if (mnt_id_start > id)
91 mnt_id_start = id;
73cd49ec
MS
92 spin_unlock(&vfsmount_lock);
93}
94
719f5d7f
MS
95/*
96 * Allocate a new peer group ID
97 *
98 * mnt_group_ida is protected by namespace_sem
99 */
100static int mnt_alloc_group_id(struct vfsmount *mnt)
101{
f21f6220
AV
102 int res;
103
719f5d7f
MS
104 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
105 return -ENOMEM;
106
f21f6220
AV
107 res = ida_get_new_above(&mnt_group_ida,
108 mnt_group_start,
109 &mnt->mnt_group_id);
110 if (!res)
111 mnt_group_start = mnt->mnt_group_id + 1;
112
113 return res;
719f5d7f
MS
114}
115
116/*
117 * Release a peer group ID
118 */
119void mnt_release_group_id(struct vfsmount *mnt)
120{
f21f6220
AV
121 int id = mnt->mnt_group_id;
122 ida_remove(&mnt_group_ida, id);
123 if (mnt_group_start > id)
124 mnt_group_start = id;
719f5d7f
MS
125 mnt->mnt_group_id = 0;
126}
127
1da177e4
LT
128struct vfsmount *alloc_vfsmnt(const char *name)
129{
c3762229 130 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
1da177e4 131 if (mnt) {
73cd49ec
MS
132 int err;
133
134 err = mnt_alloc_id(mnt);
88b38782
LZ
135 if (err)
136 goto out_free_cache;
137
138 if (name) {
139 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
140 if (!mnt->mnt_devname)
141 goto out_free_id;
73cd49ec
MS
142 }
143
b58fed8b 144 atomic_set(&mnt->mnt_count, 1);
1da177e4
LT
145 INIT_LIST_HEAD(&mnt->mnt_hash);
146 INIT_LIST_HEAD(&mnt->mnt_child);
147 INIT_LIST_HEAD(&mnt->mnt_mounts);
148 INIT_LIST_HEAD(&mnt->mnt_list);
55e700b9 149 INIT_LIST_HEAD(&mnt->mnt_expire);
03e06e68 150 INIT_LIST_HEAD(&mnt->mnt_share);
a58b0eb8
RP
151 INIT_LIST_HEAD(&mnt->mnt_slave_list);
152 INIT_LIST_HEAD(&mnt->mnt_slave);
d3ef3d73 153#ifdef CONFIG_SMP
154 mnt->mnt_writers = alloc_percpu(int);
155 if (!mnt->mnt_writers)
156 goto out_free_devname;
157#else
158 mnt->mnt_writers = 0;
159#endif
1da177e4
LT
160 }
161 return mnt;
88b38782 162
d3ef3d73 163#ifdef CONFIG_SMP
164out_free_devname:
165 kfree(mnt->mnt_devname);
166#endif
88b38782
LZ
167out_free_id:
168 mnt_free_id(mnt);
169out_free_cache:
170 kmem_cache_free(mnt_cache, mnt);
171 return NULL;
1da177e4
LT
172}
173
3d733633
DH
174/*
175 * Most r/o checks on a fs are for operations that take
176 * discrete amounts of time, like a write() or unlink().
177 * We must keep track of when those operations start
178 * (for permission checks) and when they end, so that
179 * we can determine when writes are able to occur to
180 * a filesystem.
181 */
182/*
183 * __mnt_is_readonly: check whether a mount is read-only
184 * @mnt: the mount to check for its write status
185 *
186 * This shouldn't be used directly ouside of the VFS.
187 * It does not guarantee that the filesystem will stay
188 * r/w, just that it is right *now*. This can not and
189 * should not be used in place of IS_RDONLY(inode).
190 * mnt_want/drop_write() will _keep_ the filesystem
191 * r/w.
192 */
193int __mnt_is_readonly(struct vfsmount *mnt)
194{
2e4b7fcd
DH
195 if (mnt->mnt_flags & MNT_READONLY)
196 return 1;
197 if (mnt->mnt_sb->s_flags & MS_RDONLY)
198 return 1;
199 return 0;
3d733633
DH
200}
201EXPORT_SYMBOL_GPL(__mnt_is_readonly);
202
d3ef3d73 203static inline void inc_mnt_writers(struct vfsmount *mnt)
204{
205#ifdef CONFIG_SMP
206 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))++;
207#else
208 mnt->mnt_writers++;
209#endif
210}
3d733633 211
d3ef3d73 212static inline void dec_mnt_writers(struct vfsmount *mnt)
3d733633 213{
d3ef3d73 214#ifdef CONFIG_SMP
215 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))--;
216#else
217 mnt->mnt_writers--;
218#endif
3d733633 219}
3d733633 220
d3ef3d73 221static unsigned int count_mnt_writers(struct vfsmount *mnt)
3d733633 222{
d3ef3d73 223#ifdef CONFIG_SMP
224 unsigned int count = 0;
3d733633 225 int cpu;
3d733633
DH
226
227 for_each_possible_cpu(cpu) {
d3ef3d73 228 count += *per_cpu_ptr(mnt->mnt_writers, cpu);
3d733633 229 }
3d733633 230
d3ef3d73 231 return count;
232#else
233 return mnt->mnt_writers;
234#endif
3d733633
DH
235}
236
8366025e
DH
237/*
238 * Most r/o checks on a fs are for operations that take
239 * discrete amounts of time, like a write() or unlink().
240 * We must keep track of when those operations start
241 * (for permission checks) and when they end, so that
242 * we can determine when writes are able to occur to
243 * a filesystem.
244 */
245/**
246 * mnt_want_write - get write access to a mount
247 * @mnt: the mount on which to take a write
248 *
249 * This tells the low-level filesystem that a write is
250 * about to be performed to it, and makes sure that
251 * writes are allowed before returning success. When
252 * the write operation is finished, mnt_drop_write()
253 * must be called. This is effectively a refcount.
254 */
255int mnt_want_write(struct vfsmount *mnt)
256{
3d733633 257 int ret = 0;
3d733633 258
d3ef3d73 259 preempt_disable();
260 inc_mnt_writers(mnt);
261 /*
262 * The store to inc_mnt_writers must be visible before we pass
263 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
264 * incremented count after it has set MNT_WRITE_HOLD.
265 */
266 smp_mb();
267 while (mnt->mnt_flags & MNT_WRITE_HOLD)
268 cpu_relax();
269 /*
270 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
271 * be set to match its requirements. So we must not load that until
272 * MNT_WRITE_HOLD is cleared.
273 */
274 smp_rmb();
3d733633 275 if (__mnt_is_readonly(mnt)) {
d3ef3d73 276 dec_mnt_writers(mnt);
3d733633
DH
277 ret = -EROFS;
278 goto out;
279 }
3d733633 280out:
d3ef3d73 281 preempt_enable();
3d733633 282 return ret;
8366025e
DH
283}
284EXPORT_SYMBOL_GPL(mnt_want_write);
285
96029c4e 286/**
287 * mnt_clone_write - get write access to a mount
288 * @mnt: the mount on which to take a write
289 *
290 * This is effectively like mnt_want_write, except
291 * it must only be used to take an extra write reference
292 * on a mountpoint that we already know has a write reference
293 * on it. This allows some optimisation.
294 *
295 * After finished, mnt_drop_write must be called as usual to
296 * drop the reference.
297 */
298int mnt_clone_write(struct vfsmount *mnt)
299{
300 /* superblock may be r/o */
301 if (__mnt_is_readonly(mnt))
302 return -EROFS;
303 preempt_disable();
304 inc_mnt_writers(mnt);
305 preempt_enable();
306 return 0;
307}
308EXPORT_SYMBOL_GPL(mnt_clone_write);
309
310/**
311 * mnt_want_write_file - get write access to a file's mount
312 * @file: the file who's mount on which to take a write
313 *
314 * This is like mnt_want_write, but it takes a file and can
315 * do some optimisations if the file is open for write already
316 */
317int mnt_want_write_file(struct file *file)
318{
2d8dd38a
OH
319 struct inode *inode = file->f_dentry->d_inode;
320 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
96029c4e 321 return mnt_want_write(file->f_path.mnt);
322 else
323 return mnt_clone_write(file->f_path.mnt);
324}
325EXPORT_SYMBOL_GPL(mnt_want_write_file);
326
8366025e
DH
327/**
328 * mnt_drop_write - give up write access to a mount
329 * @mnt: the mount on which to give up write access
330 *
331 * Tells the low-level filesystem that we are done
332 * performing writes to it. Must be matched with
333 * mnt_want_write() call above.
334 */
335void mnt_drop_write(struct vfsmount *mnt)
336{
d3ef3d73 337 preempt_disable();
338 dec_mnt_writers(mnt);
339 preempt_enable();
8366025e
DH
340}
341EXPORT_SYMBOL_GPL(mnt_drop_write);
342
2e4b7fcd 343static int mnt_make_readonly(struct vfsmount *mnt)
8366025e 344{
3d733633
DH
345 int ret = 0;
346
d3ef3d73 347 spin_lock(&vfsmount_lock);
348 mnt->mnt_flags |= MNT_WRITE_HOLD;
3d733633 349 /*
d3ef3d73 350 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
351 * should be visible before we do.
3d733633 352 */
d3ef3d73 353 smp_mb();
354
3d733633 355 /*
d3ef3d73 356 * With writers on hold, if this value is zero, then there are
357 * definitely no active writers (although held writers may subsequently
358 * increment the count, they'll have to wait, and decrement it after
359 * seeing MNT_READONLY).
360 *
361 * It is OK to have counter incremented on one CPU and decremented on
362 * another: the sum will add up correctly. The danger would be when we
363 * sum up each counter, if we read a counter before it is incremented,
364 * but then read another CPU's count which it has been subsequently
365 * decremented from -- we would see more decrements than we should.
366 * MNT_WRITE_HOLD protects against this scenario, because
367 * mnt_want_write first increments count, then smp_mb, then spins on
368 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
369 * we're counting up here.
3d733633 370 */
d3ef3d73 371 if (count_mnt_writers(mnt) > 0)
372 ret = -EBUSY;
373 else
2e4b7fcd 374 mnt->mnt_flags |= MNT_READONLY;
d3ef3d73 375 /*
376 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
377 * that become unheld will see MNT_READONLY.
378 */
379 smp_wmb();
380 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
2e4b7fcd 381 spin_unlock(&vfsmount_lock);
3d733633 382 return ret;
8366025e 383}
8366025e 384
2e4b7fcd
DH
385static void __mnt_unmake_readonly(struct vfsmount *mnt)
386{
387 spin_lock(&vfsmount_lock);
388 mnt->mnt_flags &= ~MNT_READONLY;
389 spin_unlock(&vfsmount_lock);
390}
391
a3ec947c 392void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
454e2398
DH
393{
394 mnt->mnt_sb = sb;
395 mnt->mnt_root = dget(sb->s_root);
454e2398
DH
396}
397
398EXPORT_SYMBOL(simple_set_mnt);
399
1da177e4
LT
400void free_vfsmnt(struct vfsmount *mnt)
401{
402 kfree(mnt->mnt_devname);
73cd49ec 403 mnt_free_id(mnt);
d3ef3d73 404#ifdef CONFIG_SMP
405 free_percpu(mnt->mnt_writers);
406#endif
1da177e4
LT
407 kmem_cache_free(mnt_cache, mnt);
408}
409
410/*
a05964f3
RP
411 * find the first or last mount at @dentry on vfsmount @mnt depending on
412 * @dir. If @dir is set return the first mount else return the last mount.
1da177e4 413 */
a05964f3
RP
414struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
415 int dir)
1da177e4 416{
b58fed8b
RP
417 struct list_head *head = mount_hashtable + hash(mnt, dentry);
418 struct list_head *tmp = head;
1da177e4
LT
419 struct vfsmount *p, *found = NULL;
420
1da177e4 421 for (;;) {
a05964f3 422 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
423 p = NULL;
424 if (tmp == head)
425 break;
426 p = list_entry(tmp, struct vfsmount, mnt_hash);
427 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
a05964f3 428 found = p;
1da177e4
LT
429 break;
430 }
431 }
1da177e4
LT
432 return found;
433}
434
a05964f3
RP
435/*
436 * lookup_mnt increments the ref count before returning
437 * the vfsmount struct.
438 */
1c755af4 439struct vfsmount *lookup_mnt(struct path *path)
a05964f3
RP
440{
441 struct vfsmount *child_mnt;
442 spin_lock(&vfsmount_lock);
1c755af4 443 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
a05964f3
RP
444 mntget(child_mnt);
445 spin_unlock(&vfsmount_lock);
446 return child_mnt;
447}
448
1da177e4
LT
449static inline int check_mnt(struct vfsmount *mnt)
450{
6b3286ed 451 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
452}
453
6b3286ed 454static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
455{
456 if (ns) {
457 ns->event = ++event;
458 wake_up_interruptible(&ns->poll);
459 }
460}
461
6b3286ed 462static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
463{
464 if (ns && ns->event != event) {
465 ns->event = event;
466 wake_up_interruptible(&ns->poll);
467 }
468}
469
1a390689 470static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
1da177e4 471{
1a390689
AV
472 old_path->dentry = mnt->mnt_mountpoint;
473 old_path->mnt = mnt->mnt_parent;
1da177e4
LT
474 mnt->mnt_parent = mnt;
475 mnt->mnt_mountpoint = mnt->mnt_root;
476 list_del_init(&mnt->mnt_child);
477 list_del_init(&mnt->mnt_hash);
1a390689 478 old_path->dentry->d_mounted--;
1da177e4
LT
479}
480
b90fa9ae
RP
481void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
482 struct vfsmount *child_mnt)
483{
484 child_mnt->mnt_parent = mntget(mnt);
485 child_mnt->mnt_mountpoint = dget(dentry);
486 dentry->d_mounted++;
487}
488
1a390689 489static void attach_mnt(struct vfsmount *mnt, struct path *path)
1da177e4 490{
1a390689 491 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
b90fa9ae 492 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689
AV
493 hash(path->mnt, path->dentry));
494 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
b90fa9ae
RP
495}
496
497/*
498 * the caller must hold vfsmount_lock
499 */
500static void commit_tree(struct vfsmount *mnt)
501{
502 struct vfsmount *parent = mnt->mnt_parent;
503 struct vfsmount *m;
504 LIST_HEAD(head);
6b3286ed 505 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae
RP
506
507 BUG_ON(parent == mnt);
508
509 list_add_tail(&head, &mnt->mnt_list);
510 list_for_each_entry(m, &head, mnt_list)
6b3286ed 511 m->mnt_ns = n;
b90fa9ae
RP
512 list_splice(&head, n->list.prev);
513
514 list_add_tail(&mnt->mnt_hash, mount_hashtable +
515 hash(parent, mnt->mnt_mountpoint));
516 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 517 touch_mnt_namespace(n);
1da177e4
LT
518}
519
520static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
521{
522 struct list_head *next = p->mnt_mounts.next;
523 if (next == &p->mnt_mounts) {
524 while (1) {
525 if (p == root)
526 return NULL;
527 next = p->mnt_child.next;
528 if (next != &p->mnt_parent->mnt_mounts)
529 break;
530 p = p->mnt_parent;
531 }
532 }
533 return list_entry(next, struct vfsmount, mnt_child);
534}
535
9676f0c6
RP
536static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
537{
538 struct list_head *prev = p->mnt_mounts.prev;
539 while (prev != &p->mnt_mounts) {
540 p = list_entry(prev, struct vfsmount, mnt_child);
541 prev = p->mnt_mounts.prev;
542 }
543 return p;
544}
545
36341f64
RP
546static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
547 int flag)
1da177e4
LT
548{
549 struct super_block *sb = old->mnt_sb;
550 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
551
552 if (mnt) {
719f5d7f
MS
553 if (flag & (CL_SLAVE | CL_PRIVATE))
554 mnt->mnt_group_id = 0; /* not a peer of original */
555 else
556 mnt->mnt_group_id = old->mnt_group_id;
557
558 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
559 int err = mnt_alloc_group_id(mnt);
560 if (err)
561 goto out_free;
562 }
563
1da177e4
LT
564 mnt->mnt_flags = old->mnt_flags;
565 atomic_inc(&sb->s_active);
566 mnt->mnt_sb = sb;
567 mnt->mnt_root = dget(root);
568 mnt->mnt_mountpoint = mnt->mnt_root;
569 mnt->mnt_parent = mnt;
b90fa9ae 570
5afe0022
RP
571 if (flag & CL_SLAVE) {
572 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
573 mnt->mnt_master = old;
574 CLEAR_MNT_SHARED(mnt);
8aec0809 575 } else if (!(flag & CL_PRIVATE)) {
796a6b52 576 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
5afe0022
RP
577 list_add(&mnt->mnt_share, &old->mnt_share);
578 if (IS_MNT_SLAVE(old))
579 list_add(&mnt->mnt_slave, &old->mnt_slave);
580 mnt->mnt_master = old->mnt_master;
581 }
b90fa9ae
RP
582 if (flag & CL_MAKE_SHARED)
583 set_mnt_shared(mnt);
1da177e4
LT
584
585 /* stick the duplicate mount on the same expiry list
586 * as the original if that was on one */
36341f64 587 if (flag & CL_EXPIRE) {
36341f64
RP
588 if (!list_empty(&old->mnt_expire))
589 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 590 }
1da177e4
LT
591 }
592 return mnt;
719f5d7f
MS
593
594 out_free:
595 free_vfsmnt(mnt);
596 return NULL;
1da177e4
LT
597}
598
7b7b1ace 599static inline void __mntput(struct vfsmount *mnt)
1da177e4
LT
600{
601 struct super_block *sb = mnt->mnt_sb;
3d733633
DH
602 /*
603 * This probably indicates that somebody messed
604 * up a mnt_want/drop_write() pair. If this
605 * happens, the filesystem was probably unable
606 * to make r/w->r/o transitions.
607 */
d3ef3d73 608 /*
609 * atomic_dec_and_lock() used to deal with ->mnt_count decrements
610 * provides barriers, so count_mnt_writers() below is safe. AV
611 */
612 WARN_ON(count_mnt_writers(mnt));
1da177e4
LT
613 dput(mnt->mnt_root);
614 free_vfsmnt(mnt);
615 deactivate_super(sb);
616}
617
7b7b1ace
AV
618void mntput_no_expire(struct vfsmount *mnt)
619{
620repeat:
621 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
622 if (likely(!mnt->mnt_pinned)) {
623 spin_unlock(&vfsmount_lock);
624 __mntput(mnt);
625 return;
626 }
627 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
628 mnt->mnt_pinned = 0;
629 spin_unlock(&vfsmount_lock);
630 acct_auto_close_mnt(mnt);
631 security_sb_umount_close(mnt);
632 goto repeat;
633 }
634}
635
636EXPORT_SYMBOL(mntput_no_expire);
637
638void mnt_pin(struct vfsmount *mnt)
639{
640 spin_lock(&vfsmount_lock);
641 mnt->mnt_pinned++;
642 spin_unlock(&vfsmount_lock);
643}
644
645EXPORT_SYMBOL(mnt_pin);
646
647void mnt_unpin(struct vfsmount *mnt)
648{
649 spin_lock(&vfsmount_lock);
650 if (mnt->mnt_pinned) {
651 atomic_inc(&mnt->mnt_count);
652 mnt->mnt_pinned--;
653 }
654 spin_unlock(&vfsmount_lock);
655}
656
657EXPORT_SYMBOL(mnt_unpin);
1da177e4 658
b3b304a2
MS
659static inline void mangle(struct seq_file *m, const char *s)
660{
661 seq_escape(m, s, " \t\n\\");
662}
663
664/*
665 * Simple .show_options callback for filesystems which don't want to
666 * implement more complex mount option showing.
667 *
668 * See also save_mount_options().
669 */
670int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
671{
2a32cebd
AV
672 const char *options;
673
674 rcu_read_lock();
675 options = rcu_dereference(mnt->mnt_sb->s_options);
b3b304a2
MS
676
677 if (options != NULL && options[0]) {
678 seq_putc(m, ',');
679 mangle(m, options);
680 }
2a32cebd 681 rcu_read_unlock();
b3b304a2
MS
682
683 return 0;
684}
685EXPORT_SYMBOL(generic_show_options);
686
687/*
688 * If filesystem uses generic_show_options(), this function should be
689 * called from the fill_super() callback.
690 *
691 * The .remount_fs callback usually needs to be handled in a special
692 * way, to make sure, that previous options are not overwritten if the
693 * remount fails.
694 *
695 * Also note, that if the filesystem's .remount_fs function doesn't
696 * reset all options to their default value, but changes only newly
697 * given options, then the displayed options will not reflect reality
698 * any more.
699 */
700void save_mount_options(struct super_block *sb, char *options)
701{
2a32cebd
AV
702 BUG_ON(sb->s_options);
703 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
704}
705EXPORT_SYMBOL(save_mount_options);
706
2a32cebd
AV
707void replace_mount_options(struct super_block *sb, char *options)
708{
709 char *old = sb->s_options;
710 rcu_assign_pointer(sb->s_options, options);
711 if (old) {
712 synchronize_rcu();
713 kfree(old);
714 }
715}
716EXPORT_SYMBOL(replace_mount_options);
717
a1a2c409 718#ifdef CONFIG_PROC_FS
1da177e4
LT
719/* iterator */
720static void *m_start(struct seq_file *m, loff_t *pos)
721{
a1a2c409 722 struct proc_mounts *p = m->private;
1da177e4 723
390c6843 724 down_read(&namespace_sem);
a1a2c409 725 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
726}
727
728static void *m_next(struct seq_file *m, void *v, loff_t *pos)
729{
a1a2c409 730 struct proc_mounts *p = m->private;
b0765fb8 731
a1a2c409 732 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
733}
734
735static void m_stop(struct seq_file *m, void *v)
736{
390c6843 737 up_read(&namespace_sem);
1da177e4
LT
738}
739
9f5596af
AV
740int mnt_had_events(struct proc_mounts *p)
741{
742 struct mnt_namespace *ns = p->ns;
743 int res = 0;
744
745 spin_lock(&vfsmount_lock);
746 if (p->event != ns->event) {
747 p->event = ns->event;
748 res = 1;
749 }
750 spin_unlock(&vfsmount_lock);
751
752 return res;
753}
754
2d4d4864
RP
755struct proc_fs_info {
756 int flag;
757 const char *str;
758};
759
2069f457 760static int show_sb_opts(struct seq_file *m, struct super_block *sb)
1da177e4 761{
2d4d4864 762 static const struct proc_fs_info fs_info[] = {
1da177e4
LT
763 { MS_SYNCHRONOUS, ",sync" },
764 { MS_DIRSYNC, ",dirsync" },
765 { MS_MANDLOCK, ",mand" },
1da177e4
LT
766 { 0, NULL }
767 };
2d4d4864
RP
768 const struct proc_fs_info *fs_infop;
769
770 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
771 if (sb->s_flags & fs_infop->flag)
772 seq_puts(m, fs_infop->str);
773 }
2069f457
EP
774
775 return security_sb_show_options(m, sb);
2d4d4864
RP
776}
777
778static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
779{
780 static const struct proc_fs_info mnt_info[] = {
1da177e4
LT
781 { MNT_NOSUID, ",nosuid" },
782 { MNT_NODEV, ",nodev" },
783 { MNT_NOEXEC, ",noexec" },
fc33a7bb
CH
784 { MNT_NOATIME, ",noatime" },
785 { MNT_NODIRATIME, ",nodiratime" },
47ae32d6 786 { MNT_RELATIME, ",relatime" },
d0adde57 787 { MNT_STRICTATIME, ",strictatime" },
1da177e4
LT
788 { 0, NULL }
789 };
2d4d4864
RP
790 const struct proc_fs_info *fs_infop;
791
792 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
793 if (mnt->mnt_flags & fs_infop->flag)
794 seq_puts(m, fs_infop->str);
795 }
796}
797
798static void show_type(struct seq_file *m, struct super_block *sb)
799{
800 mangle(m, sb->s_type->name);
801 if (sb->s_subtype && sb->s_subtype[0]) {
802 seq_putc(m, '.');
803 mangle(m, sb->s_subtype);
804 }
805}
806
807static int show_vfsmnt(struct seq_file *m, void *v)
808{
809 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
810 int err = 0;
c32c2f63 811 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1da177e4
LT
812
813 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
814 seq_putc(m, ' ');
c32c2f63 815 seq_path(m, &mnt_path, " \t\n\\");
1da177e4 816 seq_putc(m, ' ');
2d4d4864 817 show_type(m, mnt->mnt_sb);
2e4b7fcd 818 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
2069f457
EP
819 err = show_sb_opts(m, mnt->mnt_sb);
820 if (err)
821 goto out;
2d4d4864 822 show_mnt_opts(m, mnt);
1da177e4
LT
823 if (mnt->mnt_sb->s_op->show_options)
824 err = mnt->mnt_sb->s_op->show_options(m, mnt);
825 seq_puts(m, " 0 0\n");
2069f457 826out:
1da177e4
LT
827 return err;
828}
829
a1a2c409 830const struct seq_operations mounts_op = {
1da177e4
LT
831 .start = m_start,
832 .next = m_next,
833 .stop = m_stop,
834 .show = show_vfsmnt
835};
836
2d4d4864
RP
837static int show_mountinfo(struct seq_file *m, void *v)
838{
839 struct proc_mounts *p = m->private;
840 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
841 struct super_block *sb = mnt->mnt_sb;
842 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
843 struct path root = p->root;
844 int err = 0;
845
846 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
847 MAJOR(sb->s_dev), MINOR(sb->s_dev));
848 seq_dentry(m, mnt->mnt_root, " \t\n\\");
849 seq_putc(m, ' ');
850 seq_path_root(m, &mnt_path, &root, " \t\n\\");
851 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
852 /*
853 * Mountpoint is outside root, discard that one. Ugly,
854 * but less so than trying to do that in iterator in a
855 * race-free way (due to renames).
856 */
857 return SEQ_SKIP;
858 }
859 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
860 show_mnt_opts(m, mnt);
861
862 /* Tagged fields ("foo:X" or "bar") */
863 if (IS_MNT_SHARED(mnt))
864 seq_printf(m, " shared:%i", mnt->mnt_group_id);
97e7e0f7
MS
865 if (IS_MNT_SLAVE(mnt)) {
866 int master = mnt->mnt_master->mnt_group_id;
867 int dom = get_dominating_id(mnt, &p->root);
868 seq_printf(m, " master:%i", master);
869 if (dom && dom != master)
870 seq_printf(m, " propagate_from:%i", dom);
871 }
2d4d4864
RP
872 if (IS_MNT_UNBINDABLE(mnt))
873 seq_puts(m, " unbindable");
874
875 /* Filesystem specific data */
876 seq_puts(m, " - ");
877 show_type(m, sb);
878 seq_putc(m, ' ');
879 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
880 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
2069f457
EP
881 err = show_sb_opts(m, sb);
882 if (err)
883 goto out;
2d4d4864
RP
884 if (sb->s_op->show_options)
885 err = sb->s_op->show_options(m, mnt);
886 seq_putc(m, '\n');
2069f457 887out:
2d4d4864
RP
888 return err;
889}
890
891const struct seq_operations mountinfo_op = {
892 .start = m_start,
893 .next = m_next,
894 .stop = m_stop,
895 .show = show_mountinfo,
896};
897
b4629fe2
CL
898static int show_vfsstat(struct seq_file *m, void *v)
899{
b0765fb8 900 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
c32c2f63 901 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
b4629fe2
CL
902 int err = 0;
903
904 /* device */
905 if (mnt->mnt_devname) {
906 seq_puts(m, "device ");
907 mangle(m, mnt->mnt_devname);
908 } else
909 seq_puts(m, "no device");
910
911 /* mount point */
912 seq_puts(m, " mounted on ");
c32c2f63 913 seq_path(m, &mnt_path, " \t\n\\");
b4629fe2
CL
914 seq_putc(m, ' ');
915
916 /* file system type */
917 seq_puts(m, "with fstype ");
2d4d4864 918 show_type(m, mnt->mnt_sb);
b4629fe2
CL
919
920 /* optional statistics */
921 if (mnt->mnt_sb->s_op->show_stats) {
922 seq_putc(m, ' ');
923 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
924 }
925
926 seq_putc(m, '\n');
927 return err;
928}
929
a1a2c409 930const struct seq_operations mountstats_op = {
b4629fe2
CL
931 .start = m_start,
932 .next = m_next,
933 .stop = m_stop,
934 .show = show_vfsstat,
935};
a1a2c409 936#endif /* CONFIG_PROC_FS */
b4629fe2 937
1da177e4
LT
938/**
939 * may_umount_tree - check if a mount tree is busy
940 * @mnt: root of mount tree
941 *
942 * This is called to check if a tree of mounts has any
943 * open files, pwds, chroots or sub mounts that are
944 * busy.
945 */
946int may_umount_tree(struct vfsmount *mnt)
947{
36341f64
RP
948 int actual_refs = 0;
949 int minimum_refs = 0;
950 struct vfsmount *p;
1da177e4
LT
951
952 spin_lock(&vfsmount_lock);
36341f64 953 for (p = mnt; p; p = next_mnt(p, mnt)) {
1da177e4
LT
954 actual_refs += atomic_read(&p->mnt_count);
955 minimum_refs += 2;
1da177e4
LT
956 }
957 spin_unlock(&vfsmount_lock);
958
959 if (actual_refs > minimum_refs)
e3474a8e 960 return 0;
1da177e4 961
e3474a8e 962 return 1;
1da177e4
LT
963}
964
965EXPORT_SYMBOL(may_umount_tree);
966
967/**
968 * may_umount - check if a mount point is busy
969 * @mnt: root of mount
970 *
971 * This is called to check if a mount point has any
972 * open files, pwds, chroots or sub mounts. If the
973 * mount has sub mounts this will return busy
974 * regardless of whether the sub mounts are busy.
975 *
976 * Doesn't take quota and stuff into account. IOW, in some cases it will
977 * give false negatives. The main reason why it's here is that we need
978 * a non-destructive way to look for easily umountable filesystems.
979 */
980int may_umount(struct vfsmount *mnt)
981{
e3474a8e 982 int ret = 1;
8ad08d8a 983 down_read(&namespace_sem);
a05964f3
RP
984 spin_lock(&vfsmount_lock);
985 if (propagate_mount_busy(mnt, 2))
e3474a8e 986 ret = 0;
a05964f3 987 spin_unlock(&vfsmount_lock);
8ad08d8a 988 up_read(&namespace_sem);
a05964f3 989 return ret;
1da177e4
LT
990}
991
992EXPORT_SYMBOL(may_umount);
993
b90fa9ae 994void release_mounts(struct list_head *head)
70fbcdf4
RP
995{
996 struct vfsmount *mnt;
bf066c7d 997 while (!list_empty(head)) {
b5e61818 998 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
70fbcdf4
RP
999 list_del_init(&mnt->mnt_hash);
1000 if (mnt->mnt_parent != mnt) {
1001 struct dentry *dentry;
1002 struct vfsmount *m;
1003 spin_lock(&vfsmount_lock);
1004 dentry = mnt->mnt_mountpoint;
1005 m = mnt->mnt_parent;
1006 mnt->mnt_mountpoint = mnt->mnt_root;
1007 mnt->mnt_parent = mnt;
7c4b93d8 1008 m->mnt_ghosts--;
70fbcdf4
RP
1009 spin_unlock(&vfsmount_lock);
1010 dput(dentry);
1011 mntput(m);
1012 }
1013 mntput(mnt);
1014 }
1015}
1016
a05964f3 1017void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1da177e4
LT
1018{
1019 struct vfsmount *p;
1da177e4 1020
1bfba4e8
AM
1021 for (p = mnt; p; p = next_mnt(p, mnt))
1022 list_move(&p->mnt_hash, kill);
1da177e4 1023
a05964f3
RP
1024 if (propagate)
1025 propagate_umount(kill);
1026
70fbcdf4
RP
1027 list_for_each_entry(p, kill, mnt_hash) {
1028 list_del_init(&p->mnt_expire);
1029 list_del_init(&p->mnt_list);
6b3286ed
KK
1030 __touch_mnt_namespace(p->mnt_ns);
1031 p->mnt_ns = NULL;
70fbcdf4 1032 list_del_init(&p->mnt_child);
7c4b93d8
AV
1033 if (p->mnt_parent != p) {
1034 p->mnt_parent->mnt_ghosts++;
f30ac319 1035 p->mnt_mountpoint->d_mounted--;
7c4b93d8 1036 }
a05964f3 1037 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1038 }
1039}
1040
c35038be
AV
1041static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1042
1da177e4
LT
1043static int do_umount(struct vfsmount *mnt, int flags)
1044{
b58fed8b 1045 struct super_block *sb = mnt->mnt_sb;
1da177e4 1046 int retval;
70fbcdf4 1047 LIST_HEAD(umount_list);
1da177e4
LT
1048
1049 retval = security_sb_umount(mnt, flags);
1050 if (retval)
1051 return retval;
1052
1053 /*
1054 * Allow userspace to request a mountpoint be expired rather than
1055 * unmounting unconditionally. Unmount only happens if:
1056 * (1) the mark is already set (the mark is cleared by mntput())
1057 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1058 */
1059 if (flags & MNT_EXPIRE) {
6ac08c39 1060 if (mnt == current->fs->root.mnt ||
1da177e4
LT
1061 flags & (MNT_FORCE | MNT_DETACH))
1062 return -EINVAL;
1063
1064 if (atomic_read(&mnt->mnt_count) != 2)
1065 return -EBUSY;
1066
1067 if (!xchg(&mnt->mnt_expiry_mark, 1))
1068 return -EAGAIN;
1069 }
1070
1071 /*
1072 * If we may have to abort operations to get out of this
1073 * mount, and they will themselves hold resources we must
1074 * allow the fs to do things. In the Unix tradition of
1075 * 'Gee thats tricky lets do it in userspace' the umount_begin
1076 * might fail to complete on the first run through as other tasks
1077 * must return, and the like. Thats for the mount program to worry
1078 * about for the moment.
1079 */
1080
42faad99 1081 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1082 sb->s_op->umount_begin(sb);
42faad99 1083 }
1da177e4
LT
1084
1085 /*
1086 * No sense to grab the lock for this test, but test itself looks
1087 * somewhat bogus. Suggestions for better replacement?
1088 * Ho-hum... In principle, we might treat that as umount + switch
1089 * to rootfs. GC would eventually take care of the old vfsmount.
1090 * Actually it makes sense, especially if rootfs would contain a
1091 * /reboot - static binary that would close all descriptors and
1092 * call reboot(9). Then init(8) could umount root and exec /reboot.
1093 */
6ac08c39 1094 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1095 /*
1096 * Special case for "unmounting" root ...
1097 * we just try to remount it readonly.
1098 */
1099 down_write(&sb->s_umount);
4aa98cf7 1100 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1101 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1102 up_write(&sb->s_umount);
1103 return retval;
1104 }
1105
390c6843 1106 down_write(&namespace_sem);
1da177e4 1107 spin_lock(&vfsmount_lock);
5addc5dd 1108 event++;
1da177e4 1109
c35038be
AV
1110 if (!(flags & MNT_DETACH))
1111 shrink_submounts(mnt, &umount_list);
1112
1da177e4 1113 retval = -EBUSY;
a05964f3 1114 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1da177e4 1115 if (!list_empty(&mnt->mnt_list))
a05964f3 1116 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1117 retval = 0;
1118 }
1119 spin_unlock(&vfsmount_lock);
1120 if (retval)
1121 security_sb_umount_busy(mnt);
390c6843 1122 up_write(&namespace_sem);
70fbcdf4 1123 release_mounts(&umount_list);
1da177e4
LT
1124 return retval;
1125}
1126
1127/*
1128 * Now umount can handle mount points as well as block devices.
1129 * This is important for filesystems which use unnamed block devices.
1130 *
1131 * We now support a flag for forced unmount like the other 'big iron'
1132 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1133 */
1134
bdc480e3 1135SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1136{
2d8f3038 1137 struct path path;
1da177e4
LT
1138 int retval;
1139
2d8f3038 1140 retval = user_path(name, &path);
1da177e4
LT
1141 if (retval)
1142 goto out;
1143 retval = -EINVAL;
2d8f3038 1144 if (path.dentry != path.mnt->mnt_root)
1da177e4 1145 goto dput_and_out;
2d8f3038 1146 if (!check_mnt(path.mnt))
1da177e4
LT
1147 goto dput_and_out;
1148
1149 retval = -EPERM;
1150 if (!capable(CAP_SYS_ADMIN))
1151 goto dput_and_out;
1152
2d8f3038 1153 retval = do_umount(path.mnt, flags);
1da177e4 1154dput_and_out:
429731b1 1155 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038
AV
1156 dput(path.dentry);
1157 mntput_no_expire(path.mnt);
1da177e4
LT
1158out:
1159 return retval;
1160}
1161
1162#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1163
1164/*
b58fed8b 1165 * The 2.0 compatible umount. No flags.
1da177e4 1166 */
bdc480e3 1167SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1168{
b58fed8b 1169 return sys_umount(name, 0);
1da177e4
LT
1170}
1171
1172#endif
1173
2d92ab3c 1174static int mount_is_safe(struct path *path)
1da177e4
LT
1175{
1176 if (capable(CAP_SYS_ADMIN))
1177 return 0;
1178 return -EPERM;
1179#ifdef notyet
2d92ab3c 1180 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1181 return -EPERM;
2d92ab3c 1182 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1183 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1184 return -EPERM;
1185 }
2d92ab3c 1186 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1187 return -EPERM;
1188 return 0;
1189#endif
1190}
1191
b90fa9ae 1192struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
36341f64 1193 int flag)
1da177e4
LT
1194{
1195 struct vfsmount *res, *p, *q, *r, *s;
1a390689 1196 struct path path;
1da177e4 1197
9676f0c6
RP
1198 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1199 return NULL;
1200
36341f64 1201 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1202 if (!q)
1203 goto Enomem;
1204 q->mnt_mountpoint = mnt->mnt_mountpoint;
1205
1206 p = mnt;
fdadd65f 1207 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
7ec02ef1 1208 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1209 continue;
1210
1211 for (s = r; s; s = next_mnt(s, r)) {
9676f0c6
RP
1212 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1213 s = skip_mnt_tree(s);
1214 continue;
1215 }
1da177e4
LT
1216 while (p != s->mnt_parent) {
1217 p = p->mnt_parent;
1218 q = q->mnt_parent;
1219 }
1220 p = s;
1a390689
AV
1221 path.mnt = q;
1222 path.dentry = p->mnt_mountpoint;
36341f64 1223 q = clone_mnt(p, p->mnt_root, flag);
1da177e4
LT
1224 if (!q)
1225 goto Enomem;
1226 spin_lock(&vfsmount_lock);
1227 list_add_tail(&q->mnt_list, &res->mnt_list);
1a390689 1228 attach_mnt(q, &path);
1da177e4
LT
1229 spin_unlock(&vfsmount_lock);
1230 }
1231 }
1232 return res;
b58fed8b 1233Enomem:
1da177e4 1234 if (res) {
70fbcdf4 1235 LIST_HEAD(umount_list);
1da177e4 1236 spin_lock(&vfsmount_lock);
a05964f3 1237 umount_tree(res, 0, &umount_list);
1da177e4 1238 spin_unlock(&vfsmount_lock);
70fbcdf4 1239 release_mounts(&umount_list);
1da177e4
LT
1240 }
1241 return NULL;
1242}
1243
589ff870 1244struct vfsmount *collect_mounts(struct path *path)
8aec0809
AV
1245{
1246 struct vfsmount *tree;
1a60a280 1247 down_write(&namespace_sem);
589ff870 1248 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1a60a280 1249 up_write(&namespace_sem);
8aec0809
AV
1250 return tree;
1251}
1252
1253void drop_collected_mounts(struct vfsmount *mnt)
1254{
1255 LIST_HEAD(umount_list);
1a60a280 1256 down_write(&namespace_sem);
8aec0809
AV
1257 spin_lock(&vfsmount_lock);
1258 umount_tree(mnt, 0, &umount_list);
1259 spin_unlock(&vfsmount_lock);
1a60a280 1260 up_write(&namespace_sem);
8aec0809
AV
1261 release_mounts(&umount_list);
1262}
1263
1f707137
AV
1264int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1265 struct vfsmount *root)
1266{
1267 struct vfsmount *mnt;
1268 int res = f(root, arg);
1269 if (res)
1270 return res;
1271 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1272 res = f(mnt, arg);
1273 if (res)
1274 return res;
1275 }
1276 return 0;
1277}
1278
719f5d7f
MS
1279static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1280{
1281 struct vfsmount *p;
1282
1283 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1284 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1285 mnt_release_group_id(p);
1286 }
1287}
1288
1289static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1290{
1291 struct vfsmount *p;
1292
1293 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1294 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1295 int err = mnt_alloc_group_id(p);
1296 if (err) {
1297 cleanup_group_ids(mnt, p);
1298 return err;
1299 }
1300 }
1301 }
1302
1303 return 0;
1304}
1305
b90fa9ae
RP
1306/*
1307 * @source_mnt : mount tree to be attached
21444403
RP
1308 * @nd : place the mount tree @source_mnt is attached
1309 * @parent_nd : if non-null, detach the source_mnt from its parent and
1310 * store the parent mount and mountpoint dentry.
1311 * (done when source_mnt is moved)
b90fa9ae
RP
1312 *
1313 * NOTE: in the table below explains the semantics when a source mount
1314 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1315 * ---------------------------------------------------------------------------
1316 * | BIND MOUNT OPERATION |
1317 * |**************************************************************************
1318 * | source-->| shared | private | slave | unbindable |
1319 * | dest | | | | |
1320 * | | | | | | |
1321 * | v | | | | |
1322 * |**************************************************************************
1323 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1324 * | | | | | |
1325 * |non-shared| shared (+) | private | slave (*) | invalid |
1326 * ***************************************************************************
b90fa9ae
RP
1327 * A bind operation clones the source mount and mounts the clone on the
1328 * destination mount.
1329 *
1330 * (++) the cloned mount is propagated to all the mounts in the propagation
1331 * tree of the destination mount and the cloned mount is added to
1332 * the peer group of the source mount.
1333 * (+) the cloned mount is created under the destination mount and is marked
1334 * as shared. The cloned mount is added to the peer group of the source
1335 * mount.
5afe0022
RP
1336 * (+++) the mount is propagated to all the mounts in the propagation tree
1337 * of the destination mount and the cloned mount is made slave
1338 * of the same master as that of the source mount. The cloned mount
1339 * is marked as 'shared and slave'.
1340 * (*) the cloned mount is made a slave of the same master as that of the
1341 * source mount.
1342 *
9676f0c6
RP
1343 * ---------------------------------------------------------------------------
1344 * | MOVE MOUNT OPERATION |
1345 * |**************************************************************************
1346 * | source-->| shared | private | slave | unbindable |
1347 * | dest | | | | |
1348 * | | | | | | |
1349 * | v | | | | |
1350 * |**************************************************************************
1351 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1352 * | | | | | |
1353 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1354 * ***************************************************************************
5afe0022
RP
1355 *
1356 * (+) the mount is moved to the destination. And is then propagated to
1357 * all the mounts in the propagation tree of the destination mount.
21444403 1358 * (+*) the mount is moved to the destination.
5afe0022
RP
1359 * (+++) the mount is moved to the destination and is then propagated to
1360 * all the mounts belonging to the destination mount's propagation tree.
1361 * the mount is marked as 'shared and slave'.
1362 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1363 *
1364 * if the source mount is a tree, the operations explained above is
1365 * applied to each mount in the tree.
1366 * Must be called without spinlocks held, since this function can sleep
1367 * in allocations.
1368 */
1369static int attach_recursive_mnt(struct vfsmount *source_mnt,
1a390689 1370 struct path *path, struct path *parent_path)
b90fa9ae
RP
1371{
1372 LIST_HEAD(tree_list);
1a390689
AV
1373 struct vfsmount *dest_mnt = path->mnt;
1374 struct dentry *dest_dentry = path->dentry;
b90fa9ae 1375 struct vfsmount *child, *p;
719f5d7f 1376 int err;
b90fa9ae 1377
719f5d7f
MS
1378 if (IS_MNT_SHARED(dest_mnt)) {
1379 err = invent_group_ids(source_mnt, true);
1380 if (err)
1381 goto out;
1382 }
1383 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1384 if (err)
1385 goto out_cleanup_ids;
b90fa9ae 1386
df1a1ad2
AV
1387 spin_lock(&vfsmount_lock);
1388
b90fa9ae
RP
1389 if (IS_MNT_SHARED(dest_mnt)) {
1390 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1391 set_mnt_shared(p);
1392 }
1a390689
AV
1393 if (parent_path) {
1394 detach_mnt(source_mnt, parent_path);
1395 attach_mnt(source_mnt, path);
e5d67f07 1396 touch_mnt_namespace(parent_path->mnt->mnt_ns);
21444403
RP
1397 } else {
1398 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1399 commit_tree(source_mnt);
1400 }
b90fa9ae
RP
1401
1402 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1403 list_del_init(&child->mnt_hash);
1404 commit_tree(child);
1405 }
1406 spin_unlock(&vfsmount_lock);
1407 return 0;
719f5d7f
MS
1408
1409 out_cleanup_ids:
1410 if (IS_MNT_SHARED(dest_mnt))
1411 cleanup_group_ids(source_mnt, NULL);
1412 out:
1413 return err;
b90fa9ae
RP
1414}
1415
8c3ee42e 1416static int graft_tree(struct vfsmount *mnt, struct path *path)
1da177e4
LT
1417{
1418 int err;
1419 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1420 return -EINVAL;
1421
8c3ee42e 1422 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1da177e4
LT
1423 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1424 return -ENOTDIR;
1425
1426 err = -ENOENT;
8c3ee42e
AV
1427 mutex_lock(&path->dentry->d_inode->i_mutex);
1428 if (IS_DEADDIR(path->dentry->d_inode))
1da177e4
LT
1429 goto out_unlock;
1430
8c3ee42e 1431 err = security_sb_check_sb(mnt, path);
1da177e4
LT
1432 if (err)
1433 goto out_unlock;
1434
1435 err = -ENOENT;
f3da392e 1436 if (!d_unlinked(path->dentry))
8c3ee42e 1437 err = attach_recursive_mnt(mnt, path, NULL);
1da177e4 1438out_unlock:
8c3ee42e 1439 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4 1440 if (!err)
8c3ee42e 1441 security_sb_post_addmount(mnt, path);
1da177e4
LT
1442 return err;
1443}
1444
07b20889
RP
1445/*
1446 * recursively change the type of the mountpoint.
1447 */
0a0d8a46 1448static int do_change_type(struct path *path, int flag)
07b20889 1449{
2d92ab3c 1450 struct vfsmount *m, *mnt = path->mnt;
07b20889
RP
1451 int recurse = flag & MS_REC;
1452 int type = flag & ~MS_REC;
719f5d7f 1453 int err = 0;
07b20889 1454
ee6f9582
MS
1455 if (!capable(CAP_SYS_ADMIN))
1456 return -EPERM;
1457
2d92ab3c 1458 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1459 return -EINVAL;
1460
1461 down_write(&namespace_sem);
719f5d7f
MS
1462 if (type == MS_SHARED) {
1463 err = invent_group_ids(mnt, recurse);
1464 if (err)
1465 goto out_unlock;
1466 }
1467
07b20889
RP
1468 spin_lock(&vfsmount_lock);
1469 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1470 change_mnt_propagation(m, type);
1471 spin_unlock(&vfsmount_lock);
719f5d7f
MS
1472
1473 out_unlock:
07b20889 1474 up_write(&namespace_sem);
719f5d7f 1475 return err;
07b20889
RP
1476}
1477
1da177e4
LT
1478/*
1479 * do loopback mount.
1480 */
0a0d8a46 1481static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1482 int recurse)
1da177e4 1483{
2d92ab3c 1484 struct path old_path;
1da177e4 1485 struct vfsmount *mnt = NULL;
2d92ab3c 1486 int err = mount_is_safe(path);
1da177e4
LT
1487 if (err)
1488 return err;
1489 if (!old_name || !*old_name)
1490 return -EINVAL;
2d92ab3c 1491 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1492 if (err)
1493 return err;
1494
390c6843 1495 down_write(&namespace_sem);
1da177e4 1496 err = -EINVAL;
2d92ab3c 1497 if (IS_MNT_UNBINDABLE(old_path.mnt))
4ac91378 1498 goto out;
9676f0c6 1499
2d92ab3c 1500 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
ccd48bc7 1501 goto out;
1da177e4 1502
ccd48bc7
AV
1503 err = -ENOMEM;
1504 if (recurse)
2d92ab3c 1505 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
ccd48bc7 1506 else
2d92ab3c 1507 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
ccd48bc7
AV
1508
1509 if (!mnt)
1510 goto out;
1511
2d92ab3c 1512 err = graft_tree(mnt, path);
ccd48bc7 1513 if (err) {
70fbcdf4 1514 LIST_HEAD(umount_list);
1da177e4 1515 spin_lock(&vfsmount_lock);
a05964f3 1516 umount_tree(mnt, 0, &umount_list);
1da177e4 1517 spin_unlock(&vfsmount_lock);
70fbcdf4 1518 release_mounts(&umount_list);
5b83d2c5 1519 }
1da177e4 1520
ccd48bc7 1521out:
390c6843 1522 up_write(&namespace_sem);
2d92ab3c 1523 path_put(&old_path);
1da177e4
LT
1524 return err;
1525}
1526
2e4b7fcd
DH
1527static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1528{
1529 int error = 0;
1530 int readonly_request = 0;
1531
1532 if (ms_flags & MS_RDONLY)
1533 readonly_request = 1;
1534 if (readonly_request == __mnt_is_readonly(mnt))
1535 return 0;
1536
1537 if (readonly_request)
1538 error = mnt_make_readonly(mnt);
1539 else
1540 __mnt_unmake_readonly(mnt);
1541 return error;
1542}
1543
1da177e4
LT
1544/*
1545 * change filesystem flags. dir should be a physical root of filesystem.
1546 * If you've mounted a non-root directory somewhere and want to do remount
1547 * on it - tough luck.
1548 */
0a0d8a46 1549static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1550 void *data)
1551{
1552 int err;
2d92ab3c 1553 struct super_block *sb = path->mnt->mnt_sb;
1da177e4
LT
1554
1555 if (!capable(CAP_SYS_ADMIN))
1556 return -EPERM;
1557
2d92ab3c 1558 if (!check_mnt(path->mnt))
1da177e4
LT
1559 return -EINVAL;
1560
2d92ab3c 1561 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1562 return -EINVAL;
1563
1564 down_write(&sb->s_umount);
2e4b7fcd 1565 if (flags & MS_BIND)
2d92ab3c 1566 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1567 else
2e4b7fcd 1568 err = do_remount_sb(sb, flags, data, 0);
7b43a79f
AV
1569 if (!err) {
1570 spin_lock(&vfsmount_lock);
495d6c9c 1571 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
2d92ab3c 1572 path->mnt->mnt_flags = mnt_flags;
7b43a79f
AV
1573 spin_unlock(&vfsmount_lock);
1574 }
1da177e4 1575 up_write(&sb->s_umount);
0e55a7cc 1576 if (!err) {
2d92ab3c 1577 security_sb_post_remount(path->mnt, flags, data);
0e55a7cc
DW
1578
1579 spin_lock(&vfsmount_lock);
1580 touch_mnt_namespace(path->mnt->mnt_ns);
1581 spin_unlock(&vfsmount_lock);
1582 }
1da177e4
LT
1583 return err;
1584}
1585
9676f0c6
RP
1586static inline int tree_contains_unbindable(struct vfsmount *mnt)
1587{
1588 struct vfsmount *p;
1589 for (p = mnt; p; p = next_mnt(p, mnt)) {
1590 if (IS_MNT_UNBINDABLE(p))
1591 return 1;
1592 }
1593 return 0;
1594}
1595
0a0d8a46 1596static int do_move_mount(struct path *path, char *old_name)
1da177e4 1597{
2d92ab3c 1598 struct path old_path, parent_path;
1da177e4
LT
1599 struct vfsmount *p;
1600 int err = 0;
1601 if (!capable(CAP_SYS_ADMIN))
1602 return -EPERM;
1603 if (!old_name || !*old_name)
1604 return -EINVAL;
2d92ab3c 1605 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1606 if (err)
1607 return err;
1608
390c6843 1609 down_write(&namespace_sem);
2d92ab3c 1610 while (d_mountpoint(path->dentry) &&
9393bd07 1611 follow_down(path))
1da177e4
LT
1612 ;
1613 err = -EINVAL;
2d92ab3c 1614 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1da177e4
LT
1615 goto out;
1616
1617 err = -ENOENT;
2d92ab3c
AV
1618 mutex_lock(&path->dentry->d_inode->i_mutex);
1619 if (IS_DEADDIR(path->dentry->d_inode))
1da177e4
LT
1620 goto out1;
1621
f3da392e 1622 if (d_unlinked(path->dentry))
21444403 1623 goto out1;
1da177e4
LT
1624
1625 err = -EINVAL;
2d92ab3c 1626 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1627 goto out1;
1da177e4 1628
2d92ab3c 1629 if (old_path.mnt == old_path.mnt->mnt_parent)
21444403 1630 goto out1;
1da177e4 1631
2d92ab3c
AV
1632 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1633 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1634 goto out1;
1635 /*
1636 * Don't move a mount residing in a shared parent.
1637 */
2d92ab3c
AV
1638 if (old_path.mnt->mnt_parent &&
1639 IS_MNT_SHARED(old_path.mnt->mnt_parent))
21444403 1640 goto out1;
9676f0c6
RP
1641 /*
1642 * Don't move a mount tree containing unbindable mounts to a destination
1643 * mount which is shared.
1644 */
2d92ab3c
AV
1645 if (IS_MNT_SHARED(path->mnt) &&
1646 tree_contains_unbindable(old_path.mnt))
9676f0c6 1647 goto out1;
1da177e4 1648 err = -ELOOP;
2d92ab3c
AV
1649 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1650 if (p == old_path.mnt)
21444403 1651 goto out1;
1da177e4 1652
2d92ab3c 1653 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
4ac91378 1654 if (err)
21444403 1655 goto out1;
1da177e4
LT
1656
1657 /* if the mount is moved, it should no longer be expire
1658 * automatically */
2d92ab3c 1659 list_del_init(&old_path.mnt->mnt_expire);
1da177e4 1660out1:
2d92ab3c 1661 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4 1662out:
390c6843 1663 up_write(&namespace_sem);
1da177e4 1664 if (!err)
1a390689 1665 path_put(&parent_path);
2d92ab3c 1666 path_put(&old_path);
1da177e4
LT
1667 return err;
1668}
1669
1670/*
1671 * create a new mount for userspace and request it to be added into the
1672 * namespace's tree
1673 */
0a0d8a46 1674static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
1675 int mnt_flags, char *name, void *data)
1676{
1677 struct vfsmount *mnt;
1678
eca6f534 1679 if (!type)
1da177e4
LT
1680 return -EINVAL;
1681
1682 /* we need capabilities... */
1683 if (!capable(CAP_SYS_ADMIN))
1684 return -EPERM;
1685
7f78d4cd 1686 lock_kernel();
1da177e4 1687 mnt = do_kern_mount(type, flags, name, data);
7f78d4cd 1688 unlock_kernel();
1da177e4
LT
1689 if (IS_ERR(mnt))
1690 return PTR_ERR(mnt);
1691
2d92ab3c 1692 return do_add_mount(mnt, path, mnt_flags, NULL);
1da177e4
LT
1693}
1694
1695/*
1696 * add a mount into a namespace's mount tree
1697 * - provide the option of adding the new mount to an expiration list
1698 */
8d66bf54 1699int do_add_mount(struct vfsmount *newmnt, struct path *path,
1da177e4
LT
1700 int mnt_flags, struct list_head *fslist)
1701{
1702 int err;
1703
27d55f1f
AV
1704 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD);
1705
390c6843 1706 down_write(&namespace_sem);
1da177e4 1707 /* Something was mounted here while we slept */
8d66bf54 1708 while (d_mountpoint(path->dentry) &&
9393bd07 1709 follow_down(path))
1da177e4
LT
1710 ;
1711 err = -EINVAL;
dd5cae6e 1712 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1da177e4
LT
1713 goto unlock;
1714
1715 /* Refuse the same filesystem on the same mount point */
1716 err = -EBUSY;
8d66bf54
AV
1717 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1718 path->mnt->mnt_root == path->dentry)
1da177e4
LT
1719 goto unlock;
1720
1721 err = -EINVAL;
1722 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1723 goto unlock;
1724
1725 newmnt->mnt_flags = mnt_flags;
8d66bf54 1726 if ((err = graft_tree(newmnt, path)))
5b83d2c5 1727 goto unlock;
1da177e4 1728
6758f953 1729 if (fslist) /* add to the specified expiration list */
55e700b9 1730 list_add_tail(&newmnt->mnt_expire, fslist);
6758f953 1731
390c6843 1732 up_write(&namespace_sem);
5b83d2c5 1733 return 0;
1da177e4
LT
1734
1735unlock:
390c6843 1736 up_write(&namespace_sem);
1da177e4
LT
1737 mntput(newmnt);
1738 return err;
1739}
1740
1741EXPORT_SYMBOL_GPL(do_add_mount);
1742
1743/*
1744 * process a list of expirable mountpoints with the intent of discarding any
1745 * mountpoints that aren't in use and haven't been touched since last we came
1746 * here
1747 */
1748void mark_mounts_for_expiry(struct list_head *mounts)
1749{
1da177e4
LT
1750 struct vfsmount *mnt, *next;
1751 LIST_HEAD(graveyard);
bcc5c7d2 1752 LIST_HEAD(umounts);
1da177e4
LT
1753
1754 if (list_empty(mounts))
1755 return;
1756
bcc5c7d2 1757 down_write(&namespace_sem);
1da177e4
LT
1758 spin_lock(&vfsmount_lock);
1759
1760 /* extract from the expiration list every vfsmount that matches the
1761 * following criteria:
1762 * - only referenced by its parent vfsmount
1763 * - still marked for expiry (marked on the last call here; marks are
1764 * cleared by mntput())
1765 */
55e700b9 1766 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1da177e4 1767 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
bcc5c7d2 1768 propagate_mount_busy(mnt, 1))
1da177e4 1769 continue;
55e700b9 1770 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 1771 }
bcc5c7d2
AV
1772 while (!list_empty(&graveyard)) {
1773 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1774 touch_mnt_namespace(mnt->mnt_ns);
1775 umount_tree(mnt, 1, &umounts);
1776 }
5528f911 1777 spin_unlock(&vfsmount_lock);
bcc5c7d2
AV
1778 up_write(&namespace_sem);
1779
1780 release_mounts(&umounts);
5528f911
TM
1781}
1782
1783EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1784
1785/*
1786 * Ripoff of 'select_parent()'
1787 *
1788 * search the list of submounts for a given mountpoint, and move any
1789 * shrinkable submounts to the 'graveyard' list.
1790 */
1791static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1792{
1793 struct vfsmount *this_parent = parent;
1794 struct list_head *next;
1795 int found = 0;
1796
1797repeat:
1798 next = this_parent->mnt_mounts.next;
1799resume:
1800 while (next != &this_parent->mnt_mounts) {
1801 struct list_head *tmp = next;
1802 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1803
1804 next = tmp->next;
1805 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1da177e4 1806 continue;
5528f911
TM
1807 /*
1808 * Descend a level if the d_mounts list is non-empty.
1809 */
1810 if (!list_empty(&mnt->mnt_mounts)) {
1811 this_parent = mnt;
1812 goto repeat;
1813 }
1da177e4 1814
5528f911 1815 if (!propagate_mount_busy(mnt, 1)) {
5528f911
TM
1816 list_move_tail(&mnt->mnt_expire, graveyard);
1817 found++;
1818 }
1da177e4 1819 }
5528f911
TM
1820 /*
1821 * All done at this level ... ascend and resume the search
1822 */
1823 if (this_parent != parent) {
1824 next = this_parent->mnt_child.next;
1825 this_parent = this_parent->mnt_parent;
1826 goto resume;
1827 }
1828 return found;
1829}
1830
1831/*
1832 * process a list of expirable mountpoints with the intent of discarding any
1833 * submounts of a specific parent mountpoint
1834 */
c35038be 1835static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
5528f911
TM
1836{
1837 LIST_HEAD(graveyard);
c35038be 1838 struct vfsmount *m;
5528f911 1839
5528f911 1840 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 1841 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 1842 while (!list_empty(&graveyard)) {
c35038be 1843 m = list_first_entry(&graveyard, struct vfsmount,
bcc5c7d2 1844 mnt_expire);
afef80b3
EB
1845 touch_mnt_namespace(m->mnt_ns);
1846 umount_tree(m, 1, umounts);
bcc5c7d2
AV
1847 }
1848 }
1da177e4
LT
1849}
1850
1da177e4
LT
1851/*
1852 * Some copy_from_user() implementations do not return the exact number of
1853 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1854 * Note that this function differs from copy_from_user() in that it will oops
1855 * on bad values of `to', rather than returning a short copy.
1856 */
b58fed8b
RP
1857static long exact_copy_from_user(void *to, const void __user * from,
1858 unsigned long n)
1da177e4
LT
1859{
1860 char *t = to;
1861 const char __user *f = from;
1862 char c;
1863
1864 if (!access_ok(VERIFY_READ, from, n))
1865 return n;
1866
1867 while (n) {
1868 if (__get_user(c, f)) {
1869 memset(t, 0, n);
1870 break;
1871 }
1872 *t++ = c;
1873 f++;
1874 n--;
1875 }
1876 return n;
1877}
1878
b58fed8b 1879int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
1880{
1881 int i;
1882 unsigned long page;
1883 unsigned long size;
b58fed8b 1884
1da177e4
LT
1885 *where = 0;
1886 if (!data)
1887 return 0;
1888
1889 if (!(page = __get_free_page(GFP_KERNEL)))
1890 return -ENOMEM;
1891
1892 /* We only care that *some* data at the address the user
1893 * gave us is valid. Just in case, we'll zero
1894 * the remainder of the page.
1895 */
1896 /* copy_from_user cannot cross TASK_SIZE ! */
1897 size = TASK_SIZE - (unsigned long)data;
1898 if (size > PAGE_SIZE)
1899 size = PAGE_SIZE;
1900
1901 i = size - exact_copy_from_user((void *)page, data, size);
1902 if (!i) {
b58fed8b 1903 free_page(page);
1da177e4
LT
1904 return -EFAULT;
1905 }
1906 if (i != PAGE_SIZE)
1907 memset((char *)page + i, 0, PAGE_SIZE - i);
1908 *where = page;
1909 return 0;
1910}
1911
eca6f534
VN
1912int copy_mount_string(const void __user *data, char **where)
1913{
1914 char *tmp;
1915
1916 if (!data) {
1917 *where = NULL;
1918 return 0;
1919 }
1920
1921 tmp = strndup_user(data, PAGE_SIZE);
1922 if (IS_ERR(tmp))
1923 return PTR_ERR(tmp);
1924
1925 *where = tmp;
1926 return 0;
1927}
1928
1da177e4
LT
1929/*
1930 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1931 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1932 *
1933 * data is a (void *) that can point to any structure up to
1934 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1935 * information (or be NULL).
1936 *
1937 * Pre-0.97 versions of mount() didn't have a flags word.
1938 * When the flags word was introduced its top half was required
1939 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1940 * Therefore, if this magic number is present, it carries no information
1941 * and must be discarded.
1942 */
b58fed8b 1943long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
1944 unsigned long flags, void *data_page)
1945{
2d92ab3c 1946 struct path path;
1da177e4
LT
1947 int retval = 0;
1948 int mnt_flags = 0;
1949
1950 /* Discard magic */
1951 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1952 flags &= ~MS_MGC_MSK;
1953
1954 /* Basic sanity checks */
1955
1956 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1957 return -EINVAL;
1da177e4
LT
1958
1959 if (data_page)
1960 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1961
a27ab9f2
TH
1962 /* ... and get the mountpoint */
1963 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
1964 if (retval)
1965 return retval;
1966
1967 retval = security_sb_mount(dev_name, &path,
1968 type_page, flags, data_page);
1969 if (retval)
1970 goto dput_out;
1971
613cbe3d
AK
1972 /* Default to relatime unless overriden */
1973 if (!(flags & MS_NOATIME))
1974 mnt_flags |= MNT_RELATIME;
0a1c01c9 1975
1da177e4
LT
1976 /* Separate the per-mountpoint flags */
1977 if (flags & MS_NOSUID)
1978 mnt_flags |= MNT_NOSUID;
1979 if (flags & MS_NODEV)
1980 mnt_flags |= MNT_NODEV;
1981 if (flags & MS_NOEXEC)
1982 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
1983 if (flags & MS_NOATIME)
1984 mnt_flags |= MNT_NOATIME;
1985 if (flags & MS_NODIRATIME)
1986 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
1987 if (flags & MS_STRICTATIME)
1988 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
1989 if (flags & MS_RDONLY)
1990 mnt_flags |= MNT_READONLY;
fc33a7bb
CH
1991
1992 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
d0adde57
MG
1993 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
1994 MS_STRICTATIME);
1da177e4 1995
1da177e4 1996 if (flags & MS_REMOUNT)
2d92ab3c 1997 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
1998 data_page);
1999 else if (flags & MS_BIND)
2d92ab3c 2000 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2001 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2002 retval = do_change_type(&path, flags);
1da177e4 2003 else if (flags & MS_MOVE)
2d92ab3c 2004 retval = do_move_mount(&path, dev_name);
1da177e4 2005 else
2d92ab3c 2006 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2007 dev_name, data_page);
2008dput_out:
2d92ab3c 2009 path_put(&path);
1da177e4
LT
2010 return retval;
2011}
2012
cf8d2c11
TM
2013static struct mnt_namespace *alloc_mnt_ns(void)
2014{
2015 struct mnt_namespace *new_ns;
2016
2017 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2018 if (!new_ns)
2019 return ERR_PTR(-ENOMEM);
2020 atomic_set(&new_ns->count, 1);
2021 new_ns->root = NULL;
2022 INIT_LIST_HEAD(&new_ns->list);
2023 init_waitqueue_head(&new_ns->poll);
2024 new_ns->event = 0;
2025 return new_ns;
2026}
2027
741a2951
JD
2028/*
2029 * Allocate a new namespace structure and populate it with contents
2030 * copied from the namespace of the passed in task structure.
2031 */
e3222c4e 2032static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 2033 struct fs_struct *fs)
1da177e4 2034{
6b3286ed 2035 struct mnt_namespace *new_ns;
7f2da1e7 2036 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1da177e4
LT
2037 struct vfsmount *p, *q;
2038
cf8d2c11
TM
2039 new_ns = alloc_mnt_ns();
2040 if (IS_ERR(new_ns))
2041 return new_ns;
1da177e4 2042
390c6843 2043 down_write(&namespace_sem);
1da177e4 2044 /* First pass: copy the tree topology */
6b3286ed 2045 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
9676f0c6 2046 CL_COPY_ALL | CL_EXPIRE);
1da177e4 2047 if (!new_ns->root) {
390c6843 2048 up_write(&namespace_sem);
1da177e4 2049 kfree(new_ns);
5cc4a034 2050 return ERR_PTR(-ENOMEM);
1da177e4
LT
2051 }
2052 spin_lock(&vfsmount_lock);
2053 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2054 spin_unlock(&vfsmount_lock);
2055
2056 /*
2057 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2058 * as belonging to new namespace. We have already acquired a private
2059 * fs_struct, so tsk->fs->lock is not needed.
2060 */
6b3286ed 2061 p = mnt_ns->root;
1da177e4
LT
2062 q = new_ns->root;
2063 while (p) {
6b3286ed 2064 q->mnt_ns = new_ns;
1da177e4 2065 if (fs) {
6ac08c39 2066 if (p == fs->root.mnt) {
1da177e4 2067 rootmnt = p;
6ac08c39 2068 fs->root.mnt = mntget(q);
1da177e4 2069 }
6ac08c39 2070 if (p == fs->pwd.mnt) {
1da177e4 2071 pwdmnt = p;
6ac08c39 2072 fs->pwd.mnt = mntget(q);
1da177e4 2073 }
1da177e4 2074 }
6b3286ed 2075 p = next_mnt(p, mnt_ns->root);
1da177e4
LT
2076 q = next_mnt(q, new_ns->root);
2077 }
390c6843 2078 up_write(&namespace_sem);
1da177e4 2079
1da177e4
LT
2080 if (rootmnt)
2081 mntput(rootmnt);
2082 if (pwdmnt)
2083 mntput(pwdmnt);
1da177e4 2084
741a2951
JD
2085 return new_ns;
2086}
2087
213dd266 2088struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2089 struct fs_struct *new_fs)
741a2951 2090{
6b3286ed 2091 struct mnt_namespace *new_ns;
741a2951 2092
e3222c4e 2093 BUG_ON(!ns);
6b3286ed 2094 get_mnt_ns(ns);
741a2951
JD
2095
2096 if (!(flags & CLONE_NEWNS))
e3222c4e 2097 return ns;
741a2951 2098
e3222c4e 2099 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2100
6b3286ed 2101 put_mnt_ns(ns);
e3222c4e 2102 return new_ns;
1da177e4
LT
2103}
2104
cf8d2c11
TM
2105/**
2106 * create_mnt_ns - creates a private namespace and adds a root filesystem
2107 * @mnt: pointer to the new root filesystem mountpoint
2108 */
a2770d86 2109struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
cf8d2c11
TM
2110{
2111 struct mnt_namespace *new_ns;
2112
2113 new_ns = alloc_mnt_ns();
2114 if (!IS_ERR(new_ns)) {
2115 mnt->mnt_ns = new_ns;
2116 new_ns->root = mnt;
2117 list_add(&new_ns->list, &new_ns->root->mnt_list);
2118 }
2119 return new_ns;
2120}
a2770d86 2121EXPORT_SYMBOL(create_mnt_ns);
cf8d2c11 2122
bdc480e3
HC
2123SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2124 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2125{
eca6f534
VN
2126 int ret;
2127 char *kernel_type;
2128 char *kernel_dir;
2129 char *kernel_dev;
1da177e4 2130 unsigned long data_page;
1da177e4 2131
eca6f534
VN
2132 ret = copy_mount_string(type, &kernel_type);
2133 if (ret < 0)
2134 goto out_type;
1da177e4 2135
eca6f534
VN
2136 kernel_dir = getname(dir_name);
2137 if (IS_ERR(kernel_dir)) {
2138 ret = PTR_ERR(kernel_dir);
2139 goto out_dir;
2140 }
1da177e4 2141
eca6f534
VN
2142 ret = copy_mount_string(dev_name, &kernel_dev);
2143 if (ret < 0)
2144 goto out_dev;
1da177e4 2145
eca6f534
VN
2146 ret = copy_mount_options(data, &data_page);
2147 if (ret < 0)
2148 goto out_data;
1da177e4 2149
eca6f534
VN
2150 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2151 (void *) data_page);
1da177e4 2152
eca6f534
VN
2153 free_page(data_page);
2154out_data:
2155 kfree(kernel_dev);
2156out_dev:
2157 putname(kernel_dir);
2158out_dir:
2159 kfree(kernel_type);
2160out_type:
2161 return ret;
1da177e4
LT
2162}
2163
1da177e4
LT
2164/*
2165 * pivot_root Semantics:
2166 * Moves the root file system of the current process to the directory put_old,
2167 * makes new_root as the new root file system of the current process, and sets
2168 * root/cwd of all processes which had them on the current root to new_root.
2169 *
2170 * Restrictions:
2171 * The new_root and put_old must be directories, and must not be on the
2172 * same file system as the current process root. The put_old must be
2173 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2174 * pointed to by put_old must yield the same directory as new_root. No other
2175 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2176 *
4a0d11fa
NB
2177 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2178 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2179 * in this situation.
2180 *
1da177e4
LT
2181 * Notes:
2182 * - we don't move root/cwd if they are not at the root (reason: if something
2183 * cared enough to change them, it's probably wrong to force them elsewhere)
2184 * - it's okay to pick a root that isn't the root of a file system, e.g.
2185 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2186 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2187 * first.
2188 */
3480b257
HC
2189SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2190 const char __user *, put_old)
1da177e4
LT
2191{
2192 struct vfsmount *tmp;
2d8f3038 2193 struct path new, old, parent_path, root_parent, root;
1da177e4
LT
2194 int error;
2195
2196 if (!capable(CAP_SYS_ADMIN))
2197 return -EPERM;
2198
2d8f3038 2199 error = user_path_dir(new_root, &new);
1da177e4
LT
2200 if (error)
2201 goto out0;
2202 error = -EINVAL;
2d8f3038 2203 if (!check_mnt(new.mnt))
1da177e4
LT
2204 goto out1;
2205
2d8f3038 2206 error = user_path_dir(put_old, &old);
1da177e4
LT
2207 if (error)
2208 goto out1;
2209
2d8f3038 2210 error = security_sb_pivotroot(&old, &new);
1da177e4 2211 if (error) {
2d8f3038 2212 path_put(&old);
1da177e4
LT
2213 goto out1;
2214 }
2215
2216 read_lock(&current->fs->lock);
8c3ee42e 2217 root = current->fs->root;
6ac08c39 2218 path_get(&current->fs->root);
1da177e4 2219 read_unlock(&current->fs->lock);
390c6843 2220 down_write(&namespace_sem);
2d8f3038 2221 mutex_lock(&old.dentry->d_inode->i_mutex);
1da177e4 2222 error = -EINVAL;
2d8f3038
AV
2223 if (IS_MNT_SHARED(old.mnt) ||
2224 IS_MNT_SHARED(new.mnt->mnt_parent) ||
8c3ee42e 2225 IS_MNT_SHARED(root.mnt->mnt_parent))
21444403 2226 goto out2;
8c3ee42e 2227 if (!check_mnt(root.mnt))
1da177e4
LT
2228 goto out2;
2229 error = -ENOENT;
2d8f3038 2230 if (IS_DEADDIR(new.dentry->d_inode))
1da177e4 2231 goto out2;
f3da392e 2232 if (d_unlinked(new.dentry))
1da177e4 2233 goto out2;
f3da392e 2234 if (d_unlinked(old.dentry))
1da177e4
LT
2235 goto out2;
2236 error = -EBUSY;
2d8f3038
AV
2237 if (new.mnt == root.mnt ||
2238 old.mnt == root.mnt)
1da177e4
LT
2239 goto out2; /* loop, on the same file system */
2240 error = -EINVAL;
8c3ee42e 2241 if (root.mnt->mnt_root != root.dentry)
1da177e4 2242 goto out2; /* not a mountpoint */
8c3ee42e 2243 if (root.mnt->mnt_parent == root.mnt)
0bb6fcc1 2244 goto out2; /* not attached */
2d8f3038 2245 if (new.mnt->mnt_root != new.dentry)
1da177e4 2246 goto out2; /* not a mountpoint */
2d8f3038 2247 if (new.mnt->mnt_parent == new.mnt)
0bb6fcc1 2248 goto out2; /* not attached */
4ac91378 2249 /* make sure we can reach put_old from new_root */
2d8f3038 2250 tmp = old.mnt;
1da177e4 2251 spin_lock(&vfsmount_lock);
2d8f3038 2252 if (tmp != new.mnt) {
1da177e4
LT
2253 for (;;) {
2254 if (tmp->mnt_parent == tmp)
2255 goto out3; /* already mounted on put_old */
2d8f3038 2256 if (tmp->mnt_parent == new.mnt)
1da177e4
LT
2257 break;
2258 tmp = tmp->mnt_parent;
2259 }
2d8f3038 2260 if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
1da177e4 2261 goto out3;
2d8f3038 2262 } else if (!is_subdir(old.dentry, new.dentry))
1da177e4 2263 goto out3;
2d8f3038 2264 detach_mnt(new.mnt, &parent_path);
8c3ee42e 2265 detach_mnt(root.mnt, &root_parent);
4ac91378 2266 /* mount old root on put_old */
2d8f3038 2267 attach_mnt(root.mnt, &old);
4ac91378 2268 /* mount new_root on / */
2d8f3038 2269 attach_mnt(new.mnt, &root_parent);
6b3286ed 2270 touch_mnt_namespace(current->nsproxy->mnt_ns);
1da177e4 2271 spin_unlock(&vfsmount_lock);
2d8f3038
AV
2272 chroot_fs_refs(&root, &new);
2273 security_sb_post_pivotroot(&root, &new);
1da177e4 2274 error = 0;
1a390689
AV
2275 path_put(&root_parent);
2276 path_put(&parent_path);
1da177e4 2277out2:
2d8f3038 2278 mutex_unlock(&old.dentry->d_inode->i_mutex);
390c6843 2279 up_write(&namespace_sem);
8c3ee42e 2280 path_put(&root);
2d8f3038 2281 path_put(&old);
1da177e4 2282out1:
2d8f3038 2283 path_put(&new);
1da177e4 2284out0:
1da177e4
LT
2285 return error;
2286out3:
2287 spin_unlock(&vfsmount_lock);
2288 goto out2;
2289}
2290
2291static void __init init_mount_tree(void)
2292{
2293 struct vfsmount *mnt;
6b3286ed 2294 struct mnt_namespace *ns;
ac748a09 2295 struct path root;
1da177e4
LT
2296
2297 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2298 if (IS_ERR(mnt))
2299 panic("Can't create rootfs");
3b22edc5
TM
2300 ns = create_mnt_ns(mnt);
2301 if (IS_ERR(ns))
1da177e4 2302 panic("Can't allocate initial namespace");
6b3286ed
KK
2303
2304 init_task.nsproxy->mnt_ns = ns;
2305 get_mnt_ns(ns);
2306
ac748a09
JB
2307 root.mnt = ns->root;
2308 root.dentry = ns->root->mnt_root;
2309
2310 set_fs_pwd(current->fs, &root);
2311 set_fs_root(current->fs, &root);
1da177e4
LT
2312}
2313
74bf17cf 2314void __init mnt_init(void)
1da177e4 2315{
13f14b4d 2316 unsigned u;
15a67dd8 2317 int err;
1da177e4 2318
390c6843
RP
2319 init_rwsem(&namespace_sem);
2320
1da177e4 2321 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
20c2df83 2322 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2323
b58fed8b 2324 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2325
2326 if (!mount_hashtable)
2327 panic("Failed to allocate mount hash table\n");
2328
13f14b4d
ED
2329 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2330
2331 for (u = 0; u < HASH_SIZE; u++)
2332 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2333
15a67dd8
RD
2334 err = sysfs_init();
2335 if (err)
2336 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2337 __func__, err);
00d26666
GKH
2338 fs_kobj = kobject_create_and_add("fs", NULL);
2339 if (!fs_kobj)
8e24eea7 2340 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2341 init_rootfs();
2342 init_mount_tree();
2343}
2344
616511d0 2345void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2346{
616511d0 2347 struct vfsmount *root;
70fbcdf4 2348 LIST_HEAD(umount_list);
616511d0
TM
2349
2350 if (!atomic_dec_and_lock(&ns->count, &vfsmount_lock))
2351 return;
2352 root = ns->root;
6b3286ed 2353 ns->root = NULL;
1ce88cf4 2354 spin_unlock(&vfsmount_lock);
390c6843 2355 down_write(&namespace_sem);
1da177e4 2356 spin_lock(&vfsmount_lock);
a05964f3 2357 umount_tree(root, 0, &umount_list);
1da177e4 2358 spin_unlock(&vfsmount_lock);
390c6843 2359 up_write(&namespace_sem);
70fbcdf4 2360 release_mounts(&umount_list);
6b3286ed 2361 kfree(ns);
1da177e4 2362}
cf8d2c11 2363EXPORT_SYMBOL(put_mnt_ns);