]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/namespace.c
Don't mess with generic_permission() under ->d_lock in hpfs
[net-next-2.6.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4
LT
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
14#include <linux/smp_lock.h>
15#include <linux/init.h>
15a67dd8 16#include <linux/kernel.h>
1da177e4 17#include <linux/acct.h>
16f7e0fe 18#include <linux/capability.h>
3d733633 19#include <linux/cpumask.h>
1da177e4 20#include <linux/module.h>
f20a9ead 21#include <linux/sysfs.h>
1da177e4 22#include <linux/seq_file.h>
6b3286ed 23#include <linux/mnt_namespace.h>
1da177e4 24#include <linux/namei.h>
b43f3cbd 25#include <linux/nsproxy.h>
1da177e4
LT
26#include <linux/security.h>
27#include <linux/mount.h>
07f3f05c 28#include <linux/ramfs.h>
13f14b4d 29#include <linux/log2.h>
73cd49ec 30#include <linux/idr.h>
5ad4e53b 31#include <linux/fs_struct.h>
1da177e4
LT
32#include <asm/uaccess.h>
33#include <asm/unistd.h>
07b20889 34#include "pnode.h"
948730b0 35#include "internal.h"
1da177e4 36
13f14b4d
ED
37#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
38#define HASH_SIZE (1UL << HASH_SHIFT)
39
1da177e4 40/* spinlock for vfsmount related operations, inplace of dcache_lock */
5addc5dd
AV
41__cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
42
43static int event;
73cd49ec 44static DEFINE_IDA(mnt_id_ida);
719f5d7f 45static DEFINE_IDA(mnt_group_ida);
f21f6220
AV
46static int mnt_id_start = 0;
47static int mnt_group_start = 1;
1da177e4 48
fa3536cc 49static struct list_head *mount_hashtable __read_mostly;
e18b890b 50static struct kmem_cache *mnt_cache __read_mostly;
390c6843 51static struct rw_semaphore namespace_sem;
1da177e4 52
f87fd4c2 53/* /sys/fs */
00d26666
GKH
54struct kobject *fs_kobj;
55EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 56
1da177e4
LT
57static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
58{
b58fed8b
RP
59 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
60 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
61 tmp = tmp + (tmp >> HASH_SHIFT);
62 return tmp & (HASH_SIZE - 1);
1da177e4
LT
63}
64
3d733633
DH
65#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
66
73cd49ec
MS
67/* allocation is serialized by namespace_sem */
68static int mnt_alloc_id(struct vfsmount *mnt)
69{
70 int res;
71
72retry:
73 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
74 spin_lock(&vfsmount_lock);
f21f6220
AV
75 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
76 if (!res)
77 mnt_id_start = mnt->mnt_id + 1;
73cd49ec
MS
78 spin_unlock(&vfsmount_lock);
79 if (res == -EAGAIN)
80 goto retry;
81
82 return res;
83}
84
85static void mnt_free_id(struct vfsmount *mnt)
86{
f21f6220 87 int id = mnt->mnt_id;
73cd49ec 88 spin_lock(&vfsmount_lock);
f21f6220
AV
89 ida_remove(&mnt_id_ida, id);
90 if (mnt_id_start > id)
91 mnt_id_start = id;
73cd49ec
MS
92 spin_unlock(&vfsmount_lock);
93}
94
719f5d7f
MS
95/*
96 * Allocate a new peer group ID
97 *
98 * mnt_group_ida is protected by namespace_sem
99 */
100static int mnt_alloc_group_id(struct vfsmount *mnt)
101{
f21f6220
AV
102 int res;
103
719f5d7f
MS
104 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
105 return -ENOMEM;
106
f21f6220
AV
107 res = ida_get_new_above(&mnt_group_ida,
108 mnt_group_start,
109 &mnt->mnt_group_id);
110 if (!res)
111 mnt_group_start = mnt->mnt_group_id + 1;
112
113 return res;
719f5d7f
MS
114}
115
116/*
117 * Release a peer group ID
118 */
119void mnt_release_group_id(struct vfsmount *mnt)
120{
f21f6220
AV
121 int id = mnt->mnt_group_id;
122 ida_remove(&mnt_group_ida, id);
123 if (mnt_group_start > id)
124 mnt_group_start = id;
719f5d7f
MS
125 mnt->mnt_group_id = 0;
126}
127
1da177e4
LT
128struct vfsmount *alloc_vfsmnt(const char *name)
129{
c3762229 130 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
1da177e4 131 if (mnt) {
73cd49ec
MS
132 int err;
133
134 err = mnt_alloc_id(mnt);
88b38782
LZ
135 if (err)
136 goto out_free_cache;
137
138 if (name) {
139 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
140 if (!mnt->mnt_devname)
141 goto out_free_id;
73cd49ec
MS
142 }
143
b58fed8b 144 atomic_set(&mnt->mnt_count, 1);
1da177e4
LT
145 INIT_LIST_HEAD(&mnt->mnt_hash);
146 INIT_LIST_HEAD(&mnt->mnt_child);
147 INIT_LIST_HEAD(&mnt->mnt_mounts);
148 INIT_LIST_HEAD(&mnt->mnt_list);
55e700b9 149 INIT_LIST_HEAD(&mnt->mnt_expire);
03e06e68 150 INIT_LIST_HEAD(&mnt->mnt_share);
a58b0eb8
RP
151 INIT_LIST_HEAD(&mnt->mnt_slave_list);
152 INIT_LIST_HEAD(&mnt->mnt_slave);
d3ef3d73 153#ifdef CONFIG_SMP
154 mnt->mnt_writers = alloc_percpu(int);
155 if (!mnt->mnt_writers)
156 goto out_free_devname;
157#else
158 mnt->mnt_writers = 0;
159#endif
1da177e4
LT
160 }
161 return mnt;
88b38782 162
d3ef3d73 163#ifdef CONFIG_SMP
164out_free_devname:
165 kfree(mnt->mnt_devname);
166#endif
88b38782
LZ
167out_free_id:
168 mnt_free_id(mnt);
169out_free_cache:
170 kmem_cache_free(mnt_cache, mnt);
171 return NULL;
1da177e4
LT
172}
173
3d733633
DH
174/*
175 * Most r/o checks on a fs are for operations that take
176 * discrete amounts of time, like a write() or unlink().
177 * We must keep track of when those operations start
178 * (for permission checks) and when they end, so that
179 * we can determine when writes are able to occur to
180 * a filesystem.
181 */
182/*
183 * __mnt_is_readonly: check whether a mount is read-only
184 * @mnt: the mount to check for its write status
185 *
186 * This shouldn't be used directly ouside of the VFS.
187 * It does not guarantee that the filesystem will stay
188 * r/w, just that it is right *now*. This can not and
189 * should not be used in place of IS_RDONLY(inode).
190 * mnt_want/drop_write() will _keep_ the filesystem
191 * r/w.
192 */
193int __mnt_is_readonly(struct vfsmount *mnt)
194{
2e4b7fcd
DH
195 if (mnt->mnt_flags & MNT_READONLY)
196 return 1;
197 if (mnt->mnt_sb->s_flags & MS_RDONLY)
198 return 1;
199 return 0;
3d733633
DH
200}
201EXPORT_SYMBOL_GPL(__mnt_is_readonly);
202
d3ef3d73 203static inline void inc_mnt_writers(struct vfsmount *mnt)
204{
205#ifdef CONFIG_SMP
206 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))++;
207#else
208 mnt->mnt_writers++;
209#endif
210}
3d733633 211
d3ef3d73 212static inline void dec_mnt_writers(struct vfsmount *mnt)
3d733633 213{
d3ef3d73 214#ifdef CONFIG_SMP
215 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))--;
216#else
217 mnt->mnt_writers--;
218#endif
3d733633 219}
3d733633 220
d3ef3d73 221static unsigned int count_mnt_writers(struct vfsmount *mnt)
3d733633 222{
d3ef3d73 223#ifdef CONFIG_SMP
224 unsigned int count = 0;
3d733633 225 int cpu;
3d733633
DH
226
227 for_each_possible_cpu(cpu) {
d3ef3d73 228 count += *per_cpu_ptr(mnt->mnt_writers, cpu);
3d733633 229 }
3d733633 230
d3ef3d73 231 return count;
232#else
233 return mnt->mnt_writers;
234#endif
3d733633
DH
235}
236
8366025e
DH
237/*
238 * Most r/o checks on a fs are for operations that take
239 * discrete amounts of time, like a write() or unlink().
240 * We must keep track of when those operations start
241 * (for permission checks) and when they end, so that
242 * we can determine when writes are able to occur to
243 * a filesystem.
244 */
245/**
246 * mnt_want_write - get write access to a mount
247 * @mnt: the mount on which to take a write
248 *
249 * This tells the low-level filesystem that a write is
250 * about to be performed to it, and makes sure that
251 * writes are allowed before returning success. When
252 * the write operation is finished, mnt_drop_write()
253 * must be called. This is effectively a refcount.
254 */
255int mnt_want_write(struct vfsmount *mnt)
256{
3d733633 257 int ret = 0;
3d733633 258
d3ef3d73 259 preempt_disable();
260 inc_mnt_writers(mnt);
261 /*
262 * The store to inc_mnt_writers must be visible before we pass
263 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
264 * incremented count after it has set MNT_WRITE_HOLD.
265 */
266 smp_mb();
267 while (mnt->mnt_flags & MNT_WRITE_HOLD)
268 cpu_relax();
269 /*
270 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
271 * be set to match its requirements. So we must not load that until
272 * MNT_WRITE_HOLD is cleared.
273 */
274 smp_rmb();
3d733633 275 if (__mnt_is_readonly(mnt)) {
d3ef3d73 276 dec_mnt_writers(mnt);
3d733633
DH
277 ret = -EROFS;
278 goto out;
279 }
3d733633 280out:
d3ef3d73 281 preempt_enable();
3d733633 282 return ret;
8366025e
DH
283}
284EXPORT_SYMBOL_GPL(mnt_want_write);
285
96029c4e 286/**
287 * mnt_clone_write - get write access to a mount
288 * @mnt: the mount on which to take a write
289 *
290 * This is effectively like mnt_want_write, except
291 * it must only be used to take an extra write reference
292 * on a mountpoint that we already know has a write reference
293 * on it. This allows some optimisation.
294 *
295 * After finished, mnt_drop_write must be called as usual to
296 * drop the reference.
297 */
298int mnt_clone_write(struct vfsmount *mnt)
299{
300 /* superblock may be r/o */
301 if (__mnt_is_readonly(mnt))
302 return -EROFS;
303 preempt_disable();
304 inc_mnt_writers(mnt);
305 preempt_enable();
306 return 0;
307}
308EXPORT_SYMBOL_GPL(mnt_clone_write);
309
310/**
311 * mnt_want_write_file - get write access to a file's mount
312 * @file: the file who's mount on which to take a write
313 *
314 * This is like mnt_want_write, but it takes a file and can
315 * do some optimisations if the file is open for write already
316 */
317int mnt_want_write_file(struct file *file)
318{
2d8dd38a
OH
319 struct inode *inode = file->f_dentry->d_inode;
320 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
96029c4e 321 return mnt_want_write(file->f_path.mnt);
322 else
323 return mnt_clone_write(file->f_path.mnt);
324}
325EXPORT_SYMBOL_GPL(mnt_want_write_file);
326
8366025e
DH
327/**
328 * mnt_drop_write - give up write access to a mount
329 * @mnt: the mount on which to give up write access
330 *
331 * Tells the low-level filesystem that we are done
332 * performing writes to it. Must be matched with
333 * mnt_want_write() call above.
334 */
335void mnt_drop_write(struct vfsmount *mnt)
336{
d3ef3d73 337 preempt_disable();
338 dec_mnt_writers(mnt);
339 preempt_enable();
8366025e
DH
340}
341EXPORT_SYMBOL_GPL(mnt_drop_write);
342
2e4b7fcd 343static int mnt_make_readonly(struct vfsmount *mnt)
8366025e 344{
3d733633
DH
345 int ret = 0;
346
d3ef3d73 347 spin_lock(&vfsmount_lock);
348 mnt->mnt_flags |= MNT_WRITE_HOLD;
3d733633 349 /*
d3ef3d73 350 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
351 * should be visible before we do.
3d733633 352 */
d3ef3d73 353 smp_mb();
354
3d733633 355 /*
d3ef3d73 356 * With writers on hold, if this value is zero, then there are
357 * definitely no active writers (although held writers may subsequently
358 * increment the count, they'll have to wait, and decrement it after
359 * seeing MNT_READONLY).
360 *
361 * It is OK to have counter incremented on one CPU and decremented on
362 * another: the sum will add up correctly. The danger would be when we
363 * sum up each counter, if we read a counter before it is incremented,
364 * but then read another CPU's count which it has been subsequently
365 * decremented from -- we would see more decrements than we should.
366 * MNT_WRITE_HOLD protects against this scenario, because
367 * mnt_want_write first increments count, then smp_mb, then spins on
368 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
369 * we're counting up here.
3d733633 370 */
d3ef3d73 371 if (count_mnt_writers(mnt) > 0)
372 ret = -EBUSY;
373 else
2e4b7fcd 374 mnt->mnt_flags |= MNT_READONLY;
d3ef3d73 375 /*
376 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
377 * that become unheld will see MNT_READONLY.
378 */
379 smp_wmb();
380 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
2e4b7fcd 381 spin_unlock(&vfsmount_lock);
3d733633 382 return ret;
8366025e 383}
8366025e 384
2e4b7fcd
DH
385static void __mnt_unmake_readonly(struct vfsmount *mnt)
386{
387 spin_lock(&vfsmount_lock);
388 mnt->mnt_flags &= ~MNT_READONLY;
389 spin_unlock(&vfsmount_lock);
390}
391
a3ec947c 392void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
454e2398
DH
393{
394 mnt->mnt_sb = sb;
395 mnt->mnt_root = dget(sb->s_root);
454e2398
DH
396}
397
398EXPORT_SYMBOL(simple_set_mnt);
399
1da177e4
LT
400void free_vfsmnt(struct vfsmount *mnt)
401{
402 kfree(mnt->mnt_devname);
73cd49ec 403 mnt_free_id(mnt);
d3ef3d73 404#ifdef CONFIG_SMP
405 free_percpu(mnt->mnt_writers);
406#endif
1da177e4
LT
407 kmem_cache_free(mnt_cache, mnt);
408}
409
410/*
a05964f3
RP
411 * find the first or last mount at @dentry on vfsmount @mnt depending on
412 * @dir. If @dir is set return the first mount else return the last mount.
1da177e4 413 */
a05964f3
RP
414struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
415 int dir)
1da177e4 416{
b58fed8b
RP
417 struct list_head *head = mount_hashtable + hash(mnt, dentry);
418 struct list_head *tmp = head;
1da177e4
LT
419 struct vfsmount *p, *found = NULL;
420
1da177e4 421 for (;;) {
a05964f3 422 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
423 p = NULL;
424 if (tmp == head)
425 break;
426 p = list_entry(tmp, struct vfsmount, mnt_hash);
427 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
a05964f3 428 found = p;
1da177e4
LT
429 break;
430 }
431 }
1da177e4
LT
432 return found;
433}
434
a05964f3
RP
435/*
436 * lookup_mnt increments the ref count before returning
437 * the vfsmount struct.
438 */
1c755af4 439struct vfsmount *lookup_mnt(struct path *path)
a05964f3
RP
440{
441 struct vfsmount *child_mnt;
442 spin_lock(&vfsmount_lock);
1c755af4 443 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
a05964f3
RP
444 mntget(child_mnt);
445 spin_unlock(&vfsmount_lock);
446 return child_mnt;
447}
448
1da177e4
LT
449static inline int check_mnt(struct vfsmount *mnt)
450{
6b3286ed 451 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
452}
453
6b3286ed 454static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
455{
456 if (ns) {
457 ns->event = ++event;
458 wake_up_interruptible(&ns->poll);
459 }
460}
461
6b3286ed 462static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
463{
464 if (ns && ns->event != event) {
465 ns->event = event;
466 wake_up_interruptible(&ns->poll);
467 }
468}
469
1a390689 470static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
1da177e4 471{
1a390689
AV
472 old_path->dentry = mnt->mnt_mountpoint;
473 old_path->mnt = mnt->mnt_parent;
1da177e4
LT
474 mnt->mnt_parent = mnt;
475 mnt->mnt_mountpoint = mnt->mnt_root;
476 list_del_init(&mnt->mnt_child);
477 list_del_init(&mnt->mnt_hash);
1a390689 478 old_path->dentry->d_mounted--;
1da177e4
LT
479}
480
b90fa9ae
RP
481void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
482 struct vfsmount *child_mnt)
483{
484 child_mnt->mnt_parent = mntget(mnt);
485 child_mnt->mnt_mountpoint = dget(dentry);
486 dentry->d_mounted++;
487}
488
1a390689 489static void attach_mnt(struct vfsmount *mnt, struct path *path)
1da177e4 490{
1a390689 491 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
b90fa9ae 492 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689
AV
493 hash(path->mnt, path->dentry));
494 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
b90fa9ae
RP
495}
496
497/*
498 * the caller must hold vfsmount_lock
499 */
500static void commit_tree(struct vfsmount *mnt)
501{
502 struct vfsmount *parent = mnt->mnt_parent;
503 struct vfsmount *m;
504 LIST_HEAD(head);
6b3286ed 505 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae
RP
506
507 BUG_ON(parent == mnt);
508
509 list_add_tail(&head, &mnt->mnt_list);
510 list_for_each_entry(m, &head, mnt_list)
6b3286ed 511 m->mnt_ns = n;
b90fa9ae
RP
512 list_splice(&head, n->list.prev);
513
514 list_add_tail(&mnt->mnt_hash, mount_hashtable +
515 hash(parent, mnt->mnt_mountpoint));
516 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 517 touch_mnt_namespace(n);
1da177e4
LT
518}
519
520static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
521{
522 struct list_head *next = p->mnt_mounts.next;
523 if (next == &p->mnt_mounts) {
524 while (1) {
525 if (p == root)
526 return NULL;
527 next = p->mnt_child.next;
528 if (next != &p->mnt_parent->mnt_mounts)
529 break;
530 p = p->mnt_parent;
531 }
532 }
533 return list_entry(next, struct vfsmount, mnt_child);
534}
535
9676f0c6
RP
536static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
537{
538 struct list_head *prev = p->mnt_mounts.prev;
539 while (prev != &p->mnt_mounts) {
540 p = list_entry(prev, struct vfsmount, mnt_child);
541 prev = p->mnt_mounts.prev;
542 }
543 return p;
544}
545
36341f64
RP
546static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
547 int flag)
1da177e4
LT
548{
549 struct super_block *sb = old->mnt_sb;
550 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
551
552 if (mnt) {
719f5d7f
MS
553 if (flag & (CL_SLAVE | CL_PRIVATE))
554 mnt->mnt_group_id = 0; /* not a peer of original */
555 else
556 mnt->mnt_group_id = old->mnt_group_id;
557
558 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
559 int err = mnt_alloc_group_id(mnt);
560 if (err)
561 goto out_free;
562 }
563
1da177e4
LT
564 mnt->mnt_flags = old->mnt_flags;
565 atomic_inc(&sb->s_active);
566 mnt->mnt_sb = sb;
567 mnt->mnt_root = dget(root);
568 mnt->mnt_mountpoint = mnt->mnt_root;
569 mnt->mnt_parent = mnt;
b90fa9ae 570
5afe0022
RP
571 if (flag & CL_SLAVE) {
572 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
573 mnt->mnt_master = old;
574 CLEAR_MNT_SHARED(mnt);
8aec0809 575 } else if (!(flag & CL_PRIVATE)) {
796a6b52 576 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
5afe0022
RP
577 list_add(&mnt->mnt_share, &old->mnt_share);
578 if (IS_MNT_SLAVE(old))
579 list_add(&mnt->mnt_slave, &old->mnt_slave);
580 mnt->mnt_master = old->mnt_master;
581 }
b90fa9ae
RP
582 if (flag & CL_MAKE_SHARED)
583 set_mnt_shared(mnt);
1da177e4
LT
584
585 /* stick the duplicate mount on the same expiry list
586 * as the original if that was on one */
36341f64 587 if (flag & CL_EXPIRE) {
36341f64
RP
588 if (!list_empty(&old->mnt_expire))
589 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 590 }
1da177e4
LT
591 }
592 return mnt;
719f5d7f
MS
593
594 out_free:
595 free_vfsmnt(mnt);
596 return NULL;
1da177e4
LT
597}
598
7b7b1ace 599static inline void __mntput(struct vfsmount *mnt)
1da177e4
LT
600{
601 struct super_block *sb = mnt->mnt_sb;
3d733633
DH
602 /*
603 * This probably indicates that somebody messed
604 * up a mnt_want/drop_write() pair. If this
605 * happens, the filesystem was probably unable
606 * to make r/w->r/o transitions.
607 */
d3ef3d73 608 /*
609 * atomic_dec_and_lock() used to deal with ->mnt_count decrements
610 * provides barriers, so count_mnt_writers() below is safe. AV
611 */
612 WARN_ON(count_mnt_writers(mnt));
1da177e4
LT
613 dput(mnt->mnt_root);
614 free_vfsmnt(mnt);
615 deactivate_super(sb);
616}
617
7b7b1ace
AV
618void mntput_no_expire(struct vfsmount *mnt)
619{
620repeat:
621 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
622 if (likely(!mnt->mnt_pinned)) {
623 spin_unlock(&vfsmount_lock);
624 __mntput(mnt);
625 return;
626 }
627 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
628 mnt->mnt_pinned = 0;
629 spin_unlock(&vfsmount_lock);
630 acct_auto_close_mnt(mnt);
631 security_sb_umount_close(mnt);
632 goto repeat;
633 }
634}
635
636EXPORT_SYMBOL(mntput_no_expire);
637
638void mnt_pin(struct vfsmount *mnt)
639{
640 spin_lock(&vfsmount_lock);
641 mnt->mnt_pinned++;
642 spin_unlock(&vfsmount_lock);
643}
644
645EXPORT_SYMBOL(mnt_pin);
646
647void mnt_unpin(struct vfsmount *mnt)
648{
649 spin_lock(&vfsmount_lock);
650 if (mnt->mnt_pinned) {
651 atomic_inc(&mnt->mnt_count);
652 mnt->mnt_pinned--;
653 }
654 spin_unlock(&vfsmount_lock);
655}
656
657EXPORT_SYMBOL(mnt_unpin);
1da177e4 658
b3b304a2
MS
659static inline void mangle(struct seq_file *m, const char *s)
660{
661 seq_escape(m, s, " \t\n\\");
662}
663
664/*
665 * Simple .show_options callback for filesystems which don't want to
666 * implement more complex mount option showing.
667 *
668 * See also save_mount_options().
669 */
670int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
671{
2a32cebd
AV
672 const char *options;
673
674 rcu_read_lock();
675 options = rcu_dereference(mnt->mnt_sb->s_options);
b3b304a2
MS
676
677 if (options != NULL && options[0]) {
678 seq_putc(m, ',');
679 mangle(m, options);
680 }
2a32cebd 681 rcu_read_unlock();
b3b304a2
MS
682
683 return 0;
684}
685EXPORT_SYMBOL(generic_show_options);
686
687/*
688 * If filesystem uses generic_show_options(), this function should be
689 * called from the fill_super() callback.
690 *
691 * The .remount_fs callback usually needs to be handled in a special
692 * way, to make sure, that previous options are not overwritten if the
693 * remount fails.
694 *
695 * Also note, that if the filesystem's .remount_fs function doesn't
696 * reset all options to their default value, but changes only newly
697 * given options, then the displayed options will not reflect reality
698 * any more.
699 */
700void save_mount_options(struct super_block *sb, char *options)
701{
2a32cebd
AV
702 BUG_ON(sb->s_options);
703 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
704}
705EXPORT_SYMBOL(save_mount_options);
706
2a32cebd
AV
707void replace_mount_options(struct super_block *sb, char *options)
708{
709 char *old = sb->s_options;
710 rcu_assign_pointer(sb->s_options, options);
711 if (old) {
712 synchronize_rcu();
713 kfree(old);
714 }
715}
716EXPORT_SYMBOL(replace_mount_options);
717
a1a2c409 718#ifdef CONFIG_PROC_FS
1da177e4
LT
719/* iterator */
720static void *m_start(struct seq_file *m, loff_t *pos)
721{
a1a2c409 722 struct proc_mounts *p = m->private;
1da177e4 723
390c6843 724 down_read(&namespace_sem);
a1a2c409 725 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
726}
727
728static void *m_next(struct seq_file *m, void *v, loff_t *pos)
729{
a1a2c409 730 struct proc_mounts *p = m->private;
b0765fb8 731
a1a2c409 732 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
733}
734
735static void m_stop(struct seq_file *m, void *v)
736{
390c6843 737 up_read(&namespace_sem);
1da177e4
LT
738}
739
2d4d4864
RP
740struct proc_fs_info {
741 int flag;
742 const char *str;
743};
744
2069f457 745static int show_sb_opts(struct seq_file *m, struct super_block *sb)
1da177e4 746{
2d4d4864 747 static const struct proc_fs_info fs_info[] = {
1da177e4
LT
748 { MS_SYNCHRONOUS, ",sync" },
749 { MS_DIRSYNC, ",dirsync" },
750 { MS_MANDLOCK, ",mand" },
1da177e4
LT
751 { 0, NULL }
752 };
2d4d4864
RP
753 const struct proc_fs_info *fs_infop;
754
755 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
756 if (sb->s_flags & fs_infop->flag)
757 seq_puts(m, fs_infop->str);
758 }
2069f457
EP
759
760 return security_sb_show_options(m, sb);
2d4d4864
RP
761}
762
763static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
764{
765 static const struct proc_fs_info mnt_info[] = {
1da177e4
LT
766 { MNT_NOSUID, ",nosuid" },
767 { MNT_NODEV, ",nodev" },
768 { MNT_NOEXEC, ",noexec" },
fc33a7bb
CH
769 { MNT_NOATIME, ",noatime" },
770 { MNT_NODIRATIME, ",nodiratime" },
47ae32d6 771 { MNT_RELATIME, ",relatime" },
d0adde57 772 { MNT_STRICTATIME, ",strictatime" },
1da177e4
LT
773 { 0, NULL }
774 };
2d4d4864
RP
775 const struct proc_fs_info *fs_infop;
776
777 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
778 if (mnt->mnt_flags & fs_infop->flag)
779 seq_puts(m, fs_infop->str);
780 }
781}
782
783static void show_type(struct seq_file *m, struct super_block *sb)
784{
785 mangle(m, sb->s_type->name);
786 if (sb->s_subtype && sb->s_subtype[0]) {
787 seq_putc(m, '.');
788 mangle(m, sb->s_subtype);
789 }
790}
791
792static int show_vfsmnt(struct seq_file *m, void *v)
793{
794 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
795 int err = 0;
c32c2f63 796 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1da177e4
LT
797
798 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
799 seq_putc(m, ' ');
c32c2f63 800 seq_path(m, &mnt_path, " \t\n\\");
1da177e4 801 seq_putc(m, ' ');
2d4d4864 802 show_type(m, mnt->mnt_sb);
2e4b7fcd 803 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
2069f457
EP
804 err = show_sb_opts(m, mnt->mnt_sb);
805 if (err)
806 goto out;
2d4d4864 807 show_mnt_opts(m, mnt);
1da177e4
LT
808 if (mnt->mnt_sb->s_op->show_options)
809 err = mnt->mnt_sb->s_op->show_options(m, mnt);
810 seq_puts(m, " 0 0\n");
2069f457 811out:
1da177e4
LT
812 return err;
813}
814
a1a2c409 815const struct seq_operations mounts_op = {
1da177e4
LT
816 .start = m_start,
817 .next = m_next,
818 .stop = m_stop,
819 .show = show_vfsmnt
820};
821
2d4d4864
RP
822static int show_mountinfo(struct seq_file *m, void *v)
823{
824 struct proc_mounts *p = m->private;
825 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
826 struct super_block *sb = mnt->mnt_sb;
827 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
828 struct path root = p->root;
829 int err = 0;
830
831 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
832 MAJOR(sb->s_dev), MINOR(sb->s_dev));
833 seq_dentry(m, mnt->mnt_root, " \t\n\\");
834 seq_putc(m, ' ');
835 seq_path_root(m, &mnt_path, &root, " \t\n\\");
836 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
837 /*
838 * Mountpoint is outside root, discard that one. Ugly,
839 * but less so than trying to do that in iterator in a
840 * race-free way (due to renames).
841 */
842 return SEQ_SKIP;
843 }
844 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
845 show_mnt_opts(m, mnt);
846
847 /* Tagged fields ("foo:X" or "bar") */
848 if (IS_MNT_SHARED(mnt))
849 seq_printf(m, " shared:%i", mnt->mnt_group_id);
97e7e0f7
MS
850 if (IS_MNT_SLAVE(mnt)) {
851 int master = mnt->mnt_master->mnt_group_id;
852 int dom = get_dominating_id(mnt, &p->root);
853 seq_printf(m, " master:%i", master);
854 if (dom && dom != master)
855 seq_printf(m, " propagate_from:%i", dom);
856 }
2d4d4864
RP
857 if (IS_MNT_UNBINDABLE(mnt))
858 seq_puts(m, " unbindable");
859
860 /* Filesystem specific data */
861 seq_puts(m, " - ");
862 show_type(m, sb);
863 seq_putc(m, ' ');
864 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
865 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
2069f457
EP
866 err = show_sb_opts(m, sb);
867 if (err)
868 goto out;
2d4d4864
RP
869 if (sb->s_op->show_options)
870 err = sb->s_op->show_options(m, mnt);
871 seq_putc(m, '\n');
2069f457 872out:
2d4d4864
RP
873 return err;
874}
875
876const struct seq_operations mountinfo_op = {
877 .start = m_start,
878 .next = m_next,
879 .stop = m_stop,
880 .show = show_mountinfo,
881};
882
b4629fe2
CL
883static int show_vfsstat(struct seq_file *m, void *v)
884{
b0765fb8 885 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
c32c2f63 886 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
b4629fe2
CL
887 int err = 0;
888
889 /* device */
890 if (mnt->mnt_devname) {
891 seq_puts(m, "device ");
892 mangle(m, mnt->mnt_devname);
893 } else
894 seq_puts(m, "no device");
895
896 /* mount point */
897 seq_puts(m, " mounted on ");
c32c2f63 898 seq_path(m, &mnt_path, " \t\n\\");
b4629fe2
CL
899 seq_putc(m, ' ');
900
901 /* file system type */
902 seq_puts(m, "with fstype ");
2d4d4864 903 show_type(m, mnt->mnt_sb);
b4629fe2
CL
904
905 /* optional statistics */
906 if (mnt->mnt_sb->s_op->show_stats) {
907 seq_putc(m, ' ');
908 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
909 }
910
911 seq_putc(m, '\n');
912 return err;
913}
914
a1a2c409 915const struct seq_operations mountstats_op = {
b4629fe2
CL
916 .start = m_start,
917 .next = m_next,
918 .stop = m_stop,
919 .show = show_vfsstat,
920};
a1a2c409 921#endif /* CONFIG_PROC_FS */
b4629fe2 922
1da177e4
LT
923/**
924 * may_umount_tree - check if a mount tree is busy
925 * @mnt: root of mount tree
926 *
927 * This is called to check if a tree of mounts has any
928 * open files, pwds, chroots or sub mounts that are
929 * busy.
930 */
931int may_umount_tree(struct vfsmount *mnt)
932{
36341f64
RP
933 int actual_refs = 0;
934 int minimum_refs = 0;
935 struct vfsmount *p;
1da177e4
LT
936
937 spin_lock(&vfsmount_lock);
36341f64 938 for (p = mnt; p; p = next_mnt(p, mnt)) {
1da177e4
LT
939 actual_refs += atomic_read(&p->mnt_count);
940 minimum_refs += 2;
1da177e4
LT
941 }
942 spin_unlock(&vfsmount_lock);
943
944 if (actual_refs > minimum_refs)
e3474a8e 945 return 0;
1da177e4 946
e3474a8e 947 return 1;
1da177e4
LT
948}
949
950EXPORT_SYMBOL(may_umount_tree);
951
952/**
953 * may_umount - check if a mount point is busy
954 * @mnt: root of mount
955 *
956 * This is called to check if a mount point has any
957 * open files, pwds, chroots or sub mounts. If the
958 * mount has sub mounts this will return busy
959 * regardless of whether the sub mounts are busy.
960 *
961 * Doesn't take quota and stuff into account. IOW, in some cases it will
962 * give false negatives. The main reason why it's here is that we need
963 * a non-destructive way to look for easily umountable filesystems.
964 */
965int may_umount(struct vfsmount *mnt)
966{
e3474a8e 967 int ret = 1;
8ad08d8a 968 down_read(&namespace_sem);
a05964f3
RP
969 spin_lock(&vfsmount_lock);
970 if (propagate_mount_busy(mnt, 2))
e3474a8e 971 ret = 0;
a05964f3 972 spin_unlock(&vfsmount_lock);
8ad08d8a 973 up_read(&namespace_sem);
a05964f3 974 return ret;
1da177e4
LT
975}
976
977EXPORT_SYMBOL(may_umount);
978
b90fa9ae 979void release_mounts(struct list_head *head)
70fbcdf4
RP
980{
981 struct vfsmount *mnt;
bf066c7d 982 while (!list_empty(head)) {
b5e61818 983 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
70fbcdf4
RP
984 list_del_init(&mnt->mnt_hash);
985 if (mnt->mnt_parent != mnt) {
986 struct dentry *dentry;
987 struct vfsmount *m;
988 spin_lock(&vfsmount_lock);
989 dentry = mnt->mnt_mountpoint;
990 m = mnt->mnt_parent;
991 mnt->mnt_mountpoint = mnt->mnt_root;
992 mnt->mnt_parent = mnt;
7c4b93d8 993 m->mnt_ghosts--;
70fbcdf4
RP
994 spin_unlock(&vfsmount_lock);
995 dput(dentry);
996 mntput(m);
997 }
998 mntput(mnt);
999 }
1000}
1001
a05964f3 1002void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1da177e4
LT
1003{
1004 struct vfsmount *p;
1da177e4 1005
1bfba4e8
AM
1006 for (p = mnt; p; p = next_mnt(p, mnt))
1007 list_move(&p->mnt_hash, kill);
1da177e4 1008
a05964f3
RP
1009 if (propagate)
1010 propagate_umount(kill);
1011
70fbcdf4
RP
1012 list_for_each_entry(p, kill, mnt_hash) {
1013 list_del_init(&p->mnt_expire);
1014 list_del_init(&p->mnt_list);
6b3286ed
KK
1015 __touch_mnt_namespace(p->mnt_ns);
1016 p->mnt_ns = NULL;
70fbcdf4 1017 list_del_init(&p->mnt_child);
7c4b93d8
AV
1018 if (p->mnt_parent != p) {
1019 p->mnt_parent->mnt_ghosts++;
f30ac319 1020 p->mnt_mountpoint->d_mounted--;
7c4b93d8 1021 }
a05964f3 1022 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1023 }
1024}
1025
c35038be
AV
1026static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1027
1da177e4
LT
1028static int do_umount(struct vfsmount *mnt, int flags)
1029{
b58fed8b 1030 struct super_block *sb = mnt->mnt_sb;
1da177e4 1031 int retval;
70fbcdf4 1032 LIST_HEAD(umount_list);
1da177e4
LT
1033
1034 retval = security_sb_umount(mnt, flags);
1035 if (retval)
1036 return retval;
1037
1038 /*
1039 * Allow userspace to request a mountpoint be expired rather than
1040 * unmounting unconditionally. Unmount only happens if:
1041 * (1) the mark is already set (the mark is cleared by mntput())
1042 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1043 */
1044 if (flags & MNT_EXPIRE) {
6ac08c39 1045 if (mnt == current->fs->root.mnt ||
1da177e4
LT
1046 flags & (MNT_FORCE | MNT_DETACH))
1047 return -EINVAL;
1048
1049 if (atomic_read(&mnt->mnt_count) != 2)
1050 return -EBUSY;
1051
1052 if (!xchg(&mnt->mnt_expiry_mark, 1))
1053 return -EAGAIN;
1054 }
1055
1056 /*
1057 * If we may have to abort operations to get out of this
1058 * mount, and they will themselves hold resources we must
1059 * allow the fs to do things. In the Unix tradition of
1060 * 'Gee thats tricky lets do it in userspace' the umount_begin
1061 * might fail to complete on the first run through as other tasks
1062 * must return, and the like. Thats for the mount program to worry
1063 * about for the moment.
1064 */
1065
42faad99 1066 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1067 sb->s_op->umount_begin(sb);
42faad99 1068 }
1da177e4
LT
1069
1070 /*
1071 * No sense to grab the lock for this test, but test itself looks
1072 * somewhat bogus. Suggestions for better replacement?
1073 * Ho-hum... In principle, we might treat that as umount + switch
1074 * to rootfs. GC would eventually take care of the old vfsmount.
1075 * Actually it makes sense, especially if rootfs would contain a
1076 * /reboot - static binary that would close all descriptors and
1077 * call reboot(9). Then init(8) could umount root and exec /reboot.
1078 */
6ac08c39 1079 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1080 /*
1081 * Special case for "unmounting" root ...
1082 * we just try to remount it readonly.
1083 */
1084 down_write(&sb->s_umount);
4aa98cf7 1085 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1086 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1087 up_write(&sb->s_umount);
1088 return retval;
1089 }
1090
390c6843 1091 down_write(&namespace_sem);
1da177e4 1092 spin_lock(&vfsmount_lock);
5addc5dd 1093 event++;
1da177e4 1094
c35038be
AV
1095 if (!(flags & MNT_DETACH))
1096 shrink_submounts(mnt, &umount_list);
1097
1da177e4 1098 retval = -EBUSY;
a05964f3 1099 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1da177e4 1100 if (!list_empty(&mnt->mnt_list))
a05964f3 1101 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1102 retval = 0;
1103 }
1104 spin_unlock(&vfsmount_lock);
1105 if (retval)
1106 security_sb_umount_busy(mnt);
390c6843 1107 up_write(&namespace_sem);
70fbcdf4 1108 release_mounts(&umount_list);
1da177e4
LT
1109 return retval;
1110}
1111
1112/*
1113 * Now umount can handle mount points as well as block devices.
1114 * This is important for filesystems which use unnamed block devices.
1115 *
1116 * We now support a flag for forced unmount like the other 'big iron'
1117 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1118 */
1119
bdc480e3 1120SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1121{
2d8f3038 1122 struct path path;
1da177e4
LT
1123 int retval;
1124
2d8f3038 1125 retval = user_path(name, &path);
1da177e4
LT
1126 if (retval)
1127 goto out;
1128 retval = -EINVAL;
2d8f3038 1129 if (path.dentry != path.mnt->mnt_root)
1da177e4 1130 goto dput_and_out;
2d8f3038 1131 if (!check_mnt(path.mnt))
1da177e4
LT
1132 goto dput_and_out;
1133
1134 retval = -EPERM;
1135 if (!capable(CAP_SYS_ADMIN))
1136 goto dput_and_out;
1137
2d8f3038 1138 retval = do_umount(path.mnt, flags);
1da177e4 1139dput_and_out:
429731b1 1140 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038
AV
1141 dput(path.dentry);
1142 mntput_no_expire(path.mnt);
1da177e4
LT
1143out:
1144 return retval;
1145}
1146
1147#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1148
1149/*
b58fed8b 1150 * The 2.0 compatible umount. No flags.
1da177e4 1151 */
bdc480e3 1152SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1153{
b58fed8b 1154 return sys_umount(name, 0);
1da177e4
LT
1155}
1156
1157#endif
1158
2d92ab3c 1159static int mount_is_safe(struct path *path)
1da177e4
LT
1160{
1161 if (capable(CAP_SYS_ADMIN))
1162 return 0;
1163 return -EPERM;
1164#ifdef notyet
2d92ab3c 1165 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1166 return -EPERM;
2d92ab3c 1167 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1168 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1169 return -EPERM;
1170 }
2d92ab3c 1171 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1172 return -EPERM;
1173 return 0;
1174#endif
1175}
1176
b90fa9ae 1177struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
36341f64 1178 int flag)
1da177e4
LT
1179{
1180 struct vfsmount *res, *p, *q, *r, *s;
1a390689 1181 struct path path;
1da177e4 1182
9676f0c6
RP
1183 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1184 return NULL;
1185
36341f64 1186 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1187 if (!q)
1188 goto Enomem;
1189 q->mnt_mountpoint = mnt->mnt_mountpoint;
1190
1191 p = mnt;
fdadd65f 1192 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
7ec02ef1 1193 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1194 continue;
1195
1196 for (s = r; s; s = next_mnt(s, r)) {
9676f0c6
RP
1197 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1198 s = skip_mnt_tree(s);
1199 continue;
1200 }
1da177e4
LT
1201 while (p != s->mnt_parent) {
1202 p = p->mnt_parent;
1203 q = q->mnt_parent;
1204 }
1205 p = s;
1a390689
AV
1206 path.mnt = q;
1207 path.dentry = p->mnt_mountpoint;
36341f64 1208 q = clone_mnt(p, p->mnt_root, flag);
1da177e4
LT
1209 if (!q)
1210 goto Enomem;
1211 spin_lock(&vfsmount_lock);
1212 list_add_tail(&q->mnt_list, &res->mnt_list);
1a390689 1213 attach_mnt(q, &path);
1da177e4
LT
1214 spin_unlock(&vfsmount_lock);
1215 }
1216 }
1217 return res;
b58fed8b 1218Enomem:
1da177e4 1219 if (res) {
70fbcdf4 1220 LIST_HEAD(umount_list);
1da177e4 1221 spin_lock(&vfsmount_lock);
a05964f3 1222 umount_tree(res, 0, &umount_list);
1da177e4 1223 spin_unlock(&vfsmount_lock);
70fbcdf4 1224 release_mounts(&umount_list);
1da177e4
LT
1225 }
1226 return NULL;
1227}
1228
589ff870 1229struct vfsmount *collect_mounts(struct path *path)
8aec0809
AV
1230{
1231 struct vfsmount *tree;
1a60a280 1232 down_write(&namespace_sem);
589ff870 1233 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1a60a280 1234 up_write(&namespace_sem);
8aec0809
AV
1235 return tree;
1236}
1237
1238void drop_collected_mounts(struct vfsmount *mnt)
1239{
1240 LIST_HEAD(umount_list);
1a60a280 1241 down_write(&namespace_sem);
8aec0809
AV
1242 spin_lock(&vfsmount_lock);
1243 umount_tree(mnt, 0, &umount_list);
1244 spin_unlock(&vfsmount_lock);
1a60a280 1245 up_write(&namespace_sem);
8aec0809
AV
1246 release_mounts(&umount_list);
1247}
1248
1f707137
AV
1249int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1250 struct vfsmount *root)
1251{
1252 struct vfsmount *mnt;
1253 int res = f(root, arg);
1254 if (res)
1255 return res;
1256 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1257 res = f(mnt, arg);
1258 if (res)
1259 return res;
1260 }
1261 return 0;
1262}
1263
719f5d7f
MS
1264static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1265{
1266 struct vfsmount *p;
1267
1268 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1269 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1270 mnt_release_group_id(p);
1271 }
1272}
1273
1274static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1275{
1276 struct vfsmount *p;
1277
1278 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1279 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1280 int err = mnt_alloc_group_id(p);
1281 if (err) {
1282 cleanup_group_ids(mnt, p);
1283 return err;
1284 }
1285 }
1286 }
1287
1288 return 0;
1289}
1290
b90fa9ae
RP
1291/*
1292 * @source_mnt : mount tree to be attached
21444403
RP
1293 * @nd : place the mount tree @source_mnt is attached
1294 * @parent_nd : if non-null, detach the source_mnt from its parent and
1295 * store the parent mount and mountpoint dentry.
1296 * (done when source_mnt is moved)
b90fa9ae
RP
1297 *
1298 * NOTE: in the table below explains the semantics when a source mount
1299 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1300 * ---------------------------------------------------------------------------
1301 * | BIND MOUNT OPERATION |
1302 * |**************************************************************************
1303 * | source-->| shared | private | slave | unbindable |
1304 * | dest | | | | |
1305 * | | | | | | |
1306 * | v | | | | |
1307 * |**************************************************************************
1308 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1309 * | | | | | |
1310 * |non-shared| shared (+) | private | slave (*) | invalid |
1311 * ***************************************************************************
b90fa9ae
RP
1312 * A bind operation clones the source mount and mounts the clone on the
1313 * destination mount.
1314 *
1315 * (++) the cloned mount is propagated to all the mounts in the propagation
1316 * tree of the destination mount and the cloned mount is added to
1317 * the peer group of the source mount.
1318 * (+) the cloned mount is created under the destination mount and is marked
1319 * as shared. The cloned mount is added to the peer group of the source
1320 * mount.
5afe0022
RP
1321 * (+++) the mount is propagated to all the mounts in the propagation tree
1322 * of the destination mount and the cloned mount is made slave
1323 * of the same master as that of the source mount. The cloned mount
1324 * is marked as 'shared and slave'.
1325 * (*) the cloned mount is made a slave of the same master as that of the
1326 * source mount.
1327 *
9676f0c6
RP
1328 * ---------------------------------------------------------------------------
1329 * | MOVE MOUNT OPERATION |
1330 * |**************************************************************************
1331 * | source-->| shared | private | slave | unbindable |
1332 * | dest | | | | |
1333 * | | | | | | |
1334 * | v | | | | |
1335 * |**************************************************************************
1336 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1337 * | | | | | |
1338 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1339 * ***************************************************************************
5afe0022
RP
1340 *
1341 * (+) the mount is moved to the destination. And is then propagated to
1342 * all the mounts in the propagation tree of the destination mount.
21444403 1343 * (+*) the mount is moved to the destination.
5afe0022
RP
1344 * (+++) the mount is moved to the destination and is then propagated to
1345 * all the mounts belonging to the destination mount's propagation tree.
1346 * the mount is marked as 'shared and slave'.
1347 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1348 *
1349 * if the source mount is a tree, the operations explained above is
1350 * applied to each mount in the tree.
1351 * Must be called without spinlocks held, since this function can sleep
1352 * in allocations.
1353 */
1354static int attach_recursive_mnt(struct vfsmount *source_mnt,
1a390689 1355 struct path *path, struct path *parent_path)
b90fa9ae
RP
1356{
1357 LIST_HEAD(tree_list);
1a390689
AV
1358 struct vfsmount *dest_mnt = path->mnt;
1359 struct dentry *dest_dentry = path->dentry;
b90fa9ae 1360 struct vfsmount *child, *p;
719f5d7f 1361 int err;
b90fa9ae 1362
719f5d7f
MS
1363 if (IS_MNT_SHARED(dest_mnt)) {
1364 err = invent_group_ids(source_mnt, true);
1365 if (err)
1366 goto out;
1367 }
1368 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1369 if (err)
1370 goto out_cleanup_ids;
b90fa9ae 1371
df1a1ad2
AV
1372 spin_lock(&vfsmount_lock);
1373
b90fa9ae
RP
1374 if (IS_MNT_SHARED(dest_mnt)) {
1375 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1376 set_mnt_shared(p);
1377 }
1a390689
AV
1378 if (parent_path) {
1379 detach_mnt(source_mnt, parent_path);
1380 attach_mnt(source_mnt, path);
e5d67f07 1381 touch_mnt_namespace(parent_path->mnt->mnt_ns);
21444403
RP
1382 } else {
1383 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1384 commit_tree(source_mnt);
1385 }
b90fa9ae
RP
1386
1387 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1388 list_del_init(&child->mnt_hash);
1389 commit_tree(child);
1390 }
1391 spin_unlock(&vfsmount_lock);
1392 return 0;
719f5d7f
MS
1393
1394 out_cleanup_ids:
1395 if (IS_MNT_SHARED(dest_mnt))
1396 cleanup_group_ids(source_mnt, NULL);
1397 out:
1398 return err;
b90fa9ae
RP
1399}
1400
8c3ee42e 1401static int graft_tree(struct vfsmount *mnt, struct path *path)
1da177e4
LT
1402{
1403 int err;
1404 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1405 return -EINVAL;
1406
8c3ee42e 1407 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1da177e4
LT
1408 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1409 return -ENOTDIR;
1410
1411 err = -ENOENT;
8c3ee42e
AV
1412 mutex_lock(&path->dentry->d_inode->i_mutex);
1413 if (IS_DEADDIR(path->dentry->d_inode))
1da177e4
LT
1414 goto out_unlock;
1415
8c3ee42e 1416 err = security_sb_check_sb(mnt, path);
1da177e4
LT
1417 if (err)
1418 goto out_unlock;
1419
1420 err = -ENOENT;
f3da392e 1421 if (!d_unlinked(path->dentry))
8c3ee42e 1422 err = attach_recursive_mnt(mnt, path, NULL);
1da177e4 1423out_unlock:
8c3ee42e 1424 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4 1425 if (!err)
8c3ee42e 1426 security_sb_post_addmount(mnt, path);
1da177e4
LT
1427 return err;
1428}
1429
07b20889
RP
1430/*
1431 * recursively change the type of the mountpoint.
1432 */
0a0d8a46 1433static int do_change_type(struct path *path, int flag)
07b20889 1434{
2d92ab3c 1435 struct vfsmount *m, *mnt = path->mnt;
07b20889
RP
1436 int recurse = flag & MS_REC;
1437 int type = flag & ~MS_REC;
719f5d7f 1438 int err = 0;
07b20889 1439
ee6f9582
MS
1440 if (!capable(CAP_SYS_ADMIN))
1441 return -EPERM;
1442
2d92ab3c 1443 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1444 return -EINVAL;
1445
1446 down_write(&namespace_sem);
719f5d7f
MS
1447 if (type == MS_SHARED) {
1448 err = invent_group_ids(mnt, recurse);
1449 if (err)
1450 goto out_unlock;
1451 }
1452
07b20889
RP
1453 spin_lock(&vfsmount_lock);
1454 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1455 change_mnt_propagation(m, type);
1456 spin_unlock(&vfsmount_lock);
719f5d7f
MS
1457
1458 out_unlock:
07b20889 1459 up_write(&namespace_sem);
719f5d7f 1460 return err;
07b20889
RP
1461}
1462
1da177e4
LT
1463/*
1464 * do loopback mount.
1465 */
0a0d8a46 1466static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1467 int recurse)
1da177e4 1468{
2d92ab3c 1469 struct path old_path;
1da177e4 1470 struct vfsmount *mnt = NULL;
2d92ab3c 1471 int err = mount_is_safe(path);
1da177e4
LT
1472 if (err)
1473 return err;
1474 if (!old_name || !*old_name)
1475 return -EINVAL;
2d92ab3c 1476 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1477 if (err)
1478 return err;
1479
390c6843 1480 down_write(&namespace_sem);
1da177e4 1481 err = -EINVAL;
2d92ab3c 1482 if (IS_MNT_UNBINDABLE(old_path.mnt))
4ac91378 1483 goto out;
9676f0c6 1484
2d92ab3c 1485 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
ccd48bc7 1486 goto out;
1da177e4 1487
ccd48bc7
AV
1488 err = -ENOMEM;
1489 if (recurse)
2d92ab3c 1490 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
ccd48bc7 1491 else
2d92ab3c 1492 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
ccd48bc7
AV
1493
1494 if (!mnt)
1495 goto out;
1496
2d92ab3c 1497 err = graft_tree(mnt, path);
ccd48bc7 1498 if (err) {
70fbcdf4 1499 LIST_HEAD(umount_list);
1da177e4 1500 spin_lock(&vfsmount_lock);
a05964f3 1501 umount_tree(mnt, 0, &umount_list);
1da177e4 1502 spin_unlock(&vfsmount_lock);
70fbcdf4 1503 release_mounts(&umount_list);
5b83d2c5 1504 }
1da177e4 1505
ccd48bc7 1506out:
390c6843 1507 up_write(&namespace_sem);
2d92ab3c 1508 path_put(&old_path);
1da177e4
LT
1509 return err;
1510}
1511
2e4b7fcd
DH
1512static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1513{
1514 int error = 0;
1515 int readonly_request = 0;
1516
1517 if (ms_flags & MS_RDONLY)
1518 readonly_request = 1;
1519 if (readonly_request == __mnt_is_readonly(mnt))
1520 return 0;
1521
1522 if (readonly_request)
1523 error = mnt_make_readonly(mnt);
1524 else
1525 __mnt_unmake_readonly(mnt);
1526 return error;
1527}
1528
1da177e4
LT
1529/*
1530 * change filesystem flags. dir should be a physical root of filesystem.
1531 * If you've mounted a non-root directory somewhere and want to do remount
1532 * on it - tough luck.
1533 */
0a0d8a46 1534static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1535 void *data)
1536{
1537 int err;
2d92ab3c 1538 struct super_block *sb = path->mnt->mnt_sb;
1da177e4
LT
1539
1540 if (!capable(CAP_SYS_ADMIN))
1541 return -EPERM;
1542
2d92ab3c 1543 if (!check_mnt(path->mnt))
1da177e4
LT
1544 return -EINVAL;
1545
2d92ab3c 1546 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1547 return -EINVAL;
1548
1549 down_write(&sb->s_umount);
2e4b7fcd 1550 if (flags & MS_BIND)
2d92ab3c 1551 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1552 else
2e4b7fcd 1553 err = do_remount_sb(sb, flags, data, 0);
7b43a79f
AV
1554 if (!err) {
1555 spin_lock(&vfsmount_lock);
495d6c9c 1556 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
2d92ab3c 1557 path->mnt->mnt_flags = mnt_flags;
7b43a79f
AV
1558 spin_unlock(&vfsmount_lock);
1559 }
1da177e4 1560 up_write(&sb->s_umount);
0e55a7cc 1561 if (!err) {
2d92ab3c 1562 security_sb_post_remount(path->mnt, flags, data);
0e55a7cc
DW
1563
1564 spin_lock(&vfsmount_lock);
1565 touch_mnt_namespace(path->mnt->mnt_ns);
1566 spin_unlock(&vfsmount_lock);
1567 }
1da177e4
LT
1568 return err;
1569}
1570
9676f0c6
RP
1571static inline int tree_contains_unbindable(struct vfsmount *mnt)
1572{
1573 struct vfsmount *p;
1574 for (p = mnt; p; p = next_mnt(p, mnt)) {
1575 if (IS_MNT_UNBINDABLE(p))
1576 return 1;
1577 }
1578 return 0;
1579}
1580
0a0d8a46 1581static int do_move_mount(struct path *path, char *old_name)
1da177e4 1582{
2d92ab3c 1583 struct path old_path, parent_path;
1da177e4
LT
1584 struct vfsmount *p;
1585 int err = 0;
1586 if (!capable(CAP_SYS_ADMIN))
1587 return -EPERM;
1588 if (!old_name || !*old_name)
1589 return -EINVAL;
2d92ab3c 1590 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1591 if (err)
1592 return err;
1593
390c6843 1594 down_write(&namespace_sem);
2d92ab3c 1595 while (d_mountpoint(path->dentry) &&
9393bd07 1596 follow_down(path))
1da177e4
LT
1597 ;
1598 err = -EINVAL;
2d92ab3c 1599 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1da177e4
LT
1600 goto out;
1601
1602 err = -ENOENT;
2d92ab3c
AV
1603 mutex_lock(&path->dentry->d_inode->i_mutex);
1604 if (IS_DEADDIR(path->dentry->d_inode))
1da177e4
LT
1605 goto out1;
1606
f3da392e 1607 if (d_unlinked(path->dentry))
21444403 1608 goto out1;
1da177e4
LT
1609
1610 err = -EINVAL;
2d92ab3c 1611 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1612 goto out1;
1da177e4 1613
2d92ab3c 1614 if (old_path.mnt == old_path.mnt->mnt_parent)
21444403 1615 goto out1;
1da177e4 1616
2d92ab3c
AV
1617 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1618 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1619 goto out1;
1620 /*
1621 * Don't move a mount residing in a shared parent.
1622 */
2d92ab3c
AV
1623 if (old_path.mnt->mnt_parent &&
1624 IS_MNT_SHARED(old_path.mnt->mnt_parent))
21444403 1625 goto out1;
9676f0c6
RP
1626 /*
1627 * Don't move a mount tree containing unbindable mounts to a destination
1628 * mount which is shared.
1629 */
2d92ab3c
AV
1630 if (IS_MNT_SHARED(path->mnt) &&
1631 tree_contains_unbindable(old_path.mnt))
9676f0c6 1632 goto out1;
1da177e4 1633 err = -ELOOP;
2d92ab3c
AV
1634 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1635 if (p == old_path.mnt)
21444403 1636 goto out1;
1da177e4 1637
2d92ab3c 1638 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
4ac91378 1639 if (err)
21444403 1640 goto out1;
1da177e4
LT
1641
1642 /* if the mount is moved, it should no longer be expire
1643 * automatically */
2d92ab3c 1644 list_del_init(&old_path.mnt->mnt_expire);
1da177e4 1645out1:
2d92ab3c 1646 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4 1647out:
390c6843 1648 up_write(&namespace_sem);
1da177e4 1649 if (!err)
1a390689 1650 path_put(&parent_path);
2d92ab3c 1651 path_put(&old_path);
1da177e4
LT
1652 return err;
1653}
1654
1655/*
1656 * create a new mount for userspace and request it to be added into the
1657 * namespace's tree
1658 */
0a0d8a46 1659static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
1660 int mnt_flags, char *name, void *data)
1661{
1662 struct vfsmount *mnt;
1663
eca6f534 1664 if (!type)
1da177e4
LT
1665 return -EINVAL;
1666
1667 /* we need capabilities... */
1668 if (!capable(CAP_SYS_ADMIN))
1669 return -EPERM;
1670
7f78d4cd 1671 lock_kernel();
1da177e4 1672 mnt = do_kern_mount(type, flags, name, data);
7f78d4cd 1673 unlock_kernel();
1da177e4
LT
1674 if (IS_ERR(mnt))
1675 return PTR_ERR(mnt);
1676
2d92ab3c 1677 return do_add_mount(mnt, path, mnt_flags, NULL);
1da177e4
LT
1678}
1679
1680/*
1681 * add a mount into a namespace's mount tree
1682 * - provide the option of adding the new mount to an expiration list
1683 */
8d66bf54 1684int do_add_mount(struct vfsmount *newmnt, struct path *path,
1da177e4
LT
1685 int mnt_flags, struct list_head *fslist)
1686{
1687 int err;
1688
27d55f1f
AV
1689 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD);
1690
390c6843 1691 down_write(&namespace_sem);
1da177e4 1692 /* Something was mounted here while we slept */
8d66bf54 1693 while (d_mountpoint(path->dentry) &&
9393bd07 1694 follow_down(path))
1da177e4
LT
1695 ;
1696 err = -EINVAL;
dd5cae6e 1697 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1da177e4
LT
1698 goto unlock;
1699
1700 /* Refuse the same filesystem on the same mount point */
1701 err = -EBUSY;
8d66bf54
AV
1702 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1703 path->mnt->mnt_root == path->dentry)
1da177e4
LT
1704 goto unlock;
1705
1706 err = -EINVAL;
1707 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1708 goto unlock;
1709
1710 newmnt->mnt_flags = mnt_flags;
8d66bf54 1711 if ((err = graft_tree(newmnt, path)))
5b83d2c5 1712 goto unlock;
1da177e4 1713
6758f953 1714 if (fslist) /* add to the specified expiration list */
55e700b9 1715 list_add_tail(&newmnt->mnt_expire, fslist);
6758f953 1716
390c6843 1717 up_write(&namespace_sem);
5b83d2c5 1718 return 0;
1da177e4
LT
1719
1720unlock:
390c6843 1721 up_write(&namespace_sem);
1da177e4
LT
1722 mntput(newmnt);
1723 return err;
1724}
1725
1726EXPORT_SYMBOL_GPL(do_add_mount);
1727
1728/*
1729 * process a list of expirable mountpoints with the intent of discarding any
1730 * mountpoints that aren't in use and haven't been touched since last we came
1731 * here
1732 */
1733void mark_mounts_for_expiry(struct list_head *mounts)
1734{
1da177e4
LT
1735 struct vfsmount *mnt, *next;
1736 LIST_HEAD(graveyard);
bcc5c7d2 1737 LIST_HEAD(umounts);
1da177e4
LT
1738
1739 if (list_empty(mounts))
1740 return;
1741
bcc5c7d2 1742 down_write(&namespace_sem);
1da177e4
LT
1743 spin_lock(&vfsmount_lock);
1744
1745 /* extract from the expiration list every vfsmount that matches the
1746 * following criteria:
1747 * - only referenced by its parent vfsmount
1748 * - still marked for expiry (marked on the last call here; marks are
1749 * cleared by mntput())
1750 */
55e700b9 1751 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1da177e4 1752 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
bcc5c7d2 1753 propagate_mount_busy(mnt, 1))
1da177e4 1754 continue;
55e700b9 1755 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 1756 }
bcc5c7d2
AV
1757 while (!list_empty(&graveyard)) {
1758 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1759 touch_mnt_namespace(mnt->mnt_ns);
1760 umount_tree(mnt, 1, &umounts);
1761 }
5528f911 1762 spin_unlock(&vfsmount_lock);
bcc5c7d2
AV
1763 up_write(&namespace_sem);
1764
1765 release_mounts(&umounts);
5528f911
TM
1766}
1767
1768EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1769
1770/*
1771 * Ripoff of 'select_parent()'
1772 *
1773 * search the list of submounts for a given mountpoint, and move any
1774 * shrinkable submounts to the 'graveyard' list.
1775 */
1776static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1777{
1778 struct vfsmount *this_parent = parent;
1779 struct list_head *next;
1780 int found = 0;
1781
1782repeat:
1783 next = this_parent->mnt_mounts.next;
1784resume:
1785 while (next != &this_parent->mnt_mounts) {
1786 struct list_head *tmp = next;
1787 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1788
1789 next = tmp->next;
1790 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1da177e4 1791 continue;
5528f911
TM
1792 /*
1793 * Descend a level if the d_mounts list is non-empty.
1794 */
1795 if (!list_empty(&mnt->mnt_mounts)) {
1796 this_parent = mnt;
1797 goto repeat;
1798 }
1da177e4 1799
5528f911 1800 if (!propagate_mount_busy(mnt, 1)) {
5528f911
TM
1801 list_move_tail(&mnt->mnt_expire, graveyard);
1802 found++;
1803 }
1da177e4 1804 }
5528f911
TM
1805 /*
1806 * All done at this level ... ascend and resume the search
1807 */
1808 if (this_parent != parent) {
1809 next = this_parent->mnt_child.next;
1810 this_parent = this_parent->mnt_parent;
1811 goto resume;
1812 }
1813 return found;
1814}
1815
1816/*
1817 * process a list of expirable mountpoints with the intent of discarding any
1818 * submounts of a specific parent mountpoint
1819 */
c35038be 1820static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
5528f911
TM
1821{
1822 LIST_HEAD(graveyard);
c35038be 1823 struct vfsmount *m;
5528f911 1824
5528f911 1825 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 1826 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 1827 while (!list_empty(&graveyard)) {
c35038be 1828 m = list_first_entry(&graveyard, struct vfsmount,
bcc5c7d2 1829 mnt_expire);
afef80b3
EB
1830 touch_mnt_namespace(m->mnt_ns);
1831 umount_tree(m, 1, umounts);
bcc5c7d2
AV
1832 }
1833 }
1da177e4
LT
1834}
1835
1da177e4
LT
1836/*
1837 * Some copy_from_user() implementations do not return the exact number of
1838 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1839 * Note that this function differs from copy_from_user() in that it will oops
1840 * on bad values of `to', rather than returning a short copy.
1841 */
b58fed8b
RP
1842static long exact_copy_from_user(void *to, const void __user * from,
1843 unsigned long n)
1da177e4
LT
1844{
1845 char *t = to;
1846 const char __user *f = from;
1847 char c;
1848
1849 if (!access_ok(VERIFY_READ, from, n))
1850 return n;
1851
1852 while (n) {
1853 if (__get_user(c, f)) {
1854 memset(t, 0, n);
1855 break;
1856 }
1857 *t++ = c;
1858 f++;
1859 n--;
1860 }
1861 return n;
1862}
1863
b58fed8b 1864int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
1865{
1866 int i;
1867 unsigned long page;
1868 unsigned long size;
b58fed8b 1869
1da177e4
LT
1870 *where = 0;
1871 if (!data)
1872 return 0;
1873
1874 if (!(page = __get_free_page(GFP_KERNEL)))
1875 return -ENOMEM;
1876
1877 /* We only care that *some* data at the address the user
1878 * gave us is valid. Just in case, we'll zero
1879 * the remainder of the page.
1880 */
1881 /* copy_from_user cannot cross TASK_SIZE ! */
1882 size = TASK_SIZE - (unsigned long)data;
1883 if (size > PAGE_SIZE)
1884 size = PAGE_SIZE;
1885
1886 i = size - exact_copy_from_user((void *)page, data, size);
1887 if (!i) {
b58fed8b 1888 free_page(page);
1da177e4
LT
1889 return -EFAULT;
1890 }
1891 if (i != PAGE_SIZE)
1892 memset((char *)page + i, 0, PAGE_SIZE - i);
1893 *where = page;
1894 return 0;
1895}
1896
eca6f534
VN
1897int copy_mount_string(const void __user *data, char **where)
1898{
1899 char *tmp;
1900
1901 if (!data) {
1902 *where = NULL;
1903 return 0;
1904 }
1905
1906 tmp = strndup_user(data, PAGE_SIZE);
1907 if (IS_ERR(tmp))
1908 return PTR_ERR(tmp);
1909
1910 *where = tmp;
1911 return 0;
1912}
1913
1da177e4
LT
1914/*
1915 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1916 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1917 *
1918 * data is a (void *) that can point to any structure up to
1919 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1920 * information (or be NULL).
1921 *
1922 * Pre-0.97 versions of mount() didn't have a flags word.
1923 * When the flags word was introduced its top half was required
1924 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1925 * Therefore, if this magic number is present, it carries no information
1926 * and must be discarded.
1927 */
b58fed8b 1928long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
1929 unsigned long flags, void *data_page)
1930{
2d92ab3c 1931 struct path path;
1da177e4
LT
1932 int retval = 0;
1933 int mnt_flags = 0;
1934
1935 /* Discard magic */
1936 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1937 flags &= ~MS_MGC_MSK;
1938
1939 /* Basic sanity checks */
1940
1941 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1942 return -EINVAL;
1da177e4
LT
1943
1944 if (data_page)
1945 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1946
a27ab9f2
TH
1947 /* ... and get the mountpoint */
1948 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
1949 if (retval)
1950 return retval;
1951
1952 retval = security_sb_mount(dev_name, &path,
1953 type_page, flags, data_page);
1954 if (retval)
1955 goto dput_out;
1956
613cbe3d
AK
1957 /* Default to relatime unless overriden */
1958 if (!(flags & MS_NOATIME))
1959 mnt_flags |= MNT_RELATIME;
0a1c01c9 1960
1da177e4
LT
1961 /* Separate the per-mountpoint flags */
1962 if (flags & MS_NOSUID)
1963 mnt_flags |= MNT_NOSUID;
1964 if (flags & MS_NODEV)
1965 mnt_flags |= MNT_NODEV;
1966 if (flags & MS_NOEXEC)
1967 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
1968 if (flags & MS_NOATIME)
1969 mnt_flags |= MNT_NOATIME;
1970 if (flags & MS_NODIRATIME)
1971 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
1972 if (flags & MS_STRICTATIME)
1973 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
1974 if (flags & MS_RDONLY)
1975 mnt_flags |= MNT_READONLY;
fc33a7bb
CH
1976
1977 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
d0adde57
MG
1978 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
1979 MS_STRICTATIME);
1da177e4 1980
1da177e4 1981 if (flags & MS_REMOUNT)
2d92ab3c 1982 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
1983 data_page);
1984 else if (flags & MS_BIND)
2d92ab3c 1985 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 1986 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 1987 retval = do_change_type(&path, flags);
1da177e4 1988 else if (flags & MS_MOVE)
2d92ab3c 1989 retval = do_move_mount(&path, dev_name);
1da177e4 1990 else
2d92ab3c 1991 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
1992 dev_name, data_page);
1993dput_out:
2d92ab3c 1994 path_put(&path);
1da177e4
LT
1995 return retval;
1996}
1997
cf8d2c11
TM
1998static struct mnt_namespace *alloc_mnt_ns(void)
1999{
2000 struct mnt_namespace *new_ns;
2001
2002 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2003 if (!new_ns)
2004 return ERR_PTR(-ENOMEM);
2005 atomic_set(&new_ns->count, 1);
2006 new_ns->root = NULL;
2007 INIT_LIST_HEAD(&new_ns->list);
2008 init_waitqueue_head(&new_ns->poll);
2009 new_ns->event = 0;
2010 return new_ns;
2011}
2012
741a2951
JD
2013/*
2014 * Allocate a new namespace structure and populate it with contents
2015 * copied from the namespace of the passed in task structure.
2016 */
e3222c4e 2017static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 2018 struct fs_struct *fs)
1da177e4 2019{
6b3286ed 2020 struct mnt_namespace *new_ns;
7f2da1e7 2021 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1da177e4
LT
2022 struct vfsmount *p, *q;
2023
cf8d2c11
TM
2024 new_ns = alloc_mnt_ns();
2025 if (IS_ERR(new_ns))
2026 return new_ns;
1da177e4 2027
390c6843 2028 down_write(&namespace_sem);
1da177e4 2029 /* First pass: copy the tree topology */
6b3286ed 2030 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
9676f0c6 2031 CL_COPY_ALL | CL_EXPIRE);
1da177e4 2032 if (!new_ns->root) {
390c6843 2033 up_write(&namespace_sem);
1da177e4 2034 kfree(new_ns);
5cc4a034 2035 return ERR_PTR(-ENOMEM);
1da177e4
LT
2036 }
2037 spin_lock(&vfsmount_lock);
2038 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2039 spin_unlock(&vfsmount_lock);
2040
2041 /*
2042 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2043 * as belonging to new namespace. We have already acquired a private
2044 * fs_struct, so tsk->fs->lock is not needed.
2045 */
6b3286ed 2046 p = mnt_ns->root;
1da177e4
LT
2047 q = new_ns->root;
2048 while (p) {
6b3286ed 2049 q->mnt_ns = new_ns;
1da177e4 2050 if (fs) {
6ac08c39 2051 if (p == fs->root.mnt) {
1da177e4 2052 rootmnt = p;
6ac08c39 2053 fs->root.mnt = mntget(q);
1da177e4 2054 }
6ac08c39 2055 if (p == fs->pwd.mnt) {
1da177e4 2056 pwdmnt = p;
6ac08c39 2057 fs->pwd.mnt = mntget(q);
1da177e4 2058 }
1da177e4 2059 }
6b3286ed 2060 p = next_mnt(p, mnt_ns->root);
1da177e4
LT
2061 q = next_mnt(q, new_ns->root);
2062 }
390c6843 2063 up_write(&namespace_sem);
1da177e4 2064
1da177e4
LT
2065 if (rootmnt)
2066 mntput(rootmnt);
2067 if (pwdmnt)
2068 mntput(pwdmnt);
1da177e4 2069
741a2951
JD
2070 return new_ns;
2071}
2072
213dd266 2073struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2074 struct fs_struct *new_fs)
741a2951 2075{
6b3286ed 2076 struct mnt_namespace *new_ns;
741a2951 2077
e3222c4e 2078 BUG_ON(!ns);
6b3286ed 2079 get_mnt_ns(ns);
741a2951
JD
2080
2081 if (!(flags & CLONE_NEWNS))
e3222c4e 2082 return ns;
741a2951 2083
e3222c4e 2084 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2085
6b3286ed 2086 put_mnt_ns(ns);
e3222c4e 2087 return new_ns;
1da177e4
LT
2088}
2089
cf8d2c11
TM
2090/**
2091 * create_mnt_ns - creates a private namespace and adds a root filesystem
2092 * @mnt: pointer to the new root filesystem mountpoint
2093 */
a2770d86 2094struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
cf8d2c11
TM
2095{
2096 struct mnt_namespace *new_ns;
2097
2098 new_ns = alloc_mnt_ns();
2099 if (!IS_ERR(new_ns)) {
2100 mnt->mnt_ns = new_ns;
2101 new_ns->root = mnt;
2102 list_add(&new_ns->list, &new_ns->root->mnt_list);
2103 }
2104 return new_ns;
2105}
a2770d86 2106EXPORT_SYMBOL(create_mnt_ns);
cf8d2c11 2107
bdc480e3
HC
2108SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2109 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2110{
eca6f534
VN
2111 int ret;
2112 char *kernel_type;
2113 char *kernel_dir;
2114 char *kernel_dev;
1da177e4 2115 unsigned long data_page;
1da177e4 2116
eca6f534
VN
2117 ret = copy_mount_string(type, &kernel_type);
2118 if (ret < 0)
2119 goto out_type;
1da177e4 2120
eca6f534
VN
2121 kernel_dir = getname(dir_name);
2122 if (IS_ERR(kernel_dir)) {
2123 ret = PTR_ERR(kernel_dir);
2124 goto out_dir;
2125 }
1da177e4 2126
eca6f534
VN
2127 ret = copy_mount_string(dev_name, &kernel_dev);
2128 if (ret < 0)
2129 goto out_dev;
1da177e4 2130
eca6f534
VN
2131 ret = copy_mount_options(data, &data_page);
2132 if (ret < 0)
2133 goto out_data;
1da177e4 2134
eca6f534
VN
2135 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2136 (void *) data_page);
1da177e4 2137
eca6f534
VN
2138 free_page(data_page);
2139out_data:
2140 kfree(kernel_dev);
2141out_dev:
2142 putname(kernel_dir);
2143out_dir:
2144 kfree(kernel_type);
2145out_type:
2146 return ret;
1da177e4
LT
2147}
2148
1da177e4
LT
2149/*
2150 * pivot_root Semantics:
2151 * Moves the root file system of the current process to the directory put_old,
2152 * makes new_root as the new root file system of the current process, and sets
2153 * root/cwd of all processes which had them on the current root to new_root.
2154 *
2155 * Restrictions:
2156 * The new_root and put_old must be directories, and must not be on the
2157 * same file system as the current process root. The put_old must be
2158 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2159 * pointed to by put_old must yield the same directory as new_root. No other
2160 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2161 *
4a0d11fa
NB
2162 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2163 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2164 * in this situation.
2165 *
1da177e4
LT
2166 * Notes:
2167 * - we don't move root/cwd if they are not at the root (reason: if something
2168 * cared enough to change them, it's probably wrong to force them elsewhere)
2169 * - it's okay to pick a root that isn't the root of a file system, e.g.
2170 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2171 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2172 * first.
2173 */
3480b257
HC
2174SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2175 const char __user *, put_old)
1da177e4
LT
2176{
2177 struct vfsmount *tmp;
2d8f3038 2178 struct path new, old, parent_path, root_parent, root;
1da177e4
LT
2179 int error;
2180
2181 if (!capable(CAP_SYS_ADMIN))
2182 return -EPERM;
2183
2d8f3038 2184 error = user_path_dir(new_root, &new);
1da177e4
LT
2185 if (error)
2186 goto out0;
2187 error = -EINVAL;
2d8f3038 2188 if (!check_mnt(new.mnt))
1da177e4
LT
2189 goto out1;
2190
2d8f3038 2191 error = user_path_dir(put_old, &old);
1da177e4
LT
2192 if (error)
2193 goto out1;
2194
2d8f3038 2195 error = security_sb_pivotroot(&old, &new);
1da177e4 2196 if (error) {
2d8f3038 2197 path_put(&old);
1da177e4
LT
2198 goto out1;
2199 }
2200
2201 read_lock(&current->fs->lock);
8c3ee42e 2202 root = current->fs->root;
6ac08c39 2203 path_get(&current->fs->root);
1da177e4 2204 read_unlock(&current->fs->lock);
390c6843 2205 down_write(&namespace_sem);
2d8f3038 2206 mutex_lock(&old.dentry->d_inode->i_mutex);
1da177e4 2207 error = -EINVAL;
2d8f3038
AV
2208 if (IS_MNT_SHARED(old.mnt) ||
2209 IS_MNT_SHARED(new.mnt->mnt_parent) ||
8c3ee42e 2210 IS_MNT_SHARED(root.mnt->mnt_parent))
21444403 2211 goto out2;
8c3ee42e 2212 if (!check_mnt(root.mnt))
1da177e4
LT
2213 goto out2;
2214 error = -ENOENT;
2d8f3038 2215 if (IS_DEADDIR(new.dentry->d_inode))
1da177e4 2216 goto out2;
f3da392e 2217 if (d_unlinked(new.dentry))
1da177e4 2218 goto out2;
f3da392e 2219 if (d_unlinked(old.dentry))
1da177e4
LT
2220 goto out2;
2221 error = -EBUSY;
2d8f3038
AV
2222 if (new.mnt == root.mnt ||
2223 old.mnt == root.mnt)
1da177e4
LT
2224 goto out2; /* loop, on the same file system */
2225 error = -EINVAL;
8c3ee42e 2226 if (root.mnt->mnt_root != root.dentry)
1da177e4 2227 goto out2; /* not a mountpoint */
8c3ee42e 2228 if (root.mnt->mnt_parent == root.mnt)
0bb6fcc1 2229 goto out2; /* not attached */
2d8f3038 2230 if (new.mnt->mnt_root != new.dentry)
1da177e4 2231 goto out2; /* not a mountpoint */
2d8f3038 2232 if (new.mnt->mnt_parent == new.mnt)
0bb6fcc1 2233 goto out2; /* not attached */
4ac91378 2234 /* make sure we can reach put_old from new_root */
2d8f3038 2235 tmp = old.mnt;
1da177e4 2236 spin_lock(&vfsmount_lock);
2d8f3038 2237 if (tmp != new.mnt) {
1da177e4
LT
2238 for (;;) {
2239 if (tmp->mnt_parent == tmp)
2240 goto out3; /* already mounted on put_old */
2d8f3038 2241 if (tmp->mnt_parent == new.mnt)
1da177e4
LT
2242 break;
2243 tmp = tmp->mnt_parent;
2244 }
2d8f3038 2245 if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
1da177e4 2246 goto out3;
2d8f3038 2247 } else if (!is_subdir(old.dentry, new.dentry))
1da177e4 2248 goto out3;
2d8f3038 2249 detach_mnt(new.mnt, &parent_path);
8c3ee42e 2250 detach_mnt(root.mnt, &root_parent);
4ac91378 2251 /* mount old root on put_old */
2d8f3038 2252 attach_mnt(root.mnt, &old);
4ac91378 2253 /* mount new_root on / */
2d8f3038 2254 attach_mnt(new.mnt, &root_parent);
6b3286ed 2255 touch_mnt_namespace(current->nsproxy->mnt_ns);
1da177e4 2256 spin_unlock(&vfsmount_lock);
2d8f3038
AV
2257 chroot_fs_refs(&root, &new);
2258 security_sb_post_pivotroot(&root, &new);
1da177e4 2259 error = 0;
1a390689
AV
2260 path_put(&root_parent);
2261 path_put(&parent_path);
1da177e4 2262out2:
2d8f3038 2263 mutex_unlock(&old.dentry->d_inode->i_mutex);
390c6843 2264 up_write(&namespace_sem);
8c3ee42e 2265 path_put(&root);
2d8f3038 2266 path_put(&old);
1da177e4 2267out1:
2d8f3038 2268 path_put(&new);
1da177e4 2269out0:
1da177e4
LT
2270 return error;
2271out3:
2272 spin_unlock(&vfsmount_lock);
2273 goto out2;
2274}
2275
2276static void __init init_mount_tree(void)
2277{
2278 struct vfsmount *mnt;
6b3286ed 2279 struct mnt_namespace *ns;
ac748a09 2280 struct path root;
1da177e4
LT
2281
2282 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2283 if (IS_ERR(mnt))
2284 panic("Can't create rootfs");
3b22edc5
TM
2285 ns = create_mnt_ns(mnt);
2286 if (IS_ERR(ns))
1da177e4 2287 panic("Can't allocate initial namespace");
6b3286ed
KK
2288
2289 init_task.nsproxy->mnt_ns = ns;
2290 get_mnt_ns(ns);
2291
ac748a09
JB
2292 root.mnt = ns->root;
2293 root.dentry = ns->root->mnt_root;
2294
2295 set_fs_pwd(current->fs, &root);
2296 set_fs_root(current->fs, &root);
1da177e4
LT
2297}
2298
74bf17cf 2299void __init mnt_init(void)
1da177e4 2300{
13f14b4d 2301 unsigned u;
15a67dd8 2302 int err;
1da177e4 2303
390c6843
RP
2304 init_rwsem(&namespace_sem);
2305
1da177e4 2306 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
20c2df83 2307 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2308
b58fed8b 2309 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2310
2311 if (!mount_hashtable)
2312 panic("Failed to allocate mount hash table\n");
2313
13f14b4d
ED
2314 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2315
2316 for (u = 0; u < HASH_SIZE; u++)
2317 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2318
15a67dd8
RD
2319 err = sysfs_init();
2320 if (err)
2321 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2322 __func__, err);
00d26666
GKH
2323 fs_kobj = kobject_create_and_add("fs", NULL);
2324 if (!fs_kobj)
8e24eea7 2325 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2326 init_rootfs();
2327 init_mount_tree();
2328}
2329
616511d0 2330void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2331{
616511d0 2332 struct vfsmount *root;
70fbcdf4 2333 LIST_HEAD(umount_list);
616511d0
TM
2334
2335 if (!atomic_dec_and_lock(&ns->count, &vfsmount_lock))
2336 return;
2337 root = ns->root;
6b3286ed 2338 ns->root = NULL;
1ce88cf4 2339 spin_unlock(&vfsmount_lock);
390c6843 2340 down_write(&namespace_sem);
1da177e4 2341 spin_lock(&vfsmount_lock);
a05964f3 2342 umount_tree(root, 0, &umount_list);
1da177e4 2343 spin_unlock(&vfsmount_lock);
390c6843 2344 up_write(&namespace_sem);
70fbcdf4 2345 release_mounts(&umount_list);
6b3286ed 2346 kfree(ns);
1da177e4 2347}
cf8d2c11 2348EXPORT_SYMBOL(put_mnt_ns);