]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/percpu.c
percpu: Optimize __get_cpu_var()
[net-next-2.6.git] / mm / percpu.c
CommitLineData
fbf59bc9 1/*
88999a89 2 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
88999a89
TH
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
2f39e637
TH
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
88999a89 16 * When a chunk is filled up, another chunk is allocated.
fbf59bc9
TH
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
2f39e637
TH
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
fbf59bc9 29 *
2f39e637
TH
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
fbf59bc9
TH
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
34 * guaranteed to be eqaul to or larger than the maximum contiguous
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
37 *
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9
TH
45 *
46 * To use this allocator, arch code should do the followings.
47 *
fbf59bc9 48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
fbf59bc9 51 *
8d408b4b
TH
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
54 */
55
56#include <linux/bitmap.h>
57#include <linux/bootmem.h>
fd1e8a1f 58#include <linux/err.h>
fbf59bc9 59#include <linux/list.h>
a530b795 60#include <linux/log2.h>
fbf59bc9
TH
61#include <linux/mm.h>
62#include <linux/module.h>
63#include <linux/mutex.h>
64#include <linux/percpu.h>
65#include <linux/pfn.h>
fbf59bc9 66#include <linux/slab.h>
ccea34b5 67#include <linux/spinlock.h>
fbf59bc9 68#include <linux/vmalloc.h>
a56dbddf 69#include <linux/workqueue.h>
fbf59bc9
TH
70
71#include <asm/cacheflush.h>
e0100983 72#include <asm/sections.h>
fbf59bc9 73#include <asm/tlbflush.h>
3b034b0d 74#include <asm/io.h>
fbf59bc9 75
fbf59bc9
TH
76#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
77#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
78
bbddff05 79#ifdef CONFIG_SMP
e0100983
TH
80/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
81#ifndef __addr_to_pcpu_ptr
82#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
83 (void __percpu *)((unsigned long)(addr) - \
84 (unsigned long)pcpu_base_addr + \
85 (unsigned long)__per_cpu_start)
e0100983
TH
86#endif
87#ifndef __pcpu_ptr_to_addr
88#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
89 (void __force *)((unsigned long)(ptr) + \
90 (unsigned long)pcpu_base_addr - \
91 (unsigned long)__per_cpu_start)
e0100983 92#endif
bbddff05
TH
93#else /* CONFIG_SMP */
94/* on UP, it's always identity mapped */
95#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
96#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
97#endif /* CONFIG_SMP */
e0100983 98
fbf59bc9
TH
99struct pcpu_chunk {
100 struct list_head list; /* linked to pcpu_slot lists */
fbf59bc9
TH
101 int free_size; /* free bytes in the chunk */
102 int contig_hint; /* max contiguous size hint */
bba174f5 103 void *base_addr; /* base address of this chunk */
fbf59bc9
TH
104 int map_used; /* # of map entries used */
105 int map_alloc; /* # of map entries allocated */
106 int *map; /* allocation map */
88999a89 107 void *data; /* chunk data */
8d408b4b 108 bool immutable; /* no [de]population allowed */
ce3141a2 109 unsigned long populated[]; /* populated bitmap */
fbf59bc9
TH
110};
111
40150d37
TH
112static int pcpu_unit_pages __read_mostly;
113static int pcpu_unit_size __read_mostly;
2f39e637 114static int pcpu_nr_units __read_mostly;
6563297c 115static int pcpu_atom_size __read_mostly;
40150d37
TH
116static int pcpu_nr_slots __read_mostly;
117static size_t pcpu_chunk_struct_size __read_mostly;
fbf59bc9 118
2f39e637
TH
119/* cpus with the lowest and highest unit numbers */
120static unsigned int pcpu_first_unit_cpu __read_mostly;
121static unsigned int pcpu_last_unit_cpu __read_mostly;
122
fbf59bc9 123/* the address of the first chunk which starts with the kernel static area */
40150d37 124void *pcpu_base_addr __read_mostly;
fbf59bc9
TH
125EXPORT_SYMBOL_GPL(pcpu_base_addr);
126
fb435d52
TH
127static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
128const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
2f39e637 129
6563297c
TH
130/* group information, used for vm allocation */
131static int pcpu_nr_groups __read_mostly;
132static const unsigned long *pcpu_group_offsets __read_mostly;
133static const size_t *pcpu_group_sizes __read_mostly;
134
ae9e6bc9
TH
135/*
136 * The first chunk which always exists. Note that unlike other
137 * chunks, this one can be allocated and mapped in several different
138 * ways and thus often doesn't live in the vmalloc area.
139 */
140static struct pcpu_chunk *pcpu_first_chunk;
141
142/*
143 * Optional reserved chunk. This chunk reserves part of the first
144 * chunk and serves it for reserved allocations. The amount of
145 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
146 * area doesn't exist, the following variables contain NULL and 0
147 * respectively.
148 */
edcb4639 149static struct pcpu_chunk *pcpu_reserved_chunk;
edcb4639
TH
150static int pcpu_reserved_chunk_limit;
151
fbf59bc9 152/*
ccea34b5
TH
153 * Synchronization rules.
154 *
155 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
ce3141a2
TH
156 * protects allocation/reclaim paths, chunks, populated bitmap and
157 * vmalloc mapping. The latter is a spinlock and protects the index
158 * data structures - chunk slots, chunks and area maps in chunks.
ccea34b5
TH
159 *
160 * During allocation, pcpu_alloc_mutex is kept locked all the time and
161 * pcpu_lock is grabbed and released as necessary. All actual memory
403a91b1
JK
162 * allocations are done using GFP_KERNEL with pcpu_lock released. In
163 * general, percpu memory can't be allocated with irq off but
164 * irqsave/restore are still used in alloc path so that it can be used
165 * from early init path - sched_init() specifically.
ccea34b5
TH
166 *
167 * Free path accesses and alters only the index data structures, so it
168 * can be safely called from atomic context. When memory needs to be
169 * returned to the system, free path schedules reclaim_work which
170 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
171 * reclaimed, release both locks and frees the chunks. Note that it's
172 * necessary to grab both locks to remove a chunk from circulation as
173 * allocation path might be referencing the chunk with only
174 * pcpu_alloc_mutex locked.
fbf59bc9 175 */
ccea34b5
TH
176static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
177static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
fbf59bc9 178
40150d37 179static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
fbf59bc9 180
a56dbddf
TH
181/* reclaim work to release fully free chunks, scheduled from free path */
182static void pcpu_reclaim(struct work_struct *work);
183static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
184
020ec653
TH
185static bool pcpu_addr_in_first_chunk(void *addr)
186{
187 void *first_start = pcpu_first_chunk->base_addr;
188
189 return addr >= first_start && addr < first_start + pcpu_unit_size;
190}
191
192static bool pcpu_addr_in_reserved_chunk(void *addr)
193{
194 void *first_start = pcpu_first_chunk->base_addr;
195
196 return addr >= first_start &&
197 addr < first_start + pcpu_reserved_chunk_limit;
198}
199
d9b55eeb 200static int __pcpu_size_to_slot(int size)
fbf59bc9 201{
cae3aeb8 202 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
203 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
204}
205
d9b55eeb
TH
206static int pcpu_size_to_slot(int size)
207{
208 if (size == pcpu_unit_size)
209 return pcpu_nr_slots - 1;
210 return __pcpu_size_to_slot(size);
211}
212
fbf59bc9
TH
213static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
214{
215 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
216 return 0;
217
218 return pcpu_size_to_slot(chunk->free_size);
219}
220
88999a89
TH
221/* set the pointer to a chunk in a page struct */
222static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
223{
224 page->index = (unsigned long)pcpu;
225}
226
227/* obtain pointer to a chunk from a page struct */
228static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
229{
230 return (struct pcpu_chunk *)page->index;
231}
232
233static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 234{
2f39e637 235 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
236}
237
9983b6f0
TH
238static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
239 unsigned int cpu, int page_idx)
fbf59bc9 240{
bba174f5 241 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
fb435d52 242 (page_idx << PAGE_SHIFT);
fbf59bc9
TH
243}
244
88999a89
TH
245static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
246 int *rs, int *re, int end)
ce3141a2
TH
247{
248 *rs = find_next_zero_bit(chunk->populated, end, *rs);
249 *re = find_next_bit(chunk->populated, end, *rs + 1);
250}
251
88999a89
TH
252static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
253 int *rs, int *re, int end)
ce3141a2
TH
254{
255 *rs = find_next_bit(chunk->populated, end, *rs);
256 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
257}
258
259/*
260 * (Un)populated page region iterators. Iterate over (un)populated
261 * page regions betwen @start and @end in @chunk. @rs and @re should
262 * be integer variables and will be set to start and end page index of
263 * the current region.
264 */
265#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
266 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
267 (rs) < (re); \
268 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
269
270#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
271 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
272 (rs) < (re); \
273 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
274
fbf59bc9 275/**
1880d93b
TH
276 * pcpu_mem_alloc - allocate memory
277 * @size: bytes to allocate
fbf59bc9 278 *
1880d93b
TH
279 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
280 * kzalloc() is used; otherwise, vmalloc() is used. The returned
281 * memory is always zeroed.
fbf59bc9 282 *
ccea34b5
TH
283 * CONTEXT:
284 * Does GFP_KERNEL allocation.
285 *
fbf59bc9 286 * RETURNS:
1880d93b 287 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 288 */
1880d93b 289static void *pcpu_mem_alloc(size_t size)
fbf59bc9 290{
099a19d9
TH
291 if (WARN_ON_ONCE(!slab_is_available()))
292 return NULL;
293
1880d93b
TH
294 if (size <= PAGE_SIZE)
295 return kzalloc(size, GFP_KERNEL);
296 else {
297 void *ptr = vmalloc(size);
298 if (ptr)
299 memset(ptr, 0, size);
300 return ptr;
301 }
302}
fbf59bc9 303
1880d93b
TH
304/**
305 * pcpu_mem_free - free memory
306 * @ptr: memory to free
307 * @size: size of the area
308 *
309 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
310 */
311static void pcpu_mem_free(void *ptr, size_t size)
312{
fbf59bc9 313 if (size <= PAGE_SIZE)
1880d93b 314 kfree(ptr);
fbf59bc9 315 else
1880d93b 316 vfree(ptr);
fbf59bc9
TH
317}
318
319/**
320 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
321 * @chunk: chunk of interest
322 * @oslot: the previous slot it was on
323 *
324 * This function is called after an allocation or free changed @chunk.
325 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
326 * moved to the slot. Note that the reserved chunk is never put on
327 * chunk slots.
ccea34b5
TH
328 *
329 * CONTEXT:
330 * pcpu_lock.
fbf59bc9
TH
331 */
332static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
333{
334 int nslot = pcpu_chunk_slot(chunk);
335
edcb4639 336 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
337 if (oslot < nslot)
338 list_move(&chunk->list, &pcpu_slot[nslot]);
339 else
340 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
341 }
342}
343
9f7dcf22 344/**
833af842
TH
345 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
346 * @chunk: chunk of interest
9f7dcf22 347 *
833af842
TH
348 * Determine whether area map of @chunk needs to be extended to
349 * accomodate a new allocation.
9f7dcf22 350 *
ccea34b5 351 * CONTEXT:
833af842 352 * pcpu_lock.
ccea34b5 353 *
9f7dcf22 354 * RETURNS:
833af842
TH
355 * New target map allocation length if extension is necessary, 0
356 * otherwise.
9f7dcf22 357 */
833af842 358static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
9f7dcf22
TH
359{
360 int new_alloc;
9f7dcf22 361
9f7dcf22
TH
362 if (chunk->map_alloc >= chunk->map_used + 2)
363 return 0;
364
365 new_alloc = PCPU_DFL_MAP_ALLOC;
366 while (new_alloc < chunk->map_used + 2)
367 new_alloc *= 2;
368
833af842
TH
369 return new_alloc;
370}
371
372/**
373 * pcpu_extend_area_map - extend area map of a chunk
374 * @chunk: chunk of interest
375 * @new_alloc: new target allocation length of the area map
376 *
377 * Extend area map of @chunk to have @new_alloc entries.
378 *
379 * CONTEXT:
380 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
381 *
382 * RETURNS:
383 * 0 on success, -errno on failure.
384 */
385static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
386{
387 int *old = NULL, *new = NULL;
388 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
389 unsigned long flags;
390
391 new = pcpu_mem_alloc(new_size);
392 if (!new)
9f7dcf22 393 return -ENOMEM;
ccea34b5 394
833af842
TH
395 /* acquire pcpu_lock and switch to new area map */
396 spin_lock_irqsave(&pcpu_lock, flags);
397
398 if (new_alloc <= chunk->map_alloc)
399 goto out_unlock;
9f7dcf22 400
833af842 401 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
a002d148
HS
402 old = chunk->map;
403
404 memcpy(new, old, old_size);
9f7dcf22 405
9f7dcf22
TH
406 chunk->map_alloc = new_alloc;
407 chunk->map = new;
833af842
TH
408 new = NULL;
409
410out_unlock:
411 spin_unlock_irqrestore(&pcpu_lock, flags);
412
413 /*
414 * pcpu_mem_free() might end up calling vfree() which uses
415 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
416 */
417 pcpu_mem_free(old, old_size);
418 pcpu_mem_free(new, new_size);
419
9f7dcf22
TH
420 return 0;
421}
422
fbf59bc9
TH
423/**
424 * pcpu_split_block - split a map block
425 * @chunk: chunk of interest
426 * @i: index of map block to split
cae3aeb8
TH
427 * @head: head size in bytes (can be 0)
428 * @tail: tail size in bytes (can be 0)
fbf59bc9
TH
429 *
430 * Split the @i'th map block into two or three blocks. If @head is
431 * non-zero, @head bytes block is inserted before block @i moving it
432 * to @i+1 and reducing its size by @head bytes.
433 *
434 * If @tail is non-zero, the target block, which can be @i or @i+1
435 * depending on @head, is reduced by @tail bytes and @tail byte block
436 * is inserted after the target block.
437 *
9f7dcf22 438 * @chunk->map must have enough free slots to accomodate the split.
ccea34b5
TH
439 *
440 * CONTEXT:
441 * pcpu_lock.
fbf59bc9 442 */
9f7dcf22
TH
443static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
444 int head, int tail)
fbf59bc9
TH
445{
446 int nr_extra = !!head + !!tail;
1880d93b 447
9f7dcf22 448 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
fbf59bc9 449
9f7dcf22 450 /* insert new subblocks */
fbf59bc9
TH
451 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
452 sizeof(chunk->map[0]) * (chunk->map_used - i));
453 chunk->map_used += nr_extra;
454
455 if (head) {
456 chunk->map[i + 1] = chunk->map[i] - head;
457 chunk->map[i++] = head;
458 }
459 if (tail) {
460 chunk->map[i++] -= tail;
461 chunk->map[i] = tail;
462 }
fbf59bc9
TH
463}
464
465/**
466 * pcpu_alloc_area - allocate area from a pcpu_chunk
467 * @chunk: chunk of interest
cae3aeb8 468 * @size: wanted size in bytes
fbf59bc9
TH
469 * @align: wanted align
470 *
471 * Try to allocate @size bytes area aligned at @align from @chunk.
472 * Note that this function only allocates the offset. It doesn't
473 * populate or map the area.
474 *
9f7dcf22
TH
475 * @chunk->map must have at least two free slots.
476 *
ccea34b5
TH
477 * CONTEXT:
478 * pcpu_lock.
479 *
fbf59bc9 480 * RETURNS:
9f7dcf22
TH
481 * Allocated offset in @chunk on success, -1 if no matching area is
482 * found.
fbf59bc9
TH
483 */
484static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
485{
486 int oslot = pcpu_chunk_slot(chunk);
487 int max_contig = 0;
488 int i, off;
489
fbf59bc9
TH
490 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
491 bool is_last = i + 1 == chunk->map_used;
492 int head, tail;
493
494 /* extra for alignment requirement */
495 head = ALIGN(off, align) - off;
496 BUG_ON(i == 0 && head != 0);
497
498 if (chunk->map[i] < 0)
499 continue;
500 if (chunk->map[i] < head + size) {
501 max_contig = max(chunk->map[i], max_contig);
502 continue;
503 }
504
505 /*
506 * If head is small or the previous block is free,
507 * merge'em. Note that 'small' is defined as smaller
508 * than sizeof(int), which is very small but isn't too
509 * uncommon for percpu allocations.
510 */
511 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
512 if (chunk->map[i - 1] > 0)
513 chunk->map[i - 1] += head;
514 else {
515 chunk->map[i - 1] -= head;
516 chunk->free_size -= head;
517 }
518 chunk->map[i] -= head;
519 off += head;
520 head = 0;
521 }
522
523 /* if tail is small, just keep it around */
524 tail = chunk->map[i] - head - size;
525 if (tail < sizeof(int))
526 tail = 0;
527
528 /* split if warranted */
529 if (head || tail) {
9f7dcf22 530 pcpu_split_block(chunk, i, head, tail);
fbf59bc9
TH
531 if (head) {
532 i++;
533 off += head;
534 max_contig = max(chunk->map[i - 1], max_contig);
535 }
536 if (tail)
537 max_contig = max(chunk->map[i + 1], max_contig);
538 }
539
540 /* update hint and mark allocated */
541 if (is_last)
542 chunk->contig_hint = max_contig; /* fully scanned */
543 else
544 chunk->contig_hint = max(chunk->contig_hint,
545 max_contig);
546
547 chunk->free_size -= chunk->map[i];
548 chunk->map[i] = -chunk->map[i];
549
550 pcpu_chunk_relocate(chunk, oslot);
551 return off;
552 }
553
554 chunk->contig_hint = max_contig; /* fully scanned */
555 pcpu_chunk_relocate(chunk, oslot);
556
9f7dcf22
TH
557 /* tell the upper layer that this chunk has no matching area */
558 return -1;
fbf59bc9
TH
559}
560
561/**
562 * pcpu_free_area - free area to a pcpu_chunk
563 * @chunk: chunk of interest
564 * @freeme: offset of area to free
565 *
566 * Free area starting from @freeme to @chunk. Note that this function
567 * only modifies the allocation map. It doesn't depopulate or unmap
568 * the area.
ccea34b5
TH
569 *
570 * CONTEXT:
571 * pcpu_lock.
fbf59bc9
TH
572 */
573static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
574{
575 int oslot = pcpu_chunk_slot(chunk);
576 int i, off;
577
578 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
579 if (off == freeme)
580 break;
581 BUG_ON(off != freeme);
582 BUG_ON(chunk->map[i] > 0);
583
584 chunk->map[i] = -chunk->map[i];
585 chunk->free_size += chunk->map[i];
586
587 /* merge with previous? */
588 if (i > 0 && chunk->map[i - 1] >= 0) {
589 chunk->map[i - 1] += chunk->map[i];
590 chunk->map_used--;
591 memmove(&chunk->map[i], &chunk->map[i + 1],
592 (chunk->map_used - i) * sizeof(chunk->map[0]));
593 i--;
594 }
595 /* merge with next? */
596 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
597 chunk->map[i] += chunk->map[i + 1];
598 chunk->map_used--;
599 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
600 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
601 }
602
603 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
604 pcpu_chunk_relocate(chunk, oslot);
605}
606
6081089f
TH
607static struct pcpu_chunk *pcpu_alloc_chunk(void)
608{
609 struct pcpu_chunk *chunk;
610
099a19d9 611 chunk = pcpu_mem_alloc(pcpu_chunk_struct_size);
6081089f
TH
612 if (!chunk)
613 return NULL;
614
615 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
616 if (!chunk->map) {
617 kfree(chunk);
618 return NULL;
619 }
620
621 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
622 chunk->map[chunk->map_used++] = pcpu_unit_size;
623
624 INIT_LIST_HEAD(&chunk->list);
625 chunk->free_size = pcpu_unit_size;
626 chunk->contig_hint = pcpu_unit_size;
627
628 return chunk;
629}
630
631static void pcpu_free_chunk(struct pcpu_chunk *chunk)
632{
633 if (!chunk)
634 return;
635 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
636 kfree(chunk);
637}
638
9f645532
TH
639/*
640 * Chunk management implementation.
641 *
642 * To allow different implementations, chunk alloc/free and
643 * [de]population are implemented in a separate file which is pulled
644 * into this file and compiled together. The following functions
645 * should be implemented.
646 *
647 * pcpu_populate_chunk - populate the specified range of a chunk
648 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
649 * pcpu_create_chunk - create a new chunk
650 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
651 * pcpu_addr_to_page - translate address to physical address
652 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 653 */
9f645532
TH
654static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
655static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
656static struct pcpu_chunk *pcpu_create_chunk(void);
657static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
658static struct page *pcpu_addr_to_page(void *addr);
659static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 660
b0c9778b
TH
661#ifdef CONFIG_NEED_PER_CPU_KM
662#include "percpu-km.c"
663#else
9f645532 664#include "percpu-vm.c"
b0c9778b 665#endif
fbf59bc9 666
88999a89
TH
667/**
668 * pcpu_chunk_addr_search - determine chunk containing specified address
669 * @addr: address for which the chunk needs to be determined.
670 *
671 * RETURNS:
672 * The address of the found chunk.
673 */
674static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
675{
676 /* is it in the first chunk? */
677 if (pcpu_addr_in_first_chunk(addr)) {
678 /* is it in the reserved area? */
679 if (pcpu_addr_in_reserved_chunk(addr))
680 return pcpu_reserved_chunk;
681 return pcpu_first_chunk;
682 }
683
684 /*
685 * The address is relative to unit0 which might be unused and
686 * thus unmapped. Offset the address to the unit space of the
687 * current processor before looking it up in the vmalloc
688 * space. Note that any possible cpu id can be used here, so
689 * there's no need to worry about preemption or cpu hotplug.
690 */
691 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 692 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
693}
694
fbf59bc9 695/**
edcb4639 696 * pcpu_alloc - the percpu allocator
cae3aeb8 697 * @size: size of area to allocate in bytes
fbf59bc9 698 * @align: alignment of area (max PAGE_SIZE)
edcb4639 699 * @reserved: allocate from the reserved chunk if available
fbf59bc9 700 *
ccea34b5
TH
701 * Allocate percpu area of @size bytes aligned at @align.
702 *
703 * CONTEXT:
704 * Does GFP_KERNEL allocation.
fbf59bc9
TH
705 *
706 * RETURNS:
707 * Percpu pointer to the allocated area on success, NULL on failure.
708 */
43cf38eb 709static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
fbf59bc9 710{
f2badb0c 711 static int warn_limit = 10;
fbf59bc9 712 struct pcpu_chunk *chunk;
f2badb0c 713 const char *err;
833af842 714 int slot, off, new_alloc;
403a91b1 715 unsigned long flags;
fbf59bc9 716
8d408b4b 717 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
fbf59bc9
TH
718 WARN(true, "illegal size (%zu) or align (%zu) for "
719 "percpu allocation\n", size, align);
720 return NULL;
721 }
722
ccea34b5 723 mutex_lock(&pcpu_alloc_mutex);
403a91b1 724 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 725
edcb4639
TH
726 /* serve reserved allocations from the reserved chunk if available */
727 if (reserved && pcpu_reserved_chunk) {
728 chunk = pcpu_reserved_chunk;
833af842
TH
729
730 if (size > chunk->contig_hint) {
731 err = "alloc from reserved chunk failed";
ccea34b5 732 goto fail_unlock;
f2badb0c 733 }
833af842
TH
734
735 while ((new_alloc = pcpu_need_to_extend(chunk))) {
736 spin_unlock_irqrestore(&pcpu_lock, flags);
737 if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
738 err = "failed to extend area map of reserved chunk";
739 goto fail_unlock_mutex;
740 }
741 spin_lock_irqsave(&pcpu_lock, flags);
742 }
743
edcb4639
TH
744 off = pcpu_alloc_area(chunk, size, align);
745 if (off >= 0)
746 goto area_found;
833af842 747
f2badb0c 748 err = "alloc from reserved chunk failed";
ccea34b5 749 goto fail_unlock;
edcb4639
TH
750 }
751
ccea34b5 752restart:
edcb4639 753 /* search through normal chunks */
fbf59bc9
TH
754 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
755 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
756 if (size > chunk->contig_hint)
757 continue;
ccea34b5 758
833af842
TH
759 new_alloc = pcpu_need_to_extend(chunk);
760 if (new_alloc) {
761 spin_unlock_irqrestore(&pcpu_lock, flags);
762 if (pcpu_extend_area_map(chunk,
763 new_alloc) < 0) {
764 err = "failed to extend area map";
765 goto fail_unlock_mutex;
766 }
767 spin_lock_irqsave(&pcpu_lock, flags);
768 /*
769 * pcpu_lock has been dropped, need to
770 * restart cpu_slot list walking.
771 */
772 goto restart;
ccea34b5
TH
773 }
774
fbf59bc9
TH
775 off = pcpu_alloc_area(chunk, size, align);
776 if (off >= 0)
777 goto area_found;
fbf59bc9
TH
778 }
779 }
780
781 /* hmmm... no space left, create a new chunk */
403a91b1 782 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 783
6081089f 784 chunk = pcpu_create_chunk();
f2badb0c
TH
785 if (!chunk) {
786 err = "failed to allocate new chunk";
ccea34b5 787 goto fail_unlock_mutex;
f2badb0c 788 }
ccea34b5 789
403a91b1 790 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 791 pcpu_chunk_relocate(chunk, -1);
ccea34b5 792 goto restart;
fbf59bc9
TH
793
794area_found:
403a91b1 795 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 796
fbf59bc9
TH
797 /* populate, map and clear the area */
798 if (pcpu_populate_chunk(chunk, off, size)) {
403a91b1 799 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 800 pcpu_free_area(chunk, off);
f2badb0c 801 err = "failed to populate";
ccea34b5 802 goto fail_unlock;
fbf59bc9
TH
803 }
804
ccea34b5
TH
805 mutex_unlock(&pcpu_alloc_mutex);
806
bba174f5
TH
807 /* return address relative to base address */
808 return __addr_to_pcpu_ptr(chunk->base_addr + off);
ccea34b5
TH
809
810fail_unlock:
403a91b1 811 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5
TH
812fail_unlock_mutex:
813 mutex_unlock(&pcpu_alloc_mutex);
f2badb0c
TH
814 if (warn_limit) {
815 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
816 "%s\n", size, align, err);
817 dump_stack();
818 if (!--warn_limit)
819 pr_info("PERCPU: limit reached, disable warning\n");
820 }
ccea34b5 821 return NULL;
fbf59bc9 822}
edcb4639
TH
823
824/**
825 * __alloc_percpu - allocate dynamic percpu area
826 * @size: size of area to allocate in bytes
827 * @align: alignment of area (max PAGE_SIZE)
828 *
829 * Allocate percpu area of @size bytes aligned at @align. Might
830 * sleep. Might trigger writeouts.
831 *
ccea34b5
TH
832 * CONTEXT:
833 * Does GFP_KERNEL allocation.
834 *
edcb4639
TH
835 * RETURNS:
836 * Percpu pointer to the allocated area on success, NULL on failure.
837 */
43cf38eb 838void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639
TH
839{
840 return pcpu_alloc(size, align, false);
841}
fbf59bc9
TH
842EXPORT_SYMBOL_GPL(__alloc_percpu);
843
edcb4639
TH
844/**
845 * __alloc_reserved_percpu - allocate reserved percpu area
846 * @size: size of area to allocate in bytes
847 * @align: alignment of area (max PAGE_SIZE)
848 *
849 * Allocate percpu area of @size bytes aligned at @align from reserved
850 * percpu area if arch has set it up; otherwise, allocation is served
851 * from the same dynamic area. Might sleep. Might trigger writeouts.
852 *
ccea34b5
TH
853 * CONTEXT:
854 * Does GFP_KERNEL allocation.
855 *
edcb4639
TH
856 * RETURNS:
857 * Percpu pointer to the allocated area on success, NULL on failure.
858 */
43cf38eb 859void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639
TH
860{
861 return pcpu_alloc(size, align, true);
862}
863
a56dbddf
TH
864/**
865 * pcpu_reclaim - reclaim fully free chunks, workqueue function
866 * @work: unused
867 *
868 * Reclaim all fully free chunks except for the first one.
ccea34b5
TH
869 *
870 * CONTEXT:
871 * workqueue context.
a56dbddf
TH
872 */
873static void pcpu_reclaim(struct work_struct *work)
fbf59bc9 874{
a56dbddf
TH
875 LIST_HEAD(todo);
876 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
877 struct pcpu_chunk *chunk, *next;
878
ccea34b5
TH
879 mutex_lock(&pcpu_alloc_mutex);
880 spin_lock_irq(&pcpu_lock);
a56dbddf
TH
881
882 list_for_each_entry_safe(chunk, next, head, list) {
883 WARN_ON(chunk->immutable);
884
885 /* spare the first one */
886 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
887 continue;
888
a56dbddf
TH
889 list_move(&chunk->list, &todo);
890 }
891
ccea34b5 892 spin_unlock_irq(&pcpu_lock);
a56dbddf
TH
893
894 list_for_each_entry_safe(chunk, next, &todo, list) {
ce3141a2 895 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
6081089f 896 pcpu_destroy_chunk(chunk);
a56dbddf 897 }
971f3918
TH
898
899 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
900}
901
902/**
903 * free_percpu - free percpu area
904 * @ptr: pointer to area to free
905 *
ccea34b5
TH
906 * Free percpu area @ptr.
907 *
908 * CONTEXT:
909 * Can be called from atomic context.
fbf59bc9 910 */
43cf38eb 911void free_percpu(void __percpu *ptr)
fbf59bc9 912{
129182e5 913 void *addr;
fbf59bc9 914 struct pcpu_chunk *chunk;
ccea34b5 915 unsigned long flags;
fbf59bc9
TH
916 int off;
917
918 if (!ptr)
919 return;
920
129182e5
AM
921 addr = __pcpu_ptr_to_addr(ptr);
922
ccea34b5 923 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
924
925 chunk = pcpu_chunk_addr_search(addr);
bba174f5 926 off = addr - chunk->base_addr;
fbf59bc9
TH
927
928 pcpu_free_area(chunk, off);
929
a56dbddf 930 /* if there are more than one fully free chunks, wake up grim reaper */
fbf59bc9
TH
931 if (chunk->free_size == pcpu_unit_size) {
932 struct pcpu_chunk *pos;
933
a56dbddf 934 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 935 if (pos != chunk) {
a56dbddf 936 schedule_work(&pcpu_reclaim_work);
fbf59bc9
TH
937 break;
938 }
939 }
940
ccea34b5 941 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
942}
943EXPORT_SYMBOL_GPL(free_percpu);
944
10fad5e4
TH
945/**
946 * is_kernel_percpu_address - test whether address is from static percpu area
947 * @addr: address to test
948 *
949 * Test whether @addr belongs to in-kernel static percpu area. Module
950 * static percpu areas are not considered. For those, use
951 * is_module_percpu_address().
952 *
953 * RETURNS:
954 * %true if @addr is from in-kernel static percpu area, %false otherwise.
955 */
956bool is_kernel_percpu_address(unsigned long addr)
957{
bbddff05 958#ifdef CONFIG_SMP
10fad5e4
TH
959 const size_t static_size = __per_cpu_end - __per_cpu_start;
960 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
961 unsigned int cpu;
962
963 for_each_possible_cpu(cpu) {
964 void *start = per_cpu_ptr(base, cpu);
965
966 if ((void *)addr >= start && (void *)addr < start + static_size)
967 return true;
968 }
bbddff05
TH
969#endif
970 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
971 return false;
972}
973
3b034b0d
VG
974/**
975 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
976 * @addr: the address to be converted to physical address
977 *
978 * Given @addr which is dereferenceable address obtained via one of
979 * percpu access macros, this function translates it into its physical
980 * address. The caller is responsible for ensuring @addr stays valid
981 * until this function finishes.
982 *
983 * RETURNS:
984 * The physical address for @addr.
985 */
986phys_addr_t per_cpu_ptr_to_phys(void *addr)
987{
9983b6f0
TH
988 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
989 bool in_first_chunk = false;
990 unsigned long first_start, first_end;
991 unsigned int cpu;
992
993 /*
994 * The following test on first_start/end isn't strictly
995 * necessary but will speed up lookups of addresses which
996 * aren't in the first chunk.
997 */
998 first_start = pcpu_chunk_addr(pcpu_first_chunk, pcpu_first_unit_cpu, 0);
999 first_end = pcpu_chunk_addr(pcpu_first_chunk, pcpu_last_unit_cpu,
1000 pcpu_unit_pages);
1001 if ((unsigned long)addr >= first_start &&
1002 (unsigned long)addr < first_end) {
1003 for_each_possible_cpu(cpu) {
1004 void *start = per_cpu_ptr(base, cpu);
1005
1006 if (addr >= start && addr < start + pcpu_unit_size) {
1007 in_first_chunk = true;
1008 break;
1009 }
1010 }
1011 }
1012
1013 if (in_first_chunk) {
020ec653
TH
1014 if ((unsigned long)addr < VMALLOC_START ||
1015 (unsigned long)addr >= VMALLOC_END)
1016 return __pa(addr);
1017 else
1018 return page_to_phys(vmalloc_to_page(addr));
1019 } else
9f645532 1020 return page_to_phys(pcpu_addr_to_page(addr));
3b034b0d
VG
1021}
1022
fbf59bc9 1023/**
fd1e8a1f
TH
1024 * pcpu_alloc_alloc_info - allocate percpu allocation info
1025 * @nr_groups: the number of groups
1026 * @nr_units: the number of units
1027 *
1028 * Allocate ai which is large enough for @nr_groups groups containing
1029 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1030 * cpu_map array which is long enough for @nr_units and filled with
1031 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1032 * pointer of other groups.
1033 *
1034 * RETURNS:
1035 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1036 * failure.
1037 */
1038struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1039 int nr_units)
1040{
1041 struct pcpu_alloc_info *ai;
1042 size_t base_size, ai_size;
1043 void *ptr;
1044 int unit;
1045
1046 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1047 __alignof__(ai->groups[0].cpu_map[0]));
1048 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1049
1050 ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1051 if (!ptr)
1052 return NULL;
1053 ai = ptr;
1054 ptr += base_size;
1055
1056 ai->groups[0].cpu_map = ptr;
1057
1058 for (unit = 0; unit < nr_units; unit++)
1059 ai->groups[0].cpu_map[unit] = NR_CPUS;
1060
1061 ai->nr_groups = nr_groups;
1062 ai->__ai_size = PFN_ALIGN(ai_size);
1063
1064 return ai;
1065}
1066
1067/**
1068 * pcpu_free_alloc_info - free percpu allocation info
1069 * @ai: pcpu_alloc_info to free
1070 *
1071 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1072 */
1073void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1074{
1075 free_bootmem(__pa(ai), ai->__ai_size);
1076}
1077
fd1e8a1f
TH
1078/**
1079 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1080 * @lvl: loglevel
1081 * @ai: allocation info to dump
1082 *
1083 * Print out information about @ai using loglevel @lvl.
1084 */
1085static void pcpu_dump_alloc_info(const char *lvl,
1086 const struct pcpu_alloc_info *ai)
033e48fb 1087{
fd1e8a1f 1088 int group_width = 1, cpu_width = 1, width;
033e48fb 1089 char empty_str[] = "--------";
fd1e8a1f
TH
1090 int alloc = 0, alloc_end = 0;
1091 int group, v;
1092 int upa, apl; /* units per alloc, allocs per line */
1093
1094 v = ai->nr_groups;
1095 while (v /= 10)
1096 group_width++;
033e48fb 1097
fd1e8a1f 1098 v = num_possible_cpus();
033e48fb 1099 while (v /= 10)
fd1e8a1f
TH
1100 cpu_width++;
1101 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 1102
fd1e8a1f
TH
1103 upa = ai->alloc_size / ai->unit_size;
1104 width = upa * (cpu_width + 1) + group_width + 3;
1105 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 1106
fd1e8a1f
TH
1107 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1108 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1109 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 1110
fd1e8a1f
TH
1111 for (group = 0; group < ai->nr_groups; group++) {
1112 const struct pcpu_group_info *gi = &ai->groups[group];
1113 int unit = 0, unit_end = 0;
1114
1115 BUG_ON(gi->nr_units % upa);
1116 for (alloc_end += gi->nr_units / upa;
1117 alloc < alloc_end; alloc++) {
1118 if (!(alloc % apl)) {
033e48fb 1119 printk("\n");
fd1e8a1f
TH
1120 printk("%spcpu-alloc: ", lvl);
1121 }
1122 printk("[%0*d] ", group_width, group);
1123
1124 for (unit_end += upa; unit < unit_end; unit++)
1125 if (gi->cpu_map[unit] != NR_CPUS)
1126 printk("%0*d ", cpu_width,
1127 gi->cpu_map[unit]);
1128 else
1129 printk("%s ", empty_str);
033e48fb 1130 }
033e48fb
TH
1131 }
1132 printk("\n");
1133}
033e48fb 1134
fbf59bc9 1135/**
8d408b4b 1136 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 1137 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 1138 * @base_addr: mapped address
8d408b4b
TH
1139 *
1140 * Initialize the first percpu chunk which contains the kernel static
1141 * perpcu area. This function is to be called from arch percpu area
38a6be52 1142 * setup path.
8d408b4b 1143 *
fd1e8a1f
TH
1144 * @ai contains all information necessary to initialize the first
1145 * chunk and prime the dynamic percpu allocator.
1146 *
1147 * @ai->static_size is the size of static percpu area.
1148 *
1149 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
1150 * reserve after the static area in the first chunk. This reserves
1151 * the first chunk such that it's available only through reserved
1152 * percpu allocation. This is primarily used to serve module percpu
1153 * static areas on architectures where the addressing model has
1154 * limited offset range for symbol relocations to guarantee module
1155 * percpu symbols fall inside the relocatable range.
1156 *
fd1e8a1f
TH
1157 * @ai->dyn_size determines the number of bytes available for dynamic
1158 * allocation in the first chunk. The area between @ai->static_size +
1159 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 1160 *
fd1e8a1f
TH
1161 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1162 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1163 * @ai->dyn_size.
8d408b4b 1164 *
fd1e8a1f
TH
1165 * @ai->atom_size is the allocation atom size and used as alignment
1166 * for vm areas.
8d408b4b 1167 *
fd1e8a1f
TH
1168 * @ai->alloc_size is the allocation size and always multiple of
1169 * @ai->atom_size. This is larger than @ai->atom_size if
1170 * @ai->unit_size is larger than @ai->atom_size.
1171 *
1172 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1173 * percpu areas. Units which should be colocated are put into the
1174 * same group. Dynamic VM areas will be allocated according to these
1175 * groupings. If @ai->nr_groups is zero, a single group containing
1176 * all units is assumed.
8d408b4b 1177 *
38a6be52
TH
1178 * The caller should have mapped the first chunk at @base_addr and
1179 * copied static data to each unit.
fbf59bc9 1180 *
edcb4639
TH
1181 * If the first chunk ends up with both reserved and dynamic areas, it
1182 * is served by two chunks - one to serve the core static and reserved
1183 * areas and the other for the dynamic area. They share the same vm
1184 * and page map but uses different area allocation map to stay away
1185 * from each other. The latter chunk is circulated in the chunk slots
1186 * and available for dynamic allocation like any other chunks.
1187 *
fbf59bc9 1188 * RETURNS:
fb435d52 1189 * 0 on success, -errno on failure.
fbf59bc9 1190 */
fb435d52
TH
1191int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1192 void *base_addr)
fbf59bc9 1193{
635b75fc 1194 static char cpus_buf[4096] __initdata;
099a19d9
TH
1195 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1196 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
fd1e8a1f
TH
1197 size_t dyn_size = ai->dyn_size;
1198 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
edcb4639 1199 struct pcpu_chunk *schunk, *dchunk = NULL;
6563297c
TH
1200 unsigned long *group_offsets;
1201 size_t *group_sizes;
fb435d52 1202 unsigned long *unit_off;
fbf59bc9 1203 unsigned int cpu;
fd1e8a1f
TH
1204 int *unit_map;
1205 int group, unit, i;
fbf59bc9 1206
635b75fc
TH
1207 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1208
1209#define PCPU_SETUP_BUG_ON(cond) do { \
1210 if (unlikely(cond)) { \
1211 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1212 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1213 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1214 BUG(); \
1215 } \
1216} while (0)
1217
2f39e637 1218 /* sanity checks */
635b75fc 1219 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 1220#ifdef CONFIG_SMP
635b75fc 1221 PCPU_SETUP_BUG_ON(!ai->static_size);
bbddff05 1222#endif
635b75fc
TH
1223 PCPU_SETUP_BUG_ON(!base_addr);
1224 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1225 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1226 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
099a19d9 1227 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
9f645532 1228 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 1229
6563297c
TH
1230 /* process group information and build config tables accordingly */
1231 group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
1232 group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
fd1e8a1f 1233 unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
fb435d52 1234 unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
2f39e637 1235
fd1e8a1f 1236 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 1237 unit_map[cpu] = UINT_MAX;
fd1e8a1f 1238 pcpu_first_unit_cpu = NR_CPUS;
2f39e637 1239
fd1e8a1f
TH
1240 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1241 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 1242
6563297c
TH
1243 group_offsets[group] = gi->base_offset;
1244 group_sizes[group] = gi->nr_units * ai->unit_size;
1245
fd1e8a1f
TH
1246 for (i = 0; i < gi->nr_units; i++) {
1247 cpu = gi->cpu_map[i];
1248 if (cpu == NR_CPUS)
1249 continue;
8d408b4b 1250
635b75fc
TH
1251 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1252 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1253 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 1254
fd1e8a1f 1255 unit_map[cpu] = unit + i;
fb435d52
TH
1256 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1257
fd1e8a1f
TH
1258 if (pcpu_first_unit_cpu == NR_CPUS)
1259 pcpu_first_unit_cpu = cpu;
1260 }
2f39e637 1261 }
fd1e8a1f
TH
1262 pcpu_last_unit_cpu = cpu;
1263 pcpu_nr_units = unit;
1264
1265 for_each_possible_cpu(cpu)
635b75fc
TH
1266 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1267
1268 /* we're done parsing the input, undefine BUG macro and dump config */
1269#undef PCPU_SETUP_BUG_ON
1270 pcpu_dump_alloc_info(KERN_INFO, ai);
fd1e8a1f 1271
6563297c
TH
1272 pcpu_nr_groups = ai->nr_groups;
1273 pcpu_group_offsets = group_offsets;
1274 pcpu_group_sizes = group_sizes;
fd1e8a1f 1275 pcpu_unit_map = unit_map;
fb435d52 1276 pcpu_unit_offsets = unit_off;
2f39e637
TH
1277
1278 /* determine basic parameters */
fd1e8a1f 1279 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 1280 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 1281 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
1282 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1283 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 1284
d9b55eeb
TH
1285 /*
1286 * Allocate chunk slots. The additional last slot is for
1287 * empty chunks.
1288 */
1289 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
fbf59bc9
TH
1290 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1291 for (i = 0; i < pcpu_nr_slots; i++)
1292 INIT_LIST_HEAD(&pcpu_slot[i]);
1293
edcb4639
TH
1294 /*
1295 * Initialize static chunk. If reserved_size is zero, the
1296 * static chunk covers static area + dynamic allocation area
1297 * in the first chunk. If reserved_size is not zero, it
1298 * covers static area + reserved area (mostly used for module
1299 * static percpu allocation).
1300 */
2441d15c
TH
1301 schunk = alloc_bootmem(pcpu_chunk_struct_size);
1302 INIT_LIST_HEAD(&schunk->list);
bba174f5 1303 schunk->base_addr = base_addr;
61ace7fa
TH
1304 schunk->map = smap;
1305 schunk->map_alloc = ARRAY_SIZE(smap);
38a6be52 1306 schunk->immutable = true;
ce3141a2 1307 bitmap_fill(schunk->populated, pcpu_unit_pages);
edcb4639 1308
fd1e8a1f
TH
1309 if (ai->reserved_size) {
1310 schunk->free_size = ai->reserved_size;
ae9e6bc9 1311 pcpu_reserved_chunk = schunk;
fd1e8a1f 1312 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
edcb4639
TH
1313 } else {
1314 schunk->free_size = dyn_size;
1315 dyn_size = 0; /* dynamic area covered */
1316 }
2441d15c 1317 schunk->contig_hint = schunk->free_size;
fbf59bc9 1318
fd1e8a1f 1319 schunk->map[schunk->map_used++] = -ai->static_size;
61ace7fa
TH
1320 if (schunk->free_size)
1321 schunk->map[schunk->map_used++] = schunk->free_size;
1322
edcb4639
TH
1323 /* init dynamic chunk if necessary */
1324 if (dyn_size) {
ce3141a2 1325 dchunk = alloc_bootmem(pcpu_chunk_struct_size);
edcb4639 1326 INIT_LIST_HEAD(&dchunk->list);
bba174f5 1327 dchunk->base_addr = base_addr;
edcb4639
TH
1328 dchunk->map = dmap;
1329 dchunk->map_alloc = ARRAY_SIZE(dmap);
38a6be52 1330 dchunk->immutable = true;
ce3141a2 1331 bitmap_fill(dchunk->populated, pcpu_unit_pages);
edcb4639
TH
1332
1333 dchunk->contig_hint = dchunk->free_size = dyn_size;
1334 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1335 dchunk->map[dchunk->map_used++] = dchunk->free_size;
1336 }
1337
2441d15c 1338 /* link the first chunk in */
ae9e6bc9
TH
1339 pcpu_first_chunk = dchunk ?: schunk;
1340 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9
TH
1341
1342 /* we're done */
bba174f5 1343 pcpu_base_addr = base_addr;
fb435d52 1344 return 0;
fbf59bc9 1345}
66c3a757 1346
bbddff05
TH
1347#ifdef CONFIG_SMP
1348
f58dc01b
TH
1349const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1350 [PCPU_FC_AUTO] = "auto",
1351 [PCPU_FC_EMBED] = "embed",
1352 [PCPU_FC_PAGE] = "page",
f58dc01b 1353};
66c3a757 1354
f58dc01b 1355enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 1356
f58dc01b
TH
1357static int __init percpu_alloc_setup(char *str)
1358{
1359 if (0)
1360 /* nada */;
1361#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1362 else if (!strcmp(str, "embed"))
1363 pcpu_chosen_fc = PCPU_FC_EMBED;
1364#endif
1365#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1366 else if (!strcmp(str, "page"))
1367 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
1368#endif
1369 else
1370 pr_warning("PERCPU: unknown allocator %s specified\n", str);
66c3a757 1371
f58dc01b 1372 return 0;
66c3a757 1373}
f58dc01b 1374early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 1375
3c9a024f
TH
1376/*
1377 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1378 * Build it if needed by the arch config or the generic setup is going
1379 * to be used.
1380 */
08fc4580
TH
1381#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1382 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
1383#define BUILD_EMBED_FIRST_CHUNK
1384#endif
1385
1386/* build pcpu_page_first_chunk() iff needed by the arch config */
1387#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1388#define BUILD_PAGE_FIRST_CHUNK
1389#endif
1390
1391/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1392#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1393/**
1394 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1395 * @reserved_size: the size of reserved percpu area in bytes
1396 * @dyn_size: minimum free size for dynamic allocation in bytes
1397 * @atom_size: allocation atom size
1398 * @cpu_distance_fn: callback to determine distance between cpus, optional
1399 *
1400 * This function determines grouping of units, their mappings to cpus
1401 * and other parameters considering needed percpu size, allocation
1402 * atom size and distances between CPUs.
1403 *
1404 * Groups are always mutliples of atom size and CPUs which are of
1405 * LOCAL_DISTANCE both ways are grouped together and share space for
1406 * units in the same group. The returned configuration is guaranteed
1407 * to have CPUs on different nodes on different groups and >=75% usage
1408 * of allocated virtual address space.
1409 *
1410 * RETURNS:
1411 * On success, pointer to the new allocation_info is returned. On
1412 * failure, ERR_PTR value is returned.
1413 */
1414static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1415 size_t reserved_size, size_t dyn_size,
1416 size_t atom_size,
1417 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1418{
1419 static int group_map[NR_CPUS] __initdata;
1420 static int group_cnt[NR_CPUS] __initdata;
1421 const size_t static_size = __per_cpu_end - __per_cpu_start;
1422 int nr_groups = 1, nr_units = 0;
1423 size_t size_sum, min_unit_size, alloc_size;
1424 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1425 int last_allocs, group, unit;
1426 unsigned int cpu, tcpu;
1427 struct pcpu_alloc_info *ai;
1428 unsigned int *cpu_map;
1429
1430 /* this function may be called multiple times */
1431 memset(group_map, 0, sizeof(group_map));
1432 memset(group_cnt, 0, sizeof(group_cnt));
1433
1434 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1435 size_sum = PFN_ALIGN(static_size + reserved_size +
1436 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1437 dyn_size = size_sum - static_size - reserved_size;
1438
1439 /*
1440 * Determine min_unit_size, alloc_size and max_upa such that
1441 * alloc_size is multiple of atom_size and is the smallest
1442 * which can accomodate 4k aligned segments which are equal to
1443 * or larger than min_unit_size.
1444 */
1445 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1446
1447 alloc_size = roundup(min_unit_size, atom_size);
1448 upa = alloc_size / min_unit_size;
1449 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1450 upa--;
1451 max_upa = upa;
1452
1453 /* group cpus according to their proximity */
1454 for_each_possible_cpu(cpu) {
1455 group = 0;
1456 next_group:
1457 for_each_possible_cpu(tcpu) {
1458 if (cpu == tcpu)
1459 break;
1460 if (group_map[tcpu] == group && cpu_distance_fn &&
1461 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1462 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1463 group++;
1464 nr_groups = max(nr_groups, group + 1);
1465 goto next_group;
1466 }
1467 }
1468 group_map[cpu] = group;
1469 group_cnt[group]++;
1470 }
1471
1472 /*
1473 * Expand unit size until address space usage goes over 75%
1474 * and then as much as possible without using more address
1475 * space.
1476 */
1477 last_allocs = INT_MAX;
1478 for (upa = max_upa; upa; upa--) {
1479 int allocs = 0, wasted = 0;
1480
1481 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1482 continue;
1483
1484 for (group = 0; group < nr_groups; group++) {
1485 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1486 allocs += this_allocs;
1487 wasted += this_allocs * upa - group_cnt[group];
1488 }
1489
1490 /*
1491 * Don't accept if wastage is over 1/3. The
1492 * greater-than comparison ensures upa==1 always
1493 * passes the following check.
1494 */
1495 if (wasted > num_possible_cpus() / 3)
1496 continue;
1497
1498 /* and then don't consume more memory */
1499 if (allocs > last_allocs)
1500 break;
1501 last_allocs = allocs;
1502 best_upa = upa;
1503 }
1504 upa = best_upa;
1505
1506 /* allocate and fill alloc_info */
1507 for (group = 0; group < nr_groups; group++)
1508 nr_units += roundup(group_cnt[group], upa);
1509
1510 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1511 if (!ai)
1512 return ERR_PTR(-ENOMEM);
1513 cpu_map = ai->groups[0].cpu_map;
1514
1515 for (group = 0; group < nr_groups; group++) {
1516 ai->groups[group].cpu_map = cpu_map;
1517 cpu_map += roundup(group_cnt[group], upa);
1518 }
1519
1520 ai->static_size = static_size;
1521 ai->reserved_size = reserved_size;
1522 ai->dyn_size = dyn_size;
1523 ai->unit_size = alloc_size / upa;
1524 ai->atom_size = atom_size;
1525 ai->alloc_size = alloc_size;
1526
1527 for (group = 0, unit = 0; group_cnt[group]; group++) {
1528 struct pcpu_group_info *gi = &ai->groups[group];
1529
1530 /*
1531 * Initialize base_offset as if all groups are located
1532 * back-to-back. The caller should update this to
1533 * reflect actual allocation.
1534 */
1535 gi->base_offset = unit * ai->unit_size;
1536
1537 for_each_possible_cpu(cpu)
1538 if (group_map[cpu] == group)
1539 gi->cpu_map[gi->nr_units++] = cpu;
1540 gi->nr_units = roundup(gi->nr_units, upa);
1541 unit += gi->nr_units;
1542 }
1543 BUG_ON(unit != nr_units);
1544
1545 return ai;
1546}
1547#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1548
1549#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
1550/**
1551 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 1552 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 1553 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
1554 * @atom_size: allocation atom size
1555 * @cpu_distance_fn: callback to determine distance between cpus, optional
1556 * @alloc_fn: function to allocate percpu page
1557 * @free_fn: funtion to free percpu page
66c3a757
TH
1558 *
1559 * This is a helper to ease setting up embedded first percpu chunk and
1560 * can be called where pcpu_setup_first_chunk() is expected.
1561 *
1562 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
1563 * by calling @alloc_fn and used as-is without being mapped into
1564 * vmalloc area. Allocations are always whole multiples of @atom_size
1565 * aligned to @atom_size.
1566 *
1567 * This enables the first chunk to piggy back on the linear physical
1568 * mapping which often uses larger page size. Please note that this
1569 * can result in very sparse cpu->unit mapping on NUMA machines thus
1570 * requiring large vmalloc address space. Don't use this allocator if
1571 * vmalloc space is not orders of magnitude larger than distances
1572 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 1573 *
4ba6ce25 1574 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
1575 *
1576 * If the needed size is smaller than the minimum or specified unit
c8826dd5 1577 * size, the leftover is returned using @free_fn.
66c3a757
TH
1578 *
1579 * RETURNS:
fb435d52 1580 * 0 on success, -errno on failure.
66c3a757 1581 */
4ba6ce25 1582int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
1583 size_t atom_size,
1584 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1585 pcpu_fc_alloc_fn_t alloc_fn,
1586 pcpu_fc_free_fn_t free_fn)
66c3a757 1587{
c8826dd5
TH
1588 void *base = (void *)ULONG_MAX;
1589 void **areas = NULL;
fd1e8a1f 1590 struct pcpu_alloc_info *ai;
6ea529a2 1591 size_t size_sum, areas_size, max_distance;
c8826dd5 1592 int group, i, rc;
66c3a757 1593
c8826dd5
TH
1594 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1595 cpu_distance_fn);
fd1e8a1f
TH
1596 if (IS_ERR(ai))
1597 return PTR_ERR(ai);
66c3a757 1598
fd1e8a1f 1599 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 1600 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 1601
c8826dd5
TH
1602 areas = alloc_bootmem_nopanic(areas_size);
1603 if (!areas) {
fb435d52 1604 rc = -ENOMEM;
c8826dd5 1605 goto out_free;
fa8a7094 1606 }
66c3a757 1607
c8826dd5
TH
1608 /* allocate, copy and determine base address */
1609 for (group = 0; group < ai->nr_groups; group++) {
1610 struct pcpu_group_info *gi = &ai->groups[group];
1611 unsigned int cpu = NR_CPUS;
1612 void *ptr;
1613
1614 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1615 cpu = gi->cpu_map[i];
1616 BUG_ON(cpu == NR_CPUS);
1617
1618 /* allocate space for the whole group */
1619 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1620 if (!ptr) {
1621 rc = -ENOMEM;
1622 goto out_free_areas;
1623 }
1624 areas[group] = ptr;
fd1e8a1f 1625
c8826dd5
TH
1626 base = min(ptr, base);
1627
1628 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1629 if (gi->cpu_map[i] == NR_CPUS) {
1630 /* unused unit, free whole */
1631 free_fn(ptr, ai->unit_size);
1632 continue;
1633 }
1634 /* copy and return the unused part */
1635 memcpy(ptr, __per_cpu_load, ai->static_size);
1636 free_fn(ptr + size_sum, ai->unit_size - size_sum);
1637 }
fa8a7094 1638 }
66c3a757 1639
c8826dd5 1640 /* base address is now known, determine group base offsets */
6ea529a2
TH
1641 max_distance = 0;
1642 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 1643 ai->groups[group].base_offset = areas[group] - base;
1a0c3298
TH
1644 max_distance = max_t(size_t, max_distance,
1645 ai->groups[group].base_offset);
6ea529a2
TH
1646 }
1647 max_distance += ai->unit_size;
1648
1649 /* warn if maximum distance is further than 75% of vmalloc space */
1650 if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
1a0c3298 1651 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
6ea529a2
TH
1652 "space 0x%lx\n",
1653 max_distance, VMALLOC_END - VMALLOC_START);
1654#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1655 /* and fail if we have fallback */
1656 rc = -EINVAL;
1657 goto out_free;
1658#endif
1659 }
c8826dd5 1660
004018e2 1661 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
1662 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1663 ai->dyn_size, ai->unit_size);
d4b95f80 1664
fb435d52 1665 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
1666 goto out_free;
1667
1668out_free_areas:
1669 for (group = 0; group < ai->nr_groups; group++)
1670 free_fn(areas[group],
1671 ai->groups[group].nr_units * ai->unit_size);
1672out_free:
fd1e8a1f 1673 pcpu_free_alloc_info(ai);
c8826dd5
TH
1674 if (areas)
1675 free_bootmem(__pa(areas), areas_size);
fb435d52 1676 return rc;
d4b95f80 1677}
3c9a024f 1678#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 1679
3c9a024f 1680#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 1681/**
00ae4064 1682 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
1683 * @reserved_size: the size of reserved percpu area in bytes
1684 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1685 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
1686 * @populate_pte_fn: function to populate pte
1687 *
00ae4064
TH
1688 * This is a helper to ease setting up page-remapped first percpu
1689 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
1690 *
1691 * This is the basic allocator. Static percpu area is allocated
1692 * page-by-page into vmalloc area.
1693 *
1694 * RETURNS:
fb435d52 1695 * 0 on success, -errno on failure.
d4b95f80 1696 */
fb435d52
TH
1697int __init pcpu_page_first_chunk(size_t reserved_size,
1698 pcpu_fc_alloc_fn_t alloc_fn,
1699 pcpu_fc_free_fn_t free_fn,
1700 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 1701{
8f05a6a6 1702 static struct vm_struct vm;
fd1e8a1f 1703 struct pcpu_alloc_info *ai;
00ae4064 1704 char psize_str[16];
ce3141a2 1705 int unit_pages;
d4b95f80 1706 size_t pages_size;
ce3141a2 1707 struct page **pages;
fb435d52 1708 int unit, i, j, rc;
d4b95f80 1709
00ae4064
TH
1710 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1711
4ba6ce25 1712 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
1713 if (IS_ERR(ai))
1714 return PTR_ERR(ai);
1715 BUG_ON(ai->nr_groups != 1);
1716 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1717
1718 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
1719
1720 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
1721 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1722 sizeof(pages[0]));
ce3141a2 1723 pages = alloc_bootmem(pages_size);
d4b95f80 1724
8f05a6a6 1725 /* allocate pages */
d4b95f80 1726 j = 0;
fd1e8a1f 1727 for (unit = 0; unit < num_possible_cpus(); unit++)
ce3141a2 1728 for (i = 0; i < unit_pages; i++) {
fd1e8a1f 1729 unsigned int cpu = ai->groups[0].cpu_map[unit];
d4b95f80
TH
1730 void *ptr;
1731
3cbc8565 1732 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 1733 if (!ptr) {
00ae4064
TH
1734 pr_warning("PERCPU: failed to allocate %s page "
1735 "for cpu%u\n", psize_str, cpu);
d4b95f80
TH
1736 goto enomem;
1737 }
ce3141a2 1738 pages[j++] = virt_to_page(ptr);
d4b95f80
TH
1739 }
1740
8f05a6a6
TH
1741 /* allocate vm area, map the pages and copy static data */
1742 vm.flags = VM_ALLOC;
fd1e8a1f 1743 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
1744 vm_area_register_early(&vm, PAGE_SIZE);
1745
fd1e8a1f 1746 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 1747 unsigned long unit_addr =
fd1e8a1f 1748 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 1749
ce3141a2 1750 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
1751 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1752
1753 /* pte already populated, the following shouldn't fail */
fb435d52
TH
1754 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1755 unit_pages);
1756 if (rc < 0)
1757 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 1758
8f05a6a6
TH
1759 /*
1760 * FIXME: Archs with virtual cache should flush local
1761 * cache for the linear mapping here - something
1762 * equivalent to flush_cache_vmap() on the local cpu.
1763 * flush_cache_vmap() can't be used as most supporting
1764 * data structures are not set up yet.
1765 */
1766
1767 /* copy static data */
fd1e8a1f 1768 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
1769 }
1770
1771 /* we're ready, commit */
1d9d3257 1772 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
1773 unit_pages, psize_str, vm.addr, ai->static_size,
1774 ai->reserved_size, ai->dyn_size);
d4b95f80 1775
fb435d52 1776 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
1777 goto out_free_ar;
1778
1779enomem:
1780 while (--j >= 0)
ce3141a2 1781 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 1782 rc = -ENOMEM;
d4b95f80 1783out_free_ar:
ce3141a2 1784 free_bootmem(__pa(pages), pages_size);
fd1e8a1f 1785 pcpu_free_alloc_info(ai);
fb435d52 1786 return rc;
d4b95f80 1787}
3c9a024f 1788#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 1789
bbddff05 1790#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 1791/*
bbddff05 1792 * Generic SMP percpu area setup.
e74e3962
TH
1793 *
1794 * The embedding helper is used because its behavior closely resembles
1795 * the original non-dynamic generic percpu area setup. This is
1796 * important because many archs have addressing restrictions and might
1797 * fail if the percpu area is located far away from the previous
1798 * location. As an added bonus, in non-NUMA cases, embedding is
1799 * generally a good idea TLB-wise because percpu area can piggy back
1800 * on the physical linear memory mapping which uses large page
1801 * mappings on applicable archs.
1802 */
e74e3962
TH
1803unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1804EXPORT_SYMBOL(__per_cpu_offset);
1805
c8826dd5
TH
1806static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
1807 size_t align)
1808{
1809 return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
1810}
66c3a757 1811
c8826dd5
TH
1812static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
1813{
1814 free_bootmem(__pa(ptr), size);
1815}
1816
e74e3962
TH
1817void __init setup_per_cpu_areas(void)
1818{
e74e3962
TH
1819 unsigned long delta;
1820 unsigned int cpu;
fb435d52 1821 int rc;
e74e3962
TH
1822
1823 /*
1824 * Always reserve area for module percpu variables. That's
1825 * what the legacy allocator did.
1826 */
fb435d52 1827 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
1828 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
1829 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 1830 if (rc < 0)
bbddff05 1831 panic("Failed to initialize percpu areas.");
e74e3962
TH
1832
1833 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1834 for_each_possible_cpu(cpu)
fb435d52 1835 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 1836}
bbddff05
TH
1837#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
1838
1839#else /* CONFIG_SMP */
1840
1841/*
1842 * UP percpu area setup.
1843 *
1844 * UP always uses km-based percpu allocator with identity mapping.
1845 * Static percpu variables are indistinguishable from the usual static
1846 * variables and don't require any special preparation.
1847 */
1848void __init setup_per_cpu_areas(void)
1849{
1850 const size_t unit_size =
1851 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
1852 PERCPU_DYNAMIC_RESERVE));
1853 struct pcpu_alloc_info *ai;
1854 void *fc;
1855
1856 ai = pcpu_alloc_alloc_info(1, 1);
1857 fc = __alloc_bootmem(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
1858 if (!ai || !fc)
1859 panic("Failed to allocate memory for percpu areas.");
1860
1861 ai->dyn_size = unit_size;
1862 ai->unit_size = unit_size;
1863 ai->atom_size = unit_size;
1864 ai->alloc_size = unit_size;
1865 ai->groups[0].nr_units = 1;
1866 ai->groups[0].cpu_map[0] = 0;
1867
1868 if (pcpu_setup_first_chunk(ai, fc) < 0)
1869 panic("Failed to initialize percpu areas.");
1870}
1871
1872#endif /* CONFIG_SMP */
099a19d9
TH
1873
1874/*
1875 * First and reserved chunks are initialized with temporary allocation
1876 * map in initdata so that they can be used before slab is online.
1877 * This function is called after slab is brought up and replaces those
1878 * with properly allocated maps.
1879 */
1880void __init percpu_init_late(void)
1881{
1882 struct pcpu_chunk *target_chunks[] =
1883 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
1884 struct pcpu_chunk *chunk;
1885 unsigned long flags;
1886 int i;
1887
1888 for (i = 0; (chunk = target_chunks[i]); i++) {
1889 int *map;
1890 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
1891
1892 BUILD_BUG_ON(size > PAGE_SIZE);
1893
1894 map = pcpu_mem_alloc(size);
1895 BUG_ON(!map);
1896
1897 spin_lock_irqsave(&pcpu_lock, flags);
1898 memcpy(map, chunk->map, size);
1899 chunk->map = map;
1900 spin_unlock_irqrestore(&pcpu_lock, flags);
1901 }
1902}