]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/percpu.c
percpu: allow non-linear / sparse cpu -> unit mapping
[net-next-2.6.git] / mm / percpu.c
CommitLineData
fbf59bc9
TH
1/*
2 * linux/mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each
2f39e637
TH
11 * chunk is consisted of boot-time determined number of units and the
12 * first chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated. ie. in
17 * vmalloc area
fbf59bc9
TH
18 *
19 * c0 c1 c2
20 * ------------------- ------------------- ------------
21 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
22 * ------------------- ...... ------------------- .... ------------
23 *
24 * Allocation is done in offset-size areas of single unit space. Ie,
25 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
2f39e637
TH
26 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
27 * cpus. On NUMA, the mapping can be non-linear and even sparse.
28 * Percpu access can be done by configuring percpu base registers
29 * according to cpu to unit mapping and pcpu_unit_size.
fbf59bc9 30 *
2f39e637
TH
31 * There are usually many small percpu allocations many of them being
32 * as small as 4 bytes. The allocator organizes chunks into lists
fbf59bc9
TH
33 * according to free size and tries to allocate from the fullest one.
34 * Each chunk keeps the maximum contiguous area size hint which is
35 * guaranteed to be eqaul to or larger than the maximum contiguous
36 * area in the chunk. This helps the allocator not to iterate the
37 * chunk maps unnecessarily.
38 *
39 * Allocation state in each chunk is kept using an array of integers
40 * on chunk->map. A positive value in the map represents a free
41 * region and negative allocated. Allocation inside a chunk is done
42 * by scanning this map sequentially and serving the first matching
43 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
44 * Chunks can be determined from the address using the index field
45 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9
TH
46 *
47 * To use this allocator, arch code should do the followings.
48 *
e74e3962 49 * - drop CONFIG_HAVE_LEGACY_PER_CPU_AREA
fbf59bc9
TH
50 *
51 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
52 * regular address to percpu pointer and back if they need to be
53 * different from the default
fbf59bc9 54 *
8d408b4b
TH
55 * - use pcpu_setup_first_chunk() during percpu area initialization to
56 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
57 */
58
59#include <linux/bitmap.h>
60#include <linux/bootmem.h>
61#include <linux/list.h>
62#include <linux/mm.h>
63#include <linux/module.h>
64#include <linux/mutex.h>
65#include <linux/percpu.h>
66#include <linux/pfn.h>
fbf59bc9 67#include <linux/slab.h>
ccea34b5 68#include <linux/spinlock.h>
fbf59bc9 69#include <linux/vmalloc.h>
a56dbddf 70#include <linux/workqueue.h>
fbf59bc9
TH
71
72#include <asm/cacheflush.h>
e0100983 73#include <asm/sections.h>
fbf59bc9
TH
74#include <asm/tlbflush.h>
75
fbf59bc9
TH
76#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
77#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
78
e0100983
TH
79/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
80#ifndef __addr_to_pcpu_ptr
81#define __addr_to_pcpu_ptr(addr) \
82 (void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr \
83 + (unsigned long)__per_cpu_start)
84#endif
85#ifndef __pcpu_ptr_to_addr
86#define __pcpu_ptr_to_addr(ptr) \
87 (void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr \
88 - (unsigned long)__per_cpu_start)
89#endif
90
fbf59bc9
TH
91struct pcpu_chunk {
92 struct list_head list; /* linked to pcpu_slot lists */
fbf59bc9
TH
93 int free_size; /* free bytes in the chunk */
94 int contig_hint; /* max contiguous size hint */
95 struct vm_struct *vm; /* mapped vmalloc region */
96 int map_used; /* # of map entries used */
97 int map_alloc; /* # of map entries allocated */
98 int *map; /* allocation map */
8d408b4b 99 bool immutable; /* no [de]population allowed */
ce3141a2 100 unsigned long populated[]; /* populated bitmap */
fbf59bc9
TH
101};
102
40150d37
TH
103static int pcpu_unit_pages __read_mostly;
104static int pcpu_unit_size __read_mostly;
2f39e637 105static int pcpu_nr_units __read_mostly;
40150d37
TH
106static int pcpu_chunk_size __read_mostly;
107static int pcpu_nr_slots __read_mostly;
108static size_t pcpu_chunk_struct_size __read_mostly;
fbf59bc9 109
2f39e637
TH
110/* cpus with the lowest and highest unit numbers */
111static unsigned int pcpu_first_unit_cpu __read_mostly;
112static unsigned int pcpu_last_unit_cpu __read_mostly;
113
fbf59bc9 114/* the address of the first chunk which starts with the kernel static area */
40150d37 115void *pcpu_base_addr __read_mostly;
fbf59bc9
TH
116EXPORT_SYMBOL_GPL(pcpu_base_addr);
117
2f39e637
TH
118/* cpu -> unit map */
119const int *pcpu_unit_map __read_mostly;
120
ae9e6bc9
TH
121/*
122 * The first chunk which always exists. Note that unlike other
123 * chunks, this one can be allocated and mapped in several different
124 * ways and thus often doesn't live in the vmalloc area.
125 */
126static struct pcpu_chunk *pcpu_first_chunk;
127
128/*
129 * Optional reserved chunk. This chunk reserves part of the first
130 * chunk and serves it for reserved allocations. The amount of
131 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
132 * area doesn't exist, the following variables contain NULL and 0
133 * respectively.
134 */
edcb4639 135static struct pcpu_chunk *pcpu_reserved_chunk;
edcb4639
TH
136static int pcpu_reserved_chunk_limit;
137
fbf59bc9 138/*
ccea34b5
TH
139 * Synchronization rules.
140 *
141 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
ce3141a2
TH
142 * protects allocation/reclaim paths, chunks, populated bitmap and
143 * vmalloc mapping. The latter is a spinlock and protects the index
144 * data structures - chunk slots, chunks and area maps in chunks.
ccea34b5
TH
145 *
146 * During allocation, pcpu_alloc_mutex is kept locked all the time and
147 * pcpu_lock is grabbed and released as necessary. All actual memory
148 * allocations are done using GFP_KERNEL with pcpu_lock released.
149 *
150 * Free path accesses and alters only the index data structures, so it
151 * can be safely called from atomic context. When memory needs to be
152 * returned to the system, free path schedules reclaim_work which
153 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
154 * reclaimed, release both locks and frees the chunks. Note that it's
155 * necessary to grab both locks to remove a chunk from circulation as
156 * allocation path might be referencing the chunk with only
157 * pcpu_alloc_mutex locked.
fbf59bc9 158 */
ccea34b5
TH
159static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
160static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
fbf59bc9 161
40150d37 162static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
fbf59bc9 163
a56dbddf
TH
164/* reclaim work to release fully free chunks, scheduled from free path */
165static void pcpu_reclaim(struct work_struct *work);
166static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
167
d9b55eeb 168static int __pcpu_size_to_slot(int size)
fbf59bc9 169{
cae3aeb8 170 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
171 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
172}
173
d9b55eeb
TH
174static int pcpu_size_to_slot(int size)
175{
176 if (size == pcpu_unit_size)
177 return pcpu_nr_slots - 1;
178 return __pcpu_size_to_slot(size);
179}
180
fbf59bc9
TH
181static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
182{
183 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
184 return 0;
185
186 return pcpu_size_to_slot(chunk->free_size);
187}
188
189static int pcpu_page_idx(unsigned int cpu, int page_idx)
190{
2f39e637 191 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
192}
193
fbf59bc9
TH
194static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
195 unsigned int cpu, int page_idx)
196{
197 return (unsigned long)chunk->vm->addr +
198 (pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT);
199}
200
ce3141a2
TH
201static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
202 unsigned int cpu, int page_idx)
c8a51be4 203{
ce3141a2
TH
204 /* must not be used on pre-mapped chunk */
205 WARN_ON(chunk->immutable);
c8a51be4 206
ce3141a2 207 return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
fbf59bc9
TH
208}
209
e1b9aa3f
CL
210/* set the pointer to a chunk in a page struct */
211static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
212{
213 page->index = (unsigned long)pcpu;
214}
215
216/* obtain pointer to a chunk from a page struct */
217static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
218{
219 return (struct pcpu_chunk *)page->index;
220}
221
ce3141a2
TH
222static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
223{
224 *rs = find_next_zero_bit(chunk->populated, end, *rs);
225 *re = find_next_bit(chunk->populated, end, *rs + 1);
226}
227
228static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
229{
230 *rs = find_next_bit(chunk->populated, end, *rs);
231 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
232}
233
234/*
235 * (Un)populated page region iterators. Iterate over (un)populated
236 * page regions betwen @start and @end in @chunk. @rs and @re should
237 * be integer variables and will be set to start and end page index of
238 * the current region.
239 */
240#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
241 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
242 (rs) < (re); \
243 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
244
245#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
246 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
247 (rs) < (re); \
248 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
249
fbf59bc9 250/**
1880d93b
TH
251 * pcpu_mem_alloc - allocate memory
252 * @size: bytes to allocate
fbf59bc9 253 *
1880d93b
TH
254 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
255 * kzalloc() is used; otherwise, vmalloc() is used. The returned
256 * memory is always zeroed.
fbf59bc9 257 *
ccea34b5
TH
258 * CONTEXT:
259 * Does GFP_KERNEL allocation.
260 *
fbf59bc9 261 * RETURNS:
1880d93b 262 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 263 */
1880d93b 264static void *pcpu_mem_alloc(size_t size)
fbf59bc9 265{
1880d93b
TH
266 if (size <= PAGE_SIZE)
267 return kzalloc(size, GFP_KERNEL);
268 else {
269 void *ptr = vmalloc(size);
270 if (ptr)
271 memset(ptr, 0, size);
272 return ptr;
273 }
274}
fbf59bc9 275
1880d93b
TH
276/**
277 * pcpu_mem_free - free memory
278 * @ptr: memory to free
279 * @size: size of the area
280 *
281 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
282 */
283static void pcpu_mem_free(void *ptr, size_t size)
284{
fbf59bc9 285 if (size <= PAGE_SIZE)
1880d93b 286 kfree(ptr);
fbf59bc9 287 else
1880d93b 288 vfree(ptr);
fbf59bc9
TH
289}
290
291/**
292 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
293 * @chunk: chunk of interest
294 * @oslot: the previous slot it was on
295 *
296 * This function is called after an allocation or free changed @chunk.
297 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
298 * moved to the slot. Note that the reserved chunk is never put on
299 * chunk slots.
ccea34b5
TH
300 *
301 * CONTEXT:
302 * pcpu_lock.
fbf59bc9
TH
303 */
304static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
305{
306 int nslot = pcpu_chunk_slot(chunk);
307
edcb4639 308 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
309 if (oslot < nslot)
310 list_move(&chunk->list, &pcpu_slot[nslot]);
311 else
312 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
313 }
314}
315
fbf59bc9 316/**
e1b9aa3f
CL
317 * pcpu_chunk_addr_search - determine chunk containing specified address
318 * @addr: address for which the chunk needs to be determined.
ccea34b5 319 *
fbf59bc9
TH
320 * RETURNS:
321 * The address of the found chunk.
322 */
323static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
324{
ae9e6bc9 325 void *first_start = pcpu_first_chunk->vm->addr;
fbf59bc9 326
ae9e6bc9 327 /* is it in the first chunk? */
79ba6ac8 328 if (addr >= first_start && addr < first_start + pcpu_unit_size) {
ae9e6bc9
TH
329 /* is it in the reserved area? */
330 if (addr < first_start + pcpu_reserved_chunk_limit)
edcb4639 331 return pcpu_reserved_chunk;
ae9e6bc9 332 return pcpu_first_chunk;
edcb4639
TH
333 }
334
2f39e637
TH
335 /*
336 * The address is relative to unit0 which might be unused and
337 * thus unmapped. Offset the address to the unit space of the
338 * current processor before looking it up in the vmalloc
339 * space. Note that any possible cpu id can be used here, so
340 * there's no need to worry about preemption or cpu hotplug.
341 */
342 addr += pcpu_unit_map[smp_processor_id()] * pcpu_unit_size;
e1b9aa3f 343 return pcpu_get_page_chunk(vmalloc_to_page(addr));
fbf59bc9
TH
344}
345
9f7dcf22
TH
346/**
347 * pcpu_extend_area_map - extend area map for allocation
348 * @chunk: target chunk
349 *
350 * Extend area map of @chunk so that it can accomodate an allocation.
351 * A single allocation can split an area into three areas, so this
352 * function makes sure that @chunk->map has at least two extra slots.
353 *
ccea34b5
TH
354 * CONTEXT:
355 * pcpu_alloc_mutex, pcpu_lock. pcpu_lock is released and reacquired
356 * if area map is extended.
357 *
9f7dcf22
TH
358 * RETURNS:
359 * 0 if noop, 1 if successfully extended, -errno on failure.
360 */
361static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
362{
363 int new_alloc;
364 int *new;
365 size_t size;
366
367 /* has enough? */
368 if (chunk->map_alloc >= chunk->map_used + 2)
369 return 0;
370
ccea34b5
TH
371 spin_unlock_irq(&pcpu_lock);
372
9f7dcf22
TH
373 new_alloc = PCPU_DFL_MAP_ALLOC;
374 while (new_alloc < chunk->map_used + 2)
375 new_alloc *= 2;
376
377 new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
ccea34b5
TH
378 if (!new) {
379 spin_lock_irq(&pcpu_lock);
9f7dcf22 380 return -ENOMEM;
ccea34b5
TH
381 }
382
383 /*
384 * Acquire pcpu_lock and switch to new area map. Only free
385 * could have happened inbetween, so map_used couldn't have
386 * grown.
387 */
388 spin_lock_irq(&pcpu_lock);
389 BUG_ON(new_alloc < chunk->map_used + 2);
9f7dcf22
TH
390
391 size = chunk->map_alloc * sizeof(chunk->map[0]);
392 memcpy(new, chunk->map, size);
393
394 /*
395 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
396 * one of the first chunks and still using static map.
397 */
398 if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
399 pcpu_mem_free(chunk->map, size);
400
401 chunk->map_alloc = new_alloc;
402 chunk->map = new;
403 return 0;
404}
405
fbf59bc9
TH
406/**
407 * pcpu_split_block - split a map block
408 * @chunk: chunk of interest
409 * @i: index of map block to split
cae3aeb8
TH
410 * @head: head size in bytes (can be 0)
411 * @tail: tail size in bytes (can be 0)
fbf59bc9
TH
412 *
413 * Split the @i'th map block into two or three blocks. If @head is
414 * non-zero, @head bytes block is inserted before block @i moving it
415 * to @i+1 and reducing its size by @head bytes.
416 *
417 * If @tail is non-zero, the target block, which can be @i or @i+1
418 * depending on @head, is reduced by @tail bytes and @tail byte block
419 * is inserted after the target block.
420 *
9f7dcf22 421 * @chunk->map must have enough free slots to accomodate the split.
ccea34b5
TH
422 *
423 * CONTEXT:
424 * pcpu_lock.
fbf59bc9 425 */
9f7dcf22
TH
426static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
427 int head, int tail)
fbf59bc9
TH
428{
429 int nr_extra = !!head + !!tail;
1880d93b 430
9f7dcf22 431 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
fbf59bc9 432
9f7dcf22 433 /* insert new subblocks */
fbf59bc9
TH
434 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
435 sizeof(chunk->map[0]) * (chunk->map_used - i));
436 chunk->map_used += nr_extra;
437
438 if (head) {
439 chunk->map[i + 1] = chunk->map[i] - head;
440 chunk->map[i++] = head;
441 }
442 if (tail) {
443 chunk->map[i++] -= tail;
444 chunk->map[i] = tail;
445 }
fbf59bc9
TH
446}
447
448/**
449 * pcpu_alloc_area - allocate area from a pcpu_chunk
450 * @chunk: chunk of interest
cae3aeb8 451 * @size: wanted size in bytes
fbf59bc9
TH
452 * @align: wanted align
453 *
454 * Try to allocate @size bytes area aligned at @align from @chunk.
455 * Note that this function only allocates the offset. It doesn't
456 * populate or map the area.
457 *
9f7dcf22
TH
458 * @chunk->map must have at least two free slots.
459 *
ccea34b5
TH
460 * CONTEXT:
461 * pcpu_lock.
462 *
fbf59bc9 463 * RETURNS:
9f7dcf22
TH
464 * Allocated offset in @chunk on success, -1 if no matching area is
465 * found.
fbf59bc9
TH
466 */
467static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
468{
469 int oslot = pcpu_chunk_slot(chunk);
470 int max_contig = 0;
471 int i, off;
472
fbf59bc9
TH
473 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
474 bool is_last = i + 1 == chunk->map_used;
475 int head, tail;
476
477 /* extra for alignment requirement */
478 head = ALIGN(off, align) - off;
479 BUG_ON(i == 0 && head != 0);
480
481 if (chunk->map[i] < 0)
482 continue;
483 if (chunk->map[i] < head + size) {
484 max_contig = max(chunk->map[i], max_contig);
485 continue;
486 }
487
488 /*
489 * If head is small or the previous block is free,
490 * merge'em. Note that 'small' is defined as smaller
491 * than sizeof(int), which is very small but isn't too
492 * uncommon for percpu allocations.
493 */
494 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
495 if (chunk->map[i - 1] > 0)
496 chunk->map[i - 1] += head;
497 else {
498 chunk->map[i - 1] -= head;
499 chunk->free_size -= head;
500 }
501 chunk->map[i] -= head;
502 off += head;
503 head = 0;
504 }
505
506 /* if tail is small, just keep it around */
507 tail = chunk->map[i] - head - size;
508 if (tail < sizeof(int))
509 tail = 0;
510
511 /* split if warranted */
512 if (head || tail) {
9f7dcf22 513 pcpu_split_block(chunk, i, head, tail);
fbf59bc9
TH
514 if (head) {
515 i++;
516 off += head;
517 max_contig = max(chunk->map[i - 1], max_contig);
518 }
519 if (tail)
520 max_contig = max(chunk->map[i + 1], max_contig);
521 }
522
523 /* update hint and mark allocated */
524 if (is_last)
525 chunk->contig_hint = max_contig; /* fully scanned */
526 else
527 chunk->contig_hint = max(chunk->contig_hint,
528 max_contig);
529
530 chunk->free_size -= chunk->map[i];
531 chunk->map[i] = -chunk->map[i];
532
533 pcpu_chunk_relocate(chunk, oslot);
534 return off;
535 }
536
537 chunk->contig_hint = max_contig; /* fully scanned */
538 pcpu_chunk_relocate(chunk, oslot);
539
9f7dcf22
TH
540 /* tell the upper layer that this chunk has no matching area */
541 return -1;
fbf59bc9
TH
542}
543
544/**
545 * pcpu_free_area - free area to a pcpu_chunk
546 * @chunk: chunk of interest
547 * @freeme: offset of area to free
548 *
549 * Free area starting from @freeme to @chunk. Note that this function
550 * only modifies the allocation map. It doesn't depopulate or unmap
551 * the area.
ccea34b5
TH
552 *
553 * CONTEXT:
554 * pcpu_lock.
fbf59bc9
TH
555 */
556static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
557{
558 int oslot = pcpu_chunk_slot(chunk);
559 int i, off;
560
561 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
562 if (off == freeme)
563 break;
564 BUG_ON(off != freeme);
565 BUG_ON(chunk->map[i] > 0);
566
567 chunk->map[i] = -chunk->map[i];
568 chunk->free_size += chunk->map[i];
569
570 /* merge with previous? */
571 if (i > 0 && chunk->map[i - 1] >= 0) {
572 chunk->map[i - 1] += chunk->map[i];
573 chunk->map_used--;
574 memmove(&chunk->map[i], &chunk->map[i + 1],
575 (chunk->map_used - i) * sizeof(chunk->map[0]));
576 i--;
577 }
578 /* merge with next? */
579 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
580 chunk->map[i] += chunk->map[i + 1];
581 chunk->map_used--;
582 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
583 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
584 }
585
586 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
587 pcpu_chunk_relocate(chunk, oslot);
588}
589
590/**
ce3141a2
TH
591 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
592 * @chunk: chunk of interest
593 * @bitmapp: output parameter for bitmap
594 * @may_alloc: may allocate the array
595 *
596 * Returns pointer to array of pointers to struct page and bitmap,
597 * both of which can be indexed with pcpu_page_idx(). The returned
598 * array is cleared to zero and *@bitmapp is copied from
599 * @chunk->populated. Note that there is only one array and bitmap
600 * and access exclusion is the caller's responsibility.
601 *
602 * CONTEXT:
603 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
604 * Otherwise, don't care.
605 *
606 * RETURNS:
607 * Pointer to temp pages array on success, NULL on failure.
608 */
609static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
610 unsigned long **bitmapp,
611 bool may_alloc)
612{
613 static struct page **pages;
614 static unsigned long *bitmap;
2f39e637 615 size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
ce3141a2
TH
616 size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
617 sizeof(unsigned long);
618
619 if (!pages || !bitmap) {
620 if (may_alloc && !pages)
621 pages = pcpu_mem_alloc(pages_size);
622 if (may_alloc && !bitmap)
623 bitmap = pcpu_mem_alloc(bitmap_size);
624 if (!pages || !bitmap)
625 return NULL;
626 }
627
628 memset(pages, 0, pages_size);
629 bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
630
631 *bitmapp = bitmap;
632 return pages;
633}
634
635/**
636 * pcpu_free_pages - free pages which were allocated for @chunk
637 * @chunk: chunk pages were allocated for
638 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
639 * @populated: populated bitmap
640 * @page_start: page index of the first page to be freed
641 * @page_end: page index of the last page to be freed + 1
642 *
643 * Free pages [@page_start and @page_end) in @pages for all units.
644 * The pages were allocated for @chunk.
645 */
646static void pcpu_free_pages(struct pcpu_chunk *chunk,
647 struct page **pages, unsigned long *populated,
648 int page_start, int page_end)
649{
650 unsigned int cpu;
651 int i;
652
653 for_each_possible_cpu(cpu) {
654 for (i = page_start; i < page_end; i++) {
655 struct page *page = pages[pcpu_page_idx(cpu, i)];
656
657 if (page)
658 __free_page(page);
659 }
660 }
661}
662
663/**
664 * pcpu_alloc_pages - allocates pages for @chunk
665 * @chunk: target chunk
666 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
667 * @populated: populated bitmap
668 * @page_start: page index of the first page to be allocated
669 * @page_end: page index of the last page to be allocated + 1
670 *
671 * Allocate pages [@page_start,@page_end) into @pages for all units.
672 * The allocation is for @chunk. Percpu core doesn't care about the
673 * content of @pages and will pass it verbatim to pcpu_map_pages().
674 */
675static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
676 struct page **pages, unsigned long *populated,
677 int page_start, int page_end)
678{
679 const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
680 unsigned int cpu;
681 int i;
682
683 for_each_possible_cpu(cpu) {
684 for (i = page_start; i < page_end; i++) {
685 struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
686
687 *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
688 if (!*pagep) {
689 pcpu_free_pages(chunk, pages, populated,
690 page_start, page_end);
691 return -ENOMEM;
692 }
693 }
694 }
695 return 0;
696}
697
698/**
699 * pcpu_pre_unmap_flush - flush cache prior to unmapping
700 * @chunk: chunk the regions to be flushed belongs to
701 * @page_start: page index of the first page to be flushed
702 * @page_end: page index of the last page to be flushed + 1
703 *
704 * Pages in [@page_start,@page_end) of @chunk are about to be
705 * unmapped. Flush cache. As each flushing trial can be very
706 * expensive, issue flush on the whole region at once rather than
707 * doing it for each cpu. This could be an overkill but is more
708 * scalable.
709 */
710static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
711 int page_start, int page_end)
712{
2f39e637
TH
713 flush_cache_vunmap(
714 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
715 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
ce3141a2
TH
716}
717
718static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
719{
720 unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
721}
722
723/**
724 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
fbf59bc9 725 * @chunk: chunk of interest
ce3141a2
TH
726 * @pages: pages array which can be used to pass information to free
727 * @populated: populated bitmap
fbf59bc9
TH
728 * @page_start: page index of the first page to unmap
729 * @page_end: page index of the last page to unmap + 1
fbf59bc9
TH
730 *
731 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
ce3141a2
TH
732 * Corresponding elements in @pages were cleared by the caller and can
733 * be used to carry information to pcpu_free_pages() which will be
734 * called after all unmaps are finished. The caller should call
735 * proper pre/post flush functions.
fbf59bc9 736 */
ce3141a2
TH
737static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
738 struct page **pages, unsigned long *populated,
739 int page_start, int page_end)
fbf59bc9 740{
fbf59bc9 741 unsigned int cpu;
ce3141a2 742 int i;
fbf59bc9 743
ce3141a2
TH
744 for_each_possible_cpu(cpu) {
745 for (i = page_start; i < page_end; i++) {
746 struct page *page;
8d408b4b 747
ce3141a2
TH
748 page = pcpu_chunk_page(chunk, cpu, i);
749 WARN_ON(!page);
750 pages[pcpu_page_idx(cpu, i)] = page;
751 }
752 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
753 page_end - page_start);
754 }
fbf59bc9 755
ce3141a2
TH
756 for (i = page_start; i < page_end; i++)
757 __clear_bit(i, populated);
758}
759
760/**
761 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
762 * @chunk: pcpu_chunk the regions to be flushed belong to
763 * @page_start: page index of the first page to be flushed
764 * @page_end: page index of the last page to be flushed + 1
765 *
766 * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
767 * TLB for the regions. This can be skipped if the area is to be
768 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
769 *
770 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
771 * for the whole region.
772 */
773static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
774 int page_start, int page_end)
775{
2f39e637
TH
776 flush_tlb_kernel_range(
777 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
778 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
fbf59bc9
TH
779}
780
c8a51be4
TH
781static int __pcpu_map_pages(unsigned long addr, struct page **pages,
782 int nr_pages)
783{
784 return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
785 PAGE_KERNEL, pages);
786}
787
788/**
ce3141a2 789 * pcpu_map_pages - map pages into a pcpu_chunk
c8a51be4 790 * @chunk: chunk of interest
ce3141a2
TH
791 * @pages: pages array containing pages to be mapped
792 * @populated: populated bitmap
c8a51be4
TH
793 * @page_start: page index of the first page to map
794 * @page_end: page index of the last page to map + 1
795 *
ce3141a2
TH
796 * For each cpu, map pages [@page_start,@page_end) into @chunk. The
797 * caller is responsible for calling pcpu_post_map_flush() after all
798 * mappings are complete.
799 *
800 * This function is responsible for setting corresponding bits in
801 * @chunk->populated bitmap and whatever is necessary for reverse
802 * lookup (addr -> chunk).
c8a51be4 803 */
ce3141a2
TH
804static int pcpu_map_pages(struct pcpu_chunk *chunk,
805 struct page **pages, unsigned long *populated,
806 int page_start, int page_end)
c8a51be4 807{
ce3141a2
TH
808 unsigned int cpu, tcpu;
809 int i, err;
c8a51be4
TH
810
811 for_each_possible_cpu(cpu) {
812 err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
ce3141a2 813 &pages[pcpu_page_idx(cpu, page_start)],
c8a51be4
TH
814 page_end - page_start);
815 if (err < 0)
ce3141a2 816 goto err;
c8a51be4
TH
817 }
818
ce3141a2
TH
819 /* mapping successful, link chunk and mark populated */
820 for (i = page_start; i < page_end; i++) {
821 for_each_possible_cpu(cpu)
822 pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
823 chunk);
824 __set_bit(i, populated);
825 }
826
827 return 0;
828
829err:
830 for_each_possible_cpu(tcpu) {
831 if (tcpu == cpu)
832 break;
833 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
834 page_end - page_start);
835 }
836 return err;
837}
838
839/**
840 * pcpu_post_map_flush - flush cache after mapping
841 * @chunk: pcpu_chunk the regions to be flushed belong to
842 * @page_start: page index of the first page to be flushed
843 * @page_end: page index of the last page to be flushed + 1
844 *
845 * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
846 * cache.
847 *
848 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
849 * for the whole region.
850 */
851static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
852 int page_start, int page_end)
853{
2f39e637
TH
854 flush_cache_vmap(
855 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
856 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
c8a51be4
TH
857}
858
fbf59bc9
TH
859/**
860 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
861 * @chunk: chunk to depopulate
862 * @off: offset to the area to depopulate
cae3aeb8 863 * @size: size of the area to depopulate in bytes
fbf59bc9
TH
864 * @flush: whether to flush cache and tlb or not
865 *
866 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
867 * from @chunk. If @flush is true, vcache is flushed before unmapping
868 * and tlb after.
ccea34b5
TH
869 *
870 * CONTEXT:
871 * pcpu_alloc_mutex.
fbf59bc9 872 */
ce3141a2 873static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
fbf59bc9
TH
874{
875 int page_start = PFN_DOWN(off);
876 int page_end = PFN_UP(off + size);
ce3141a2
TH
877 struct page **pages;
878 unsigned long *populated;
879 int rs, re;
880
881 /* quick path, check whether it's empty already */
882 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
883 if (rs == page_start && re == page_end)
884 return;
885 break;
886 }
fbf59bc9 887
ce3141a2
TH
888 /* immutable chunks can't be depopulated */
889 WARN_ON(chunk->immutable);
fbf59bc9 890
ce3141a2
TH
891 /*
892 * If control reaches here, there must have been at least one
893 * successful population attempt so the temp pages array must
894 * be available now.
895 */
896 pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
897 BUG_ON(!pages);
fbf59bc9 898
ce3141a2
TH
899 /* unmap and free */
900 pcpu_pre_unmap_flush(chunk, page_start, page_end);
fbf59bc9 901
ce3141a2
TH
902 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
903 pcpu_unmap_pages(chunk, pages, populated, rs, re);
fbf59bc9 904
ce3141a2
TH
905 /* no need to flush tlb, vmalloc will handle it lazily */
906
907 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
908 pcpu_free_pages(chunk, pages, populated, rs, re);
fbf59bc9 909
ce3141a2
TH
910 /* commit new bitmap */
911 bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
fbf59bc9
TH
912}
913
fbf59bc9
TH
914/**
915 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
916 * @chunk: chunk of interest
917 * @off: offset to the area to populate
cae3aeb8 918 * @size: size of the area to populate in bytes
fbf59bc9
TH
919 *
920 * For each cpu, populate and map pages [@page_start,@page_end) into
921 * @chunk. The area is cleared on return.
ccea34b5
TH
922 *
923 * CONTEXT:
924 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
fbf59bc9
TH
925 */
926static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
927{
fbf59bc9
TH
928 int page_start = PFN_DOWN(off);
929 int page_end = PFN_UP(off + size);
ce3141a2
TH
930 int free_end = page_start, unmap_end = page_start;
931 struct page **pages;
932 unsigned long *populated;
fbf59bc9 933 unsigned int cpu;
ce3141a2 934 int rs, re, rc;
fbf59bc9 935
ce3141a2
TH
936 /* quick path, check whether all pages are already there */
937 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) {
938 if (rs == page_start && re == page_end)
939 goto clear;
940 break;
941 }
fbf59bc9 942
ce3141a2
TH
943 /* need to allocate and map pages, this chunk can't be immutable */
944 WARN_ON(chunk->immutable);
fbf59bc9 945
ce3141a2
TH
946 pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
947 if (!pages)
948 return -ENOMEM;
fbf59bc9 949
ce3141a2
TH
950 /* alloc and map */
951 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
952 rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
953 if (rc)
954 goto err_free;
955 free_end = re;
fbf59bc9
TH
956 }
957
ce3141a2
TH
958 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
959 rc = pcpu_map_pages(chunk, pages, populated, rs, re);
960 if (rc)
961 goto err_unmap;
962 unmap_end = re;
963 }
964 pcpu_post_map_flush(chunk, page_start, page_end);
fbf59bc9 965
ce3141a2
TH
966 /* commit new bitmap */
967 bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
968clear:
fbf59bc9 969 for_each_possible_cpu(cpu)
2f39e637 970 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
fbf59bc9 971 return 0;
ce3141a2
TH
972
973err_unmap:
974 pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
975 pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
976 pcpu_unmap_pages(chunk, pages, populated, rs, re);
977 pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
978err_free:
979 pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
980 pcpu_free_pages(chunk, pages, populated, rs, re);
981 return rc;
fbf59bc9
TH
982}
983
984static void free_pcpu_chunk(struct pcpu_chunk *chunk)
985{
986 if (!chunk)
987 return;
988 if (chunk->vm)
989 free_vm_area(chunk->vm);
1880d93b 990 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
fbf59bc9
TH
991 kfree(chunk);
992}
993
994static struct pcpu_chunk *alloc_pcpu_chunk(void)
995{
996 struct pcpu_chunk *chunk;
997
998 chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
999 if (!chunk)
1000 return NULL;
1001
1880d93b 1002 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
fbf59bc9
TH
1003 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
1004 chunk->map[chunk->map_used++] = pcpu_unit_size;
1005
1006 chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL);
1007 if (!chunk->vm) {
1008 free_pcpu_chunk(chunk);
1009 return NULL;
1010 }
1011
1012 INIT_LIST_HEAD(&chunk->list);
1013 chunk->free_size = pcpu_unit_size;
1014 chunk->contig_hint = pcpu_unit_size;
1015
1016 return chunk;
1017}
1018
1019/**
edcb4639 1020 * pcpu_alloc - the percpu allocator
cae3aeb8 1021 * @size: size of area to allocate in bytes
fbf59bc9 1022 * @align: alignment of area (max PAGE_SIZE)
edcb4639 1023 * @reserved: allocate from the reserved chunk if available
fbf59bc9 1024 *
ccea34b5
TH
1025 * Allocate percpu area of @size bytes aligned at @align.
1026 *
1027 * CONTEXT:
1028 * Does GFP_KERNEL allocation.
fbf59bc9
TH
1029 *
1030 * RETURNS:
1031 * Percpu pointer to the allocated area on success, NULL on failure.
1032 */
edcb4639 1033static void *pcpu_alloc(size_t size, size_t align, bool reserved)
fbf59bc9 1034{
fbf59bc9
TH
1035 struct pcpu_chunk *chunk;
1036 int slot, off;
1037
8d408b4b 1038 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
fbf59bc9
TH
1039 WARN(true, "illegal size (%zu) or align (%zu) for "
1040 "percpu allocation\n", size, align);
1041 return NULL;
1042 }
1043
ccea34b5
TH
1044 mutex_lock(&pcpu_alloc_mutex);
1045 spin_lock_irq(&pcpu_lock);
fbf59bc9 1046
edcb4639
TH
1047 /* serve reserved allocations from the reserved chunk if available */
1048 if (reserved && pcpu_reserved_chunk) {
1049 chunk = pcpu_reserved_chunk;
9f7dcf22
TH
1050 if (size > chunk->contig_hint ||
1051 pcpu_extend_area_map(chunk) < 0)
ccea34b5 1052 goto fail_unlock;
edcb4639
TH
1053 off = pcpu_alloc_area(chunk, size, align);
1054 if (off >= 0)
1055 goto area_found;
ccea34b5 1056 goto fail_unlock;
edcb4639
TH
1057 }
1058
ccea34b5 1059restart:
edcb4639 1060 /* search through normal chunks */
fbf59bc9
TH
1061 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1062 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1063 if (size > chunk->contig_hint)
1064 continue;
ccea34b5
TH
1065
1066 switch (pcpu_extend_area_map(chunk)) {
1067 case 0:
1068 break;
1069 case 1:
1070 goto restart; /* pcpu_lock dropped, restart */
1071 default:
1072 goto fail_unlock;
1073 }
1074
fbf59bc9
TH
1075 off = pcpu_alloc_area(chunk, size, align);
1076 if (off >= 0)
1077 goto area_found;
fbf59bc9
TH
1078 }
1079 }
1080
1081 /* hmmm... no space left, create a new chunk */
ccea34b5
TH
1082 spin_unlock_irq(&pcpu_lock);
1083
fbf59bc9
TH
1084 chunk = alloc_pcpu_chunk();
1085 if (!chunk)
ccea34b5
TH
1086 goto fail_unlock_mutex;
1087
1088 spin_lock_irq(&pcpu_lock);
fbf59bc9 1089 pcpu_chunk_relocate(chunk, -1);
ccea34b5 1090 goto restart;
fbf59bc9
TH
1091
1092area_found:
ccea34b5
TH
1093 spin_unlock_irq(&pcpu_lock);
1094
fbf59bc9
TH
1095 /* populate, map and clear the area */
1096 if (pcpu_populate_chunk(chunk, off, size)) {
ccea34b5 1097 spin_lock_irq(&pcpu_lock);
fbf59bc9 1098 pcpu_free_area(chunk, off);
ccea34b5 1099 goto fail_unlock;
fbf59bc9
TH
1100 }
1101
ccea34b5
TH
1102 mutex_unlock(&pcpu_alloc_mutex);
1103
2f39e637 1104 /* return address relative to unit0 */
ccea34b5
TH
1105 return __addr_to_pcpu_ptr(chunk->vm->addr + off);
1106
1107fail_unlock:
1108 spin_unlock_irq(&pcpu_lock);
1109fail_unlock_mutex:
1110 mutex_unlock(&pcpu_alloc_mutex);
1111 return NULL;
fbf59bc9 1112}
edcb4639
TH
1113
1114/**
1115 * __alloc_percpu - allocate dynamic percpu area
1116 * @size: size of area to allocate in bytes
1117 * @align: alignment of area (max PAGE_SIZE)
1118 *
1119 * Allocate percpu area of @size bytes aligned at @align. Might
1120 * sleep. Might trigger writeouts.
1121 *
ccea34b5
TH
1122 * CONTEXT:
1123 * Does GFP_KERNEL allocation.
1124 *
edcb4639
TH
1125 * RETURNS:
1126 * Percpu pointer to the allocated area on success, NULL on failure.
1127 */
1128void *__alloc_percpu(size_t size, size_t align)
1129{
1130 return pcpu_alloc(size, align, false);
1131}
fbf59bc9
TH
1132EXPORT_SYMBOL_GPL(__alloc_percpu);
1133
edcb4639
TH
1134/**
1135 * __alloc_reserved_percpu - allocate reserved percpu area
1136 * @size: size of area to allocate in bytes
1137 * @align: alignment of area (max PAGE_SIZE)
1138 *
1139 * Allocate percpu area of @size bytes aligned at @align from reserved
1140 * percpu area if arch has set it up; otherwise, allocation is served
1141 * from the same dynamic area. Might sleep. Might trigger writeouts.
1142 *
ccea34b5
TH
1143 * CONTEXT:
1144 * Does GFP_KERNEL allocation.
1145 *
edcb4639
TH
1146 * RETURNS:
1147 * Percpu pointer to the allocated area on success, NULL on failure.
1148 */
1149void *__alloc_reserved_percpu(size_t size, size_t align)
1150{
1151 return pcpu_alloc(size, align, true);
1152}
1153
a56dbddf
TH
1154/**
1155 * pcpu_reclaim - reclaim fully free chunks, workqueue function
1156 * @work: unused
1157 *
1158 * Reclaim all fully free chunks except for the first one.
ccea34b5
TH
1159 *
1160 * CONTEXT:
1161 * workqueue context.
a56dbddf
TH
1162 */
1163static void pcpu_reclaim(struct work_struct *work)
fbf59bc9 1164{
a56dbddf
TH
1165 LIST_HEAD(todo);
1166 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
1167 struct pcpu_chunk *chunk, *next;
1168
ccea34b5
TH
1169 mutex_lock(&pcpu_alloc_mutex);
1170 spin_lock_irq(&pcpu_lock);
a56dbddf
TH
1171
1172 list_for_each_entry_safe(chunk, next, head, list) {
1173 WARN_ON(chunk->immutable);
1174
1175 /* spare the first one */
1176 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
1177 continue;
1178
a56dbddf
TH
1179 list_move(&chunk->list, &todo);
1180 }
1181
ccea34b5
TH
1182 spin_unlock_irq(&pcpu_lock);
1183 mutex_unlock(&pcpu_alloc_mutex);
a56dbddf
TH
1184
1185 list_for_each_entry_safe(chunk, next, &todo, list) {
ce3141a2 1186 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
a56dbddf
TH
1187 free_pcpu_chunk(chunk);
1188 }
fbf59bc9
TH
1189}
1190
1191/**
1192 * free_percpu - free percpu area
1193 * @ptr: pointer to area to free
1194 *
ccea34b5
TH
1195 * Free percpu area @ptr.
1196 *
1197 * CONTEXT:
1198 * Can be called from atomic context.
fbf59bc9
TH
1199 */
1200void free_percpu(void *ptr)
1201{
1202 void *addr = __pcpu_ptr_to_addr(ptr);
1203 struct pcpu_chunk *chunk;
ccea34b5 1204 unsigned long flags;
fbf59bc9
TH
1205 int off;
1206
1207 if (!ptr)
1208 return;
1209
ccea34b5 1210 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
1211
1212 chunk = pcpu_chunk_addr_search(addr);
1213 off = addr - chunk->vm->addr;
1214
1215 pcpu_free_area(chunk, off);
1216
a56dbddf 1217 /* if there are more than one fully free chunks, wake up grim reaper */
fbf59bc9
TH
1218 if (chunk->free_size == pcpu_unit_size) {
1219 struct pcpu_chunk *pos;
1220
a56dbddf 1221 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 1222 if (pos != chunk) {
a56dbddf 1223 schedule_work(&pcpu_reclaim_work);
fbf59bc9
TH
1224 break;
1225 }
1226 }
1227
ccea34b5 1228 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
1229}
1230EXPORT_SYMBOL_GPL(free_percpu);
1231
1232/**
8d408b4b 1233 * pcpu_setup_first_chunk - initialize the first percpu chunk
8d408b4b 1234 * @static_size: the size of static percpu area in bytes
38a6be52 1235 * @reserved_size: the size of reserved percpu area in bytes, 0 for none
cafe8816 1236 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
38a6be52
TH
1237 * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE
1238 * @base_addr: mapped address
2f39e637 1239 * @unit_map: cpu -> unit map, NULL for sequential mapping
8d408b4b
TH
1240 *
1241 * Initialize the first percpu chunk which contains the kernel static
1242 * perpcu area. This function is to be called from arch percpu area
38a6be52 1243 * setup path.
8d408b4b 1244 *
edcb4639
TH
1245 * @reserved_size, if non-zero, specifies the amount of bytes to
1246 * reserve after the static area in the first chunk. This reserves
1247 * the first chunk such that it's available only through reserved
1248 * percpu allocation. This is primarily used to serve module percpu
1249 * static areas on architectures where the addressing model has
1250 * limited offset range for symbol relocations to guarantee module
1251 * percpu symbols fall inside the relocatable range.
1252 *
6074d5b0
TH
1253 * @dyn_size, if non-negative, determines the number of bytes
1254 * available for dynamic allocation in the first chunk. Specifying
1255 * non-negative value makes percpu leave alone the area beyond
1256 * @static_size + @reserved_size + @dyn_size.
1257 *
38a6be52
TH
1258 * @unit_size specifies unit size and must be aligned to PAGE_SIZE and
1259 * equal to or larger than @static_size + @reserved_size + if
1260 * non-negative, @dyn_size.
8d408b4b 1261 *
38a6be52
TH
1262 * The caller should have mapped the first chunk at @base_addr and
1263 * copied static data to each unit.
fbf59bc9 1264 *
edcb4639
TH
1265 * If the first chunk ends up with both reserved and dynamic areas, it
1266 * is served by two chunks - one to serve the core static and reserved
1267 * areas and the other for the dynamic area. They share the same vm
1268 * and page map but uses different area allocation map to stay away
1269 * from each other. The latter chunk is circulated in the chunk slots
1270 * and available for dynamic allocation like any other chunks.
1271 *
fbf59bc9
TH
1272 * RETURNS:
1273 * The determined pcpu_unit_size which can be used to initialize
1274 * percpu access.
1275 */
ce3141a2 1276size_t __init pcpu_setup_first_chunk(size_t static_size, size_t reserved_size,
38a6be52 1277 ssize_t dyn_size, size_t unit_size,
2f39e637 1278 void *base_addr, const int *unit_map)
fbf59bc9 1279{
2441d15c 1280 static struct vm_struct first_vm;
edcb4639 1281 static int smap[2], dmap[2];
6074d5b0
TH
1282 size_t size_sum = static_size + reserved_size +
1283 (dyn_size >= 0 ? dyn_size : 0);
edcb4639 1284 struct pcpu_chunk *schunk, *dchunk = NULL;
2f39e637 1285 unsigned int cpu, tcpu;
ce3141a2 1286 int i;
fbf59bc9 1287
2f39e637 1288 /* sanity checks */
edcb4639
TH
1289 BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
1290 ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
8d408b4b 1291 BUG_ON(!static_size);
38a6be52
TH
1292 BUG_ON(!base_addr);
1293 BUG_ON(unit_size < size_sum);
1294 BUG_ON(unit_size & ~PAGE_MASK);
1295 BUG_ON(unit_size < PCPU_MIN_UNIT_SIZE);
8d408b4b 1296
2f39e637
TH
1297 /* determine number of units and verify and initialize pcpu_unit_map */
1298 if (unit_map) {
1299 int first_unit = INT_MAX, last_unit = INT_MIN;
1300
1301 for_each_possible_cpu(cpu) {
1302 int unit = unit_map[cpu];
1303
1304 BUG_ON(unit < 0);
1305 for_each_possible_cpu(tcpu) {
1306 if (tcpu == cpu)
1307 break;
1308 /* the mapping should be one-to-one */
1309 BUG_ON(unit_map[tcpu] == unit);
1310 }
1311
1312 if (unit < first_unit) {
1313 pcpu_first_unit_cpu = cpu;
1314 first_unit = unit;
1315 }
1316 if (unit > last_unit) {
1317 pcpu_last_unit_cpu = cpu;
1318 last_unit = unit;
1319 }
1320 }
1321 pcpu_nr_units = last_unit + 1;
1322 pcpu_unit_map = unit_map;
1323 } else {
1324 int *identity_map;
1325
1326 /* #units == #cpus, identity mapped */
1327 identity_map = alloc_bootmem(num_possible_cpus() *
1328 sizeof(identity_map[0]));
1329
1330 for_each_possible_cpu(cpu)
1331 identity_map[cpu] = cpu;
1332
1333 pcpu_first_unit_cpu = 0;
1334 pcpu_last_unit_cpu = pcpu_nr_units - 1;
1335 pcpu_nr_units = num_possible_cpus();
1336 pcpu_unit_map = identity_map;
1337 }
1338
1339 /* determine basic parameters */
38a6be52 1340 pcpu_unit_pages = unit_size >> PAGE_SHIFT;
d9b55eeb 1341 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2f39e637 1342 pcpu_chunk_size = pcpu_nr_units * pcpu_unit_size;
ce3141a2
TH
1343 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1344 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
fbf59bc9 1345
cafe8816 1346 if (dyn_size < 0)
edcb4639 1347 dyn_size = pcpu_unit_size - static_size - reserved_size;
cafe8816 1348
38a6be52
TH
1349 first_vm.flags = VM_ALLOC;
1350 first_vm.size = pcpu_chunk_size;
1351 first_vm.addr = base_addr;
1352
d9b55eeb
TH
1353 /*
1354 * Allocate chunk slots. The additional last slot is for
1355 * empty chunks.
1356 */
1357 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
fbf59bc9
TH
1358 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1359 for (i = 0; i < pcpu_nr_slots; i++)
1360 INIT_LIST_HEAD(&pcpu_slot[i]);
1361
edcb4639
TH
1362 /*
1363 * Initialize static chunk. If reserved_size is zero, the
1364 * static chunk covers static area + dynamic allocation area
1365 * in the first chunk. If reserved_size is not zero, it
1366 * covers static area + reserved area (mostly used for module
1367 * static percpu allocation).
1368 */
2441d15c
TH
1369 schunk = alloc_bootmem(pcpu_chunk_struct_size);
1370 INIT_LIST_HEAD(&schunk->list);
1371 schunk->vm = &first_vm;
61ace7fa
TH
1372 schunk->map = smap;
1373 schunk->map_alloc = ARRAY_SIZE(smap);
38a6be52 1374 schunk->immutable = true;
ce3141a2 1375 bitmap_fill(schunk->populated, pcpu_unit_pages);
edcb4639
TH
1376
1377 if (reserved_size) {
1378 schunk->free_size = reserved_size;
ae9e6bc9
TH
1379 pcpu_reserved_chunk = schunk;
1380 pcpu_reserved_chunk_limit = static_size + reserved_size;
edcb4639
TH
1381 } else {
1382 schunk->free_size = dyn_size;
1383 dyn_size = 0; /* dynamic area covered */
1384 }
2441d15c 1385 schunk->contig_hint = schunk->free_size;
fbf59bc9 1386
61ace7fa
TH
1387 schunk->map[schunk->map_used++] = -static_size;
1388 if (schunk->free_size)
1389 schunk->map[schunk->map_used++] = schunk->free_size;
1390
edcb4639
TH
1391 /* init dynamic chunk if necessary */
1392 if (dyn_size) {
ce3141a2 1393 dchunk = alloc_bootmem(pcpu_chunk_struct_size);
edcb4639
TH
1394 INIT_LIST_HEAD(&dchunk->list);
1395 dchunk->vm = &first_vm;
1396 dchunk->map = dmap;
1397 dchunk->map_alloc = ARRAY_SIZE(dmap);
38a6be52 1398 dchunk->immutable = true;
ce3141a2 1399 bitmap_fill(dchunk->populated, pcpu_unit_pages);
edcb4639
TH
1400
1401 dchunk->contig_hint = dchunk->free_size = dyn_size;
1402 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1403 dchunk->map[dchunk->map_used++] = dchunk->free_size;
1404 }
1405
2441d15c 1406 /* link the first chunk in */
ae9e6bc9
TH
1407 pcpu_first_chunk = dchunk ?: schunk;
1408 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9
TH
1409
1410 /* we're done */
2f39e637 1411 pcpu_base_addr = schunk->vm->addr;
fbf59bc9
TH
1412 return pcpu_unit_size;
1413}
66c3a757 1414
8c4bfc6e
TH
1415static size_t pcpu_calc_fc_sizes(size_t static_size, size_t reserved_size,
1416 ssize_t *dyn_sizep)
1417{
1418 size_t size_sum;
1419
1420 size_sum = PFN_ALIGN(static_size + reserved_size +
1421 (*dyn_sizep >= 0 ? *dyn_sizep : 0));
1422 if (*dyn_sizep != 0)
1423 *dyn_sizep = size_sum - static_size - reserved_size;
1424
1425 return size_sum;
1426}
1427
66c3a757
TH
1428/**
1429 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1430 * @static_size: the size of static percpu area in bytes
1431 * @reserved_size: the size of reserved percpu area in bytes
1432 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
66c3a757
TH
1433 *
1434 * This is a helper to ease setting up embedded first percpu chunk and
1435 * can be called where pcpu_setup_first_chunk() is expected.
1436 *
1437 * If this function is used to setup the first chunk, it is allocated
1438 * as a contiguous area using bootmem allocator and used as-is without
1439 * being mapped into vmalloc area. This enables the first chunk to
1440 * piggy back on the linear physical mapping which often uses larger
1441 * page size.
1442 *
1443 * When @dyn_size is positive, dynamic area might be larger than
788e5abc
TH
1444 * specified to fill page alignment. When @dyn_size is auto,
1445 * @dyn_size is just big enough to fill page alignment after static
1446 * and reserved areas.
66c3a757
TH
1447 *
1448 * If the needed size is smaller than the minimum or specified unit
1449 * size, the leftover is returned to the bootmem allocator.
1450 *
1451 * RETURNS:
1452 * The determined pcpu_unit_size which can be used to initialize
1453 * percpu access on success, -errno on failure.
1454 */
1455ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size,
788e5abc 1456 ssize_t dyn_size)
66c3a757 1457{
ce3141a2
TH
1458 size_t size_sum, unit_size, chunk_size;
1459 void *base;
66c3a757
TH
1460 unsigned int cpu;
1461
1462 /* determine parameters and allocate */
ce3141a2 1463 size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
66c3a757 1464
ce3141a2
TH
1465 unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1466 chunk_size = unit_size * num_possible_cpus();
fa8a7094 1467
ce3141a2
TH
1468 base = __alloc_bootmem_nopanic(chunk_size, PAGE_SIZE,
1469 __pa(MAX_DMA_ADDRESS));
1470 if (!base) {
fa8a7094
TH
1471 pr_warning("PERCPU: failed to allocate %zu bytes for "
1472 "embedding\n", chunk_size);
66c3a757 1473 return -ENOMEM;
fa8a7094 1474 }
66c3a757
TH
1475
1476 /* return the leftover and copy */
1477 for_each_possible_cpu(cpu) {
ce3141a2 1478 void *ptr = base + cpu * unit_size;
66c3a757 1479
ce3141a2 1480 free_bootmem(__pa(ptr + size_sum), unit_size - size_sum);
66c3a757
TH
1481 memcpy(ptr, __per_cpu_load, static_size);
1482 }
1483
1484 /* we're ready, commit */
1485 pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n",
ce3141a2 1486 size_sum >> PAGE_SHIFT, base, static_size);
d4b95f80 1487
ce3141a2 1488 return pcpu_setup_first_chunk(static_size, reserved_size, dyn_size,
2f39e637 1489 unit_size, base, NULL);
d4b95f80
TH
1490}
1491
1492/**
1493 * pcpu_4k_first_chunk - map the first chunk using PAGE_SIZE pages
1494 * @static_size: the size of static percpu area in bytes
1495 * @reserved_size: the size of reserved percpu area in bytes
1496 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1497 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
1498 * @populate_pte_fn: function to populate pte
1499 *
1500 * This is a helper to ease setting up embedded first percpu chunk and
1501 * can be called where pcpu_setup_first_chunk() is expected.
1502 *
1503 * This is the basic allocator. Static percpu area is allocated
1504 * page-by-page into vmalloc area.
1505 *
1506 * RETURNS:
1507 * The determined pcpu_unit_size which can be used to initialize
1508 * percpu access on success, -errno on failure.
1509 */
1510ssize_t __init pcpu_4k_first_chunk(size_t static_size, size_t reserved_size,
1511 pcpu_fc_alloc_fn_t alloc_fn,
1512 pcpu_fc_free_fn_t free_fn,
1513 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1514{
8f05a6a6 1515 static struct vm_struct vm;
ce3141a2 1516 int unit_pages;
d4b95f80 1517 size_t pages_size;
ce3141a2 1518 struct page **pages;
d4b95f80
TH
1519 unsigned int cpu;
1520 int i, j;
1521 ssize_t ret;
1522
ce3141a2
TH
1523 unit_pages = PFN_UP(max_t(size_t, static_size + reserved_size,
1524 PCPU_MIN_UNIT_SIZE));
d4b95f80
TH
1525
1526 /* unaligned allocations can't be freed, round up to page size */
ce3141a2
TH
1527 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1528 sizeof(pages[0]));
1529 pages = alloc_bootmem(pages_size);
d4b95f80 1530
8f05a6a6 1531 /* allocate pages */
d4b95f80
TH
1532 j = 0;
1533 for_each_possible_cpu(cpu)
ce3141a2 1534 for (i = 0; i < unit_pages; i++) {
d4b95f80
TH
1535 void *ptr;
1536
1537 ptr = alloc_fn(cpu, PAGE_SIZE);
1538 if (!ptr) {
1539 pr_warning("PERCPU: failed to allocate "
1540 "4k page for cpu%u\n", cpu);
1541 goto enomem;
1542 }
ce3141a2 1543 pages[j++] = virt_to_page(ptr);
d4b95f80
TH
1544 }
1545
8f05a6a6
TH
1546 /* allocate vm area, map the pages and copy static data */
1547 vm.flags = VM_ALLOC;
ce3141a2 1548 vm.size = num_possible_cpus() * unit_pages << PAGE_SHIFT;
8f05a6a6
TH
1549 vm_area_register_early(&vm, PAGE_SIZE);
1550
1551 for_each_possible_cpu(cpu) {
1552 unsigned long unit_addr = (unsigned long)vm.addr +
ce3141a2 1553 (cpu * unit_pages << PAGE_SHIFT);
8f05a6a6 1554
ce3141a2 1555 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
1556 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1557
1558 /* pte already populated, the following shouldn't fail */
ce3141a2
TH
1559 ret = __pcpu_map_pages(unit_addr, &pages[cpu * unit_pages],
1560 unit_pages);
8f05a6a6
TH
1561 if (ret < 0)
1562 panic("failed to map percpu area, err=%zd\n", ret);
1563
1564 /*
1565 * FIXME: Archs with virtual cache should flush local
1566 * cache for the linear mapping here - something
1567 * equivalent to flush_cache_vmap() on the local cpu.
1568 * flush_cache_vmap() can't be used as most supporting
1569 * data structures are not set up yet.
1570 */
1571
1572 /* copy static data */
1573 memcpy((void *)unit_addr, __per_cpu_load, static_size);
1574 }
1575
d4b95f80 1576 /* we're ready, commit */
8f05a6a6 1577 pr_info("PERCPU: %d 4k pages per cpu, static data %zu bytes\n",
ce3141a2 1578 unit_pages, static_size);
d4b95f80 1579
ce3141a2 1580 ret = pcpu_setup_first_chunk(static_size, reserved_size, -1,
2f39e637 1581 unit_pages << PAGE_SHIFT, vm.addr, NULL);
d4b95f80
TH
1582 goto out_free_ar;
1583
1584enomem:
1585 while (--j >= 0)
ce3141a2 1586 free_fn(page_address(pages[j]), PAGE_SIZE);
d4b95f80
TH
1587 ret = -ENOMEM;
1588out_free_ar:
ce3141a2 1589 free_bootmem(__pa(pages), pages_size);
d4b95f80
TH
1590 return ret;
1591}
1592
8c4bfc6e
TH
1593/*
1594 * Large page remapping first chunk setup helper
1595 */
1596#ifdef CONFIG_NEED_MULTIPLE_NODES
1597struct pcpul_ent {
1598 unsigned int cpu;
1599 void *ptr;
1600};
1601
1602static size_t pcpul_size;
1603static size_t pcpul_unit_size;
1604static struct pcpul_ent *pcpul_map;
1605static struct vm_struct pcpul_vm;
1606
8c4bfc6e
TH
1607/**
1608 * pcpu_lpage_first_chunk - remap the first percpu chunk using large page
1609 * @static_size: the size of static percpu area in bytes
1610 * @reserved_size: the size of reserved percpu area in bytes
1611 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1612 * @lpage_size: the size of a large page
1613 * @alloc_fn: function to allocate percpu lpage, always called with lpage_size
1614 * @free_fn: function to free percpu memory, @size <= lpage_size
1615 * @map_fn: function to map percpu lpage, always called with lpage_size
1616 *
1617 * This allocator uses large page as unit. A large page is allocated
1618 * for each cpu and each is remapped into vmalloc area using large
1619 * page mapping. As large page can be quite large, only part of it is
1620 * used for the first chunk. Unused part is returned to the bootmem
1621 * allocator.
1622 *
1623 * So, the large pages are mapped twice - once to the physical mapping
1624 * and to the vmalloc area for the first percpu chunk. The double
1625 * mapping does add one more large TLB entry pressure but still is
1626 * much better than only using 4k mappings while still being NUMA
1627 * friendly.
1628 *
1629 * RETURNS:
1630 * The determined pcpu_unit_size which can be used to initialize
1631 * percpu access on success, -errno on failure.
1632 */
1633ssize_t __init pcpu_lpage_first_chunk(size_t static_size, size_t reserved_size,
1634 ssize_t dyn_size, size_t lpage_size,
1635 pcpu_fc_alloc_fn_t alloc_fn,
1636 pcpu_fc_free_fn_t free_fn,
1637 pcpu_fc_map_fn_t map_fn)
1638{
1639 size_t size_sum;
1640 size_t map_size;
1641 unsigned int cpu;
1642 int i, j;
1643 ssize_t ret;
1644
1645 /*
1646 * Currently supports only single page. Supporting multiple
1647 * pages won't be too difficult if it ever becomes necessary.
1648 */
1649 size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
1650
1651 pcpul_unit_size = lpage_size;
1652 pcpul_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1653 if (pcpul_size > pcpul_unit_size) {
1654 pr_warning("PERCPU: static data is larger than large page, "
1655 "can't use large page\n");
1656 return -EINVAL;
1657 }
1658
1659 /* allocate pointer array and alloc large pages */
1660 map_size = PFN_ALIGN(num_possible_cpus() * sizeof(pcpul_map[0]));
1661 pcpul_map = alloc_bootmem(map_size);
1662
1663 for_each_possible_cpu(cpu) {
1664 void *ptr;
1665
1666 ptr = alloc_fn(cpu, lpage_size);
1667 if (!ptr) {
1668 pr_warning("PERCPU: failed to allocate large page "
1669 "for cpu%u\n", cpu);
1670 goto enomem;
1671 }
1672
1673 /*
1674 * Only use pcpul_size bytes and give back the rest.
1675 *
1676 * Ingo: The lpage_size up-rounding bootmem is needed
1677 * to make sure the partial lpage is still fully RAM -
1678 * it's not well-specified to have a incompatible area
1679 * (unmapped RAM, device memory, etc.) in that hole.
1680 */
1681 free_fn(ptr + pcpul_size, lpage_size - pcpul_size);
1682
1683 pcpul_map[cpu].cpu = cpu;
1684 pcpul_map[cpu].ptr = ptr;
1685
1686 memcpy(ptr, __per_cpu_load, static_size);
1687 }
1688
1689 /* allocate address and map */
1690 pcpul_vm.flags = VM_ALLOC;
1691 pcpul_vm.size = num_possible_cpus() * pcpul_unit_size;
1692 vm_area_register_early(&pcpul_vm, pcpul_unit_size);
1693
1694 for_each_possible_cpu(cpu)
1695 map_fn(pcpul_map[cpu].ptr, pcpul_unit_size,
1696 pcpul_vm.addr + cpu * pcpul_unit_size);
1697
1698 /* we're ready, commit */
1699 pr_info("PERCPU: Remapped at %p with large pages, static data "
1700 "%zu bytes\n", pcpul_vm.addr, static_size);
1701
ce3141a2 1702 ret = pcpu_setup_first_chunk(static_size, reserved_size, dyn_size,
2f39e637 1703 pcpul_unit_size, pcpul_vm.addr, NULL);
8c4bfc6e
TH
1704
1705 /* sort pcpul_map array for pcpu_lpage_remapped() */
1706 for (i = 0; i < num_possible_cpus() - 1; i++)
1707 for (j = i + 1; j < num_possible_cpus(); j++)
1708 if (pcpul_map[i].ptr > pcpul_map[j].ptr) {
1709 struct pcpul_ent tmp = pcpul_map[i];
1710 pcpul_map[i] = pcpul_map[j];
1711 pcpul_map[j] = tmp;
1712 }
1713
1714 return ret;
1715
1716enomem:
1717 for_each_possible_cpu(cpu)
1718 if (pcpul_map[cpu].ptr)
1719 free_fn(pcpul_map[cpu].ptr, pcpul_size);
1720 free_bootmem(__pa(pcpul_map), map_size);
1721 return -ENOMEM;
1722}
1723
1724/**
1725 * pcpu_lpage_remapped - determine whether a kaddr is in pcpul recycled area
1726 * @kaddr: the kernel address in question
1727 *
1728 * Determine whether @kaddr falls in the pcpul recycled area. This is
1729 * used by pageattr to detect VM aliases and break up the pcpu large
1730 * page mapping such that the same physical page is not mapped under
1731 * different attributes.
1732 *
1733 * The recycled area is always at the tail of a partially used large
1734 * page.
1735 *
1736 * RETURNS:
1737 * Address of corresponding remapped pcpu address if match is found;
1738 * otherwise, NULL.
1739 */
1740void *pcpu_lpage_remapped(void *kaddr)
1741{
1742 unsigned long unit_mask = pcpul_unit_size - 1;
1743 void *lpage_addr = (void *)((unsigned long)kaddr & ~unit_mask);
1744 unsigned long offset = (unsigned long)kaddr & unit_mask;
1745 int left = 0, right = num_possible_cpus() - 1;
1746 int pos;
1747
1748 /* pcpul in use at all? */
1749 if (!pcpul_map)
1750 return NULL;
1751
1752 /* okay, perform binary search */
1753 while (left <= right) {
1754 pos = (left + right) / 2;
1755
1756 if (pcpul_map[pos].ptr < lpage_addr)
1757 left = pos + 1;
1758 else if (pcpul_map[pos].ptr > lpage_addr)
1759 right = pos - 1;
1760 else {
1761 /* it shouldn't be in the area for the first chunk */
1762 WARN_ON(offset < pcpul_size);
1763
1764 return pcpul_vm.addr +
1765 pcpul_map[pos].cpu * pcpul_unit_size + offset;
1766 }
1767 }
1768
1769 return NULL;
1770}
1771#endif
1772
e74e3962
TH
1773/*
1774 * Generic percpu area setup.
1775 *
1776 * The embedding helper is used because its behavior closely resembles
1777 * the original non-dynamic generic percpu area setup. This is
1778 * important because many archs have addressing restrictions and might
1779 * fail if the percpu area is located far away from the previous
1780 * location. As an added bonus, in non-NUMA cases, embedding is
1781 * generally a good idea TLB-wise because percpu area can piggy back
1782 * on the physical linear memory mapping which uses large page
1783 * mappings on applicable archs.
1784 */
1785#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
1786unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1787EXPORT_SYMBOL(__per_cpu_offset);
1788
1789void __init setup_per_cpu_areas(void)
1790{
1791 size_t static_size = __per_cpu_end - __per_cpu_start;
1792 ssize_t unit_size;
1793 unsigned long delta;
1794 unsigned int cpu;
1795
1796 /*
1797 * Always reserve area for module percpu variables. That's
1798 * what the legacy allocator did.
1799 */
1800 unit_size = pcpu_embed_first_chunk(static_size, PERCPU_MODULE_RESERVE,
788e5abc 1801 PERCPU_DYNAMIC_RESERVE);
e74e3962
TH
1802 if (unit_size < 0)
1803 panic("Failed to initialized percpu areas.");
1804
1805 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1806 for_each_possible_cpu(cpu)
1807 __per_cpu_offset[cpu] = delta + cpu * unit_size;
1808}
1809#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */