]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
ip: update the description of rp_filter in ip-sysctl.txt
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5
IM
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
ac086bc2
PZ
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
ada3fa15 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
b9bf3121 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
e9036b36
CG
312#ifdef CONFIG_FAIR_GROUP_SCHED
313
57310a98
PZ
314#ifdef CONFIG_SMP
315static int root_task_group_empty(void)
316{
317 return list_empty(&root_task_group.children);
318}
319#endif
320
052f1dc7
PZ
321#ifdef CONFIG_USER_SCHED
322# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 323#else /* !CONFIG_USER_SCHED */
052f1dc7 324# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 325#endif /* CONFIG_USER_SCHED */
052f1dc7 326
cb4ad1ff 327/*
2e084786
LJ
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
cb4ad1ff
MX
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
334 */
18d95a28 335#define MIN_SHARES 2
2e084786 336#define MAX_SHARES (1UL << 18)
18d95a28 337
052f1dc7
PZ
338static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339#endif
340
29f59db3 341/* Default task group.
3a252015 342 * Every task in system belong to this group at bootup.
29f59db3 343 */
434d53b0 344struct task_group init_task_group;
29f59db3
SV
345
346/* return group to which a task belongs */
4cf86d77 347static inline struct task_group *task_group(struct task_struct *p)
29f59db3 348{
4cf86d77 349 struct task_group *tg;
9b5b7751 350
052f1dc7 351#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
052f1dc7 355#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
24e377a8 358#else
41a2d6cf 359 tg = &init_task_group;
24e377a8 360#endif
9b5b7751 361 return tg;
29f59db3
SV
362}
363
364/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 366{
052f1dc7 367#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
052f1dc7 370#endif
6f505b16 371
052f1dc7 372#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 375#endif
29f59db3
SV
376}
377
378#else
379
6f505b16 380static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
381static inline struct task_group *task_group(struct task_struct *p)
382{
383 return NULL;
384}
29f59db3 385
052f1dc7 386#endif /* CONFIG_GROUP_SCHED */
29f59db3 387
6aa645ea
IM
388/* CFS-related fields in a runqueue */
389struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
6aa645ea 393 u64 exec_clock;
e9acbff6 394 u64 min_vruntime;
6aa645ea
IM
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
4a55bd5e
PZ
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
4793241b 406 struct sched_entity *curr, *next, *last;
ddc97297 407
5ac5c4d6 408 unsigned int nr_spread_over;
ddc97297 409
62160e3f 410#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
41a2d6cf
IM
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
41a2d6cf
IM
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
423
424#ifdef CONFIG_SMP
c09595f6 425 /*
c8cba857 426 * the part of load.weight contributed by tasks
c09595f6 427 */
c8cba857 428 unsigned long task_weight;
c09595f6 429
c8cba857
PZ
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
c09595f6 437
c8cba857
PZ
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
f1d239f7
PZ
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
c09595f6 447#endif
6aa645ea
IM
448#endif
449};
1da177e4 450
6aa645ea
IM
451/* Real-Time classes' related field in a runqueue: */
452struct rt_rq {
453 struct rt_prio_array active;
63489e45 454 unsigned long rt_nr_running;
052f1dc7 455#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
456 struct {
457 int curr; /* highest queued rt task prio */
398a153b 458#ifdef CONFIG_SMP
e864c499 459 int next; /* next highest */
398a153b 460#endif
e864c499 461 } highest_prio;
6f505b16 462#endif
fa85ae24 463#ifdef CONFIG_SMP
73fe6aae 464 unsigned long rt_nr_migratory;
a1ba4d8b 465 unsigned long rt_nr_total;
a22d7fc1 466 int overloaded;
917b627d 467 struct plist_head pushable_tasks;
fa85ae24 468#endif
6f505b16 469 int rt_throttled;
fa85ae24 470 u64 rt_time;
ac086bc2 471 u64 rt_runtime;
ea736ed5 472 /* Nests inside the rq lock: */
ac086bc2 473 spinlock_t rt_runtime_lock;
6f505b16 474
052f1dc7 475#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
476 unsigned long rt_nr_boosted;
477
6f505b16
PZ
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482#endif
6aa645ea
IM
483};
484
57d885fe
GH
485#ifdef CONFIG_SMP
486
487/*
488 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
493 *
57d885fe
GH
494 */
495struct root_domain {
496 atomic_t refcount;
c6c4927b
RR
497 cpumask_var_t span;
498 cpumask_var_t online;
637f5085 499
0eab9146 500 /*
637f5085
GH
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
c6c4927b 504 cpumask_var_t rto_mask;
0eab9146 505 atomic_t rto_count;
6e0534f2
GH
506#ifdef CONFIG_SMP
507 struct cpupri cpupri;
508#endif
57d885fe
GH
509};
510
dc938520
GH
511/*
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
514 */
57d885fe
GH
515static struct root_domain def_root_domain;
516
517#endif
518
1da177e4
LT
519/*
520 * This is the main, per-CPU runqueue data structure.
521 *
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
525 */
70b97a7f 526struct rq {
d8016491
IM
527 /* runqueue lock: */
528 spinlock_t lock;
1da177e4
LT
529
530 /*
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
533 */
534 unsigned long nr_running;
6aa645ea
IM
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 537#ifdef CONFIG_NO_HZ
15934a37 538 unsigned long last_tick_seen;
46cb4b7c
SS
539 unsigned char in_nohz_recently;
540#endif
d8016491
IM
541 /* capture load from *all* tasks on this cpu: */
542 struct load_weight load;
6aa645ea
IM
543 unsigned long nr_load_updates;
544 u64 nr_switches;
23a185ca 545 u64 nr_migrations_in;
6aa645ea
IM
546
547 struct cfs_rq cfs;
6f505b16 548 struct rt_rq rt;
6f505b16 549
6aa645ea 550#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
551 /* list of leaf cfs_rq on this cpu: */
552 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
553#endif
554#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 555 struct list_head leaf_rt_rq_list;
1da177e4 556#endif
1da177e4
LT
557
558 /*
559 * This is part of a global counter where only the total sum
560 * over all CPUs matters. A task can increase this counter on
561 * one CPU and if it got migrated afterwards it may decrease
562 * it on another CPU. Always updated under the runqueue lock:
563 */
564 unsigned long nr_uninterruptible;
565
36c8b586 566 struct task_struct *curr, *idle;
c9819f45 567 unsigned long next_balance;
1da177e4 568 struct mm_struct *prev_mm;
6aa645ea 569
3e51f33f 570 u64 clock;
6aa645ea 571
1da177e4
LT
572 atomic_t nr_iowait;
573
574#ifdef CONFIG_SMP
0eab9146 575 struct root_domain *rd;
1da177e4
LT
576 struct sched_domain *sd;
577
a0a522ce 578 unsigned char idle_at_tick;
1da177e4 579 /* For active balancing */
3f029d3c 580 int post_schedule;
1da177e4
LT
581 int active_balance;
582 int push_cpu;
d8016491
IM
583 /* cpu of this runqueue: */
584 int cpu;
1f11eb6a 585 int online;
1da177e4 586
a8a51d5e 587 unsigned long avg_load_per_task;
1da177e4 588
36c8b586 589 struct task_struct *migration_thread;
1da177e4 590 struct list_head migration_queue;
e9e9250b
PZ
591
592 u64 rt_avg;
593 u64 age_stamp;
1da177e4
LT
594#endif
595
dce48a84
TG
596 /* calc_load related fields */
597 unsigned long calc_load_update;
598 long calc_load_active;
599
8f4d37ec 600#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
601#ifdef CONFIG_SMP
602 int hrtick_csd_pending;
603 struct call_single_data hrtick_csd;
604#endif
8f4d37ec
PZ
605 struct hrtimer hrtick_timer;
606#endif
607
1da177e4
LT
608#ifdef CONFIG_SCHEDSTATS
609 /* latency stats */
610 struct sched_info rq_sched_info;
9c2c4802
KC
611 unsigned long long rq_cpu_time;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
613
614 /* sys_sched_yield() stats */
480b9434 615 unsigned int yld_count;
1da177e4
LT
616
617 /* schedule() stats */
480b9434
KC
618 unsigned int sched_switch;
619 unsigned int sched_count;
620 unsigned int sched_goidle;
1da177e4
LT
621
622 /* try_to_wake_up() stats */
480b9434
KC
623 unsigned int ttwu_count;
624 unsigned int ttwu_local;
b8efb561
IM
625
626 /* BKL stats */
480b9434 627 unsigned int bkl_count;
1da177e4
LT
628#endif
629};
630
f34e3b61 631static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 632
7d478721
PZ
633static inline
634void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 635{
7d478721 636 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
637}
638
0a2966b4
CL
639static inline int cpu_of(struct rq *rq)
640{
641#ifdef CONFIG_SMP
642 return rq->cpu;
643#else
644 return 0;
645#endif
646}
647
674311d5
NP
648/*
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 650 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
651 *
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
654 */
48f24c4d
IM
655#define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
657
658#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659#define this_rq() (&__get_cpu_var(runqueues))
660#define task_rq(p) cpu_rq(task_cpu(p))
661#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 662#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 663
aa9c4c0f 664inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
665{
666 rq->clock = sched_clock_cpu(cpu_of(rq));
667}
668
bf5c91ba
IM
669/*
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 */
672#ifdef CONFIG_SCHED_DEBUG
673# define const_debug __read_mostly
674#else
675# define const_debug static const
676#endif
677
017730c1
IM
678/**
679 * runqueue_is_locked
e17b38bf 680 * @cpu: the processor in question.
017730c1
IM
681 *
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
685 */
89f19f04 686int runqueue_is_locked(int cpu)
017730c1 687{
89f19f04 688 return spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
689}
690
bf5c91ba
IM
691/*
692 * Debugging: various feature bits
693 */
f00b45c1
PZ
694
695#define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
697
bf5c91ba 698enum {
f00b45c1 699#include "sched_features.h"
bf5c91ba
IM
700};
701
f00b45c1
PZ
702#undef SCHED_FEAT
703
704#define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
706
bf5c91ba 707const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
708#include "sched_features.h"
709 0;
710
711#undef SCHED_FEAT
712
713#ifdef CONFIG_SCHED_DEBUG
714#define SCHED_FEAT(name, enabled) \
715 #name ,
716
983ed7a6 717static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
718#include "sched_features.h"
719 NULL
720};
721
722#undef SCHED_FEAT
723
34f3a814 724static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 725{
f00b45c1
PZ
726 int i;
727
728 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
729 if (!(sysctl_sched_features & (1UL << i)))
730 seq_puts(m, "NO_");
731 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 732 }
34f3a814 733 seq_puts(m, "\n");
f00b45c1 734
34f3a814 735 return 0;
f00b45c1
PZ
736}
737
738static ssize_t
739sched_feat_write(struct file *filp, const char __user *ubuf,
740 size_t cnt, loff_t *ppos)
741{
742 char buf[64];
743 char *cmp = buf;
744 int neg = 0;
745 int i;
746
747 if (cnt > 63)
748 cnt = 63;
749
750 if (copy_from_user(&buf, ubuf, cnt))
751 return -EFAULT;
752
753 buf[cnt] = 0;
754
c24b7c52 755 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
756 neg = 1;
757 cmp += 3;
758 }
759
760 for (i = 0; sched_feat_names[i]; i++) {
761 int len = strlen(sched_feat_names[i]);
762
763 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
764 if (neg)
765 sysctl_sched_features &= ~(1UL << i);
766 else
767 sysctl_sched_features |= (1UL << i);
768 break;
769 }
770 }
771
772 if (!sched_feat_names[i])
773 return -EINVAL;
774
775 filp->f_pos += cnt;
776
777 return cnt;
778}
779
34f3a814
LZ
780static int sched_feat_open(struct inode *inode, struct file *filp)
781{
782 return single_open(filp, sched_feat_show, NULL);
783}
784
828c0950 785static const struct file_operations sched_feat_fops = {
34f3a814
LZ
786 .open = sched_feat_open,
787 .write = sched_feat_write,
788 .read = seq_read,
789 .llseek = seq_lseek,
790 .release = single_release,
f00b45c1
PZ
791};
792
793static __init int sched_init_debug(void)
794{
f00b45c1
PZ
795 debugfs_create_file("sched_features", 0644, NULL, NULL,
796 &sched_feat_fops);
797
798 return 0;
799}
800late_initcall(sched_init_debug);
801
802#endif
803
804#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 805
b82d9fdd
PZ
806/*
807 * Number of tasks to iterate in a single balance run.
808 * Limited because this is done with IRQs disabled.
809 */
810const_debug unsigned int sysctl_sched_nr_migrate = 32;
811
2398f2c6
PZ
812/*
813 * ratelimit for updating the group shares.
55cd5340 814 * default: 0.25ms
2398f2c6 815 */
55cd5340 816unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 817
ffda12a1
PZ
818/*
819 * Inject some fuzzyness into changing the per-cpu group shares
820 * this avoids remote rq-locks at the expense of fairness.
821 * default: 4
822 */
823unsigned int sysctl_sched_shares_thresh = 4;
824
e9e9250b
PZ
825/*
826 * period over which we average the RT time consumption, measured
827 * in ms.
828 *
829 * default: 1s
830 */
831const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
832
fa85ae24 833/*
9f0c1e56 834 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
835 * default: 1s
836 */
9f0c1e56 837unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 838
6892b75e
IM
839static __read_mostly int scheduler_running;
840
9f0c1e56
PZ
841/*
842 * part of the period that we allow rt tasks to run in us.
843 * default: 0.95s
844 */
845int sysctl_sched_rt_runtime = 950000;
fa85ae24 846
d0b27fa7
PZ
847static inline u64 global_rt_period(void)
848{
849 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
850}
851
852static inline u64 global_rt_runtime(void)
853{
e26873bb 854 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
855 return RUNTIME_INF;
856
857 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
858}
fa85ae24 859
1da177e4 860#ifndef prepare_arch_switch
4866cde0
NP
861# define prepare_arch_switch(next) do { } while (0)
862#endif
863#ifndef finish_arch_switch
864# define finish_arch_switch(prev) do { } while (0)
865#endif
866
051a1d1a
DA
867static inline int task_current(struct rq *rq, struct task_struct *p)
868{
869 return rq->curr == p;
870}
871
4866cde0 872#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 874{
051a1d1a 875 return task_current(rq, p);
4866cde0
NP
876}
877
70b97a7f 878static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
879{
880}
881
70b97a7f 882static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 883{
da04c035
IM
884#ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq->lock.owner = current;
887#endif
8a25d5de
IM
888 /*
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
891 * prev into current:
892 */
893 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
894
4866cde0
NP
895 spin_unlock_irq(&rq->lock);
896}
897
898#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 899static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 return p->oncpu;
903#else
051a1d1a 904 return task_current(rq, p);
4866cde0
NP
905#endif
906}
907
70b97a7f 908static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
909{
910#ifdef CONFIG_SMP
911 /*
912 * We can optimise this out completely for !SMP, because the
913 * SMP rebalancing from interrupt is the only thing that cares
914 * here.
915 */
916 next->oncpu = 1;
917#endif
918#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 spin_unlock_irq(&rq->lock);
920#else
921 spin_unlock(&rq->lock);
922#endif
923}
924
70b97a7f 925static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
926{
927#ifdef CONFIG_SMP
928 /*
929 * After ->oncpu is cleared, the task can be moved to a different CPU.
930 * We must ensure this doesn't happen until the switch is completely
931 * finished.
932 */
933 smp_wmb();
934 prev->oncpu = 0;
935#endif
936#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
937 local_irq_enable();
1da177e4 938#endif
4866cde0
NP
939}
940#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 941
b29739f9
IM
942/*
943 * __task_rq_lock - lock the runqueue a given task resides on.
944 * Must be called interrupts disabled.
945 */
70b97a7f 946static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
947 __acquires(rq->lock)
948{
3a5c359a
AK
949 for (;;) {
950 struct rq *rq = task_rq(p);
951 spin_lock(&rq->lock);
952 if (likely(rq == task_rq(p)))
953 return rq;
b29739f9 954 spin_unlock(&rq->lock);
b29739f9 955 }
b29739f9
IM
956}
957
1da177e4
LT
958/*
959 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 960 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
961 * explicitly disabling preemption.
962 */
70b97a7f 963static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
964 __acquires(rq->lock)
965{
70b97a7f 966 struct rq *rq;
1da177e4 967
3a5c359a
AK
968 for (;;) {
969 local_irq_save(*flags);
970 rq = task_rq(p);
971 spin_lock(&rq->lock);
972 if (likely(rq == task_rq(p)))
973 return rq;
1da177e4 974 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 975 }
1da177e4
LT
976}
977
ad474cac
ON
978void task_rq_unlock_wait(struct task_struct *p)
979{
980 struct rq *rq = task_rq(p);
981
982 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
983 spin_unlock_wait(&rq->lock);
984}
985
a9957449 986static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
987 __releases(rq->lock)
988{
989 spin_unlock(&rq->lock);
990}
991
70b97a7f 992static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
993 __releases(rq->lock)
994{
995 spin_unlock_irqrestore(&rq->lock, *flags);
996}
997
1da177e4 998/*
cc2a73b5 999 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1000 */
a9957449 1001static struct rq *this_rq_lock(void)
1da177e4
LT
1002 __acquires(rq->lock)
1003{
70b97a7f 1004 struct rq *rq;
1da177e4
LT
1005
1006 local_irq_disable();
1007 rq = this_rq();
1008 spin_lock(&rq->lock);
1009
1010 return rq;
1011}
1012
8f4d37ec
PZ
1013#ifdef CONFIG_SCHED_HRTICK
1014/*
1015 * Use HR-timers to deliver accurate preemption points.
1016 *
1017 * Its all a bit involved since we cannot program an hrt while holding the
1018 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1019 * reschedule event.
1020 *
1021 * When we get rescheduled we reprogram the hrtick_timer outside of the
1022 * rq->lock.
1023 */
8f4d37ec
PZ
1024
1025/*
1026 * Use hrtick when:
1027 * - enabled by features
1028 * - hrtimer is actually high res
1029 */
1030static inline int hrtick_enabled(struct rq *rq)
1031{
1032 if (!sched_feat(HRTICK))
1033 return 0;
ba42059f 1034 if (!cpu_active(cpu_of(rq)))
b328ca18 1035 return 0;
8f4d37ec
PZ
1036 return hrtimer_is_hres_active(&rq->hrtick_timer);
1037}
1038
8f4d37ec
PZ
1039static void hrtick_clear(struct rq *rq)
1040{
1041 if (hrtimer_active(&rq->hrtick_timer))
1042 hrtimer_cancel(&rq->hrtick_timer);
1043}
1044
8f4d37ec
PZ
1045/*
1046 * High-resolution timer tick.
1047 * Runs from hardirq context with interrupts disabled.
1048 */
1049static enum hrtimer_restart hrtick(struct hrtimer *timer)
1050{
1051 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1052
1053 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1054
1055 spin_lock(&rq->lock);
3e51f33f 1056 update_rq_clock(rq);
8f4d37ec
PZ
1057 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1058 spin_unlock(&rq->lock);
1059
1060 return HRTIMER_NORESTART;
1061}
1062
95e904c7 1063#ifdef CONFIG_SMP
31656519
PZ
1064/*
1065 * called from hardirq (IPI) context
1066 */
1067static void __hrtick_start(void *arg)
b328ca18 1068{
31656519 1069 struct rq *rq = arg;
b328ca18 1070
31656519
PZ
1071 spin_lock(&rq->lock);
1072 hrtimer_restart(&rq->hrtick_timer);
1073 rq->hrtick_csd_pending = 0;
1074 spin_unlock(&rq->lock);
b328ca18
PZ
1075}
1076
31656519
PZ
1077/*
1078 * Called to set the hrtick timer state.
1079 *
1080 * called with rq->lock held and irqs disabled
1081 */
1082static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1083{
31656519
PZ
1084 struct hrtimer *timer = &rq->hrtick_timer;
1085 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1086
cc584b21 1087 hrtimer_set_expires(timer, time);
31656519
PZ
1088
1089 if (rq == this_rq()) {
1090 hrtimer_restart(timer);
1091 } else if (!rq->hrtick_csd_pending) {
6e275637 1092 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1093 rq->hrtick_csd_pending = 1;
1094 }
b328ca18
PZ
1095}
1096
1097static int
1098hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1099{
1100 int cpu = (int)(long)hcpu;
1101
1102 switch (action) {
1103 case CPU_UP_CANCELED:
1104 case CPU_UP_CANCELED_FROZEN:
1105 case CPU_DOWN_PREPARE:
1106 case CPU_DOWN_PREPARE_FROZEN:
1107 case CPU_DEAD:
1108 case CPU_DEAD_FROZEN:
31656519 1109 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1110 return NOTIFY_OK;
1111 }
1112
1113 return NOTIFY_DONE;
1114}
1115
fa748203 1116static __init void init_hrtick(void)
b328ca18
PZ
1117{
1118 hotcpu_notifier(hotplug_hrtick, 0);
1119}
31656519
PZ
1120#else
1121/*
1122 * Called to set the hrtick timer state.
1123 *
1124 * called with rq->lock held and irqs disabled
1125 */
1126static void hrtick_start(struct rq *rq, u64 delay)
1127{
7f1e2ca9 1128 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1129 HRTIMER_MODE_REL_PINNED, 0);
31656519 1130}
b328ca18 1131
006c75f1 1132static inline void init_hrtick(void)
8f4d37ec 1133{
8f4d37ec 1134}
31656519 1135#endif /* CONFIG_SMP */
8f4d37ec 1136
31656519 1137static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1138{
31656519
PZ
1139#ifdef CONFIG_SMP
1140 rq->hrtick_csd_pending = 0;
8f4d37ec 1141
31656519
PZ
1142 rq->hrtick_csd.flags = 0;
1143 rq->hrtick_csd.func = __hrtick_start;
1144 rq->hrtick_csd.info = rq;
1145#endif
8f4d37ec 1146
31656519
PZ
1147 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1148 rq->hrtick_timer.function = hrtick;
8f4d37ec 1149}
006c75f1 1150#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1151static inline void hrtick_clear(struct rq *rq)
1152{
1153}
1154
8f4d37ec
PZ
1155static inline void init_rq_hrtick(struct rq *rq)
1156{
1157}
1158
b328ca18
PZ
1159static inline void init_hrtick(void)
1160{
1161}
006c75f1 1162#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1163
c24d20db
IM
1164/*
1165 * resched_task - mark a task 'to be rescheduled now'.
1166 *
1167 * On UP this means the setting of the need_resched flag, on SMP it
1168 * might also involve a cross-CPU call to trigger the scheduler on
1169 * the target CPU.
1170 */
1171#ifdef CONFIG_SMP
1172
1173#ifndef tsk_is_polling
1174#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1175#endif
1176
31656519 1177static void resched_task(struct task_struct *p)
c24d20db
IM
1178{
1179 int cpu;
1180
1181 assert_spin_locked(&task_rq(p)->lock);
1182
5ed0cec0 1183 if (test_tsk_need_resched(p))
c24d20db
IM
1184 return;
1185
5ed0cec0 1186 set_tsk_need_resched(p);
c24d20db
IM
1187
1188 cpu = task_cpu(p);
1189 if (cpu == smp_processor_id())
1190 return;
1191
1192 /* NEED_RESCHED must be visible before we test polling */
1193 smp_mb();
1194 if (!tsk_is_polling(p))
1195 smp_send_reschedule(cpu);
1196}
1197
1198static void resched_cpu(int cpu)
1199{
1200 struct rq *rq = cpu_rq(cpu);
1201 unsigned long flags;
1202
1203 if (!spin_trylock_irqsave(&rq->lock, flags))
1204 return;
1205 resched_task(cpu_curr(cpu));
1206 spin_unlock_irqrestore(&rq->lock, flags);
1207}
06d8308c
TG
1208
1209#ifdef CONFIG_NO_HZ
1210/*
1211 * When add_timer_on() enqueues a timer into the timer wheel of an
1212 * idle CPU then this timer might expire before the next timer event
1213 * which is scheduled to wake up that CPU. In case of a completely
1214 * idle system the next event might even be infinite time into the
1215 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1216 * leaves the inner idle loop so the newly added timer is taken into
1217 * account when the CPU goes back to idle and evaluates the timer
1218 * wheel for the next timer event.
1219 */
1220void wake_up_idle_cpu(int cpu)
1221{
1222 struct rq *rq = cpu_rq(cpu);
1223
1224 if (cpu == smp_processor_id())
1225 return;
1226
1227 /*
1228 * This is safe, as this function is called with the timer
1229 * wheel base lock of (cpu) held. When the CPU is on the way
1230 * to idle and has not yet set rq->curr to idle then it will
1231 * be serialized on the timer wheel base lock and take the new
1232 * timer into account automatically.
1233 */
1234 if (rq->curr != rq->idle)
1235 return;
1236
1237 /*
1238 * We can set TIF_RESCHED on the idle task of the other CPU
1239 * lockless. The worst case is that the other CPU runs the
1240 * idle task through an additional NOOP schedule()
1241 */
5ed0cec0 1242 set_tsk_need_resched(rq->idle);
06d8308c
TG
1243
1244 /* NEED_RESCHED must be visible before we test polling */
1245 smp_mb();
1246 if (!tsk_is_polling(rq->idle))
1247 smp_send_reschedule(cpu);
1248}
6d6bc0ad 1249#endif /* CONFIG_NO_HZ */
06d8308c 1250
e9e9250b
PZ
1251static u64 sched_avg_period(void)
1252{
1253 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1254}
1255
1256static void sched_avg_update(struct rq *rq)
1257{
1258 s64 period = sched_avg_period();
1259
1260 while ((s64)(rq->clock - rq->age_stamp) > period) {
1261 rq->age_stamp += period;
1262 rq->rt_avg /= 2;
1263 }
1264}
1265
1266static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1267{
1268 rq->rt_avg += rt_delta;
1269 sched_avg_update(rq);
1270}
1271
6d6bc0ad 1272#else /* !CONFIG_SMP */
31656519 1273static void resched_task(struct task_struct *p)
c24d20db
IM
1274{
1275 assert_spin_locked(&task_rq(p)->lock);
31656519 1276 set_tsk_need_resched(p);
c24d20db 1277}
e9e9250b
PZ
1278
1279static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1280{
1281}
6d6bc0ad 1282#endif /* CONFIG_SMP */
c24d20db 1283
45bf76df
IM
1284#if BITS_PER_LONG == 32
1285# define WMULT_CONST (~0UL)
1286#else
1287# define WMULT_CONST (1UL << 32)
1288#endif
1289
1290#define WMULT_SHIFT 32
1291
194081eb
IM
1292/*
1293 * Shift right and round:
1294 */
cf2ab469 1295#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1296
a7be37ac
PZ
1297/*
1298 * delta *= weight / lw
1299 */
cb1c4fc9 1300static unsigned long
45bf76df
IM
1301calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1302 struct load_weight *lw)
1303{
1304 u64 tmp;
1305
7a232e03
LJ
1306 if (!lw->inv_weight) {
1307 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1308 lw->inv_weight = 1;
1309 else
1310 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1311 / (lw->weight+1);
1312 }
45bf76df
IM
1313
1314 tmp = (u64)delta_exec * weight;
1315 /*
1316 * Check whether we'd overflow the 64-bit multiplication:
1317 */
194081eb 1318 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1319 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1320 WMULT_SHIFT/2);
1321 else
cf2ab469 1322 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1323
ecf691da 1324 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1325}
1326
1091985b 1327static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1328{
1329 lw->weight += inc;
e89996ae 1330 lw->inv_weight = 0;
45bf76df
IM
1331}
1332
1091985b 1333static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1334{
1335 lw->weight -= dec;
e89996ae 1336 lw->inv_weight = 0;
45bf76df
IM
1337}
1338
2dd73a4f
PW
1339/*
1340 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1341 * of tasks with abnormal "nice" values across CPUs the contribution that
1342 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1343 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1344 * scaled version of the new time slice allocation that they receive on time
1345 * slice expiry etc.
1346 */
1347
cce7ade8
PZ
1348#define WEIGHT_IDLEPRIO 3
1349#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1350
1351/*
1352 * Nice levels are multiplicative, with a gentle 10% change for every
1353 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1354 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1355 * that remained on nice 0.
1356 *
1357 * The "10% effect" is relative and cumulative: from _any_ nice level,
1358 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1359 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1360 * If a task goes up by ~10% and another task goes down by ~10% then
1361 * the relative distance between them is ~25%.)
dd41f596
IM
1362 */
1363static const int prio_to_weight[40] = {
254753dc
IM
1364 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1365 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1366 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1367 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1368 /* 0 */ 1024, 820, 655, 526, 423,
1369 /* 5 */ 335, 272, 215, 172, 137,
1370 /* 10 */ 110, 87, 70, 56, 45,
1371 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1372};
1373
5714d2de
IM
1374/*
1375 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1376 *
1377 * In cases where the weight does not change often, we can use the
1378 * precalculated inverse to speed up arithmetics by turning divisions
1379 * into multiplications:
1380 */
dd41f596 1381static const u32 prio_to_wmult[40] = {
254753dc
IM
1382 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1383 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1384 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1385 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1386 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1387 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1388 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1389 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1390};
2dd73a4f 1391
dd41f596
IM
1392static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1393
1394/*
1395 * runqueue iterator, to support SMP load-balancing between different
1396 * scheduling classes, without having to expose their internal data
1397 * structures to the load-balancing proper:
1398 */
1399struct rq_iterator {
1400 void *arg;
1401 struct task_struct *(*start)(void *);
1402 struct task_struct *(*next)(void *);
1403};
1404
e1d1484f
PW
1405#ifdef CONFIG_SMP
1406static unsigned long
1407balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1408 unsigned long max_load_move, struct sched_domain *sd,
1409 enum cpu_idle_type idle, int *all_pinned,
1410 int *this_best_prio, struct rq_iterator *iterator);
1411
1412static int
1413iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1414 struct sched_domain *sd, enum cpu_idle_type idle,
1415 struct rq_iterator *iterator);
e1d1484f 1416#endif
dd41f596 1417
ef12fefa
BR
1418/* Time spent by the tasks of the cpu accounting group executing in ... */
1419enum cpuacct_stat_index {
1420 CPUACCT_STAT_USER, /* ... user mode */
1421 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1422
1423 CPUACCT_STAT_NSTATS,
1424};
1425
d842de87
SV
1426#ifdef CONFIG_CGROUP_CPUACCT
1427static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1428static void cpuacct_update_stats(struct task_struct *tsk,
1429 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1430#else
1431static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1432static inline void cpuacct_update_stats(struct task_struct *tsk,
1433 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1434#endif
1435
18d95a28
PZ
1436static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1437{
1438 update_load_add(&rq->load, load);
1439}
1440
1441static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1442{
1443 update_load_sub(&rq->load, load);
1444}
1445
7940ca36 1446#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1447typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1448
1449/*
1450 * Iterate the full tree, calling @down when first entering a node and @up when
1451 * leaving it for the final time.
1452 */
eb755805 1453static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1454{
1455 struct task_group *parent, *child;
eb755805 1456 int ret;
c09595f6
PZ
1457
1458 rcu_read_lock();
1459 parent = &root_task_group;
1460down:
eb755805
PZ
1461 ret = (*down)(parent, data);
1462 if (ret)
1463 goto out_unlock;
c09595f6
PZ
1464 list_for_each_entry_rcu(child, &parent->children, siblings) {
1465 parent = child;
1466 goto down;
1467
1468up:
1469 continue;
1470 }
eb755805
PZ
1471 ret = (*up)(parent, data);
1472 if (ret)
1473 goto out_unlock;
c09595f6
PZ
1474
1475 child = parent;
1476 parent = parent->parent;
1477 if (parent)
1478 goto up;
eb755805 1479out_unlock:
c09595f6 1480 rcu_read_unlock();
eb755805
PZ
1481
1482 return ret;
c09595f6
PZ
1483}
1484
eb755805
PZ
1485static int tg_nop(struct task_group *tg, void *data)
1486{
1487 return 0;
c09595f6 1488}
eb755805
PZ
1489#endif
1490
1491#ifdef CONFIG_SMP
f5f08f39
PZ
1492/* Used instead of source_load when we know the type == 0 */
1493static unsigned long weighted_cpuload(const int cpu)
1494{
1495 return cpu_rq(cpu)->load.weight;
1496}
1497
1498/*
1499 * Return a low guess at the load of a migration-source cpu weighted
1500 * according to the scheduling class and "nice" value.
1501 *
1502 * We want to under-estimate the load of migration sources, to
1503 * balance conservatively.
1504 */
1505static unsigned long source_load(int cpu, int type)
1506{
1507 struct rq *rq = cpu_rq(cpu);
1508 unsigned long total = weighted_cpuload(cpu);
1509
1510 if (type == 0 || !sched_feat(LB_BIAS))
1511 return total;
1512
1513 return min(rq->cpu_load[type-1], total);
1514}
1515
1516/*
1517 * Return a high guess at the load of a migration-target cpu weighted
1518 * according to the scheduling class and "nice" value.
1519 */
1520static unsigned long target_load(int cpu, int type)
1521{
1522 struct rq *rq = cpu_rq(cpu);
1523 unsigned long total = weighted_cpuload(cpu);
1524
1525 if (type == 0 || !sched_feat(LB_BIAS))
1526 return total;
1527
1528 return max(rq->cpu_load[type-1], total);
1529}
1530
ae154be1
PZ
1531static struct sched_group *group_of(int cpu)
1532{
1533 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1534
1535 if (!sd)
1536 return NULL;
1537
1538 return sd->groups;
1539}
1540
1541static unsigned long power_of(int cpu)
1542{
1543 struct sched_group *group = group_of(cpu);
1544
1545 if (!group)
1546 return SCHED_LOAD_SCALE;
1547
1548 return group->cpu_power;
1549}
1550
eb755805
PZ
1551static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1552
1553static unsigned long cpu_avg_load_per_task(int cpu)
1554{
1555 struct rq *rq = cpu_rq(cpu);
af6d596f 1556 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1557
4cd42620
SR
1558 if (nr_running)
1559 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1560 else
1561 rq->avg_load_per_task = 0;
eb755805
PZ
1562
1563 return rq->avg_load_per_task;
1564}
1565
1566#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1567
4a6cc4bd 1568static __read_mostly unsigned long *update_shares_data;
34d76c41 1569
c09595f6
PZ
1570static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1571
1572/*
1573 * Calculate and set the cpu's group shares.
1574 */
34d76c41
PZ
1575static void update_group_shares_cpu(struct task_group *tg, int cpu,
1576 unsigned long sd_shares,
1577 unsigned long sd_rq_weight,
4a6cc4bd 1578 unsigned long *usd_rq_weight)
18d95a28 1579{
34d76c41 1580 unsigned long shares, rq_weight;
a5004278 1581 int boost = 0;
c09595f6 1582
4a6cc4bd 1583 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1584 if (!rq_weight) {
1585 boost = 1;
1586 rq_weight = NICE_0_LOAD;
1587 }
c8cba857 1588
c09595f6 1589 /*
a8af7246
PZ
1590 * \Sum_j shares_j * rq_weight_i
1591 * shares_i = -----------------------------
1592 * \Sum_j rq_weight_j
c09595f6 1593 */
ec4e0e2f 1594 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1595 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1596
ffda12a1
PZ
1597 if (abs(shares - tg->se[cpu]->load.weight) >
1598 sysctl_sched_shares_thresh) {
1599 struct rq *rq = cpu_rq(cpu);
1600 unsigned long flags;
c09595f6 1601
ffda12a1 1602 spin_lock_irqsave(&rq->lock, flags);
34d76c41 1603 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1604 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1605 __set_se_shares(tg->se[cpu], shares);
1606 spin_unlock_irqrestore(&rq->lock, flags);
1607 }
18d95a28 1608}
c09595f6
PZ
1609
1610/*
c8cba857
PZ
1611 * Re-compute the task group their per cpu shares over the given domain.
1612 * This needs to be done in a bottom-up fashion because the rq weight of a
1613 * parent group depends on the shares of its child groups.
c09595f6 1614 */
eb755805 1615static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1616{
34d76c41 1617 unsigned long weight, rq_weight = 0, shares = 0;
4a6cc4bd 1618 unsigned long *usd_rq_weight;
eb755805 1619 struct sched_domain *sd = data;
34d76c41 1620 unsigned long flags;
c8cba857 1621 int i;
c09595f6 1622
34d76c41
PZ
1623 if (!tg->se[0])
1624 return 0;
1625
1626 local_irq_save(flags);
4a6cc4bd 1627 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1628
758b2cdc 1629 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1630 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1631 usd_rq_weight[i] = weight;
34d76c41 1632
ec4e0e2f
KC
1633 /*
1634 * If there are currently no tasks on the cpu pretend there
1635 * is one of average load so that when a new task gets to
1636 * run here it will not get delayed by group starvation.
1637 */
ec4e0e2f
KC
1638 if (!weight)
1639 weight = NICE_0_LOAD;
1640
ec4e0e2f 1641 rq_weight += weight;
c8cba857 1642 shares += tg->cfs_rq[i]->shares;
c09595f6 1643 }
c09595f6 1644
c8cba857
PZ
1645 if ((!shares && rq_weight) || shares > tg->shares)
1646 shares = tg->shares;
1647
1648 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1649 shares = tg->shares;
c09595f6 1650
758b2cdc 1651 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1652 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1653
1654 local_irq_restore(flags);
eb755805
PZ
1655
1656 return 0;
c09595f6
PZ
1657}
1658
1659/*
c8cba857
PZ
1660 * Compute the cpu's hierarchical load factor for each task group.
1661 * This needs to be done in a top-down fashion because the load of a child
1662 * group is a fraction of its parents load.
c09595f6 1663 */
eb755805 1664static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1665{
c8cba857 1666 unsigned long load;
eb755805 1667 long cpu = (long)data;
c09595f6 1668
c8cba857
PZ
1669 if (!tg->parent) {
1670 load = cpu_rq(cpu)->load.weight;
1671 } else {
1672 load = tg->parent->cfs_rq[cpu]->h_load;
1673 load *= tg->cfs_rq[cpu]->shares;
1674 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1675 }
c09595f6 1676
c8cba857 1677 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1678
eb755805 1679 return 0;
c09595f6
PZ
1680}
1681
c8cba857 1682static void update_shares(struct sched_domain *sd)
4d8d595d 1683{
e7097159
PZ
1684 s64 elapsed;
1685 u64 now;
1686
1687 if (root_task_group_empty())
1688 return;
1689
1690 now = cpu_clock(raw_smp_processor_id());
1691 elapsed = now - sd->last_update;
2398f2c6
PZ
1692
1693 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1694 sd->last_update = now;
eb755805 1695 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1696 }
4d8d595d
PZ
1697}
1698
3e5459b4
PZ
1699static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1700{
e7097159
PZ
1701 if (root_task_group_empty())
1702 return;
1703
3e5459b4
PZ
1704 spin_unlock(&rq->lock);
1705 update_shares(sd);
1706 spin_lock(&rq->lock);
1707}
1708
eb755805 1709static void update_h_load(long cpu)
c09595f6 1710{
e7097159
PZ
1711 if (root_task_group_empty())
1712 return;
1713
eb755805 1714 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1715}
1716
c09595f6
PZ
1717#else
1718
c8cba857 1719static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1720{
1721}
1722
3e5459b4
PZ
1723static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1724{
1725}
1726
18d95a28
PZ
1727#endif
1728
8f45e2b5
GH
1729#ifdef CONFIG_PREEMPT
1730
b78bb868
PZ
1731static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1732
70574a99 1733/*
8f45e2b5
GH
1734 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1735 * way at the expense of forcing extra atomic operations in all
1736 * invocations. This assures that the double_lock is acquired using the
1737 * same underlying policy as the spinlock_t on this architecture, which
1738 * reduces latency compared to the unfair variant below. However, it
1739 * also adds more overhead and therefore may reduce throughput.
70574a99 1740 */
8f45e2b5
GH
1741static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1742 __releases(this_rq->lock)
1743 __acquires(busiest->lock)
1744 __acquires(this_rq->lock)
1745{
1746 spin_unlock(&this_rq->lock);
1747 double_rq_lock(this_rq, busiest);
1748
1749 return 1;
1750}
1751
1752#else
1753/*
1754 * Unfair double_lock_balance: Optimizes throughput at the expense of
1755 * latency by eliminating extra atomic operations when the locks are
1756 * already in proper order on entry. This favors lower cpu-ids and will
1757 * grant the double lock to lower cpus over higher ids under contention,
1758 * regardless of entry order into the function.
1759 */
1760static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1761 __releases(this_rq->lock)
1762 __acquires(busiest->lock)
1763 __acquires(this_rq->lock)
1764{
1765 int ret = 0;
1766
70574a99
AD
1767 if (unlikely(!spin_trylock(&busiest->lock))) {
1768 if (busiest < this_rq) {
1769 spin_unlock(&this_rq->lock);
1770 spin_lock(&busiest->lock);
1771 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1772 ret = 1;
1773 } else
1774 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1775 }
1776 return ret;
1777}
1778
8f45e2b5
GH
1779#endif /* CONFIG_PREEMPT */
1780
1781/*
1782 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1783 */
1784static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1785{
1786 if (unlikely(!irqs_disabled())) {
1787 /* printk() doesn't work good under rq->lock */
1788 spin_unlock(&this_rq->lock);
1789 BUG_ON(1);
1790 }
1791
1792 return _double_lock_balance(this_rq, busiest);
1793}
1794
70574a99
AD
1795static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1796 __releases(busiest->lock)
1797{
1798 spin_unlock(&busiest->lock);
1799 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1800}
18d95a28
PZ
1801#endif
1802
30432094 1803#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1804static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1805{
30432094 1806#ifdef CONFIG_SMP
34e83e85
IM
1807 cfs_rq->shares = shares;
1808#endif
1809}
30432094 1810#endif
e7693a36 1811
dce48a84
TG
1812static void calc_load_account_active(struct rq *this_rq);
1813
dd41f596 1814#include "sched_stats.h"
dd41f596 1815#include "sched_idletask.c"
5522d5d5
IM
1816#include "sched_fair.c"
1817#include "sched_rt.c"
dd41f596
IM
1818#ifdef CONFIG_SCHED_DEBUG
1819# include "sched_debug.c"
1820#endif
1821
1822#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1823#define for_each_class(class) \
1824 for (class = sched_class_highest; class; class = class->next)
dd41f596 1825
c09595f6 1826static void inc_nr_running(struct rq *rq)
9c217245
IM
1827{
1828 rq->nr_running++;
9c217245
IM
1829}
1830
c09595f6 1831static void dec_nr_running(struct rq *rq)
9c217245
IM
1832{
1833 rq->nr_running--;
9c217245
IM
1834}
1835
45bf76df
IM
1836static void set_load_weight(struct task_struct *p)
1837{
1838 if (task_has_rt_policy(p)) {
dd41f596
IM
1839 p->se.load.weight = prio_to_weight[0] * 2;
1840 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1841 return;
1842 }
45bf76df 1843
dd41f596
IM
1844 /*
1845 * SCHED_IDLE tasks get minimal weight:
1846 */
1847 if (p->policy == SCHED_IDLE) {
1848 p->se.load.weight = WEIGHT_IDLEPRIO;
1849 p->se.load.inv_weight = WMULT_IDLEPRIO;
1850 return;
1851 }
71f8bd46 1852
dd41f596
IM
1853 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1854 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1855}
1856
2087a1ad
GH
1857static void update_avg(u64 *avg, u64 sample)
1858{
1859 s64 diff = sample - *avg;
1860 *avg += diff >> 3;
1861}
1862
8159f87e 1863static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1864{
831451ac
PZ
1865 if (wakeup)
1866 p->se.start_runtime = p->se.sum_exec_runtime;
1867
dd41f596 1868 sched_info_queued(p);
fd390f6a 1869 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1870 p->se.on_rq = 1;
71f8bd46
IM
1871}
1872
69be72c1 1873static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1874{
831451ac
PZ
1875 if (sleep) {
1876 if (p->se.last_wakeup) {
1877 update_avg(&p->se.avg_overlap,
1878 p->se.sum_exec_runtime - p->se.last_wakeup);
1879 p->se.last_wakeup = 0;
1880 } else {
1881 update_avg(&p->se.avg_wakeup,
1882 sysctl_sched_wakeup_granularity);
1883 }
2087a1ad
GH
1884 }
1885
46ac22ba 1886 sched_info_dequeued(p);
f02231e5 1887 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1888 p->se.on_rq = 0;
71f8bd46
IM
1889}
1890
14531189 1891/*
dd41f596 1892 * __normal_prio - return the priority that is based on the static prio
14531189 1893 */
14531189
IM
1894static inline int __normal_prio(struct task_struct *p)
1895{
dd41f596 1896 return p->static_prio;
14531189
IM
1897}
1898
b29739f9
IM
1899/*
1900 * Calculate the expected normal priority: i.e. priority
1901 * without taking RT-inheritance into account. Might be
1902 * boosted by interactivity modifiers. Changes upon fork,
1903 * setprio syscalls, and whenever the interactivity
1904 * estimator recalculates.
1905 */
36c8b586 1906static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1907{
1908 int prio;
1909
e05606d3 1910 if (task_has_rt_policy(p))
b29739f9
IM
1911 prio = MAX_RT_PRIO-1 - p->rt_priority;
1912 else
1913 prio = __normal_prio(p);
1914 return prio;
1915}
1916
1917/*
1918 * Calculate the current priority, i.e. the priority
1919 * taken into account by the scheduler. This value might
1920 * be boosted by RT tasks, or might be boosted by
1921 * interactivity modifiers. Will be RT if the task got
1922 * RT-boosted. If not then it returns p->normal_prio.
1923 */
36c8b586 1924static int effective_prio(struct task_struct *p)
b29739f9
IM
1925{
1926 p->normal_prio = normal_prio(p);
1927 /*
1928 * If we are RT tasks or we were boosted to RT priority,
1929 * keep the priority unchanged. Otherwise, update priority
1930 * to the normal priority:
1931 */
1932 if (!rt_prio(p->prio))
1933 return p->normal_prio;
1934 return p->prio;
1935}
1936
1da177e4 1937/*
dd41f596 1938 * activate_task - move a task to the runqueue.
1da177e4 1939 */
dd41f596 1940static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1941{
d9514f6c 1942 if (task_contributes_to_load(p))
dd41f596 1943 rq->nr_uninterruptible--;
1da177e4 1944
8159f87e 1945 enqueue_task(rq, p, wakeup);
c09595f6 1946 inc_nr_running(rq);
1da177e4
LT
1947}
1948
1da177e4
LT
1949/*
1950 * deactivate_task - remove a task from the runqueue.
1951 */
2e1cb74a 1952static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1953{
d9514f6c 1954 if (task_contributes_to_load(p))
dd41f596
IM
1955 rq->nr_uninterruptible++;
1956
69be72c1 1957 dequeue_task(rq, p, sleep);
c09595f6 1958 dec_nr_running(rq);
1da177e4
LT
1959}
1960
1da177e4
LT
1961/**
1962 * task_curr - is this task currently executing on a CPU?
1963 * @p: the task in question.
1964 */
36c8b586 1965inline int task_curr(const struct task_struct *p)
1da177e4
LT
1966{
1967 return cpu_curr(task_cpu(p)) == p;
1968}
1969
dd41f596
IM
1970static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1971{
6f505b16 1972 set_task_rq(p, cpu);
dd41f596 1973#ifdef CONFIG_SMP
ce96b5ac
DA
1974 /*
1975 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1976 * successfuly executed on another CPU. We must ensure that updates of
1977 * per-task data have been completed by this moment.
1978 */
1979 smp_wmb();
dd41f596 1980 task_thread_info(p)->cpu = cpu;
dd41f596 1981#endif
2dd73a4f
PW
1982}
1983
cb469845
SR
1984static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1985 const struct sched_class *prev_class,
1986 int oldprio, int running)
1987{
1988 if (prev_class != p->sched_class) {
1989 if (prev_class->switched_from)
1990 prev_class->switched_from(rq, p, running);
1991 p->sched_class->switched_to(rq, p, running);
1992 } else
1993 p->sched_class->prio_changed(rq, p, oldprio, running);
1994}
1995
b84ff7d6
MG
1996/**
1997 * kthread_bind - bind a just-created kthread to a cpu.
968c8645 1998 * @p: thread created by kthread_create().
b84ff7d6
MG
1999 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2000 *
2001 * Description: This function is equivalent to set_cpus_allowed(),
2002 * except that @cpu doesn't need to be online, and the thread must be
2003 * stopped (i.e., just returned from kthread_create()).
2004 *
2005 * Function lives here instead of kthread.c because it messes with
2006 * scheduler internals which require locking.
2007 */
2008void kthread_bind(struct task_struct *p, unsigned int cpu)
2009{
2010 struct rq *rq = cpu_rq(cpu);
2011 unsigned long flags;
2012
2013 /* Must have done schedule() in kthread() before we set_task_cpu */
2014 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2015 WARN_ON(1);
2016 return;
2017 }
2018
2019 spin_lock_irqsave(&rq->lock, flags);
2020 set_task_cpu(p, cpu);
2021 p->cpus_allowed = cpumask_of_cpu(cpu);
2022 p->rt.nr_cpus_allowed = 1;
2023 p->flags |= PF_THREAD_BOUND;
2024 spin_unlock_irqrestore(&rq->lock, flags);
2025}
2026EXPORT_SYMBOL(kthread_bind);
2027
1da177e4 2028#ifdef CONFIG_SMP
cc367732
IM
2029/*
2030 * Is this task likely cache-hot:
2031 */
e7693a36 2032static int
cc367732
IM
2033task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2034{
2035 s64 delta;
2036
f540a608
IM
2037 /*
2038 * Buddy candidates are cache hot:
2039 */
f685ceac 2040 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2041 (&p->se == cfs_rq_of(&p->se)->next ||
2042 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2043 return 1;
2044
cc367732
IM
2045 if (p->sched_class != &fair_sched_class)
2046 return 0;
2047
6bc1665b
IM
2048 if (sysctl_sched_migration_cost == -1)
2049 return 1;
2050 if (sysctl_sched_migration_cost == 0)
2051 return 0;
2052
cc367732
IM
2053 delta = now - p->se.exec_start;
2054
2055 return delta < (s64)sysctl_sched_migration_cost;
2056}
2057
2058
dd41f596 2059void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2060{
dd41f596
IM
2061 int old_cpu = task_cpu(p);
2062 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
2063 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2064 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 2065 u64 clock_offset;
dd41f596
IM
2066
2067 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 2068
de1d7286 2069 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2070
6cfb0d5d
IM
2071#ifdef CONFIG_SCHEDSTATS
2072 if (p->se.wait_start)
2073 p->se.wait_start -= clock_offset;
dd41f596
IM
2074 if (p->se.sleep_start)
2075 p->se.sleep_start -= clock_offset;
2076 if (p->se.block_start)
2077 p->se.block_start -= clock_offset;
6c594c21 2078#endif
cc367732 2079 if (old_cpu != new_cpu) {
6c594c21 2080 p->se.nr_migrations++;
23a185ca 2081 new_rq->nr_migrations_in++;
6c594c21 2082#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2083 if (task_hot(p, old_rq->clock, NULL))
2084 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2085#endif
cdd6c482 2086 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
e5289d4a 2087 1, 1, NULL, 0);
6c594c21 2088 }
2830cf8c
SV
2089 p->se.vruntime -= old_cfsrq->min_vruntime -
2090 new_cfsrq->min_vruntime;
dd41f596
IM
2091
2092 __set_task_cpu(p, new_cpu);
c65cc870
IM
2093}
2094
70b97a7f 2095struct migration_req {
1da177e4 2096 struct list_head list;
1da177e4 2097
36c8b586 2098 struct task_struct *task;
1da177e4
LT
2099 int dest_cpu;
2100
1da177e4 2101 struct completion done;
70b97a7f 2102};
1da177e4
LT
2103
2104/*
2105 * The task's runqueue lock must be held.
2106 * Returns true if you have to wait for migration thread.
2107 */
36c8b586 2108static int
70b97a7f 2109migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2110{
70b97a7f 2111 struct rq *rq = task_rq(p);
1da177e4
LT
2112
2113 /*
2114 * If the task is not on a runqueue (and not running), then
2115 * it is sufficient to simply update the task's cpu field.
2116 */
dd41f596 2117 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2118 set_task_cpu(p, dest_cpu);
2119 return 0;
2120 }
2121
2122 init_completion(&req->done);
1da177e4
LT
2123 req->task = p;
2124 req->dest_cpu = dest_cpu;
2125 list_add(&req->list, &rq->migration_queue);
48f24c4d 2126
1da177e4
LT
2127 return 1;
2128}
2129
a26b89f0
MM
2130/*
2131 * wait_task_context_switch - wait for a thread to complete at least one
2132 * context switch.
2133 *
2134 * @p must not be current.
2135 */
2136void wait_task_context_switch(struct task_struct *p)
2137{
2138 unsigned long nvcsw, nivcsw, flags;
2139 int running;
2140 struct rq *rq;
2141
2142 nvcsw = p->nvcsw;
2143 nivcsw = p->nivcsw;
2144 for (;;) {
2145 /*
2146 * The runqueue is assigned before the actual context
2147 * switch. We need to take the runqueue lock.
2148 *
2149 * We could check initially without the lock but it is
2150 * very likely that we need to take the lock in every
2151 * iteration.
2152 */
2153 rq = task_rq_lock(p, &flags);
2154 running = task_running(rq, p);
2155 task_rq_unlock(rq, &flags);
2156
2157 if (likely(!running))
2158 break;
2159 /*
2160 * The switch count is incremented before the actual
2161 * context switch. We thus wait for two switches to be
2162 * sure at least one completed.
2163 */
2164 if ((p->nvcsw - nvcsw) > 1)
2165 break;
2166 if ((p->nivcsw - nivcsw) > 1)
2167 break;
2168
2169 cpu_relax();
2170 }
2171}
2172
1da177e4
LT
2173/*
2174 * wait_task_inactive - wait for a thread to unschedule.
2175 *
85ba2d86
RM
2176 * If @match_state is nonzero, it's the @p->state value just checked and
2177 * not expected to change. If it changes, i.e. @p might have woken up,
2178 * then return zero. When we succeed in waiting for @p to be off its CPU,
2179 * we return a positive number (its total switch count). If a second call
2180 * a short while later returns the same number, the caller can be sure that
2181 * @p has remained unscheduled the whole time.
2182 *
1da177e4
LT
2183 * The caller must ensure that the task *will* unschedule sometime soon,
2184 * else this function might spin for a *long* time. This function can't
2185 * be called with interrupts off, or it may introduce deadlock with
2186 * smp_call_function() if an IPI is sent by the same process we are
2187 * waiting to become inactive.
2188 */
85ba2d86 2189unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2190{
2191 unsigned long flags;
dd41f596 2192 int running, on_rq;
85ba2d86 2193 unsigned long ncsw;
70b97a7f 2194 struct rq *rq;
1da177e4 2195
3a5c359a
AK
2196 for (;;) {
2197 /*
2198 * We do the initial early heuristics without holding
2199 * any task-queue locks at all. We'll only try to get
2200 * the runqueue lock when things look like they will
2201 * work out!
2202 */
2203 rq = task_rq(p);
fa490cfd 2204
3a5c359a
AK
2205 /*
2206 * If the task is actively running on another CPU
2207 * still, just relax and busy-wait without holding
2208 * any locks.
2209 *
2210 * NOTE! Since we don't hold any locks, it's not
2211 * even sure that "rq" stays as the right runqueue!
2212 * But we don't care, since "task_running()" will
2213 * return false if the runqueue has changed and p
2214 * is actually now running somewhere else!
2215 */
85ba2d86
RM
2216 while (task_running(rq, p)) {
2217 if (match_state && unlikely(p->state != match_state))
2218 return 0;
3a5c359a 2219 cpu_relax();
85ba2d86 2220 }
fa490cfd 2221
3a5c359a
AK
2222 /*
2223 * Ok, time to look more closely! We need the rq
2224 * lock now, to be *sure*. If we're wrong, we'll
2225 * just go back and repeat.
2226 */
2227 rq = task_rq_lock(p, &flags);
0a16b607 2228 trace_sched_wait_task(rq, p);
3a5c359a
AK
2229 running = task_running(rq, p);
2230 on_rq = p->se.on_rq;
85ba2d86 2231 ncsw = 0;
f31e11d8 2232 if (!match_state || p->state == match_state)
93dcf55f 2233 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2234 task_rq_unlock(rq, &flags);
fa490cfd 2235
85ba2d86
RM
2236 /*
2237 * If it changed from the expected state, bail out now.
2238 */
2239 if (unlikely(!ncsw))
2240 break;
2241
3a5c359a
AK
2242 /*
2243 * Was it really running after all now that we
2244 * checked with the proper locks actually held?
2245 *
2246 * Oops. Go back and try again..
2247 */
2248 if (unlikely(running)) {
2249 cpu_relax();
2250 continue;
2251 }
fa490cfd 2252
3a5c359a
AK
2253 /*
2254 * It's not enough that it's not actively running,
2255 * it must be off the runqueue _entirely_, and not
2256 * preempted!
2257 *
80dd99b3 2258 * So if it was still runnable (but just not actively
3a5c359a
AK
2259 * running right now), it's preempted, and we should
2260 * yield - it could be a while.
2261 */
2262 if (unlikely(on_rq)) {
2263 schedule_timeout_uninterruptible(1);
2264 continue;
2265 }
fa490cfd 2266
3a5c359a
AK
2267 /*
2268 * Ahh, all good. It wasn't running, and it wasn't
2269 * runnable, which means that it will never become
2270 * running in the future either. We're all done!
2271 */
2272 break;
2273 }
85ba2d86
RM
2274
2275 return ncsw;
1da177e4
LT
2276}
2277
2278/***
2279 * kick_process - kick a running thread to enter/exit the kernel
2280 * @p: the to-be-kicked thread
2281 *
2282 * Cause a process which is running on another CPU to enter
2283 * kernel-mode, without any delay. (to get signals handled.)
2284 *
2285 * NOTE: this function doesnt have to take the runqueue lock,
2286 * because all it wants to ensure is that the remote task enters
2287 * the kernel. If the IPI races and the task has been migrated
2288 * to another CPU then no harm is done and the purpose has been
2289 * achieved as well.
2290 */
36c8b586 2291void kick_process(struct task_struct *p)
1da177e4
LT
2292{
2293 int cpu;
2294
2295 preempt_disable();
2296 cpu = task_cpu(p);
2297 if ((cpu != smp_processor_id()) && task_curr(p))
2298 smp_send_reschedule(cpu);
2299 preempt_enable();
2300}
b43e3521 2301EXPORT_SYMBOL_GPL(kick_process);
476d139c 2302#endif /* CONFIG_SMP */
1da177e4 2303
0793a61d
TG
2304/**
2305 * task_oncpu_function_call - call a function on the cpu on which a task runs
2306 * @p: the task to evaluate
2307 * @func: the function to be called
2308 * @info: the function call argument
2309 *
2310 * Calls the function @func when the task is currently running. This might
2311 * be on the current CPU, which just calls the function directly
2312 */
2313void task_oncpu_function_call(struct task_struct *p,
2314 void (*func) (void *info), void *info)
2315{
2316 int cpu;
2317
2318 preempt_disable();
2319 cpu = task_cpu(p);
2320 if (task_curr(p))
2321 smp_call_function_single(cpu, func, info, 1);
2322 preempt_enable();
2323}
2324
1da177e4
LT
2325/***
2326 * try_to_wake_up - wake up a thread
2327 * @p: the to-be-woken-up thread
2328 * @state: the mask of task states that can be woken
2329 * @sync: do a synchronous wakeup?
2330 *
2331 * Put it on the run-queue if it's not already there. The "current"
2332 * thread is always on the run-queue (except when the actual
2333 * re-schedule is in progress), and as such you're allowed to do
2334 * the simpler "current->state = TASK_RUNNING" to mark yourself
2335 * runnable without the overhead of this.
2336 *
2337 * returns failure only if the task is already active.
2338 */
7d478721
PZ
2339static int try_to_wake_up(struct task_struct *p, unsigned int state,
2340 int wake_flags)
1da177e4 2341{
cc367732 2342 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2343 unsigned long flags;
f5dc3753 2344 struct rq *rq, *orig_rq;
1da177e4 2345
b85d0667 2346 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2347 wake_flags &= ~WF_SYNC;
2398f2c6 2348
e9c84311 2349 this_cpu = get_cpu();
2398f2c6 2350
04e2f174 2351 smp_wmb();
f5dc3753 2352 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2353 update_rq_clock(rq);
e9c84311 2354 if (!(p->state & state))
1da177e4
LT
2355 goto out;
2356
dd41f596 2357 if (p->se.on_rq)
1da177e4
LT
2358 goto out_running;
2359
2360 cpu = task_cpu(p);
cc367732 2361 orig_cpu = cpu;
1da177e4
LT
2362
2363#ifdef CONFIG_SMP
2364 if (unlikely(task_running(rq, p)))
2365 goto out_activate;
2366
e9c84311
PZ
2367 /*
2368 * In order to handle concurrent wakeups and release the rq->lock
2369 * we put the task in TASK_WAKING state.
eb24073b
IM
2370 *
2371 * First fix up the nr_uninterruptible count:
e9c84311 2372 */
eb24073b
IM
2373 if (task_contributes_to_load(p))
2374 rq->nr_uninterruptible--;
e9c84311
PZ
2375 p->state = TASK_WAKING;
2376 task_rq_unlock(rq, &flags);
2377
7d478721 2378 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
e9c84311 2379 if (cpu != orig_cpu)
5d2f5a61 2380 set_task_cpu(p, cpu);
1da177e4 2381
e9c84311 2382 rq = task_rq_lock(p, &flags);
f5dc3753
MG
2383
2384 if (rq != orig_rq)
2385 update_rq_clock(rq);
2386
e9c84311
PZ
2387 WARN_ON(p->state != TASK_WAKING);
2388 cpu = task_cpu(p);
1da177e4 2389
e7693a36
GH
2390#ifdef CONFIG_SCHEDSTATS
2391 schedstat_inc(rq, ttwu_count);
2392 if (cpu == this_cpu)
2393 schedstat_inc(rq, ttwu_local);
2394 else {
2395 struct sched_domain *sd;
2396 for_each_domain(this_cpu, sd) {
758b2cdc 2397 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2398 schedstat_inc(sd, ttwu_wake_remote);
2399 break;
2400 }
2401 }
2402 }
6d6bc0ad 2403#endif /* CONFIG_SCHEDSTATS */
e7693a36 2404
1da177e4
LT
2405out_activate:
2406#endif /* CONFIG_SMP */
cc367732 2407 schedstat_inc(p, se.nr_wakeups);
7d478721 2408 if (wake_flags & WF_SYNC)
cc367732
IM
2409 schedstat_inc(p, se.nr_wakeups_sync);
2410 if (orig_cpu != cpu)
2411 schedstat_inc(p, se.nr_wakeups_migrate);
2412 if (cpu == this_cpu)
2413 schedstat_inc(p, se.nr_wakeups_local);
2414 else
2415 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2416 activate_task(rq, p, 1);
1da177e4
LT
2417 success = 1;
2418
831451ac
PZ
2419 /*
2420 * Only attribute actual wakeups done by this task.
2421 */
2422 if (!in_interrupt()) {
2423 struct sched_entity *se = &current->se;
2424 u64 sample = se->sum_exec_runtime;
2425
2426 if (se->last_wakeup)
2427 sample -= se->last_wakeup;
2428 else
2429 sample -= se->start_runtime;
2430 update_avg(&se->avg_wakeup, sample);
2431
2432 se->last_wakeup = se->sum_exec_runtime;
2433 }
2434
1da177e4 2435out_running:
468a15bb 2436 trace_sched_wakeup(rq, p, success);
7d478721 2437 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2438
1da177e4 2439 p->state = TASK_RUNNING;
9a897c5a
SR
2440#ifdef CONFIG_SMP
2441 if (p->sched_class->task_wake_up)
2442 p->sched_class->task_wake_up(rq, p);
2443#endif
1da177e4
LT
2444out:
2445 task_rq_unlock(rq, &flags);
e9c84311 2446 put_cpu();
1da177e4
LT
2447
2448 return success;
2449}
2450
50fa610a
DH
2451/**
2452 * wake_up_process - Wake up a specific process
2453 * @p: The process to be woken up.
2454 *
2455 * Attempt to wake up the nominated process and move it to the set of runnable
2456 * processes. Returns 1 if the process was woken up, 0 if it was already
2457 * running.
2458 *
2459 * It may be assumed that this function implies a write memory barrier before
2460 * changing the task state if and only if any tasks are woken up.
2461 */
7ad5b3a5 2462int wake_up_process(struct task_struct *p)
1da177e4 2463{
d9514f6c 2464 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2465}
1da177e4
LT
2466EXPORT_SYMBOL(wake_up_process);
2467
7ad5b3a5 2468int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2469{
2470 return try_to_wake_up(p, state, 0);
2471}
2472
1da177e4
LT
2473/*
2474 * Perform scheduler related setup for a newly forked process p.
2475 * p is forked by current.
dd41f596
IM
2476 *
2477 * __sched_fork() is basic setup used by init_idle() too:
2478 */
2479static void __sched_fork(struct task_struct *p)
2480{
dd41f596
IM
2481 p->se.exec_start = 0;
2482 p->se.sum_exec_runtime = 0;
f6cf891c 2483 p->se.prev_sum_exec_runtime = 0;
6c594c21 2484 p->se.nr_migrations = 0;
4ae7d5ce
IM
2485 p->se.last_wakeup = 0;
2486 p->se.avg_overlap = 0;
831451ac
PZ
2487 p->se.start_runtime = 0;
2488 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
ad4b78bb 2489 p->se.avg_running = 0;
6cfb0d5d
IM
2490
2491#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2492 p->se.wait_start = 0;
2493 p->se.wait_max = 0;
2494 p->se.wait_count = 0;
2495 p->se.wait_sum = 0;
2496
2497 p->se.sleep_start = 0;
2498 p->se.sleep_max = 0;
2499 p->se.sum_sleep_runtime = 0;
2500
2501 p->se.block_start = 0;
2502 p->se.block_max = 0;
2503 p->se.exec_max = 0;
2504 p->se.slice_max = 0;
2505
2506 p->se.nr_migrations_cold = 0;
2507 p->se.nr_failed_migrations_affine = 0;
2508 p->se.nr_failed_migrations_running = 0;
2509 p->se.nr_failed_migrations_hot = 0;
2510 p->se.nr_forced_migrations = 0;
2511 p->se.nr_forced2_migrations = 0;
2512
2513 p->se.nr_wakeups = 0;
2514 p->se.nr_wakeups_sync = 0;
2515 p->se.nr_wakeups_migrate = 0;
2516 p->se.nr_wakeups_local = 0;
2517 p->se.nr_wakeups_remote = 0;
2518 p->se.nr_wakeups_affine = 0;
2519 p->se.nr_wakeups_affine_attempts = 0;
2520 p->se.nr_wakeups_passive = 0;
2521 p->se.nr_wakeups_idle = 0;
2522
6cfb0d5d 2523#endif
476d139c 2524
fa717060 2525 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2526 p->se.on_rq = 0;
4a55bd5e 2527 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2528
e107be36
AK
2529#ifdef CONFIG_PREEMPT_NOTIFIERS
2530 INIT_HLIST_HEAD(&p->preempt_notifiers);
2531#endif
2532
1da177e4
LT
2533 /*
2534 * We mark the process as running here, but have not actually
2535 * inserted it onto the runqueue yet. This guarantees that
2536 * nobody will actually run it, and a signal or other external
2537 * event cannot wake it up and insert it on the runqueue either.
2538 */
2539 p->state = TASK_RUNNING;
dd41f596
IM
2540}
2541
2542/*
2543 * fork()/clone()-time setup:
2544 */
2545void sched_fork(struct task_struct *p, int clone_flags)
2546{
2547 int cpu = get_cpu();
2548
2549 __sched_fork(p);
2550
b9dc29e7
MG
2551 /*
2552 * Revert to default priority/policy on fork if requested.
2553 */
2554 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2555 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2556 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2557 p->normal_prio = p->static_prio;
2558 }
b9dc29e7 2559
6c697bdf
MG
2560 if (PRIO_TO_NICE(p->static_prio) < 0) {
2561 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2562 p->normal_prio = p->static_prio;
6c697bdf
MG
2563 set_load_weight(p);
2564 }
2565
b9dc29e7
MG
2566 /*
2567 * We don't need the reset flag anymore after the fork. It has
2568 * fulfilled its duty:
2569 */
2570 p->sched_reset_on_fork = 0;
2571 }
ca94c442 2572
f83f9ac2
PW
2573 /*
2574 * Make sure we do not leak PI boosting priority to the child.
2575 */
2576 p->prio = current->normal_prio;
2577
2ddbf952
HS
2578 if (!rt_prio(p->prio))
2579 p->sched_class = &fair_sched_class;
b29739f9 2580
5f3edc1b
PZ
2581#ifdef CONFIG_SMP
2582 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2583#endif
2584 set_task_cpu(p, cpu);
2585
52f17b6c 2586#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2587 if (likely(sched_info_on()))
52f17b6c 2588 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2589#endif
d6077cb8 2590#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2591 p->oncpu = 0;
2592#endif
1da177e4 2593#ifdef CONFIG_PREEMPT
4866cde0 2594 /* Want to start with kernel preemption disabled. */
a1261f54 2595 task_thread_info(p)->preempt_count = 1;
1da177e4 2596#endif
917b627d
GH
2597 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2598
476d139c 2599 put_cpu();
1da177e4
LT
2600}
2601
2602/*
2603 * wake_up_new_task - wake up a newly created task for the first time.
2604 *
2605 * This function will do some initial scheduler statistics housekeeping
2606 * that must be done for every newly created context, then puts the task
2607 * on the runqueue and wakes it.
2608 */
7ad5b3a5 2609void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2610{
2611 unsigned long flags;
dd41f596 2612 struct rq *rq;
1da177e4
LT
2613
2614 rq = task_rq_lock(p, &flags);
147cbb4b 2615 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2616 update_rq_clock(rq);
1da177e4 2617
b9dca1e0 2618 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2619 activate_task(rq, p, 0);
1da177e4 2620 } else {
1da177e4 2621 /*
dd41f596
IM
2622 * Let the scheduling class do new task startup
2623 * management (if any):
1da177e4 2624 */
ee0827d8 2625 p->sched_class->task_new(rq, p);
c09595f6 2626 inc_nr_running(rq);
1da177e4 2627 }
c71dd42d 2628 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2629 check_preempt_curr(rq, p, WF_FORK);
9a897c5a
SR
2630#ifdef CONFIG_SMP
2631 if (p->sched_class->task_wake_up)
2632 p->sched_class->task_wake_up(rq, p);
2633#endif
dd41f596 2634 task_rq_unlock(rq, &flags);
1da177e4
LT
2635}
2636
e107be36
AK
2637#ifdef CONFIG_PREEMPT_NOTIFIERS
2638
2639/**
80dd99b3 2640 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2641 * @notifier: notifier struct to register
e107be36
AK
2642 */
2643void preempt_notifier_register(struct preempt_notifier *notifier)
2644{
2645 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2646}
2647EXPORT_SYMBOL_GPL(preempt_notifier_register);
2648
2649/**
2650 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2651 * @notifier: notifier struct to unregister
e107be36
AK
2652 *
2653 * This is safe to call from within a preemption notifier.
2654 */
2655void preempt_notifier_unregister(struct preempt_notifier *notifier)
2656{
2657 hlist_del(&notifier->link);
2658}
2659EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2660
2661static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2662{
2663 struct preempt_notifier *notifier;
2664 struct hlist_node *node;
2665
2666 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2667 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2668}
2669
2670static void
2671fire_sched_out_preempt_notifiers(struct task_struct *curr,
2672 struct task_struct *next)
2673{
2674 struct preempt_notifier *notifier;
2675 struct hlist_node *node;
2676
2677 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2678 notifier->ops->sched_out(notifier, next);
2679}
2680
6d6bc0ad 2681#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2682
2683static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2684{
2685}
2686
2687static void
2688fire_sched_out_preempt_notifiers(struct task_struct *curr,
2689 struct task_struct *next)
2690{
2691}
2692
6d6bc0ad 2693#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2694
4866cde0
NP
2695/**
2696 * prepare_task_switch - prepare to switch tasks
2697 * @rq: the runqueue preparing to switch
421cee29 2698 * @prev: the current task that is being switched out
4866cde0
NP
2699 * @next: the task we are going to switch to.
2700 *
2701 * This is called with the rq lock held and interrupts off. It must
2702 * be paired with a subsequent finish_task_switch after the context
2703 * switch.
2704 *
2705 * prepare_task_switch sets up locking and calls architecture specific
2706 * hooks.
2707 */
e107be36
AK
2708static inline void
2709prepare_task_switch(struct rq *rq, struct task_struct *prev,
2710 struct task_struct *next)
4866cde0 2711{
e107be36 2712 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2713 prepare_lock_switch(rq, next);
2714 prepare_arch_switch(next);
2715}
2716
1da177e4
LT
2717/**
2718 * finish_task_switch - clean up after a task-switch
344babaa 2719 * @rq: runqueue associated with task-switch
1da177e4
LT
2720 * @prev: the thread we just switched away from.
2721 *
4866cde0
NP
2722 * finish_task_switch must be called after the context switch, paired
2723 * with a prepare_task_switch call before the context switch.
2724 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2725 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2726 *
2727 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2728 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2729 * with the lock held can cause deadlocks; see schedule() for
2730 * details.)
2731 */
a9957449 2732static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2733 __releases(rq->lock)
2734{
1da177e4 2735 struct mm_struct *mm = rq->prev_mm;
55a101f8 2736 long prev_state;
1da177e4
LT
2737
2738 rq->prev_mm = NULL;
2739
2740 /*
2741 * A task struct has one reference for the use as "current".
c394cc9f 2742 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2743 * schedule one last time. The schedule call will never return, and
2744 * the scheduled task must drop that reference.
c394cc9f 2745 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2746 * still held, otherwise prev could be scheduled on another cpu, die
2747 * there before we look at prev->state, and then the reference would
2748 * be dropped twice.
2749 * Manfred Spraul <manfred@colorfullife.com>
2750 */
55a101f8 2751 prev_state = prev->state;
4866cde0 2752 finish_arch_switch(prev);
cdd6c482 2753 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2754 finish_lock_switch(rq, prev);
e8fa1362 2755
e107be36 2756 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2757 if (mm)
2758 mmdrop(mm);
c394cc9f 2759 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2760 /*
2761 * Remove function-return probe instances associated with this
2762 * task and put them back on the free list.
9761eea8 2763 */
c6fd91f0 2764 kprobe_flush_task(prev);
1da177e4 2765 put_task_struct(prev);
c6fd91f0 2766 }
1da177e4
LT
2767}
2768
3f029d3c
GH
2769#ifdef CONFIG_SMP
2770
2771/* assumes rq->lock is held */
2772static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2773{
2774 if (prev->sched_class->pre_schedule)
2775 prev->sched_class->pre_schedule(rq, prev);
2776}
2777
2778/* rq->lock is NOT held, but preemption is disabled */
2779static inline void post_schedule(struct rq *rq)
2780{
2781 if (rq->post_schedule) {
2782 unsigned long flags;
2783
2784 spin_lock_irqsave(&rq->lock, flags);
2785 if (rq->curr->sched_class->post_schedule)
2786 rq->curr->sched_class->post_schedule(rq);
2787 spin_unlock_irqrestore(&rq->lock, flags);
2788
2789 rq->post_schedule = 0;
2790 }
2791}
2792
2793#else
da19ab51 2794
3f029d3c
GH
2795static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2796{
2797}
2798
2799static inline void post_schedule(struct rq *rq)
2800{
1da177e4
LT
2801}
2802
3f029d3c
GH
2803#endif
2804
1da177e4
LT
2805/**
2806 * schedule_tail - first thing a freshly forked thread must call.
2807 * @prev: the thread we just switched away from.
2808 */
36c8b586 2809asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2810 __releases(rq->lock)
2811{
70b97a7f
IM
2812 struct rq *rq = this_rq();
2813
4866cde0 2814 finish_task_switch(rq, prev);
da19ab51 2815
3f029d3c
GH
2816 /*
2817 * FIXME: do we need to worry about rq being invalidated by the
2818 * task_switch?
2819 */
2820 post_schedule(rq);
70b97a7f 2821
4866cde0
NP
2822#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2823 /* In this case, finish_task_switch does not reenable preemption */
2824 preempt_enable();
2825#endif
1da177e4 2826 if (current->set_child_tid)
b488893a 2827 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2828}
2829
2830/*
2831 * context_switch - switch to the new MM and the new
2832 * thread's register state.
2833 */
dd41f596 2834static inline void
70b97a7f 2835context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2836 struct task_struct *next)
1da177e4 2837{
dd41f596 2838 struct mm_struct *mm, *oldmm;
1da177e4 2839
e107be36 2840 prepare_task_switch(rq, prev, next);
0a16b607 2841 trace_sched_switch(rq, prev, next);
dd41f596
IM
2842 mm = next->mm;
2843 oldmm = prev->active_mm;
9226d125
ZA
2844 /*
2845 * For paravirt, this is coupled with an exit in switch_to to
2846 * combine the page table reload and the switch backend into
2847 * one hypercall.
2848 */
224101ed 2849 arch_start_context_switch(prev);
9226d125 2850
dd41f596 2851 if (unlikely(!mm)) {
1da177e4
LT
2852 next->active_mm = oldmm;
2853 atomic_inc(&oldmm->mm_count);
2854 enter_lazy_tlb(oldmm, next);
2855 } else
2856 switch_mm(oldmm, mm, next);
2857
dd41f596 2858 if (unlikely(!prev->mm)) {
1da177e4 2859 prev->active_mm = NULL;
1da177e4
LT
2860 rq->prev_mm = oldmm;
2861 }
3a5f5e48
IM
2862 /*
2863 * Since the runqueue lock will be released by the next
2864 * task (which is an invalid locking op but in the case
2865 * of the scheduler it's an obvious special-case), so we
2866 * do an early lockdep release here:
2867 */
2868#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2869 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2870#endif
1da177e4
LT
2871
2872 /* Here we just switch the register state and the stack. */
2873 switch_to(prev, next, prev);
2874
dd41f596
IM
2875 barrier();
2876 /*
2877 * this_rq must be evaluated again because prev may have moved
2878 * CPUs since it called schedule(), thus the 'rq' on its stack
2879 * frame will be invalid.
2880 */
2881 finish_task_switch(this_rq(), prev);
1da177e4
LT
2882}
2883
2884/*
2885 * nr_running, nr_uninterruptible and nr_context_switches:
2886 *
2887 * externally visible scheduler statistics: current number of runnable
2888 * threads, current number of uninterruptible-sleeping threads, total
2889 * number of context switches performed since bootup.
2890 */
2891unsigned long nr_running(void)
2892{
2893 unsigned long i, sum = 0;
2894
2895 for_each_online_cpu(i)
2896 sum += cpu_rq(i)->nr_running;
2897
2898 return sum;
2899}
2900
2901unsigned long nr_uninterruptible(void)
2902{
2903 unsigned long i, sum = 0;
2904
0a945022 2905 for_each_possible_cpu(i)
1da177e4
LT
2906 sum += cpu_rq(i)->nr_uninterruptible;
2907
2908 /*
2909 * Since we read the counters lockless, it might be slightly
2910 * inaccurate. Do not allow it to go below zero though:
2911 */
2912 if (unlikely((long)sum < 0))
2913 sum = 0;
2914
2915 return sum;
2916}
2917
2918unsigned long long nr_context_switches(void)
2919{
cc94abfc
SR
2920 int i;
2921 unsigned long long sum = 0;
1da177e4 2922
0a945022 2923 for_each_possible_cpu(i)
1da177e4
LT
2924 sum += cpu_rq(i)->nr_switches;
2925
2926 return sum;
2927}
2928
2929unsigned long nr_iowait(void)
2930{
2931 unsigned long i, sum = 0;
2932
0a945022 2933 for_each_possible_cpu(i)
1da177e4
LT
2934 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2935
2936 return sum;
2937}
2938
69d25870
AV
2939unsigned long nr_iowait_cpu(void)
2940{
2941 struct rq *this = this_rq();
2942 return atomic_read(&this->nr_iowait);
2943}
2944
2945unsigned long this_cpu_load(void)
2946{
2947 struct rq *this = this_rq();
2948 return this->cpu_load[0];
2949}
2950
2951
dce48a84
TG
2952/* Variables and functions for calc_load */
2953static atomic_long_t calc_load_tasks;
2954static unsigned long calc_load_update;
2955unsigned long avenrun[3];
2956EXPORT_SYMBOL(avenrun);
2957
2d02494f
TG
2958/**
2959 * get_avenrun - get the load average array
2960 * @loads: pointer to dest load array
2961 * @offset: offset to add
2962 * @shift: shift count to shift the result left
2963 *
2964 * These values are estimates at best, so no need for locking.
2965 */
2966void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2967{
2968 loads[0] = (avenrun[0] + offset) << shift;
2969 loads[1] = (avenrun[1] + offset) << shift;
2970 loads[2] = (avenrun[2] + offset) << shift;
2971}
2972
dce48a84
TG
2973static unsigned long
2974calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2975{
dce48a84
TG
2976 load *= exp;
2977 load += active * (FIXED_1 - exp);
2978 return load >> FSHIFT;
2979}
db1b1fef 2980
dce48a84
TG
2981/*
2982 * calc_load - update the avenrun load estimates 10 ticks after the
2983 * CPUs have updated calc_load_tasks.
2984 */
2985void calc_global_load(void)
2986{
2987 unsigned long upd = calc_load_update + 10;
2988 long active;
2989
2990 if (time_before(jiffies, upd))
2991 return;
db1b1fef 2992
dce48a84
TG
2993 active = atomic_long_read(&calc_load_tasks);
2994 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 2995
dce48a84
TG
2996 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2997 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2998 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2999
3000 calc_load_update += LOAD_FREQ;
3001}
3002
3003/*
3004 * Either called from update_cpu_load() or from a cpu going idle
3005 */
3006static void calc_load_account_active(struct rq *this_rq)
3007{
3008 long nr_active, delta;
3009
3010 nr_active = this_rq->nr_running;
3011 nr_active += (long) this_rq->nr_uninterruptible;
3012
3013 if (nr_active != this_rq->calc_load_active) {
3014 delta = nr_active - this_rq->calc_load_active;
3015 this_rq->calc_load_active = nr_active;
3016 atomic_long_add(delta, &calc_load_tasks);
3017 }
db1b1fef
JS
3018}
3019
23a185ca
PM
3020/*
3021 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
3022 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3023 */
23a185ca
PM
3024u64 cpu_nr_migrations(int cpu)
3025{
3026 return cpu_rq(cpu)->nr_migrations_in;
3027}
3028
48f24c4d 3029/*
dd41f596
IM
3030 * Update rq->cpu_load[] statistics. This function is usually called every
3031 * scheduler tick (TICK_NSEC).
48f24c4d 3032 */
dd41f596 3033static void update_cpu_load(struct rq *this_rq)
48f24c4d 3034{
495eca49 3035 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3036 int i, scale;
3037
3038 this_rq->nr_load_updates++;
dd41f596
IM
3039
3040 /* Update our load: */
3041 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3042 unsigned long old_load, new_load;
3043
3044 /* scale is effectively 1 << i now, and >> i divides by scale */
3045
3046 old_load = this_rq->cpu_load[i];
3047 new_load = this_load;
a25707f3
IM
3048 /*
3049 * Round up the averaging division if load is increasing. This
3050 * prevents us from getting stuck on 9 if the load is 10, for
3051 * example.
3052 */
3053 if (new_load > old_load)
3054 new_load += scale-1;
dd41f596
IM
3055 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3056 }
dce48a84
TG
3057
3058 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3059 this_rq->calc_load_update += LOAD_FREQ;
3060 calc_load_account_active(this_rq);
3061 }
48f24c4d
IM
3062}
3063
dd41f596
IM
3064#ifdef CONFIG_SMP
3065
1da177e4
LT
3066/*
3067 * double_rq_lock - safely lock two runqueues
3068 *
3069 * Note this does not disable interrupts like task_rq_lock,
3070 * you need to do so manually before calling.
3071 */
70b97a7f 3072static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3073 __acquires(rq1->lock)
3074 __acquires(rq2->lock)
3075{
054b9108 3076 BUG_ON(!irqs_disabled());
1da177e4
LT
3077 if (rq1 == rq2) {
3078 spin_lock(&rq1->lock);
3079 __acquire(rq2->lock); /* Fake it out ;) */
3080 } else {
c96d145e 3081 if (rq1 < rq2) {
1da177e4 3082 spin_lock(&rq1->lock);
5e710e37 3083 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3084 } else {
3085 spin_lock(&rq2->lock);
5e710e37 3086 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3087 }
3088 }
6e82a3be
IM
3089 update_rq_clock(rq1);
3090 update_rq_clock(rq2);
1da177e4
LT
3091}
3092
3093/*
3094 * double_rq_unlock - safely unlock two runqueues
3095 *
3096 * Note this does not restore interrupts like task_rq_unlock,
3097 * you need to do so manually after calling.
3098 */
70b97a7f 3099static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3100 __releases(rq1->lock)
3101 __releases(rq2->lock)
3102{
3103 spin_unlock(&rq1->lock);
3104 if (rq1 != rq2)
3105 spin_unlock(&rq2->lock);
3106 else
3107 __release(rq2->lock);
3108}
3109
1da177e4
LT
3110/*
3111 * If dest_cpu is allowed for this process, migrate the task to it.
3112 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3113 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3114 * the cpu_allowed mask is restored.
3115 */
36c8b586 3116static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3117{
70b97a7f 3118 struct migration_req req;
1da177e4 3119 unsigned long flags;
70b97a7f 3120 struct rq *rq;
1da177e4
LT
3121
3122 rq = task_rq_lock(p, &flags);
96f874e2 3123 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3124 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3125 goto out;
3126
3127 /* force the process onto the specified CPU */
3128 if (migrate_task(p, dest_cpu, &req)) {
3129 /* Need to wait for migration thread (might exit: take ref). */
3130 struct task_struct *mt = rq->migration_thread;
36c8b586 3131
1da177e4
LT
3132 get_task_struct(mt);
3133 task_rq_unlock(rq, &flags);
3134 wake_up_process(mt);
3135 put_task_struct(mt);
3136 wait_for_completion(&req.done);
36c8b586 3137
1da177e4
LT
3138 return;
3139 }
3140out:
3141 task_rq_unlock(rq, &flags);
3142}
3143
3144/*
476d139c
NP
3145 * sched_exec - execve() is a valuable balancing opportunity, because at
3146 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3147 */
3148void sched_exec(void)
3149{
1da177e4 3150 int new_cpu, this_cpu = get_cpu();
5f3edc1b 3151 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
1da177e4 3152 put_cpu();
476d139c
NP
3153 if (new_cpu != this_cpu)
3154 sched_migrate_task(current, new_cpu);
1da177e4
LT
3155}
3156
3157/*
3158 * pull_task - move a task from a remote runqueue to the local runqueue.
3159 * Both runqueues must be locked.
3160 */
dd41f596
IM
3161static void pull_task(struct rq *src_rq, struct task_struct *p,
3162 struct rq *this_rq, int this_cpu)
1da177e4 3163{
2e1cb74a 3164 deactivate_task(src_rq, p, 0);
1da177e4 3165 set_task_cpu(p, this_cpu);
dd41f596 3166 activate_task(this_rq, p, 0);
1da177e4
LT
3167 /*
3168 * Note that idle threads have a prio of MAX_PRIO, for this test
3169 * to be always true for them.
3170 */
15afe09b 3171 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3172}
3173
3174/*
3175 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3176 */
858119e1 3177static
70b97a7f 3178int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3179 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3180 int *all_pinned)
1da177e4 3181{
708dc512 3182 int tsk_cache_hot = 0;
1da177e4
LT
3183 /*
3184 * We do not migrate tasks that are:
3185 * 1) running (obviously), or
3186 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3187 * 3) are cache-hot on their current CPU.
3188 */
96f874e2 3189 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3190 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3191 return 0;
cc367732 3192 }
81026794
NP
3193 *all_pinned = 0;
3194
cc367732
IM
3195 if (task_running(rq, p)) {
3196 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3197 return 0;
cc367732 3198 }
1da177e4 3199
da84d961
IM
3200 /*
3201 * Aggressive migration if:
3202 * 1) task is cache cold, or
3203 * 2) too many balance attempts have failed.
3204 */
3205
708dc512
LH
3206 tsk_cache_hot = task_hot(p, rq->clock, sd);
3207 if (!tsk_cache_hot ||
3208 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3209#ifdef CONFIG_SCHEDSTATS
708dc512 3210 if (tsk_cache_hot) {
da84d961 3211 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3212 schedstat_inc(p, se.nr_forced_migrations);
3213 }
da84d961
IM
3214#endif
3215 return 1;
3216 }
3217
708dc512 3218 if (tsk_cache_hot) {
cc367732 3219 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3220 return 0;
cc367732 3221 }
1da177e4
LT
3222 return 1;
3223}
3224
e1d1484f
PW
3225static unsigned long
3226balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3227 unsigned long max_load_move, struct sched_domain *sd,
3228 enum cpu_idle_type idle, int *all_pinned,
3229 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3230{
051c6764 3231 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3232 struct task_struct *p;
3233 long rem_load_move = max_load_move;
1da177e4 3234
e1d1484f 3235 if (max_load_move == 0)
1da177e4
LT
3236 goto out;
3237
81026794
NP
3238 pinned = 1;
3239
1da177e4 3240 /*
dd41f596 3241 * Start the load-balancing iterator:
1da177e4 3242 */
dd41f596
IM
3243 p = iterator->start(iterator->arg);
3244next:
b82d9fdd 3245 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3246 goto out;
051c6764
PZ
3247
3248 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3249 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3250 p = iterator->next(iterator->arg);
3251 goto next;
1da177e4
LT
3252 }
3253
dd41f596 3254 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3255 pulled++;
dd41f596 3256 rem_load_move -= p->se.load.weight;
1da177e4 3257
7e96fa58
GH
3258#ifdef CONFIG_PREEMPT
3259 /*
3260 * NEWIDLE balancing is a source of latency, so preemptible kernels
3261 * will stop after the first task is pulled to minimize the critical
3262 * section.
3263 */
3264 if (idle == CPU_NEWLY_IDLE)
3265 goto out;
3266#endif
3267
2dd73a4f 3268 /*
b82d9fdd 3269 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3270 */
e1d1484f 3271 if (rem_load_move > 0) {
a4ac01c3
PW
3272 if (p->prio < *this_best_prio)
3273 *this_best_prio = p->prio;
dd41f596
IM
3274 p = iterator->next(iterator->arg);
3275 goto next;
1da177e4
LT
3276 }
3277out:
3278 /*
e1d1484f 3279 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3280 * so we can safely collect pull_task() stats here rather than
3281 * inside pull_task().
3282 */
3283 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3284
3285 if (all_pinned)
3286 *all_pinned = pinned;
e1d1484f
PW
3287
3288 return max_load_move - rem_load_move;
1da177e4
LT
3289}
3290
dd41f596 3291/*
43010659
PW
3292 * move_tasks tries to move up to max_load_move weighted load from busiest to
3293 * this_rq, as part of a balancing operation within domain "sd".
3294 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3295 *
3296 * Called with both runqueues locked.
3297 */
3298static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3299 unsigned long max_load_move,
dd41f596
IM
3300 struct sched_domain *sd, enum cpu_idle_type idle,
3301 int *all_pinned)
3302{
5522d5d5 3303 const struct sched_class *class = sched_class_highest;
43010659 3304 unsigned long total_load_moved = 0;
a4ac01c3 3305 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3306
3307 do {
43010659
PW
3308 total_load_moved +=
3309 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3310 max_load_move - total_load_moved,
a4ac01c3 3311 sd, idle, all_pinned, &this_best_prio);
dd41f596 3312 class = class->next;
c4acb2c0 3313
7e96fa58
GH
3314#ifdef CONFIG_PREEMPT
3315 /*
3316 * NEWIDLE balancing is a source of latency, so preemptible
3317 * kernels will stop after the first task is pulled to minimize
3318 * the critical section.
3319 */
c4acb2c0
GH
3320 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3321 break;
7e96fa58 3322#endif
43010659 3323 } while (class && max_load_move > total_load_moved);
dd41f596 3324
43010659
PW
3325 return total_load_moved > 0;
3326}
3327
e1d1484f
PW
3328static int
3329iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3330 struct sched_domain *sd, enum cpu_idle_type idle,
3331 struct rq_iterator *iterator)
3332{
3333 struct task_struct *p = iterator->start(iterator->arg);
3334 int pinned = 0;
3335
3336 while (p) {
3337 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3338 pull_task(busiest, p, this_rq, this_cpu);
3339 /*
3340 * Right now, this is only the second place pull_task()
3341 * is called, so we can safely collect pull_task()
3342 * stats here rather than inside pull_task().
3343 */
3344 schedstat_inc(sd, lb_gained[idle]);
3345
3346 return 1;
3347 }
3348 p = iterator->next(iterator->arg);
3349 }
3350
3351 return 0;
3352}
3353
43010659
PW
3354/*
3355 * move_one_task tries to move exactly one task from busiest to this_rq, as
3356 * part of active balancing operations within "domain".
3357 * Returns 1 if successful and 0 otherwise.
3358 *
3359 * Called with both runqueues locked.
3360 */
3361static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3362 struct sched_domain *sd, enum cpu_idle_type idle)
3363{
5522d5d5 3364 const struct sched_class *class;
43010659 3365
cde7e5ca 3366 for_each_class(class) {
e1d1484f 3367 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3368 return 1;
cde7e5ca 3369 }
43010659
PW
3370
3371 return 0;
dd41f596 3372}
67bb6c03 3373/********** Helpers for find_busiest_group ************************/
1da177e4 3374/*
222d656d
GS
3375 * sd_lb_stats - Structure to store the statistics of a sched_domain
3376 * during load balancing.
1da177e4 3377 */
222d656d
GS
3378struct sd_lb_stats {
3379 struct sched_group *busiest; /* Busiest group in this sd */
3380 struct sched_group *this; /* Local group in this sd */
3381 unsigned long total_load; /* Total load of all groups in sd */
3382 unsigned long total_pwr; /* Total power of all groups in sd */
3383 unsigned long avg_load; /* Average load across all groups in sd */
3384
3385 /** Statistics of this group */
3386 unsigned long this_load;
3387 unsigned long this_load_per_task;
3388 unsigned long this_nr_running;
3389
3390 /* Statistics of the busiest group */
3391 unsigned long max_load;
3392 unsigned long busiest_load_per_task;
3393 unsigned long busiest_nr_running;
3394
3395 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3396#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3397 int power_savings_balance; /* Is powersave balance needed for this sd */
3398 struct sched_group *group_min; /* Least loaded group in sd */
3399 struct sched_group *group_leader; /* Group which relieves group_min */
3400 unsigned long min_load_per_task; /* load_per_task in group_min */
3401 unsigned long leader_nr_running; /* Nr running of group_leader */
3402 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3403#endif
222d656d 3404};
1da177e4 3405
d5ac537e 3406/*
381be78f
GS
3407 * sg_lb_stats - stats of a sched_group required for load_balancing
3408 */
3409struct sg_lb_stats {
3410 unsigned long avg_load; /*Avg load across the CPUs of the group */
3411 unsigned long group_load; /* Total load over the CPUs of the group */
3412 unsigned long sum_nr_running; /* Nr tasks running in the group */
3413 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3414 unsigned long group_capacity;
3415 int group_imb; /* Is there an imbalance in the group ? */
3416};
408ed066 3417
67bb6c03
GS
3418/**
3419 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3420 * @group: The group whose first cpu is to be returned.
3421 */
3422static inline unsigned int group_first_cpu(struct sched_group *group)
3423{
3424 return cpumask_first(sched_group_cpus(group));
3425}
3426
3427/**
3428 * get_sd_load_idx - Obtain the load index for a given sched domain.
3429 * @sd: The sched_domain whose load_idx is to be obtained.
3430 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3431 */
3432static inline int get_sd_load_idx(struct sched_domain *sd,
3433 enum cpu_idle_type idle)
3434{
3435 int load_idx;
3436
3437 switch (idle) {
3438 case CPU_NOT_IDLE:
7897986b 3439 load_idx = sd->busy_idx;
67bb6c03
GS
3440 break;
3441
3442 case CPU_NEWLY_IDLE:
7897986b 3443 load_idx = sd->newidle_idx;
67bb6c03
GS
3444 break;
3445 default:
7897986b 3446 load_idx = sd->idle_idx;
67bb6c03
GS
3447 break;
3448 }
1da177e4 3449
67bb6c03
GS
3450 return load_idx;
3451}
1da177e4 3452
1da177e4 3453
c071df18
GS
3454#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3455/**
3456 * init_sd_power_savings_stats - Initialize power savings statistics for
3457 * the given sched_domain, during load balancing.
3458 *
3459 * @sd: Sched domain whose power-savings statistics are to be initialized.
3460 * @sds: Variable containing the statistics for sd.
3461 * @idle: Idle status of the CPU at which we're performing load-balancing.
3462 */
3463static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3464 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3465{
3466 /*
3467 * Busy processors will not participate in power savings
3468 * balance.
3469 */
3470 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3471 sds->power_savings_balance = 0;
3472 else {
3473 sds->power_savings_balance = 1;
3474 sds->min_nr_running = ULONG_MAX;
3475 sds->leader_nr_running = 0;
3476 }
3477}
783609c6 3478
c071df18
GS
3479/**
3480 * update_sd_power_savings_stats - Update the power saving stats for a
3481 * sched_domain while performing load balancing.
3482 *
3483 * @group: sched_group belonging to the sched_domain under consideration.
3484 * @sds: Variable containing the statistics of the sched_domain
3485 * @local_group: Does group contain the CPU for which we're performing
3486 * load balancing ?
3487 * @sgs: Variable containing the statistics of the group.
3488 */
3489static inline void update_sd_power_savings_stats(struct sched_group *group,
3490 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3491{
408ed066 3492
c071df18
GS
3493 if (!sds->power_savings_balance)
3494 return;
1da177e4 3495
c071df18
GS
3496 /*
3497 * If the local group is idle or completely loaded
3498 * no need to do power savings balance at this domain
3499 */
3500 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3501 !sds->this_nr_running))
3502 sds->power_savings_balance = 0;
2dd73a4f 3503
c071df18
GS
3504 /*
3505 * If a group is already running at full capacity or idle,
3506 * don't include that group in power savings calculations
3507 */
3508 if (!sds->power_savings_balance ||
3509 sgs->sum_nr_running >= sgs->group_capacity ||
3510 !sgs->sum_nr_running)
3511 return;
5969fe06 3512
c071df18
GS
3513 /*
3514 * Calculate the group which has the least non-idle load.
3515 * This is the group from where we need to pick up the load
3516 * for saving power
3517 */
3518 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3519 (sgs->sum_nr_running == sds->min_nr_running &&
3520 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3521 sds->group_min = group;
3522 sds->min_nr_running = sgs->sum_nr_running;
3523 sds->min_load_per_task = sgs->sum_weighted_load /
3524 sgs->sum_nr_running;
3525 }
783609c6 3526
c071df18
GS
3527 /*
3528 * Calculate the group which is almost near its
3529 * capacity but still has some space to pick up some load
3530 * from other group and save more power
3531 */
d899a789 3532 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3533 return;
1da177e4 3534
c071df18
GS
3535 if (sgs->sum_nr_running > sds->leader_nr_running ||
3536 (sgs->sum_nr_running == sds->leader_nr_running &&
3537 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3538 sds->group_leader = group;
3539 sds->leader_nr_running = sgs->sum_nr_running;
3540 }
3541}
408ed066 3542
c071df18 3543/**
d5ac537e 3544 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3545 * @sds: Variable containing the statistics of the sched_domain
3546 * under consideration.
3547 * @this_cpu: Cpu at which we're currently performing load-balancing.
3548 * @imbalance: Variable to store the imbalance.
3549 *
d5ac537e
RD
3550 * Description:
3551 * Check if we have potential to perform some power-savings balance.
3552 * If yes, set the busiest group to be the least loaded group in the
3553 * sched_domain, so that it's CPUs can be put to idle.
3554 *
c071df18
GS
3555 * Returns 1 if there is potential to perform power-savings balance.
3556 * Else returns 0.
3557 */
3558static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3559 int this_cpu, unsigned long *imbalance)
3560{
3561 if (!sds->power_savings_balance)
3562 return 0;
1da177e4 3563
c071df18
GS
3564 if (sds->this != sds->group_leader ||
3565 sds->group_leader == sds->group_min)
3566 return 0;
783609c6 3567
c071df18
GS
3568 *imbalance = sds->min_load_per_task;
3569 sds->busiest = sds->group_min;
1da177e4 3570
c071df18 3571 return 1;
1da177e4 3572
c071df18
GS
3573}
3574#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3575static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3576 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3577{
3578 return;
3579}
408ed066 3580
c071df18
GS
3581static inline void update_sd_power_savings_stats(struct sched_group *group,
3582 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3583{
3584 return;
3585}
3586
3587static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3588 int this_cpu, unsigned long *imbalance)
3589{
3590 return 0;
3591}
3592#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3593
d6a59aa3
PZ
3594
3595unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3596{
3597 return SCHED_LOAD_SCALE;
3598}
3599
3600unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3601{
3602 return default_scale_freq_power(sd, cpu);
3603}
3604
3605unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3606{
3607 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3608 unsigned long smt_gain = sd->smt_gain;
3609
3610 smt_gain /= weight;
3611
3612 return smt_gain;
3613}
3614
d6a59aa3
PZ
3615unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3616{
3617 return default_scale_smt_power(sd, cpu);
3618}
3619
e9e9250b
PZ
3620unsigned long scale_rt_power(int cpu)
3621{
3622 struct rq *rq = cpu_rq(cpu);
3623 u64 total, available;
3624
3625 sched_avg_update(rq);
3626
3627 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3628 available = total - rq->rt_avg;
3629
3630 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3631 total = SCHED_LOAD_SCALE;
3632
3633 total >>= SCHED_LOAD_SHIFT;
3634
3635 return div_u64(available, total);
3636}
3637
ab29230e
PZ
3638static void update_cpu_power(struct sched_domain *sd, int cpu)
3639{
3640 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3641 unsigned long power = SCHED_LOAD_SCALE;
3642 struct sched_group *sdg = sd->groups;
ab29230e 3643
8e6598af
PZ
3644 if (sched_feat(ARCH_POWER))
3645 power *= arch_scale_freq_power(sd, cpu);
3646 else
3647 power *= default_scale_freq_power(sd, cpu);
3648
d6a59aa3 3649 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3650
3651 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3652 if (sched_feat(ARCH_POWER))
3653 power *= arch_scale_smt_power(sd, cpu);
3654 else
3655 power *= default_scale_smt_power(sd, cpu);
3656
ab29230e
PZ
3657 power >>= SCHED_LOAD_SHIFT;
3658 }
3659
e9e9250b
PZ
3660 power *= scale_rt_power(cpu);
3661 power >>= SCHED_LOAD_SHIFT;
3662
3663 if (!power)
3664 power = 1;
ab29230e 3665
18a3885f 3666 sdg->cpu_power = power;
ab29230e
PZ
3667}
3668
3669static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3670{
3671 struct sched_domain *child = sd->child;
3672 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3673 unsigned long power;
cc9fba7d
PZ
3674
3675 if (!child) {
ab29230e 3676 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3677 return;
3678 }
3679
d7ea17a7 3680 power = 0;
cc9fba7d
PZ
3681
3682 group = child->groups;
3683 do {
d7ea17a7 3684 power += group->cpu_power;
cc9fba7d
PZ
3685 group = group->next;
3686 } while (group != child->groups);
d7ea17a7
IM
3687
3688 sdg->cpu_power = power;
cc9fba7d 3689}
c071df18 3690
1f8c553d
GS
3691/**
3692 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3693 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3694 * @group: sched_group whose statistics are to be updated.
3695 * @this_cpu: Cpu for which load balance is currently performed.
3696 * @idle: Idle status of this_cpu
3697 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3698 * @sd_idle: Idle status of the sched_domain containing group.
3699 * @local_group: Does group contain this_cpu.
3700 * @cpus: Set of cpus considered for load balancing.
3701 * @balance: Should we balance.
3702 * @sgs: variable to hold the statistics for this group.
3703 */
cc9fba7d
PZ
3704static inline void update_sg_lb_stats(struct sched_domain *sd,
3705 struct sched_group *group, int this_cpu,
1f8c553d
GS
3706 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3707 int local_group, const struct cpumask *cpus,
3708 int *balance, struct sg_lb_stats *sgs)
3709{
3710 unsigned long load, max_cpu_load, min_cpu_load;
3711 int i;
3712 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3713 unsigned long sum_avg_load_per_task;
3714 unsigned long avg_load_per_task;
3715
cc9fba7d 3716 if (local_group) {
1f8c553d 3717 balance_cpu = group_first_cpu(group);
cc9fba7d 3718 if (balance_cpu == this_cpu)
ab29230e 3719 update_group_power(sd, this_cpu);
cc9fba7d 3720 }
1f8c553d
GS
3721
3722 /* Tally up the load of all CPUs in the group */
3723 sum_avg_load_per_task = avg_load_per_task = 0;
3724 max_cpu_load = 0;
3725 min_cpu_load = ~0UL;
408ed066 3726
1f8c553d
GS
3727 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3728 struct rq *rq = cpu_rq(i);
908a7c1b 3729
1f8c553d
GS
3730 if (*sd_idle && rq->nr_running)
3731 *sd_idle = 0;
5c45bf27 3732
1f8c553d 3733 /* Bias balancing toward cpus of our domain */
1da177e4 3734 if (local_group) {
1f8c553d
GS
3735 if (idle_cpu(i) && !first_idle_cpu) {
3736 first_idle_cpu = 1;
3737 balance_cpu = i;
3738 }
3739
3740 load = target_load(i, load_idx);
3741 } else {
3742 load = source_load(i, load_idx);
3743 if (load > max_cpu_load)
3744 max_cpu_load = load;
3745 if (min_cpu_load > load)
3746 min_cpu_load = load;
1da177e4 3747 }
5c45bf27 3748
1f8c553d
GS
3749 sgs->group_load += load;
3750 sgs->sum_nr_running += rq->nr_running;
3751 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3752
1f8c553d
GS
3753 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3754 }
5c45bf27 3755
1f8c553d
GS
3756 /*
3757 * First idle cpu or the first cpu(busiest) in this sched group
3758 * is eligible for doing load balancing at this and above
3759 * domains. In the newly idle case, we will allow all the cpu's
3760 * to do the newly idle load balance.
3761 */
3762 if (idle != CPU_NEWLY_IDLE && local_group &&
3763 balance_cpu != this_cpu && balance) {
3764 *balance = 0;
3765 return;
3766 }
5c45bf27 3767
1f8c553d 3768 /* Adjust by relative CPU power of the group */
18a3885f 3769 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3770
1f8c553d
GS
3771
3772 /*
3773 * Consider the group unbalanced when the imbalance is larger
3774 * than the average weight of two tasks.
3775 *
3776 * APZ: with cgroup the avg task weight can vary wildly and
3777 * might not be a suitable number - should we keep a
3778 * normalized nr_running number somewhere that negates
3779 * the hierarchy?
3780 */
18a3885f
PZ
3781 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3782 group->cpu_power;
1f8c553d
GS
3783
3784 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3785 sgs->group_imb = 1;
3786
bdb94aa5 3787 sgs->group_capacity =
18a3885f 3788 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3789}
dd41f596 3790
37abe198
GS
3791/**
3792 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3793 * @sd: sched_domain whose statistics are to be updated.
3794 * @this_cpu: Cpu for which load balance is currently performed.
3795 * @idle: Idle status of this_cpu
3796 * @sd_idle: Idle status of the sched_domain containing group.
3797 * @cpus: Set of cpus considered for load balancing.
3798 * @balance: Should we balance.
3799 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3800 */
37abe198
GS
3801static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3802 enum cpu_idle_type idle, int *sd_idle,
3803 const struct cpumask *cpus, int *balance,
3804 struct sd_lb_stats *sds)
1da177e4 3805{
b5d978e0 3806 struct sched_domain *child = sd->child;
222d656d 3807 struct sched_group *group = sd->groups;
37abe198 3808 struct sg_lb_stats sgs;
b5d978e0
PZ
3809 int load_idx, prefer_sibling = 0;
3810
3811 if (child && child->flags & SD_PREFER_SIBLING)
3812 prefer_sibling = 1;
222d656d 3813
c071df18 3814 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3815 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3816
3817 do {
1da177e4 3818 int local_group;
1da177e4 3819
758b2cdc
RR
3820 local_group = cpumask_test_cpu(this_cpu,
3821 sched_group_cpus(group));
381be78f 3822 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3823 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3824 local_group, cpus, balance, &sgs);
1da177e4 3825
37abe198
GS
3826 if (local_group && balance && !(*balance))
3827 return;
783609c6 3828
37abe198 3829 sds->total_load += sgs.group_load;
18a3885f 3830 sds->total_pwr += group->cpu_power;
1da177e4 3831
b5d978e0
PZ
3832 /*
3833 * In case the child domain prefers tasks go to siblings
3834 * first, lower the group capacity to one so that we'll try
3835 * and move all the excess tasks away.
3836 */
3837 if (prefer_sibling)
bdb94aa5 3838 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3839
1da177e4 3840 if (local_group) {
37abe198
GS
3841 sds->this_load = sgs.avg_load;
3842 sds->this = group;
3843 sds->this_nr_running = sgs.sum_nr_running;
3844 sds->this_load_per_task = sgs.sum_weighted_load;
3845 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3846 (sgs.sum_nr_running > sgs.group_capacity ||
3847 sgs.group_imb)) {
37abe198
GS
3848 sds->max_load = sgs.avg_load;
3849 sds->busiest = group;
3850 sds->busiest_nr_running = sgs.sum_nr_running;
3851 sds->busiest_load_per_task = sgs.sum_weighted_load;
3852 sds->group_imb = sgs.group_imb;
48f24c4d 3853 }
5c45bf27 3854
c071df18 3855 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3856 group = group->next;
3857 } while (group != sd->groups);
37abe198 3858}
1da177e4 3859
2e6f44ae
GS
3860/**
3861 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3862 * amongst the groups of a sched_domain, during
3863 * load balancing.
2e6f44ae
GS
3864 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3865 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3866 * @imbalance: Variable to store the imbalance.
3867 */
3868static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3869 int this_cpu, unsigned long *imbalance)
3870{
3871 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3872 unsigned int imbn = 2;
3873
3874 if (sds->this_nr_running) {
3875 sds->this_load_per_task /= sds->this_nr_running;
3876 if (sds->busiest_load_per_task >
3877 sds->this_load_per_task)
3878 imbn = 1;
3879 } else
3880 sds->this_load_per_task =
3881 cpu_avg_load_per_task(this_cpu);
1da177e4 3882
2e6f44ae
GS
3883 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3884 sds->busiest_load_per_task * imbn) {
3885 *imbalance = sds->busiest_load_per_task;
3886 return;
3887 }
908a7c1b 3888
1da177e4 3889 /*
2e6f44ae
GS
3890 * OK, we don't have enough imbalance to justify moving tasks,
3891 * however we may be able to increase total CPU power used by
3892 * moving them.
1da177e4 3893 */
2dd73a4f 3894
18a3885f 3895 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3896 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3897 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3898 min(sds->this_load_per_task, sds->this_load);
3899 pwr_now /= SCHED_LOAD_SCALE;
3900
3901 /* Amount of load we'd subtract */
18a3885f
PZ
3902 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3903 sds->busiest->cpu_power;
2e6f44ae 3904 if (sds->max_load > tmp)
18a3885f 3905 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3906 min(sds->busiest_load_per_task, sds->max_load - tmp);
3907
3908 /* Amount of load we'd add */
18a3885f 3909 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3910 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3911 tmp = (sds->max_load * sds->busiest->cpu_power) /
3912 sds->this->cpu_power;
2e6f44ae 3913 else
18a3885f
PZ
3914 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3915 sds->this->cpu_power;
3916 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3917 min(sds->this_load_per_task, sds->this_load + tmp);
3918 pwr_move /= SCHED_LOAD_SCALE;
3919
3920 /* Move if we gain throughput */
3921 if (pwr_move > pwr_now)
3922 *imbalance = sds->busiest_load_per_task;
3923}
dbc523a3
GS
3924
3925/**
3926 * calculate_imbalance - Calculate the amount of imbalance present within the
3927 * groups of a given sched_domain during load balance.
3928 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3929 * @this_cpu: Cpu for which currently load balance is being performed.
3930 * @imbalance: The variable to store the imbalance.
3931 */
3932static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3933 unsigned long *imbalance)
3934{
3935 unsigned long max_pull;
2dd73a4f
PW
3936 /*
3937 * In the presence of smp nice balancing, certain scenarios can have
3938 * max load less than avg load(as we skip the groups at or below
3939 * its cpu_power, while calculating max_load..)
3940 */
dbc523a3 3941 if (sds->max_load < sds->avg_load) {
2dd73a4f 3942 *imbalance = 0;
dbc523a3 3943 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3944 }
0c117f1b
SS
3945
3946 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3947 max_pull = min(sds->max_load - sds->avg_load,
3948 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3949
1da177e4 3950 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3951 *imbalance = min(max_pull * sds->busiest->cpu_power,
3952 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3953 / SCHED_LOAD_SCALE;
3954
2dd73a4f
PW
3955 /*
3956 * if *imbalance is less than the average load per runnable task
3957 * there is no gaurantee that any tasks will be moved so we'll have
3958 * a think about bumping its value to force at least one task to be
3959 * moved
3960 */
dbc523a3
GS
3961 if (*imbalance < sds->busiest_load_per_task)
3962 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3963
dbc523a3 3964}
37abe198 3965/******* find_busiest_group() helpers end here *********************/
1da177e4 3966
b7bb4c9b
GS
3967/**
3968 * find_busiest_group - Returns the busiest group within the sched_domain
3969 * if there is an imbalance. If there isn't an imbalance, and
3970 * the user has opted for power-savings, it returns a group whose
3971 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3972 * such a group exists.
3973 *
3974 * Also calculates the amount of weighted load which should be moved
3975 * to restore balance.
3976 *
3977 * @sd: The sched_domain whose busiest group is to be returned.
3978 * @this_cpu: The cpu for which load balancing is currently being performed.
3979 * @imbalance: Variable which stores amount of weighted load which should
3980 * be moved to restore balance/put a group to idle.
3981 * @idle: The idle status of this_cpu.
3982 * @sd_idle: The idleness of sd
3983 * @cpus: The set of CPUs under consideration for load-balancing.
3984 * @balance: Pointer to a variable indicating if this_cpu
3985 * is the appropriate cpu to perform load balancing at this_level.
3986 *
3987 * Returns: - the busiest group if imbalance exists.
3988 * - If no imbalance and user has opted for power-savings balance,
3989 * return the least loaded group whose CPUs can be
3990 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3991 */
3992static struct sched_group *
3993find_busiest_group(struct sched_domain *sd, int this_cpu,
3994 unsigned long *imbalance, enum cpu_idle_type idle,
3995 int *sd_idle, const struct cpumask *cpus, int *balance)
3996{
3997 struct sd_lb_stats sds;
1da177e4 3998
37abe198 3999 memset(&sds, 0, sizeof(sds));
1da177e4 4000
37abe198
GS
4001 /*
4002 * Compute the various statistics relavent for load balancing at
4003 * this level.
4004 */
4005 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4006 balance, &sds);
4007
b7bb4c9b
GS
4008 /* Cases where imbalance does not exist from POV of this_cpu */
4009 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4010 * at this level.
4011 * 2) There is no busy sibling group to pull from.
4012 * 3) This group is the busiest group.
4013 * 4) This group is more busy than the avg busieness at this
4014 * sched_domain.
4015 * 5) The imbalance is within the specified limit.
4016 * 6) Any rebalance would lead to ping-pong
4017 */
37abe198
GS
4018 if (balance && !(*balance))
4019 goto ret;
1da177e4 4020
b7bb4c9b
GS
4021 if (!sds.busiest || sds.busiest_nr_running == 0)
4022 goto out_balanced;
1da177e4 4023
b7bb4c9b 4024 if (sds.this_load >= sds.max_load)
1da177e4 4025 goto out_balanced;
1da177e4 4026
222d656d 4027 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4028
b7bb4c9b
GS
4029 if (sds.this_load >= sds.avg_load)
4030 goto out_balanced;
4031
4032 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4033 goto out_balanced;
4034
222d656d
GS
4035 sds.busiest_load_per_task /= sds.busiest_nr_running;
4036 if (sds.group_imb)
4037 sds.busiest_load_per_task =
4038 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4039
1da177e4
LT
4040 /*
4041 * We're trying to get all the cpus to the average_load, so we don't
4042 * want to push ourselves above the average load, nor do we wish to
4043 * reduce the max loaded cpu below the average load, as either of these
4044 * actions would just result in more rebalancing later, and ping-pong
4045 * tasks around. Thus we look for the minimum possible imbalance.
4046 * Negative imbalances (*we* are more loaded than anyone else) will
4047 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4048 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4049 * appear as very large values with unsigned longs.
4050 */
222d656d 4051 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4052 goto out_balanced;
4053
dbc523a3
GS
4054 /* Looks like there is an imbalance. Compute it */
4055 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4056 return sds.busiest;
1da177e4
LT
4057
4058out_balanced:
c071df18
GS
4059 /*
4060 * There is no obvious imbalance. But check if we can do some balancing
4061 * to save power.
4062 */
4063 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4064 return sds.busiest;
783609c6 4065ret:
1da177e4
LT
4066 *imbalance = 0;
4067 return NULL;
4068}
4069
4070/*
4071 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4072 */
70b97a7f 4073static struct rq *
d15bcfdb 4074find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4075 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4076{
70b97a7f 4077 struct rq *busiest = NULL, *rq;
2dd73a4f 4078 unsigned long max_load = 0;
1da177e4
LT
4079 int i;
4080
758b2cdc 4081 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4082 unsigned long power = power_of(i);
4083 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4084 unsigned long wl;
0a2966b4 4085
96f874e2 4086 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4087 continue;
4088
48f24c4d 4089 rq = cpu_rq(i);
bdb94aa5
PZ
4090 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4091 wl /= power;
2dd73a4f 4092
bdb94aa5 4093 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4094 continue;
1da177e4 4095
dd41f596
IM
4096 if (wl > max_load) {
4097 max_load = wl;
48f24c4d 4098 busiest = rq;
1da177e4
LT
4099 }
4100 }
4101
4102 return busiest;
4103}
4104
77391d71
NP
4105/*
4106 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4107 * so long as it is large enough.
4108 */
4109#define MAX_PINNED_INTERVAL 512
4110
df7c8e84
RR
4111/* Working cpumask for load_balance and load_balance_newidle. */
4112static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4113
1da177e4
LT
4114/*
4115 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4116 * tasks if there is an imbalance.
1da177e4 4117 */
70b97a7f 4118static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4119 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4120 int *balance)
1da177e4 4121{
43010659 4122 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4123 struct sched_group *group;
1da177e4 4124 unsigned long imbalance;
70b97a7f 4125 struct rq *busiest;
fe2eea3f 4126 unsigned long flags;
df7c8e84 4127 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4128
96f874e2 4129 cpumask_setall(cpus);
7c16ec58 4130
89c4710e
SS
4131 /*
4132 * When power savings policy is enabled for the parent domain, idle
4133 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4134 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4135 * portraying it as CPU_NOT_IDLE.
89c4710e 4136 */
d15bcfdb 4137 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4138 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4139 sd_idle = 1;
1da177e4 4140
2d72376b 4141 schedstat_inc(sd, lb_count[idle]);
1da177e4 4142
0a2966b4 4143redo:
c8cba857 4144 update_shares(sd);
0a2966b4 4145 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4146 cpus, balance);
783609c6 4147
06066714 4148 if (*balance == 0)
783609c6 4149 goto out_balanced;
783609c6 4150
1da177e4
LT
4151 if (!group) {
4152 schedstat_inc(sd, lb_nobusyg[idle]);
4153 goto out_balanced;
4154 }
4155
7c16ec58 4156 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4157 if (!busiest) {
4158 schedstat_inc(sd, lb_nobusyq[idle]);
4159 goto out_balanced;
4160 }
4161
db935dbd 4162 BUG_ON(busiest == this_rq);
1da177e4
LT
4163
4164 schedstat_add(sd, lb_imbalance[idle], imbalance);
4165
43010659 4166 ld_moved = 0;
1da177e4
LT
4167 if (busiest->nr_running > 1) {
4168 /*
4169 * Attempt to move tasks. If find_busiest_group has found
4170 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4171 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4172 * correctly treated as an imbalance.
4173 */
fe2eea3f 4174 local_irq_save(flags);
e17224bf 4175 double_rq_lock(this_rq, busiest);
43010659 4176 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4177 imbalance, sd, idle, &all_pinned);
e17224bf 4178 double_rq_unlock(this_rq, busiest);
fe2eea3f 4179 local_irq_restore(flags);
81026794 4180
46cb4b7c
SS
4181 /*
4182 * some other cpu did the load balance for us.
4183 */
43010659 4184 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4185 resched_cpu(this_cpu);
4186
81026794 4187 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4188 if (unlikely(all_pinned)) {
96f874e2
RR
4189 cpumask_clear_cpu(cpu_of(busiest), cpus);
4190 if (!cpumask_empty(cpus))
0a2966b4 4191 goto redo;
81026794 4192 goto out_balanced;
0a2966b4 4193 }
1da177e4 4194 }
81026794 4195
43010659 4196 if (!ld_moved) {
1da177e4
LT
4197 schedstat_inc(sd, lb_failed[idle]);
4198 sd->nr_balance_failed++;
4199
4200 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4201
fe2eea3f 4202 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4203
4204 /* don't kick the migration_thread, if the curr
4205 * task on busiest cpu can't be moved to this_cpu
4206 */
96f874e2
RR
4207 if (!cpumask_test_cpu(this_cpu,
4208 &busiest->curr->cpus_allowed)) {
fe2eea3f 4209 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4210 all_pinned = 1;
4211 goto out_one_pinned;
4212 }
4213
1da177e4
LT
4214 if (!busiest->active_balance) {
4215 busiest->active_balance = 1;
4216 busiest->push_cpu = this_cpu;
81026794 4217 active_balance = 1;
1da177e4 4218 }
fe2eea3f 4219 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4220 if (active_balance)
1da177e4
LT
4221 wake_up_process(busiest->migration_thread);
4222
4223 /*
4224 * We've kicked active balancing, reset the failure
4225 * counter.
4226 */
39507451 4227 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4228 }
81026794 4229 } else
1da177e4
LT
4230 sd->nr_balance_failed = 0;
4231
81026794 4232 if (likely(!active_balance)) {
1da177e4
LT
4233 /* We were unbalanced, so reset the balancing interval */
4234 sd->balance_interval = sd->min_interval;
81026794
NP
4235 } else {
4236 /*
4237 * If we've begun active balancing, start to back off. This
4238 * case may not be covered by the all_pinned logic if there
4239 * is only 1 task on the busy runqueue (because we don't call
4240 * move_tasks).
4241 */
4242 if (sd->balance_interval < sd->max_interval)
4243 sd->balance_interval *= 2;
1da177e4
LT
4244 }
4245
43010659 4246 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4247 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4248 ld_moved = -1;
4249
4250 goto out;
1da177e4
LT
4251
4252out_balanced:
1da177e4
LT
4253 schedstat_inc(sd, lb_balanced[idle]);
4254
16cfb1c0 4255 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4256
4257out_one_pinned:
1da177e4 4258 /* tune up the balancing interval */
77391d71
NP
4259 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4260 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4261 sd->balance_interval *= 2;
4262
48f24c4d 4263 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4264 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4265 ld_moved = -1;
4266 else
4267 ld_moved = 0;
4268out:
c8cba857
PZ
4269 if (ld_moved)
4270 update_shares(sd);
c09595f6 4271 return ld_moved;
1da177e4
LT
4272}
4273
4274/*
4275 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4276 * tasks if there is an imbalance.
4277 *
d15bcfdb 4278 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4279 * this_rq is locked.
4280 */
48f24c4d 4281static int
df7c8e84 4282load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4283{
4284 struct sched_group *group;
70b97a7f 4285 struct rq *busiest = NULL;
1da177e4 4286 unsigned long imbalance;
43010659 4287 int ld_moved = 0;
5969fe06 4288 int sd_idle = 0;
969bb4e4 4289 int all_pinned = 0;
df7c8e84 4290 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4291
96f874e2 4292 cpumask_setall(cpus);
5969fe06 4293
89c4710e
SS
4294 /*
4295 * When power savings policy is enabled for the parent domain, idle
4296 * sibling can pick up load irrespective of busy siblings. In this case,
4297 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4298 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4299 */
4300 if (sd->flags & SD_SHARE_CPUPOWER &&
4301 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4302 sd_idle = 1;
1da177e4 4303
2d72376b 4304 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4305redo:
3e5459b4 4306 update_shares_locked(this_rq, sd);
d15bcfdb 4307 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4308 &sd_idle, cpus, NULL);
1da177e4 4309 if (!group) {
d15bcfdb 4310 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4311 goto out_balanced;
1da177e4
LT
4312 }
4313
7c16ec58 4314 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4315 if (!busiest) {
d15bcfdb 4316 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4317 goto out_balanced;
1da177e4
LT
4318 }
4319
db935dbd
NP
4320 BUG_ON(busiest == this_rq);
4321
d15bcfdb 4322 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4323
43010659 4324 ld_moved = 0;
d6d5cfaf
NP
4325 if (busiest->nr_running > 1) {
4326 /* Attempt to move tasks */
4327 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4328 /* this_rq->clock is already updated */
4329 update_rq_clock(busiest);
43010659 4330 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4331 imbalance, sd, CPU_NEWLY_IDLE,
4332 &all_pinned);
1b12bbc7 4333 double_unlock_balance(this_rq, busiest);
0a2966b4 4334
969bb4e4 4335 if (unlikely(all_pinned)) {
96f874e2
RR
4336 cpumask_clear_cpu(cpu_of(busiest), cpus);
4337 if (!cpumask_empty(cpus))
0a2966b4
CL
4338 goto redo;
4339 }
d6d5cfaf
NP
4340 }
4341
43010659 4342 if (!ld_moved) {
36dffab6 4343 int active_balance = 0;
ad273b32 4344
d15bcfdb 4345 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4346 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4347 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4348 return -1;
ad273b32
VS
4349
4350 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4351 return -1;
4352
4353 if (sd->nr_balance_failed++ < 2)
4354 return -1;
4355
4356 /*
4357 * The only task running in a non-idle cpu can be moved to this
4358 * cpu in an attempt to completely freeup the other CPU
4359 * package. The same method used to move task in load_balance()
4360 * have been extended for load_balance_newidle() to speedup
4361 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4362 *
4363 * The package power saving logic comes from
4364 * find_busiest_group(). If there are no imbalance, then
4365 * f_b_g() will return NULL. However when sched_mc={1,2} then
4366 * f_b_g() will select a group from which a running task may be
4367 * pulled to this cpu in order to make the other package idle.
4368 * If there is no opportunity to make a package idle and if
4369 * there are no imbalance, then f_b_g() will return NULL and no
4370 * action will be taken in load_balance_newidle().
4371 *
4372 * Under normal task pull operation due to imbalance, there
4373 * will be more than one task in the source run queue and
4374 * move_tasks() will succeed. ld_moved will be true and this
4375 * active balance code will not be triggered.
4376 */
4377
4378 /* Lock busiest in correct order while this_rq is held */
4379 double_lock_balance(this_rq, busiest);
4380
4381 /*
4382 * don't kick the migration_thread, if the curr
4383 * task on busiest cpu can't be moved to this_cpu
4384 */
6ca09dfc 4385 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4386 double_unlock_balance(this_rq, busiest);
4387 all_pinned = 1;
4388 return ld_moved;
4389 }
4390
4391 if (!busiest->active_balance) {
4392 busiest->active_balance = 1;
4393 busiest->push_cpu = this_cpu;
4394 active_balance = 1;
4395 }
4396
4397 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4398 /*
4399 * Should not call ttwu while holding a rq->lock
4400 */
4401 spin_unlock(&this_rq->lock);
ad273b32
VS
4402 if (active_balance)
4403 wake_up_process(busiest->migration_thread);
da8d5089 4404 spin_lock(&this_rq->lock);
ad273b32 4405
5969fe06 4406 } else
16cfb1c0 4407 sd->nr_balance_failed = 0;
1da177e4 4408
3e5459b4 4409 update_shares_locked(this_rq, sd);
43010659 4410 return ld_moved;
16cfb1c0
NP
4411
4412out_balanced:
d15bcfdb 4413 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4414 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4415 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4416 return -1;
16cfb1c0 4417 sd->nr_balance_failed = 0;
48f24c4d 4418
16cfb1c0 4419 return 0;
1da177e4
LT
4420}
4421
4422/*
4423 * idle_balance is called by schedule() if this_cpu is about to become
4424 * idle. Attempts to pull tasks from other CPUs.
4425 */
70b97a7f 4426static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4427{
4428 struct sched_domain *sd;
efbe027e 4429 int pulled_task = 0;
dd41f596 4430 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4431
4432 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4433 unsigned long interval;
4434
4435 if (!(sd->flags & SD_LOAD_BALANCE))
4436 continue;
4437
4438 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4439 /* If we've pulled tasks over stop searching: */
7c16ec58 4440 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4441 sd);
92c4ca5c
CL
4442
4443 interval = msecs_to_jiffies(sd->balance_interval);
4444 if (time_after(next_balance, sd->last_balance + interval))
4445 next_balance = sd->last_balance + interval;
4446 if (pulled_task)
4447 break;
1da177e4 4448 }
dd41f596 4449 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4450 /*
4451 * We are going idle. next_balance may be set based on
4452 * a busy processor. So reset next_balance.
4453 */
4454 this_rq->next_balance = next_balance;
dd41f596 4455 }
1da177e4
LT
4456}
4457
4458/*
4459 * active_load_balance is run by migration threads. It pushes running tasks
4460 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4461 * running on each physical CPU where possible, and avoids physical /
4462 * logical imbalances.
4463 *
4464 * Called with busiest_rq locked.
4465 */
70b97a7f 4466static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4467{
39507451 4468 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4469 struct sched_domain *sd;
4470 struct rq *target_rq;
39507451 4471
48f24c4d 4472 /* Is there any task to move? */
39507451 4473 if (busiest_rq->nr_running <= 1)
39507451
NP
4474 return;
4475
4476 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4477
4478 /*
39507451 4479 * This condition is "impossible", if it occurs
41a2d6cf 4480 * we need to fix it. Originally reported by
39507451 4481 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4482 */
39507451 4483 BUG_ON(busiest_rq == target_rq);
1da177e4 4484
39507451
NP
4485 /* move a task from busiest_rq to target_rq */
4486 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4487 update_rq_clock(busiest_rq);
4488 update_rq_clock(target_rq);
39507451
NP
4489
4490 /* Search for an sd spanning us and the target CPU. */
c96d145e 4491 for_each_domain(target_cpu, sd) {
39507451 4492 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4493 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4494 break;
c96d145e 4495 }
39507451 4496
48f24c4d 4497 if (likely(sd)) {
2d72376b 4498 schedstat_inc(sd, alb_count);
39507451 4499
43010659
PW
4500 if (move_one_task(target_rq, target_cpu, busiest_rq,
4501 sd, CPU_IDLE))
48f24c4d
IM
4502 schedstat_inc(sd, alb_pushed);
4503 else
4504 schedstat_inc(sd, alb_failed);
4505 }
1b12bbc7 4506 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4507}
4508
46cb4b7c
SS
4509#ifdef CONFIG_NO_HZ
4510static struct {
4511 atomic_t load_balancer;
7d1e6a9b 4512 cpumask_var_t cpu_mask;
f711f609 4513 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4514} nohz ____cacheline_aligned = {
4515 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4516};
4517
eea08f32
AB
4518int get_nohz_load_balancer(void)
4519{
4520 return atomic_read(&nohz.load_balancer);
4521}
4522
f711f609
GS
4523#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4524/**
4525 * lowest_flag_domain - Return lowest sched_domain containing flag.
4526 * @cpu: The cpu whose lowest level of sched domain is to
4527 * be returned.
4528 * @flag: The flag to check for the lowest sched_domain
4529 * for the given cpu.
4530 *
4531 * Returns the lowest sched_domain of a cpu which contains the given flag.
4532 */
4533static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4534{
4535 struct sched_domain *sd;
4536
4537 for_each_domain(cpu, sd)
4538 if (sd && (sd->flags & flag))
4539 break;
4540
4541 return sd;
4542}
4543
4544/**
4545 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4546 * @cpu: The cpu whose domains we're iterating over.
4547 * @sd: variable holding the value of the power_savings_sd
4548 * for cpu.
4549 * @flag: The flag to filter the sched_domains to be iterated.
4550 *
4551 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4552 * set, starting from the lowest sched_domain to the highest.
4553 */
4554#define for_each_flag_domain(cpu, sd, flag) \
4555 for (sd = lowest_flag_domain(cpu, flag); \
4556 (sd && (sd->flags & flag)); sd = sd->parent)
4557
4558/**
4559 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4560 * @ilb_group: group to be checked for semi-idleness
4561 *
4562 * Returns: 1 if the group is semi-idle. 0 otherwise.
4563 *
4564 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4565 * and atleast one non-idle CPU. This helper function checks if the given
4566 * sched_group is semi-idle or not.
4567 */
4568static inline int is_semi_idle_group(struct sched_group *ilb_group)
4569{
4570 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4571 sched_group_cpus(ilb_group));
4572
4573 /*
4574 * A sched_group is semi-idle when it has atleast one busy cpu
4575 * and atleast one idle cpu.
4576 */
4577 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4578 return 0;
4579
4580 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4581 return 0;
4582
4583 return 1;
4584}
4585/**
4586 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4587 * @cpu: The cpu which is nominating a new idle_load_balancer.
4588 *
4589 * Returns: Returns the id of the idle load balancer if it exists,
4590 * Else, returns >= nr_cpu_ids.
4591 *
4592 * This algorithm picks the idle load balancer such that it belongs to a
4593 * semi-idle powersavings sched_domain. The idea is to try and avoid
4594 * completely idle packages/cores just for the purpose of idle load balancing
4595 * when there are other idle cpu's which are better suited for that job.
4596 */
4597static int find_new_ilb(int cpu)
4598{
4599 struct sched_domain *sd;
4600 struct sched_group *ilb_group;
4601
4602 /*
4603 * Have idle load balancer selection from semi-idle packages only
4604 * when power-aware load balancing is enabled
4605 */
4606 if (!(sched_smt_power_savings || sched_mc_power_savings))
4607 goto out_done;
4608
4609 /*
4610 * Optimize for the case when we have no idle CPUs or only one
4611 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4612 */
4613 if (cpumask_weight(nohz.cpu_mask) < 2)
4614 goto out_done;
4615
4616 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4617 ilb_group = sd->groups;
4618
4619 do {
4620 if (is_semi_idle_group(ilb_group))
4621 return cpumask_first(nohz.ilb_grp_nohz_mask);
4622
4623 ilb_group = ilb_group->next;
4624
4625 } while (ilb_group != sd->groups);
4626 }
4627
4628out_done:
4629 return cpumask_first(nohz.cpu_mask);
4630}
4631#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4632static inline int find_new_ilb(int call_cpu)
4633{
6e29ec57 4634 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4635}
4636#endif
4637
7835b98b 4638/*
46cb4b7c
SS
4639 * This routine will try to nominate the ilb (idle load balancing)
4640 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4641 * load balancing on behalf of all those cpus. If all the cpus in the system
4642 * go into this tickless mode, then there will be no ilb owner (as there is
4643 * no need for one) and all the cpus will sleep till the next wakeup event
4644 * arrives...
4645 *
4646 * For the ilb owner, tick is not stopped. And this tick will be used
4647 * for idle load balancing. ilb owner will still be part of
4648 * nohz.cpu_mask..
7835b98b 4649 *
46cb4b7c
SS
4650 * While stopping the tick, this cpu will become the ilb owner if there
4651 * is no other owner. And will be the owner till that cpu becomes busy
4652 * or if all cpus in the system stop their ticks at which point
4653 * there is no need for ilb owner.
4654 *
4655 * When the ilb owner becomes busy, it nominates another owner, during the
4656 * next busy scheduler_tick()
4657 */
4658int select_nohz_load_balancer(int stop_tick)
4659{
4660 int cpu = smp_processor_id();
4661
4662 if (stop_tick) {
46cb4b7c
SS
4663 cpu_rq(cpu)->in_nohz_recently = 1;
4664
483b4ee6
SS
4665 if (!cpu_active(cpu)) {
4666 if (atomic_read(&nohz.load_balancer) != cpu)
4667 return 0;
4668
4669 /*
4670 * If we are going offline and still the leader,
4671 * give up!
4672 */
46cb4b7c
SS
4673 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4674 BUG();
483b4ee6 4675
46cb4b7c
SS
4676 return 0;
4677 }
4678
483b4ee6
SS
4679 cpumask_set_cpu(cpu, nohz.cpu_mask);
4680
46cb4b7c 4681 /* time for ilb owner also to sleep */
7d1e6a9b 4682 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4683 if (atomic_read(&nohz.load_balancer) == cpu)
4684 atomic_set(&nohz.load_balancer, -1);
4685 return 0;
4686 }
4687
4688 if (atomic_read(&nohz.load_balancer) == -1) {
4689 /* make me the ilb owner */
4690 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4691 return 1;
e790fb0b
GS
4692 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4693 int new_ilb;
4694
4695 if (!(sched_smt_power_savings ||
4696 sched_mc_power_savings))
4697 return 1;
4698 /*
4699 * Check to see if there is a more power-efficient
4700 * ilb.
4701 */
4702 new_ilb = find_new_ilb(cpu);
4703 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4704 atomic_set(&nohz.load_balancer, -1);
4705 resched_cpu(new_ilb);
4706 return 0;
4707 }
46cb4b7c 4708 return 1;
e790fb0b 4709 }
46cb4b7c 4710 } else {
7d1e6a9b 4711 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4712 return 0;
4713
7d1e6a9b 4714 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4715
4716 if (atomic_read(&nohz.load_balancer) == cpu)
4717 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4718 BUG();
4719 }
4720 return 0;
4721}
4722#endif
4723
4724static DEFINE_SPINLOCK(balancing);
4725
4726/*
7835b98b
CL
4727 * It checks each scheduling domain to see if it is due to be balanced,
4728 * and initiates a balancing operation if so.
4729 *
4730 * Balancing parameters are set up in arch_init_sched_domains.
4731 */
a9957449 4732static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4733{
46cb4b7c
SS
4734 int balance = 1;
4735 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4736 unsigned long interval;
4737 struct sched_domain *sd;
46cb4b7c 4738 /* Earliest time when we have to do rebalance again */
c9819f45 4739 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4740 int update_next_balance = 0;
d07355f5 4741 int need_serialize;
1da177e4 4742
46cb4b7c 4743 for_each_domain(cpu, sd) {
1da177e4
LT
4744 if (!(sd->flags & SD_LOAD_BALANCE))
4745 continue;
4746
4747 interval = sd->balance_interval;
d15bcfdb 4748 if (idle != CPU_IDLE)
1da177e4
LT
4749 interval *= sd->busy_factor;
4750
4751 /* scale ms to jiffies */
4752 interval = msecs_to_jiffies(interval);
4753 if (unlikely(!interval))
4754 interval = 1;
dd41f596
IM
4755 if (interval > HZ*NR_CPUS/10)
4756 interval = HZ*NR_CPUS/10;
4757
d07355f5 4758 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4759
d07355f5 4760 if (need_serialize) {
08c183f3
CL
4761 if (!spin_trylock(&balancing))
4762 goto out;
4763 }
4764
c9819f45 4765 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4766 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4767 /*
4768 * We've pulled tasks over so either we're no
5969fe06
NP
4769 * longer idle, or one of our SMT siblings is
4770 * not idle.
4771 */
d15bcfdb 4772 idle = CPU_NOT_IDLE;
1da177e4 4773 }
1bd77f2d 4774 sd->last_balance = jiffies;
1da177e4 4775 }
d07355f5 4776 if (need_serialize)
08c183f3
CL
4777 spin_unlock(&balancing);
4778out:
f549da84 4779 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4780 next_balance = sd->last_balance + interval;
f549da84
SS
4781 update_next_balance = 1;
4782 }
783609c6
SS
4783
4784 /*
4785 * Stop the load balance at this level. There is another
4786 * CPU in our sched group which is doing load balancing more
4787 * actively.
4788 */
4789 if (!balance)
4790 break;
1da177e4 4791 }
f549da84
SS
4792
4793 /*
4794 * next_balance will be updated only when there is a need.
4795 * When the cpu is attached to null domain for ex, it will not be
4796 * updated.
4797 */
4798 if (likely(update_next_balance))
4799 rq->next_balance = next_balance;
46cb4b7c
SS
4800}
4801
4802/*
4803 * run_rebalance_domains is triggered when needed from the scheduler tick.
4804 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4805 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4806 */
4807static void run_rebalance_domains(struct softirq_action *h)
4808{
dd41f596
IM
4809 int this_cpu = smp_processor_id();
4810 struct rq *this_rq = cpu_rq(this_cpu);
4811 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4812 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4813
dd41f596 4814 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4815
4816#ifdef CONFIG_NO_HZ
4817 /*
4818 * If this cpu is the owner for idle load balancing, then do the
4819 * balancing on behalf of the other idle cpus whose ticks are
4820 * stopped.
4821 */
dd41f596
IM
4822 if (this_rq->idle_at_tick &&
4823 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4824 struct rq *rq;
4825 int balance_cpu;
4826
7d1e6a9b
RR
4827 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4828 if (balance_cpu == this_cpu)
4829 continue;
4830
46cb4b7c
SS
4831 /*
4832 * If this cpu gets work to do, stop the load balancing
4833 * work being done for other cpus. Next load
4834 * balancing owner will pick it up.
4835 */
4836 if (need_resched())
4837 break;
4838
de0cf899 4839 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4840
4841 rq = cpu_rq(balance_cpu);
dd41f596
IM
4842 if (time_after(this_rq->next_balance, rq->next_balance))
4843 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4844 }
4845 }
4846#endif
4847}
4848
8a0be9ef
FW
4849static inline int on_null_domain(int cpu)
4850{
4851 return !rcu_dereference(cpu_rq(cpu)->sd);
4852}
4853
46cb4b7c
SS
4854/*
4855 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4856 *
4857 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4858 * idle load balancing owner or decide to stop the periodic load balancing,
4859 * if the whole system is idle.
4860 */
dd41f596 4861static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4862{
46cb4b7c
SS
4863#ifdef CONFIG_NO_HZ
4864 /*
4865 * If we were in the nohz mode recently and busy at the current
4866 * scheduler tick, then check if we need to nominate new idle
4867 * load balancer.
4868 */
4869 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4870 rq->in_nohz_recently = 0;
4871
4872 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4873 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4874 atomic_set(&nohz.load_balancer, -1);
4875 }
4876
4877 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4878 int ilb = find_new_ilb(cpu);
46cb4b7c 4879
434d53b0 4880 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4881 resched_cpu(ilb);
4882 }
4883 }
4884
4885 /*
4886 * If this cpu is idle and doing idle load balancing for all the
4887 * cpus with ticks stopped, is it time for that to stop?
4888 */
4889 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4890 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4891 resched_cpu(cpu);
4892 return;
4893 }
4894
4895 /*
4896 * If this cpu is idle and the idle load balancing is done by
4897 * someone else, then no need raise the SCHED_SOFTIRQ
4898 */
4899 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4900 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4901 return;
4902#endif
8a0be9ef
FW
4903 /* Don't need to rebalance while attached to NULL domain */
4904 if (time_after_eq(jiffies, rq->next_balance) &&
4905 likely(!on_null_domain(cpu)))
46cb4b7c 4906 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4907}
dd41f596
IM
4908
4909#else /* CONFIG_SMP */
4910
1da177e4
LT
4911/*
4912 * on UP we do not need to balance between CPUs:
4913 */
70b97a7f 4914static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4915{
4916}
dd41f596 4917
1da177e4
LT
4918#endif
4919
1da177e4
LT
4920DEFINE_PER_CPU(struct kernel_stat, kstat);
4921
4922EXPORT_PER_CPU_SYMBOL(kstat);
4923
4924/*
c5f8d995 4925 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4926 * @p in case that task is currently running.
c5f8d995
HS
4927 *
4928 * Called with task_rq_lock() held on @rq.
1da177e4 4929 */
c5f8d995
HS
4930static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4931{
4932 u64 ns = 0;
4933
4934 if (task_current(rq, p)) {
4935 update_rq_clock(rq);
4936 ns = rq->clock - p->se.exec_start;
4937 if ((s64)ns < 0)
4938 ns = 0;
4939 }
4940
4941 return ns;
4942}
4943
bb34d92f 4944unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4945{
1da177e4 4946 unsigned long flags;
41b86e9c 4947 struct rq *rq;
bb34d92f 4948 u64 ns = 0;
48f24c4d 4949
41b86e9c 4950 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4951 ns = do_task_delta_exec(p, rq);
4952 task_rq_unlock(rq, &flags);
1508487e 4953
c5f8d995
HS
4954 return ns;
4955}
f06febc9 4956
c5f8d995
HS
4957/*
4958 * Return accounted runtime for the task.
4959 * In case the task is currently running, return the runtime plus current's
4960 * pending runtime that have not been accounted yet.
4961 */
4962unsigned long long task_sched_runtime(struct task_struct *p)
4963{
4964 unsigned long flags;
4965 struct rq *rq;
4966 u64 ns = 0;
4967
4968 rq = task_rq_lock(p, &flags);
4969 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4970 task_rq_unlock(rq, &flags);
4971
4972 return ns;
4973}
48f24c4d 4974
c5f8d995
HS
4975/*
4976 * Return sum_exec_runtime for the thread group.
4977 * In case the task is currently running, return the sum plus current's
4978 * pending runtime that have not been accounted yet.
4979 *
4980 * Note that the thread group might have other running tasks as well,
4981 * so the return value not includes other pending runtime that other
4982 * running tasks might have.
4983 */
4984unsigned long long thread_group_sched_runtime(struct task_struct *p)
4985{
4986 struct task_cputime totals;
4987 unsigned long flags;
4988 struct rq *rq;
4989 u64 ns;
4990
4991 rq = task_rq_lock(p, &flags);
4992 thread_group_cputime(p, &totals);
4993 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4994 task_rq_unlock(rq, &flags);
48f24c4d 4995
1da177e4
LT
4996 return ns;
4997}
4998
1da177e4
LT
4999/*
5000 * Account user cpu time to a process.
5001 * @p: the process that the cpu time gets accounted to
1da177e4 5002 * @cputime: the cpu time spent in user space since the last update
457533a7 5003 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 5004 */
457533a7
MS
5005void account_user_time(struct task_struct *p, cputime_t cputime,
5006 cputime_t cputime_scaled)
1da177e4
LT
5007{
5008 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5009 cputime64_t tmp;
5010
457533a7 5011 /* Add user time to process. */
1da177e4 5012 p->utime = cputime_add(p->utime, cputime);
457533a7 5013 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5014 account_group_user_time(p, cputime);
1da177e4
LT
5015
5016 /* Add user time to cpustat. */
5017 tmp = cputime_to_cputime64(cputime);
5018 if (TASK_NICE(p) > 0)
5019 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5020 else
5021 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5022
5023 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5024 /* Account for user time used */
5025 acct_update_integrals(p);
1da177e4
LT
5026}
5027
94886b84
LV
5028/*
5029 * Account guest cpu time to a process.
5030 * @p: the process that the cpu time gets accounted to
5031 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5032 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5033 */
457533a7
MS
5034static void account_guest_time(struct task_struct *p, cputime_t cputime,
5035 cputime_t cputime_scaled)
94886b84
LV
5036{
5037 cputime64_t tmp;
5038 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5039
5040 tmp = cputime_to_cputime64(cputime);
5041
457533a7 5042 /* Add guest time to process. */
94886b84 5043 p->utime = cputime_add(p->utime, cputime);
457533a7 5044 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5045 account_group_user_time(p, cputime);
94886b84
LV
5046 p->gtime = cputime_add(p->gtime, cputime);
5047
457533a7 5048 /* Add guest time to cpustat. */
94886b84
LV
5049 cpustat->user = cputime64_add(cpustat->user, tmp);
5050 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5051}
5052
1da177e4
LT
5053/*
5054 * Account system cpu time to a process.
5055 * @p: the process that the cpu time gets accounted to
5056 * @hardirq_offset: the offset to subtract from hardirq_count()
5057 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5058 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5059 */
5060void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5061 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5062{
5063 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5064 cputime64_t tmp;
5065
983ed7a6 5066 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5067 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5068 return;
5069 }
94886b84 5070
457533a7 5071 /* Add system time to process. */
1da177e4 5072 p->stime = cputime_add(p->stime, cputime);
457533a7 5073 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5074 account_group_system_time(p, cputime);
1da177e4
LT
5075
5076 /* Add system time to cpustat. */
5077 tmp = cputime_to_cputime64(cputime);
5078 if (hardirq_count() - hardirq_offset)
5079 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5080 else if (softirq_count())
5081 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5082 else
79741dd3
MS
5083 cpustat->system = cputime64_add(cpustat->system, tmp);
5084
ef12fefa
BR
5085 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5086
1da177e4
LT
5087 /* Account for system time used */
5088 acct_update_integrals(p);
1da177e4
LT
5089}
5090
c66f08be 5091/*
1da177e4 5092 * Account for involuntary wait time.
1da177e4 5093 * @steal: the cpu time spent in involuntary wait
c66f08be 5094 */
79741dd3 5095void account_steal_time(cputime_t cputime)
c66f08be 5096{
79741dd3
MS
5097 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5098 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5099
5100 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5101}
5102
1da177e4 5103/*
79741dd3
MS
5104 * Account for idle time.
5105 * @cputime: the cpu time spent in idle wait
1da177e4 5106 */
79741dd3 5107void account_idle_time(cputime_t cputime)
1da177e4
LT
5108{
5109 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5110 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5111 struct rq *rq = this_rq();
1da177e4 5112
79741dd3
MS
5113 if (atomic_read(&rq->nr_iowait) > 0)
5114 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5115 else
5116 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5117}
5118
79741dd3
MS
5119#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5120
5121/*
5122 * Account a single tick of cpu time.
5123 * @p: the process that the cpu time gets accounted to
5124 * @user_tick: indicates if the tick is a user or a system tick
5125 */
5126void account_process_tick(struct task_struct *p, int user_tick)
5127{
a42548a1 5128 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5129 struct rq *rq = this_rq();
5130
5131 if (user_tick)
a42548a1 5132 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5133 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5134 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5135 one_jiffy_scaled);
5136 else
a42548a1 5137 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5138}
5139
5140/*
5141 * Account multiple ticks of steal time.
5142 * @p: the process from which the cpu time has been stolen
5143 * @ticks: number of stolen ticks
5144 */
5145void account_steal_ticks(unsigned long ticks)
5146{
5147 account_steal_time(jiffies_to_cputime(ticks));
5148}
5149
5150/*
5151 * Account multiple ticks of idle time.
5152 * @ticks: number of stolen ticks
5153 */
5154void account_idle_ticks(unsigned long ticks)
5155{
5156 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5157}
5158
79741dd3
MS
5159#endif
5160
49048622
BS
5161/*
5162 * Use precise platform statistics if available:
5163 */
5164#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5165cputime_t task_utime(struct task_struct *p)
5166{
5167 return p->utime;
5168}
5169
5170cputime_t task_stime(struct task_struct *p)
5171{
5172 return p->stime;
5173}
5174#else
5175cputime_t task_utime(struct task_struct *p)
5176{
5177 clock_t utime = cputime_to_clock_t(p->utime),
5178 total = utime + cputime_to_clock_t(p->stime);
5179 u64 temp;
5180
5181 /*
5182 * Use CFS's precise accounting:
5183 */
5184 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5185
5186 if (total) {
5187 temp *= utime;
5188 do_div(temp, total);
5189 }
5190 utime = (clock_t)temp;
5191
5192 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5193 return p->prev_utime;
5194}
5195
5196cputime_t task_stime(struct task_struct *p)
5197{
5198 clock_t stime;
5199
5200 /*
5201 * Use CFS's precise accounting. (we subtract utime from
5202 * the total, to make sure the total observed by userspace
5203 * grows monotonically - apps rely on that):
5204 */
5205 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5206 cputime_to_clock_t(task_utime(p));
5207
5208 if (stime >= 0)
5209 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5210
5211 return p->prev_stime;
5212}
5213#endif
5214
5215inline cputime_t task_gtime(struct task_struct *p)
5216{
5217 return p->gtime;
5218}
5219
7835b98b
CL
5220/*
5221 * This function gets called by the timer code, with HZ frequency.
5222 * We call it with interrupts disabled.
5223 *
5224 * It also gets called by the fork code, when changing the parent's
5225 * timeslices.
5226 */
5227void scheduler_tick(void)
5228{
7835b98b
CL
5229 int cpu = smp_processor_id();
5230 struct rq *rq = cpu_rq(cpu);
dd41f596 5231 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5232
5233 sched_clock_tick();
dd41f596
IM
5234
5235 spin_lock(&rq->lock);
3e51f33f 5236 update_rq_clock(rq);
f1a438d8 5237 update_cpu_load(rq);
fa85ae24 5238 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5239 spin_unlock(&rq->lock);
7835b98b 5240
cdd6c482 5241 perf_event_task_tick(curr, cpu);
e220d2dc 5242
e418e1c2 5243#ifdef CONFIG_SMP
dd41f596
IM
5244 rq->idle_at_tick = idle_cpu(cpu);
5245 trigger_load_balance(rq, cpu);
e418e1c2 5246#endif
1da177e4
LT
5247}
5248
132380a0 5249notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5250{
5251 if (in_lock_functions(addr)) {
5252 addr = CALLER_ADDR2;
5253 if (in_lock_functions(addr))
5254 addr = CALLER_ADDR3;
5255 }
5256 return addr;
5257}
1da177e4 5258
7e49fcce
SR
5259#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5260 defined(CONFIG_PREEMPT_TRACER))
5261
43627582 5262void __kprobes add_preempt_count(int val)
1da177e4 5263{
6cd8a4bb 5264#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5265 /*
5266 * Underflow?
5267 */
9a11b49a
IM
5268 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5269 return;
6cd8a4bb 5270#endif
1da177e4 5271 preempt_count() += val;
6cd8a4bb 5272#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5273 /*
5274 * Spinlock count overflowing soon?
5275 */
33859f7f
MOS
5276 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5277 PREEMPT_MASK - 10);
6cd8a4bb
SR
5278#endif
5279 if (preempt_count() == val)
5280 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5281}
5282EXPORT_SYMBOL(add_preempt_count);
5283
43627582 5284void __kprobes sub_preempt_count(int val)
1da177e4 5285{
6cd8a4bb 5286#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5287 /*
5288 * Underflow?
5289 */
01e3eb82 5290 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5291 return;
1da177e4
LT
5292 /*
5293 * Is the spinlock portion underflowing?
5294 */
9a11b49a
IM
5295 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5296 !(preempt_count() & PREEMPT_MASK)))
5297 return;
6cd8a4bb 5298#endif
9a11b49a 5299
6cd8a4bb
SR
5300 if (preempt_count() == val)
5301 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5302 preempt_count() -= val;
5303}
5304EXPORT_SYMBOL(sub_preempt_count);
5305
5306#endif
5307
5308/*
dd41f596 5309 * Print scheduling while atomic bug:
1da177e4 5310 */
dd41f596 5311static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5312{
838225b4
SS
5313 struct pt_regs *regs = get_irq_regs();
5314
5315 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5316 prev->comm, prev->pid, preempt_count());
5317
dd41f596 5318 debug_show_held_locks(prev);
e21f5b15 5319 print_modules();
dd41f596
IM
5320 if (irqs_disabled())
5321 print_irqtrace_events(prev);
838225b4
SS
5322
5323 if (regs)
5324 show_regs(regs);
5325 else
5326 dump_stack();
dd41f596 5327}
1da177e4 5328
dd41f596
IM
5329/*
5330 * Various schedule()-time debugging checks and statistics:
5331 */
5332static inline void schedule_debug(struct task_struct *prev)
5333{
1da177e4 5334 /*
41a2d6cf 5335 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5336 * schedule() atomically, we ignore that path for now.
5337 * Otherwise, whine if we are scheduling when we should not be.
5338 */
3f33a7ce 5339 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5340 __schedule_bug(prev);
5341
1da177e4
LT
5342 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5343
2d72376b 5344 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5345#ifdef CONFIG_SCHEDSTATS
5346 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5347 schedstat_inc(this_rq(), bkl_count);
5348 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5349 }
5350#endif
dd41f596
IM
5351}
5352
ad4b78bb 5353static void put_prev_task(struct rq *rq, struct task_struct *p)
df1c99d4 5354{
ad4b78bb 5355 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
df1c99d4 5356
ad4b78bb 5357 update_avg(&p->se.avg_running, runtime);
df1c99d4 5358
ad4b78bb 5359 if (p->state == TASK_RUNNING) {
df1c99d4
MG
5360 /*
5361 * In order to avoid avg_overlap growing stale when we are
5362 * indeed overlapping and hence not getting put to sleep, grow
5363 * the avg_overlap on preemption.
5364 *
5365 * We use the average preemption runtime because that
5366 * correlates to the amount of cache footprint a task can
5367 * build up.
5368 */
ad4b78bb
PZ
5369 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5370 update_avg(&p->se.avg_overlap, runtime);
5371 } else {
5372 update_avg(&p->se.avg_running, 0);
df1c99d4 5373 }
ad4b78bb 5374 p->sched_class->put_prev_task(rq, p);
df1c99d4
MG
5375}
5376
dd41f596
IM
5377/*
5378 * Pick up the highest-prio task:
5379 */
5380static inline struct task_struct *
b67802ea 5381pick_next_task(struct rq *rq)
dd41f596 5382{
5522d5d5 5383 const struct sched_class *class;
dd41f596 5384 struct task_struct *p;
1da177e4
LT
5385
5386 /*
dd41f596
IM
5387 * Optimization: we know that if all tasks are in
5388 * the fair class we can call that function directly:
1da177e4 5389 */
dd41f596 5390 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5391 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5392 if (likely(p))
5393 return p;
1da177e4
LT
5394 }
5395
dd41f596
IM
5396 class = sched_class_highest;
5397 for ( ; ; ) {
fb8d4724 5398 p = class->pick_next_task(rq);
dd41f596
IM
5399 if (p)
5400 return p;
5401 /*
5402 * Will never be NULL as the idle class always
5403 * returns a non-NULL p:
5404 */
5405 class = class->next;
5406 }
5407}
1da177e4 5408
dd41f596
IM
5409/*
5410 * schedule() is the main scheduler function.
5411 */
ff743345 5412asmlinkage void __sched schedule(void)
dd41f596
IM
5413{
5414 struct task_struct *prev, *next;
67ca7bde 5415 unsigned long *switch_count;
dd41f596 5416 struct rq *rq;
31656519 5417 int cpu;
dd41f596 5418
ff743345
PZ
5419need_resched:
5420 preempt_disable();
dd41f596
IM
5421 cpu = smp_processor_id();
5422 rq = cpu_rq(cpu);
d6714c22 5423 rcu_sched_qs(cpu);
dd41f596
IM
5424 prev = rq->curr;
5425 switch_count = &prev->nivcsw;
5426
5427 release_kernel_lock(prev);
5428need_resched_nonpreemptible:
5429
5430 schedule_debug(prev);
1da177e4 5431
31656519 5432 if (sched_feat(HRTICK))
f333fdc9 5433 hrtick_clear(rq);
8f4d37ec 5434
8cd162ce 5435 spin_lock_irq(&rq->lock);
3e51f33f 5436 update_rq_clock(rq);
1e819950 5437 clear_tsk_need_resched(prev);
1da177e4 5438
1da177e4 5439 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5440 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5441 prev->state = TASK_RUNNING;
16882c1e 5442 else
2e1cb74a 5443 deactivate_task(rq, prev, 1);
dd41f596 5444 switch_count = &prev->nvcsw;
1da177e4
LT
5445 }
5446
3f029d3c 5447 pre_schedule(rq, prev);
f65eda4f 5448
dd41f596 5449 if (unlikely(!rq->nr_running))
1da177e4 5450 idle_balance(cpu, rq);
1da177e4 5451
df1c99d4 5452 put_prev_task(rq, prev);
b67802ea 5453 next = pick_next_task(rq);
1da177e4 5454
1da177e4 5455 if (likely(prev != next)) {
673a90a1 5456 sched_info_switch(prev, next);
cdd6c482 5457 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5458
1da177e4
LT
5459 rq->nr_switches++;
5460 rq->curr = next;
5461 ++*switch_count;
5462
dd41f596 5463 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5464 /*
5465 * the context switch might have flipped the stack from under
5466 * us, hence refresh the local variables.
5467 */
5468 cpu = smp_processor_id();
5469 rq = cpu_rq(cpu);
1da177e4
LT
5470 } else
5471 spin_unlock_irq(&rq->lock);
5472
3f029d3c 5473 post_schedule(rq);
1da177e4 5474
8f4d37ec 5475 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5476 goto need_resched_nonpreemptible;
8f4d37ec 5477
1da177e4 5478 preempt_enable_no_resched();
ff743345 5479 if (need_resched())
1da177e4
LT
5480 goto need_resched;
5481}
1da177e4
LT
5482EXPORT_SYMBOL(schedule);
5483
0d66bf6d
PZ
5484#ifdef CONFIG_SMP
5485/*
5486 * Look out! "owner" is an entirely speculative pointer
5487 * access and not reliable.
5488 */
5489int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5490{
5491 unsigned int cpu;
5492 struct rq *rq;
5493
5494 if (!sched_feat(OWNER_SPIN))
5495 return 0;
5496
5497#ifdef CONFIG_DEBUG_PAGEALLOC
5498 /*
5499 * Need to access the cpu field knowing that
5500 * DEBUG_PAGEALLOC could have unmapped it if
5501 * the mutex owner just released it and exited.
5502 */
5503 if (probe_kernel_address(&owner->cpu, cpu))
5504 goto out;
5505#else
5506 cpu = owner->cpu;
5507#endif
5508
5509 /*
5510 * Even if the access succeeded (likely case),
5511 * the cpu field may no longer be valid.
5512 */
5513 if (cpu >= nr_cpumask_bits)
5514 goto out;
5515
5516 /*
5517 * We need to validate that we can do a
5518 * get_cpu() and that we have the percpu area.
5519 */
5520 if (!cpu_online(cpu))
5521 goto out;
5522
5523 rq = cpu_rq(cpu);
5524
5525 for (;;) {
5526 /*
5527 * Owner changed, break to re-assess state.
5528 */
5529 if (lock->owner != owner)
5530 break;
5531
5532 /*
5533 * Is that owner really running on that cpu?
5534 */
5535 if (task_thread_info(rq->curr) != owner || need_resched())
5536 return 0;
5537
5538 cpu_relax();
5539 }
5540out:
5541 return 1;
5542}
5543#endif
5544
1da177e4
LT
5545#ifdef CONFIG_PREEMPT
5546/*
2ed6e34f 5547 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5548 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5549 * occur there and call schedule directly.
5550 */
5551asmlinkage void __sched preempt_schedule(void)
5552{
5553 struct thread_info *ti = current_thread_info();
6478d880 5554
1da177e4
LT
5555 /*
5556 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5557 * we do not want to preempt the current task. Just return..
1da177e4 5558 */
beed33a8 5559 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5560 return;
5561
3a5c359a
AK
5562 do {
5563 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5564 schedule();
3a5c359a 5565 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5566
3a5c359a
AK
5567 /*
5568 * Check again in case we missed a preemption opportunity
5569 * between schedule and now.
5570 */
5571 barrier();
5ed0cec0 5572 } while (need_resched());
1da177e4 5573}
1da177e4
LT
5574EXPORT_SYMBOL(preempt_schedule);
5575
5576/*
2ed6e34f 5577 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5578 * off of irq context.
5579 * Note, that this is called and return with irqs disabled. This will
5580 * protect us against recursive calling from irq.
5581 */
5582asmlinkage void __sched preempt_schedule_irq(void)
5583{
5584 struct thread_info *ti = current_thread_info();
6478d880 5585
2ed6e34f 5586 /* Catch callers which need to be fixed */
1da177e4
LT
5587 BUG_ON(ti->preempt_count || !irqs_disabled());
5588
3a5c359a
AK
5589 do {
5590 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5591 local_irq_enable();
5592 schedule();
5593 local_irq_disable();
3a5c359a 5594 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5595
3a5c359a
AK
5596 /*
5597 * Check again in case we missed a preemption opportunity
5598 * between schedule and now.
5599 */
5600 barrier();
5ed0cec0 5601 } while (need_resched());
1da177e4
LT
5602}
5603
5604#endif /* CONFIG_PREEMPT */
5605
63859d4f 5606int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5607 void *key)
1da177e4 5608{
63859d4f 5609 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5610}
1da177e4
LT
5611EXPORT_SYMBOL(default_wake_function);
5612
5613/*
41a2d6cf
IM
5614 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5615 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5616 * number) then we wake all the non-exclusive tasks and one exclusive task.
5617 *
5618 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5619 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5620 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5621 */
78ddb08f 5622static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5623 int nr_exclusive, int wake_flags, void *key)
1da177e4 5624{
2e45874c 5625 wait_queue_t *curr, *next;
1da177e4 5626
2e45874c 5627 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5628 unsigned flags = curr->flags;
5629
63859d4f 5630 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5631 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5632 break;
5633 }
5634}
5635
5636/**
5637 * __wake_up - wake up threads blocked on a waitqueue.
5638 * @q: the waitqueue
5639 * @mode: which threads
5640 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5641 * @key: is directly passed to the wakeup function
50fa610a
DH
5642 *
5643 * It may be assumed that this function implies a write memory barrier before
5644 * changing the task state if and only if any tasks are woken up.
1da177e4 5645 */
7ad5b3a5 5646void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5647 int nr_exclusive, void *key)
1da177e4
LT
5648{
5649 unsigned long flags;
5650
5651 spin_lock_irqsave(&q->lock, flags);
5652 __wake_up_common(q, mode, nr_exclusive, 0, key);
5653 spin_unlock_irqrestore(&q->lock, flags);
5654}
1da177e4
LT
5655EXPORT_SYMBOL(__wake_up);
5656
5657/*
5658 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5659 */
7ad5b3a5 5660void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5661{
5662 __wake_up_common(q, mode, 1, 0, NULL);
5663}
5664
4ede816a
DL
5665void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5666{
5667 __wake_up_common(q, mode, 1, 0, key);
5668}
5669
1da177e4 5670/**
4ede816a 5671 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5672 * @q: the waitqueue
5673 * @mode: which threads
5674 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5675 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5676 *
5677 * The sync wakeup differs that the waker knows that it will schedule
5678 * away soon, so while the target thread will be woken up, it will not
5679 * be migrated to another CPU - ie. the two threads are 'synchronized'
5680 * with each other. This can prevent needless bouncing between CPUs.
5681 *
5682 * On UP it can prevent extra preemption.
50fa610a
DH
5683 *
5684 * It may be assumed that this function implies a write memory barrier before
5685 * changing the task state if and only if any tasks are woken up.
1da177e4 5686 */
4ede816a
DL
5687void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5688 int nr_exclusive, void *key)
1da177e4
LT
5689{
5690 unsigned long flags;
7d478721 5691 int wake_flags = WF_SYNC;
1da177e4
LT
5692
5693 if (unlikely(!q))
5694 return;
5695
5696 if (unlikely(!nr_exclusive))
7d478721 5697 wake_flags = 0;
1da177e4
LT
5698
5699 spin_lock_irqsave(&q->lock, flags);
7d478721 5700 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5701 spin_unlock_irqrestore(&q->lock, flags);
5702}
4ede816a
DL
5703EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5704
5705/*
5706 * __wake_up_sync - see __wake_up_sync_key()
5707 */
5708void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5709{
5710 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5711}
1da177e4
LT
5712EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5713
65eb3dc6
KD
5714/**
5715 * complete: - signals a single thread waiting on this completion
5716 * @x: holds the state of this particular completion
5717 *
5718 * This will wake up a single thread waiting on this completion. Threads will be
5719 * awakened in the same order in which they were queued.
5720 *
5721 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5722 *
5723 * It may be assumed that this function implies a write memory barrier before
5724 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5725 */
b15136e9 5726void complete(struct completion *x)
1da177e4
LT
5727{
5728 unsigned long flags;
5729
5730 spin_lock_irqsave(&x->wait.lock, flags);
5731 x->done++;
d9514f6c 5732 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5733 spin_unlock_irqrestore(&x->wait.lock, flags);
5734}
5735EXPORT_SYMBOL(complete);
5736
65eb3dc6
KD
5737/**
5738 * complete_all: - signals all threads waiting on this completion
5739 * @x: holds the state of this particular completion
5740 *
5741 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5742 *
5743 * It may be assumed that this function implies a write memory barrier before
5744 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5745 */
b15136e9 5746void complete_all(struct completion *x)
1da177e4
LT
5747{
5748 unsigned long flags;
5749
5750 spin_lock_irqsave(&x->wait.lock, flags);
5751 x->done += UINT_MAX/2;
d9514f6c 5752 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5753 spin_unlock_irqrestore(&x->wait.lock, flags);
5754}
5755EXPORT_SYMBOL(complete_all);
5756
8cbbe86d
AK
5757static inline long __sched
5758do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5759{
1da177e4
LT
5760 if (!x->done) {
5761 DECLARE_WAITQUEUE(wait, current);
5762
5763 wait.flags |= WQ_FLAG_EXCLUSIVE;
5764 __add_wait_queue_tail(&x->wait, &wait);
5765 do {
94d3d824 5766 if (signal_pending_state(state, current)) {
ea71a546
ON
5767 timeout = -ERESTARTSYS;
5768 break;
8cbbe86d
AK
5769 }
5770 __set_current_state(state);
1da177e4
LT
5771 spin_unlock_irq(&x->wait.lock);
5772 timeout = schedule_timeout(timeout);
5773 spin_lock_irq(&x->wait.lock);
ea71a546 5774 } while (!x->done && timeout);
1da177e4 5775 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5776 if (!x->done)
5777 return timeout;
1da177e4
LT
5778 }
5779 x->done--;
ea71a546 5780 return timeout ?: 1;
1da177e4 5781}
1da177e4 5782
8cbbe86d
AK
5783static long __sched
5784wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5785{
1da177e4
LT
5786 might_sleep();
5787
5788 spin_lock_irq(&x->wait.lock);
8cbbe86d 5789 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5790 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5791 return timeout;
5792}
1da177e4 5793
65eb3dc6
KD
5794/**
5795 * wait_for_completion: - waits for completion of a task
5796 * @x: holds the state of this particular completion
5797 *
5798 * This waits to be signaled for completion of a specific task. It is NOT
5799 * interruptible and there is no timeout.
5800 *
5801 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5802 * and interrupt capability. Also see complete().
5803 */
b15136e9 5804void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5805{
5806 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5807}
8cbbe86d 5808EXPORT_SYMBOL(wait_for_completion);
1da177e4 5809
65eb3dc6
KD
5810/**
5811 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5812 * @x: holds the state of this particular completion
5813 * @timeout: timeout value in jiffies
5814 *
5815 * This waits for either a completion of a specific task to be signaled or for a
5816 * specified timeout to expire. The timeout is in jiffies. It is not
5817 * interruptible.
5818 */
b15136e9 5819unsigned long __sched
8cbbe86d 5820wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5821{
8cbbe86d 5822 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5823}
8cbbe86d 5824EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5825
65eb3dc6
KD
5826/**
5827 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5828 * @x: holds the state of this particular completion
5829 *
5830 * This waits for completion of a specific task to be signaled. It is
5831 * interruptible.
5832 */
8cbbe86d 5833int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5834{
51e97990
AK
5835 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5836 if (t == -ERESTARTSYS)
5837 return t;
5838 return 0;
0fec171c 5839}
8cbbe86d 5840EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5841
65eb3dc6
KD
5842/**
5843 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5844 * @x: holds the state of this particular completion
5845 * @timeout: timeout value in jiffies
5846 *
5847 * This waits for either a completion of a specific task to be signaled or for a
5848 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5849 */
b15136e9 5850unsigned long __sched
8cbbe86d
AK
5851wait_for_completion_interruptible_timeout(struct completion *x,
5852 unsigned long timeout)
0fec171c 5853{
8cbbe86d 5854 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5855}
8cbbe86d 5856EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5857
65eb3dc6
KD
5858/**
5859 * wait_for_completion_killable: - waits for completion of a task (killable)
5860 * @x: holds the state of this particular completion
5861 *
5862 * This waits to be signaled for completion of a specific task. It can be
5863 * interrupted by a kill signal.
5864 */
009e577e
MW
5865int __sched wait_for_completion_killable(struct completion *x)
5866{
5867 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5868 if (t == -ERESTARTSYS)
5869 return t;
5870 return 0;
5871}
5872EXPORT_SYMBOL(wait_for_completion_killable);
5873
be4de352
DC
5874/**
5875 * try_wait_for_completion - try to decrement a completion without blocking
5876 * @x: completion structure
5877 *
5878 * Returns: 0 if a decrement cannot be done without blocking
5879 * 1 if a decrement succeeded.
5880 *
5881 * If a completion is being used as a counting completion,
5882 * attempt to decrement the counter without blocking. This
5883 * enables us to avoid waiting if the resource the completion
5884 * is protecting is not available.
5885 */
5886bool try_wait_for_completion(struct completion *x)
5887{
5888 int ret = 1;
5889
5890 spin_lock_irq(&x->wait.lock);
5891 if (!x->done)
5892 ret = 0;
5893 else
5894 x->done--;
5895 spin_unlock_irq(&x->wait.lock);
5896 return ret;
5897}
5898EXPORT_SYMBOL(try_wait_for_completion);
5899
5900/**
5901 * completion_done - Test to see if a completion has any waiters
5902 * @x: completion structure
5903 *
5904 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5905 * 1 if there are no waiters.
5906 *
5907 */
5908bool completion_done(struct completion *x)
5909{
5910 int ret = 1;
5911
5912 spin_lock_irq(&x->wait.lock);
5913 if (!x->done)
5914 ret = 0;
5915 spin_unlock_irq(&x->wait.lock);
5916 return ret;
5917}
5918EXPORT_SYMBOL(completion_done);
5919
8cbbe86d
AK
5920static long __sched
5921sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5922{
0fec171c
IM
5923 unsigned long flags;
5924 wait_queue_t wait;
5925
5926 init_waitqueue_entry(&wait, current);
1da177e4 5927
8cbbe86d 5928 __set_current_state(state);
1da177e4 5929
8cbbe86d
AK
5930 spin_lock_irqsave(&q->lock, flags);
5931 __add_wait_queue(q, &wait);
5932 spin_unlock(&q->lock);
5933 timeout = schedule_timeout(timeout);
5934 spin_lock_irq(&q->lock);
5935 __remove_wait_queue(q, &wait);
5936 spin_unlock_irqrestore(&q->lock, flags);
5937
5938 return timeout;
5939}
5940
5941void __sched interruptible_sleep_on(wait_queue_head_t *q)
5942{
5943 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5944}
1da177e4
LT
5945EXPORT_SYMBOL(interruptible_sleep_on);
5946
0fec171c 5947long __sched
95cdf3b7 5948interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5949{
8cbbe86d 5950 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5951}
1da177e4
LT
5952EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5953
0fec171c 5954void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5955{
8cbbe86d 5956 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5957}
1da177e4
LT
5958EXPORT_SYMBOL(sleep_on);
5959
0fec171c 5960long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5961{
8cbbe86d 5962 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5963}
1da177e4
LT
5964EXPORT_SYMBOL(sleep_on_timeout);
5965
b29739f9
IM
5966#ifdef CONFIG_RT_MUTEXES
5967
5968/*
5969 * rt_mutex_setprio - set the current priority of a task
5970 * @p: task
5971 * @prio: prio value (kernel-internal form)
5972 *
5973 * This function changes the 'effective' priority of a task. It does
5974 * not touch ->normal_prio like __setscheduler().
5975 *
5976 * Used by the rt_mutex code to implement priority inheritance logic.
5977 */
36c8b586 5978void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5979{
5980 unsigned long flags;
83b699ed 5981 int oldprio, on_rq, running;
70b97a7f 5982 struct rq *rq;
cb469845 5983 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5984
5985 BUG_ON(prio < 0 || prio > MAX_PRIO);
5986
5987 rq = task_rq_lock(p, &flags);
a8e504d2 5988 update_rq_clock(rq);
b29739f9 5989
d5f9f942 5990 oldprio = p->prio;
dd41f596 5991 on_rq = p->se.on_rq;
051a1d1a 5992 running = task_current(rq, p);
0e1f3483 5993 if (on_rq)
69be72c1 5994 dequeue_task(rq, p, 0);
0e1f3483
HS
5995 if (running)
5996 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5997
5998 if (rt_prio(prio))
5999 p->sched_class = &rt_sched_class;
6000 else
6001 p->sched_class = &fair_sched_class;
6002
b29739f9
IM
6003 p->prio = prio;
6004
0e1f3483
HS
6005 if (running)
6006 p->sched_class->set_curr_task(rq);
dd41f596 6007 if (on_rq) {
8159f87e 6008 enqueue_task(rq, p, 0);
cb469845
SR
6009
6010 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6011 }
6012 task_rq_unlock(rq, &flags);
6013}
6014
6015#endif
6016
36c8b586 6017void set_user_nice(struct task_struct *p, long nice)
1da177e4 6018{
dd41f596 6019 int old_prio, delta, on_rq;
1da177e4 6020 unsigned long flags;
70b97a7f 6021 struct rq *rq;
1da177e4
LT
6022
6023 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6024 return;
6025 /*
6026 * We have to be careful, if called from sys_setpriority(),
6027 * the task might be in the middle of scheduling on another CPU.
6028 */
6029 rq = task_rq_lock(p, &flags);
a8e504d2 6030 update_rq_clock(rq);
1da177e4
LT
6031 /*
6032 * The RT priorities are set via sched_setscheduler(), but we still
6033 * allow the 'normal' nice value to be set - but as expected
6034 * it wont have any effect on scheduling until the task is
dd41f596 6035 * SCHED_FIFO/SCHED_RR:
1da177e4 6036 */
e05606d3 6037 if (task_has_rt_policy(p)) {
1da177e4
LT
6038 p->static_prio = NICE_TO_PRIO(nice);
6039 goto out_unlock;
6040 }
dd41f596 6041 on_rq = p->se.on_rq;
c09595f6 6042 if (on_rq)
69be72c1 6043 dequeue_task(rq, p, 0);
1da177e4 6044
1da177e4 6045 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6046 set_load_weight(p);
b29739f9
IM
6047 old_prio = p->prio;
6048 p->prio = effective_prio(p);
6049 delta = p->prio - old_prio;
1da177e4 6050
dd41f596 6051 if (on_rq) {
8159f87e 6052 enqueue_task(rq, p, 0);
1da177e4 6053 /*
d5f9f942
AM
6054 * If the task increased its priority or is running and
6055 * lowered its priority, then reschedule its CPU:
1da177e4 6056 */
d5f9f942 6057 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6058 resched_task(rq->curr);
6059 }
6060out_unlock:
6061 task_rq_unlock(rq, &flags);
6062}
1da177e4
LT
6063EXPORT_SYMBOL(set_user_nice);
6064
e43379f1
MM
6065/*
6066 * can_nice - check if a task can reduce its nice value
6067 * @p: task
6068 * @nice: nice value
6069 */
36c8b586 6070int can_nice(const struct task_struct *p, const int nice)
e43379f1 6071{
024f4747
MM
6072 /* convert nice value [19,-20] to rlimit style value [1,40] */
6073 int nice_rlim = 20 - nice;
48f24c4d 6074
e43379f1
MM
6075 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6076 capable(CAP_SYS_NICE));
6077}
6078
1da177e4
LT
6079#ifdef __ARCH_WANT_SYS_NICE
6080
6081/*
6082 * sys_nice - change the priority of the current process.
6083 * @increment: priority increment
6084 *
6085 * sys_setpriority is a more generic, but much slower function that
6086 * does similar things.
6087 */
5add95d4 6088SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6089{
48f24c4d 6090 long nice, retval;
1da177e4
LT
6091
6092 /*
6093 * Setpriority might change our priority at the same moment.
6094 * We don't have to worry. Conceptually one call occurs first
6095 * and we have a single winner.
6096 */
e43379f1
MM
6097 if (increment < -40)
6098 increment = -40;
1da177e4
LT
6099 if (increment > 40)
6100 increment = 40;
6101
2b8f836f 6102 nice = TASK_NICE(current) + increment;
1da177e4
LT
6103 if (nice < -20)
6104 nice = -20;
6105 if (nice > 19)
6106 nice = 19;
6107
e43379f1
MM
6108 if (increment < 0 && !can_nice(current, nice))
6109 return -EPERM;
6110
1da177e4
LT
6111 retval = security_task_setnice(current, nice);
6112 if (retval)
6113 return retval;
6114
6115 set_user_nice(current, nice);
6116 return 0;
6117}
6118
6119#endif
6120
6121/**
6122 * task_prio - return the priority value of a given task.
6123 * @p: the task in question.
6124 *
6125 * This is the priority value as seen by users in /proc.
6126 * RT tasks are offset by -200. Normal tasks are centered
6127 * around 0, value goes from -16 to +15.
6128 */
36c8b586 6129int task_prio(const struct task_struct *p)
1da177e4
LT
6130{
6131 return p->prio - MAX_RT_PRIO;
6132}
6133
6134/**
6135 * task_nice - return the nice value of a given task.
6136 * @p: the task in question.
6137 */
36c8b586 6138int task_nice(const struct task_struct *p)
1da177e4
LT
6139{
6140 return TASK_NICE(p);
6141}
150d8bed 6142EXPORT_SYMBOL(task_nice);
1da177e4
LT
6143
6144/**
6145 * idle_cpu - is a given cpu idle currently?
6146 * @cpu: the processor in question.
6147 */
6148int idle_cpu(int cpu)
6149{
6150 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6151}
6152
1da177e4
LT
6153/**
6154 * idle_task - return the idle task for a given cpu.
6155 * @cpu: the processor in question.
6156 */
36c8b586 6157struct task_struct *idle_task(int cpu)
1da177e4
LT
6158{
6159 return cpu_rq(cpu)->idle;
6160}
6161
6162/**
6163 * find_process_by_pid - find a process with a matching PID value.
6164 * @pid: the pid in question.
6165 */
a9957449 6166static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6167{
228ebcbe 6168 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6169}
6170
6171/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6172static void
6173__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6174{
dd41f596 6175 BUG_ON(p->se.on_rq);
48f24c4d 6176
1da177e4 6177 p->policy = policy;
dd41f596
IM
6178 switch (p->policy) {
6179 case SCHED_NORMAL:
6180 case SCHED_BATCH:
6181 case SCHED_IDLE:
6182 p->sched_class = &fair_sched_class;
6183 break;
6184 case SCHED_FIFO:
6185 case SCHED_RR:
6186 p->sched_class = &rt_sched_class;
6187 break;
6188 }
6189
1da177e4 6190 p->rt_priority = prio;
b29739f9
IM
6191 p->normal_prio = normal_prio(p);
6192 /* we are holding p->pi_lock already */
6193 p->prio = rt_mutex_getprio(p);
2dd73a4f 6194 set_load_weight(p);
1da177e4
LT
6195}
6196
c69e8d9c
DH
6197/*
6198 * check the target process has a UID that matches the current process's
6199 */
6200static bool check_same_owner(struct task_struct *p)
6201{
6202 const struct cred *cred = current_cred(), *pcred;
6203 bool match;
6204
6205 rcu_read_lock();
6206 pcred = __task_cred(p);
6207 match = (cred->euid == pcred->euid ||
6208 cred->euid == pcred->uid);
6209 rcu_read_unlock();
6210 return match;
6211}
6212
961ccddd
RR
6213static int __sched_setscheduler(struct task_struct *p, int policy,
6214 struct sched_param *param, bool user)
1da177e4 6215{
83b699ed 6216 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6217 unsigned long flags;
cb469845 6218 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6219 struct rq *rq;
ca94c442 6220 int reset_on_fork;
1da177e4 6221
66e5393a
SR
6222 /* may grab non-irq protected spin_locks */
6223 BUG_ON(in_interrupt());
1da177e4
LT
6224recheck:
6225 /* double check policy once rq lock held */
ca94c442
LP
6226 if (policy < 0) {
6227 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6228 policy = oldpolicy = p->policy;
ca94c442
LP
6229 } else {
6230 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6231 policy &= ~SCHED_RESET_ON_FORK;
6232
6233 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6234 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6235 policy != SCHED_IDLE)
6236 return -EINVAL;
6237 }
6238
1da177e4
LT
6239 /*
6240 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6241 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6242 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6243 */
6244 if (param->sched_priority < 0 ||
95cdf3b7 6245 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6246 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6247 return -EINVAL;
e05606d3 6248 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6249 return -EINVAL;
6250
37e4ab3f
OC
6251 /*
6252 * Allow unprivileged RT tasks to decrease priority:
6253 */
961ccddd 6254 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6255 if (rt_policy(policy)) {
8dc3e909 6256 unsigned long rlim_rtprio;
8dc3e909
ON
6257
6258 if (!lock_task_sighand(p, &flags))
6259 return -ESRCH;
6260 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6261 unlock_task_sighand(p, &flags);
6262
6263 /* can't set/change the rt policy */
6264 if (policy != p->policy && !rlim_rtprio)
6265 return -EPERM;
6266
6267 /* can't increase priority */
6268 if (param->sched_priority > p->rt_priority &&
6269 param->sched_priority > rlim_rtprio)
6270 return -EPERM;
6271 }
dd41f596
IM
6272 /*
6273 * Like positive nice levels, dont allow tasks to
6274 * move out of SCHED_IDLE either:
6275 */
6276 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6277 return -EPERM;
5fe1d75f 6278
37e4ab3f 6279 /* can't change other user's priorities */
c69e8d9c 6280 if (!check_same_owner(p))
37e4ab3f 6281 return -EPERM;
ca94c442
LP
6282
6283 /* Normal users shall not reset the sched_reset_on_fork flag */
6284 if (p->sched_reset_on_fork && !reset_on_fork)
6285 return -EPERM;
37e4ab3f 6286 }
1da177e4 6287
725aad24 6288 if (user) {
b68aa230 6289#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6290 /*
6291 * Do not allow realtime tasks into groups that have no runtime
6292 * assigned.
6293 */
9a7e0b18
PZ
6294 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6295 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6296 return -EPERM;
b68aa230
PZ
6297#endif
6298
725aad24
JF
6299 retval = security_task_setscheduler(p, policy, param);
6300 if (retval)
6301 return retval;
6302 }
6303
b29739f9
IM
6304 /*
6305 * make sure no PI-waiters arrive (or leave) while we are
6306 * changing the priority of the task:
6307 */
6308 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6309 /*
6310 * To be able to change p->policy safely, the apropriate
6311 * runqueue lock must be held.
6312 */
b29739f9 6313 rq = __task_rq_lock(p);
1da177e4
LT
6314 /* recheck policy now with rq lock held */
6315 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6316 policy = oldpolicy = -1;
b29739f9
IM
6317 __task_rq_unlock(rq);
6318 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6319 goto recheck;
6320 }
2daa3577 6321 update_rq_clock(rq);
dd41f596 6322 on_rq = p->se.on_rq;
051a1d1a 6323 running = task_current(rq, p);
0e1f3483 6324 if (on_rq)
2e1cb74a 6325 deactivate_task(rq, p, 0);
0e1f3483
HS
6326 if (running)
6327 p->sched_class->put_prev_task(rq, p);
f6b53205 6328
ca94c442
LP
6329 p->sched_reset_on_fork = reset_on_fork;
6330
1da177e4 6331 oldprio = p->prio;
dd41f596 6332 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6333
0e1f3483
HS
6334 if (running)
6335 p->sched_class->set_curr_task(rq);
dd41f596
IM
6336 if (on_rq) {
6337 activate_task(rq, p, 0);
cb469845
SR
6338
6339 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6340 }
b29739f9
IM
6341 __task_rq_unlock(rq);
6342 spin_unlock_irqrestore(&p->pi_lock, flags);
6343
95e02ca9
TG
6344 rt_mutex_adjust_pi(p);
6345
1da177e4
LT
6346 return 0;
6347}
961ccddd
RR
6348
6349/**
6350 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6351 * @p: the task in question.
6352 * @policy: new policy.
6353 * @param: structure containing the new RT priority.
6354 *
6355 * NOTE that the task may be already dead.
6356 */
6357int sched_setscheduler(struct task_struct *p, int policy,
6358 struct sched_param *param)
6359{
6360 return __sched_setscheduler(p, policy, param, true);
6361}
1da177e4
LT
6362EXPORT_SYMBOL_GPL(sched_setscheduler);
6363
961ccddd
RR
6364/**
6365 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6366 * @p: the task in question.
6367 * @policy: new policy.
6368 * @param: structure containing the new RT priority.
6369 *
6370 * Just like sched_setscheduler, only don't bother checking if the
6371 * current context has permission. For example, this is needed in
6372 * stop_machine(): we create temporary high priority worker threads,
6373 * but our caller might not have that capability.
6374 */
6375int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6376 struct sched_param *param)
6377{
6378 return __sched_setscheduler(p, policy, param, false);
6379}
6380
95cdf3b7
IM
6381static int
6382do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6383{
1da177e4
LT
6384 struct sched_param lparam;
6385 struct task_struct *p;
36c8b586 6386 int retval;
1da177e4
LT
6387
6388 if (!param || pid < 0)
6389 return -EINVAL;
6390 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6391 return -EFAULT;
5fe1d75f
ON
6392
6393 rcu_read_lock();
6394 retval = -ESRCH;
1da177e4 6395 p = find_process_by_pid(pid);
5fe1d75f
ON
6396 if (p != NULL)
6397 retval = sched_setscheduler(p, policy, &lparam);
6398 rcu_read_unlock();
36c8b586 6399
1da177e4
LT
6400 return retval;
6401}
6402
6403/**
6404 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6405 * @pid: the pid in question.
6406 * @policy: new policy.
6407 * @param: structure containing the new RT priority.
6408 */
5add95d4
HC
6409SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6410 struct sched_param __user *, param)
1da177e4 6411{
c21761f1
JB
6412 /* negative values for policy are not valid */
6413 if (policy < 0)
6414 return -EINVAL;
6415
1da177e4
LT
6416 return do_sched_setscheduler(pid, policy, param);
6417}
6418
6419/**
6420 * sys_sched_setparam - set/change the RT priority of a thread
6421 * @pid: the pid in question.
6422 * @param: structure containing the new RT priority.
6423 */
5add95d4 6424SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6425{
6426 return do_sched_setscheduler(pid, -1, param);
6427}
6428
6429/**
6430 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6431 * @pid: the pid in question.
6432 */
5add95d4 6433SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6434{
36c8b586 6435 struct task_struct *p;
3a5c359a 6436 int retval;
1da177e4
LT
6437
6438 if (pid < 0)
3a5c359a 6439 return -EINVAL;
1da177e4
LT
6440
6441 retval = -ESRCH;
6442 read_lock(&tasklist_lock);
6443 p = find_process_by_pid(pid);
6444 if (p) {
6445 retval = security_task_getscheduler(p);
6446 if (!retval)
ca94c442
LP
6447 retval = p->policy
6448 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6449 }
6450 read_unlock(&tasklist_lock);
1da177e4
LT
6451 return retval;
6452}
6453
6454/**
ca94c442 6455 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6456 * @pid: the pid in question.
6457 * @param: structure containing the RT priority.
6458 */
5add95d4 6459SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6460{
6461 struct sched_param lp;
36c8b586 6462 struct task_struct *p;
3a5c359a 6463 int retval;
1da177e4
LT
6464
6465 if (!param || pid < 0)
3a5c359a 6466 return -EINVAL;
1da177e4
LT
6467
6468 read_lock(&tasklist_lock);
6469 p = find_process_by_pid(pid);
6470 retval = -ESRCH;
6471 if (!p)
6472 goto out_unlock;
6473
6474 retval = security_task_getscheduler(p);
6475 if (retval)
6476 goto out_unlock;
6477
6478 lp.sched_priority = p->rt_priority;
6479 read_unlock(&tasklist_lock);
6480
6481 /*
6482 * This one might sleep, we cannot do it with a spinlock held ...
6483 */
6484 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6485
1da177e4
LT
6486 return retval;
6487
6488out_unlock:
6489 read_unlock(&tasklist_lock);
6490 return retval;
6491}
6492
96f874e2 6493long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6494{
5a16f3d3 6495 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6496 struct task_struct *p;
6497 int retval;
1da177e4 6498
95402b38 6499 get_online_cpus();
1da177e4
LT
6500 read_lock(&tasklist_lock);
6501
6502 p = find_process_by_pid(pid);
6503 if (!p) {
6504 read_unlock(&tasklist_lock);
95402b38 6505 put_online_cpus();
1da177e4
LT
6506 return -ESRCH;
6507 }
6508
6509 /*
6510 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6511 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6512 * usage count and then drop tasklist_lock.
6513 */
6514 get_task_struct(p);
6515 read_unlock(&tasklist_lock);
6516
5a16f3d3
RR
6517 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6518 retval = -ENOMEM;
6519 goto out_put_task;
6520 }
6521 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6522 retval = -ENOMEM;
6523 goto out_free_cpus_allowed;
6524 }
1da177e4 6525 retval = -EPERM;
c69e8d9c 6526 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6527 goto out_unlock;
6528
e7834f8f
DQ
6529 retval = security_task_setscheduler(p, 0, NULL);
6530 if (retval)
6531 goto out_unlock;
6532
5a16f3d3
RR
6533 cpuset_cpus_allowed(p, cpus_allowed);
6534 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6535 again:
5a16f3d3 6536 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6537
8707d8b8 6538 if (!retval) {
5a16f3d3
RR
6539 cpuset_cpus_allowed(p, cpus_allowed);
6540 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6541 /*
6542 * We must have raced with a concurrent cpuset
6543 * update. Just reset the cpus_allowed to the
6544 * cpuset's cpus_allowed
6545 */
5a16f3d3 6546 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6547 goto again;
6548 }
6549 }
1da177e4 6550out_unlock:
5a16f3d3
RR
6551 free_cpumask_var(new_mask);
6552out_free_cpus_allowed:
6553 free_cpumask_var(cpus_allowed);
6554out_put_task:
1da177e4 6555 put_task_struct(p);
95402b38 6556 put_online_cpus();
1da177e4
LT
6557 return retval;
6558}
6559
6560static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6561 struct cpumask *new_mask)
1da177e4 6562{
96f874e2
RR
6563 if (len < cpumask_size())
6564 cpumask_clear(new_mask);
6565 else if (len > cpumask_size())
6566 len = cpumask_size();
6567
1da177e4
LT
6568 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6569}
6570
6571/**
6572 * sys_sched_setaffinity - set the cpu affinity of a process
6573 * @pid: pid of the process
6574 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6575 * @user_mask_ptr: user-space pointer to the new cpu mask
6576 */
5add95d4
HC
6577SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6578 unsigned long __user *, user_mask_ptr)
1da177e4 6579{
5a16f3d3 6580 cpumask_var_t new_mask;
1da177e4
LT
6581 int retval;
6582
5a16f3d3
RR
6583 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6584 return -ENOMEM;
1da177e4 6585
5a16f3d3
RR
6586 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6587 if (retval == 0)
6588 retval = sched_setaffinity(pid, new_mask);
6589 free_cpumask_var(new_mask);
6590 return retval;
1da177e4
LT
6591}
6592
96f874e2 6593long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6594{
36c8b586 6595 struct task_struct *p;
1da177e4 6596 int retval;
1da177e4 6597
95402b38 6598 get_online_cpus();
1da177e4
LT
6599 read_lock(&tasklist_lock);
6600
6601 retval = -ESRCH;
6602 p = find_process_by_pid(pid);
6603 if (!p)
6604 goto out_unlock;
6605
e7834f8f
DQ
6606 retval = security_task_getscheduler(p);
6607 if (retval)
6608 goto out_unlock;
6609
96f874e2 6610 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6611
6612out_unlock:
6613 read_unlock(&tasklist_lock);
95402b38 6614 put_online_cpus();
1da177e4 6615
9531b62f 6616 return retval;
1da177e4
LT
6617}
6618
6619/**
6620 * sys_sched_getaffinity - get the cpu affinity of a process
6621 * @pid: pid of the process
6622 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6623 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6624 */
5add95d4
HC
6625SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6626 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6627{
6628 int ret;
f17c8607 6629 cpumask_var_t mask;
1da177e4 6630
f17c8607 6631 if (len < cpumask_size())
1da177e4
LT
6632 return -EINVAL;
6633
f17c8607
RR
6634 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6635 return -ENOMEM;
1da177e4 6636
f17c8607
RR
6637 ret = sched_getaffinity(pid, mask);
6638 if (ret == 0) {
6639 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6640 ret = -EFAULT;
6641 else
6642 ret = cpumask_size();
6643 }
6644 free_cpumask_var(mask);
1da177e4 6645
f17c8607 6646 return ret;
1da177e4
LT
6647}
6648
6649/**
6650 * sys_sched_yield - yield the current processor to other threads.
6651 *
dd41f596
IM
6652 * This function yields the current CPU to other tasks. If there are no
6653 * other threads running on this CPU then this function will return.
1da177e4 6654 */
5add95d4 6655SYSCALL_DEFINE0(sched_yield)
1da177e4 6656{
70b97a7f 6657 struct rq *rq = this_rq_lock();
1da177e4 6658
2d72376b 6659 schedstat_inc(rq, yld_count);
4530d7ab 6660 current->sched_class->yield_task(rq);
1da177e4
LT
6661
6662 /*
6663 * Since we are going to call schedule() anyway, there's
6664 * no need to preempt or enable interrupts:
6665 */
6666 __release(rq->lock);
8a25d5de 6667 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6668 _raw_spin_unlock(&rq->lock);
6669 preempt_enable_no_resched();
6670
6671 schedule();
6672
6673 return 0;
6674}
6675
d86ee480
PZ
6676static inline int should_resched(void)
6677{
6678 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6679}
6680
e7b38404 6681static void __cond_resched(void)
1da177e4 6682{
e7aaaa69
FW
6683 add_preempt_count(PREEMPT_ACTIVE);
6684 schedule();
6685 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6686}
6687
02b67cc3 6688int __sched _cond_resched(void)
1da177e4 6689{
d86ee480 6690 if (should_resched()) {
1da177e4
LT
6691 __cond_resched();
6692 return 1;
6693 }
6694 return 0;
6695}
02b67cc3 6696EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6697
6698/*
613afbf8 6699 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6700 * call schedule, and on return reacquire the lock.
6701 *
41a2d6cf 6702 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6703 * operations here to prevent schedule() from being called twice (once via
6704 * spin_unlock(), once by hand).
6705 */
613afbf8 6706int __cond_resched_lock(spinlock_t *lock)
1da177e4 6707{
d86ee480 6708 int resched = should_resched();
6df3cecb
JK
6709 int ret = 0;
6710
f607c668
PZ
6711 lockdep_assert_held(lock);
6712
95c354fe 6713 if (spin_needbreak(lock) || resched) {
1da177e4 6714 spin_unlock(lock);
d86ee480 6715 if (resched)
95c354fe
NP
6716 __cond_resched();
6717 else
6718 cpu_relax();
6df3cecb 6719 ret = 1;
1da177e4 6720 spin_lock(lock);
1da177e4 6721 }
6df3cecb 6722 return ret;
1da177e4 6723}
613afbf8 6724EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6725
613afbf8 6726int __sched __cond_resched_softirq(void)
1da177e4
LT
6727{
6728 BUG_ON(!in_softirq());
6729
d86ee480 6730 if (should_resched()) {
98d82567 6731 local_bh_enable();
1da177e4
LT
6732 __cond_resched();
6733 local_bh_disable();
6734 return 1;
6735 }
6736 return 0;
6737}
613afbf8 6738EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6739
1da177e4
LT
6740/**
6741 * yield - yield the current processor to other threads.
6742 *
72fd4a35 6743 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6744 * thread runnable and calls sys_sched_yield().
6745 */
6746void __sched yield(void)
6747{
6748 set_current_state(TASK_RUNNING);
6749 sys_sched_yield();
6750}
1da177e4
LT
6751EXPORT_SYMBOL(yield);
6752
6753/*
41a2d6cf 6754 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6755 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6756 */
6757void __sched io_schedule(void)
6758{
54d35f29 6759 struct rq *rq = raw_rq();
1da177e4 6760
0ff92245 6761 delayacct_blkio_start();
1da177e4 6762 atomic_inc(&rq->nr_iowait);
8f0dfc34 6763 current->in_iowait = 1;
1da177e4 6764 schedule();
8f0dfc34 6765 current->in_iowait = 0;
1da177e4 6766 atomic_dec(&rq->nr_iowait);
0ff92245 6767 delayacct_blkio_end();
1da177e4 6768}
1da177e4
LT
6769EXPORT_SYMBOL(io_schedule);
6770
6771long __sched io_schedule_timeout(long timeout)
6772{
54d35f29 6773 struct rq *rq = raw_rq();
1da177e4
LT
6774 long ret;
6775
0ff92245 6776 delayacct_blkio_start();
1da177e4 6777 atomic_inc(&rq->nr_iowait);
8f0dfc34 6778 current->in_iowait = 1;
1da177e4 6779 ret = schedule_timeout(timeout);
8f0dfc34 6780 current->in_iowait = 0;
1da177e4 6781 atomic_dec(&rq->nr_iowait);
0ff92245 6782 delayacct_blkio_end();
1da177e4
LT
6783 return ret;
6784}
6785
6786/**
6787 * sys_sched_get_priority_max - return maximum RT priority.
6788 * @policy: scheduling class.
6789 *
6790 * this syscall returns the maximum rt_priority that can be used
6791 * by a given scheduling class.
6792 */
5add95d4 6793SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6794{
6795 int ret = -EINVAL;
6796
6797 switch (policy) {
6798 case SCHED_FIFO:
6799 case SCHED_RR:
6800 ret = MAX_USER_RT_PRIO-1;
6801 break;
6802 case SCHED_NORMAL:
b0a9499c 6803 case SCHED_BATCH:
dd41f596 6804 case SCHED_IDLE:
1da177e4
LT
6805 ret = 0;
6806 break;
6807 }
6808 return ret;
6809}
6810
6811/**
6812 * sys_sched_get_priority_min - return minimum RT priority.
6813 * @policy: scheduling class.
6814 *
6815 * this syscall returns the minimum rt_priority that can be used
6816 * by a given scheduling class.
6817 */
5add95d4 6818SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6819{
6820 int ret = -EINVAL;
6821
6822 switch (policy) {
6823 case SCHED_FIFO:
6824 case SCHED_RR:
6825 ret = 1;
6826 break;
6827 case SCHED_NORMAL:
b0a9499c 6828 case SCHED_BATCH:
dd41f596 6829 case SCHED_IDLE:
1da177e4
LT
6830 ret = 0;
6831 }
6832 return ret;
6833}
6834
6835/**
6836 * sys_sched_rr_get_interval - return the default timeslice of a process.
6837 * @pid: pid of the process.
6838 * @interval: userspace pointer to the timeslice value.
6839 *
6840 * this syscall writes the default timeslice value of a given process
6841 * into the user-space timespec buffer. A value of '0' means infinity.
6842 */
17da2bd9 6843SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6844 struct timespec __user *, interval)
1da177e4 6845{
36c8b586 6846 struct task_struct *p;
a4ec24b4 6847 unsigned int time_slice;
3a5c359a 6848 int retval;
1da177e4 6849 struct timespec t;
1da177e4
LT
6850
6851 if (pid < 0)
3a5c359a 6852 return -EINVAL;
1da177e4
LT
6853
6854 retval = -ESRCH;
6855 read_lock(&tasklist_lock);
6856 p = find_process_by_pid(pid);
6857 if (!p)
6858 goto out_unlock;
6859
6860 retval = security_task_getscheduler(p);
6861 if (retval)
6862 goto out_unlock;
6863
0d721cea 6864 time_slice = p->sched_class->get_rr_interval(p);
a4ec24b4 6865
1da177e4 6866 read_unlock(&tasklist_lock);
a4ec24b4 6867 jiffies_to_timespec(time_slice, &t);
1da177e4 6868 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6869 return retval;
3a5c359a 6870
1da177e4
LT
6871out_unlock:
6872 read_unlock(&tasklist_lock);
6873 return retval;
6874}
6875
7c731e0a 6876static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6877
82a1fcb9 6878void sched_show_task(struct task_struct *p)
1da177e4 6879{
1da177e4 6880 unsigned long free = 0;
36c8b586 6881 unsigned state;
1da177e4 6882
1da177e4 6883 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6884 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6885 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6886#if BITS_PER_LONG == 32
1da177e4 6887 if (state == TASK_RUNNING)
cc4ea795 6888 printk(KERN_CONT " running ");
1da177e4 6889 else
cc4ea795 6890 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6891#else
6892 if (state == TASK_RUNNING)
cc4ea795 6893 printk(KERN_CONT " running task ");
1da177e4 6894 else
cc4ea795 6895 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6896#endif
6897#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6898 free = stack_not_used(p);
1da177e4 6899#endif
aa47b7e0
DR
6900 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6901 task_pid_nr(p), task_pid_nr(p->real_parent),
6902 (unsigned long)task_thread_info(p)->flags);
1da177e4 6903
5fb5e6de 6904 show_stack(p, NULL);
1da177e4
LT
6905}
6906
e59e2ae2 6907void show_state_filter(unsigned long state_filter)
1da177e4 6908{
36c8b586 6909 struct task_struct *g, *p;
1da177e4 6910
4bd77321
IM
6911#if BITS_PER_LONG == 32
6912 printk(KERN_INFO
6913 " task PC stack pid father\n");
1da177e4 6914#else
4bd77321
IM
6915 printk(KERN_INFO
6916 " task PC stack pid father\n");
1da177e4
LT
6917#endif
6918 read_lock(&tasklist_lock);
6919 do_each_thread(g, p) {
6920 /*
6921 * reset the NMI-timeout, listing all files on a slow
6922 * console might take alot of time:
6923 */
6924 touch_nmi_watchdog();
39bc89fd 6925 if (!state_filter || (p->state & state_filter))
82a1fcb9 6926 sched_show_task(p);
1da177e4
LT
6927 } while_each_thread(g, p);
6928
04c9167f
JF
6929 touch_all_softlockup_watchdogs();
6930
dd41f596
IM
6931#ifdef CONFIG_SCHED_DEBUG
6932 sysrq_sched_debug_show();
6933#endif
1da177e4 6934 read_unlock(&tasklist_lock);
e59e2ae2
IM
6935 /*
6936 * Only show locks if all tasks are dumped:
6937 */
6938 if (state_filter == -1)
6939 debug_show_all_locks();
1da177e4
LT
6940}
6941
1df21055
IM
6942void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6943{
dd41f596 6944 idle->sched_class = &idle_sched_class;
1df21055
IM
6945}
6946
f340c0d1
IM
6947/**
6948 * init_idle - set up an idle thread for a given CPU
6949 * @idle: task in question
6950 * @cpu: cpu the idle task belongs to
6951 *
6952 * NOTE: this function does not set the idle thread's NEED_RESCHED
6953 * flag, to make booting more robust.
6954 */
5c1e1767 6955void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6956{
70b97a7f 6957 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6958 unsigned long flags;
6959
5cbd54ef
IM
6960 spin_lock_irqsave(&rq->lock, flags);
6961
dd41f596
IM
6962 __sched_fork(idle);
6963 idle->se.exec_start = sched_clock();
6964
b29739f9 6965 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6966 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6967 __set_task_cpu(idle, cpu);
1da177e4 6968
1da177e4 6969 rq->curr = rq->idle = idle;
4866cde0
NP
6970#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6971 idle->oncpu = 1;
6972#endif
1da177e4
LT
6973 spin_unlock_irqrestore(&rq->lock, flags);
6974
6975 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6976#if defined(CONFIG_PREEMPT)
6977 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6978#else
a1261f54 6979 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6980#endif
dd41f596
IM
6981 /*
6982 * The idle tasks have their own, simple scheduling class:
6983 */
6984 idle->sched_class = &idle_sched_class;
fb52607a 6985 ftrace_graph_init_task(idle);
1da177e4
LT
6986}
6987
6988/*
6989 * In a system that switches off the HZ timer nohz_cpu_mask
6990 * indicates which cpus entered this state. This is used
6991 * in the rcu update to wait only for active cpus. For system
6992 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6993 * always be CPU_BITS_NONE.
1da177e4 6994 */
6a7b3dc3 6995cpumask_var_t nohz_cpu_mask;
1da177e4 6996
19978ca6
IM
6997/*
6998 * Increase the granularity value when there are more CPUs,
6999 * because with more CPUs the 'effective latency' as visible
7000 * to users decreases. But the relationship is not linear,
7001 * so pick a second-best guess by going with the log2 of the
7002 * number of CPUs.
7003 *
7004 * This idea comes from the SD scheduler of Con Kolivas:
7005 */
7006static inline void sched_init_granularity(void)
7007{
7008 unsigned int factor = 1 + ilog2(num_online_cpus());
7009 const unsigned long limit = 200000000;
7010
7011 sysctl_sched_min_granularity *= factor;
7012 if (sysctl_sched_min_granularity > limit)
7013 sysctl_sched_min_granularity = limit;
7014
7015 sysctl_sched_latency *= factor;
7016 if (sysctl_sched_latency > limit)
7017 sysctl_sched_latency = limit;
7018
7019 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
7020
7021 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
7022}
7023
1da177e4
LT
7024#ifdef CONFIG_SMP
7025/*
7026 * This is how migration works:
7027 *
70b97a7f 7028 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7029 * runqueue and wake up that CPU's migration thread.
7030 * 2) we down() the locked semaphore => thread blocks.
7031 * 3) migration thread wakes up (implicitly it forces the migrated
7032 * thread off the CPU)
7033 * 4) it gets the migration request and checks whether the migrated
7034 * task is still in the wrong runqueue.
7035 * 5) if it's in the wrong runqueue then the migration thread removes
7036 * it and puts it into the right queue.
7037 * 6) migration thread up()s the semaphore.
7038 * 7) we wake up and the migration is done.
7039 */
7040
7041/*
7042 * Change a given task's CPU affinity. Migrate the thread to a
7043 * proper CPU and schedule it away if the CPU it's executing on
7044 * is removed from the allowed bitmask.
7045 *
7046 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7047 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7048 * call is not atomic; no spinlocks may be held.
7049 */
96f874e2 7050int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7051{
70b97a7f 7052 struct migration_req req;
1da177e4 7053 unsigned long flags;
70b97a7f 7054 struct rq *rq;
48f24c4d 7055 int ret = 0;
1da177e4
LT
7056
7057 rq = task_rq_lock(p, &flags);
96f874e2 7058 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
7059 ret = -EINVAL;
7060 goto out;
7061 }
7062
9985b0ba 7063 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7064 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7065 ret = -EINVAL;
7066 goto out;
7067 }
7068
73fe6aae 7069 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7070 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7071 else {
96f874e2
RR
7072 cpumask_copy(&p->cpus_allowed, new_mask);
7073 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7074 }
7075
1da177e4 7076 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7077 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7078 goto out;
7079
1e5ce4f4 7080 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4 7081 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7082 struct task_struct *mt = rq->migration_thread;
7083
7084 get_task_struct(mt);
1da177e4
LT
7085 task_rq_unlock(rq, &flags);
7086 wake_up_process(rq->migration_thread);
693525e3 7087 put_task_struct(mt);
1da177e4
LT
7088 wait_for_completion(&req.done);
7089 tlb_migrate_finish(p->mm);
7090 return 0;
7091 }
7092out:
7093 task_rq_unlock(rq, &flags);
48f24c4d 7094
1da177e4
LT
7095 return ret;
7096}
cd8ba7cd 7097EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7098
7099/*
41a2d6cf 7100 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7101 * this because either it can't run here any more (set_cpus_allowed()
7102 * away from this CPU, or CPU going down), or because we're
7103 * attempting to rebalance this task on exec (sched_exec).
7104 *
7105 * So we race with normal scheduler movements, but that's OK, as long
7106 * as the task is no longer on this CPU.
efc30814
KK
7107 *
7108 * Returns non-zero if task was successfully migrated.
1da177e4 7109 */
efc30814 7110static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7111{
70b97a7f 7112 struct rq *rq_dest, *rq_src;
dd41f596 7113 int ret = 0, on_rq;
1da177e4 7114
e761b772 7115 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7116 return ret;
1da177e4
LT
7117
7118 rq_src = cpu_rq(src_cpu);
7119 rq_dest = cpu_rq(dest_cpu);
7120
7121 double_rq_lock(rq_src, rq_dest);
7122 /* Already moved. */
7123 if (task_cpu(p) != src_cpu)
b1e38734 7124 goto done;
1da177e4 7125 /* Affinity changed (again). */
96f874e2 7126 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7127 goto fail;
1da177e4 7128
dd41f596 7129 on_rq = p->se.on_rq;
6e82a3be 7130 if (on_rq)
2e1cb74a 7131 deactivate_task(rq_src, p, 0);
6e82a3be 7132
1da177e4 7133 set_task_cpu(p, dest_cpu);
dd41f596
IM
7134 if (on_rq) {
7135 activate_task(rq_dest, p, 0);
15afe09b 7136 check_preempt_curr(rq_dest, p, 0);
1da177e4 7137 }
b1e38734 7138done:
efc30814 7139 ret = 1;
b1e38734 7140fail:
1da177e4 7141 double_rq_unlock(rq_src, rq_dest);
efc30814 7142 return ret;
1da177e4
LT
7143}
7144
03b042bf
PM
7145#define RCU_MIGRATION_IDLE 0
7146#define RCU_MIGRATION_NEED_QS 1
7147#define RCU_MIGRATION_GOT_QS 2
7148#define RCU_MIGRATION_MUST_SYNC 3
7149
1da177e4
LT
7150/*
7151 * migration_thread - this is a highprio system thread that performs
7152 * thread migration by bumping thread off CPU then 'pushing' onto
7153 * another runqueue.
7154 */
95cdf3b7 7155static int migration_thread(void *data)
1da177e4 7156{
03b042bf 7157 int badcpu;
1da177e4 7158 int cpu = (long)data;
70b97a7f 7159 struct rq *rq;
1da177e4
LT
7160
7161 rq = cpu_rq(cpu);
7162 BUG_ON(rq->migration_thread != current);
7163
7164 set_current_state(TASK_INTERRUPTIBLE);
7165 while (!kthread_should_stop()) {
70b97a7f 7166 struct migration_req *req;
1da177e4 7167 struct list_head *head;
1da177e4 7168
1da177e4
LT
7169 spin_lock_irq(&rq->lock);
7170
7171 if (cpu_is_offline(cpu)) {
7172 spin_unlock_irq(&rq->lock);
371cbb38 7173 break;
1da177e4
LT
7174 }
7175
7176 if (rq->active_balance) {
7177 active_load_balance(rq, cpu);
7178 rq->active_balance = 0;
7179 }
7180
7181 head = &rq->migration_queue;
7182
7183 if (list_empty(head)) {
7184 spin_unlock_irq(&rq->lock);
7185 schedule();
7186 set_current_state(TASK_INTERRUPTIBLE);
7187 continue;
7188 }
70b97a7f 7189 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7190 list_del_init(head->next);
7191
03b042bf
PM
7192 if (req->task != NULL) {
7193 spin_unlock(&rq->lock);
7194 __migrate_task(req->task, cpu, req->dest_cpu);
7195 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7196 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7197 spin_unlock(&rq->lock);
7198 } else {
7199 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7200 spin_unlock(&rq->lock);
7201 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7202 }
674311d5 7203 local_irq_enable();
1da177e4
LT
7204
7205 complete(&req->done);
7206 }
7207 __set_current_state(TASK_RUNNING);
1da177e4 7208
1da177e4
LT
7209 return 0;
7210}
7211
7212#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7213
7214static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7215{
7216 int ret;
7217
7218 local_irq_disable();
7219 ret = __migrate_task(p, src_cpu, dest_cpu);
7220 local_irq_enable();
7221 return ret;
7222}
7223
054b9108 7224/*
3a4fa0a2 7225 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7226 */
48f24c4d 7227static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7228{
70b97a7f 7229 int dest_cpu;
6ca09dfc 7230 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7231
7232again:
7233 /* Look for allowed, online CPU in same node. */
7234 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7235 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7236 goto move;
7237
7238 /* Any allowed, online CPU? */
7239 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7240 if (dest_cpu < nr_cpu_ids)
7241 goto move;
7242
7243 /* No more Mr. Nice Guy. */
7244 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7245 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7246 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7247
e76bd8d9
RR
7248 /*
7249 * Don't tell them about moving exiting tasks or
7250 * kernel threads (both mm NULL), since they never
7251 * leave kernel.
7252 */
7253 if (p->mm && printk_ratelimit()) {
7254 printk(KERN_INFO "process %d (%s) no "
7255 "longer affine to cpu%d\n",
7256 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7257 }
e76bd8d9
RR
7258 }
7259
7260move:
7261 /* It can have affinity changed while we were choosing. */
7262 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7263 goto again;
1da177e4
LT
7264}
7265
7266/*
7267 * While a dead CPU has no uninterruptible tasks queued at this point,
7268 * it might still have a nonzero ->nr_uninterruptible counter, because
7269 * for performance reasons the counter is not stricly tracking tasks to
7270 * their home CPUs. So we just add the counter to another CPU's counter,
7271 * to keep the global sum constant after CPU-down:
7272 */
70b97a7f 7273static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7274{
1e5ce4f4 7275 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7276 unsigned long flags;
7277
7278 local_irq_save(flags);
7279 double_rq_lock(rq_src, rq_dest);
7280 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7281 rq_src->nr_uninterruptible = 0;
7282 double_rq_unlock(rq_src, rq_dest);
7283 local_irq_restore(flags);
7284}
7285
7286/* Run through task list and migrate tasks from the dead cpu. */
7287static void migrate_live_tasks(int src_cpu)
7288{
48f24c4d 7289 struct task_struct *p, *t;
1da177e4 7290
f7b4cddc 7291 read_lock(&tasklist_lock);
1da177e4 7292
48f24c4d
IM
7293 do_each_thread(t, p) {
7294 if (p == current)
1da177e4
LT
7295 continue;
7296
48f24c4d
IM
7297 if (task_cpu(p) == src_cpu)
7298 move_task_off_dead_cpu(src_cpu, p);
7299 } while_each_thread(t, p);
1da177e4 7300
f7b4cddc 7301 read_unlock(&tasklist_lock);
1da177e4
LT
7302}
7303
dd41f596
IM
7304/*
7305 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7306 * It does so by boosting its priority to highest possible.
7307 * Used by CPU offline code.
1da177e4
LT
7308 */
7309void sched_idle_next(void)
7310{
48f24c4d 7311 int this_cpu = smp_processor_id();
70b97a7f 7312 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7313 struct task_struct *p = rq->idle;
7314 unsigned long flags;
7315
7316 /* cpu has to be offline */
48f24c4d 7317 BUG_ON(cpu_online(this_cpu));
1da177e4 7318
48f24c4d
IM
7319 /*
7320 * Strictly not necessary since rest of the CPUs are stopped by now
7321 * and interrupts disabled on the current cpu.
1da177e4
LT
7322 */
7323 spin_lock_irqsave(&rq->lock, flags);
7324
dd41f596 7325 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7326
94bc9a7b
DA
7327 update_rq_clock(rq);
7328 activate_task(rq, p, 0);
1da177e4
LT
7329
7330 spin_unlock_irqrestore(&rq->lock, flags);
7331}
7332
48f24c4d
IM
7333/*
7334 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7335 * offline.
7336 */
7337void idle_task_exit(void)
7338{
7339 struct mm_struct *mm = current->active_mm;
7340
7341 BUG_ON(cpu_online(smp_processor_id()));
7342
7343 if (mm != &init_mm)
7344 switch_mm(mm, &init_mm, current);
7345 mmdrop(mm);
7346}
7347
054b9108 7348/* called under rq->lock with disabled interrupts */
36c8b586 7349static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7350{
70b97a7f 7351 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7352
7353 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7354 BUG_ON(!p->exit_state);
1da177e4
LT
7355
7356 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7357 BUG_ON(p->state == TASK_DEAD);
1da177e4 7358
48f24c4d 7359 get_task_struct(p);
1da177e4
LT
7360
7361 /*
7362 * Drop lock around migration; if someone else moves it,
41a2d6cf 7363 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7364 * fine.
7365 */
f7b4cddc 7366 spin_unlock_irq(&rq->lock);
48f24c4d 7367 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7368 spin_lock_irq(&rq->lock);
1da177e4 7369
48f24c4d 7370 put_task_struct(p);
1da177e4
LT
7371}
7372
7373/* release_task() removes task from tasklist, so we won't find dead tasks. */
7374static void migrate_dead_tasks(unsigned int dead_cpu)
7375{
70b97a7f 7376 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7377 struct task_struct *next;
48f24c4d 7378
dd41f596
IM
7379 for ( ; ; ) {
7380 if (!rq->nr_running)
7381 break;
a8e504d2 7382 update_rq_clock(rq);
b67802ea 7383 next = pick_next_task(rq);
dd41f596
IM
7384 if (!next)
7385 break;
79c53799 7386 next->sched_class->put_prev_task(rq, next);
dd41f596 7387 migrate_dead(dead_cpu, next);
e692ab53 7388
1da177e4
LT
7389 }
7390}
dce48a84
TG
7391
7392/*
7393 * remove the tasks which were accounted by rq from calc_load_tasks.
7394 */
7395static void calc_global_load_remove(struct rq *rq)
7396{
7397 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7398 rq->calc_load_active = 0;
dce48a84 7399}
1da177e4
LT
7400#endif /* CONFIG_HOTPLUG_CPU */
7401
e692ab53
NP
7402#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7403
7404static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7405 {
7406 .procname = "sched_domain",
c57baf1e 7407 .mode = 0555,
e0361851 7408 },
38605cae 7409 {0, },
e692ab53
NP
7410};
7411
7412static struct ctl_table sd_ctl_root[] = {
e0361851 7413 {
c57baf1e 7414 .ctl_name = CTL_KERN,
e0361851 7415 .procname = "kernel",
c57baf1e 7416 .mode = 0555,
e0361851
AD
7417 .child = sd_ctl_dir,
7418 },
38605cae 7419 {0, },
e692ab53
NP
7420};
7421
7422static struct ctl_table *sd_alloc_ctl_entry(int n)
7423{
7424 struct ctl_table *entry =
5cf9f062 7425 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7426
e692ab53
NP
7427 return entry;
7428}
7429
6382bc90
MM
7430static void sd_free_ctl_entry(struct ctl_table **tablep)
7431{
cd790076 7432 struct ctl_table *entry;
6382bc90 7433
cd790076
MM
7434 /*
7435 * In the intermediate directories, both the child directory and
7436 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7437 * will always be set. In the lowest directory the names are
cd790076
MM
7438 * static strings and all have proc handlers.
7439 */
7440 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7441 if (entry->child)
7442 sd_free_ctl_entry(&entry->child);
cd790076
MM
7443 if (entry->proc_handler == NULL)
7444 kfree(entry->procname);
7445 }
6382bc90
MM
7446
7447 kfree(*tablep);
7448 *tablep = NULL;
7449}
7450
e692ab53 7451static void
e0361851 7452set_table_entry(struct ctl_table *entry,
e692ab53
NP
7453 const char *procname, void *data, int maxlen,
7454 mode_t mode, proc_handler *proc_handler)
7455{
e692ab53
NP
7456 entry->procname = procname;
7457 entry->data = data;
7458 entry->maxlen = maxlen;
7459 entry->mode = mode;
7460 entry->proc_handler = proc_handler;
7461}
7462
7463static struct ctl_table *
7464sd_alloc_ctl_domain_table(struct sched_domain *sd)
7465{
a5d8c348 7466 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7467
ad1cdc1d
MM
7468 if (table == NULL)
7469 return NULL;
7470
e0361851 7471 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7472 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7473 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7474 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7475 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7476 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7477 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7478 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7479 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7480 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7481 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7482 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7483 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7484 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7485 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7486 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7487 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7488 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7489 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7490 &sd->cache_nice_tries,
7491 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7492 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7493 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7494 set_table_entry(&table[11], "name", sd->name,
7495 CORENAME_MAX_SIZE, 0444, proc_dostring);
7496 /* &table[12] is terminator */
e692ab53
NP
7497
7498 return table;
7499}
7500
9a4e7159 7501static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7502{
7503 struct ctl_table *entry, *table;
7504 struct sched_domain *sd;
7505 int domain_num = 0, i;
7506 char buf[32];
7507
7508 for_each_domain(cpu, sd)
7509 domain_num++;
7510 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7511 if (table == NULL)
7512 return NULL;
e692ab53
NP
7513
7514 i = 0;
7515 for_each_domain(cpu, sd) {
7516 snprintf(buf, 32, "domain%d", i);
e692ab53 7517 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7518 entry->mode = 0555;
e692ab53
NP
7519 entry->child = sd_alloc_ctl_domain_table(sd);
7520 entry++;
7521 i++;
7522 }
7523 return table;
7524}
7525
7526static struct ctl_table_header *sd_sysctl_header;
6382bc90 7527static void register_sched_domain_sysctl(void)
e692ab53
NP
7528{
7529 int i, cpu_num = num_online_cpus();
7530 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7531 char buf[32];
7532
7378547f
MM
7533 WARN_ON(sd_ctl_dir[0].child);
7534 sd_ctl_dir[0].child = entry;
7535
ad1cdc1d
MM
7536 if (entry == NULL)
7537 return;
7538
97b6ea7b 7539 for_each_online_cpu(i) {
e692ab53 7540 snprintf(buf, 32, "cpu%d", i);
e692ab53 7541 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7542 entry->mode = 0555;
e692ab53 7543 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7544 entry++;
e692ab53 7545 }
7378547f
MM
7546
7547 WARN_ON(sd_sysctl_header);
e692ab53
NP
7548 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7549}
6382bc90 7550
7378547f 7551/* may be called multiple times per register */
6382bc90
MM
7552static void unregister_sched_domain_sysctl(void)
7553{
7378547f
MM
7554 if (sd_sysctl_header)
7555 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7556 sd_sysctl_header = NULL;
7378547f
MM
7557 if (sd_ctl_dir[0].child)
7558 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7559}
e692ab53 7560#else
6382bc90
MM
7561static void register_sched_domain_sysctl(void)
7562{
7563}
7564static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7565{
7566}
7567#endif
7568
1f11eb6a
GH
7569static void set_rq_online(struct rq *rq)
7570{
7571 if (!rq->online) {
7572 const struct sched_class *class;
7573
c6c4927b 7574 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7575 rq->online = 1;
7576
7577 for_each_class(class) {
7578 if (class->rq_online)
7579 class->rq_online(rq);
7580 }
7581 }
7582}
7583
7584static void set_rq_offline(struct rq *rq)
7585{
7586 if (rq->online) {
7587 const struct sched_class *class;
7588
7589 for_each_class(class) {
7590 if (class->rq_offline)
7591 class->rq_offline(rq);
7592 }
7593
c6c4927b 7594 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7595 rq->online = 0;
7596 }
7597}
7598
1da177e4
LT
7599/*
7600 * migration_call - callback that gets triggered when a CPU is added.
7601 * Here we can start up the necessary migration thread for the new CPU.
7602 */
48f24c4d
IM
7603static int __cpuinit
7604migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7605{
1da177e4 7606 struct task_struct *p;
48f24c4d 7607 int cpu = (long)hcpu;
1da177e4 7608 unsigned long flags;
70b97a7f 7609 struct rq *rq;
1da177e4
LT
7610
7611 switch (action) {
5be9361c 7612
1da177e4 7613 case CPU_UP_PREPARE:
8bb78442 7614 case CPU_UP_PREPARE_FROZEN:
dd41f596 7615 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7616 if (IS_ERR(p))
7617 return NOTIFY_BAD;
1da177e4
LT
7618 kthread_bind(p, cpu);
7619 /* Must be high prio: stop_machine expects to yield to it. */
7620 rq = task_rq_lock(p, &flags);
dd41f596 7621 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7622 task_rq_unlock(rq, &flags);
371cbb38 7623 get_task_struct(p);
1da177e4 7624 cpu_rq(cpu)->migration_thread = p;
a468d389 7625 rq->calc_load_update = calc_load_update;
1da177e4 7626 break;
48f24c4d 7627
1da177e4 7628 case CPU_ONLINE:
8bb78442 7629 case CPU_ONLINE_FROZEN:
3a4fa0a2 7630 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7631 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7632
7633 /* Update our root-domain */
7634 rq = cpu_rq(cpu);
7635 spin_lock_irqsave(&rq->lock, flags);
7636 if (rq->rd) {
c6c4927b 7637 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7638
7639 set_rq_online(rq);
1f94ef59
GH
7640 }
7641 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7642 break;
48f24c4d 7643
1da177e4
LT
7644#ifdef CONFIG_HOTPLUG_CPU
7645 case CPU_UP_CANCELED:
8bb78442 7646 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7647 if (!cpu_rq(cpu)->migration_thread)
7648 break;
41a2d6cf 7649 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7650 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7651 cpumask_any(cpu_online_mask));
1da177e4 7652 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7653 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7654 cpu_rq(cpu)->migration_thread = NULL;
7655 break;
48f24c4d 7656
1da177e4 7657 case CPU_DEAD:
8bb78442 7658 case CPU_DEAD_FROZEN:
470fd646 7659 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7660 migrate_live_tasks(cpu);
7661 rq = cpu_rq(cpu);
7662 kthread_stop(rq->migration_thread);
371cbb38 7663 put_task_struct(rq->migration_thread);
1da177e4
LT
7664 rq->migration_thread = NULL;
7665 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7666 spin_lock_irq(&rq->lock);
a8e504d2 7667 update_rq_clock(rq);
2e1cb74a 7668 deactivate_task(rq, rq->idle, 0);
1da177e4 7669 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7670 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7671 rq->idle->sched_class = &idle_sched_class;
1da177e4 7672 migrate_dead_tasks(cpu);
d2da272a 7673 spin_unlock_irq(&rq->lock);
470fd646 7674 cpuset_unlock();
1da177e4
LT
7675 migrate_nr_uninterruptible(rq);
7676 BUG_ON(rq->nr_running != 0);
dce48a84 7677 calc_global_load_remove(rq);
41a2d6cf
IM
7678 /*
7679 * No need to migrate the tasks: it was best-effort if
7680 * they didn't take sched_hotcpu_mutex. Just wake up
7681 * the requestors.
7682 */
1da177e4
LT
7683 spin_lock_irq(&rq->lock);
7684 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7685 struct migration_req *req;
7686
1da177e4 7687 req = list_entry(rq->migration_queue.next,
70b97a7f 7688 struct migration_req, list);
1da177e4 7689 list_del_init(&req->list);
9a2bd244 7690 spin_unlock_irq(&rq->lock);
1da177e4 7691 complete(&req->done);
9a2bd244 7692 spin_lock_irq(&rq->lock);
1da177e4
LT
7693 }
7694 spin_unlock_irq(&rq->lock);
7695 break;
57d885fe 7696
08f503b0
GH
7697 case CPU_DYING:
7698 case CPU_DYING_FROZEN:
57d885fe
GH
7699 /* Update our root-domain */
7700 rq = cpu_rq(cpu);
7701 spin_lock_irqsave(&rq->lock, flags);
7702 if (rq->rd) {
c6c4927b 7703 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7704 set_rq_offline(rq);
57d885fe
GH
7705 }
7706 spin_unlock_irqrestore(&rq->lock, flags);
7707 break;
1da177e4
LT
7708#endif
7709 }
7710 return NOTIFY_OK;
7711}
7712
f38b0820
PM
7713/*
7714 * Register at high priority so that task migration (migrate_all_tasks)
7715 * happens before everything else. This has to be lower priority than
cdd6c482 7716 * the notifier in the perf_event subsystem, though.
1da177e4 7717 */
26c2143b 7718static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7719 .notifier_call = migration_call,
7720 .priority = 10
7721};
7722
7babe8db 7723static int __init migration_init(void)
1da177e4
LT
7724{
7725 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7726 int err;
48f24c4d
IM
7727
7728 /* Start one for the boot CPU: */
07dccf33
AM
7729 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7730 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7731 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7732 register_cpu_notifier(&migration_notifier);
7babe8db 7733
a004cd42 7734 return 0;
1da177e4 7735}
7babe8db 7736early_initcall(migration_init);
1da177e4
LT
7737#endif
7738
7739#ifdef CONFIG_SMP
476f3534 7740
3e9830dc 7741#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7742
7c16ec58 7743static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7744 struct cpumask *groupmask)
1da177e4 7745{
4dcf6aff 7746 struct sched_group *group = sd->groups;
434d53b0 7747 char str[256];
1da177e4 7748
968ea6d8 7749 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7750 cpumask_clear(groupmask);
4dcf6aff
IM
7751
7752 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7753
7754 if (!(sd->flags & SD_LOAD_BALANCE)) {
7755 printk("does not load-balance\n");
7756 if (sd->parent)
7757 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7758 " has parent");
7759 return -1;
41c7ce9a
NP
7760 }
7761
eefd796a 7762 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7763
758b2cdc 7764 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7765 printk(KERN_ERR "ERROR: domain->span does not contain "
7766 "CPU%d\n", cpu);
7767 }
758b2cdc 7768 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7769 printk(KERN_ERR "ERROR: domain->groups does not contain"
7770 " CPU%d\n", cpu);
7771 }
1da177e4 7772
4dcf6aff 7773 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7774 do {
4dcf6aff
IM
7775 if (!group) {
7776 printk("\n");
7777 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7778 break;
7779 }
7780
18a3885f 7781 if (!group->cpu_power) {
4dcf6aff
IM
7782 printk(KERN_CONT "\n");
7783 printk(KERN_ERR "ERROR: domain->cpu_power not "
7784 "set\n");
7785 break;
7786 }
1da177e4 7787
758b2cdc 7788 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7789 printk(KERN_CONT "\n");
7790 printk(KERN_ERR "ERROR: empty group\n");
7791 break;
7792 }
1da177e4 7793
758b2cdc 7794 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7795 printk(KERN_CONT "\n");
7796 printk(KERN_ERR "ERROR: repeated CPUs\n");
7797 break;
7798 }
1da177e4 7799
758b2cdc 7800 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7801
968ea6d8 7802 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7803
7804 printk(KERN_CONT " %s", str);
18a3885f
PZ
7805 if (group->cpu_power != SCHED_LOAD_SCALE) {
7806 printk(KERN_CONT " (cpu_power = %d)",
7807 group->cpu_power);
381512cf 7808 }
1da177e4 7809
4dcf6aff
IM
7810 group = group->next;
7811 } while (group != sd->groups);
7812 printk(KERN_CONT "\n");
1da177e4 7813
758b2cdc 7814 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7815 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7816
758b2cdc
RR
7817 if (sd->parent &&
7818 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7819 printk(KERN_ERR "ERROR: parent span is not a superset "
7820 "of domain->span\n");
7821 return 0;
7822}
1da177e4 7823
4dcf6aff
IM
7824static void sched_domain_debug(struct sched_domain *sd, int cpu)
7825{
d5dd3db1 7826 cpumask_var_t groupmask;
4dcf6aff 7827 int level = 0;
1da177e4 7828
4dcf6aff
IM
7829 if (!sd) {
7830 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7831 return;
7832 }
1da177e4 7833
4dcf6aff
IM
7834 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7835
d5dd3db1 7836 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7837 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7838 return;
7839 }
7840
4dcf6aff 7841 for (;;) {
7c16ec58 7842 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7843 break;
1da177e4
LT
7844 level++;
7845 sd = sd->parent;
33859f7f 7846 if (!sd)
4dcf6aff
IM
7847 break;
7848 }
d5dd3db1 7849 free_cpumask_var(groupmask);
1da177e4 7850}
6d6bc0ad 7851#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7852# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7853#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7854
1a20ff27 7855static int sd_degenerate(struct sched_domain *sd)
245af2c7 7856{
758b2cdc 7857 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7858 return 1;
7859
7860 /* Following flags need at least 2 groups */
7861 if (sd->flags & (SD_LOAD_BALANCE |
7862 SD_BALANCE_NEWIDLE |
7863 SD_BALANCE_FORK |
89c4710e
SS
7864 SD_BALANCE_EXEC |
7865 SD_SHARE_CPUPOWER |
7866 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7867 if (sd->groups != sd->groups->next)
7868 return 0;
7869 }
7870
7871 /* Following flags don't use groups */
c88d5910 7872 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7873 return 0;
7874
7875 return 1;
7876}
7877
48f24c4d
IM
7878static int
7879sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7880{
7881 unsigned long cflags = sd->flags, pflags = parent->flags;
7882
7883 if (sd_degenerate(parent))
7884 return 1;
7885
758b2cdc 7886 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7887 return 0;
7888
245af2c7
SS
7889 /* Flags needing groups don't count if only 1 group in parent */
7890 if (parent->groups == parent->groups->next) {
7891 pflags &= ~(SD_LOAD_BALANCE |
7892 SD_BALANCE_NEWIDLE |
7893 SD_BALANCE_FORK |
89c4710e
SS
7894 SD_BALANCE_EXEC |
7895 SD_SHARE_CPUPOWER |
7896 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7897 if (nr_node_ids == 1)
7898 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7899 }
7900 if (~cflags & pflags)
7901 return 0;
7902
7903 return 1;
7904}
7905
c6c4927b
RR
7906static void free_rootdomain(struct root_domain *rd)
7907{
68e74568
RR
7908 cpupri_cleanup(&rd->cpupri);
7909
c6c4927b
RR
7910 free_cpumask_var(rd->rto_mask);
7911 free_cpumask_var(rd->online);
7912 free_cpumask_var(rd->span);
7913 kfree(rd);
7914}
7915
57d885fe
GH
7916static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7917{
a0490fa3 7918 struct root_domain *old_rd = NULL;
57d885fe 7919 unsigned long flags;
57d885fe
GH
7920
7921 spin_lock_irqsave(&rq->lock, flags);
7922
7923 if (rq->rd) {
a0490fa3 7924 old_rd = rq->rd;
57d885fe 7925
c6c4927b 7926 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7927 set_rq_offline(rq);
57d885fe 7928
c6c4927b 7929 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7930
a0490fa3
IM
7931 /*
7932 * If we dont want to free the old_rt yet then
7933 * set old_rd to NULL to skip the freeing later
7934 * in this function:
7935 */
7936 if (!atomic_dec_and_test(&old_rd->refcount))
7937 old_rd = NULL;
57d885fe
GH
7938 }
7939
7940 atomic_inc(&rd->refcount);
7941 rq->rd = rd;
7942
c6c4927b 7943 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 7944 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 7945 set_rq_online(rq);
57d885fe
GH
7946
7947 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7948
7949 if (old_rd)
7950 free_rootdomain(old_rd);
57d885fe
GH
7951}
7952
fd5e1b5d 7953static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7954{
36b7b6d4
PE
7955 gfp_t gfp = GFP_KERNEL;
7956
57d885fe
GH
7957 memset(rd, 0, sizeof(*rd));
7958
36b7b6d4
PE
7959 if (bootmem)
7960 gfp = GFP_NOWAIT;
c6c4927b 7961
36b7b6d4 7962 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 7963 goto out;
36b7b6d4 7964 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 7965 goto free_span;
36b7b6d4 7966 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 7967 goto free_online;
6e0534f2 7968
0fb53029 7969 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 7970 goto free_rto_mask;
c6c4927b 7971 return 0;
6e0534f2 7972
68e74568
RR
7973free_rto_mask:
7974 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7975free_online:
7976 free_cpumask_var(rd->online);
7977free_span:
7978 free_cpumask_var(rd->span);
0c910d28 7979out:
c6c4927b 7980 return -ENOMEM;
57d885fe
GH
7981}
7982
7983static void init_defrootdomain(void)
7984{
c6c4927b
RR
7985 init_rootdomain(&def_root_domain, true);
7986
57d885fe
GH
7987 atomic_set(&def_root_domain.refcount, 1);
7988}
7989
dc938520 7990static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7991{
7992 struct root_domain *rd;
7993
7994 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7995 if (!rd)
7996 return NULL;
7997
c6c4927b
RR
7998 if (init_rootdomain(rd, false) != 0) {
7999 kfree(rd);
8000 return NULL;
8001 }
57d885fe
GH
8002
8003 return rd;
8004}
8005
1da177e4 8006/*
0eab9146 8007 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8008 * hold the hotplug lock.
8009 */
0eab9146
IM
8010static void
8011cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8012{
70b97a7f 8013 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8014 struct sched_domain *tmp;
8015
8016 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8017 for (tmp = sd; tmp; ) {
245af2c7
SS
8018 struct sched_domain *parent = tmp->parent;
8019 if (!parent)
8020 break;
f29c9b1c 8021
1a848870 8022 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8023 tmp->parent = parent->parent;
1a848870
SS
8024 if (parent->parent)
8025 parent->parent->child = tmp;
f29c9b1c
LZ
8026 } else
8027 tmp = tmp->parent;
245af2c7
SS
8028 }
8029
1a848870 8030 if (sd && sd_degenerate(sd)) {
245af2c7 8031 sd = sd->parent;
1a848870
SS
8032 if (sd)
8033 sd->child = NULL;
8034 }
1da177e4
LT
8035
8036 sched_domain_debug(sd, cpu);
8037
57d885fe 8038 rq_attach_root(rq, rd);
674311d5 8039 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8040}
8041
8042/* cpus with isolated domains */
dcc30a35 8043static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8044
8045/* Setup the mask of cpus configured for isolated domains */
8046static int __init isolated_cpu_setup(char *str)
8047{
968ea6d8 8048 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8049 return 1;
8050}
8051
8927f494 8052__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8053
8054/*
6711cab4
SS
8055 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8056 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8057 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8058 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8059 *
8060 * init_sched_build_groups will build a circular linked list of the groups
8061 * covered by the given span, and will set each group's ->cpumask correctly,
8062 * and ->cpu_power to 0.
8063 */
a616058b 8064static void
96f874e2
RR
8065init_sched_build_groups(const struct cpumask *span,
8066 const struct cpumask *cpu_map,
8067 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8068 struct sched_group **sg,
96f874e2
RR
8069 struct cpumask *tmpmask),
8070 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8071{
8072 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8073 int i;
8074
96f874e2 8075 cpumask_clear(covered);
7c16ec58 8076
abcd083a 8077 for_each_cpu(i, span) {
6711cab4 8078 struct sched_group *sg;
7c16ec58 8079 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8080 int j;
8081
758b2cdc 8082 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8083 continue;
8084
758b2cdc 8085 cpumask_clear(sched_group_cpus(sg));
18a3885f 8086 sg->cpu_power = 0;
1da177e4 8087
abcd083a 8088 for_each_cpu(j, span) {
7c16ec58 8089 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8090 continue;
8091
96f874e2 8092 cpumask_set_cpu(j, covered);
758b2cdc 8093 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8094 }
8095 if (!first)
8096 first = sg;
8097 if (last)
8098 last->next = sg;
8099 last = sg;
8100 }
8101 last->next = first;
8102}
8103
9c1cfda2 8104#define SD_NODES_PER_DOMAIN 16
1da177e4 8105
9c1cfda2 8106#ifdef CONFIG_NUMA
198e2f18 8107
9c1cfda2
JH
8108/**
8109 * find_next_best_node - find the next node to include in a sched_domain
8110 * @node: node whose sched_domain we're building
8111 * @used_nodes: nodes already in the sched_domain
8112 *
41a2d6cf 8113 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8114 * finds the closest node not already in the @used_nodes map.
8115 *
8116 * Should use nodemask_t.
8117 */
c5f59f08 8118static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8119{
8120 int i, n, val, min_val, best_node = 0;
8121
8122 min_val = INT_MAX;
8123
076ac2af 8124 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8125 /* Start at @node */
076ac2af 8126 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8127
8128 if (!nr_cpus_node(n))
8129 continue;
8130
8131 /* Skip already used nodes */
c5f59f08 8132 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8133 continue;
8134
8135 /* Simple min distance search */
8136 val = node_distance(node, n);
8137
8138 if (val < min_val) {
8139 min_val = val;
8140 best_node = n;
8141 }
8142 }
8143
c5f59f08 8144 node_set(best_node, *used_nodes);
9c1cfda2
JH
8145 return best_node;
8146}
8147
8148/**
8149 * sched_domain_node_span - get a cpumask for a node's sched_domain
8150 * @node: node whose cpumask we're constructing
73486722 8151 * @span: resulting cpumask
9c1cfda2 8152 *
41a2d6cf 8153 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8154 * should be one that prevents unnecessary balancing, but also spreads tasks
8155 * out optimally.
8156 */
96f874e2 8157static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8158{
c5f59f08 8159 nodemask_t used_nodes;
48f24c4d 8160 int i;
9c1cfda2 8161
6ca09dfc 8162 cpumask_clear(span);
c5f59f08 8163 nodes_clear(used_nodes);
9c1cfda2 8164
6ca09dfc 8165 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8166 node_set(node, used_nodes);
9c1cfda2
JH
8167
8168 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8169 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8170
6ca09dfc 8171 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8172 }
9c1cfda2 8173}
6d6bc0ad 8174#endif /* CONFIG_NUMA */
9c1cfda2 8175
5c45bf27 8176int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8177
6c99e9ad
RR
8178/*
8179 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8180 *
8181 * ( See the the comments in include/linux/sched.h:struct sched_group
8182 * and struct sched_domain. )
6c99e9ad
RR
8183 */
8184struct static_sched_group {
8185 struct sched_group sg;
8186 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8187};
8188
8189struct static_sched_domain {
8190 struct sched_domain sd;
8191 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8192};
8193
49a02c51
AH
8194struct s_data {
8195#ifdef CONFIG_NUMA
8196 int sd_allnodes;
8197 cpumask_var_t domainspan;
8198 cpumask_var_t covered;
8199 cpumask_var_t notcovered;
8200#endif
8201 cpumask_var_t nodemask;
8202 cpumask_var_t this_sibling_map;
8203 cpumask_var_t this_core_map;
8204 cpumask_var_t send_covered;
8205 cpumask_var_t tmpmask;
8206 struct sched_group **sched_group_nodes;
8207 struct root_domain *rd;
8208};
8209
2109b99e
AH
8210enum s_alloc {
8211 sa_sched_groups = 0,
8212 sa_rootdomain,
8213 sa_tmpmask,
8214 sa_send_covered,
8215 sa_this_core_map,
8216 sa_this_sibling_map,
8217 sa_nodemask,
8218 sa_sched_group_nodes,
8219#ifdef CONFIG_NUMA
8220 sa_notcovered,
8221 sa_covered,
8222 sa_domainspan,
8223#endif
8224 sa_none,
8225};
8226
9c1cfda2 8227/*
48f24c4d 8228 * SMT sched-domains:
9c1cfda2 8229 */
1da177e4 8230#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8231static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8232static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8233
41a2d6cf 8234static int
96f874e2
RR
8235cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8236 struct sched_group **sg, struct cpumask *unused)
1da177e4 8237{
6711cab4 8238 if (sg)
6c99e9ad 8239 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8240 return cpu;
8241}
6d6bc0ad 8242#endif /* CONFIG_SCHED_SMT */
1da177e4 8243
48f24c4d
IM
8244/*
8245 * multi-core sched-domains:
8246 */
1e9f28fa 8247#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8248static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8249static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8250#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8251
8252#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8253static int
96f874e2
RR
8254cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8255 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8256{
6711cab4 8257 int group;
7c16ec58 8258
c69fc56d 8259 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8260 group = cpumask_first(mask);
6711cab4 8261 if (sg)
6c99e9ad 8262 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8263 return group;
1e9f28fa
SS
8264}
8265#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8266static int
96f874e2
RR
8267cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8268 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8269{
6711cab4 8270 if (sg)
6c99e9ad 8271 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8272 return cpu;
8273}
8274#endif
8275
6c99e9ad
RR
8276static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8277static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8278
41a2d6cf 8279static int
96f874e2
RR
8280cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8281 struct sched_group **sg, struct cpumask *mask)
1da177e4 8282{
6711cab4 8283 int group;
48f24c4d 8284#ifdef CONFIG_SCHED_MC
6ca09dfc 8285 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8286 group = cpumask_first(mask);
1e9f28fa 8287#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8288 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8289 group = cpumask_first(mask);
1da177e4 8290#else
6711cab4 8291 group = cpu;
1da177e4 8292#endif
6711cab4 8293 if (sg)
6c99e9ad 8294 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8295 return group;
1da177e4
LT
8296}
8297
8298#ifdef CONFIG_NUMA
1da177e4 8299/*
9c1cfda2
JH
8300 * The init_sched_build_groups can't handle what we want to do with node
8301 * groups, so roll our own. Now each node has its own list of groups which
8302 * gets dynamically allocated.
1da177e4 8303 */
62ea9ceb 8304static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8305static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8306
62ea9ceb 8307static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8308static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8309
96f874e2
RR
8310static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8311 struct sched_group **sg,
8312 struct cpumask *nodemask)
9c1cfda2 8313{
6711cab4
SS
8314 int group;
8315
6ca09dfc 8316 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8317 group = cpumask_first(nodemask);
6711cab4
SS
8318
8319 if (sg)
6c99e9ad 8320 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8321 return group;
1da177e4 8322}
6711cab4 8323
08069033
SS
8324static void init_numa_sched_groups_power(struct sched_group *group_head)
8325{
8326 struct sched_group *sg = group_head;
8327 int j;
8328
8329 if (!sg)
8330 return;
3a5c359a 8331 do {
758b2cdc 8332 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8333 struct sched_domain *sd;
08069033 8334
6c99e9ad 8335 sd = &per_cpu(phys_domains, j).sd;
13318a71 8336 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8337 /*
8338 * Only add "power" once for each
8339 * physical package.
8340 */
8341 continue;
8342 }
08069033 8343
18a3885f 8344 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8345 }
8346 sg = sg->next;
8347 } while (sg != group_head);
08069033 8348}
0601a88d
AH
8349
8350static int build_numa_sched_groups(struct s_data *d,
8351 const struct cpumask *cpu_map, int num)
8352{
8353 struct sched_domain *sd;
8354 struct sched_group *sg, *prev;
8355 int n, j;
8356
8357 cpumask_clear(d->covered);
8358 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8359 if (cpumask_empty(d->nodemask)) {
8360 d->sched_group_nodes[num] = NULL;
8361 goto out;
8362 }
8363
8364 sched_domain_node_span(num, d->domainspan);
8365 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8366
8367 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8368 GFP_KERNEL, num);
8369 if (!sg) {
8370 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8371 num);
8372 return -ENOMEM;
8373 }
8374 d->sched_group_nodes[num] = sg;
8375
8376 for_each_cpu(j, d->nodemask) {
8377 sd = &per_cpu(node_domains, j).sd;
8378 sd->groups = sg;
8379 }
8380
18a3885f 8381 sg->cpu_power = 0;
0601a88d
AH
8382 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8383 sg->next = sg;
8384 cpumask_or(d->covered, d->covered, d->nodemask);
8385
8386 prev = sg;
8387 for (j = 0; j < nr_node_ids; j++) {
8388 n = (num + j) % nr_node_ids;
8389 cpumask_complement(d->notcovered, d->covered);
8390 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8391 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8392 if (cpumask_empty(d->tmpmask))
8393 break;
8394 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8395 if (cpumask_empty(d->tmpmask))
8396 continue;
8397 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8398 GFP_KERNEL, num);
8399 if (!sg) {
8400 printk(KERN_WARNING
8401 "Can not alloc domain group for node %d\n", j);
8402 return -ENOMEM;
8403 }
18a3885f 8404 sg->cpu_power = 0;
0601a88d
AH
8405 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8406 sg->next = prev->next;
8407 cpumask_or(d->covered, d->covered, d->tmpmask);
8408 prev->next = sg;
8409 prev = sg;
8410 }
8411out:
8412 return 0;
8413}
6d6bc0ad 8414#endif /* CONFIG_NUMA */
1da177e4 8415
a616058b 8416#ifdef CONFIG_NUMA
51888ca2 8417/* Free memory allocated for various sched_group structures */
96f874e2
RR
8418static void free_sched_groups(const struct cpumask *cpu_map,
8419 struct cpumask *nodemask)
51888ca2 8420{
a616058b 8421 int cpu, i;
51888ca2 8422
abcd083a 8423 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8424 struct sched_group **sched_group_nodes
8425 = sched_group_nodes_bycpu[cpu];
8426
51888ca2
SV
8427 if (!sched_group_nodes)
8428 continue;
8429
076ac2af 8430 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8431 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8432
6ca09dfc 8433 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8434 if (cpumask_empty(nodemask))
51888ca2
SV
8435 continue;
8436
8437 if (sg == NULL)
8438 continue;
8439 sg = sg->next;
8440next_sg:
8441 oldsg = sg;
8442 sg = sg->next;
8443 kfree(oldsg);
8444 if (oldsg != sched_group_nodes[i])
8445 goto next_sg;
8446 }
8447 kfree(sched_group_nodes);
8448 sched_group_nodes_bycpu[cpu] = NULL;
8449 }
51888ca2 8450}
6d6bc0ad 8451#else /* !CONFIG_NUMA */
96f874e2
RR
8452static void free_sched_groups(const struct cpumask *cpu_map,
8453 struct cpumask *nodemask)
a616058b
SS
8454{
8455}
6d6bc0ad 8456#endif /* CONFIG_NUMA */
51888ca2 8457
89c4710e
SS
8458/*
8459 * Initialize sched groups cpu_power.
8460 *
8461 * cpu_power indicates the capacity of sched group, which is used while
8462 * distributing the load between different sched groups in a sched domain.
8463 * Typically cpu_power for all the groups in a sched domain will be same unless
8464 * there are asymmetries in the topology. If there are asymmetries, group
8465 * having more cpu_power will pickup more load compared to the group having
8466 * less cpu_power.
89c4710e
SS
8467 */
8468static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8469{
8470 struct sched_domain *child;
8471 struct sched_group *group;
f93e65c1
PZ
8472 long power;
8473 int weight;
89c4710e
SS
8474
8475 WARN_ON(!sd || !sd->groups);
8476
13318a71 8477 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8478 return;
8479
8480 child = sd->child;
8481
18a3885f 8482 sd->groups->cpu_power = 0;
5517d86b 8483
f93e65c1
PZ
8484 if (!child) {
8485 power = SCHED_LOAD_SCALE;
8486 weight = cpumask_weight(sched_domain_span(sd));
8487 /*
8488 * SMT siblings share the power of a single core.
a52bfd73
PZ
8489 * Usually multiple threads get a better yield out of
8490 * that one core than a single thread would have,
8491 * reflect that in sd->smt_gain.
f93e65c1 8492 */
a52bfd73
PZ
8493 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8494 power *= sd->smt_gain;
f93e65c1 8495 power /= weight;
a52bfd73
PZ
8496 power >>= SCHED_LOAD_SHIFT;
8497 }
18a3885f 8498 sd->groups->cpu_power += power;
89c4710e
SS
8499 return;
8500 }
8501
89c4710e 8502 /*
f93e65c1 8503 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8504 */
8505 group = child->groups;
8506 do {
18a3885f 8507 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8508 group = group->next;
8509 } while (group != child->groups);
8510}
8511
7c16ec58
MT
8512/*
8513 * Initializers for schedule domains
8514 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8515 */
8516
a5d8c348
IM
8517#ifdef CONFIG_SCHED_DEBUG
8518# define SD_INIT_NAME(sd, type) sd->name = #type
8519#else
8520# define SD_INIT_NAME(sd, type) do { } while (0)
8521#endif
8522
7c16ec58 8523#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8524
7c16ec58
MT
8525#define SD_INIT_FUNC(type) \
8526static noinline void sd_init_##type(struct sched_domain *sd) \
8527{ \
8528 memset(sd, 0, sizeof(*sd)); \
8529 *sd = SD_##type##_INIT; \
1d3504fc 8530 sd->level = SD_LV_##type; \
a5d8c348 8531 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8532}
8533
8534SD_INIT_FUNC(CPU)
8535#ifdef CONFIG_NUMA
8536 SD_INIT_FUNC(ALLNODES)
8537 SD_INIT_FUNC(NODE)
8538#endif
8539#ifdef CONFIG_SCHED_SMT
8540 SD_INIT_FUNC(SIBLING)
8541#endif
8542#ifdef CONFIG_SCHED_MC
8543 SD_INIT_FUNC(MC)
8544#endif
8545
1d3504fc
HS
8546static int default_relax_domain_level = -1;
8547
8548static int __init setup_relax_domain_level(char *str)
8549{
30e0e178
LZ
8550 unsigned long val;
8551
8552 val = simple_strtoul(str, NULL, 0);
8553 if (val < SD_LV_MAX)
8554 default_relax_domain_level = val;
8555
1d3504fc
HS
8556 return 1;
8557}
8558__setup("relax_domain_level=", setup_relax_domain_level);
8559
8560static void set_domain_attribute(struct sched_domain *sd,
8561 struct sched_domain_attr *attr)
8562{
8563 int request;
8564
8565 if (!attr || attr->relax_domain_level < 0) {
8566 if (default_relax_domain_level < 0)
8567 return;
8568 else
8569 request = default_relax_domain_level;
8570 } else
8571 request = attr->relax_domain_level;
8572 if (request < sd->level) {
8573 /* turn off idle balance on this domain */
c88d5910 8574 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8575 } else {
8576 /* turn on idle balance on this domain */
c88d5910 8577 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8578 }
8579}
8580
2109b99e
AH
8581static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8582 const struct cpumask *cpu_map)
8583{
8584 switch (what) {
8585 case sa_sched_groups:
8586 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8587 d->sched_group_nodes = NULL;
8588 case sa_rootdomain:
8589 free_rootdomain(d->rd); /* fall through */
8590 case sa_tmpmask:
8591 free_cpumask_var(d->tmpmask); /* fall through */
8592 case sa_send_covered:
8593 free_cpumask_var(d->send_covered); /* fall through */
8594 case sa_this_core_map:
8595 free_cpumask_var(d->this_core_map); /* fall through */
8596 case sa_this_sibling_map:
8597 free_cpumask_var(d->this_sibling_map); /* fall through */
8598 case sa_nodemask:
8599 free_cpumask_var(d->nodemask); /* fall through */
8600 case sa_sched_group_nodes:
d1b55138 8601#ifdef CONFIG_NUMA
2109b99e
AH
8602 kfree(d->sched_group_nodes); /* fall through */
8603 case sa_notcovered:
8604 free_cpumask_var(d->notcovered); /* fall through */
8605 case sa_covered:
8606 free_cpumask_var(d->covered); /* fall through */
8607 case sa_domainspan:
8608 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8609#endif
2109b99e
AH
8610 case sa_none:
8611 break;
8612 }
8613}
3404c8d9 8614
2109b99e
AH
8615static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8616 const struct cpumask *cpu_map)
8617{
3404c8d9 8618#ifdef CONFIG_NUMA
2109b99e
AH
8619 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8620 return sa_none;
8621 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8622 return sa_domainspan;
8623 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8624 return sa_covered;
8625 /* Allocate the per-node list of sched groups */
8626 d->sched_group_nodes = kcalloc(nr_node_ids,
8627 sizeof(struct sched_group *), GFP_KERNEL);
8628 if (!d->sched_group_nodes) {
d1b55138 8629 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8630 return sa_notcovered;
d1b55138 8631 }
2109b99e 8632 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8633#endif
2109b99e
AH
8634 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8635 return sa_sched_group_nodes;
8636 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8637 return sa_nodemask;
8638 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8639 return sa_this_sibling_map;
8640 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8641 return sa_this_core_map;
8642 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8643 return sa_send_covered;
8644 d->rd = alloc_rootdomain();
8645 if (!d->rd) {
57d885fe 8646 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8647 return sa_tmpmask;
57d885fe 8648 }
2109b99e
AH
8649 return sa_rootdomain;
8650}
57d885fe 8651
7f4588f3
AH
8652static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8653 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8654{
8655 struct sched_domain *sd = NULL;
7c16ec58 8656#ifdef CONFIG_NUMA
7f4588f3 8657 struct sched_domain *parent;
1da177e4 8658
7f4588f3
AH
8659 d->sd_allnodes = 0;
8660 if (cpumask_weight(cpu_map) >
8661 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8662 sd = &per_cpu(allnodes_domains, i).sd;
8663 SD_INIT(sd, ALLNODES);
1d3504fc 8664 set_domain_attribute(sd, attr);
7f4588f3
AH
8665 cpumask_copy(sched_domain_span(sd), cpu_map);
8666 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8667 d->sd_allnodes = 1;
8668 }
8669 parent = sd;
8670
8671 sd = &per_cpu(node_domains, i).sd;
8672 SD_INIT(sd, NODE);
8673 set_domain_attribute(sd, attr);
8674 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8675 sd->parent = parent;
8676 if (parent)
8677 parent->child = sd;
8678 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8679#endif
7f4588f3
AH
8680 return sd;
8681}
1da177e4 8682
87cce662
AH
8683static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8684 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8685 struct sched_domain *parent, int i)
8686{
8687 struct sched_domain *sd;
8688 sd = &per_cpu(phys_domains, i).sd;
8689 SD_INIT(sd, CPU);
8690 set_domain_attribute(sd, attr);
8691 cpumask_copy(sched_domain_span(sd), d->nodemask);
8692 sd->parent = parent;
8693 if (parent)
8694 parent->child = sd;
8695 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8696 return sd;
8697}
1da177e4 8698
410c4081
AH
8699static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8700 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8701 struct sched_domain *parent, int i)
8702{
8703 struct sched_domain *sd = parent;
1e9f28fa 8704#ifdef CONFIG_SCHED_MC
410c4081
AH
8705 sd = &per_cpu(core_domains, i).sd;
8706 SD_INIT(sd, MC);
8707 set_domain_attribute(sd, attr);
8708 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8709 sd->parent = parent;
8710 parent->child = sd;
8711 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8712#endif
410c4081
AH
8713 return sd;
8714}
1e9f28fa 8715
d8173535
AH
8716static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8717 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8718 struct sched_domain *parent, int i)
8719{
8720 struct sched_domain *sd = parent;
1da177e4 8721#ifdef CONFIG_SCHED_SMT
d8173535
AH
8722 sd = &per_cpu(cpu_domains, i).sd;
8723 SD_INIT(sd, SIBLING);
8724 set_domain_attribute(sd, attr);
8725 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8726 sd->parent = parent;
8727 parent->child = sd;
8728 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8729#endif
d8173535
AH
8730 return sd;
8731}
1da177e4 8732
0e8e85c9
AH
8733static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8734 const struct cpumask *cpu_map, int cpu)
8735{
8736 switch (l) {
1da177e4 8737#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8738 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8739 cpumask_and(d->this_sibling_map, cpu_map,
8740 topology_thread_cpumask(cpu));
8741 if (cpu == cpumask_first(d->this_sibling_map))
8742 init_sched_build_groups(d->this_sibling_map, cpu_map,
8743 &cpu_to_cpu_group,
8744 d->send_covered, d->tmpmask);
8745 break;
1da177e4 8746#endif
1e9f28fa 8747#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8748 case SD_LV_MC: /* set up multi-core groups */
8749 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8750 if (cpu == cpumask_first(d->this_core_map))
8751 init_sched_build_groups(d->this_core_map, cpu_map,
8752 &cpu_to_core_group,
8753 d->send_covered, d->tmpmask);
8754 break;
1e9f28fa 8755#endif
86548096
AH
8756 case SD_LV_CPU: /* set up physical groups */
8757 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8758 if (!cpumask_empty(d->nodemask))
8759 init_sched_build_groups(d->nodemask, cpu_map,
8760 &cpu_to_phys_group,
8761 d->send_covered, d->tmpmask);
8762 break;
1da177e4 8763#ifdef CONFIG_NUMA
de616e36
AH
8764 case SD_LV_ALLNODES:
8765 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8766 d->send_covered, d->tmpmask);
8767 break;
8768#endif
0e8e85c9
AH
8769 default:
8770 break;
7c16ec58 8771 }
0e8e85c9 8772}
9c1cfda2 8773
2109b99e
AH
8774/*
8775 * Build sched domains for a given set of cpus and attach the sched domains
8776 * to the individual cpus
8777 */
8778static int __build_sched_domains(const struct cpumask *cpu_map,
8779 struct sched_domain_attr *attr)
8780{
8781 enum s_alloc alloc_state = sa_none;
8782 struct s_data d;
294b0c96 8783 struct sched_domain *sd;
2109b99e 8784 int i;
7c16ec58 8785#ifdef CONFIG_NUMA
2109b99e 8786 d.sd_allnodes = 0;
7c16ec58 8787#endif
9c1cfda2 8788
2109b99e
AH
8789 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8790 if (alloc_state != sa_rootdomain)
8791 goto error;
8792 alloc_state = sa_sched_groups;
9c1cfda2 8793
1da177e4 8794 /*
1a20ff27 8795 * Set up domains for cpus specified by the cpu_map.
1da177e4 8796 */
abcd083a 8797 for_each_cpu(i, cpu_map) {
49a02c51
AH
8798 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8799 cpu_map);
9761eea8 8800
7f4588f3 8801 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8802 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8803 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8804 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8805 }
9c1cfda2 8806
abcd083a 8807 for_each_cpu(i, cpu_map) {
0e8e85c9 8808 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8809 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8810 }
9c1cfda2 8811
1da177e4 8812 /* Set up physical groups */
86548096
AH
8813 for (i = 0; i < nr_node_ids; i++)
8814 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8815
1da177e4
LT
8816#ifdef CONFIG_NUMA
8817 /* Set up node groups */
de616e36
AH
8818 if (d.sd_allnodes)
8819 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8820
0601a88d
AH
8821 for (i = 0; i < nr_node_ids; i++)
8822 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8823 goto error;
1da177e4
LT
8824#endif
8825
8826 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8827#ifdef CONFIG_SCHED_SMT
abcd083a 8828 for_each_cpu(i, cpu_map) {
294b0c96 8829 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8830 init_sched_groups_power(i, sd);
5c45bf27 8831 }
1da177e4 8832#endif
1e9f28fa 8833#ifdef CONFIG_SCHED_MC
abcd083a 8834 for_each_cpu(i, cpu_map) {
294b0c96 8835 sd = &per_cpu(core_domains, i).sd;
89c4710e 8836 init_sched_groups_power(i, sd);
5c45bf27
SS
8837 }
8838#endif
1e9f28fa 8839
abcd083a 8840 for_each_cpu(i, cpu_map) {
294b0c96 8841 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8842 init_sched_groups_power(i, sd);
1da177e4
LT
8843 }
8844
9c1cfda2 8845#ifdef CONFIG_NUMA
076ac2af 8846 for (i = 0; i < nr_node_ids; i++)
49a02c51 8847 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8848
49a02c51 8849 if (d.sd_allnodes) {
6711cab4 8850 struct sched_group *sg;
f712c0c7 8851
96f874e2 8852 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8853 d.tmpmask);
f712c0c7
SS
8854 init_numa_sched_groups_power(sg);
8855 }
9c1cfda2
JH
8856#endif
8857
1da177e4 8858 /* Attach the domains */
abcd083a 8859 for_each_cpu(i, cpu_map) {
1da177e4 8860#ifdef CONFIG_SCHED_SMT
6c99e9ad 8861 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8862#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8863 sd = &per_cpu(core_domains, i).sd;
1da177e4 8864#else
6c99e9ad 8865 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8866#endif
49a02c51 8867 cpu_attach_domain(sd, d.rd, i);
1da177e4 8868 }
51888ca2 8869
2109b99e
AH
8870 d.sched_group_nodes = NULL; /* don't free this we still need it */
8871 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8872 return 0;
51888ca2 8873
51888ca2 8874error:
2109b99e
AH
8875 __free_domain_allocs(&d, alloc_state, cpu_map);
8876 return -ENOMEM;
1da177e4 8877}
029190c5 8878
96f874e2 8879static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8880{
8881 return __build_sched_domains(cpu_map, NULL);
8882}
8883
96f874e2 8884static struct cpumask *doms_cur; /* current sched domains */
029190c5 8885static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8886static struct sched_domain_attr *dattr_cur;
8887 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8888
8889/*
8890 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8891 * cpumask) fails, then fallback to a single sched domain,
8892 * as determined by the single cpumask fallback_doms.
029190c5 8893 */
4212823f 8894static cpumask_var_t fallback_doms;
029190c5 8895
ee79d1bd
HC
8896/*
8897 * arch_update_cpu_topology lets virtualized architectures update the
8898 * cpu core maps. It is supposed to return 1 if the topology changed
8899 * or 0 if it stayed the same.
8900 */
8901int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8902{
ee79d1bd 8903 return 0;
22e52b07
HC
8904}
8905
1a20ff27 8906/*
41a2d6cf 8907 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8908 * For now this just excludes isolated cpus, but could be used to
8909 * exclude other special cases in the future.
1a20ff27 8910 */
96f874e2 8911static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8912{
7378547f
MM
8913 int err;
8914
22e52b07 8915 arch_update_cpu_topology();
029190c5 8916 ndoms_cur = 1;
96f874e2 8917 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8918 if (!doms_cur)
4212823f 8919 doms_cur = fallback_doms;
dcc30a35 8920 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8921 dattr_cur = NULL;
7378547f 8922 err = build_sched_domains(doms_cur);
6382bc90 8923 register_sched_domain_sysctl();
7378547f
MM
8924
8925 return err;
1a20ff27
DG
8926}
8927
96f874e2
RR
8928static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8929 struct cpumask *tmpmask)
1da177e4 8930{
7c16ec58 8931 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8932}
1da177e4 8933
1a20ff27
DG
8934/*
8935 * Detach sched domains from a group of cpus specified in cpu_map
8936 * These cpus will now be attached to the NULL domain
8937 */
96f874e2 8938static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8939{
96f874e2
RR
8940 /* Save because hotplug lock held. */
8941 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8942 int i;
8943
abcd083a 8944 for_each_cpu(i, cpu_map)
57d885fe 8945 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8946 synchronize_sched();
96f874e2 8947 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8948}
8949
1d3504fc
HS
8950/* handle null as "default" */
8951static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8952 struct sched_domain_attr *new, int idx_new)
8953{
8954 struct sched_domain_attr tmp;
8955
8956 /* fast path */
8957 if (!new && !cur)
8958 return 1;
8959
8960 tmp = SD_ATTR_INIT;
8961 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8962 new ? (new + idx_new) : &tmp,
8963 sizeof(struct sched_domain_attr));
8964}
8965
029190c5
PJ
8966/*
8967 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8968 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8969 * doms_new[] to the current sched domain partitioning, doms_cur[].
8970 * It destroys each deleted domain and builds each new domain.
8971 *
96f874e2 8972 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8973 * The masks don't intersect (don't overlap.) We should setup one
8974 * sched domain for each mask. CPUs not in any of the cpumasks will
8975 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8976 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8977 * it as it is.
8978 *
41a2d6cf
IM
8979 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8980 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8981 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8982 * ndoms_new == 1, and partition_sched_domains() will fallback to
8983 * the single partition 'fallback_doms', it also forces the domains
8984 * to be rebuilt.
029190c5 8985 *
96f874e2 8986 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8987 * ndoms_new == 0 is a special case for destroying existing domains,
8988 * and it will not create the default domain.
dfb512ec 8989 *
029190c5
PJ
8990 * Call with hotplug lock held
8991 */
96f874e2
RR
8992/* FIXME: Change to struct cpumask *doms_new[] */
8993void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8994 struct sched_domain_attr *dattr_new)
029190c5 8995{
dfb512ec 8996 int i, j, n;
d65bd5ec 8997 int new_topology;
029190c5 8998
712555ee 8999 mutex_lock(&sched_domains_mutex);
a1835615 9000
7378547f
MM
9001 /* always unregister in case we don't destroy any domains */
9002 unregister_sched_domain_sysctl();
9003
d65bd5ec
HC
9004 /* Let architecture update cpu core mappings. */
9005 new_topology = arch_update_cpu_topology();
9006
dfb512ec 9007 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9008
9009 /* Destroy deleted domains */
9010 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9011 for (j = 0; j < n && !new_topology; j++) {
96f874e2 9012 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 9013 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9014 goto match1;
9015 }
9016 /* no match - a current sched domain not in new doms_new[] */
9017 detach_destroy_domains(doms_cur + i);
9018match1:
9019 ;
9020 }
9021
e761b772
MK
9022 if (doms_new == NULL) {
9023 ndoms_cur = 0;
4212823f 9024 doms_new = fallback_doms;
dcc30a35 9025 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 9026 WARN_ON_ONCE(dattr_new);
e761b772
MK
9027 }
9028
029190c5
PJ
9029 /* Build new domains */
9030 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9031 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 9032 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 9033 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9034 goto match2;
9035 }
9036 /* no match - add a new doms_new */
1d3504fc
HS
9037 __build_sched_domains(doms_new + i,
9038 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9039match2:
9040 ;
9041 }
9042
9043 /* Remember the new sched domains */
4212823f 9044 if (doms_cur != fallback_doms)
029190c5 9045 kfree(doms_cur);
1d3504fc 9046 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9047 doms_cur = doms_new;
1d3504fc 9048 dattr_cur = dattr_new;
029190c5 9049 ndoms_cur = ndoms_new;
7378547f
MM
9050
9051 register_sched_domain_sysctl();
a1835615 9052
712555ee 9053 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9054}
9055
5c45bf27 9056#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9057static void arch_reinit_sched_domains(void)
5c45bf27 9058{
95402b38 9059 get_online_cpus();
dfb512ec
MK
9060
9061 /* Destroy domains first to force the rebuild */
9062 partition_sched_domains(0, NULL, NULL);
9063
e761b772 9064 rebuild_sched_domains();
95402b38 9065 put_online_cpus();
5c45bf27
SS
9066}
9067
9068static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9069{
afb8a9b7 9070 unsigned int level = 0;
5c45bf27 9071
afb8a9b7
GS
9072 if (sscanf(buf, "%u", &level) != 1)
9073 return -EINVAL;
9074
9075 /*
9076 * level is always be positive so don't check for
9077 * level < POWERSAVINGS_BALANCE_NONE which is 0
9078 * What happens on 0 or 1 byte write,
9079 * need to check for count as well?
9080 */
9081
9082 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9083 return -EINVAL;
9084
9085 if (smt)
afb8a9b7 9086 sched_smt_power_savings = level;
5c45bf27 9087 else
afb8a9b7 9088 sched_mc_power_savings = level;
5c45bf27 9089
c70f22d2 9090 arch_reinit_sched_domains();
5c45bf27 9091
c70f22d2 9092 return count;
5c45bf27
SS
9093}
9094
5c45bf27 9095#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9096static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9097 char *page)
5c45bf27
SS
9098{
9099 return sprintf(page, "%u\n", sched_mc_power_savings);
9100}
f718cd4a 9101static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9102 const char *buf, size_t count)
5c45bf27
SS
9103{
9104 return sched_power_savings_store(buf, count, 0);
9105}
f718cd4a
AK
9106static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9107 sched_mc_power_savings_show,
9108 sched_mc_power_savings_store);
5c45bf27
SS
9109#endif
9110
9111#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9112static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9113 char *page)
5c45bf27
SS
9114{
9115 return sprintf(page, "%u\n", sched_smt_power_savings);
9116}
f718cd4a 9117static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9118 const char *buf, size_t count)
5c45bf27
SS
9119{
9120 return sched_power_savings_store(buf, count, 1);
9121}
f718cd4a
AK
9122static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9123 sched_smt_power_savings_show,
6707de00
AB
9124 sched_smt_power_savings_store);
9125#endif
9126
39aac648 9127int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9128{
9129 int err = 0;
9130
9131#ifdef CONFIG_SCHED_SMT
9132 if (smt_capable())
9133 err = sysfs_create_file(&cls->kset.kobj,
9134 &attr_sched_smt_power_savings.attr);
9135#endif
9136#ifdef CONFIG_SCHED_MC
9137 if (!err && mc_capable())
9138 err = sysfs_create_file(&cls->kset.kobj,
9139 &attr_sched_mc_power_savings.attr);
9140#endif
9141 return err;
9142}
6d6bc0ad 9143#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9144
e761b772 9145#ifndef CONFIG_CPUSETS
1da177e4 9146/*
e761b772
MK
9147 * Add online and remove offline CPUs from the scheduler domains.
9148 * When cpusets are enabled they take over this function.
1da177e4
LT
9149 */
9150static int update_sched_domains(struct notifier_block *nfb,
9151 unsigned long action, void *hcpu)
e761b772
MK
9152{
9153 switch (action) {
9154 case CPU_ONLINE:
9155 case CPU_ONLINE_FROZEN:
9156 case CPU_DEAD:
9157 case CPU_DEAD_FROZEN:
dfb512ec 9158 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9159 return NOTIFY_OK;
9160
9161 default:
9162 return NOTIFY_DONE;
9163 }
9164}
9165#endif
9166
9167static int update_runtime(struct notifier_block *nfb,
9168 unsigned long action, void *hcpu)
1da177e4 9169{
7def2be1
PZ
9170 int cpu = (int)(long)hcpu;
9171
1da177e4 9172 switch (action) {
1da177e4 9173 case CPU_DOWN_PREPARE:
8bb78442 9174 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9175 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9176 return NOTIFY_OK;
9177
1da177e4 9178 case CPU_DOWN_FAILED:
8bb78442 9179 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9180 case CPU_ONLINE:
8bb78442 9181 case CPU_ONLINE_FROZEN:
7def2be1 9182 enable_runtime(cpu_rq(cpu));
e761b772
MK
9183 return NOTIFY_OK;
9184
1da177e4
LT
9185 default:
9186 return NOTIFY_DONE;
9187 }
1da177e4 9188}
1da177e4
LT
9189
9190void __init sched_init_smp(void)
9191{
dcc30a35
RR
9192 cpumask_var_t non_isolated_cpus;
9193
9194 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9195 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9196
434d53b0
MT
9197#if defined(CONFIG_NUMA)
9198 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9199 GFP_KERNEL);
9200 BUG_ON(sched_group_nodes_bycpu == NULL);
9201#endif
95402b38 9202 get_online_cpus();
712555ee 9203 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
9204 arch_init_sched_domains(cpu_online_mask);
9205 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9206 if (cpumask_empty(non_isolated_cpus))
9207 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9208 mutex_unlock(&sched_domains_mutex);
95402b38 9209 put_online_cpus();
e761b772
MK
9210
9211#ifndef CONFIG_CPUSETS
1da177e4
LT
9212 /* XXX: Theoretical race here - CPU may be hotplugged now */
9213 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9214#endif
9215
9216 /* RT runtime code needs to handle some hotplug events */
9217 hotcpu_notifier(update_runtime, 0);
9218
b328ca18 9219 init_hrtick();
5c1e1767
NP
9220
9221 /* Move init over to a non-isolated CPU */
dcc30a35 9222 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9223 BUG();
19978ca6 9224 sched_init_granularity();
dcc30a35 9225 free_cpumask_var(non_isolated_cpus);
4212823f 9226
0e3900e6 9227 init_sched_rt_class();
1da177e4
LT
9228}
9229#else
9230void __init sched_init_smp(void)
9231{
19978ca6 9232 sched_init_granularity();
1da177e4
LT
9233}
9234#endif /* CONFIG_SMP */
9235
cd1bb94b
AB
9236const_debug unsigned int sysctl_timer_migration = 1;
9237
1da177e4
LT
9238int in_sched_functions(unsigned long addr)
9239{
1da177e4
LT
9240 return in_lock_functions(addr) ||
9241 (addr >= (unsigned long)__sched_text_start
9242 && addr < (unsigned long)__sched_text_end);
9243}
9244
a9957449 9245static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9246{
9247 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9248 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9249#ifdef CONFIG_FAIR_GROUP_SCHED
9250 cfs_rq->rq = rq;
9251#endif
67e9fb2a 9252 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9253}
9254
fa85ae24
PZ
9255static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9256{
9257 struct rt_prio_array *array;
9258 int i;
9259
9260 array = &rt_rq->active;
9261 for (i = 0; i < MAX_RT_PRIO; i++) {
9262 INIT_LIST_HEAD(array->queue + i);
9263 __clear_bit(i, array->bitmap);
9264 }
9265 /* delimiter for bitsearch: */
9266 __set_bit(MAX_RT_PRIO, array->bitmap);
9267
052f1dc7 9268#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9269 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9270#ifdef CONFIG_SMP
e864c499 9271 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9272#endif
48d5e258 9273#endif
fa85ae24
PZ
9274#ifdef CONFIG_SMP
9275 rt_rq->rt_nr_migratory = 0;
fa85ae24 9276 rt_rq->overloaded = 0;
c20b08e3 9277 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9278#endif
9279
9280 rt_rq->rt_time = 0;
9281 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9282 rt_rq->rt_runtime = 0;
9283 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9284
052f1dc7 9285#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9286 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9287 rt_rq->rq = rq;
9288#endif
fa85ae24
PZ
9289}
9290
6f505b16 9291#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9292static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9293 struct sched_entity *se, int cpu, int add,
9294 struct sched_entity *parent)
6f505b16 9295{
ec7dc8ac 9296 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9297 tg->cfs_rq[cpu] = cfs_rq;
9298 init_cfs_rq(cfs_rq, rq);
9299 cfs_rq->tg = tg;
9300 if (add)
9301 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9302
9303 tg->se[cpu] = se;
354d60c2
DG
9304 /* se could be NULL for init_task_group */
9305 if (!se)
9306 return;
9307
ec7dc8ac
DG
9308 if (!parent)
9309 se->cfs_rq = &rq->cfs;
9310 else
9311 se->cfs_rq = parent->my_q;
9312
6f505b16
PZ
9313 se->my_q = cfs_rq;
9314 se->load.weight = tg->shares;
e05510d0 9315 se->load.inv_weight = 0;
ec7dc8ac 9316 se->parent = parent;
6f505b16 9317}
052f1dc7 9318#endif
6f505b16 9319
052f1dc7 9320#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9321static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9322 struct sched_rt_entity *rt_se, int cpu, int add,
9323 struct sched_rt_entity *parent)
6f505b16 9324{
ec7dc8ac
DG
9325 struct rq *rq = cpu_rq(cpu);
9326
6f505b16
PZ
9327 tg->rt_rq[cpu] = rt_rq;
9328 init_rt_rq(rt_rq, rq);
9329 rt_rq->tg = tg;
9330 rt_rq->rt_se = rt_se;
ac086bc2 9331 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9332 if (add)
9333 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9334
9335 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9336 if (!rt_se)
9337 return;
9338
ec7dc8ac
DG
9339 if (!parent)
9340 rt_se->rt_rq = &rq->rt;
9341 else
9342 rt_se->rt_rq = parent->my_q;
9343
6f505b16 9344 rt_se->my_q = rt_rq;
ec7dc8ac 9345 rt_se->parent = parent;
6f505b16
PZ
9346 INIT_LIST_HEAD(&rt_se->run_list);
9347}
9348#endif
9349
1da177e4
LT
9350void __init sched_init(void)
9351{
dd41f596 9352 int i, j;
434d53b0
MT
9353 unsigned long alloc_size = 0, ptr;
9354
9355#ifdef CONFIG_FAIR_GROUP_SCHED
9356 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9357#endif
9358#ifdef CONFIG_RT_GROUP_SCHED
9359 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9360#endif
9361#ifdef CONFIG_USER_SCHED
9362 alloc_size *= 2;
df7c8e84
RR
9363#endif
9364#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9365 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9366#endif
9367 /*
9368 * As sched_init() is called before page_alloc is setup,
9369 * we use alloc_bootmem().
9370 */
9371 if (alloc_size) {
36b7b6d4 9372 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9373
9374#ifdef CONFIG_FAIR_GROUP_SCHED
9375 init_task_group.se = (struct sched_entity **)ptr;
9376 ptr += nr_cpu_ids * sizeof(void **);
9377
9378 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9379 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9380
9381#ifdef CONFIG_USER_SCHED
9382 root_task_group.se = (struct sched_entity **)ptr;
9383 ptr += nr_cpu_ids * sizeof(void **);
9384
9385 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9386 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9387#endif /* CONFIG_USER_SCHED */
9388#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9389#ifdef CONFIG_RT_GROUP_SCHED
9390 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9391 ptr += nr_cpu_ids * sizeof(void **);
9392
9393 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9394 ptr += nr_cpu_ids * sizeof(void **);
9395
9396#ifdef CONFIG_USER_SCHED
9397 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9398 ptr += nr_cpu_ids * sizeof(void **);
9399
9400 root_task_group.rt_rq = (struct rt_rq **)ptr;
9401 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9402#endif /* CONFIG_USER_SCHED */
9403#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9404#ifdef CONFIG_CPUMASK_OFFSTACK
9405 for_each_possible_cpu(i) {
9406 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9407 ptr += cpumask_size();
9408 }
9409#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9410 }
dd41f596 9411
57d885fe
GH
9412#ifdef CONFIG_SMP
9413 init_defrootdomain();
9414#endif
9415
d0b27fa7
PZ
9416 init_rt_bandwidth(&def_rt_bandwidth,
9417 global_rt_period(), global_rt_runtime());
9418
9419#ifdef CONFIG_RT_GROUP_SCHED
9420 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9421 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9422#ifdef CONFIG_USER_SCHED
9423 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9424 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9425#endif /* CONFIG_USER_SCHED */
9426#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9427
052f1dc7 9428#ifdef CONFIG_GROUP_SCHED
6f505b16 9429 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9430 INIT_LIST_HEAD(&init_task_group.children);
9431
9432#ifdef CONFIG_USER_SCHED
9433 INIT_LIST_HEAD(&root_task_group.children);
9434 init_task_group.parent = &root_task_group;
9435 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9436#endif /* CONFIG_USER_SCHED */
9437#endif /* CONFIG_GROUP_SCHED */
6f505b16 9438
4a6cc4bd
JK
9439#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9440 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9441 __alignof__(unsigned long));
9442#endif
0a945022 9443 for_each_possible_cpu(i) {
70b97a7f 9444 struct rq *rq;
1da177e4
LT
9445
9446 rq = cpu_rq(i);
9447 spin_lock_init(&rq->lock);
7897986b 9448 rq->nr_running = 0;
dce48a84
TG
9449 rq->calc_load_active = 0;
9450 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9451 init_cfs_rq(&rq->cfs, rq);
6f505b16 9452 init_rt_rq(&rq->rt, rq);
dd41f596 9453#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9454 init_task_group.shares = init_task_group_load;
6f505b16 9455 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9456#ifdef CONFIG_CGROUP_SCHED
9457 /*
9458 * How much cpu bandwidth does init_task_group get?
9459 *
9460 * In case of task-groups formed thr' the cgroup filesystem, it
9461 * gets 100% of the cpu resources in the system. This overall
9462 * system cpu resource is divided among the tasks of
9463 * init_task_group and its child task-groups in a fair manner,
9464 * based on each entity's (task or task-group's) weight
9465 * (se->load.weight).
9466 *
9467 * In other words, if init_task_group has 10 tasks of weight
9468 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9469 * then A0's share of the cpu resource is:
9470 *
0d905bca 9471 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9472 *
9473 * We achieve this by letting init_task_group's tasks sit
9474 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9475 */
ec7dc8ac 9476 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9477#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9478 root_task_group.shares = NICE_0_LOAD;
9479 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9480 /*
9481 * In case of task-groups formed thr' the user id of tasks,
9482 * init_task_group represents tasks belonging to root user.
9483 * Hence it forms a sibling of all subsequent groups formed.
9484 * In this case, init_task_group gets only a fraction of overall
9485 * system cpu resource, based on the weight assigned to root
9486 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9487 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9488 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9489 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9490 */
ec7dc8ac 9491 init_tg_cfs_entry(&init_task_group,
84e9dabf 9492 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9493 &per_cpu(init_sched_entity, i), i, 1,
9494 root_task_group.se[i]);
6f505b16 9495
052f1dc7 9496#endif
354d60c2
DG
9497#endif /* CONFIG_FAIR_GROUP_SCHED */
9498
9499 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9500#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9501 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9502#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9503 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9504#elif defined CONFIG_USER_SCHED
eff766a6 9505 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9506 init_tg_rt_entry(&init_task_group,
6f505b16 9507 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9508 &per_cpu(init_sched_rt_entity, i), i, 1,
9509 root_task_group.rt_se[i]);
354d60c2 9510#endif
dd41f596 9511#endif
1da177e4 9512
dd41f596
IM
9513 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9514 rq->cpu_load[j] = 0;
1da177e4 9515#ifdef CONFIG_SMP
41c7ce9a 9516 rq->sd = NULL;
57d885fe 9517 rq->rd = NULL;
3f029d3c 9518 rq->post_schedule = 0;
1da177e4 9519 rq->active_balance = 0;
dd41f596 9520 rq->next_balance = jiffies;
1da177e4 9521 rq->push_cpu = 0;
0a2966b4 9522 rq->cpu = i;
1f11eb6a 9523 rq->online = 0;
1da177e4
LT
9524 rq->migration_thread = NULL;
9525 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9526 rq_attach_root(rq, &def_root_domain);
1da177e4 9527#endif
8f4d37ec 9528 init_rq_hrtick(rq);
1da177e4 9529 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9530 }
9531
2dd73a4f 9532 set_load_weight(&init_task);
b50f60ce 9533
e107be36
AK
9534#ifdef CONFIG_PREEMPT_NOTIFIERS
9535 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9536#endif
9537
c9819f45 9538#ifdef CONFIG_SMP
962cf36c 9539 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9540#endif
9541
b50f60ce
HC
9542#ifdef CONFIG_RT_MUTEXES
9543 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9544#endif
9545
1da177e4
LT
9546 /*
9547 * The boot idle thread does lazy MMU switching as well:
9548 */
9549 atomic_inc(&init_mm.mm_count);
9550 enter_lazy_tlb(&init_mm, current);
9551
9552 /*
9553 * Make us the idle thread. Technically, schedule() should not be
9554 * called from this thread, however somewhere below it might be,
9555 * but because we are the idle thread, we just pick up running again
9556 * when this runqueue becomes "idle".
9557 */
9558 init_idle(current, smp_processor_id());
dce48a84
TG
9559
9560 calc_load_update = jiffies + LOAD_FREQ;
9561
dd41f596
IM
9562 /*
9563 * During early bootup we pretend to be a normal task:
9564 */
9565 current->sched_class = &fair_sched_class;
6892b75e 9566
6a7b3dc3 9567 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 9568 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9569#ifdef CONFIG_SMP
7d1e6a9b 9570#ifdef CONFIG_NO_HZ
49557e62 9571 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 9572 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9573#endif
49557e62 9574 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9575#endif /* SMP */
6a7b3dc3 9576
cdd6c482 9577 perf_event_init();
0d905bca 9578
6892b75e 9579 scheduler_running = 1;
1da177e4
LT
9580}
9581
9582#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9583static inline int preempt_count_equals(int preempt_offset)
9584{
9585 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9586
9587 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9588}
9589
9590void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9591{
48f24c4d 9592#ifdef in_atomic
1da177e4
LT
9593 static unsigned long prev_jiffy; /* ratelimiting */
9594
e4aafea2
FW
9595 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9596 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9597 return;
9598 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9599 return;
9600 prev_jiffy = jiffies;
9601
9602 printk(KERN_ERR
9603 "BUG: sleeping function called from invalid context at %s:%d\n",
9604 file, line);
9605 printk(KERN_ERR
9606 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9607 in_atomic(), irqs_disabled(),
9608 current->pid, current->comm);
9609
9610 debug_show_held_locks(current);
9611 if (irqs_disabled())
9612 print_irqtrace_events(current);
9613 dump_stack();
1da177e4
LT
9614#endif
9615}
9616EXPORT_SYMBOL(__might_sleep);
9617#endif
9618
9619#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9620static void normalize_task(struct rq *rq, struct task_struct *p)
9621{
9622 int on_rq;
3e51f33f 9623
3a5e4dc1
AK
9624 update_rq_clock(rq);
9625 on_rq = p->se.on_rq;
9626 if (on_rq)
9627 deactivate_task(rq, p, 0);
9628 __setscheduler(rq, p, SCHED_NORMAL, 0);
9629 if (on_rq) {
9630 activate_task(rq, p, 0);
9631 resched_task(rq->curr);
9632 }
9633}
9634
1da177e4
LT
9635void normalize_rt_tasks(void)
9636{
a0f98a1c 9637 struct task_struct *g, *p;
1da177e4 9638 unsigned long flags;
70b97a7f 9639 struct rq *rq;
1da177e4 9640
4cf5d77a 9641 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9642 do_each_thread(g, p) {
178be793
IM
9643 /*
9644 * Only normalize user tasks:
9645 */
9646 if (!p->mm)
9647 continue;
9648
6cfb0d5d 9649 p->se.exec_start = 0;
6cfb0d5d 9650#ifdef CONFIG_SCHEDSTATS
dd41f596 9651 p->se.wait_start = 0;
dd41f596 9652 p->se.sleep_start = 0;
dd41f596 9653 p->se.block_start = 0;
6cfb0d5d 9654#endif
dd41f596
IM
9655
9656 if (!rt_task(p)) {
9657 /*
9658 * Renice negative nice level userspace
9659 * tasks back to 0:
9660 */
9661 if (TASK_NICE(p) < 0 && p->mm)
9662 set_user_nice(p, 0);
1da177e4 9663 continue;
dd41f596 9664 }
1da177e4 9665
4cf5d77a 9666 spin_lock(&p->pi_lock);
b29739f9 9667 rq = __task_rq_lock(p);
1da177e4 9668
178be793 9669 normalize_task(rq, p);
3a5e4dc1 9670
b29739f9 9671 __task_rq_unlock(rq);
4cf5d77a 9672 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9673 } while_each_thread(g, p);
9674
4cf5d77a 9675 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9676}
9677
9678#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9679
9680#ifdef CONFIG_IA64
9681/*
9682 * These functions are only useful for the IA64 MCA handling.
9683 *
9684 * They can only be called when the whole system has been
9685 * stopped - every CPU needs to be quiescent, and no scheduling
9686 * activity can take place. Using them for anything else would
9687 * be a serious bug, and as a result, they aren't even visible
9688 * under any other configuration.
9689 */
9690
9691/**
9692 * curr_task - return the current task for a given cpu.
9693 * @cpu: the processor in question.
9694 *
9695 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9696 */
36c8b586 9697struct task_struct *curr_task(int cpu)
1df5c10a
LT
9698{
9699 return cpu_curr(cpu);
9700}
9701
9702/**
9703 * set_curr_task - set the current task for a given cpu.
9704 * @cpu: the processor in question.
9705 * @p: the task pointer to set.
9706 *
9707 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9708 * are serviced on a separate stack. It allows the architecture to switch the
9709 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9710 * must be called with all CPU's synchronized, and interrupts disabled, the
9711 * and caller must save the original value of the current task (see
9712 * curr_task() above) and restore that value before reenabling interrupts and
9713 * re-starting the system.
9714 *
9715 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9716 */
36c8b586 9717void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9718{
9719 cpu_curr(cpu) = p;
9720}
9721
9722#endif
29f59db3 9723
bccbe08a
PZ
9724#ifdef CONFIG_FAIR_GROUP_SCHED
9725static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9726{
9727 int i;
9728
9729 for_each_possible_cpu(i) {
9730 if (tg->cfs_rq)
9731 kfree(tg->cfs_rq[i]);
9732 if (tg->se)
9733 kfree(tg->se[i]);
6f505b16
PZ
9734 }
9735
9736 kfree(tg->cfs_rq);
9737 kfree(tg->se);
6f505b16
PZ
9738}
9739
ec7dc8ac
DG
9740static
9741int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9742{
29f59db3 9743 struct cfs_rq *cfs_rq;
eab17229 9744 struct sched_entity *se;
9b5b7751 9745 struct rq *rq;
29f59db3
SV
9746 int i;
9747
434d53b0 9748 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9749 if (!tg->cfs_rq)
9750 goto err;
434d53b0 9751 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9752 if (!tg->se)
9753 goto err;
052f1dc7
PZ
9754
9755 tg->shares = NICE_0_LOAD;
29f59db3
SV
9756
9757 for_each_possible_cpu(i) {
9b5b7751 9758 rq = cpu_rq(i);
29f59db3 9759
eab17229
LZ
9760 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9761 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9762 if (!cfs_rq)
9763 goto err;
9764
eab17229
LZ
9765 se = kzalloc_node(sizeof(struct sched_entity),
9766 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9767 if (!se)
9768 goto err;
9769
eab17229 9770 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9771 }
9772
9773 return 1;
9774
9775 err:
9776 return 0;
9777}
9778
9779static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9780{
9781 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9782 &cpu_rq(cpu)->leaf_cfs_rq_list);
9783}
9784
9785static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9786{
9787 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9788}
6d6bc0ad 9789#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9790static inline void free_fair_sched_group(struct task_group *tg)
9791{
9792}
9793
ec7dc8ac
DG
9794static inline
9795int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9796{
9797 return 1;
9798}
9799
9800static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9801{
9802}
9803
9804static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9805{
9806}
6d6bc0ad 9807#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9808
9809#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9810static void free_rt_sched_group(struct task_group *tg)
9811{
9812 int i;
9813
d0b27fa7
PZ
9814 destroy_rt_bandwidth(&tg->rt_bandwidth);
9815
bccbe08a
PZ
9816 for_each_possible_cpu(i) {
9817 if (tg->rt_rq)
9818 kfree(tg->rt_rq[i]);
9819 if (tg->rt_se)
9820 kfree(tg->rt_se[i]);
9821 }
9822
9823 kfree(tg->rt_rq);
9824 kfree(tg->rt_se);
9825}
9826
ec7dc8ac
DG
9827static
9828int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9829{
9830 struct rt_rq *rt_rq;
eab17229 9831 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9832 struct rq *rq;
9833 int i;
9834
434d53b0 9835 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9836 if (!tg->rt_rq)
9837 goto err;
434d53b0 9838 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9839 if (!tg->rt_se)
9840 goto err;
9841
d0b27fa7
PZ
9842 init_rt_bandwidth(&tg->rt_bandwidth,
9843 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9844
9845 for_each_possible_cpu(i) {
9846 rq = cpu_rq(i);
9847
eab17229
LZ
9848 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9849 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9850 if (!rt_rq)
9851 goto err;
29f59db3 9852
eab17229
LZ
9853 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9854 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9855 if (!rt_se)
9856 goto err;
29f59db3 9857
eab17229 9858 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9859 }
9860
bccbe08a
PZ
9861 return 1;
9862
9863 err:
9864 return 0;
9865}
9866
9867static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9868{
9869 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9870 &cpu_rq(cpu)->leaf_rt_rq_list);
9871}
9872
9873static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9874{
9875 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9876}
6d6bc0ad 9877#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9878static inline void free_rt_sched_group(struct task_group *tg)
9879{
9880}
9881
ec7dc8ac
DG
9882static inline
9883int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9884{
9885 return 1;
9886}
9887
9888static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9889{
9890}
9891
9892static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9893{
9894}
6d6bc0ad 9895#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9896
d0b27fa7 9897#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9898static void free_sched_group(struct task_group *tg)
9899{
9900 free_fair_sched_group(tg);
9901 free_rt_sched_group(tg);
9902 kfree(tg);
9903}
9904
9905/* allocate runqueue etc for a new task group */
ec7dc8ac 9906struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9907{
9908 struct task_group *tg;
9909 unsigned long flags;
9910 int i;
9911
9912 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9913 if (!tg)
9914 return ERR_PTR(-ENOMEM);
9915
ec7dc8ac 9916 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9917 goto err;
9918
ec7dc8ac 9919 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9920 goto err;
9921
8ed36996 9922 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9923 for_each_possible_cpu(i) {
bccbe08a
PZ
9924 register_fair_sched_group(tg, i);
9925 register_rt_sched_group(tg, i);
9b5b7751 9926 }
6f505b16 9927 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9928
9929 WARN_ON(!parent); /* root should already exist */
9930
9931 tg->parent = parent;
f473aa5e 9932 INIT_LIST_HEAD(&tg->children);
09f2724a 9933 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9934 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9935
9b5b7751 9936 return tg;
29f59db3
SV
9937
9938err:
6f505b16 9939 free_sched_group(tg);
29f59db3
SV
9940 return ERR_PTR(-ENOMEM);
9941}
9942
9b5b7751 9943/* rcu callback to free various structures associated with a task group */
6f505b16 9944static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9945{
29f59db3 9946 /* now it should be safe to free those cfs_rqs */
6f505b16 9947 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9948}
9949
9b5b7751 9950/* Destroy runqueue etc associated with a task group */
4cf86d77 9951void sched_destroy_group(struct task_group *tg)
29f59db3 9952{
8ed36996 9953 unsigned long flags;
9b5b7751 9954 int i;
29f59db3 9955
8ed36996 9956 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9957 for_each_possible_cpu(i) {
bccbe08a
PZ
9958 unregister_fair_sched_group(tg, i);
9959 unregister_rt_sched_group(tg, i);
9b5b7751 9960 }
6f505b16 9961 list_del_rcu(&tg->list);
f473aa5e 9962 list_del_rcu(&tg->siblings);
8ed36996 9963 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9964
9b5b7751 9965 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9966 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9967}
9968
9b5b7751 9969/* change task's runqueue when it moves between groups.
3a252015
IM
9970 * The caller of this function should have put the task in its new group
9971 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9972 * reflect its new group.
9b5b7751
SV
9973 */
9974void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9975{
9976 int on_rq, running;
9977 unsigned long flags;
9978 struct rq *rq;
9979
9980 rq = task_rq_lock(tsk, &flags);
9981
29f59db3
SV
9982 update_rq_clock(rq);
9983
051a1d1a 9984 running = task_current(rq, tsk);
29f59db3
SV
9985 on_rq = tsk->se.on_rq;
9986
0e1f3483 9987 if (on_rq)
29f59db3 9988 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9989 if (unlikely(running))
9990 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9991
6f505b16 9992 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9993
810b3817
PZ
9994#ifdef CONFIG_FAIR_GROUP_SCHED
9995 if (tsk->sched_class->moved_group)
9996 tsk->sched_class->moved_group(tsk);
9997#endif
9998
0e1f3483
HS
9999 if (unlikely(running))
10000 tsk->sched_class->set_curr_task(rq);
10001 if (on_rq)
7074badb 10002 enqueue_task(rq, tsk, 0);
29f59db3 10003
29f59db3
SV
10004 task_rq_unlock(rq, &flags);
10005}
6d6bc0ad 10006#endif /* CONFIG_GROUP_SCHED */
29f59db3 10007
052f1dc7 10008#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10009static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10010{
10011 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10012 int on_rq;
10013
29f59db3 10014 on_rq = se->on_rq;
62fb1851 10015 if (on_rq)
29f59db3
SV
10016 dequeue_entity(cfs_rq, se, 0);
10017
10018 se->load.weight = shares;
e05510d0 10019 se->load.inv_weight = 0;
29f59db3 10020
62fb1851 10021 if (on_rq)
29f59db3 10022 enqueue_entity(cfs_rq, se, 0);
c09595f6 10023}
62fb1851 10024
c09595f6
PZ
10025static void set_se_shares(struct sched_entity *se, unsigned long shares)
10026{
10027 struct cfs_rq *cfs_rq = se->cfs_rq;
10028 struct rq *rq = cfs_rq->rq;
10029 unsigned long flags;
10030
10031 spin_lock_irqsave(&rq->lock, flags);
10032 __set_se_shares(se, shares);
10033 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10034}
10035
8ed36996
PZ
10036static DEFINE_MUTEX(shares_mutex);
10037
4cf86d77 10038int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10039{
10040 int i;
8ed36996 10041 unsigned long flags;
c61935fd 10042
ec7dc8ac
DG
10043 /*
10044 * We can't change the weight of the root cgroup.
10045 */
10046 if (!tg->se[0])
10047 return -EINVAL;
10048
18d95a28
PZ
10049 if (shares < MIN_SHARES)
10050 shares = MIN_SHARES;
cb4ad1ff
MX
10051 else if (shares > MAX_SHARES)
10052 shares = MAX_SHARES;
62fb1851 10053
8ed36996 10054 mutex_lock(&shares_mutex);
9b5b7751 10055 if (tg->shares == shares)
5cb350ba 10056 goto done;
29f59db3 10057
8ed36996 10058 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10059 for_each_possible_cpu(i)
10060 unregister_fair_sched_group(tg, i);
f473aa5e 10061 list_del_rcu(&tg->siblings);
8ed36996 10062 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10063
10064 /* wait for any ongoing reference to this group to finish */
10065 synchronize_sched();
10066
10067 /*
10068 * Now we are free to modify the group's share on each cpu
10069 * w/o tripping rebalance_share or load_balance_fair.
10070 */
9b5b7751 10071 tg->shares = shares;
c09595f6
PZ
10072 for_each_possible_cpu(i) {
10073 /*
10074 * force a rebalance
10075 */
10076 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10077 set_se_shares(tg->se[i], shares);
c09595f6 10078 }
29f59db3 10079
6b2d7700
SV
10080 /*
10081 * Enable load balance activity on this group, by inserting it back on
10082 * each cpu's rq->leaf_cfs_rq_list.
10083 */
8ed36996 10084 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10085 for_each_possible_cpu(i)
10086 register_fair_sched_group(tg, i);
f473aa5e 10087 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10088 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10089done:
8ed36996 10090 mutex_unlock(&shares_mutex);
9b5b7751 10091 return 0;
29f59db3
SV
10092}
10093
5cb350ba
DG
10094unsigned long sched_group_shares(struct task_group *tg)
10095{
10096 return tg->shares;
10097}
052f1dc7 10098#endif
5cb350ba 10099
052f1dc7 10100#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10101/*
9f0c1e56 10102 * Ensure that the real time constraints are schedulable.
6f505b16 10103 */
9f0c1e56
PZ
10104static DEFINE_MUTEX(rt_constraints_mutex);
10105
10106static unsigned long to_ratio(u64 period, u64 runtime)
10107{
10108 if (runtime == RUNTIME_INF)
9a7e0b18 10109 return 1ULL << 20;
9f0c1e56 10110
9a7e0b18 10111 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10112}
10113
9a7e0b18
PZ
10114/* Must be called with tasklist_lock held */
10115static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10116{
9a7e0b18 10117 struct task_struct *g, *p;
b40b2e8e 10118
9a7e0b18
PZ
10119 do_each_thread(g, p) {
10120 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10121 return 1;
10122 } while_each_thread(g, p);
b40b2e8e 10123
9a7e0b18
PZ
10124 return 0;
10125}
b40b2e8e 10126
9a7e0b18
PZ
10127struct rt_schedulable_data {
10128 struct task_group *tg;
10129 u64 rt_period;
10130 u64 rt_runtime;
10131};
b40b2e8e 10132
9a7e0b18
PZ
10133static int tg_schedulable(struct task_group *tg, void *data)
10134{
10135 struct rt_schedulable_data *d = data;
10136 struct task_group *child;
10137 unsigned long total, sum = 0;
10138 u64 period, runtime;
b40b2e8e 10139
9a7e0b18
PZ
10140 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10141 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10142
9a7e0b18
PZ
10143 if (tg == d->tg) {
10144 period = d->rt_period;
10145 runtime = d->rt_runtime;
b40b2e8e 10146 }
b40b2e8e 10147
98a4826b
PZ
10148#ifdef CONFIG_USER_SCHED
10149 if (tg == &root_task_group) {
10150 period = global_rt_period();
10151 runtime = global_rt_runtime();
10152 }
10153#endif
10154
4653f803
PZ
10155 /*
10156 * Cannot have more runtime than the period.
10157 */
10158 if (runtime > period && runtime != RUNTIME_INF)
10159 return -EINVAL;
6f505b16 10160
4653f803
PZ
10161 /*
10162 * Ensure we don't starve existing RT tasks.
10163 */
9a7e0b18
PZ
10164 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10165 return -EBUSY;
6f505b16 10166
9a7e0b18 10167 total = to_ratio(period, runtime);
6f505b16 10168
4653f803
PZ
10169 /*
10170 * Nobody can have more than the global setting allows.
10171 */
10172 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10173 return -EINVAL;
6f505b16 10174
4653f803
PZ
10175 /*
10176 * The sum of our children's runtime should not exceed our own.
10177 */
9a7e0b18
PZ
10178 list_for_each_entry_rcu(child, &tg->children, siblings) {
10179 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10180 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10181
9a7e0b18
PZ
10182 if (child == d->tg) {
10183 period = d->rt_period;
10184 runtime = d->rt_runtime;
10185 }
6f505b16 10186
9a7e0b18 10187 sum += to_ratio(period, runtime);
9f0c1e56 10188 }
6f505b16 10189
9a7e0b18
PZ
10190 if (sum > total)
10191 return -EINVAL;
10192
10193 return 0;
6f505b16
PZ
10194}
10195
9a7e0b18 10196static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10197{
9a7e0b18
PZ
10198 struct rt_schedulable_data data = {
10199 .tg = tg,
10200 .rt_period = period,
10201 .rt_runtime = runtime,
10202 };
10203
10204 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10205}
10206
d0b27fa7
PZ
10207static int tg_set_bandwidth(struct task_group *tg,
10208 u64 rt_period, u64 rt_runtime)
6f505b16 10209{
ac086bc2 10210 int i, err = 0;
9f0c1e56 10211
9f0c1e56 10212 mutex_lock(&rt_constraints_mutex);
521f1a24 10213 read_lock(&tasklist_lock);
9a7e0b18
PZ
10214 err = __rt_schedulable(tg, rt_period, rt_runtime);
10215 if (err)
9f0c1e56 10216 goto unlock;
ac086bc2
PZ
10217
10218 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10219 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10220 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10221
10222 for_each_possible_cpu(i) {
10223 struct rt_rq *rt_rq = tg->rt_rq[i];
10224
10225 spin_lock(&rt_rq->rt_runtime_lock);
10226 rt_rq->rt_runtime = rt_runtime;
10227 spin_unlock(&rt_rq->rt_runtime_lock);
10228 }
10229 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10230 unlock:
521f1a24 10231 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10232 mutex_unlock(&rt_constraints_mutex);
10233
10234 return err;
6f505b16
PZ
10235}
10236
d0b27fa7
PZ
10237int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10238{
10239 u64 rt_runtime, rt_period;
10240
10241 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10242 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10243 if (rt_runtime_us < 0)
10244 rt_runtime = RUNTIME_INF;
10245
10246 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10247}
10248
9f0c1e56
PZ
10249long sched_group_rt_runtime(struct task_group *tg)
10250{
10251 u64 rt_runtime_us;
10252
d0b27fa7 10253 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10254 return -1;
10255
d0b27fa7 10256 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10257 do_div(rt_runtime_us, NSEC_PER_USEC);
10258 return rt_runtime_us;
10259}
d0b27fa7
PZ
10260
10261int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10262{
10263 u64 rt_runtime, rt_period;
10264
10265 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10266 rt_runtime = tg->rt_bandwidth.rt_runtime;
10267
619b0488
R
10268 if (rt_period == 0)
10269 return -EINVAL;
10270
d0b27fa7
PZ
10271 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10272}
10273
10274long sched_group_rt_period(struct task_group *tg)
10275{
10276 u64 rt_period_us;
10277
10278 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10279 do_div(rt_period_us, NSEC_PER_USEC);
10280 return rt_period_us;
10281}
10282
10283static int sched_rt_global_constraints(void)
10284{
4653f803 10285 u64 runtime, period;
d0b27fa7
PZ
10286 int ret = 0;
10287
ec5d4989
HS
10288 if (sysctl_sched_rt_period <= 0)
10289 return -EINVAL;
10290
4653f803
PZ
10291 runtime = global_rt_runtime();
10292 period = global_rt_period();
10293
10294 /*
10295 * Sanity check on the sysctl variables.
10296 */
10297 if (runtime > period && runtime != RUNTIME_INF)
10298 return -EINVAL;
10b612f4 10299
d0b27fa7 10300 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10301 read_lock(&tasklist_lock);
4653f803 10302 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10303 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10304 mutex_unlock(&rt_constraints_mutex);
10305
10306 return ret;
10307}
54e99124
DG
10308
10309int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10310{
10311 /* Don't accept realtime tasks when there is no way for them to run */
10312 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10313 return 0;
10314
10315 return 1;
10316}
10317
6d6bc0ad 10318#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10319static int sched_rt_global_constraints(void)
10320{
ac086bc2
PZ
10321 unsigned long flags;
10322 int i;
10323
ec5d4989
HS
10324 if (sysctl_sched_rt_period <= 0)
10325 return -EINVAL;
10326
60aa605d
PZ
10327 /*
10328 * There's always some RT tasks in the root group
10329 * -- migration, kstopmachine etc..
10330 */
10331 if (sysctl_sched_rt_runtime == 0)
10332 return -EBUSY;
10333
ac086bc2
PZ
10334 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10335 for_each_possible_cpu(i) {
10336 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10337
10338 spin_lock(&rt_rq->rt_runtime_lock);
10339 rt_rq->rt_runtime = global_rt_runtime();
10340 spin_unlock(&rt_rq->rt_runtime_lock);
10341 }
10342 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10343
d0b27fa7
PZ
10344 return 0;
10345}
6d6bc0ad 10346#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10347
10348int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10349 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10350 loff_t *ppos)
10351{
10352 int ret;
10353 int old_period, old_runtime;
10354 static DEFINE_MUTEX(mutex);
10355
10356 mutex_lock(&mutex);
10357 old_period = sysctl_sched_rt_period;
10358 old_runtime = sysctl_sched_rt_runtime;
10359
8d65af78 10360 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10361
10362 if (!ret && write) {
10363 ret = sched_rt_global_constraints();
10364 if (ret) {
10365 sysctl_sched_rt_period = old_period;
10366 sysctl_sched_rt_runtime = old_runtime;
10367 } else {
10368 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10369 def_rt_bandwidth.rt_period =
10370 ns_to_ktime(global_rt_period());
10371 }
10372 }
10373 mutex_unlock(&mutex);
10374
10375 return ret;
10376}
68318b8e 10377
052f1dc7 10378#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10379
10380/* return corresponding task_group object of a cgroup */
2b01dfe3 10381static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10382{
2b01dfe3
PM
10383 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10384 struct task_group, css);
68318b8e
SV
10385}
10386
10387static struct cgroup_subsys_state *
2b01dfe3 10388cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10389{
ec7dc8ac 10390 struct task_group *tg, *parent;
68318b8e 10391
2b01dfe3 10392 if (!cgrp->parent) {
68318b8e 10393 /* This is early initialization for the top cgroup */
68318b8e
SV
10394 return &init_task_group.css;
10395 }
10396
ec7dc8ac
DG
10397 parent = cgroup_tg(cgrp->parent);
10398 tg = sched_create_group(parent);
68318b8e
SV
10399 if (IS_ERR(tg))
10400 return ERR_PTR(-ENOMEM);
10401
68318b8e
SV
10402 return &tg->css;
10403}
10404
41a2d6cf
IM
10405static void
10406cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10407{
2b01dfe3 10408 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10409
10410 sched_destroy_group(tg);
10411}
10412
41a2d6cf 10413static int
be367d09 10414cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10415{
b68aa230 10416#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10417 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10418 return -EINVAL;
10419#else
68318b8e
SV
10420 /* We don't support RT-tasks being in separate groups */
10421 if (tsk->sched_class != &fair_sched_class)
10422 return -EINVAL;
b68aa230 10423#endif
be367d09
BB
10424 return 0;
10425}
68318b8e 10426
be367d09
BB
10427static int
10428cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10429 struct task_struct *tsk, bool threadgroup)
10430{
10431 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10432 if (retval)
10433 return retval;
10434 if (threadgroup) {
10435 struct task_struct *c;
10436 rcu_read_lock();
10437 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10438 retval = cpu_cgroup_can_attach_task(cgrp, c);
10439 if (retval) {
10440 rcu_read_unlock();
10441 return retval;
10442 }
10443 }
10444 rcu_read_unlock();
10445 }
68318b8e
SV
10446 return 0;
10447}
10448
10449static void
2b01dfe3 10450cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10451 struct cgroup *old_cont, struct task_struct *tsk,
10452 bool threadgroup)
68318b8e
SV
10453{
10454 sched_move_task(tsk);
be367d09
BB
10455 if (threadgroup) {
10456 struct task_struct *c;
10457 rcu_read_lock();
10458 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10459 sched_move_task(c);
10460 }
10461 rcu_read_unlock();
10462 }
68318b8e
SV
10463}
10464
052f1dc7 10465#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10466static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10467 u64 shareval)
68318b8e 10468{
2b01dfe3 10469 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10470}
10471
f4c753b7 10472static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10473{
2b01dfe3 10474 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10475
10476 return (u64) tg->shares;
10477}
6d6bc0ad 10478#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10479
052f1dc7 10480#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10481static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10482 s64 val)
6f505b16 10483{
06ecb27c 10484 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10485}
10486
06ecb27c 10487static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10488{
06ecb27c 10489 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10490}
d0b27fa7
PZ
10491
10492static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10493 u64 rt_period_us)
10494{
10495 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10496}
10497
10498static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10499{
10500 return sched_group_rt_period(cgroup_tg(cgrp));
10501}
6d6bc0ad 10502#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10503
fe5c7cc2 10504static struct cftype cpu_files[] = {
052f1dc7 10505#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10506 {
10507 .name = "shares",
f4c753b7
PM
10508 .read_u64 = cpu_shares_read_u64,
10509 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10510 },
052f1dc7
PZ
10511#endif
10512#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10513 {
9f0c1e56 10514 .name = "rt_runtime_us",
06ecb27c
PM
10515 .read_s64 = cpu_rt_runtime_read,
10516 .write_s64 = cpu_rt_runtime_write,
6f505b16 10517 },
d0b27fa7
PZ
10518 {
10519 .name = "rt_period_us",
f4c753b7
PM
10520 .read_u64 = cpu_rt_period_read_uint,
10521 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10522 },
052f1dc7 10523#endif
68318b8e
SV
10524};
10525
10526static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10527{
fe5c7cc2 10528 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10529}
10530
10531struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10532 .name = "cpu",
10533 .create = cpu_cgroup_create,
10534 .destroy = cpu_cgroup_destroy,
10535 .can_attach = cpu_cgroup_can_attach,
10536 .attach = cpu_cgroup_attach,
10537 .populate = cpu_cgroup_populate,
10538 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10539 .early_init = 1,
10540};
10541
052f1dc7 10542#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10543
10544#ifdef CONFIG_CGROUP_CPUACCT
10545
10546/*
10547 * CPU accounting code for task groups.
10548 *
10549 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10550 * (balbir@in.ibm.com).
10551 */
10552
934352f2 10553/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10554struct cpuacct {
10555 struct cgroup_subsys_state css;
10556 /* cpuusage holds pointer to a u64-type object on every cpu */
10557 u64 *cpuusage;
ef12fefa 10558 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10559 struct cpuacct *parent;
d842de87
SV
10560};
10561
10562struct cgroup_subsys cpuacct_subsys;
10563
10564/* return cpu accounting group corresponding to this container */
32cd756a 10565static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10566{
32cd756a 10567 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10568 struct cpuacct, css);
10569}
10570
10571/* return cpu accounting group to which this task belongs */
10572static inline struct cpuacct *task_ca(struct task_struct *tsk)
10573{
10574 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10575 struct cpuacct, css);
10576}
10577
10578/* create a new cpu accounting group */
10579static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10580 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10581{
10582 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10583 int i;
d842de87
SV
10584
10585 if (!ca)
ef12fefa 10586 goto out;
d842de87
SV
10587
10588 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10589 if (!ca->cpuusage)
10590 goto out_free_ca;
10591
10592 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10593 if (percpu_counter_init(&ca->cpustat[i], 0))
10594 goto out_free_counters;
d842de87 10595
934352f2
BR
10596 if (cgrp->parent)
10597 ca->parent = cgroup_ca(cgrp->parent);
10598
d842de87 10599 return &ca->css;
ef12fefa
BR
10600
10601out_free_counters:
10602 while (--i >= 0)
10603 percpu_counter_destroy(&ca->cpustat[i]);
10604 free_percpu(ca->cpuusage);
10605out_free_ca:
10606 kfree(ca);
10607out:
10608 return ERR_PTR(-ENOMEM);
d842de87
SV
10609}
10610
10611/* destroy an existing cpu accounting group */
41a2d6cf 10612static void
32cd756a 10613cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10614{
32cd756a 10615 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10616 int i;
d842de87 10617
ef12fefa
BR
10618 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10619 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10620 free_percpu(ca->cpuusage);
10621 kfree(ca);
10622}
10623
720f5498
KC
10624static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10625{
b36128c8 10626 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10627 u64 data;
10628
10629#ifndef CONFIG_64BIT
10630 /*
10631 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10632 */
10633 spin_lock_irq(&cpu_rq(cpu)->lock);
10634 data = *cpuusage;
10635 spin_unlock_irq(&cpu_rq(cpu)->lock);
10636#else
10637 data = *cpuusage;
10638#endif
10639
10640 return data;
10641}
10642
10643static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10644{
b36128c8 10645 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10646
10647#ifndef CONFIG_64BIT
10648 /*
10649 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10650 */
10651 spin_lock_irq(&cpu_rq(cpu)->lock);
10652 *cpuusage = val;
10653 spin_unlock_irq(&cpu_rq(cpu)->lock);
10654#else
10655 *cpuusage = val;
10656#endif
10657}
10658
d842de87 10659/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10660static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10661{
32cd756a 10662 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10663 u64 totalcpuusage = 0;
10664 int i;
10665
720f5498
KC
10666 for_each_present_cpu(i)
10667 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10668
10669 return totalcpuusage;
10670}
10671
0297b803
DG
10672static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10673 u64 reset)
10674{
10675 struct cpuacct *ca = cgroup_ca(cgrp);
10676 int err = 0;
10677 int i;
10678
10679 if (reset) {
10680 err = -EINVAL;
10681 goto out;
10682 }
10683
720f5498
KC
10684 for_each_present_cpu(i)
10685 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10686
0297b803
DG
10687out:
10688 return err;
10689}
10690
e9515c3c
KC
10691static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10692 struct seq_file *m)
10693{
10694 struct cpuacct *ca = cgroup_ca(cgroup);
10695 u64 percpu;
10696 int i;
10697
10698 for_each_present_cpu(i) {
10699 percpu = cpuacct_cpuusage_read(ca, i);
10700 seq_printf(m, "%llu ", (unsigned long long) percpu);
10701 }
10702 seq_printf(m, "\n");
10703 return 0;
10704}
10705
ef12fefa
BR
10706static const char *cpuacct_stat_desc[] = {
10707 [CPUACCT_STAT_USER] = "user",
10708 [CPUACCT_STAT_SYSTEM] = "system",
10709};
10710
10711static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10712 struct cgroup_map_cb *cb)
10713{
10714 struct cpuacct *ca = cgroup_ca(cgrp);
10715 int i;
10716
10717 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10718 s64 val = percpu_counter_read(&ca->cpustat[i]);
10719 val = cputime64_to_clock_t(val);
10720 cb->fill(cb, cpuacct_stat_desc[i], val);
10721 }
10722 return 0;
10723}
10724
d842de87
SV
10725static struct cftype files[] = {
10726 {
10727 .name = "usage",
f4c753b7
PM
10728 .read_u64 = cpuusage_read,
10729 .write_u64 = cpuusage_write,
d842de87 10730 },
e9515c3c
KC
10731 {
10732 .name = "usage_percpu",
10733 .read_seq_string = cpuacct_percpu_seq_read,
10734 },
ef12fefa
BR
10735 {
10736 .name = "stat",
10737 .read_map = cpuacct_stats_show,
10738 },
d842de87
SV
10739};
10740
32cd756a 10741static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10742{
32cd756a 10743 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10744}
10745
10746/*
10747 * charge this task's execution time to its accounting group.
10748 *
10749 * called with rq->lock held.
10750 */
10751static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10752{
10753 struct cpuacct *ca;
934352f2 10754 int cpu;
d842de87 10755
c40c6f85 10756 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10757 return;
10758
934352f2 10759 cpu = task_cpu(tsk);
a18b83b7
BR
10760
10761 rcu_read_lock();
10762
d842de87 10763 ca = task_ca(tsk);
d842de87 10764
934352f2 10765 for (; ca; ca = ca->parent) {
b36128c8 10766 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10767 *cpuusage += cputime;
10768 }
a18b83b7
BR
10769
10770 rcu_read_unlock();
d842de87
SV
10771}
10772
ef12fefa
BR
10773/*
10774 * Charge the system/user time to the task's accounting group.
10775 */
10776static void cpuacct_update_stats(struct task_struct *tsk,
10777 enum cpuacct_stat_index idx, cputime_t val)
10778{
10779 struct cpuacct *ca;
10780
10781 if (unlikely(!cpuacct_subsys.active))
10782 return;
10783
10784 rcu_read_lock();
10785 ca = task_ca(tsk);
10786
10787 do {
10788 percpu_counter_add(&ca->cpustat[idx], val);
10789 ca = ca->parent;
10790 } while (ca);
10791 rcu_read_unlock();
10792}
10793
d842de87
SV
10794struct cgroup_subsys cpuacct_subsys = {
10795 .name = "cpuacct",
10796 .create = cpuacct_create,
10797 .destroy = cpuacct_destroy,
10798 .populate = cpuacct_populate,
10799 .subsys_id = cpuacct_subsys_id,
10800};
10801#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10802
10803#ifndef CONFIG_SMP
10804
10805int rcu_expedited_torture_stats(char *page)
10806{
10807 return 0;
10808}
10809EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10810
10811void synchronize_sched_expedited(void)
10812{
10813}
10814EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10815
10816#else /* #ifndef CONFIG_SMP */
10817
10818static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10819static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10820
10821#define RCU_EXPEDITED_STATE_POST -2
10822#define RCU_EXPEDITED_STATE_IDLE -1
10823
10824static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10825
10826int rcu_expedited_torture_stats(char *page)
10827{
10828 int cnt = 0;
10829 int cpu;
10830
10831 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10832 for_each_online_cpu(cpu) {
10833 cnt += sprintf(&page[cnt], " %d:%d",
10834 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10835 }
10836 cnt += sprintf(&page[cnt], "\n");
10837 return cnt;
10838}
10839EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10840
10841static long synchronize_sched_expedited_count;
10842
10843/*
10844 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10845 * approach to force grace period to end quickly. This consumes
10846 * significant time on all CPUs, and is thus not recommended for
10847 * any sort of common-case code.
10848 *
10849 * Note that it is illegal to call this function while holding any
10850 * lock that is acquired by a CPU-hotplug notifier. Failing to
10851 * observe this restriction will result in deadlock.
10852 */
10853void synchronize_sched_expedited(void)
10854{
10855 int cpu;
10856 unsigned long flags;
10857 bool need_full_sync = 0;
10858 struct rq *rq;
10859 struct migration_req *req;
10860 long snap;
10861 int trycount = 0;
10862
10863 smp_mb(); /* ensure prior mod happens before capturing snap. */
10864 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10865 get_online_cpus();
10866 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10867 put_online_cpus();
10868 if (trycount++ < 10)
10869 udelay(trycount * num_online_cpus());
10870 else {
10871 synchronize_sched();
10872 return;
10873 }
10874 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10875 smp_mb(); /* ensure test happens before caller kfree */
10876 return;
10877 }
10878 get_online_cpus();
10879 }
10880 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10881 for_each_online_cpu(cpu) {
10882 rq = cpu_rq(cpu);
10883 req = &per_cpu(rcu_migration_req, cpu);
10884 init_completion(&req->done);
10885 req->task = NULL;
10886 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10887 spin_lock_irqsave(&rq->lock, flags);
10888 list_add(&req->list, &rq->migration_queue);
10889 spin_unlock_irqrestore(&rq->lock, flags);
10890 wake_up_process(rq->migration_thread);
10891 }
10892 for_each_online_cpu(cpu) {
10893 rcu_expedited_state = cpu;
10894 req = &per_cpu(rcu_migration_req, cpu);
10895 rq = cpu_rq(cpu);
10896 wait_for_completion(&req->done);
10897 spin_lock_irqsave(&rq->lock, flags);
10898 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10899 need_full_sync = 1;
10900 req->dest_cpu = RCU_MIGRATION_IDLE;
10901 spin_unlock_irqrestore(&rq->lock, flags);
10902 }
10903 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10904 mutex_unlock(&rcu_sched_expedited_mutex);
10905 put_online_cpus();
10906 if (need_full_sync)
10907 synchronize_sched();
10908}
10909EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10910
10911#endif /* #else #ifndef CONFIG_SMP */