]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/namespace.c
fs: mnt_want_write speedup
[net-next-2.6.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4
LT
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
14#include <linux/smp_lock.h>
15#include <linux/init.h>
15a67dd8 16#include <linux/kernel.h>
1da177e4 17#include <linux/acct.h>
16f7e0fe 18#include <linux/capability.h>
3d733633 19#include <linux/cpumask.h>
1da177e4 20#include <linux/module.h>
f20a9ead 21#include <linux/sysfs.h>
1da177e4 22#include <linux/seq_file.h>
6b3286ed 23#include <linux/mnt_namespace.h>
1da177e4
LT
24#include <linux/namei.h>
25#include <linux/security.h>
26#include <linux/mount.h>
07f3f05c 27#include <linux/ramfs.h>
13f14b4d 28#include <linux/log2.h>
73cd49ec 29#include <linux/idr.h>
5ad4e53b 30#include <linux/fs_struct.h>
1da177e4
LT
31#include <asm/uaccess.h>
32#include <asm/unistd.h>
07b20889 33#include "pnode.h"
948730b0 34#include "internal.h"
1da177e4 35
13f14b4d
ED
36#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
37#define HASH_SIZE (1UL << HASH_SHIFT)
38
1da177e4 39/* spinlock for vfsmount related operations, inplace of dcache_lock */
5addc5dd
AV
40__cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
41
42static int event;
73cd49ec 43static DEFINE_IDA(mnt_id_ida);
719f5d7f 44static DEFINE_IDA(mnt_group_ida);
1da177e4 45
fa3536cc 46static struct list_head *mount_hashtable __read_mostly;
e18b890b 47static struct kmem_cache *mnt_cache __read_mostly;
390c6843 48static struct rw_semaphore namespace_sem;
1da177e4 49
f87fd4c2 50/* /sys/fs */
00d26666
GKH
51struct kobject *fs_kobj;
52EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 53
1da177e4
LT
54static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55{
b58fed8b
RP
56 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
58 tmp = tmp + (tmp >> HASH_SHIFT);
59 return tmp & (HASH_SIZE - 1);
1da177e4
LT
60}
61
3d733633
DH
62#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63
73cd49ec
MS
64/* allocation is serialized by namespace_sem */
65static int mnt_alloc_id(struct vfsmount *mnt)
66{
67 int res;
68
69retry:
70 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
71 spin_lock(&vfsmount_lock);
72 res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
73 spin_unlock(&vfsmount_lock);
74 if (res == -EAGAIN)
75 goto retry;
76
77 return res;
78}
79
80static void mnt_free_id(struct vfsmount *mnt)
81{
82 spin_lock(&vfsmount_lock);
83 ida_remove(&mnt_id_ida, mnt->mnt_id);
84 spin_unlock(&vfsmount_lock);
85}
86
719f5d7f
MS
87/*
88 * Allocate a new peer group ID
89 *
90 * mnt_group_ida is protected by namespace_sem
91 */
92static int mnt_alloc_group_id(struct vfsmount *mnt)
93{
94 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
95 return -ENOMEM;
96
97 return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
98}
99
100/*
101 * Release a peer group ID
102 */
103void mnt_release_group_id(struct vfsmount *mnt)
104{
105 ida_remove(&mnt_group_ida, mnt->mnt_group_id);
106 mnt->mnt_group_id = 0;
107}
108
1da177e4
LT
109struct vfsmount *alloc_vfsmnt(const char *name)
110{
c3762229 111 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
1da177e4 112 if (mnt) {
73cd49ec
MS
113 int err;
114
115 err = mnt_alloc_id(mnt);
88b38782
LZ
116 if (err)
117 goto out_free_cache;
118
119 if (name) {
120 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
121 if (!mnt->mnt_devname)
122 goto out_free_id;
73cd49ec
MS
123 }
124
b58fed8b 125 atomic_set(&mnt->mnt_count, 1);
1da177e4
LT
126 INIT_LIST_HEAD(&mnt->mnt_hash);
127 INIT_LIST_HEAD(&mnt->mnt_child);
128 INIT_LIST_HEAD(&mnt->mnt_mounts);
129 INIT_LIST_HEAD(&mnt->mnt_list);
55e700b9 130 INIT_LIST_HEAD(&mnt->mnt_expire);
03e06e68 131 INIT_LIST_HEAD(&mnt->mnt_share);
a58b0eb8
RP
132 INIT_LIST_HEAD(&mnt->mnt_slave_list);
133 INIT_LIST_HEAD(&mnt->mnt_slave);
d3ef3d73 134#ifdef CONFIG_SMP
135 mnt->mnt_writers = alloc_percpu(int);
136 if (!mnt->mnt_writers)
137 goto out_free_devname;
138#else
139 mnt->mnt_writers = 0;
140#endif
1da177e4
LT
141 }
142 return mnt;
88b38782 143
d3ef3d73 144#ifdef CONFIG_SMP
145out_free_devname:
146 kfree(mnt->mnt_devname);
147#endif
88b38782
LZ
148out_free_id:
149 mnt_free_id(mnt);
150out_free_cache:
151 kmem_cache_free(mnt_cache, mnt);
152 return NULL;
1da177e4
LT
153}
154
3d733633
DH
155/*
156 * Most r/o checks on a fs are for operations that take
157 * discrete amounts of time, like a write() or unlink().
158 * We must keep track of when those operations start
159 * (for permission checks) and when they end, so that
160 * we can determine when writes are able to occur to
161 * a filesystem.
162 */
163/*
164 * __mnt_is_readonly: check whether a mount is read-only
165 * @mnt: the mount to check for its write status
166 *
167 * This shouldn't be used directly ouside of the VFS.
168 * It does not guarantee that the filesystem will stay
169 * r/w, just that it is right *now*. This can not and
170 * should not be used in place of IS_RDONLY(inode).
171 * mnt_want/drop_write() will _keep_ the filesystem
172 * r/w.
173 */
174int __mnt_is_readonly(struct vfsmount *mnt)
175{
2e4b7fcd
DH
176 if (mnt->mnt_flags & MNT_READONLY)
177 return 1;
178 if (mnt->mnt_sb->s_flags & MS_RDONLY)
179 return 1;
180 return 0;
3d733633
DH
181}
182EXPORT_SYMBOL_GPL(__mnt_is_readonly);
183
d3ef3d73 184static inline void inc_mnt_writers(struct vfsmount *mnt)
185{
186#ifdef CONFIG_SMP
187 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))++;
188#else
189 mnt->mnt_writers++;
190#endif
191}
3d733633 192
d3ef3d73 193static inline void dec_mnt_writers(struct vfsmount *mnt)
3d733633 194{
d3ef3d73 195#ifdef CONFIG_SMP
196 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))--;
197#else
198 mnt->mnt_writers--;
199#endif
3d733633 200}
3d733633 201
d3ef3d73 202static unsigned int count_mnt_writers(struct vfsmount *mnt)
3d733633 203{
d3ef3d73 204#ifdef CONFIG_SMP
205 unsigned int count = 0;
3d733633 206 int cpu;
3d733633
DH
207
208 for_each_possible_cpu(cpu) {
d3ef3d73 209 count += *per_cpu_ptr(mnt->mnt_writers, cpu);
3d733633 210 }
3d733633 211
d3ef3d73 212 return count;
213#else
214 return mnt->mnt_writers;
215#endif
3d733633
DH
216}
217
8366025e
DH
218/*
219 * Most r/o checks on a fs are for operations that take
220 * discrete amounts of time, like a write() or unlink().
221 * We must keep track of when those operations start
222 * (for permission checks) and when they end, so that
223 * we can determine when writes are able to occur to
224 * a filesystem.
225 */
226/**
227 * mnt_want_write - get write access to a mount
228 * @mnt: the mount on which to take a write
229 *
230 * This tells the low-level filesystem that a write is
231 * about to be performed to it, and makes sure that
232 * writes are allowed before returning success. When
233 * the write operation is finished, mnt_drop_write()
234 * must be called. This is effectively a refcount.
235 */
236int mnt_want_write(struct vfsmount *mnt)
237{
3d733633 238 int ret = 0;
3d733633 239
d3ef3d73 240 preempt_disable();
241 inc_mnt_writers(mnt);
242 /*
243 * The store to inc_mnt_writers must be visible before we pass
244 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
245 * incremented count after it has set MNT_WRITE_HOLD.
246 */
247 smp_mb();
248 while (mnt->mnt_flags & MNT_WRITE_HOLD)
249 cpu_relax();
250 /*
251 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
252 * be set to match its requirements. So we must not load that until
253 * MNT_WRITE_HOLD is cleared.
254 */
255 smp_rmb();
3d733633 256 if (__mnt_is_readonly(mnt)) {
d3ef3d73 257 dec_mnt_writers(mnt);
3d733633
DH
258 ret = -EROFS;
259 goto out;
260 }
3d733633 261out:
d3ef3d73 262 preempt_enable();
3d733633 263 return ret;
8366025e
DH
264}
265EXPORT_SYMBOL_GPL(mnt_want_write);
266
267/**
268 * mnt_drop_write - give up write access to a mount
269 * @mnt: the mount on which to give up write access
270 *
271 * Tells the low-level filesystem that we are done
272 * performing writes to it. Must be matched with
273 * mnt_want_write() call above.
274 */
275void mnt_drop_write(struct vfsmount *mnt)
276{
d3ef3d73 277 preempt_disable();
278 dec_mnt_writers(mnt);
279 preempt_enable();
8366025e
DH
280}
281EXPORT_SYMBOL_GPL(mnt_drop_write);
282
2e4b7fcd 283static int mnt_make_readonly(struct vfsmount *mnt)
8366025e 284{
3d733633
DH
285 int ret = 0;
286
d3ef3d73 287 spin_lock(&vfsmount_lock);
288 mnt->mnt_flags |= MNT_WRITE_HOLD;
3d733633 289 /*
d3ef3d73 290 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
291 * should be visible before we do.
3d733633 292 */
d3ef3d73 293 smp_mb();
294
3d733633 295 /*
d3ef3d73 296 * With writers on hold, if this value is zero, then there are
297 * definitely no active writers (although held writers may subsequently
298 * increment the count, they'll have to wait, and decrement it after
299 * seeing MNT_READONLY).
300 *
301 * It is OK to have counter incremented on one CPU and decremented on
302 * another: the sum will add up correctly. The danger would be when we
303 * sum up each counter, if we read a counter before it is incremented,
304 * but then read another CPU's count which it has been subsequently
305 * decremented from -- we would see more decrements than we should.
306 * MNT_WRITE_HOLD protects against this scenario, because
307 * mnt_want_write first increments count, then smp_mb, then spins on
308 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
309 * we're counting up here.
3d733633 310 */
d3ef3d73 311 if (count_mnt_writers(mnt) > 0)
312 ret = -EBUSY;
313 else
2e4b7fcd 314 mnt->mnt_flags |= MNT_READONLY;
d3ef3d73 315 /*
316 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
317 * that become unheld will see MNT_READONLY.
318 */
319 smp_wmb();
320 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
2e4b7fcd 321 spin_unlock(&vfsmount_lock);
3d733633 322 return ret;
8366025e 323}
8366025e 324
2e4b7fcd
DH
325static void __mnt_unmake_readonly(struct vfsmount *mnt)
326{
327 spin_lock(&vfsmount_lock);
328 mnt->mnt_flags &= ~MNT_READONLY;
329 spin_unlock(&vfsmount_lock);
330}
331
a3ec947c 332void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
454e2398
DH
333{
334 mnt->mnt_sb = sb;
335 mnt->mnt_root = dget(sb->s_root);
454e2398
DH
336}
337
338EXPORT_SYMBOL(simple_set_mnt);
339
1da177e4
LT
340void free_vfsmnt(struct vfsmount *mnt)
341{
342 kfree(mnt->mnt_devname);
73cd49ec 343 mnt_free_id(mnt);
d3ef3d73 344#ifdef CONFIG_SMP
345 free_percpu(mnt->mnt_writers);
346#endif
1da177e4
LT
347 kmem_cache_free(mnt_cache, mnt);
348}
349
350/*
a05964f3
RP
351 * find the first or last mount at @dentry on vfsmount @mnt depending on
352 * @dir. If @dir is set return the first mount else return the last mount.
1da177e4 353 */
a05964f3
RP
354struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
355 int dir)
1da177e4 356{
b58fed8b
RP
357 struct list_head *head = mount_hashtable + hash(mnt, dentry);
358 struct list_head *tmp = head;
1da177e4
LT
359 struct vfsmount *p, *found = NULL;
360
1da177e4 361 for (;;) {
a05964f3 362 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
363 p = NULL;
364 if (tmp == head)
365 break;
366 p = list_entry(tmp, struct vfsmount, mnt_hash);
367 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
a05964f3 368 found = p;
1da177e4
LT
369 break;
370 }
371 }
1da177e4
LT
372 return found;
373}
374
a05964f3
RP
375/*
376 * lookup_mnt increments the ref count before returning
377 * the vfsmount struct.
378 */
1c755af4 379struct vfsmount *lookup_mnt(struct path *path)
a05964f3
RP
380{
381 struct vfsmount *child_mnt;
382 spin_lock(&vfsmount_lock);
1c755af4 383 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
a05964f3
RP
384 mntget(child_mnt);
385 spin_unlock(&vfsmount_lock);
386 return child_mnt;
387}
388
1da177e4
LT
389static inline int check_mnt(struct vfsmount *mnt)
390{
6b3286ed 391 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
392}
393
6b3286ed 394static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
395{
396 if (ns) {
397 ns->event = ++event;
398 wake_up_interruptible(&ns->poll);
399 }
400}
401
6b3286ed 402static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
403{
404 if (ns && ns->event != event) {
405 ns->event = event;
406 wake_up_interruptible(&ns->poll);
407 }
408}
409
1a390689 410static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
1da177e4 411{
1a390689
AV
412 old_path->dentry = mnt->mnt_mountpoint;
413 old_path->mnt = mnt->mnt_parent;
1da177e4
LT
414 mnt->mnt_parent = mnt;
415 mnt->mnt_mountpoint = mnt->mnt_root;
416 list_del_init(&mnt->mnt_child);
417 list_del_init(&mnt->mnt_hash);
1a390689 418 old_path->dentry->d_mounted--;
1da177e4
LT
419}
420
b90fa9ae
RP
421void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
422 struct vfsmount *child_mnt)
423{
424 child_mnt->mnt_parent = mntget(mnt);
425 child_mnt->mnt_mountpoint = dget(dentry);
426 dentry->d_mounted++;
427}
428
1a390689 429static void attach_mnt(struct vfsmount *mnt, struct path *path)
1da177e4 430{
1a390689 431 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
b90fa9ae 432 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689
AV
433 hash(path->mnt, path->dentry));
434 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
b90fa9ae
RP
435}
436
437/*
438 * the caller must hold vfsmount_lock
439 */
440static void commit_tree(struct vfsmount *mnt)
441{
442 struct vfsmount *parent = mnt->mnt_parent;
443 struct vfsmount *m;
444 LIST_HEAD(head);
6b3286ed 445 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae
RP
446
447 BUG_ON(parent == mnt);
448
449 list_add_tail(&head, &mnt->mnt_list);
450 list_for_each_entry(m, &head, mnt_list)
6b3286ed 451 m->mnt_ns = n;
b90fa9ae
RP
452 list_splice(&head, n->list.prev);
453
454 list_add_tail(&mnt->mnt_hash, mount_hashtable +
455 hash(parent, mnt->mnt_mountpoint));
456 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 457 touch_mnt_namespace(n);
1da177e4
LT
458}
459
460static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
461{
462 struct list_head *next = p->mnt_mounts.next;
463 if (next == &p->mnt_mounts) {
464 while (1) {
465 if (p == root)
466 return NULL;
467 next = p->mnt_child.next;
468 if (next != &p->mnt_parent->mnt_mounts)
469 break;
470 p = p->mnt_parent;
471 }
472 }
473 return list_entry(next, struct vfsmount, mnt_child);
474}
475
9676f0c6
RP
476static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
477{
478 struct list_head *prev = p->mnt_mounts.prev;
479 while (prev != &p->mnt_mounts) {
480 p = list_entry(prev, struct vfsmount, mnt_child);
481 prev = p->mnt_mounts.prev;
482 }
483 return p;
484}
485
36341f64
RP
486static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
487 int flag)
1da177e4
LT
488{
489 struct super_block *sb = old->mnt_sb;
490 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
491
492 if (mnt) {
719f5d7f
MS
493 if (flag & (CL_SLAVE | CL_PRIVATE))
494 mnt->mnt_group_id = 0; /* not a peer of original */
495 else
496 mnt->mnt_group_id = old->mnt_group_id;
497
498 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
499 int err = mnt_alloc_group_id(mnt);
500 if (err)
501 goto out_free;
502 }
503
1da177e4
LT
504 mnt->mnt_flags = old->mnt_flags;
505 atomic_inc(&sb->s_active);
506 mnt->mnt_sb = sb;
507 mnt->mnt_root = dget(root);
508 mnt->mnt_mountpoint = mnt->mnt_root;
509 mnt->mnt_parent = mnt;
b90fa9ae 510
5afe0022
RP
511 if (flag & CL_SLAVE) {
512 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
513 mnt->mnt_master = old;
514 CLEAR_MNT_SHARED(mnt);
8aec0809 515 } else if (!(flag & CL_PRIVATE)) {
5afe0022
RP
516 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
517 list_add(&mnt->mnt_share, &old->mnt_share);
518 if (IS_MNT_SLAVE(old))
519 list_add(&mnt->mnt_slave, &old->mnt_slave);
520 mnt->mnt_master = old->mnt_master;
521 }
b90fa9ae
RP
522 if (flag & CL_MAKE_SHARED)
523 set_mnt_shared(mnt);
1da177e4
LT
524
525 /* stick the duplicate mount on the same expiry list
526 * as the original if that was on one */
36341f64 527 if (flag & CL_EXPIRE) {
36341f64
RP
528 if (!list_empty(&old->mnt_expire))
529 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 530 }
1da177e4
LT
531 }
532 return mnt;
719f5d7f
MS
533
534 out_free:
535 free_vfsmnt(mnt);
536 return NULL;
1da177e4
LT
537}
538
7b7b1ace 539static inline void __mntput(struct vfsmount *mnt)
1da177e4
LT
540{
541 struct super_block *sb = mnt->mnt_sb;
3d733633
DH
542 /*
543 * This probably indicates that somebody messed
544 * up a mnt_want/drop_write() pair. If this
545 * happens, the filesystem was probably unable
546 * to make r/w->r/o transitions.
547 */
d3ef3d73 548 /*
549 * atomic_dec_and_lock() used to deal with ->mnt_count decrements
550 * provides barriers, so count_mnt_writers() below is safe. AV
551 */
552 WARN_ON(count_mnt_writers(mnt));
1da177e4
LT
553 dput(mnt->mnt_root);
554 free_vfsmnt(mnt);
555 deactivate_super(sb);
556}
557
7b7b1ace
AV
558void mntput_no_expire(struct vfsmount *mnt)
559{
560repeat:
561 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
562 if (likely(!mnt->mnt_pinned)) {
563 spin_unlock(&vfsmount_lock);
564 __mntput(mnt);
565 return;
566 }
567 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
568 mnt->mnt_pinned = 0;
569 spin_unlock(&vfsmount_lock);
570 acct_auto_close_mnt(mnt);
571 security_sb_umount_close(mnt);
572 goto repeat;
573 }
574}
575
576EXPORT_SYMBOL(mntput_no_expire);
577
578void mnt_pin(struct vfsmount *mnt)
579{
580 spin_lock(&vfsmount_lock);
581 mnt->mnt_pinned++;
582 spin_unlock(&vfsmount_lock);
583}
584
585EXPORT_SYMBOL(mnt_pin);
586
587void mnt_unpin(struct vfsmount *mnt)
588{
589 spin_lock(&vfsmount_lock);
590 if (mnt->mnt_pinned) {
591 atomic_inc(&mnt->mnt_count);
592 mnt->mnt_pinned--;
593 }
594 spin_unlock(&vfsmount_lock);
595}
596
597EXPORT_SYMBOL(mnt_unpin);
1da177e4 598
b3b304a2
MS
599static inline void mangle(struct seq_file *m, const char *s)
600{
601 seq_escape(m, s, " \t\n\\");
602}
603
604/*
605 * Simple .show_options callback for filesystems which don't want to
606 * implement more complex mount option showing.
607 *
608 * See also save_mount_options().
609 */
610int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
611{
2a32cebd
AV
612 const char *options;
613
614 rcu_read_lock();
615 options = rcu_dereference(mnt->mnt_sb->s_options);
b3b304a2
MS
616
617 if (options != NULL && options[0]) {
618 seq_putc(m, ',');
619 mangle(m, options);
620 }
2a32cebd 621 rcu_read_unlock();
b3b304a2
MS
622
623 return 0;
624}
625EXPORT_SYMBOL(generic_show_options);
626
627/*
628 * If filesystem uses generic_show_options(), this function should be
629 * called from the fill_super() callback.
630 *
631 * The .remount_fs callback usually needs to be handled in a special
632 * way, to make sure, that previous options are not overwritten if the
633 * remount fails.
634 *
635 * Also note, that if the filesystem's .remount_fs function doesn't
636 * reset all options to their default value, but changes only newly
637 * given options, then the displayed options will not reflect reality
638 * any more.
639 */
640void save_mount_options(struct super_block *sb, char *options)
641{
2a32cebd
AV
642 BUG_ON(sb->s_options);
643 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
644}
645EXPORT_SYMBOL(save_mount_options);
646
2a32cebd
AV
647void replace_mount_options(struct super_block *sb, char *options)
648{
649 char *old = sb->s_options;
650 rcu_assign_pointer(sb->s_options, options);
651 if (old) {
652 synchronize_rcu();
653 kfree(old);
654 }
655}
656EXPORT_SYMBOL(replace_mount_options);
657
a1a2c409 658#ifdef CONFIG_PROC_FS
1da177e4
LT
659/* iterator */
660static void *m_start(struct seq_file *m, loff_t *pos)
661{
a1a2c409 662 struct proc_mounts *p = m->private;
1da177e4 663
390c6843 664 down_read(&namespace_sem);
a1a2c409 665 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
666}
667
668static void *m_next(struct seq_file *m, void *v, loff_t *pos)
669{
a1a2c409 670 struct proc_mounts *p = m->private;
b0765fb8 671
a1a2c409 672 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
673}
674
675static void m_stop(struct seq_file *m, void *v)
676{
390c6843 677 up_read(&namespace_sem);
1da177e4
LT
678}
679
2d4d4864
RP
680struct proc_fs_info {
681 int flag;
682 const char *str;
683};
684
2069f457 685static int show_sb_opts(struct seq_file *m, struct super_block *sb)
1da177e4 686{
2d4d4864 687 static const struct proc_fs_info fs_info[] = {
1da177e4
LT
688 { MS_SYNCHRONOUS, ",sync" },
689 { MS_DIRSYNC, ",dirsync" },
690 { MS_MANDLOCK, ",mand" },
1da177e4
LT
691 { 0, NULL }
692 };
2d4d4864
RP
693 const struct proc_fs_info *fs_infop;
694
695 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
696 if (sb->s_flags & fs_infop->flag)
697 seq_puts(m, fs_infop->str);
698 }
2069f457
EP
699
700 return security_sb_show_options(m, sb);
2d4d4864
RP
701}
702
703static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
704{
705 static const struct proc_fs_info mnt_info[] = {
1da177e4
LT
706 { MNT_NOSUID, ",nosuid" },
707 { MNT_NODEV, ",nodev" },
708 { MNT_NOEXEC, ",noexec" },
fc33a7bb
CH
709 { MNT_NOATIME, ",noatime" },
710 { MNT_NODIRATIME, ",nodiratime" },
47ae32d6 711 { MNT_RELATIME, ",relatime" },
d0adde57 712 { MNT_STRICTATIME, ",strictatime" },
1da177e4
LT
713 { 0, NULL }
714 };
2d4d4864
RP
715 const struct proc_fs_info *fs_infop;
716
717 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
718 if (mnt->mnt_flags & fs_infop->flag)
719 seq_puts(m, fs_infop->str);
720 }
721}
722
723static void show_type(struct seq_file *m, struct super_block *sb)
724{
725 mangle(m, sb->s_type->name);
726 if (sb->s_subtype && sb->s_subtype[0]) {
727 seq_putc(m, '.');
728 mangle(m, sb->s_subtype);
729 }
730}
731
732static int show_vfsmnt(struct seq_file *m, void *v)
733{
734 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
735 int err = 0;
c32c2f63 736 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1da177e4
LT
737
738 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
739 seq_putc(m, ' ');
c32c2f63 740 seq_path(m, &mnt_path, " \t\n\\");
1da177e4 741 seq_putc(m, ' ');
2d4d4864 742 show_type(m, mnt->mnt_sb);
2e4b7fcd 743 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
2069f457
EP
744 err = show_sb_opts(m, mnt->mnt_sb);
745 if (err)
746 goto out;
2d4d4864 747 show_mnt_opts(m, mnt);
1da177e4
LT
748 if (mnt->mnt_sb->s_op->show_options)
749 err = mnt->mnt_sb->s_op->show_options(m, mnt);
750 seq_puts(m, " 0 0\n");
2069f457 751out:
1da177e4
LT
752 return err;
753}
754
a1a2c409 755const struct seq_operations mounts_op = {
1da177e4
LT
756 .start = m_start,
757 .next = m_next,
758 .stop = m_stop,
759 .show = show_vfsmnt
760};
761
2d4d4864
RP
762static int show_mountinfo(struct seq_file *m, void *v)
763{
764 struct proc_mounts *p = m->private;
765 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
766 struct super_block *sb = mnt->mnt_sb;
767 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
768 struct path root = p->root;
769 int err = 0;
770
771 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
772 MAJOR(sb->s_dev), MINOR(sb->s_dev));
773 seq_dentry(m, mnt->mnt_root, " \t\n\\");
774 seq_putc(m, ' ');
775 seq_path_root(m, &mnt_path, &root, " \t\n\\");
776 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
777 /*
778 * Mountpoint is outside root, discard that one. Ugly,
779 * but less so than trying to do that in iterator in a
780 * race-free way (due to renames).
781 */
782 return SEQ_SKIP;
783 }
784 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
785 show_mnt_opts(m, mnt);
786
787 /* Tagged fields ("foo:X" or "bar") */
788 if (IS_MNT_SHARED(mnt))
789 seq_printf(m, " shared:%i", mnt->mnt_group_id);
97e7e0f7
MS
790 if (IS_MNT_SLAVE(mnt)) {
791 int master = mnt->mnt_master->mnt_group_id;
792 int dom = get_dominating_id(mnt, &p->root);
793 seq_printf(m, " master:%i", master);
794 if (dom && dom != master)
795 seq_printf(m, " propagate_from:%i", dom);
796 }
2d4d4864
RP
797 if (IS_MNT_UNBINDABLE(mnt))
798 seq_puts(m, " unbindable");
799
800 /* Filesystem specific data */
801 seq_puts(m, " - ");
802 show_type(m, sb);
803 seq_putc(m, ' ');
804 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
805 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
2069f457
EP
806 err = show_sb_opts(m, sb);
807 if (err)
808 goto out;
2d4d4864
RP
809 if (sb->s_op->show_options)
810 err = sb->s_op->show_options(m, mnt);
811 seq_putc(m, '\n');
2069f457 812out:
2d4d4864
RP
813 return err;
814}
815
816const struct seq_operations mountinfo_op = {
817 .start = m_start,
818 .next = m_next,
819 .stop = m_stop,
820 .show = show_mountinfo,
821};
822
b4629fe2
CL
823static int show_vfsstat(struct seq_file *m, void *v)
824{
b0765fb8 825 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
c32c2f63 826 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
b4629fe2
CL
827 int err = 0;
828
829 /* device */
830 if (mnt->mnt_devname) {
831 seq_puts(m, "device ");
832 mangle(m, mnt->mnt_devname);
833 } else
834 seq_puts(m, "no device");
835
836 /* mount point */
837 seq_puts(m, " mounted on ");
c32c2f63 838 seq_path(m, &mnt_path, " \t\n\\");
b4629fe2
CL
839 seq_putc(m, ' ');
840
841 /* file system type */
842 seq_puts(m, "with fstype ");
2d4d4864 843 show_type(m, mnt->mnt_sb);
b4629fe2
CL
844
845 /* optional statistics */
846 if (mnt->mnt_sb->s_op->show_stats) {
847 seq_putc(m, ' ');
848 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
849 }
850
851 seq_putc(m, '\n');
852 return err;
853}
854
a1a2c409 855const struct seq_operations mountstats_op = {
b4629fe2
CL
856 .start = m_start,
857 .next = m_next,
858 .stop = m_stop,
859 .show = show_vfsstat,
860};
a1a2c409 861#endif /* CONFIG_PROC_FS */
b4629fe2 862
1da177e4
LT
863/**
864 * may_umount_tree - check if a mount tree is busy
865 * @mnt: root of mount tree
866 *
867 * This is called to check if a tree of mounts has any
868 * open files, pwds, chroots or sub mounts that are
869 * busy.
870 */
871int may_umount_tree(struct vfsmount *mnt)
872{
36341f64
RP
873 int actual_refs = 0;
874 int minimum_refs = 0;
875 struct vfsmount *p;
1da177e4
LT
876
877 spin_lock(&vfsmount_lock);
36341f64 878 for (p = mnt; p; p = next_mnt(p, mnt)) {
1da177e4
LT
879 actual_refs += atomic_read(&p->mnt_count);
880 minimum_refs += 2;
1da177e4
LT
881 }
882 spin_unlock(&vfsmount_lock);
883
884 if (actual_refs > minimum_refs)
e3474a8e 885 return 0;
1da177e4 886
e3474a8e 887 return 1;
1da177e4
LT
888}
889
890EXPORT_SYMBOL(may_umount_tree);
891
892/**
893 * may_umount - check if a mount point is busy
894 * @mnt: root of mount
895 *
896 * This is called to check if a mount point has any
897 * open files, pwds, chroots or sub mounts. If the
898 * mount has sub mounts this will return busy
899 * regardless of whether the sub mounts are busy.
900 *
901 * Doesn't take quota and stuff into account. IOW, in some cases it will
902 * give false negatives. The main reason why it's here is that we need
903 * a non-destructive way to look for easily umountable filesystems.
904 */
905int may_umount(struct vfsmount *mnt)
906{
e3474a8e 907 int ret = 1;
a05964f3
RP
908 spin_lock(&vfsmount_lock);
909 if (propagate_mount_busy(mnt, 2))
e3474a8e 910 ret = 0;
a05964f3
RP
911 spin_unlock(&vfsmount_lock);
912 return ret;
1da177e4
LT
913}
914
915EXPORT_SYMBOL(may_umount);
916
b90fa9ae 917void release_mounts(struct list_head *head)
70fbcdf4
RP
918{
919 struct vfsmount *mnt;
bf066c7d 920 while (!list_empty(head)) {
b5e61818 921 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
70fbcdf4
RP
922 list_del_init(&mnt->mnt_hash);
923 if (mnt->mnt_parent != mnt) {
924 struct dentry *dentry;
925 struct vfsmount *m;
926 spin_lock(&vfsmount_lock);
927 dentry = mnt->mnt_mountpoint;
928 m = mnt->mnt_parent;
929 mnt->mnt_mountpoint = mnt->mnt_root;
930 mnt->mnt_parent = mnt;
7c4b93d8 931 m->mnt_ghosts--;
70fbcdf4
RP
932 spin_unlock(&vfsmount_lock);
933 dput(dentry);
934 mntput(m);
935 }
936 mntput(mnt);
937 }
938}
939
a05964f3 940void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1da177e4
LT
941{
942 struct vfsmount *p;
1da177e4 943
1bfba4e8
AM
944 for (p = mnt; p; p = next_mnt(p, mnt))
945 list_move(&p->mnt_hash, kill);
1da177e4 946
a05964f3
RP
947 if (propagate)
948 propagate_umount(kill);
949
70fbcdf4
RP
950 list_for_each_entry(p, kill, mnt_hash) {
951 list_del_init(&p->mnt_expire);
952 list_del_init(&p->mnt_list);
6b3286ed
KK
953 __touch_mnt_namespace(p->mnt_ns);
954 p->mnt_ns = NULL;
70fbcdf4 955 list_del_init(&p->mnt_child);
7c4b93d8
AV
956 if (p->mnt_parent != p) {
957 p->mnt_parent->mnt_ghosts++;
f30ac319 958 p->mnt_mountpoint->d_mounted--;
7c4b93d8 959 }
a05964f3 960 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
961 }
962}
963
c35038be
AV
964static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
965
1da177e4
LT
966static int do_umount(struct vfsmount *mnt, int flags)
967{
b58fed8b 968 struct super_block *sb = mnt->mnt_sb;
1da177e4 969 int retval;
70fbcdf4 970 LIST_HEAD(umount_list);
1da177e4
LT
971
972 retval = security_sb_umount(mnt, flags);
973 if (retval)
974 return retval;
975
976 /*
977 * Allow userspace to request a mountpoint be expired rather than
978 * unmounting unconditionally. Unmount only happens if:
979 * (1) the mark is already set (the mark is cleared by mntput())
980 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
981 */
982 if (flags & MNT_EXPIRE) {
6ac08c39 983 if (mnt == current->fs->root.mnt ||
1da177e4
LT
984 flags & (MNT_FORCE | MNT_DETACH))
985 return -EINVAL;
986
987 if (atomic_read(&mnt->mnt_count) != 2)
988 return -EBUSY;
989
990 if (!xchg(&mnt->mnt_expiry_mark, 1))
991 return -EAGAIN;
992 }
993
994 /*
995 * If we may have to abort operations to get out of this
996 * mount, and they will themselves hold resources we must
997 * allow the fs to do things. In the Unix tradition of
998 * 'Gee thats tricky lets do it in userspace' the umount_begin
999 * might fail to complete on the first run through as other tasks
1000 * must return, and the like. Thats for the mount program to worry
1001 * about for the moment.
1002 */
1003
42faad99 1004 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1005 sb->s_op->umount_begin(sb);
42faad99 1006 }
1da177e4
LT
1007
1008 /*
1009 * No sense to grab the lock for this test, but test itself looks
1010 * somewhat bogus. Suggestions for better replacement?
1011 * Ho-hum... In principle, we might treat that as umount + switch
1012 * to rootfs. GC would eventually take care of the old vfsmount.
1013 * Actually it makes sense, especially if rootfs would contain a
1014 * /reboot - static binary that would close all descriptors and
1015 * call reboot(9). Then init(8) could umount root and exec /reboot.
1016 */
6ac08c39 1017 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1018 /*
1019 * Special case for "unmounting" root ...
1020 * we just try to remount it readonly.
1021 */
1022 down_write(&sb->s_umount);
1023 if (!(sb->s_flags & MS_RDONLY)) {
1024 lock_kernel();
1da177e4
LT
1025 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1026 unlock_kernel();
1027 }
1028 up_write(&sb->s_umount);
1029 return retval;
1030 }
1031
390c6843 1032 down_write(&namespace_sem);
1da177e4 1033 spin_lock(&vfsmount_lock);
5addc5dd 1034 event++;
1da177e4 1035
c35038be
AV
1036 if (!(flags & MNT_DETACH))
1037 shrink_submounts(mnt, &umount_list);
1038
1da177e4 1039 retval = -EBUSY;
a05964f3 1040 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1da177e4 1041 if (!list_empty(&mnt->mnt_list))
a05964f3 1042 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1043 retval = 0;
1044 }
1045 spin_unlock(&vfsmount_lock);
1046 if (retval)
1047 security_sb_umount_busy(mnt);
390c6843 1048 up_write(&namespace_sem);
70fbcdf4 1049 release_mounts(&umount_list);
1da177e4
LT
1050 return retval;
1051}
1052
1053/*
1054 * Now umount can handle mount points as well as block devices.
1055 * This is important for filesystems which use unnamed block devices.
1056 *
1057 * We now support a flag for forced unmount like the other 'big iron'
1058 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1059 */
1060
bdc480e3 1061SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1062{
2d8f3038 1063 struct path path;
1da177e4
LT
1064 int retval;
1065
2d8f3038 1066 retval = user_path(name, &path);
1da177e4
LT
1067 if (retval)
1068 goto out;
1069 retval = -EINVAL;
2d8f3038 1070 if (path.dentry != path.mnt->mnt_root)
1da177e4 1071 goto dput_and_out;
2d8f3038 1072 if (!check_mnt(path.mnt))
1da177e4
LT
1073 goto dput_and_out;
1074
1075 retval = -EPERM;
1076 if (!capable(CAP_SYS_ADMIN))
1077 goto dput_and_out;
1078
2d8f3038 1079 retval = do_umount(path.mnt, flags);
1da177e4 1080dput_and_out:
429731b1 1081 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038
AV
1082 dput(path.dentry);
1083 mntput_no_expire(path.mnt);
1da177e4
LT
1084out:
1085 return retval;
1086}
1087
1088#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1089
1090/*
b58fed8b 1091 * The 2.0 compatible umount. No flags.
1da177e4 1092 */
bdc480e3 1093SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1094{
b58fed8b 1095 return sys_umount(name, 0);
1da177e4
LT
1096}
1097
1098#endif
1099
2d92ab3c 1100static int mount_is_safe(struct path *path)
1da177e4
LT
1101{
1102 if (capable(CAP_SYS_ADMIN))
1103 return 0;
1104 return -EPERM;
1105#ifdef notyet
2d92ab3c 1106 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1107 return -EPERM;
2d92ab3c 1108 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1109 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1110 return -EPERM;
1111 }
2d92ab3c 1112 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1113 return -EPERM;
1114 return 0;
1115#endif
1116}
1117
b90fa9ae 1118struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
36341f64 1119 int flag)
1da177e4
LT
1120{
1121 struct vfsmount *res, *p, *q, *r, *s;
1a390689 1122 struct path path;
1da177e4 1123
9676f0c6
RP
1124 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1125 return NULL;
1126
36341f64 1127 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1128 if (!q)
1129 goto Enomem;
1130 q->mnt_mountpoint = mnt->mnt_mountpoint;
1131
1132 p = mnt;
fdadd65f 1133 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
7ec02ef1 1134 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1135 continue;
1136
1137 for (s = r; s; s = next_mnt(s, r)) {
9676f0c6
RP
1138 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1139 s = skip_mnt_tree(s);
1140 continue;
1141 }
1da177e4
LT
1142 while (p != s->mnt_parent) {
1143 p = p->mnt_parent;
1144 q = q->mnt_parent;
1145 }
1146 p = s;
1a390689
AV
1147 path.mnt = q;
1148 path.dentry = p->mnt_mountpoint;
36341f64 1149 q = clone_mnt(p, p->mnt_root, flag);
1da177e4
LT
1150 if (!q)
1151 goto Enomem;
1152 spin_lock(&vfsmount_lock);
1153 list_add_tail(&q->mnt_list, &res->mnt_list);
1a390689 1154 attach_mnt(q, &path);
1da177e4
LT
1155 spin_unlock(&vfsmount_lock);
1156 }
1157 }
1158 return res;
b58fed8b 1159Enomem:
1da177e4 1160 if (res) {
70fbcdf4 1161 LIST_HEAD(umount_list);
1da177e4 1162 spin_lock(&vfsmount_lock);
a05964f3 1163 umount_tree(res, 0, &umount_list);
1da177e4 1164 spin_unlock(&vfsmount_lock);
70fbcdf4 1165 release_mounts(&umount_list);
1da177e4
LT
1166 }
1167 return NULL;
1168}
1169
589ff870 1170struct vfsmount *collect_mounts(struct path *path)
8aec0809
AV
1171{
1172 struct vfsmount *tree;
1a60a280 1173 down_write(&namespace_sem);
589ff870 1174 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1a60a280 1175 up_write(&namespace_sem);
8aec0809
AV
1176 return tree;
1177}
1178
1179void drop_collected_mounts(struct vfsmount *mnt)
1180{
1181 LIST_HEAD(umount_list);
1a60a280 1182 down_write(&namespace_sem);
8aec0809
AV
1183 spin_lock(&vfsmount_lock);
1184 umount_tree(mnt, 0, &umount_list);
1185 spin_unlock(&vfsmount_lock);
1a60a280 1186 up_write(&namespace_sem);
8aec0809
AV
1187 release_mounts(&umount_list);
1188}
1189
719f5d7f
MS
1190static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1191{
1192 struct vfsmount *p;
1193
1194 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1195 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1196 mnt_release_group_id(p);
1197 }
1198}
1199
1200static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1201{
1202 struct vfsmount *p;
1203
1204 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1205 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1206 int err = mnt_alloc_group_id(p);
1207 if (err) {
1208 cleanup_group_ids(mnt, p);
1209 return err;
1210 }
1211 }
1212 }
1213
1214 return 0;
1215}
1216
b90fa9ae
RP
1217/*
1218 * @source_mnt : mount tree to be attached
21444403
RP
1219 * @nd : place the mount tree @source_mnt is attached
1220 * @parent_nd : if non-null, detach the source_mnt from its parent and
1221 * store the parent mount and mountpoint dentry.
1222 * (done when source_mnt is moved)
b90fa9ae
RP
1223 *
1224 * NOTE: in the table below explains the semantics when a source mount
1225 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1226 * ---------------------------------------------------------------------------
1227 * | BIND MOUNT OPERATION |
1228 * |**************************************************************************
1229 * | source-->| shared | private | slave | unbindable |
1230 * | dest | | | | |
1231 * | | | | | | |
1232 * | v | | | | |
1233 * |**************************************************************************
1234 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1235 * | | | | | |
1236 * |non-shared| shared (+) | private | slave (*) | invalid |
1237 * ***************************************************************************
b90fa9ae
RP
1238 * A bind operation clones the source mount and mounts the clone on the
1239 * destination mount.
1240 *
1241 * (++) the cloned mount is propagated to all the mounts in the propagation
1242 * tree of the destination mount and the cloned mount is added to
1243 * the peer group of the source mount.
1244 * (+) the cloned mount is created under the destination mount and is marked
1245 * as shared. The cloned mount is added to the peer group of the source
1246 * mount.
5afe0022
RP
1247 * (+++) the mount is propagated to all the mounts in the propagation tree
1248 * of the destination mount and the cloned mount is made slave
1249 * of the same master as that of the source mount. The cloned mount
1250 * is marked as 'shared and slave'.
1251 * (*) the cloned mount is made a slave of the same master as that of the
1252 * source mount.
1253 *
9676f0c6
RP
1254 * ---------------------------------------------------------------------------
1255 * | MOVE MOUNT OPERATION |
1256 * |**************************************************************************
1257 * | source-->| shared | private | slave | unbindable |
1258 * | dest | | | | |
1259 * | | | | | | |
1260 * | v | | | | |
1261 * |**************************************************************************
1262 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1263 * | | | | | |
1264 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1265 * ***************************************************************************
5afe0022
RP
1266 *
1267 * (+) the mount is moved to the destination. And is then propagated to
1268 * all the mounts in the propagation tree of the destination mount.
21444403 1269 * (+*) the mount is moved to the destination.
5afe0022
RP
1270 * (+++) the mount is moved to the destination and is then propagated to
1271 * all the mounts belonging to the destination mount's propagation tree.
1272 * the mount is marked as 'shared and slave'.
1273 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1274 *
1275 * if the source mount is a tree, the operations explained above is
1276 * applied to each mount in the tree.
1277 * Must be called without spinlocks held, since this function can sleep
1278 * in allocations.
1279 */
1280static int attach_recursive_mnt(struct vfsmount *source_mnt,
1a390689 1281 struct path *path, struct path *parent_path)
b90fa9ae
RP
1282{
1283 LIST_HEAD(tree_list);
1a390689
AV
1284 struct vfsmount *dest_mnt = path->mnt;
1285 struct dentry *dest_dentry = path->dentry;
b90fa9ae 1286 struct vfsmount *child, *p;
719f5d7f 1287 int err;
b90fa9ae 1288
719f5d7f
MS
1289 if (IS_MNT_SHARED(dest_mnt)) {
1290 err = invent_group_ids(source_mnt, true);
1291 if (err)
1292 goto out;
1293 }
1294 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1295 if (err)
1296 goto out_cleanup_ids;
b90fa9ae
RP
1297
1298 if (IS_MNT_SHARED(dest_mnt)) {
1299 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1300 set_mnt_shared(p);
1301 }
1302
1303 spin_lock(&vfsmount_lock);
1a390689
AV
1304 if (parent_path) {
1305 detach_mnt(source_mnt, parent_path);
1306 attach_mnt(source_mnt, path);
e5d67f07 1307 touch_mnt_namespace(parent_path->mnt->mnt_ns);
21444403
RP
1308 } else {
1309 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1310 commit_tree(source_mnt);
1311 }
b90fa9ae
RP
1312
1313 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1314 list_del_init(&child->mnt_hash);
1315 commit_tree(child);
1316 }
1317 spin_unlock(&vfsmount_lock);
1318 return 0;
719f5d7f
MS
1319
1320 out_cleanup_ids:
1321 if (IS_MNT_SHARED(dest_mnt))
1322 cleanup_group_ids(source_mnt, NULL);
1323 out:
1324 return err;
b90fa9ae
RP
1325}
1326
8c3ee42e 1327static int graft_tree(struct vfsmount *mnt, struct path *path)
1da177e4
LT
1328{
1329 int err;
1330 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1331 return -EINVAL;
1332
8c3ee42e 1333 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1da177e4
LT
1334 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1335 return -ENOTDIR;
1336
1337 err = -ENOENT;
8c3ee42e
AV
1338 mutex_lock(&path->dentry->d_inode->i_mutex);
1339 if (IS_DEADDIR(path->dentry->d_inode))
1da177e4
LT
1340 goto out_unlock;
1341
8c3ee42e 1342 err = security_sb_check_sb(mnt, path);
1da177e4
LT
1343 if (err)
1344 goto out_unlock;
1345
1346 err = -ENOENT;
8c3ee42e
AV
1347 if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
1348 err = attach_recursive_mnt(mnt, path, NULL);
1da177e4 1349out_unlock:
8c3ee42e 1350 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4 1351 if (!err)
8c3ee42e 1352 security_sb_post_addmount(mnt, path);
1da177e4
LT
1353 return err;
1354}
1355
07b20889
RP
1356/*
1357 * recursively change the type of the mountpoint.
1358 */
0a0d8a46 1359static int do_change_type(struct path *path, int flag)
07b20889 1360{
2d92ab3c 1361 struct vfsmount *m, *mnt = path->mnt;
07b20889
RP
1362 int recurse = flag & MS_REC;
1363 int type = flag & ~MS_REC;
719f5d7f 1364 int err = 0;
07b20889 1365
ee6f9582
MS
1366 if (!capable(CAP_SYS_ADMIN))
1367 return -EPERM;
1368
2d92ab3c 1369 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1370 return -EINVAL;
1371
1372 down_write(&namespace_sem);
719f5d7f
MS
1373 if (type == MS_SHARED) {
1374 err = invent_group_ids(mnt, recurse);
1375 if (err)
1376 goto out_unlock;
1377 }
1378
07b20889
RP
1379 spin_lock(&vfsmount_lock);
1380 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1381 change_mnt_propagation(m, type);
1382 spin_unlock(&vfsmount_lock);
719f5d7f
MS
1383
1384 out_unlock:
07b20889 1385 up_write(&namespace_sem);
719f5d7f 1386 return err;
07b20889
RP
1387}
1388
1da177e4
LT
1389/*
1390 * do loopback mount.
1391 */
0a0d8a46 1392static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1393 int recurse)
1da177e4 1394{
2d92ab3c 1395 struct path old_path;
1da177e4 1396 struct vfsmount *mnt = NULL;
2d92ab3c 1397 int err = mount_is_safe(path);
1da177e4
LT
1398 if (err)
1399 return err;
1400 if (!old_name || !*old_name)
1401 return -EINVAL;
2d92ab3c 1402 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1403 if (err)
1404 return err;
1405
390c6843 1406 down_write(&namespace_sem);
1da177e4 1407 err = -EINVAL;
2d92ab3c 1408 if (IS_MNT_UNBINDABLE(old_path.mnt))
4ac91378 1409 goto out;
9676f0c6 1410
2d92ab3c 1411 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
ccd48bc7 1412 goto out;
1da177e4 1413
ccd48bc7
AV
1414 err = -ENOMEM;
1415 if (recurse)
2d92ab3c 1416 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
ccd48bc7 1417 else
2d92ab3c 1418 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
ccd48bc7
AV
1419
1420 if (!mnt)
1421 goto out;
1422
2d92ab3c 1423 err = graft_tree(mnt, path);
ccd48bc7 1424 if (err) {
70fbcdf4 1425 LIST_HEAD(umount_list);
1da177e4 1426 spin_lock(&vfsmount_lock);
a05964f3 1427 umount_tree(mnt, 0, &umount_list);
1da177e4 1428 spin_unlock(&vfsmount_lock);
70fbcdf4 1429 release_mounts(&umount_list);
5b83d2c5 1430 }
1da177e4 1431
ccd48bc7 1432out:
390c6843 1433 up_write(&namespace_sem);
2d92ab3c 1434 path_put(&old_path);
1da177e4
LT
1435 return err;
1436}
1437
2e4b7fcd
DH
1438static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1439{
1440 int error = 0;
1441 int readonly_request = 0;
1442
1443 if (ms_flags & MS_RDONLY)
1444 readonly_request = 1;
1445 if (readonly_request == __mnt_is_readonly(mnt))
1446 return 0;
1447
1448 if (readonly_request)
1449 error = mnt_make_readonly(mnt);
1450 else
1451 __mnt_unmake_readonly(mnt);
1452 return error;
1453}
1454
1da177e4
LT
1455/*
1456 * change filesystem flags. dir should be a physical root of filesystem.
1457 * If you've mounted a non-root directory somewhere and want to do remount
1458 * on it - tough luck.
1459 */
0a0d8a46 1460static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1461 void *data)
1462{
1463 int err;
2d92ab3c 1464 struct super_block *sb = path->mnt->mnt_sb;
1da177e4
LT
1465
1466 if (!capable(CAP_SYS_ADMIN))
1467 return -EPERM;
1468
2d92ab3c 1469 if (!check_mnt(path->mnt))
1da177e4
LT
1470 return -EINVAL;
1471
2d92ab3c 1472 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1473 return -EINVAL;
1474
1475 down_write(&sb->s_umount);
2e4b7fcd 1476 if (flags & MS_BIND)
2d92ab3c 1477 err = change_mount_flags(path->mnt, flags);
2e4b7fcd
DH
1478 else
1479 err = do_remount_sb(sb, flags, data, 0);
1da177e4 1480 if (!err)
2d92ab3c 1481 path->mnt->mnt_flags = mnt_flags;
1da177e4 1482 up_write(&sb->s_umount);
0e55a7cc 1483 if (!err) {
2d92ab3c 1484 security_sb_post_remount(path->mnt, flags, data);
0e55a7cc
DW
1485
1486 spin_lock(&vfsmount_lock);
1487 touch_mnt_namespace(path->mnt->mnt_ns);
1488 spin_unlock(&vfsmount_lock);
1489 }
1da177e4
LT
1490 return err;
1491}
1492
9676f0c6
RP
1493static inline int tree_contains_unbindable(struct vfsmount *mnt)
1494{
1495 struct vfsmount *p;
1496 for (p = mnt; p; p = next_mnt(p, mnt)) {
1497 if (IS_MNT_UNBINDABLE(p))
1498 return 1;
1499 }
1500 return 0;
1501}
1502
0a0d8a46 1503static int do_move_mount(struct path *path, char *old_name)
1da177e4 1504{
2d92ab3c 1505 struct path old_path, parent_path;
1da177e4
LT
1506 struct vfsmount *p;
1507 int err = 0;
1508 if (!capable(CAP_SYS_ADMIN))
1509 return -EPERM;
1510 if (!old_name || !*old_name)
1511 return -EINVAL;
2d92ab3c 1512 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1513 if (err)
1514 return err;
1515
390c6843 1516 down_write(&namespace_sem);
2d92ab3c 1517 while (d_mountpoint(path->dentry) &&
9393bd07 1518 follow_down(path))
1da177e4
LT
1519 ;
1520 err = -EINVAL;
2d92ab3c 1521 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1da177e4
LT
1522 goto out;
1523
1524 err = -ENOENT;
2d92ab3c
AV
1525 mutex_lock(&path->dentry->d_inode->i_mutex);
1526 if (IS_DEADDIR(path->dentry->d_inode))
1da177e4
LT
1527 goto out1;
1528
2d92ab3c 1529 if (!IS_ROOT(path->dentry) && d_unhashed(path->dentry))
21444403 1530 goto out1;
1da177e4
LT
1531
1532 err = -EINVAL;
2d92ab3c 1533 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1534 goto out1;
1da177e4 1535
2d92ab3c 1536 if (old_path.mnt == old_path.mnt->mnt_parent)
21444403 1537 goto out1;
1da177e4 1538
2d92ab3c
AV
1539 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1540 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1541 goto out1;
1542 /*
1543 * Don't move a mount residing in a shared parent.
1544 */
2d92ab3c
AV
1545 if (old_path.mnt->mnt_parent &&
1546 IS_MNT_SHARED(old_path.mnt->mnt_parent))
21444403 1547 goto out1;
9676f0c6
RP
1548 /*
1549 * Don't move a mount tree containing unbindable mounts to a destination
1550 * mount which is shared.
1551 */
2d92ab3c
AV
1552 if (IS_MNT_SHARED(path->mnt) &&
1553 tree_contains_unbindable(old_path.mnt))
9676f0c6 1554 goto out1;
1da177e4 1555 err = -ELOOP;
2d92ab3c
AV
1556 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1557 if (p == old_path.mnt)
21444403 1558 goto out1;
1da177e4 1559
2d92ab3c 1560 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
4ac91378 1561 if (err)
21444403 1562 goto out1;
1da177e4
LT
1563
1564 /* if the mount is moved, it should no longer be expire
1565 * automatically */
2d92ab3c 1566 list_del_init(&old_path.mnt->mnt_expire);
1da177e4 1567out1:
2d92ab3c 1568 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4 1569out:
390c6843 1570 up_write(&namespace_sem);
1da177e4 1571 if (!err)
1a390689 1572 path_put(&parent_path);
2d92ab3c 1573 path_put(&old_path);
1da177e4
LT
1574 return err;
1575}
1576
1577/*
1578 * create a new mount for userspace and request it to be added into the
1579 * namespace's tree
1580 */
0a0d8a46 1581static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
1582 int mnt_flags, char *name, void *data)
1583{
1584 struct vfsmount *mnt;
1585
1586 if (!type || !memchr(type, 0, PAGE_SIZE))
1587 return -EINVAL;
1588
1589 /* we need capabilities... */
1590 if (!capable(CAP_SYS_ADMIN))
1591 return -EPERM;
1592
1593 mnt = do_kern_mount(type, flags, name, data);
1594 if (IS_ERR(mnt))
1595 return PTR_ERR(mnt);
1596
2d92ab3c 1597 return do_add_mount(mnt, path, mnt_flags, NULL);
1da177e4
LT
1598}
1599
1600/*
1601 * add a mount into a namespace's mount tree
1602 * - provide the option of adding the new mount to an expiration list
1603 */
8d66bf54 1604int do_add_mount(struct vfsmount *newmnt, struct path *path,
1da177e4
LT
1605 int mnt_flags, struct list_head *fslist)
1606{
1607 int err;
1608
390c6843 1609 down_write(&namespace_sem);
1da177e4 1610 /* Something was mounted here while we slept */
8d66bf54 1611 while (d_mountpoint(path->dentry) &&
9393bd07 1612 follow_down(path))
1da177e4
LT
1613 ;
1614 err = -EINVAL;
dd5cae6e 1615 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1da177e4
LT
1616 goto unlock;
1617
1618 /* Refuse the same filesystem on the same mount point */
1619 err = -EBUSY;
8d66bf54
AV
1620 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1621 path->mnt->mnt_root == path->dentry)
1da177e4
LT
1622 goto unlock;
1623
1624 err = -EINVAL;
1625 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1626 goto unlock;
1627
1628 newmnt->mnt_flags = mnt_flags;
8d66bf54 1629 if ((err = graft_tree(newmnt, path)))
5b83d2c5 1630 goto unlock;
1da177e4 1631
6758f953 1632 if (fslist) /* add to the specified expiration list */
55e700b9 1633 list_add_tail(&newmnt->mnt_expire, fslist);
6758f953 1634
390c6843 1635 up_write(&namespace_sem);
5b83d2c5 1636 return 0;
1da177e4
LT
1637
1638unlock:
390c6843 1639 up_write(&namespace_sem);
1da177e4
LT
1640 mntput(newmnt);
1641 return err;
1642}
1643
1644EXPORT_SYMBOL_GPL(do_add_mount);
1645
1646/*
1647 * process a list of expirable mountpoints with the intent of discarding any
1648 * mountpoints that aren't in use and haven't been touched since last we came
1649 * here
1650 */
1651void mark_mounts_for_expiry(struct list_head *mounts)
1652{
1da177e4
LT
1653 struct vfsmount *mnt, *next;
1654 LIST_HEAD(graveyard);
bcc5c7d2 1655 LIST_HEAD(umounts);
1da177e4
LT
1656
1657 if (list_empty(mounts))
1658 return;
1659
bcc5c7d2 1660 down_write(&namespace_sem);
1da177e4
LT
1661 spin_lock(&vfsmount_lock);
1662
1663 /* extract from the expiration list every vfsmount that matches the
1664 * following criteria:
1665 * - only referenced by its parent vfsmount
1666 * - still marked for expiry (marked on the last call here; marks are
1667 * cleared by mntput())
1668 */
55e700b9 1669 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1da177e4 1670 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
bcc5c7d2 1671 propagate_mount_busy(mnt, 1))
1da177e4 1672 continue;
55e700b9 1673 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 1674 }
bcc5c7d2
AV
1675 while (!list_empty(&graveyard)) {
1676 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1677 touch_mnt_namespace(mnt->mnt_ns);
1678 umount_tree(mnt, 1, &umounts);
1679 }
5528f911 1680 spin_unlock(&vfsmount_lock);
bcc5c7d2
AV
1681 up_write(&namespace_sem);
1682
1683 release_mounts(&umounts);
5528f911
TM
1684}
1685
1686EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1687
1688/*
1689 * Ripoff of 'select_parent()'
1690 *
1691 * search the list of submounts for a given mountpoint, and move any
1692 * shrinkable submounts to the 'graveyard' list.
1693 */
1694static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1695{
1696 struct vfsmount *this_parent = parent;
1697 struct list_head *next;
1698 int found = 0;
1699
1700repeat:
1701 next = this_parent->mnt_mounts.next;
1702resume:
1703 while (next != &this_parent->mnt_mounts) {
1704 struct list_head *tmp = next;
1705 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1706
1707 next = tmp->next;
1708 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1da177e4 1709 continue;
5528f911
TM
1710 /*
1711 * Descend a level if the d_mounts list is non-empty.
1712 */
1713 if (!list_empty(&mnt->mnt_mounts)) {
1714 this_parent = mnt;
1715 goto repeat;
1716 }
1da177e4 1717
5528f911 1718 if (!propagate_mount_busy(mnt, 1)) {
5528f911
TM
1719 list_move_tail(&mnt->mnt_expire, graveyard);
1720 found++;
1721 }
1da177e4 1722 }
5528f911
TM
1723 /*
1724 * All done at this level ... ascend and resume the search
1725 */
1726 if (this_parent != parent) {
1727 next = this_parent->mnt_child.next;
1728 this_parent = this_parent->mnt_parent;
1729 goto resume;
1730 }
1731 return found;
1732}
1733
1734/*
1735 * process a list of expirable mountpoints with the intent of discarding any
1736 * submounts of a specific parent mountpoint
1737 */
c35038be 1738static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
5528f911
TM
1739{
1740 LIST_HEAD(graveyard);
c35038be 1741 struct vfsmount *m;
5528f911 1742
5528f911 1743 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 1744 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 1745 while (!list_empty(&graveyard)) {
c35038be 1746 m = list_first_entry(&graveyard, struct vfsmount,
bcc5c7d2 1747 mnt_expire);
afef80b3
EB
1748 touch_mnt_namespace(m->mnt_ns);
1749 umount_tree(m, 1, umounts);
bcc5c7d2
AV
1750 }
1751 }
1da177e4
LT
1752}
1753
1da177e4
LT
1754/*
1755 * Some copy_from_user() implementations do not return the exact number of
1756 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1757 * Note that this function differs from copy_from_user() in that it will oops
1758 * on bad values of `to', rather than returning a short copy.
1759 */
b58fed8b
RP
1760static long exact_copy_from_user(void *to, const void __user * from,
1761 unsigned long n)
1da177e4
LT
1762{
1763 char *t = to;
1764 const char __user *f = from;
1765 char c;
1766
1767 if (!access_ok(VERIFY_READ, from, n))
1768 return n;
1769
1770 while (n) {
1771 if (__get_user(c, f)) {
1772 memset(t, 0, n);
1773 break;
1774 }
1775 *t++ = c;
1776 f++;
1777 n--;
1778 }
1779 return n;
1780}
1781
b58fed8b 1782int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
1783{
1784 int i;
1785 unsigned long page;
1786 unsigned long size;
b58fed8b 1787
1da177e4
LT
1788 *where = 0;
1789 if (!data)
1790 return 0;
1791
1792 if (!(page = __get_free_page(GFP_KERNEL)))
1793 return -ENOMEM;
1794
1795 /* We only care that *some* data at the address the user
1796 * gave us is valid. Just in case, we'll zero
1797 * the remainder of the page.
1798 */
1799 /* copy_from_user cannot cross TASK_SIZE ! */
1800 size = TASK_SIZE - (unsigned long)data;
1801 if (size > PAGE_SIZE)
1802 size = PAGE_SIZE;
1803
1804 i = size - exact_copy_from_user((void *)page, data, size);
1805 if (!i) {
b58fed8b 1806 free_page(page);
1da177e4
LT
1807 return -EFAULT;
1808 }
1809 if (i != PAGE_SIZE)
1810 memset((char *)page + i, 0, PAGE_SIZE - i);
1811 *where = page;
1812 return 0;
1813}
1814
1815/*
1816 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1817 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1818 *
1819 * data is a (void *) that can point to any structure up to
1820 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1821 * information (or be NULL).
1822 *
1823 * Pre-0.97 versions of mount() didn't have a flags word.
1824 * When the flags word was introduced its top half was required
1825 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1826 * Therefore, if this magic number is present, it carries no information
1827 * and must be discarded.
1828 */
b58fed8b 1829long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
1830 unsigned long flags, void *data_page)
1831{
2d92ab3c 1832 struct path path;
1da177e4
LT
1833 int retval = 0;
1834 int mnt_flags = 0;
1835
1836 /* Discard magic */
1837 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1838 flags &= ~MS_MGC_MSK;
1839
1840 /* Basic sanity checks */
1841
1842 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1843 return -EINVAL;
1844 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1845 return -EINVAL;
1846
1847 if (data_page)
1848 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1849
613cbe3d
AK
1850 /* Default to relatime unless overriden */
1851 if (!(flags & MS_NOATIME))
1852 mnt_flags |= MNT_RELATIME;
0a1c01c9 1853
1da177e4
LT
1854 /* Separate the per-mountpoint flags */
1855 if (flags & MS_NOSUID)
1856 mnt_flags |= MNT_NOSUID;
1857 if (flags & MS_NODEV)
1858 mnt_flags |= MNT_NODEV;
1859 if (flags & MS_NOEXEC)
1860 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
1861 if (flags & MS_NOATIME)
1862 mnt_flags |= MNT_NOATIME;
1863 if (flags & MS_NODIRATIME)
1864 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
1865 if (flags & MS_STRICTATIME)
1866 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
1867 if (flags & MS_RDONLY)
1868 mnt_flags |= MNT_READONLY;
fc33a7bb
CH
1869
1870 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
d0adde57
MG
1871 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
1872 MS_STRICTATIME);
1da177e4
LT
1873
1874 /* ... and get the mountpoint */
2d92ab3c 1875 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
1da177e4
LT
1876 if (retval)
1877 return retval;
1878
2d92ab3c 1879 retval = security_sb_mount(dev_name, &path,
b5266eb4 1880 type_page, flags, data_page);
1da177e4
LT
1881 if (retval)
1882 goto dput_out;
1883
1884 if (flags & MS_REMOUNT)
2d92ab3c 1885 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
1886 data_page);
1887 else if (flags & MS_BIND)
2d92ab3c 1888 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 1889 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 1890 retval = do_change_type(&path, flags);
1da177e4 1891 else if (flags & MS_MOVE)
2d92ab3c 1892 retval = do_move_mount(&path, dev_name);
1da177e4 1893 else
2d92ab3c 1894 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
1895 dev_name, data_page);
1896dput_out:
2d92ab3c 1897 path_put(&path);
1da177e4
LT
1898 return retval;
1899}
1900
741a2951
JD
1901/*
1902 * Allocate a new namespace structure and populate it with contents
1903 * copied from the namespace of the passed in task structure.
1904 */
e3222c4e 1905static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 1906 struct fs_struct *fs)
1da177e4 1907{
6b3286ed 1908 struct mnt_namespace *new_ns;
7f2da1e7 1909 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1da177e4
LT
1910 struct vfsmount *p, *q;
1911
6b3286ed 1912 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1da177e4 1913 if (!new_ns)
467e9f4b 1914 return ERR_PTR(-ENOMEM);
1da177e4
LT
1915
1916 atomic_set(&new_ns->count, 1);
1da177e4 1917 INIT_LIST_HEAD(&new_ns->list);
5addc5dd
AV
1918 init_waitqueue_head(&new_ns->poll);
1919 new_ns->event = 0;
1da177e4 1920
390c6843 1921 down_write(&namespace_sem);
1da177e4 1922 /* First pass: copy the tree topology */
6b3286ed 1923 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
9676f0c6 1924 CL_COPY_ALL | CL_EXPIRE);
1da177e4 1925 if (!new_ns->root) {
390c6843 1926 up_write(&namespace_sem);
1da177e4 1927 kfree(new_ns);
5cc4a034 1928 return ERR_PTR(-ENOMEM);
1da177e4
LT
1929 }
1930 spin_lock(&vfsmount_lock);
1931 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1932 spin_unlock(&vfsmount_lock);
1933
1934 /*
1935 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1936 * as belonging to new namespace. We have already acquired a private
1937 * fs_struct, so tsk->fs->lock is not needed.
1938 */
6b3286ed 1939 p = mnt_ns->root;
1da177e4
LT
1940 q = new_ns->root;
1941 while (p) {
6b3286ed 1942 q->mnt_ns = new_ns;
1da177e4 1943 if (fs) {
6ac08c39 1944 if (p == fs->root.mnt) {
1da177e4 1945 rootmnt = p;
6ac08c39 1946 fs->root.mnt = mntget(q);
1da177e4 1947 }
6ac08c39 1948 if (p == fs->pwd.mnt) {
1da177e4 1949 pwdmnt = p;
6ac08c39 1950 fs->pwd.mnt = mntget(q);
1da177e4 1951 }
1da177e4 1952 }
6b3286ed 1953 p = next_mnt(p, mnt_ns->root);
1da177e4
LT
1954 q = next_mnt(q, new_ns->root);
1955 }
390c6843 1956 up_write(&namespace_sem);
1da177e4 1957
1da177e4
LT
1958 if (rootmnt)
1959 mntput(rootmnt);
1960 if (pwdmnt)
1961 mntput(pwdmnt);
1da177e4 1962
741a2951
JD
1963 return new_ns;
1964}
1965
213dd266 1966struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 1967 struct fs_struct *new_fs)
741a2951 1968{
6b3286ed 1969 struct mnt_namespace *new_ns;
741a2951 1970
e3222c4e 1971 BUG_ON(!ns);
6b3286ed 1972 get_mnt_ns(ns);
741a2951
JD
1973
1974 if (!(flags & CLONE_NEWNS))
e3222c4e 1975 return ns;
741a2951 1976
e3222c4e 1977 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 1978
6b3286ed 1979 put_mnt_ns(ns);
e3222c4e 1980 return new_ns;
1da177e4
LT
1981}
1982
bdc480e3
HC
1983SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
1984 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4
LT
1985{
1986 int retval;
1987 unsigned long data_page;
1988 unsigned long type_page;
1989 unsigned long dev_page;
1990 char *dir_page;
1991
b58fed8b 1992 retval = copy_mount_options(type, &type_page);
1da177e4
LT
1993 if (retval < 0)
1994 return retval;
1995
1996 dir_page = getname(dir_name);
1997 retval = PTR_ERR(dir_page);
1998 if (IS_ERR(dir_page))
1999 goto out1;
2000
b58fed8b 2001 retval = copy_mount_options(dev_name, &dev_page);
1da177e4
LT
2002 if (retval < 0)
2003 goto out2;
2004
b58fed8b 2005 retval = copy_mount_options(data, &data_page);
1da177e4
LT
2006 if (retval < 0)
2007 goto out3;
2008
2009 lock_kernel();
b58fed8b
RP
2010 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
2011 flags, (void *)data_page);
1da177e4
LT
2012 unlock_kernel();
2013 free_page(data_page);
2014
2015out3:
2016 free_page(dev_page);
2017out2:
2018 putname(dir_page);
2019out1:
2020 free_page(type_page);
2021 return retval;
2022}
2023
1da177e4
LT
2024/*
2025 * pivot_root Semantics:
2026 * Moves the root file system of the current process to the directory put_old,
2027 * makes new_root as the new root file system of the current process, and sets
2028 * root/cwd of all processes which had them on the current root to new_root.
2029 *
2030 * Restrictions:
2031 * The new_root and put_old must be directories, and must not be on the
2032 * same file system as the current process root. The put_old must be
2033 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2034 * pointed to by put_old must yield the same directory as new_root. No other
2035 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2036 *
4a0d11fa
NB
2037 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2038 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2039 * in this situation.
2040 *
1da177e4
LT
2041 * Notes:
2042 * - we don't move root/cwd if they are not at the root (reason: if something
2043 * cared enough to change them, it's probably wrong to force them elsewhere)
2044 * - it's okay to pick a root that isn't the root of a file system, e.g.
2045 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2046 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2047 * first.
2048 */
3480b257
HC
2049SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2050 const char __user *, put_old)
1da177e4
LT
2051{
2052 struct vfsmount *tmp;
2d8f3038 2053 struct path new, old, parent_path, root_parent, root;
1da177e4
LT
2054 int error;
2055
2056 if (!capable(CAP_SYS_ADMIN))
2057 return -EPERM;
2058
2d8f3038 2059 error = user_path_dir(new_root, &new);
1da177e4
LT
2060 if (error)
2061 goto out0;
2062 error = -EINVAL;
2d8f3038 2063 if (!check_mnt(new.mnt))
1da177e4
LT
2064 goto out1;
2065
2d8f3038 2066 error = user_path_dir(put_old, &old);
1da177e4
LT
2067 if (error)
2068 goto out1;
2069
2d8f3038 2070 error = security_sb_pivotroot(&old, &new);
1da177e4 2071 if (error) {
2d8f3038 2072 path_put(&old);
1da177e4
LT
2073 goto out1;
2074 }
2075
2076 read_lock(&current->fs->lock);
8c3ee42e 2077 root = current->fs->root;
6ac08c39 2078 path_get(&current->fs->root);
1da177e4 2079 read_unlock(&current->fs->lock);
390c6843 2080 down_write(&namespace_sem);
2d8f3038 2081 mutex_lock(&old.dentry->d_inode->i_mutex);
1da177e4 2082 error = -EINVAL;
2d8f3038
AV
2083 if (IS_MNT_SHARED(old.mnt) ||
2084 IS_MNT_SHARED(new.mnt->mnt_parent) ||
8c3ee42e 2085 IS_MNT_SHARED(root.mnt->mnt_parent))
21444403 2086 goto out2;
8c3ee42e 2087 if (!check_mnt(root.mnt))
1da177e4
LT
2088 goto out2;
2089 error = -ENOENT;
2d8f3038 2090 if (IS_DEADDIR(new.dentry->d_inode))
1da177e4 2091 goto out2;
2d8f3038 2092 if (d_unhashed(new.dentry) && !IS_ROOT(new.dentry))
1da177e4 2093 goto out2;
2d8f3038 2094 if (d_unhashed(old.dentry) && !IS_ROOT(old.dentry))
1da177e4
LT
2095 goto out2;
2096 error = -EBUSY;
2d8f3038
AV
2097 if (new.mnt == root.mnt ||
2098 old.mnt == root.mnt)
1da177e4
LT
2099 goto out2; /* loop, on the same file system */
2100 error = -EINVAL;
8c3ee42e 2101 if (root.mnt->mnt_root != root.dentry)
1da177e4 2102 goto out2; /* not a mountpoint */
8c3ee42e 2103 if (root.mnt->mnt_parent == root.mnt)
0bb6fcc1 2104 goto out2; /* not attached */
2d8f3038 2105 if (new.mnt->mnt_root != new.dentry)
1da177e4 2106 goto out2; /* not a mountpoint */
2d8f3038 2107 if (new.mnt->mnt_parent == new.mnt)
0bb6fcc1 2108 goto out2; /* not attached */
4ac91378 2109 /* make sure we can reach put_old from new_root */
2d8f3038 2110 tmp = old.mnt;
1da177e4 2111 spin_lock(&vfsmount_lock);
2d8f3038 2112 if (tmp != new.mnt) {
1da177e4
LT
2113 for (;;) {
2114 if (tmp->mnt_parent == tmp)
2115 goto out3; /* already mounted on put_old */
2d8f3038 2116 if (tmp->mnt_parent == new.mnt)
1da177e4
LT
2117 break;
2118 tmp = tmp->mnt_parent;
2119 }
2d8f3038 2120 if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
1da177e4 2121 goto out3;
2d8f3038 2122 } else if (!is_subdir(old.dentry, new.dentry))
1da177e4 2123 goto out3;
2d8f3038 2124 detach_mnt(new.mnt, &parent_path);
8c3ee42e 2125 detach_mnt(root.mnt, &root_parent);
4ac91378 2126 /* mount old root on put_old */
2d8f3038 2127 attach_mnt(root.mnt, &old);
4ac91378 2128 /* mount new_root on / */
2d8f3038 2129 attach_mnt(new.mnt, &root_parent);
6b3286ed 2130 touch_mnt_namespace(current->nsproxy->mnt_ns);
1da177e4 2131 spin_unlock(&vfsmount_lock);
2d8f3038
AV
2132 chroot_fs_refs(&root, &new);
2133 security_sb_post_pivotroot(&root, &new);
1da177e4 2134 error = 0;
1a390689
AV
2135 path_put(&root_parent);
2136 path_put(&parent_path);
1da177e4 2137out2:
2d8f3038 2138 mutex_unlock(&old.dentry->d_inode->i_mutex);
390c6843 2139 up_write(&namespace_sem);
8c3ee42e 2140 path_put(&root);
2d8f3038 2141 path_put(&old);
1da177e4 2142out1:
2d8f3038 2143 path_put(&new);
1da177e4 2144out0:
1da177e4
LT
2145 return error;
2146out3:
2147 spin_unlock(&vfsmount_lock);
2148 goto out2;
2149}
2150
2151static void __init init_mount_tree(void)
2152{
2153 struct vfsmount *mnt;
6b3286ed 2154 struct mnt_namespace *ns;
ac748a09 2155 struct path root;
1da177e4
LT
2156
2157 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2158 if (IS_ERR(mnt))
2159 panic("Can't create rootfs");
6b3286ed
KK
2160 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
2161 if (!ns)
1da177e4 2162 panic("Can't allocate initial namespace");
6b3286ed
KK
2163 atomic_set(&ns->count, 1);
2164 INIT_LIST_HEAD(&ns->list);
2165 init_waitqueue_head(&ns->poll);
2166 ns->event = 0;
2167 list_add(&mnt->mnt_list, &ns->list);
2168 ns->root = mnt;
2169 mnt->mnt_ns = ns;
2170
2171 init_task.nsproxy->mnt_ns = ns;
2172 get_mnt_ns(ns);
2173
ac748a09
JB
2174 root.mnt = ns->root;
2175 root.dentry = ns->root->mnt_root;
2176
2177 set_fs_pwd(current->fs, &root);
2178 set_fs_root(current->fs, &root);
1da177e4
LT
2179}
2180
74bf17cf 2181void __init mnt_init(void)
1da177e4 2182{
13f14b4d 2183 unsigned u;
15a67dd8 2184 int err;
1da177e4 2185
390c6843
RP
2186 init_rwsem(&namespace_sem);
2187
1da177e4 2188 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
20c2df83 2189 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2190
b58fed8b 2191 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2192
2193 if (!mount_hashtable)
2194 panic("Failed to allocate mount hash table\n");
2195
13f14b4d
ED
2196 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2197
2198 for (u = 0; u < HASH_SIZE; u++)
2199 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2200
15a67dd8
RD
2201 err = sysfs_init();
2202 if (err)
2203 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2204 __func__, err);
00d26666
GKH
2205 fs_kobj = kobject_create_and_add("fs", NULL);
2206 if (!fs_kobj)
8e24eea7 2207 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2208 init_rootfs();
2209 init_mount_tree();
2210}
2211
6b3286ed 2212void __put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2213{
6b3286ed 2214 struct vfsmount *root = ns->root;
70fbcdf4 2215 LIST_HEAD(umount_list);
6b3286ed 2216 ns->root = NULL;
1ce88cf4 2217 spin_unlock(&vfsmount_lock);
390c6843 2218 down_write(&namespace_sem);
1da177e4 2219 spin_lock(&vfsmount_lock);
a05964f3 2220 umount_tree(root, 0, &umount_list);
1da177e4 2221 spin_unlock(&vfsmount_lock);
390c6843 2222 up_write(&namespace_sem);
70fbcdf4 2223 release_mounts(&umount_list);
6b3286ed 2224 kfree(ns);
1da177e4 2225}