]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/percpu.c
percpu: move chunk area map extension out of area allocation
[net-next-2.6.git] / mm / percpu.c
CommitLineData
fbf59bc9
TH
1/*
2 * linux/mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each
11 * chunk is consisted of num_possible_cpus() units and the first chunk
12 * is used for static percpu variables in the kernel image (special
13 * boot time alloc/init handling necessary as these areas need to be
14 * brought up before allocation services are running). Unit grows as
15 * necessary and all units grow or shrink in unison. When a chunk is
16 * filled up, another chunk is allocated. ie. in vmalloc area
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring
26 * percpu base registers UNIT_SIZE apart.
27 *
28 * There are usually many small percpu allocations many of them as
29 * small as 4 bytes. The allocator organizes chunks into lists
30 * according to free size and tries to allocate from the fullest one.
31 * Each chunk keeps the maximum contiguous area size hint which is
32 * guaranteed to be eqaul to or larger than the maximum contiguous
33 * area in the chunk. This helps the allocator not to iterate the
34 * chunk maps unnecessarily.
35 *
36 * Allocation state in each chunk is kept using an array of integers
37 * on chunk->map. A positive value in the map represents a free
38 * region and negative allocated. Allocation inside a chunk is done
39 * by scanning this map sequentially and serving the first matching
40 * entry. This is mostly copied from the percpu_modalloc() allocator.
41 * Chunks are also linked into a rb tree to ease address to chunk
42 * mapping during free.
43 *
44 * To use this allocator, arch code should do the followings.
45 *
46 * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA
47 *
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back
50 *
8d408b4b
TH
51 * - use pcpu_setup_first_chunk() during percpu area initialization to
52 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
53 */
54
55#include <linux/bitmap.h>
56#include <linux/bootmem.h>
57#include <linux/list.h>
58#include <linux/mm.h>
59#include <linux/module.h>
60#include <linux/mutex.h>
61#include <linux/percpu.h>
62#include <linux/pfn.h>
63#include <linux/rbtree.h>
64#include <linux/slab.h>
65#include <linux/vmalloc.h>
66
67#include <asm/cacheflush.h>
68#include <asm/tlbflush.h>
69
fbf59bc9
TH
70#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
71#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
72
73struct pcpu_chunk {
74 struct list_head list; /* linked to pcpu_slot lists */
75 struct rb_node rb_node; /* key is chunk->vm->addr */
76 int free_size; /* free bytes in the chunk */
77 int contig_hint; /* max contiguous size hint */
78 struct vm_struct *vm; /* mapped vmalloc region */
79 int map_used; /* # of map entries used */
80 int map_alloc; /* # of map entries allocated */
81 int *map; /* allocation map */
8d408b4b 82 bool immutable; /* no [de]population allowed */
3e24aa58
TH
83 struct page **page; /* points to page array */
84 struct page *page_ar[]; /* #cpus * UNIT_PAGES */
fbf59bc9
TH
85};
86
40150d37
TH
87static int pcpu_unit_pages __read_mostly;
88static int pcpu_unit_size __read_mostly;
89static int pcpu_chunk_size __read_mostly;
90static int pcpu_nr_slots __read_mostly;
91static size_t pcpu_chunk_struct_size __read_mostly;
fbf59bc9
TH
92
93/* the address of the first chunk which starts with the kernel static area */
40150d37 94void *pcpu_base_addr __read_mostly;
fbf59bc9
TH
95EXPORT_SYMBOL_GPL(pcpu_base_addr);
96
edcb4639
TH
97/* optional reserved chunk, only accessible for reserved allocations */
98static struct pcpu_chunk *pcpu_reserved_chunk;
99/* offset limit of the reserved chunk */
100static int pcpu_reserved_chunk_limit;
101
fbf59bc9
TH
102/*
103 * One mutex to rule them all.
104 *
105 * The following mutex is grabbed in the outermost public alloc/free
106 * interface functions and released only when the operation is
107 * complete. As such, every function in this file other than the
108 * outermost functions are called under pcpu_mutex.
109 *
110 * It can easily be switched to use spinlock such that only the area
111 * allocation and page population commit are protected with it doing
112 * actual [de]allocation without holding any lock. However, given
113 * what this allocator does, I think it's better to let them run
114 * sequentially.
115 */
116static DEFINE_MUTEX(pcpu_mutex);
117
40150d37 118static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
fbf59bc9
TH
119static struct rb_root pcpu_addr_root = RB_ROOT; /* chunks by address */
120
d9b55eeb 121static int __pcpu_size_to_slot(int size)
fbf59bc9 122{
cae3aeb8 123 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
124 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
125}
126
d9b55eeb
TH
127static int pcpu_size_to_slot(int size)
128{
129 if (size == pcpu_unit_size)
130 return pcpu_nr_slots - 1;
131 return __pcpu_size_to_slot(size);
132}
133
fbf59bc9
TH
134static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
135{
136 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
137 return 0;
138
139 return pcpu_size_to_slot(chunk->free_size);
140}
141
142static int pcpu_page_idx(unsigned int cpu, int page_idx)
143{
d9b55eeb 144 return cpu * pcpu_unit_pages + page_idx;
fbf59bc9
TH
145}
146
147static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk,
148 unsigned int cpu, int page_idx)
149{
150 return &chunk->page[pcpu_page_idx(cpu, page_idx)];
151}
152
153static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
154 unsigned int cpu, int page_idx)
155{
156 return (unsigned long)chunk->vm->addr +
157 (pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT);
158}
159
160static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk,
161 int page_idx)
162{
163 return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL;
164}
165
166/**
1880d93b
TH
167 * pcpu_mem_alloc - allocate memory
168 * @size: bytes to allocate
fbf59bc9 169 *
1880d93b
TH
170 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
171 * kzalloc() is used; otherwise, vmalloc() is used. The returned
172 * memory is always zeroed.
fbf59bc9
TH
173 *
174 * RETURNS:
1880d93b 175 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 176 */
1880d93b 177static void *pcpu_mem_alloc(size_t size)
fbf59bc9 178{
1880d93b
TH
179 if (size <= PAGE_SIZE)
180 return kzalloc(size, GFP_KERNEL);
181 else {
182 void *ptr = vmalloc(size);
183 if (ptr)
184 memset(ptr, 0, size);
185 return ptr;
186 }
187}
fbf59bc9 188
1880d93b
TH
189/**
190 * pcpu_mem_free - free memory
191 * @ptr: memory to free
192 * @size: size of the area
193 *
194 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
195 */
196static void pcpu_mem_free(void *ptr, size_t size)
197{
fbf59bc9 198 if (size <= PAGE_SIZE)
1880d93b 199 kfree(ptr);
fbf59bc9 200 else
1880d93b 201 vfree(ptr);
fbf59bc9
TH
202}
203
204/**
205 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
206 * @chunk: chunk of interest
207 * @oslot: the previous slot it was on
208 *
209 * This function is called after an allocation or free changed @chunk.
210 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
211 * moved to the slot. Note that the reserved chunk is never put on
212 * chunk slots.
fbf59bc9
TH
213 */
214static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
215{
216 int nslot = pcpu_chunk_slot(chunk);
217
edcb4639 218 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
219 if (oslot < nslot)
220 list_move(&chunk->list, &pcpu_slot[nslot]);
221 else
222 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
223 }
224}
225
226static struct rb_node **pcpu_chunk_rb_search(void *addr,
227 struct rb_node **parentp)
228{
229 struct rb_node **p = &pcpu_addr_root.rb_node;
230 struct rb_node *parent = NULL;
231 struct pcpu_chunk *chunk;
232
233 while (*p) {
234 parent = *p;
235 chunk = rb_entry(parent, struct pcpu_chunk, rb_node);
236
237 if (addr < chunk->vm->addr)
238 p = &(*p)->rb_left;
239 else if (addr > chunk->vm->addr)
240 p = &(*p)->rb_right;
241 else
242 break;
243 }
244
245 if (parentp)
246 *parentp = parent;
247 return p;
248}
249
250/**
251 * pcpu_chunk_addr_search - search for chunk containing specified address
252 * @addr: address to search for
253 *
254 * Look for chunk which might contain @addr. More specifically, it
255 * searchs for the chunk with the highest start address which isn't
256 * beyond @addr.
257 *
258 * RETURNS:
259 * The address of the found chunk.
260 */
261static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
262{
263 struct rb_node *n, *parent;
264 struct pcpu_chunk *chunk;
265
edcb4639
TH
266 /* is it in the reserved chunk? */
267 if (pcpu_reserved_chunk) {
268 void *start = pcpu_reserved_chunk->vm->addr;
269
270 if (addr >= start && addr < start + pcpu_reserved_chunk_limit)
271 return pcpu_reserved_chunk;
272 }
273
274 /* nah... search the regular ones */
fbf59bc9
TH
275 n = *pcpu_chunk_rb_search(addr, &parent);
276 if (!n) {
277 /* no exactly matching chunk, the parent is the closest */
278 n = parent;
279 BUG_ON(!n);
280 }
281 chunk = rb_entry(n, struct pcpu_chunk, rb_node);
282
283 if (addr < chunk->vm->addr) {
284 /* the parent was the next one, look for the previous one */
285 n = rb_prev(n);
286 BUG_ON(!n);
287 chunk = rb_entry(n, struct pcpu_chunk, rb_node);
288 }
289
290 return chunk;
291}
292
293/**
294 * pcpu_chunk_addr_insert - insert chunk into address rb tree
295 * @new: chunk to insert
296 *
297 * Insert @new into address rb tree.
298 */
299static void pcpu_chunk_addr_insert(struct pcpu_chunk *new)
300{
301 struct rb_node **p, *parent;
302
303 p = pcpu_chunk_rb_search(new->vm->addr, &parent);
304 BUG_ON(*p);
305 rb_link_node(&new->rb_node, parent, p);
306 rb_insert_color(&new->rb_node, &pcpu_addr_root);
307}
308
9f7dcf22
TH
309/**
310 * pcpu_extend_area_map - extend area map for allocation
311 * @chunk: target chunk
312 *
313 * Extend area map of @chunk so that it can accomodate an allocation.
314 * A single allocation can split an area into three areas, so this
315 * function makes sure that @chunk->map has at least two extra slots.
316 *
317 * RETURNS:
318 * 0 if noop, 1 if successfully extended, -errno on failure.
319 */
320static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
321{
322 int new_alloc;
323 int *new;
324 size_t size;
325
326 /* has enough? */
327 if (chunk->map_alloc >= chunk->map_used + 2)
328 return 0;
329
330 new_alloc = PCPU_DFL_MAP_ALLOC;
331 while (new_alloc < chunk->map_used + 2)
332 new_alloc *= 2;
333
334 new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
335 if (!new)
336 return -ENOMEM;
337
338 size = chunk->map_alloc * sizeof(chunk->map[0]);
339 memcpy(new, chunk->map, size);
340
341 /*
342 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
343 * one of the first chunks and still using static map.
344 */
345 if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
346 pcpu_mem_free(chunk->map, size);
347
348 chunk->map_alloc = new_alloc;
349 chunk->map = new;
350 return 0;
351}
352
fbf59bc9
TH
353/**
354 * pcpu_split_block - split a map block
355 * @chunk: chunk of interest
356 * @i: index of map block to split
cae3aeb8
TH
357 * @head: head size in bytes (can be 0)
358 * @tail: tail size in bytes (can be 0)
fbf59bc9
TH
359 *
360 * Split the @i'th map block into two or three blocks. If @head is
361 * non-zero, @head bytes block is inserted before block @i moving it
362 * to @i+1 and reducing its size by @head bytes.
363 *
364 * If @tail is non-zero, the target block, which can be @i or @i+1
365 * depending on @head, is reduced by @tail bytes and @tail byte block
366 * is inserted after the target block.
367 *
9f7dcf22 368 * @chunk->map must have enough free slots to accomodate the split.
fbf59bc9 369 */
9f7dcf22
TH
370static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
371 int head, int tail)
fbf59bc9
TH
372{
373 int nr_extra = !!head + !!tail;
1880d93b 374
9f7dcf22 375 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
fbf59bc9 376
9f7dcf22 377 /* insert new subblocks */
fbf59bc9
TH
378 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
379 sizeof(chunk->map[0]) * (chunk->map_used - i));
380 chunk->map_used += nr_extra;
381
382 if (head) {
383 chunk->map[i + 1] = chunk->map[i] - head;
384 chunk->map[i++] = head;
385 }
386 if (tail) {
387 chunk->map[i++] -= tail;
388 chunk->map[i] = tail;
389 }
fbf59bc9
TH
390}
391
392/**
393 * pcpu_alloc_area - allocate area from a pcpu_chunk
394 * @chunk: chunk of interest
cae3aeb8 395 * @size: wanted size in bytes
fbf59bc9
TH
396 * @align: wanted align
397 *
398 * Try to allocate @size bytes area aligned at @align from @chunk.
399 * Note that this function only allocates the offset. It doesn't
400 * populate or map the area.
401 *
9f7dcf22
TH
402 * @chunk->map must have at least two free slots.
403 *
fbf59bc9 404 * RETURNS:
9f7dcf22
TH
405 * Allocated offset in @chunk on success, -1 if no matching area is
406 * found.
fbf59bc9
TH
407 */
408static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
409{
410 int oslot = pcpu_chunk_slot(chunk);
411 int max_contig = 0;
412 int i, off;
413
fbf59bc9
TH
414 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
415 bool is_last = i + 1 == chunk->map_used;
416 int head, tail;
417
418 /* extra for alignment requirement */
419 head = ALIGN(off, align) - off;
420 BUG_ON(i == 0 && head != 0);
421
422 if (chunk->map[i] < 0)
423 continue;
424 if (chunk->map[i] < head + size) {
425 max_contig = max(chunk->map[i], max_contig);
426 continue;
427 }
428
429 /*
430 * If head is small or the previous block is free,
431 * merge'em. Note that 'small' is defined as smaller
432 * than sizeof(int), which is very small but isn't too
433 * uncommon for percpu allocations.
434 */
435 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
436 if (chunk->map[i - 1] > 0)
437 chunk->map[i - 1] += head;
438 else {
439 chunk->map[i - 1] -= head;
440 chunk->free_size -= head;
441 }
442 chunk->map[i] -= head;
443 off += head;
444 head = 0;
445 }
446
447 /* if tail is small, just keep it around */
448 tail = chunk->map[i] - head - size;
449 if (tail < sizeof(int))
450 tail = 0;
451
452 /* split if warranted */
453 if (head || tail) {
9f7dcf22 454 pcpu_split_block(chunk, i, head, tail);
fbf59bc9
TH
455 if (head) {
456 i++;
457 off += head;
458 max_contig = max(chunk->map[i - 1], max_contig);
459 }
460 if (tail)
461 max_contig = max(chunk->map[i + 1], max_contig);
462 }
463
464 /* update hint and mark allocated */
465 if (is_last)
466 chunk->contig_hint = max_contig; /* fully scanned */
467 else
468 chunk->contig_hint = max(chunk->contig_hint,
469 max_contig);
470
471 chunk->free_size -= chunk->map[i];
472 chunk->map[i] = -chunk->map[i];
473
474 pcpu_chunk_relocate(chunk, oslot);
475 return off;
476 }
477
478 chunk->contig_hint = max_contig; /* fully scanned */
479 pcpu_chunk_relocate(chunk, oslot);
480
9f7dcf22
TH
481 /* tell the upper layer that this chunk has no matching area */
482 return -1;
fbf59bc9
TH
483}
484
485/**
486 * pcpu_free_area - free area to a pcpu_chunk
487 * @chunk: chunk of interest
488 * @freeme: offset of area to free
489 *
490 * Free area starting from @freeme to @chunk. Note that this function
491 * only modifies the allocation map. It doesn't depopulate or unmap
492 * the area.
493 */
494static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
495{
496 int oslot = pcpu_chunk_slot(chunk);
497 int i, off;
498
499 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
500 if (off == freeme)
501 break;
502 BUG_ON(off != freeme);
503 BUG_ON(chunk->map[i] > 0);
504
505 chunk->map[i] = -chunk->map[i];
506 chunk->free_size += chunk->map[i];
507
508 /* merge with previous? */
509 if (i > 0 && chunk->map[i - 1] >= 0) {
510 chunk->map[i - 1] += chunk->map[i];
511 chunk->map_used--;
512 memmove(&chunk->map[i], &chunk->map[i + 1],
513 (chunk->map_used - i) * sizeof(chunk->map[0]));
514 i--;
515 }
516 /* merge with next? */
517 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
518 chunk->map[i] += chunk->map[i + 1];
519 chunk->map_used--;
520 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
521 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
522 }
523
524 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
525 pcpu_chunk_relocate(chunk, oslot);
526}
527
528/**
529 * pcpu_unmap - unmap pages out of a pcpu_chunk
530 * @chunk: chunk of interest
531 * @page_start: page index of the first page to unmap
532 * @page_end: page index of the last page to unmap + 1
533 * @flush: whether to flush cache and tlb or not
534 *
535 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
536 * If @flush is true, vcache is flushed before unmapping and tlb
537 * after.
538 */
539static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end,
540 bool flush)
541{
542 unsigned int last = num_possible_cpus() - 1;
543 unsigned int cpu;
544
8d408b4b
TH
545 /* unmap must not be done on immutable chunk */
546 WARN_ON(chunk->immutable);
547
fbf59bc9
TH
548 /*
549 * Each flushing trial can be very expensive, issue flush on
550 * the whole region at once rather than doing it for each cpu.
551 * This could be an overkill but is more scalable.
552 */
553 if (flush)
554 flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start),
555 pcpu_chunk_addr(chunk, last, page_end));
556
557 for_each_possible_cpu(cpu)
558 unmap_kernel_range_noflush(
559 pcpu_chunk_addr(chunk, cpu, page_start),
560 (page_end - page_start) << PAGE_SHIFT);
561
562 /* ditto as flush_cache_vunmap() */
563 if (flush)
564 flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start),
565 pcpu_chunk_addr(chunk, last, page_end));
566}
567
568/**
569 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
570 * @chunk: chunk to depopulate
571 * @off: offset to the area to depopulate
cae3aeb8 572 * @size: size of the area to depopulate in bytes
fbf59bc9
TH
573 * @flush: whether to flush cache and tlb or not
574 *
575 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
576 * from @chunk. If @flush is true, vcache is flushed before unmapping
577 * and tlb after.
578 */
cae3aeb8
TH
579static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size,
580 bool flush)
fbf59bc9
TH
581{
582 int page_start = PFN_DOWN(off);
583 int page_end = PFN_UP(off + size);
584 int unmap_start = -1;
585 int uninitialized_var(unmap_end);
586 unsigned int cpu;
587 int i;
588
589 for (i = page_start; i < page_end; i++) {
590 for_each_possible_cpu(cpu) {
591 struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
592
593 if (!*pagep)
594 continue;
595
596 __free_page(*pagep);
597
598 /*
599 * If it's partial depopulation, it might get
600 * populated or depopulated again. Mark the
601 * page gone.
602 */
603 *pagep = NULL;
604
605 unmap_start = unmap_start < 0 ? i : unmap_start;
606 unmap_end = i + 1;
607 }
608 }
609
610 if (unmap_start >= 0)
611 pcpu_unmap(chunk, unmap_start, unmap_end, flush);
612}
613
614/**
615 * pcpu_map - map pages into a pcpu_chunk
616 * @chunk: chunk of interest
617 * @page_start: page index of the first page to map
618 * @page_end: page index of the last page to map + 1
619 *
620 * For each cpu, map pages [@page_start,@page_end) into @chunk.
621 * vcache is flushed afterwards.
622 */
623static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end)
624{
625 unsigned int last = num_possible_cpus() - 1;
626 unsigned int cpu;
627 int err;
628
8d408b4b
TH
629 /* map must not be done on immutable chunk */
630 WARN_ON(chunk->immutable);
631
fbf59bc9
TH
632 for_each_possible_cpu(cpu) {
633 err = map_kernel_range_noflush(
634 pcpu_chunk_addr(chunk, cpu, page_start),
635 (page_end - page_start) << PAGE_SHIFT,
636 PAGE_KERNEL,
637 pcpu_chunk_pagep(chunk, cpu, page_start));
638 if (err < 0)
639 return err;
640 }
641
642 /* flush at once, please read comments in pcpu_unmap() */
643 flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start),
644 pcpu_chunk_addr(chunk, last, page_end));
645 return 0;
646}
647
648/**
649 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
650 * @chunk: chunk of interest
651 * @off: offset to the area to populate
cae3aeb8 652 * @size: size of the area to populate in bytes
fbf59bc9
TH
653 *
654 * For each cpu, populate and map pages [@page_start,@page_end) into
655 * @chunk. The area is cleared on return.
656 */
657static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
658{
659 const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
660 int page_start = PFN_DOWN(off);
661 int page_end = PFN_UP(off + size);
662 int map_start = -1;
02d51fdf 663 int uninitialized_var(map_end);
fbf59bc9
TH
664 unsigned int cpu;
665 int i;
666
667 for (i = page_start; i < page_end; i++) {
668 if (pcpu_chunk_page_occupied(chunk, i)) {
669 if (map_start >= 0) {
670 if (pcpu_map(chunk, map_start, map_end))
671 goto err;
672 map_start = -1;
673 }
674 continue;
675 }
676
677 map_start = map_start < 0 ? i : map_start;
678 map_end = i + 1;
679
680 for_each_possible_cpu(cpu) {
681 struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
682
683 *pagep = alloc_pages_node(cpu_to_node(cpu),
684 alloc_mask, 0);
685 if (!*pagep)
686 goto err;
687 }
688 }
689
690 if (map_start >= 0 && pcpu_map(chunk, map_start, map_end))
691 goto err;
692
693 for_each_possible_cpu(cpu)
d9b55eeb 694 memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0,
fbf59bc9
TH
695 size);
696
697 return 0;
698err:
699 /* likely under heavy memory pressure, give memory back */
700 pcpu_depopulate_chunk(chunk, off, size, true);
701 return -ENOMEM;
702}
703
704static void free_pcpu_chunk(struct pcpu_chunk *chunk)
705{
706 if (!chunk)
707 return;
708 if (chunk->vm)
709 free_vm_area(chunk->vm);
1880d93b 710 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
fbf59bc9
TH
711 kfree(chunk);
712}
713
714static struct pcpu_chunk *alloc_pcpu_chunk(void)
715{
716 struct pcpu_chunk *chunk;
717
718 chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
719 if (!chunk)
720 return NULL;
721
1880d93b 722 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
fbf59bc9
TH
723 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
724 chunk->map[chunk->map_used++] = pcpu_unit_size;
3e24aa58 725 chunk->page = chunk->page_ar;
fbf59bc9
TH
726
727 chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL);
728 if (!chunk->vm) {
729 free_pcpu_chunk(chunk);
730 return NULL;
731 }
732
733 INIT_LIST_HEAD(&chunk->list);
734 chunk->free_size = pcpu_unit_size;
735 chunk->contig_hint = pcpu_unit_size;
736
737 return chunk;
738}
739
740/**
edcb4639 741 * pcpu_alloc - the percpu allocator
cae3aeb8 742 * @size: size of area to allocate in bytes
fbf59bc9 743 * @align: alignment of area (max PAGE_SIZE)
edcb4639 744 * @reserved: allocate from the reserved chunk if available
fbf59bc9
TH
745 *
746 * Allocate percpu area of @size bytes aligned at @align. Might
747 * sleep. Might trigger writeouts.
748 *
749 * RETURNS:
750 * Percpu pointer to the allocated area on success, NULL on failure.
751 */
edcb4639 752static void *pcpu_alloc(size_t size, size_t align, bool reserved)
fbf59bc9
TH
753{
754 void *ptr = NULL;
755 struct pcpu_chunk *chunk;
756 int slot, off;
757
8d408b4b 758 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
fbf59bc9
TH
759 WARN(true, "illegal size (%zu) or align (%zu) for "
760 "percpu allocation\n", size, align);
761 return NULL;
762 }
763
764 mutex_lock(&pcpu_mutex);
765
edcb4639
TH
766 /* serve reserved allocations from the reserved chunk if available */
767 if (reserved && pcpu_reserved_chunk) {
768 chunk = pcpu_reserved_chunk;
9f7dcf22
TH
769 if (size > chunk->contig_hint ||
770 pcpu_extend_area_map(chunk) < 0)
edcb4639
TH
771 goto out_unlock;
772 off = pcpu_alloc_area(chunk, size, align);
773 if (off >= 0)
774 goto area_found;
775 goto out_unlock;
776 }
777
778 /* search through normal chunks */
fbf59bc9
TH
779 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
780 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
781 if (size > chunk->contig_hint)
782 continue;
9f7dcf22
TH
783 if (pcpu_extend_area_map(chunk) < 0)
784 goto out_unlock;
fbf59bc9
TH
785 off = pcpu_alloc_area(chunk, size, align);
786 if (off >= 0)
787 goto area_found;
fbf59bc9
TH
788 }
789 }
790
791 /* hmmm... no space left, create a new chunk */
792 chunk = alloc_pcpu_chunk();
793 if (!chunk)
794 goto out_unlock;
795 pcpu_chunk_relocate(chunk, -1);
796 pcpu_chunk_addr_insert(chunk);
797
798 off = pcpu_alloc_area(chunk, size, align);
799 if (off < 0)
800 goto out_unlock;
801
802area_found:
803 /* populate, map and clear the area */
804 if (pcpu_populate_chunk(chunk, off, size)) {
805 pcpu_free_area(chunk, off);
806 goto out_unlock;
807 }
808
809 ptr = __addr_to_pcpu_ptr(chunk->vm->addr + off);
810out_unlock:
811 mutex_unlock(&pcpu_mutex);
812 return ptr;
813}
edcb4639
TH
814
815/**
816 * __alloc_percpu - allocate dynamic percpu area
817 * @size: size of area to allocate in bytes
818 * @align: alignment of area (max PAGE_SIZE)
819 *
820 * Allocate percpu area of @size bytes aligned at @align. Might
821 * sleep. Might trigger writeouts.
822 *
823 * RETURNS:
824 * Percpu pointer to the allocated area on success, NULL on failure.
825 */
826void *__alloc_percpu(size_t size, size_t align)
827{
828 return pcpu_alloc(size, align, false);
829}
fbf59bc9
TH
830EXPORT_SYMBOL_GPL(__alloc_percpu);
831
edcb4639
TH
832/**
833 * __alloc_reserved_percpu - allocate reserved percpu area
834 * @size: size of area to allocate in bytes
835 * @align: alignment of area (max PAGE_SIZE)
836 *
837 * Allocate percpu area of @size bytes aligned at @align from reserved
838 * percpu area if arch has set it up; otherwise, allocation is served
839 * from the same dynamic area. Might sleep. Might trigger writeouts.
840 *
841 * RETURNS:
842 * Percpu pointer to the allocated area on success, NULL on failure.
843 */
844void *__alloc_reserved_percpu(size_t size, size_t align)
845{
846 return pcpu_alloc(size, align, true);
847}
848
fbf59bc9
TH
849static void pcpu_kill_chunk(struct pcpu_chunk *chunk)
850{
8d408b4b 851 WARN_ON(chunk->immutable);
fbf59bc9
TH
852 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false);
853 list_del(&chunk->list);
854 rb_erase(&chunk->rb_node, &pcpu_addr_root);
855 free_pcpu_chunk(chunk);
856}
857
858/**
859 * free_percpu - free percpu area
860 * @ptr: pointer to area to free
861 *
862 * Free percpu area @ptr. Might sleep.
863 */
864void free_percpu(void *ptr)
865{
866 void *addr = __pcpu_ptr_to_addr(ptr);
867 struct pcpu_chunk *chunk;
868 int off;
869
870 if (!ptr)
871 return;
872
873 mutex_lock(&pcpu_mutex);
874
875 chunk = pcpu_chunk_addr_search(addr);
876 off = addr - chunk->vm->addr;
877
878 pcpu_free_area(chunk, off);
879
880 /* the chunk became fully free, kill one if there are other free ones */
881 if (chunk->free_size == pcpu_unit_size) {
882 struct pcpu_chunk *pos;
883
884 list_for_each_entry(pos,
885 &pcpu_slot[pcpu_chunk_slot(chunk)], list)
886 if (pos != chunk) {
887 pcpu_kill_chunk(pos);
888 break;
889 }
890 }
891
892 mutex_unlock(&pcpu_mutex);
893}
894EXPORT_SYMBOL_GPL(free_percpu);
895
896/**
8d408b4b
TH
897 * pcpu_setup_first_chunk - initialize the first percpu chunk
898 * @get_page_fn: callback to fetch page pointer
899 * @static_size: the size of static percpu area in bytes
edcb4639 900 * @reserved_size: the size of reserved percpu area in bytes
cafe8816
TH
901 * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto
902 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
8d408b4b
TH
903 * @base_addr: mapped address, NULL for auto
904 * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary
905 *
906 * Initialize the first percpu chunk which contains the kernel static
907 * perpcu area. This function is to be called from arch percpu area
908 * setup path. The first two parameters are mandatory. The rest are
909 * optional.
910 *
911 * @get_page_fn() should return pointer to percpu page given cpu
912 * number and page number. It should at least return enough pages to
913 * cover the static area. The returned pages for static area should
914 * have been initialized with valid data. If @unit_size is specified,
915 * it can also return pages after the static area. NULL return
916 * indicates end of pages for the cpu. Note that @get_page_fn() must
917 * return the same number of pages for all cpus.
918 *
edcb4639
TH
919 * @reserved_size, if non-zero, specifies the amount of bytes to
920 * reserve after the static area in the first chunk. This reserves
921 * the first chunk such that it's available only through reserved
922 * percpu allocation. This is primarily used to serve module percpu
923 * static areas on architectures where the addressing model has
924 * limited offset range for symbol relocations to guarantee module
925 * percpu symbols fall inside the relocatable range.
926 *
cafe8816
TH
927 * @unit_size, if non-negative, specifies unit size and must be
928 * aligned to PAGE_SIZE and equal to or larger than @static_size +
edcb4639 929 * @reserved_size + @dyn_size.
8d408b4b 930 *
cafe8816
TH
931 * @dyn_size, if non-negative, limits the number of bytes available
932 * for dynamic allocation in the first chunk. Specifying non-negative
933 * value make percpu leave alone the area beyond @static_size +
edcb4639 934 * @reserved_size + @dyn_size.
8d408b4b
TH
935 *
936 * Non-null @base_addr means that the caller already allocated virtual
937 * region for the first chunk and mapped it. percpu must not mess
938 * with the chunk. Note that @base_addr with 0 @unit_size or non-NULL
939 * @populate_pte_fn doesn't make any sense.
940 *
941 * @populate_pte_fn is used to populate the pagetable. NULL means the
942 * caller already populated the pagetable.
fbf59bc9 943 *
edcb4639
TH
944 * If the first chunk ends up with both reserved and dynamic areas, it
945 * is served by two chunks - one to serve the core static and reserved
946 * areas and the other for the dynamic area. They share the same vm
947 * and page map but uses different area allocation map to stay away
948 * from each other. The latter chunk is circulated in the chunk slots
949 * and available for dynamic allocation like any other chunks.
950 *
fbf59bc9
TH
951 * RETURNS:
952 * The determined pcpu_unit_size which can be used to initialize
953 * percpu access.
954 */
8d408b4b 955size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
edcb4639 956 size_t static_size, size_t reserved_size,
cafe8816
TH
957 ssize_t unit_size, ssize_t dyn_size,
958 void *base_addr,
8d408b4b 959 pcpu_populate_pte_fn_t populate_pte_fn)
fbf59bc9 960{
2441d15c 961 static struct vm_struct first_vm;
edcb4639
TH
962 static int smap[2], dmap[2];
963 struct pcpu_chunk *schunk, *dchunk = NULL;
fbf59bc9 964 unsigned int cpu;
8d408b4b 965 int nr_pages;
fbf59bc9
TH
966 int err, i;
967
8d408b4b 968 /* santiy checks */
edcb4639
TH
969 BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
970 ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
8d408b4b 971 BUG_ON(!static_size);
cafe8816 972 if (unit_size >= 0) {
edcb4639 973 BUG_ON(unit_size < static_size + reserved_size +
cafe8816
TH
974 (dyn_size >= 0 ? dyn_size : 0));
975 BUG_ON(unit_size & ~PAGE_MASK);
976 } else {
977 BUG_ON(dyn_size >= 0);
978 BUG_ON(base_addr);
979 }
8d408b4b 980 BUG_ON(base_addr && populate_pte_fn);
fbf59bc9 981
cafe8816 982 if (unit_size >= 0)
8d408b4b
TH
983 pcpu_unit_pages = unit_size >> PAGE_SHIFT;
984 else
985 pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT,
edcb4639 986 PFN_UP(static_size + reserved_size));
8d408b4b 987
d9b55eeb 988 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
fbf59bc9 989 pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size;
fbf59bc9 990 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk)
cb83b42e 991 + num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *);
fbf59bc9 992
cafe8816 993 if (dyn_size < 0)
edcb4639 994 dyn_size = pcpu_unit_size - static_size - reserved_size;
cafe8816 995
d9b55eeb
TH
996 /*
997 * Allocate chunk slots. The additional last slot is for
998 * empty chunks.
999 */
1000 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
fbf59bc9
TH
1001 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1002 for (i = 0; i < pcpu_nr_slots; i++)
1003 INIT_LIST_HEAD(&pcpu_slot[i]);
1004
edcb4639
TH
1005 /*
1006 * Initialize static chunk. If reserved_size is zero, the
1007 * static chunk covers static area + dynamic allocation area
1008 * in the first chunk. If reserved_size is not zero, it
1009 * covers static area + reserved area (mostly used for module
1010 * static percpu allocation).
1011 */
2441d15c
TH
1012 schunk = alloc_bootmem(pcpu_chunk_struct_size);
1013 INIT_LIST_HEAD(&schunk->list);
1014 schunk->vm = &first_vm;
61ace7fa
TH
1015 schunk->map = smap;
1016 schunk->map_alloc = ARRAY_SIZE(smap);
3e24aa58 1017 schunk->page = schunk->page_ar;
edcb4639
TH
1018
1019 if (reserved_size) {
1020 schunk->free_size = reserved_size;
1021 pcpu_reserved_chunk = schunk; /* not for dynamic alloc */
1022 } else {
1023 schunk->free_size = dyn_size;
1024 dyn_size = 0; /* dynamic area covered */
1025 }
2441d15c 1026 schunk->contig_hint = schunk->free_size;
fbf59bc9 1027
61ace7fa
TH
1028 schunk->map[schunk->map_used++] = -static_size;
1029 if (schunk->free_size)
1030 schunk->map[schunk->map_used++] = schunk->free_size;
1031
edcb4639
TH
1032 pcpu_reserved_chunk_limit = static_size + schunk->free_size;
1033
1034 /* init dynamic chunk if necessary */
1035 if (dyn_size) {
1036 dchunk = alloc_bootmem(sizeof(struct pcpu_chunk));
1037 INIT_LIST_HEAD(&dchunk->list);
1038 dchunk->vm = &first_vm;
1039 dchunk->map = dmap;
1040 dchunk->map_alloc = ARRAY_SIZE(dmap);
1041 dchunk->page = schunk->page_ar; /* share page map with schunk */
1042
1043 dchunk->contig_hint = dchunk->free_size = dyn_size;
1044 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1045 dchunk->map[dchunk->map_used++] = dchunk->free_size;
1046 }
1047
8d408b4b 1048 /* allocate vm address */
2441d15c
TH
1049 first_vm.flags = VM_ALLOC;
1050 first_vm.size = pcpu_chunk_size;
8d408b4b
TH
1051
1052 if (!base_addr)
2441d15c 1053 vm_area_register_early(&first_vm, PAGE_SIZE);
8d408b4b
TH
1054 else {
1055 /*
1056 * Pages already mapped. No need to remap into
edcb4639
TH
1057 * vmalloc area. In this case the first chunks can't
1058 * be mapped or unmapped by percpu and are marked
8d408b4b
TH
1059 * immutable.
1060 */
2441d15c
TH
1061 first_vm.addr = base_addr;
1062 schunk->immutable = true;
edcb4639
TH
1063 if (dchunk)
1064 dchunk->immutable = true;
8d408b4b
TH
1065 }
1066
1067 /* assign pages */
1068 nr_pages = -1;
fbf59bc9 1069 for_each_possible_cpu(cpu) {
8d408b4b
TH
1070 for (i = 0; i < pcpu_unit_pages; i++) {
1071 struct page *page = get_page_fn(cpu, i);
1072
1073 if (!page)
1074 break;
2441d15c 1075 *pcpu_chunk_pagep(schunk, cpu, i) = page;
fbf59bc9 1076 }
8d408b4b 1077
61ace7fa 1078 BUG_ON(i < PFN_UP(static_size));
8d408b4b
TH
1079
1080 if (nr_pages < 0)
1081 nr_pages = i;
1082 else
1083 BUG_ON(nr_pages != i);
fbf59bc9
TH
1084 }
1085
8d408b4b
TH
1086 /* map them */
1087 if (populate_pte_fn) {
1088 for_each_possible_cpu(cpu)
1089 for (i = 0; i < nr_pages; i++)
2441d15c 1090 populate_pte_fn(pcpu_chunk_addr(schunk,
8d408b4b
TH
1091 cpu, i));
1092
2441d15c 1093 err = pcpu_map(schunk, 0, nr_pages);
8d408b4b
TH
1094 if (err)
1095 panic("failed to setup static percpu area, err=%d\n",
1096 err);
1097 }
fbf59bc9 1098
2441d15c 1099 /* link the first chunk in */
edcb4639
TH
1100 if (!dchunk) {
1101 pcpu_chunk_relocate(schunk, -1);
1102 pcpu_chunk_addr_insert(schunk);
1103 } else {
1104 pcpu_chunk_relocate(dchunk, -1);
1105 pcpu_chunk_addr_insert(dchunk);
1106 }
fbf59bc9
TH
1107
1108 /* we're done */
2441d15c 1109 pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0);
fbf59bc9
TH
1110 return pcpu_unit_size;
1111}