]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/percpu.c
percpu: replace pcpu_realloc() with pcpu_mem_alloc() and pcpu_mem_free()
[net-next-2.6.git] / mm / percpu.c
CommitLineData
fbf59bc9
TH
1/*
2 * linux/mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each
11 * chunk is consisted of num_possible_cpus() units and the first chunk
12 * is used for static percpu variables in the kernel image (special
13 * boot time alloc/init handling necessary as these areas need to be
14 * brought up before allocation services are running). Unit grows as
15 * necessary and all units grow or shrink in unison. When a chunk is
16 * filled up, another chunk is allocated. ie. in vmalloc area
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring
26 * percpu base registers UNIT_SIZE apart.
27 *
28 * There are usually many small percpu allocations many of them as
29 * small as 4 bytes. The allocator organizes chunks into lists
30 * according to free size and tries to allocate from the fullest one.
31 * Each chunk keeps the maximum contiguous area size hint which is
32 * guaranteed to be eqaul to or larger than the maximum contiguous
33 * area in the chunk. This helps the allocator not to iterate the
34 * chunk maps unnecessarily.
35 *
36 * Allocation state in each chunk is kept using an array of integers
37 * on chunk->map. A positive value in the map represents a free
38 * region and negative allocated. Allocation inside a chunk is done
39 * by scanning this map sequentially and serving the first matching
40 * entry. This is mostly copied from the percpu_modalloc() allocator.
41 * Chunks are also linked into a rb tree to ease address to chunk
42 * mapping during free.
43 *
44 * To use this allocator, arch code should do the followings.
45 *
46 * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA
47 *
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back
50 *
8d408b4b
TH
51 * - use pcpu_setup_first_chunk() during percpu area initialization to
52 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
53 */
54
55#include <linux/bitmap.h>
56#include <linux/bootmem.h>
57#include <linux/list.h>
58#include <linux/mm.h>
59#include <linux/module.h>
60#include <linux/mutex.h>
61#include <linux/percpu.h>
62#include <linux/pfn.h>
63#include <linux/rbtree.h>
64#include <linux/slab.h>
65#include <linux/vmalloc.h>
66
67#include <asm/cacheflush.h>
68#include <asm/tlbflush.h>
69
fbf59bc9
TH
70#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
71#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
72
73struct pcpu_chunk {
74 struct list_head list; /* linked to pcpu_slot lists */
75 struct rb_node rb_node; /* key is chunk->vm->addr */
76 int free_size; /* free bytes in the chunk */
77 int contig_hint; /* max contiguous size hint */
78 struct vm_struct *vm; /* mapped vmalloc region */
79 int map_used; /* # of map entries used */
80 int map_alloc; /* # of map entries allocated */
81 int *map; /* allocation map */
8d408b4b 82 bool immutable; /* no [de]population allowed */
3e24aa58
TH
83 struct page **page; /* points to page array */
84 struct page *page_ar[]; /* #cpus * UNIT_PAGES */
fbf59bc9
TH
85};
86
40150d37
TH
87static int pcpu_unit_pages __read_mostly;
88static int pcpu_unit_size __read_mostly;
89static int pcpu_chunk_size __read_mostly;
90static int pcpu_nr_slots __read_mostly;
91static size_t pcpu_chunk_struct_size __read_mostly;
fbf59bc9
TH
92
93/* the address of the first chunk which starts with the kernel static area */
40150d37 94void *pcpu_base_addr __read_mostly;
fbf59bc9
TH
95EXPORT_SYMBOL_GPL(pcpu_base_addr);
96
edcb4639
TH
97/* optional reserved chunk, only accessible for reserved allocations */
98static struct pcpu_chunk *pcpu_reserved_chunk;
99/* offset limit of the reserved chunk */
100static int pcpu_reserved_chunk_limit;
101
fbf59bc9
TH
102/*
103 * One mutex to rule them all.
104 *
105 * The following mutex is grabbed in the outermost public alloc/free
106 * interface functions and released only when the operation is
107 * complete. As such, every function in this file other than the
108 * outermost functions are called under pcpu_mutex.
109 *
110 * It can easily be switched to use spinlock such that only the area
111 * allocation and page population commit are protected with it doing
112 * actual [de]allocation without holding any lock. However, given
113 * what this allocator does, I think it's better to let them run
114 * sequentially.
115 */
116static DEFINE_MUTEX(pcpu_mutex);
117
40150d37 118static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
fbf59bc9
TH
119static struct rb_root pcpu_addr_root = RB_ROOT; /* chunks by address */
120
d9b55eeb 121static int __pcpu_size_to_slot(int size)
fbf59bc9 122{
cae3aeb8 123 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
124 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
125}
126
d9b55eeb
TH
127static int pcpu_size_to_slot(int size)
128{
129 if (size == pcpu_unit_size)
130 return pcpu_nr_slots - 1;
131 return __pcpu_size_to_slot(size);
132}
133
fbf59bc9
TH
134static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
135{
136 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
137 return 0;
138
139 return pcpu_size_to_slot(chunk->free_size);
140}
141
142static int pcpu_page_idx(unsigned int cpu, int page_idx)
143{
d9b55eeb 144 return cpu * pcpu_unit_pages + page_idx;
fbf59bc9
TH
145}
146
147static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk,
148 unsigned int cpu, int page_idx)
149{
150 return &chunk->page[pcpu_page_idx(cpu, page_idx)];
151}
152
153static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
154 unsigned int cpu, int page_idx)
155{
156 return (unsigned long)chunk->vm->addr +
157 (pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT);
158}
159
160static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk,
161 int page_idx)
162{
163 return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL;
164}
165
166/**
1880d93b
TH
167 * pcpu_mem_alloc - allocate memory
168 * @size: bytes to allocate
fbf59bc9 169 *
1880d93b
TH
170 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
171 * kzalloc() is used; otherwise, vmalloc() is used. The returned
172 * memory is always zeroed.
fbf59bc9
TH
173 *
174 * RETURNS:
1880d93b 175 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 176 */
1880d93b 177static void *pcpu_mem_alloc(size_t size)
fbf59bc9 178{
1880d93b
TH
179 if (size <= PAGE_SIZE)
180 return kzalloc(size, GFP_KERNEL);
181 else {
182 void *ptr = vmalloc(size);
183 if (ptr)
184 memset(ptr, 0, size);
185 return ptr;
186 }
187}
fbf59bc9 188
1880d93b
TH
189/**
190 * pcpu_mem_free - free memory
191 * @ptr: memory to free
192 * @size: size of the area
193 *
194 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
195 */
196static void pcpu_mem_free(void *ptr, size_t size)
197{
fbf59bc9 198 if (size <= PAGE_SIZE)
1880d93b 199 kfree(ptr);
fbf59bc9 200 else
1880d93b 201 vfree(ptr);
fbf59bc9
TH
202}
203
204/**
205 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
206 * @chunk: chunk of interest
207 * @oslot: the previous slot it was on
208 *
209 * This function is called after an allocation or free changed @chunk.
210 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
211 * moved to the slot. Note that the reserved chunk is never put on
212 * chunk slots.
fbf59bc9
TH
213 */
214static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
215{
216 int nslot = pcpu_chunk_slot(chunk);
217
edcb4639 218 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
219 if (oslot < nslot)
220 list_move(&chunk->list, &pcpu_slot[nslot]);
221 else
222 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
223 }
224}
225
226static struct rb_node **pcpu_chunk_rb_search(void *addr,
227 struct rb_node **parentp)
228{
229 struct rb_node **p = &pcpu_addr_root.rb_node;
230 struct rb_node *parent = NULL;
231 struct pcpu_chunk *chunk;
232
233 while (*p) {
234 parent = *p;
235 chunk = rb_entry(parent, struct pcpu_chunk, rb_node);
236
237 if (addr < chunk->vm->addr)
238 p = &(*p)->rb_left;
239 else if (addr > chunk->vm->addr)
240 p = &(*p)->rb_right;
241 else
242 break;
243 }
244
245 if (parentp)
246 *parentp = parent;
247 return p;
248}
249
250/**
251 * pcpu_chunk_addr_search - search for chunk containing specified address
252 * @addr: address to search for
253 *
254 * Look for chunk which might contain @addr. More specifically, it
255 * searchs for the chunk with the highest start address which isn't
256 * beyond @addr.
257 *
258 * RETURNS:
259 * The address of the found chunk.
260 */
261static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
262{
263 struct rb_node *n, *parent;
264 struct pcpu_chunk *chunk;
265
edcb4639
TH
266 /* is it in the reserved chunk? */
267 if (pcpu_reserved_chunk) {
268 void *start = pcpu_reserved_chunk->vm->addr;
269
270 if (addr >= start && addr < start + pcpu_reserved_chunk_limit)
271 return pcpu_reserved_chunk;
272 }
273
274 /* nah... search the regular ones */
fbf59bc9
TH
275 n = *pcpu_chunk_rb_search(addr, &parent);
276 if (!n) {
277 /* no exactly matching chunk, the parent is the closest */
278 n = parent;
279 BUG_ON(!n);
280 }
281 chunk = rb_entry(n, struct pcpu_chunk, rb_node);
282
283 if (addr < chunk->vm->addr) {
284 /* the parent was the next one, look for the previous one */
285 n = rb_prev(n);
286 BUG_ON(!n);
287 chunk = rb_entry(n, struct pcpu_chunk, rb_node);
288 }
289
290 return chunk;
291}
292
293/**
294 * pcpu_chunk_addr_insert - insert chunk into address rb tree
295 * @new: chunk to insert
296 *
297 * Insert @new into address rb tree.
298 */
299static void pcpu_chunk_addr_insert(struct pcpu_chunk *new)
300{
301 struct rb_node **p, *parent;
302
303 p = pcpu_chunk_rb_search(new->vm->addr, &parent);
304 BUG_ON(*p);
305 rb_link_node(&new->rb_node, parent, p);
306 rb_insert_color(&new->rb_node, &pcpu_addr_root);
307}
308
309/**
310 * pcpu_split_block - split a map block
311 * @chunk: chunk of interest
312 * @i: index of map block to split
cae3aeb8
TH
313 * @head: head size in bytes (can be 0)
314 * @tail: tail size in bytes (can be 0)
fbf59bc9
TH
315 *
316 * Split the @i'th map block into two or three blocks. If @head is
317 * non-zero, @head bytes block is inserted before block @i moving it
318 * to @i+1 and reducing its size by @head bytes.
319 *
320 * If @tail is non-zero, the target block, which can be @i or @i+1
321 * depending on @head, is reduced by @tail bytes and @tail byte block
322 * is inserted after the target block.
323 *
324 * RETURNS:
325 * 0 on success, -errno on failure.
326 */
327static int pcpu_split_block(struct pcpu_chunk *chunk, int i, int head, int tail)
328{
329 int nr_extra = !!head + !!tail;
330 int target = chunk->map_used + nr_extra;
331
332 /* reallocation required? */
333 if (chunk->map_alloc < target) {
61ace7fa 334 int new_alloc;
fbf59bc9 335 int *new;
1880d93b 336 size_t size;
fbf59bc9 337
61ace7fa 338 new_alloc = PCPU_DFL_MAP_ALLOC;
fbf59bc9
TH
339 while (new_alloc < target)
340 new_alloc *= 2;
341
1880d93b 342 new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
fbf59bc9
TH
343 if (!new)
344 return -ENOMEM;
345
1880d93b
TH
346 size = chunk->map_alloc * sizeof(chunk->map[0]);
347 memcpy(new, chunk->map, size);
348
349 /*
350 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the
351 * chunk is one of the first chunks and still using
352 * static map.
353 */
354 if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
355 pcpu_mem_free(chunk->map, size);
356
fbf59bc9
TH
357 chunk->map_alloc = new_alloc;
358 chunk->map = new;
359 }
360
361 /* insert a new subblock */
362 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
363 sizeof(chunk->map[0]) * (chunk->map_used - i));
364 chunk->map_used += nr_extra;
365
366 if (head) {
367 chunk->map[i + 1] = chunk->map[i] - head;
368 chunk->map[i++] = head;
369 }
370 if (tail) {
371 chunk->map[i++] -= tail;
372 chunk->map[i] = tail;
373 }
374 return 0;
375}
376
377/**
378 * pcpu_alloc_area - allocate area from a pcpu_chunk
379 * @chunk: chunk of interest
cae3aeb8 380 * @size: wanted size in bytes
fbf59bc9
TH
381 * @align: wanted align
382 *
383 * Try to allocate @size bytes area aligned at @align from @chunk.
384 * Note that this function only allocates the offset. It doesn't
385 * populate or map the area.
386 *
387 * RETURNS:
388 * Allocated offset in @chunk on success, -errno on failure.
389 */
390static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
391{
392 int oslot = pcpu_chunk_slot(chunk);
393 int max_contig = 0;
394 int i, off;
395
fbf59bc9
TH
396 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
397 bool is_last = i + 1 == chunk->map_used;
398 int head, tail;
399
400 /* extra for alignment requirement */
401 head = ALIGN(off, align) - off;
402 BUG_ON(i == 0 && head != 0);
403
404 if (chunk->map[i] < 0)
405 continue;
406 if (chunk->map[i] < head + size) {
407 max_contig = max(chunk->map[i], max_contig);
408 continue;
409 }
410
411 /*
412 * If head is small or the previous block is free,
413 * merge'em. Note that 'small' is defined as smaller
414 * than sizeof(int), which is very small but isn't too
415 * uncommon for percpu allocations.
416 */
417 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
418 if (chunk->map[i - 1] > 0)
419 chunk->map[i - 1] += head;
420 else {
421 chunk->map[i - 1] -= head;
422 chunk->free_size -= head;
423 }
424 chunk->map[i] -= head;
425 off += head;
426 head = 0;
427 }
428
429 /* if tail is small, just keep it around */
430 tail = chunk->map[i] - head - size;
431 if (tail < sizeof(int))
432 tail = 0;
433
434 /* split if warranted */
435 if (head || tail) {
436 if (pcpu_split_block(chunk, i, head, tail))
437 return -ENOMEM;
438 if (head) {
439 i++;
440 off += head;
441 max_contig = max(chunk->map[i - 1], max_contig);
442 }
443 if (tail)
444 max_contig = max(chunk->map[i + 1], max_contig);
445 }
446
447 /* update hint and mark allocated */
448 if (is_last)
449 chunk->contig_hint = max_contig; /* fully scanned */
450 else
451 chunk->contig_hint = max(chunk->contig_hint,
452 max_contig);
453
454 chunk->free_size -= chunk->map[i];
455 chunk->map[i] = -chunk->map[i];
456
457 pcpu_chunk_relocate(chunk, oslot);
458 return off;
459 }
460
461 chunk->contig_hint = max_contig; /* fully scanned */
462 pcpu_chunk_relocate(chunk, oslot);
463
464 /*
465 * Tell the upper layer that this chunk has no area left.
466 * Note that this is not an error condition but a notification
467 * to upper layer that it needs to look at other chunks.
468 * -ENOSPC is chosen as it isn't used in memory subsystem and
469 * matches the meaning in a way.
470 */
471 return -ENOSPC;
472}
473
474/**
475 * pcpu_free_area - free area to a pcpu_chunk
476 * @chunk: chunk of interest
477 * @freeme: offset of area to free
478 *
479 * Free area starting from @freeme to @chunk. Note that this function
480 * only modifies the allocation map. It doesn't depopulate or unmap
481 * the area.
482 */
483static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
484{
485 int oslot = pcpu_chunk_slot(chunk);
486 int i, off;
487
488 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
489 if (off == freeme)
490 break;
491 BUG_ON(off != freeme);
492 BUG_ON(chunk->map[i] > 0);
493
494 chunk->map[i] = -chunk->map[i];
495 chunk->free_size += chunk->map[i];
496
497 /* merge with previous? */
498 if (i > 0 && chunk->map[i - 1] >= 0) {
499 chunk->map[i - 1] += chunk->map[i];
500 chunk->map_used--;
501 memmove(&chunk->map[i], &chunk->map[i + 1],
502 (chunk->map_used - i) * sizeof(chunk->map[0]));
503 i--;
504 }
505 /* merge with next? */
506 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
507 chunk->map[i] += chunk->map[i + 1];
508 chunk->map_used--;
509 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
510 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
511 }
512
513 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
514 pcpu_chunk_relocate(chunk, oslot);
515}
516
517/**
518 * pcpu_unmap - unmap pages out of a pcpu_chunk
519 * @chunk: chunk of interest
520 * @page_start: page index of the first page to unmap
521 * @page_end: page index of the last page to unmap + 1
522 * @flush: whether to flush cache and tlb or not
523 *
524 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
525 * If @flush is true, vcache is flushed before unmapping and tlb
526 * after.
527 */
528static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end,
529 bool flush)
530{
531 unsigned int last = num_possible_cpus() - 1;
532 unsigned int cpu;
533
8d408b4b
TH
534 /* unmap must not be done on immutable chunk */
535 WARN_ON(chunk->immutable);
536
fbf59bc9
TH
537 /*
538 * Each flushing trial can be very expensive, issue flush on
539 * the whole region at once rather than doing it for each cpu.
540 * This could be an overkill but is more scalable.
541 */
542 if (flush)
543 flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start),
544 pcpu_chunk_addr(chunk, last, page_end));
545
546 for_each_possible_cpu(cpu)
547 unmap_kernel_range_noflush(
548 pcpu_chunk_addr(chunk, cpu, page_start),
549 (page_end - page_start) << PAGE_SHIFT);
550
551 /* ditto as flush_cache_vunmap() */
552 if (flush)
553 flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start),
554 pcpu_chunk_addr(chunk, last, page_end));
555}
556
557/**
558 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
559 * @chunk: chunk to depopulate
560 * @off: offset to the area to depopulate
cae3aeb8 561 * @size: size of the area to depopulate in bytes
fbf59bc9
TH
562 * @flush: whether to flush cache and tlb or not
563 *
564 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
565 * from @chunk. If @flush is true, vcache is flushed before unmapping
566 * and tlb after.
567 */
cae3aeb8
TH
568static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size,
569 bool flush)
fbf59bc9
TH
570{
571 int page_start = PFN_DOWN(off);
572 int page_end = PFN_UP(off + size);
573 int unmap_start = -1;
574 int uninitialized_var(unmap_end);
575 unsigned int cpu;
576 int i;
577
578 for (i = page_start; i < page_end; i++) {
579 for_each_possible_cpu(cpu) {
580 struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
581
582 if (!*pagep)
583 continue;
584
585 __free_page(*pagep);
586
587 /*
588 * If it's partial depopulation, it might get
589 * populated or depopulated again. Mark the
590 * page gone.
591 */
592 *pagep = NULL;
593
594 unmap_start = unmap_start < 0 ? i : unmap_start;
595 unmap_end = i + 1;
596 }
597 }
598
599 if (unmap_start >= 0)
600 pcpu_unmap(chunk, unmap_start, unmap_end, flush);
601}
602
603/**
604 * pcpu_map - map pages into a pcpu_chunk
605 * @chunk: chunk of interest
606 * @page_start: page index of the first page to map
607 * @page_end: page index of the last page to map + 1
608 *
609 * For each cpu, map pages [@page_start,@page_end) into @chunk.
610 * vcache is flushed afterwards.
611 */
612static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end)
613{
614 unsigned int last = num_possible_cpus() - 1;
615 unsigned int cpu;
616 int err;
617
8d408b4b
TH
618 /* map must not be done on immutable chunk */
619 WARN_ON(chunk->immutable);
620
fbf59bc9
TH
621 for_each_possible_cpu(cpu) {
622 err = map_kernel_range_noflush(
623 pcpu_chunk_addr(chunk, cpu, page_start),
624 (page_end - page_start) << PAGE_SHIFT,
625 PAGE_KERNEL,
626 pcpu_chunk_pagep(chunk, cpu, page_start));
627 if (err < 0)
628 return err;
629 }
630
631 /* flush at once, please read comments in pcpu_unmap() */
632 flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start),
633 pcpu_chunk_addr(chunk, last, page_end));
634 return 0;
635}
636
637/**
638 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
639 * @chunk: chunk of interest
640 * @off: offset to the area to populate
cae3aeb8 641 * @size: size of the area to populate in bytes
fbf59bc9
TH
642 *
643 * For each cpu, populate and map pages [@page_start,@page_end) into
644 * @chunk. The area is cleared on return.
645 */
646static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
647{
648 const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
649 int page_start = PFN_DOWN(off);
650 int page_end = PFN_UP(off + size);
651 int map_start = -1;
02d51fdf 652 int uninitialized_var(map_end);
fbf59bc9
TH
653 unsigned int cpu;
654 int i;
655
656 for (i = page_start; i < page_end; i++) {
657 if (pcpu_chunk_page_occupied(chunk, i)) {
658 if (map_start >= 0) {
659 if (pcpu_map(chunk, map_start, map_end))
660 goto err;
661 map_start = -1;
662 }
663 continue;
664 }
665
666 map_start = map_start < 0 ? i : map_start;
667 map_end = i + 1;
668
669 for_each_possible_cpu(cpu) {
670 struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
671
672 *pagep = alloc_pages_node(cpu_to_node(cpu),
673 alloc_mask, 0);
674 if (!*pagep)
675 goto err;
676 }
677 }
678
679 if (map_start >= 0 && pcpu_map(chunk, map_start, map_end))
680 goto err;
681
682 for_each_possible_cpu(cpu)
d9b55eeb 683 memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0,
fbf59bc9
TH
684 size);
685
686 return 0;
687err:
688 /* likely under heavy memory pressure, give memory back */
689 pcpu_depopulate_chunk(chunk, off, size, true);
690 return -ENOMEM;
691}
692
693static void free_pcpu_chunk(struct pcpu_chunk *chunk)
694{
695 if (!chunk)
696 return;
697 if (chunk->vm)
698 free_vm_area(chunk->vm);
1880d93b 699 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
fbf59bc9
TH
700 kfree(chunk);
701}
702
703static struct pcpu_chunk *alloc_pcpu_chunk(void)
704{
705 struct pcpu_chunk *chunk;
706
707 chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
708 if (!chunk)
709 return NULL;
710
1880d93b 711 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
fbf59bc9
TH
712 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
713 chunk->map[chunk->map_used++] = pcpu_unit_size;
3e24aa58 714 chunk->page = chunk->page_ar;
fbf59bc9
TH
715
716 chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL);
717 if (!chunk->vm) {
718 free_pcpu_chunk(chunk);
719 return NULL;
720 }
721
722 INIT_LIST_HEAD(&chunk->list);
723 chunk->free_size = pcpu_unit_size;
724 chunk->contig_hint = pcpu_unit_size;
725
726 return chunk;
727}
728
729/**
edcb4639 730 * pcpu_alloc - the percpu allocator
cae3aeb8 731 * @size: size of area to allocate in bytes
fbf59bc9 732 * @align: alignment of area (max PAGE_SIZE)
edcb4639 733 * @reserved: allocate from the reserved chunk if available
fbf59bc9
TH
734 *
735 * Allocate percpu area of @size bytes aligned at @align. Might
736 * sleep. Might trigger writeouts.
737 *
738 * RETURNS:
739 * Percpu pointer to the allocated area on success, NULL on failure.
740 */
edcb4639 741static void *pcpu_alloc(size_t size, size_t align, bool reserved)
fbf59bc9
TH
742{
743 void *ptr = NULL;
744 struct pcpu_chunk *chunk;
745 int slot, off;
746
8d408b4b 747 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
fbf59bc9
TH
748 WARN(true, "illegal size (%zu) or align (%zu) for "
749 "percpu allocation\n", size, align);
750 return NULL;
751 }
752
753 mutex_lock(&pcpu_mutex);
754
edcb4639
TH
755 /* serve reserved allocations from the reserved chunk if available */
756 if (reserved && pcpu_reserved_chunk) {
757 chunk = pcpu_reserved_chunk;
758 if (size > chunk->contig_hint)
759 goto out_unlock;
760 off = pcpu_alloc_area(chunk, size, align);
761 if (off >= 0)
762 goto area_found;
763 goto out_unlock;
764 }
765
766 /* search through normal chunks */
fbf59bc9
TH
767 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
768 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
769 if (size > chunk->contig_hint)
770 continue;
771 off = pcpu_alloc_area(chunk, size, align);
772 if (off >= 0)
773 goto area_found;
774 if (off != -ENOSPC)
775 goto out_unlock;
776 }
777 }
778
779 /* hmmm... no space left, create a new chunk */
780 chunk = alloc_pcpu_chunk();
781 if (!chunk)
782 goto out_unlock;
783 pcpu_chunk_relocate(chunk, -1);
784 pcpu_chunk_addr_insert(chunk);
785
786 off = pcpu_alloc_area(chunk, size, align);
787 if (off < 0)
788 goto out_unlock;
789
790area_found:
791 /* populate, map and clear the area */
792 if (pcpu_populate_chunk(chunk, off, size)) {
793 pcpu_free_area(chunk, off);
794 goto out_unlock;
795 }
796
797 ptr = __addr_to_pcpu_ptr(chunk->vm->addr + off);
798out_unlock:
799 mutex_unlock(&pcpu_mutex);
800 return ptr;
801}
edcb4639
TH
802
803/**
804 * __alloc_percpu - allocate dynamic percpu area
805 * @size: size of area to allocate in bytes
806 * @align: alignment of area (max PAGE_SIZE)
807 *
808 * Allocate percpu area of @size bytes aligned at @align. Might
809 * sleep. Might trigger writeouts.
810 *
811 * RETURNS:
812 * Percpu pointer to the allocated area on success, NULL on failure.
813 */
814void *__alloc_percpu(size_t size, size_t align)
815{
816 return pcpu_alloc(size, align, false);
817}
fbf59bc9
TH
818EXPORT_SYMBOL_GPL(__alloc_percpu);
819
edcb4639
TH
820/**
821 * __alloc_reserved_percpu - allocate reserved percpu area
822 * @size: size of area to allocate in bytes
823 * @align: alignment of area (max PAGE_SIZE)
824 *
825 * Allocate percpu area of @size bytes aligned at @align from reserved
826 * percpu area if arch has set it up; otherwise, allocation is served
827 * from the same dynamic area. Might sleep. Might trigger writeouts.
828 *
829 * RETURNS:
830 * Percpu pointer to the allocated area on success, NULL on failure.
831 */
832void *__alloc_reserved_percpu(size_t size, size_t align)
833{
834 return pcpu_alloc(size, align, true);
835}
836
fbf59bc9
TH
837static void pcpu_kill_chunk(struct pcpu_chunk *chunk)
838{
8d408b4b 839 WARN_ON(chunk->immutable);
fbf59bc9
TH
840 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false);
841 list_del(&chunk->list);
842 rb_erase(&chunk->rb_node, &pcpu_addr_root);
843 free_pcpu_chunk(chunk);
844}
845
846/**
847 * free_percpu - free percpu area
848 * @ptr: pointer to area to free
849 *
850 * Free percpu area @ptr. Might sleep.
851 */
852void free_percpu(void *ptr)
853{
854 void *addr = __pcpu_ptr_to_addr(ptr);
855 struct pcpu_chunk *chunk;
856 int off;
857
858 if (!ptr)
859 return;
860
861 mutex_lock(&pcpu_mutex);
862
863 chunk = pcpu_chunk_addr_search(addr);
864 off = addr - chunk->vm->addr;
865
866 pcpu_free_area(chunk, off);
867
868 /* the chunk became fully free, kill one if there are other free ones */
869 if (chunk->free_size == pcpu_unit_size) {
870 struct pcpu_chunk *pos;
871
872 list_for_each_entry(pos,
873 &pcpu_slot[pcpu_chunk_slot(chunk)], list)
874 if (pos != chunk) {
875 pcpu_kill_chunk(pos);
876 break;
877 }
878 }
879
880 mutex_unlock(&pcpu_mutex);
881}
882EXPORT_SYMBOL_GPL(free_percpu);
883
884/**
8d408b4b
TH
885 * pcpu_setup_first_chunk - initialize the first percpu chunk
886 * @get_page_fn: callback to fetch page pointer
887 * @static_size: the size of static percpu area in bytes
edcb4639 888 * @reserved_size: the size of reserved percpu area in bytes
cafe8816
TH
889 * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto
890 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
8d408b4b
TH
891 * @base_addr: mapped address, NULL for auto
892 * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary
893 *
894 * Initialize the first percpu chunk which contains the kernel static
895 * perpcu area. This function is to be called from arch percpu area
896 * setup path. The first two parameters are mandatory. The rest are
897 * optional.
898 *
899 * @get_page_fn() should return pointer to percpu page given cpu
900 * number and page number. It should at least return enough pages to
901 * cover the static area. The returned pages for static area should
902 * have been initialized with valid data. If @unit_size is specified,
903 * it can also return pages after the static area. NULL return
904 * indicates end of pages for the cpu. Note that @get_page_fn() must
905 * return the same number of pages for all cpus.
906 *
edcb4639
TH
907 * @reserved_size, if non-zero, specifies the amount of bytes to
908 * reserve after the static area in the first chunk. This reserves
909 * the first chunk such that it's available only through reserved
910 * percpu allocation. This is primarily used to serve module percpu
911 * static areas on architectures where the addressing model has
912 * limited offset range for symbol relocations to guarantee module
913 * percpu symbols fall inside the relocatable range.
914 *
cafe8816
TH
915 * @unit_size, if non-negative, specifies unit size and must be
916 * aligned to PAGE_SIZE and equal to or larger than @static_size +
edcb4639 917 * @reserved_size + @dyn_size.
8d408b4b 918 *
cafe8816
TH
919 * @dyn_size, if non-negative, limits the number of bytes available
920 * for dynamic allocation in the first chunk. Specifying non-negative
921 * value make percpu leave alone the area beyond @static_size +
edcb4639 922 * @reserved_size + @dyn_size.
8d408b4b
TH
923 *
924 * Non-null @base_addr means that the caller already allocated virtual
925 * region for the first chunk and mapped it. percpu must not mess
926 * with the chunk. Note that @base_addr with 0 @unit_size or non-NULL
927 * @populate_pte_fn doesn't make any sense.
928 *
929 * @populate_pte_fn is used to populate the pagetable. NULL means the
930 * caller already populated the pagetable.
fbf59bc9 931 *
edcb4639
TH
932 * If the first chunk ends up with both reserved and dynamic areas, it
933 * is served by two chunks - one to serve the core static and reserved
934 * areas and the other for the dynamic area. They share the same vm
935 * and page map but uses different area allocation map to stay away
936 * from each other. The latter chunk is circulated in the chunk slots
937 * and available for dynamic allocation like any other chunks.
938 *
fbf59bc9
TH
939 * RETURNS:
940 * The determined pcpu_unit_size which can be used to initialize
941 * percpu access.
942 */
8d408b4b 943size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
edcb4639 944 size_t static_size, size_t reserved_size,
cafe8816
TH
945 ssize_t unit_size, ssize_t dyn_size,
946 void *base_addr,
8d408b4b 947 pcpu_populate_pte_fn_t populate_pte_fn)
fbf59bc9 948{
2441d15c 949 static struct vm_struct first_vm;
edcb4639
TH
950 static int smap[2], dmap[2];
951 struct pcpu_chunk *schunk, *dchunk = NULL;
fbf59bc9 952 unsigned int cpu;
8d408b4b 953 int nr_pages;
fbf59bc9
TH
954 int err, i;
955
8d408b4b 956 /* santiy checks */
edcb4639
TH
957 BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
958 ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
8d408b4b 959 BUG_ON(!static_size);
cafe8816 960 if (unit_size >= 0) {
edcb4639 961 BUG_ON(unit_size < static_size + reserved_size +
cafe8816
TH
962 (dyn_size >= 0 ? dyn_size : 0));
963 BUG_ON(unit_size & ~PAGE_MASK);
964 } else {
965 BUG_ON(dyn_size >= 0);
966 BUG_ON(base_addr);
967 }
8d408b4b 968 BUG_ON(base_addr && populate_pte_fn);
fbf59bc9 969
cafe8816 970 if (unit_size >= 0)
8d408b4b
TH
971 pcpu_unit_pages = unit_size >> PAGE_SHIFT;
972 else
973 pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT,
edcb4639 974 PFN_UP(static_size + reserved_size));
8d408b4b 975
d9b55eeb 976 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
fbf59bc9 977 pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size;
fbf59bc9 978 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk)
cb83b42e 979 + num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *);
fbf59bc9 980
cafe8816 981 if (dyn_size < 0)
edcb4639 982 dyn_size = pcpu_unit_size - static_size - reserved_size;
cafe8816 983
d9b55eeb
TH
984 /*
985 * Allocate chunk slots. The additional last slot is for
986 * empty chunks.
987 */
988 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
fbf59bc9
TH
989 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
990 for (i = 0; i < pcpu_nr_slots; i++)
991 INIT_LIST_HEAD(&pcpu_slot[i]);
992
edcb4639
TH
993 /*
994 * Initialize static chunk. If reserved_size is zero, the
995 * static chunk covers static area + dynamic allocation area
996 * in the first chunk. If reserved_size is not zero, it
997 * covers static area + reserved area (mostly used for module
998 * static percpu allocation).
999 */
2441d15c
TH
1000 schunk = alloc_bootmem(pcpu_chunk_struct_size);
1001 INIT_LIST_HEAD(&schunk->list);
1002 schunk->vm = &first_vm;
61ace7fa
TH
1003 schunk->map = smap;
1004 schunk->map_alloc = ARRAY_SIZE(smap);
3e24aa58 1005 schunk->page = schunk->page_ar;
edcb4639
TH
1006
1007 if (reserved_size) {
1008 schunk->free_size = reserved_size;
1009 pcpu_reserved_chunk = schunk; /* not for dynamic alloc */
1010 } else {
1011 schunk->free_size = dyn_size;
1012 dyn_size = 0; /* dynamic area covered */
1013 }
2441d15c 1014 schunk->contig_hint = schunk->free_size;
fbf59bc9 1015
61ace7fa
TH
1016 schunk->map[schunk->map_used++] = -static_size;
1017 if (schunk->free_size)
1018 schunk->map[schunk->map_used++] = schunk->free_size;
1019
edcb4639
TH
1020 pcpu_reserved_chunk_limit = static_size + schunk->free_size;
1021
1022 /* init dynamic chunk if necessary */
1023 if (dyn_size) {
1024 dchunk = alloc_bootmem(sizeof(struct pcpu_chunk));
1025 INIT_LIST_HEAD(&dchunk->list);
1026 dchunk->vm = &first_vm;
1027 dchunk->map = dmap;
1028 dchunk->map_alloc = ARRAY_SIZE(dmap);
1029 dchunk->page = schunk->page_ar; /* share page map with schunk */
1030
1031 dchunk->contig_hint = dchunk->free_size = dyn_size;
1032 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1033 dchunk->map[dchunk->map_used++] = dchunk->free_size;
1034 }
1035
8d408b4b 1036 /* allocate vm address */
2441d15c
TH
1037 first_vm.flags = VM_ALLOC;
1038 first_vm.size = pcpu_chunk_size;
8d408b4b
TH
1039
1040 if (!base_addr)
2441d15c 1041 vm_area_register_early(&first_vm, PAGE_SIZE);
8d408b4b
TH
1042 else {
1043 /*
1044 * Pages already mapped. No need to remap into
edcb4639
TH
1045 * vmalloc area. In this case the first chunks can't
1046 * be mapped or unmapped by percpu and are marked
8d408b4b
TH
1047 * immutable.
1048 */
2441d15c
TH
1049 first_vm.addr = base_addr;
1050 schunk->immutable = true;
edcb4639
TH
1051 if (dchunk)
1052 dchunk->immutable = true;
8d408b4b
TH
1053 }
1054
1055 /* assign pages */
1056 nr_pages = -1;
fbf59bc9 1057 for_each_possible_cpu(cpu) {
8d408b4b
TH
1058 for (i = 0; i < pcpu_unit_pages; i++) {
1059 struct page *page = get_page_fn(cpu, i);
1060
1061 if (!page)
1062 break;
2441d15c 1063 *pcpu_chunk_pagep(schunk, cpu, i) = page;
fbf59bc9 1064 }
8d408b4b 1065
61ace7fa 1066 BUG_ON(i < PFN_UP(static_size));
8d408b4b
TH
1067
1068 if (nr_pages < 0)
1069 nr_pages = i;
1070 else
1071 BUG_ON(nr_pages != i);
fbf59bc9
TH
1072 }
1073
8d408b4b
TH
1074 /* map them */
1075 if (populate_pte_fn) {
1076 for_each_possible_cpu(cpu)
1077 for (i = 0; i < nr_pages; i++)
2441d15c 1078 populate_pte_fn(pcpu_chunk_addr(schunk,
8d408b4b
TH
1079 cpu, i));
1080
2441d15c 1081 err = pcpu_map(schunk, 0, nr_pages);
8d408b4b
TH
1082 if (err)
1083 panic("failed to setup static percpu area, err=%d\n",
1084 err);
1085 }
fbf59bc9 1086
2441d15c 1087 /* link the first chunk in */
edcb4639
TH
1088 if (!dchunk) {
1089 pcpu_chunk_relocate(schunk, -1);
1090 pcpu_chunk_addr_insert(schunk);
1091 } else {
1092 pcpu_chunk_relocate(dchunk, -1);
1093 pcpu_chunk_addr_insert(dchunk);
1094 }
fbf59bc9
TH
1095
1096 /* we're done */
2441d15c 1097 pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0);
fbf59bc9
TH
1098 return pcpu_unit_size;
1099}