]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/percpu.c
percpu: add an indirection ptr for chunk page map access
[net-next-2.6.git] / mm / percpu.c
CommitLineData
fbf59bc9
TH
1/*
2 * linux/mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each
11 * chunk is consisted of num_possible_cpus() units and the first chunk
12 * is used for static percpu variables in the kernel image (special
13 * boot time alloc/init handling necessary as these areas need to be
14 * brought up before allocation services are running). Unit grows as
15 * necessary and all units grow or shrink in unison. When a chunk is
16 * filled up, another chunk is allocated. ie. in vmalloc area
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring
26 * percpu base registers UNIT_SIZE apart.
27 *
28 * There are usually many small percpu allocations many of them as
29 * small as 4 bytes. The allocator organizes chunks into lists
30 * according to free size and tries to allocate from the fullest one.
31 * Each chunk keeps the maximum contiguous area size hint which is
32 * guaranteed to be eqaul to or larger than the maximum contiguous
33 * area in the chunk. This helps the allocator not to iterate the
34 * chunk maps unnecessarily.
35 *
36 * Allocation state in each chunk is kept using an array of integers
37 * on chunk->map. A positive value in the map represents a free
38 * region and negative allocated. Allocation inside a chunk is done
39 * by scanning this map sequentially and serving the first matching
40 * entry. This is mostly copied from the percpu_modalloc() allocator.
41 * Chunks are also linked into a rb tree to ease address to chunk
42 * mapping during free.
43 *
44 * To use this allocator, arch code should do the followings.
45 *
46 * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA
47 *
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back
50 *
8d408b4b
TH
51 * - use pcpu_setup_first_chunk() during percpu area initialization to
52 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
53 */
54
55#include <linux/bitmap.h>
56#include <linux/bootmem.h>
57#include <linux/list.h>
58#include <linux/mm.h>
59#include <linux/module.h>
60#include <linux/mutex.h>
61#include <linux/percpu.h>
62#include <linux/pfn.h>
63#include <linux/rbtree.h>
64#include <linux/slab.h>
65#include <linux/vmalloc.h>
66
67#include <asm/cacheflush.h>
68#include <asm/tlbflush.h>
69
fbf59bc9
TH
70#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
71#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
72
73struct pcpu_chunk {
74 struct list_head list; /* linked to pcpu_slot lists */
75 struct rb_node rb_node; /* key is chunk->vm->addr */
76 int free_size; /* free bytes in the chunk */
77 int contig_hint; /* max contiguous size hint */
78 struct vm_struct *vm; /* mapped vmalloc region */
79 int map_used; /* # of map entries used */
80 int map_alloc; /* # of map entries allocated */
81 int *map; /* allocation map */
8d408b4b 82 bool immutable; /* no [de]population allowed */
3e24aa58
TH
83 struct page **page; /* points to page array */
84 struct page *page_ar[]; /* #cpus * UNIT_PAGES */
fbf59bc9
TH
85};
86
40150d37
TH
87static int pcpu_unit_pages __read_mostly;
88static int pcpu_unit_size __read_mostly;
89static int pcpu_chunk_size __read_mostly;
90static int pcpu_nr_slots __read_mostly;
91static size_t pcpu_chunk_struct_size __read_mostly;
fbf59bc9
TH
92
93/* the address of the first chunk which starts with the kernel static area */
40150d37 94void *pcpu_base_addr __read_mostly;
fbf59bc9
TH
95EXPORT_SYMBOL_GPL(pcpu_base_addr);
96
fbf59bc9
TH
97/*
98 * One mutex to rule them all.
99 *
100 * The following mutex is grabbed in the outermost public alloc/free
101 * interface functions and released only when the operation is
102 * complete. As such, every function in this file other than the
103 * outermost functions are called under pcpu_mutex.
104 *
105 * It can easily be switched to use spinlock such that only the area
106 * allocation and page population commit are protected with it doing
107 * actual [de]allocation without holding any lock. However, given
108 * what this allocator does, I think it's better to let them run
109 * sequentially.
110 */
111static DEFINE_MUTEX(pcpu_mutex);
112
40150d37 113static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
fbf59bc9
TH
114static struct rb_root pcpu_addr_root = RB_ROOT; /* chunks by address */
115
d9b55eeb 116static int __pcpu_size_to_slot(int size)
fbf59bc9 117{
cae3aeb8 118 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
119 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
120}
121
d9b55eeb
TH
122static int pcpu_size_to_slot(int size)
123{
124 if (size == pcpu_unit_size)
125 return pcpu_nr_slots - 1;
126 return __pcpu_size_to_slot(size);
127}
128
fbf59bc9
TH
129static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
130{
131 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
132 return 0;
133
134 return pcpu_size_to_slot(chunk->free_size);
135}
136
137static int pcpu_page_idx(unsigned int cpu, int page_idx)
138{
d9b55eeb 139 return cpu * pcpu_unit_pages + page_idx;
fbf59bc9
TH
140}
141
142static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk,
143 unsigned int cpu, int page_idx)
144{
145 return &chunk->page[pcpu_page_idx(cpu, page_idx)];
146}
147
148static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
149 unsigned int cpu, int page_idx)
150{
151 return (unsigned long)chunk->vm->addr +
152 (pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT);
153}
154
155static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk,
156 int page_idx)
157{
158 return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL;
159}
160
161/**
162 * pcpu_realloc - versatile realloc
163 * @p: the current pointer (can be NULL for new allocations)
cae3aeb8
TH
164 * @size: the current size in bytes (can be 0 for new allocations)
165 * @new_size: the wanted new size in bytes (can be 0 for free)
fbf59bc9
TH
166 *
167 * More robust realloc which can be used to allocate, resize or free a
168 * memory area of arbitrary size. If the needed size goes over
169 * PAGE_SIZE, kernel VM is used.
170 *
171 * RETURNS:
172 * The new pointer on success, NULL on failure.
173 */
174static void *pcpu_realloc(void *p, size_t size, size_t new_size)
175{
176 void *new;
177
178 if (new_size <= PAGE_SIZE)
179 new = kmalloc(new_size, GFP_KERNEL);
180 else
181 new = vmalloc(new_size);
182 if (new_size && !new)
183 return NULL;
184
185 memcpy(new, p, min(size, new_size));
186 if (new_size > size)
187 memset(new + size, 0, new_size - size);
188
189 if (size <= PAGE_SIZE)
190 kfree(p);
191 else
192 vfree(p);
193
194 return new;
195}
196
197/**
198 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
199 * @chunk: chunk of interest
200 * @oslot: the previous slot it was on
201 *
202 * This function is called after an allocation or free changed @chunk.
203 * New slot according to the changed state is determined and @chunk is
204 * moved to the slot.
205 */
206static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
207{
208 int nslot = pcpu_chunk_slot(chunk);
209
210 if (oslot != nslot) {
211 if (oslot < nslot)
212 list_move(&chunk->list, &pcpu_slot[nslot]);
213 else
214 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
215 }
216}
217
218static struct rb_node **pcpu_chunk_rb_search(void *addr,
219 struct rb_node **parentp)
220{
221 struct rb_node **p = &pcpu_addr_root.rb_node;
222 struct rb_node *parent = NULL;
223 struct pcpu_chunk *chunk;
224
225 while (*p) {
226 parent = *p;
227 chunk = rb_entry(parent, struct pcpu_chunk, rb_node);
228
229 if (addr < chunk->vm->addr)
230 p = &(*p)->rb_left;
231 else if (addr > chunk->vm->addr)
232 p = &(*p)->rb_right;
233 else
234 break;
235 }
236
237 if (parentp)
238 *parentp = parent;
239 return p;
240}
241
242/**
243 * pcpu_chunk_addr_search - search for chunk containing specified address
244 * @addr: address to search for
245 *
246 * Look for chunk which might contain @addr. More specifically, it
247 * searchs for the chunk with the highest start address which isn't
248 * beyond @addr.
249 *
250 * RETURNS:
251 * The address of the found chunk.
252 */
253static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
254{
255 struct rb_node *n, *parent;
256 struct pcpu_chunk *chunk;
257
258 n = *pcpu_chunk_rb_search(addr, &parent);
259 if (!n) {
260 /* no exactly matching chunk, the parent is the closest */
261 n = parent;
262 BUG_ON(!n);
263 }
264 chunk = rb_entry(n, struct pcpu_chunk, rb_node);
265
266 if (addr < chunk->vm->addr) {
267 /* the parent was the next one, look for the previous one */
268 n = rb_prev(n);
269 BUG_ON(!n);
270 chunk = rb_entry(n, struct pcpu_chunk, rb_node);
271 }
272
273 return chunk;
274}
275
276/**
277 * pcpu_chunk_addr_insert - insert chunk into address rb tree
278 * @new: chunk to insert
279 *
280 * Insert @new into address rb tree.
281 */
282static void pcpu_chunk_addr_insert(struct pcpu_chunk *new)
283{
284 struct rb_node **p, *parent;
285
286 p = pcpu_chunk_rb_search(new->vm->addr, &parent);
287 BUG_ON(*p);
288 rb_link_node(&new->rb_node, parent, p);
289 rb_insert_color(&new->rb_node, &pcpu_addr_root);
290}
291
292/**
293 * pcpu_split_block - split a map block
294 * @chunk: chunk of interest
295 * @i: index of map block to split
cae3aeb8
TH
296 * @head: head size in bytes (can be 0)
297 * @tail: tail size in bytes (can be 0)
fbf59bc9
TH
298 *
299 * Split the @i'th map block into two or three blocks. If @head is
300 * non-zero, @head bytes block is inserted before block @i moving it
301 * to @i+1 and reducing its size by @head bytes.
302 *
303 * If @tail is non-zero, the target block, which can be @i or @i+1
304 * depending on @head, is reduced by @tail bytes and @tail byte block
305 * is inserted after the target block.
306 *
307 * RETURNS:
308 * 0 on success, -errno on failure.
309 */
310static int pcpu_split_block(struct pcpu_chunk *chunk, int i, int head, int tail)
311{
312 int nr_extra = !!head + !!tail;
313 int target = chunk->map_used + nr_extra;
314
315 /* reallocation required? */
316 if (chunk->map_alloc < target) {
61ace7fa 317 int new_alloc;
fbf59bc9
TH
318 int *new;
319
61ace7fa 320 new_alloc = PCPU_DFL_MAP_ALLOC;
fbf59bc9
TH
321 while (new_alloc < target)
322 new_alloc *= 2;
323
61ace7fa
TH
324 if (chunk->map_alloc < PCPU_DFL_MAP_ALLOC) {
325 /*
326 * map_alloc smaller than the default size
327 * indicates that the chunk is one of the
328 * first chunks and still using static map.
329 * Allocate a dynamic one and copy.
330 */
331 new = pcpu_realloc(NULL, 0, new_alloc * sizeof(new[0]));
332 if (new)
333 memcpy(new, chunk->map,
334 chunk->map_alloc * sizeof(new[0]));
335 } else
336 new = pcpu_realloc(chunk->map,
337 chunk->map_alloc * sizeof(new[0]),
338 new_alloc * sizeof(new[0]));
fbf59bc9
TH
339 if (!new)
340 return -ENOMEM;
341
342 chunk->map_alloc = new_alloc;
343 chunk->map = new;
344 }
345
346 /* insert a new subblock */
347 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
348 sizeof(chunk->map[0]) * (chunk->map_used - i));
349 chunk->map_used += nr_extra;
350
351 if (head) {
352 chunk->map[i + 1] = chunk->map[i] - head;
353 chunk->map[i++] = head;
354 }
355 if (tail) {
356 chunk->map[i++] -= tail;
357 chunk->map[i] = tail;
358 }
359 return 0;
360}
361
362/**
363 * pcpu_alloc_area - allocate area from a pcpu_chunk
364 * @chunk: chunk of interest
cae3aeb8 365 * @size: wanted size in bytes
fbf59bc9
TH
366 * @align: wanted align
367 *
368 * Try to allocate @size bytes area aligned at @align from @chunk.
369 * Note that this function only allocates the offset. It doesn't
370 * populate or map the area.
371 *
372 * RETURNS:
373 * Allocated offset in @chunk on success, -errno on failure.
374 */
375static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
376{
377 int oslot = pcpu_chunk_slot(chunk);
378 int max_contig = 0;
379 int i, off;
380
fbf59bc9
TH
381 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
382 bool is_last = i + 1 == chunk->map_used;
383 int head, tail;
384
385 /* extra for alignment requirement */
386 head = ALIGN(off, align) - off;
387 BUG_ON(i == 0 && head != 0);
388
389 if (chunk->map[i] < 0)
390 continue;
391 if (chunk->map[i] < head + size) {
392 max_contig = max(chunk->map[i], max_contig);
393 continue;
394 }
395
396 /*
397 * If head is small or the previous block is free,
398 * merge'em. Note that 'small' is defined as smaller
399 * than sizeof(int), which is very small but isn't too
400 * uncommon for percpu allocations.
401 */
402 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
403 if (chunk->map[i - 1] > 0)
404 chunk->map[i - 1] += head;
405 else {
406 chunk->map[i - 1] -= head;
407 chunk->free_size -= head;
408 }
409 chunk->map[i] -= head;
410 off += head;
411 head = 0;
412 }
413
414 /* if tail is small, just keep it around */
415 tail = chunk->map[i] - head - size;
416 if (tail < sizeof(int))
417 tail = 0;
418
419 /* split if warranted */
420 if (head || tail) {
421 if (pcpu_split_block(chunk, i, head, tail))
422 return -ENOMEM;
423 if (head) {
424 i++;
425 off += head;
426 max_contig = max(chunk->map[i - 1], max_contig);
427 }
428 if (tail)
429 max_contig = max(chunk->map[i + 1], max_contig);
430 }
431
432 /* update hint and mark allocated */
433 if (is_last)
434 chunk->contig_hint = max_contig; /* fully scanned */
435 else
436 chunk->contig_hint = max(chunk->contig_hint,
437 max_contig);
438
439 chunk->free_size -= chunk->map[i];
440 chunk->map[i] = -chunk->map[i];
441
442 pcpu_chunk_relocate(chunk, oslot);
443 return off;
444 }
445
446 chunk->contig_hint = max_contig; /* fully scanned */
447 pcpu_chunk_relocate(chunk, oslot);
448
449 /*
450 * Tell the upper layer that this chunk has no area left.
451 * Note that this is not an error condition but a notification
452 * to upper layer that it needs to look at other chunks.
453 * -ENOSPC is chosen as it isn't used in memory subsystem and
454 * matches the meaning in a way.
455 */
456 return -ENOSPC;
457}
458
459/**
460 * pcpu_free_area - free area to a pcpu_chunk
461 * @chunk: chunk of interest
462 * @freeme: offset of area to free
463 *
464 * Free area starting from @freeme to @chunk. Note that this function
465 * only modifies the allocation map. It doesn't depopulate or unmap
466 * the area.
467 */
468static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
469{
470 int oslot = pcpu_chunk_slot(chunk);
471 int i, off;
472
473 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
474 if (off == freeme)
475 break;
476 BUG_ON(off != freeme);
477 BUG_ON(chunk->map[i] > 0);
478
479 chunk->map[i] = -chunk->map[i];
480 chunk->free_size += chunk->map[i];
481
482 /* merge with previous? */
483 if (i > 0 && chunk->map[i - 1] >= 0) {
484 chunk->map[i - 1] += chunk->map[i];
485 chunk->map_used--;
486 memmove(&chunk->map[i], &chunk->map[i + 1],
487 (chunk->map_used - i) * sizeof(chunk->map[0]));
488 i--;
489 }
490 /* merge with next? */
491 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
492 chunk->map[i] += chunk->map[i + 1];
493 chunk->map_used--;
494 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
495 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
496 }
497
498 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
499 pcpu_chunk_relocate(chunk, oslot);
500}
501
502/**
503 * pcpu_unmap - unmap pages out of a pcpu_chunk
504 * @chunk: chunk of interest
505 * @page_start: page index of the first page to unmap
506 * @page_end: page index of the last page to unmap + 1
507 * @flush: whether to flush cache and tlb or not
508 *
509 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
510 * If @flush is true, vcache is flushed before unmapping and tlb
511 * after.
512 */
513static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end,
514 bool flush)
515{
516 unsigned int last = num_possible_cpus() - 1;
517 unsigned int cpu;
518
8d408b4b
TH
519 /* unmap must not be done on immutable chunk */
520 WARN_ON(chunk->immutable);
521
fbf59bc9
TH
522 /*
523 * Each flushing trial can be very expensive, issue flush on
524 * the whole region at once rather than doing it for each cpu.
525 * This could be an overkill but is more scalable.
526 */
527 if (flush)
528 flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start),
529 pcpu_chunk_addr(chunk, last, page_end));
530
531 for_each_possible_cpu(cpu)
532 unmap_kernel_range_noflush(
533 pcpu_chunk_addr(chunk, cpu, page_start),
534 (page_end - page_start) << PAGE_SHIFT);
535
536 /* ditto as flush_cache_vunmap() */
537 if (flush)
538 flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start),
539 pcpu_chunk_addr(chunk, last, page_end));
540}
541
542/**
543 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
544 * @chunk: chunk to depopulate
545 * @off: offset to the area to depopulate
cae3aeb8 546 * @size: size of the area to depopulate in bytes
fbf59bc9
TH
547 * @flush: whether to flush cache and tlb or not
548 *
549 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
550 * from @chunk. If @flush is true, vcache is flushed before unmapping
551 * and tlb after.
552 */
cae3aeb8
TH
553static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size,
554 bool flush)
fbf59bc9
TH
555{
556 int page_start = PFN_DOWN(off);
557 int page_end = PFN_UP(off + size);
558 int unmap_start = -1;
559 int uninitialized_var(unmap_end);
560 unsigned int cpu;
561 int i;
562
563 for (i = page_start; i < page_end; i++) {
564 for_each_possible_cpu(cpu) {
565 struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
566
567 if (!*pagep)
568 continue;
569
570 __free_page(*pagep);
571
572 /*
573 * If it's partial depopulation, it might get
574 * populated or depopulated again. Mark the
575 * page gone.
576 */
577 *pagep = NULL;
578
579 unmap_start = unmap_start < 0 ? i : unmap_start;
580 unmap_end = i + 1;
581 }
582 }
583
584 if (unmap_start >= 0)
585 pcpu_unmap(chunk, unmap_start, unmap_end, flush);
586}
587
588/**
589 * pcpu_map - map pages into a pcpu_chunk
590 * @chunk: chunk of interest
591 * @page_start: page index of the first page to map
592 * @page_end: page index of the last page to map + 1
593 *
594 * For each cpu, map pages [@page_start,@page_end) into @chunk.
595 * vcache is flushed afterwards.
596 */
597static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end)
598{
599 unsigned int last = num_possible_cpus() - 1;
600 unsigned int cpu;
601 int err;
602
8d408b4b
TH
603 /* map must not be done on immutable chunk */
604 WARN_ON(chunk->immutable);
605
fbf59bc9
TH
606 for_each_possible_cpu(cpu) {
607 err = map_kernel_range_noflush(
608 pcpu_chunk_addr(chunk, cpu, page_start),
609 (page_end - page_start) << PAGE_SHIFT,
610 PAGE_KERNEL,
611 pcpu_chunk_pagep(chunk, cpu, page_start));
612 if (err < 0)
613 return err;
614 }
615
616 /* flush at once, please read comments in pcpu_unmap() */
617 flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start),
618 pcpu_chunk_addr(chunk, last, page_end));
619 return 0;
620}
621
622/**
623 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
624 * @chunk: chunk of interest
625 * @off: offset to the area to populate
cae3aeb8 626 * @size: size of the area to populate in bytes
fbf59bc9
TH
627 *
628 * For each cpu, populate and map pages [@page_start,@page_end) into
629 * @chunk. The area is cleared on return.
630 */
631static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
632{
633 const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
634 int page_start = PFN_DOWN(off);
635 int page_end = PFN_UP(off + size);
636 int map_start = -1;
02d51fdf 637 int uninitialized_var(map_end);
fbf59bc9
TH
638 unsigned int cpu;
639 int i;
640
641 for (i = page_start; i < page_end; i++) {
642 if (pcpu_chunk_page_occupied(chunk, i)) {
643 if (map_start >= 0) {
644 if (pcpu_map(chunk, map_start, map_end))
645 goto err;
646 map_start = -1;
647 }
648 continue;
649 }
650
651 map_start = map_start < 0 ? i : map_start;
652 map_end = i + 1;
653
654 for_each_possible_cpu(cpu) {
655 struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
656
657 *pagep = alloc_pages_node(cpu_to_node(cpu),
658 alloc_mask, 0);
659 if (!*pagep)
660 goto err;
661 }
662 }
663
664 if (map_start >= 0 && pcpu_map(chunk, map_start, map_end))
665 goto err;
666
667 for_each_possible_cpu(cpu)
d9b55eeb 668 memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0,
fbf59bc9
TH
669 size);
670
671 return 0;
672err:
673 /* likely under heavy memory pressure, give memory back */
674 pcpu_depopulate_chunk(chunk, off, size, true);
675 return -ENOMEM;
676}
677
678static void free_pcpu_chunk(struct pcpu_chunk *chunk)
679{
680 if (!chunk)
681 return;
682 if (chunk->vm)
683 free_vm_area(chunk->vm);
684 pcpu_realloc(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]), 0);
685 kfree(chunk);
686}
687
688static struct pcpu_chunk *alloc_pcpu_chunk(void)
689{
690 struct pcpu_chunk *chunk;
691
692 chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
693 if (!chunk)
694 return NULL;
695
696 chunk->map = pcpu_realloc(NULL, 0,
697 PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
698 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
699 chunk->map[chunk->map_used++] = pcpu_unit_size;
3e24aa58 700 chunk->page = chunk->page_ar;
fbf59bc9
TH
701
702 chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL);
703 if (!chunk->vm) {
704 free_pcpu_chunk(chunk);
705 return NULL;
706 }
707
708 INIT_LIST_HEAD(&chunk->list);
709 chunk->free_size = pcpu_unit_size;
710 chunk->contig_hint = pcpu_unit_size;
711
712 return chunk;
713}
714
715/**
716 * __alloc_percpu - allocate percpu area
cae3aeb8 717 * @size: size of area to allocate in bytes
fbf59bc9
TH
718 * @align: alignment of area (max PAGE_SIZE)
719 *
720 * Allocate percpu area of @size bytes aligned at @align. Might
721 * sleep. Might trigger writeouts.
722 *
723 * RETURNS:
724 * Percpu pointer to the allocated area on success, NULL on failure.
725 */
726void *__alloc_percpu(size_t size, size_t align)
727{
728 void *ptr = NULL;
729 struct pcpu_chunk *chunk;
730 int slot, off;
731
8d408b4b 732 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
fbf59bc9
TH
733 WARN(true, "illegal size (%zu) or align (%zu) for "
734 "percpu allocation\n", size, align);
735 return NULL;
736 }
737
738 mutex_lock(&pcpu_mutex);
739
740 /* allocate area */
741 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
742 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
743 if (size > chunk->contig_hint)
744 continue;
745 off = pcpu_alloc_area(chunk, size, align);
746 if (off >= 0)
747 goto area_found;
748 if (off != -ENOSPC)
749 goto out_unlock;
750 }
751 }
752
753 /* hmmm... no space left, create a new chunk */
754 chunk = alloc_pcpu_chunk();
755 if (!chunk)
756 goto out_unlock;
757 pcpu_chunk_relocate(chunk, -1);
758 pcpu_chunk_addr_insert(chunk);
759
760 off = pcpu_alloc_area(chunk, size, align);
761 if (off < 0)
762 goto out_unlock;
763
764area_found:
765 /* populate, map and clear the area */
766 if (pcpu_populate_chunk(chunk, off, size)) {
767 pcpu_free_area(chunk, off);
768 goto out_unlock;
769 }
770
771 ptr = __addr_to_pcpu_ptr(chunk->vm->addr + off);
772out_unlock:
773 mutex_unlock(&pcpu_mutex);
774 return ptr;
775}
776EXPORT_SYMBOL_GPL(__alloc_percpu);
777
778static void pcpu_kill_chunk(struct pcpu_chunk *chunk)
779{
8d408b4b 780 WARN_ON(chunk->immutable);
fbf59bc9
TH
781 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false);
782 list_del(&chunk->list);
783 rb_erase(&chunk->rb_node, &pcpu_addr_root);
784 free_pcpu_chunk(chunk);
785}
786
787/**
788 * free_percpu - free percpu area
789 * @ptr: pointer to area to free
790 *
791 * Free percpu area @ptr. Might sleep.
792 */
793void free_percpu(void *ptr)
794{
795 void *addr = __pcpu_ptr_to_addr(ptr);
796 struct pcpu_chunk *chunk;
797 int off;
798
799 if (!ptr)
800 return;
801
802 mutex_lock(&pcpu_mutex);
803
804 chunk = pcpu_chunk_addr_search(addr);
805 off = addr - chunk->vm->addr;
806
807 pcpu_free_area(chunk, off);
808
809 /* the chunk became fully free, kill one if there are other free ones */
810 if (chunk->free_size == pcpu_unit_size) {
811 struct pcpu_chunk *pos;
812
813 list_for_each_entry(pos,
814 &pcpu_slot[pcpu_chunk_slot(chunk)], list)
815 if (pos != chunk) {
816 pcpu_kill_chunk(pos);
817 break;
818 }
819 }
820
821 mutex_unlock(&pcpu_mutex);
822}
823EXPORT_SYMBOL_GPL(free_percpu);
824
825/**
8d408b4b
TH
826 * pcpu_setup_first_chunk - initialize the first percpu chunk
827 * @get_page_fn: callback to fetch page pointer
828 * @static_size: the size of static percpu area in bytes
cafe8816
TH
829 * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto
830 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
8d408b4b
TH
831 * @base_addr: mapped address, NULL for auto
832 * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary
833 *
834 * Initialize the first percpu chunk which contains the kernel static
835 * perpcu area. This function is to be called from arch percpu area
836 * setup path. The first two parameters are mandatory. The rest are
837 * optional.
838 *
839 * @get_page_fn() should return pointer to percpu page given cpu
840 * number and page number. It should at least return enough pages to
841 * cover the static area. The returned pages for static area should
842 * have been initialized with valid data. If @unit_size is specified,
843 * it can also return pages after the static area. NULL return
844 * indicates end of pages for the cpu. Note that @get_page_fn() must
845 * return the same number of pages for all cpus.
846 *
cafe8816
TH
847 * @unit_size, if non-negative, specifies unit size and must be
848 * aligned to PAGE_SIZE and equal to or larger than @static_size +
849 * @dyn_size.
8d408b4b 850 *
cafe8816
TH
851 * @dyn_size, if non-negative, limits the number of bytes available
852 * for dynamic allocation in the first chunk. Specifying non-negative
853 * value make percpu leave alone the area beyond @static_size +
854 * @dyn_size.
8d408b4b
TH
855 *
856 * Non-null @base_addr means that the caller already allocated virtual
857 * region for the first chunk and mapped it. percpu must not mess
858 * with the chunk. Note that @base_addr with 0 @unit_size or non-NULL
859 * @populate_pte_fn doesn't make any sense.
860 *
861 * @populate_pte_fn is used to populate the pagetable. NULL means the
862 * caller already populated the pagetable.
fbf59bc9
TH
863 *
864 * RETURNS:
865 * The determined pcpu_unit_size which can be used to initialize
866 * percpu access.
867 */
8d408b4b 868size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
cafe8816
TH
869 size_t static_size,
870 ssize_t unit_size, ssize_t dyn_size,
871 void *base_addr,
8d408b4b 872 pcpu_populate_pte_fn_t populate_pte_fn)
fbf59bc9 873{
2441d15c 874 static struct vm_struct first_vm;
61ace7fa 875 static int smap[2];
2441d15c 876 struct pcpu_chunk *schunk;
fbf59bc9 877 unsigned int cpu;
8d408b4b 878 int nr_pages;
fbf59bc9
TH
879 int err, i;
880
8d408b4b 881 /* santiy checks */
61ace7fa 882 BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC);
8d408b4b 883 BUG_ON(!static_size);
cafe8816
TH
884 if (unit_size >= 0) {
885 BUG_ON(unit_size < static_size +
886 (dyn_size >= 0 ? dyn_size : 0));
887 BUG_ON(unit_size & ~PAGE_MASK);
888 } else {
889 BUG_ON(dyn_size >= 0);
890 BUG_ON(base_addr);
891 }
8d408b4b 892 BUG_ON(base_addr && populate_pte_fn);
fbf59bc9 893
cafe8816 894 if (unit_size >= 0)
8d408b4b
TH
895 pcpu_unit_pages = unit_size >> PAGE_SHIFT;
896 else
897 pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT,
898 PFN_UP(static_size));
899
d9b55eeb 900 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
fbf59bc9 901 pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size;
fbf59bc9 902 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk)
cb83b42e 903 + num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *);
fbf59bc9 904
cafe8816
TH
905 if (dyn_size < 0)
906 dyn_size = pcpu_unit_size - static_size;
907
d9b55eeb
TH
908 /*
909 * Allocate chunk slots. The additional last slot is for
910 * empty chunks.
911 */
912 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
fbf59bc9
TH
913 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
914 for (i = 0; i < pcpu_nr_slots; i++)
915 INIT_LIST_HEAD(&pcpu_slot[i]);
916
2441d15c
TH
917 /* init static chunk */
918 schunk = alloc_bootmem(pcpu_chunk_struct_size);
919 INIT_LIST_HEAD(&schunk->list);
920 schunk->vm = &first_vm;
61ace7fa
TH
921 schunk->map = smap;
922 schunk->map_alloc = ARRAY_SIZE(smap);
3e24aa58 923 schunk->page = schunk->page_ar;
cafe8816 924 schunk->free_size = dyn_size;
2441d15c 925 schunk->contig_hint = schunk->free_size;
fbf59bc9 926
61ace7fa
TH
927 schunk->map[schunk->map_used++] = -static_size;
928 if (schunk->free_size)
929 schunk->map[schunk->map_used++] = schunk->free_size;
930
8d408b4b 931 /* allocate vm address */
2441d15c
TH
932 first_vm.flags = VM_ALLOC;
933 first_vm.size = pcpu_chunk_size;
8d408b4b
TH
934
935 if (!base_addr)
2441d15c 936 vm_area_register_early(&first_vm, PAGE_SIZE);
8d408b4b
TH
937 else {
938 /*
939 * Pages already mapped. No need to remap into
940 * vmalloc area. In this case the static chunk can't
941 * be mapped or unmapped by percpu and is marked
942 * immutable.
943 */
2441d15c
TH
944 first_vm.addr = base_addr;
945 schunk->immutable = true;
8d408b4b
TH
946 }
947
948 /* assign pages */
949 nr_pages = -1;
fbf59bc9 950 for_each_possible_cpu(cpu) {
8d408b4b
TH
951 for (i = 0; i < pcpu_unit_pages; i++) {
952 struct page *page = get_page_fn(cpu, i);
953
954 if (!page)
955 break;
2441d15c 956 *pcpu_chunk_pagep(schunk, cpu, i) = page;
fbf59bc9 957 }
8d408b4b 958
61ace7fa 959 BUG_ON(i < PFN_UP(static_size));
8d408b4b
TH
960
961 if (nr_pages < 0)
962 nr_pages = i;
963 else
964 BUG_ON(nr_pages != i);
fbf59bc9
TH
965 }
966
8d408b4b
TH
967 /* map them */
968 if (populate_pte_fn) {
969 for_each_possible_cpu(cpu)
970 for (i = 0; i < nr_pages; i++)
2441d15c 971 populate_pte_fn(pcpu_chunk_addr(schunk,
8d408b4b
TH
972 cpu, i));
973
2441d15c 974 err = pcpu_map(schunk, 0, nr_pages);
8d408b4b
TH
975 if (err)
976 panic("failed to setup static percpu area, err=%d\n",
977 err);
978 }
fbf59bc9 979
2441d15c
TH
980 /* link the first chunk in */
981 pcpu_chunk_relocate(schunk, -1);
982 pcpu_chunk_addr_insert(schunk);
fbf59bc9
TH
983
984 /* we're done */
2441d15c 985 pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0);
fbf59bc9
TH
986 return pcpu_unit_size;
987}