]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/percpu.c
percpu: drop pcpu_chunk->page[]
[net-next-2.6.git] / mm / percpu.c
CommitLineData
fbf59bc9
TH
1/*
2 * linux/mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each
11 * chunk is consisted of num_possible_cpus() units and the first chunk
12 * is used for static percpu variables in the kernel image (special
13 * boot time alloc/init handling necessary as these areas need to be
14 * brought up before allocation services are running). Unit grows as
15 * necessary and all units grow or shrink in unison. When a chunk is
16 * filled up, another chunk is allocated. ie. in vmalloc area
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring
e1b9aa3f 26 * percpu base registers pcpu_unit_size apart.
fbf59bc9
TH
27 *
28 * There are usually many small percpu allocations many of them as
29 * small as 4 bytes. The allocator organizes chunks into lists
30 * according to free size and tries to allocate from the fullest one.
31 * Each chunk keeps the maximum contiguous area size hint which is
32 * guaranteed to be eqaul to or larger than the maximum contiguous
33 * area in the chunk. This helps the allocator not to iterate the
34 * chunk maps unnecessarily.
35 *
36 * Allocation state in each chunk is kept using an array of integers
37 * on chunk->map. A positive value in the map represents a free
38 * region and negative allocated. Allocation inside a chunk is done
39 * by scanning this map sequentially and serving the first matching
40 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
41 * Chunks can be determined from the address using the index field
42 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9
TH
43 *
44 * To use this allocator, arch code should do the followings.
45 *
e74e3962 46 * - drop CONFIG_HAVE_LEGACY_PER_CPU_AREA
fbf59bc9
TH
47 *
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
fbf59bc9 51 *
8d408b4b
TH
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
54 */
55
56#include <linux/bitmap.h>
57#include <linux/bootmem.h>
58#include <linux/list.h>
59#include <linux/mm.h>
60#include <linux/module.h>
61#include <linux/mutex.h>
62#include <linux/percpu.h>
63#include <linux/pfn.h>
fbf59bc9 64#include <linux/slab.h>
ccea34b5 65#include <linux/spinlock.h>
fbf59bc9 66#include <linux/vmalloc.h>
a56dbddf 67#include <linux/workqueue.h>
fbf59bc9
TH
68
69#include <asm/cacheflush.h>
e0100983 70#include <asm/sections.h>
fbf59bc9
TH
71#include <asm/tlbflush.h>
72
fbf59bc9
TH
73#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
74#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
75
e0100983
TH
76/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
77#ifndef __addr_to_pcpu_ptr
78#define __addr_to_pcpu_ptr(addr) \
79 (void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr \
80 + (unsigned long)__per_cpu_start)
81#endif
82#ifndef __pcpu_ptr_to_addr
83#define __pcpu_ptr_to_addr(ptr) \
84 (void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr \
85 - (unsigned long)__per_cpu_start)
86#endif
87
fbf59bc9
TH
88struct pcpu_chunk {
89 struct list_head list; /* linked to pcpu_slot lists */
fbf59bc9
TH
90 int free_size; /* free bytes in the chunk */
91 int contig_hint; /* max contiguous size hint */
92 struct vm_struct *vm; /* mapped vmalloc region */
93 int map_used; /* # of map entries used */
94 int map_alloc; /* # of map entries allocated */
95 int *map; /* allocation map */
8d408b4b 96 bool immutable; /* no [de]population allowed */
ce3141a2 97 unsigned long populated[]; /* populated bitmap */
fbf59bc9
TH
98};
99
40150d37
TH
100static int pcpu_unit_pages __read_mostly;
101static int pcpu_unit_size __read_mostly;
102static int pcpu_chunk_size __read_mostly;
103static int pcpu_nr_slots __read_mostly;
104static size_t pcpu_chunk_struct_size __read_mostly;
fbf59bc9
TH
105
106/* the address of the first chunk which starts with the kernel static area */
40150d37 107void *pcpu_base_addr __read_mostly;
fbf59bc9
TH
108EXPORT_SYMBOL_GPL(pcpu_base_addr);
109
ae9e6bc9
TH
110/*
111 * The first chunk which always exists. Note that unlike other
112 * chunks, this one can be allocated and mapped in several different
113 * ways and thus often doesn't live in the vmalloc area.
114 */
115static struct pcpu_chunk *pcpu_first_chunk;
116
117/*
118 * Optional reserved chunk. This chunk reserves part of the first
119 * chunk and serves it for reserved allocations. The amount of
120 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
121 * area doesn't exist, the following variables contain NULL and 0
122 * respectively.
123 */
edcb4639 124static struct pcpu_chunk *pcpu_reserved_chunk;
edcb4639
TH
125static int pcpu_reserved_chunk_limit;
126
fbf59bc9 127/*
ccea34b5
TH
128 * Synchronization rules.
129 *
130 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
ce3141a2
TH
131 * protects allocation/reclaim paths, chunks, populated bitmap and
132 * vmalloc mapping. The latter is a spinlock and protects the index
133 * data structures - chunk slots, chunks and area maps in chunks.
ccea34b5
TH
134 *
135 * During allocation, pcpu_alloc_mutex is kept locked all the time and
136 * pcpu_lock is grabbed and released as necessary. All actual memory
137 * allocations are done using GFP_KERNEL with pcpu_lock released.
138 *
139 * Free path accesses and alters only the index data structures, so it
140 * can be safely called from atomic context. When memory needs to be
141 * returned to the system, free path schedules reclaim_work which
142 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
143 * reclaimed, release both locks and frees the chunks. Note that it's
144 * necessary to grab both locks to remove a chunk from circulation as
145 * allocation path might be referencing the chunk with only
146 * pcpu_alloc_mutex locked.
fbf59bc9 147 */
ccea34b5
TH
148static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
149static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
fbf59bc9 150
40150d37 151static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
fbf59bc9 152
a56dbddf
TH
153/* reclaim work to release fully free chunks, scheduled from free path */
154static void pcpu_reclaim(struct work_struct *work);
155static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
156
d9b55eeb 157static int __pcpu_size_to_slot(int size)
fbf59bc9 158{
cae3aeb8 159 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
160 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
161}
162
d9b55eeb
TH
163static int pcpu_size_to_slot(int size)
164{
165 if (size == pcpu_unit_size)
166 return pcpu_nr_slots - 1;
167 return __pcpu_size_to_slot(size);
168}
169
fbf59bc9
TH
170static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
171{
172 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
173 return 0;
174
175 return pcpu_size_to_slot(chunk->free_size);
176}
177
178static int pcpu_page_idx(unsigned int cpu, int page_idx)
179{
d9b55eeb 180 return cpu * pcpu_unit_pages + page_idx;
fbf59bc9
TH
181}
182
fbf59bc9
TH
183static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
184 unsigned int cpu, int page_idx)
185{
186 return (unsigned long)chunk->vm->addr +
187 (pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT);
188}
189
ce3141a2
TH
190static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
191 unsigned int cpu, int page_idx)
c8a51be4 192{
ce3141a2
TH
193 /* must not be used on pre-mapped chunk */
194 WARN_ON(chunk->immutable);
c8a51be4 195
ce3141a2 196 return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
fbf59bc9
TH
197}
198
e1b9aa3f
CL
199/* set the pointer to a chunk in a page struct */
200static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
201{
202 page->index = (unsigned long)pcpu;
203}
204
205/* obtain pointer to a chunk from a page struct */
206static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
207{
208 return (struct pcpu_chunk *)page->index;
209}
210
ce3141a2
TH
211static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
212{
213 *rs = find_next_zero_bit(chunk->populated, end, *rs);
214 *re = find_next_bit(chunk->populated, end, *rs + 1);
215}
216
217static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
218{
219 *rs = find_next_bit(chunk->populated, end, *rs);
220 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
221}
222
223/*
224 * (Un)populated page region iterators. Iterate over (un)populated
225 * page regions betwen @start and @end in @chunk. @rs and @re should
226 * be integer variables and will be set to start and end page index of
227 * the current region.
228 */
229#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
230 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
231 (rs) < (re); \
232 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
233
234#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
235 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
236 (rs) < (re); \
237 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
238
fbf59bc9 239/**
1880d93b
TH
240 * pcpu_mem_alloc - allocate memory
241 * @size: bytes to allocate
fbf59bc9 242 *
1880d93b
TH
243 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
244 * kzalloc() is used; otherwise, vmalloc() is used. The returned
245 * memory is always zeroed.
fbf59bc9 246 *
ccea34b5
TH
247 * CONTEXT:
248 * Does GFP_KERNEL allocation.
249 *
fbf59bc9 250 * RETURNS:
1880d93b 251 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 252 */
1880d93b 253static void *pcpu_mem_alloc(size_t size)
fbf59bc9 254{
1880d93b
TH
255 if (size <= PAGE_SIZE)
256 return kzalloc(size, GFP_KERNEL);
257 else {
258 void *ptr = vmalloc(size);
259 if (ptr)
260 memset(ptr, 0, size);
261 return ptr;
262 }
263}
fbf59bc9 264
1880d93b
TH
265/**
266 * pcpu_mem_free - free memory
267 * @ptr: memory to free
268 * @size: size of the area
269 *
270 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
271 */
272static void pcpu_mem_free(void *ptr, size_t size)
273{
fbf59bc9 274 if (size <= PAGE_SIZE)
1880d93b 275 kfree(ptr);
fbf59bc9 276 else
1880d93b 277 vfree(ptr);
fbf59bc9
TH
278}
279
280/**
281 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
282 * @chunk: chunk of interest
283 * @oslot: the previous slot it was on
284 *
285 * This function is called after an allocation or free changed @chunk.
286 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
287 * moved to the slot. Note that the reserved chunk is never put on
288 * chunk slots.
ccea34b5
TH
289 *
290 * CONTEXT:
291 * pcpu_lock.
fbf59bc9
TH
292 */
293static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
294{
295 int nslot = pcpu_chunk_slot(chunk);
296
edcb4639 297 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
298 if (oslot < nslot)
299 list_move(&chunk->list, &pcpu_slot[nslot]);
300 else
301 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
302 }
303}
304
fbf59bc9 305/**
e1b9aa3f
CL
306 * pcpu_chunk_addr_search - determine chunk containing specified address
307 * @addr: address for which the chunk needs to be determined.
ccea34b5 308 *
fbf59bc9
TH
309 * RETURNS:
310 * The address of the found chunk.
311 */
312static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
313{
ae9e6bc9 314 void *first_start = pcpu_first_chunk->vm->addr;
fbf59bc9 315
ae9e6bc9 316 /* is it in the first chunk? */
79ba6ac8 317 if (addr >= first_start && addr < first_start + pcpu_unit_size) {
ae9e6bc9
TH
318 /* is it in the reserved area? */
319 if (addr < first_start + pcpu_reserved_chunk_limit)
edcb4639 320 return pcpu_reserved_chunk;
ae9e6bc9 321 return pcpu_first_chunk;
edcb4639
TH
322 }
323
e1b9aa3f 324 return pcpu_get_page_chunk(vmalloc_to_page(addr));
fbf59bc9
TH
325}
326
9f7dcf22
TH
327/**
328 * pcpu_extend_area_map - extend area map for allocation
329 * @chunk: target chunk
330 *
331 * Extend area map of @chunk so that it can accomodate an allocation.
332 * A single allocation can split an area into three areas, so this
333 * function makes sure that @chunk->map has at least two extra slots.
334 *
ccea34b5
TH
335 * CONTEXT:
336 * pcpu_alloc_mutex, pcpu_lock. pcpu_lock is released and reacquired
337 * if area map is extended.
338 *
9f7dcf22
TH
339 * RETURNS:
340 * 0 if noop, 1 if successfully extended, -errno on failure.
341 */
342static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
343{
344 int new_alloc;
345 int *new;
346 size_t size;
347
348 /* has enough? */
349 if (chunk->map_alloc >= chunk->map_used + 2)
350 return 0;
351
ccea34b5
TH
352 spin_unlock_irq(&pcpu_lock);
353
9f7dcf22
TH
354 new_alloc = PCPU_DFL_MAP_ALLOC;
355 while (new_alloc < chunk->map_used + 2)
356 new_alloc *= 2;
357
358 new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
ccea34b5
TH
359 if (!new) {
360 spin_lock_irq(&pcpu_lock);
9f7dcf22 361 return -ENOMEM;
ccea34b5
TH
362 }
363
364 /*
365 * Acquire pcpu_lock and switch to new area map. Only free
366 * could have happened inbetween, so map_used couldn't have
367 * grown.
368 */
369 spin_lock_irq(&pcpu_lock);
370 BUG_ON(new_alloc < chunk->map_used + 2);
9f7dcf22
TH
371
372 size = chunk->map_alloc * sizeof(chunk->map[0]);
373 memcpy(new, chunk->map, size);
374
375 /*
376 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
377 * one of the first chunks and still using static map.
378 */
379 if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
380 pcpu_mem_free(chunk->map, size);
381
382 chunk->map_alloc = new_alloc;
383 chunk->map = new;
384 return 0;
385}
386
fbf59bc9
TH
387/**
388 * pcpu_split_block - split a map block
389 * @chunk: chunk of interest
390 * @i: index of map block to split
cae3aeb8
TH
391 * @head: head size in bytes (can be 0)
392 * @tail: tail size in bytes (can be 0)
fbf59bc9
TH
393 *
394 * Split the @i'th map block into two or three blocks. If @head is
395 * non-zero, @head bytes block is inserted before block @i moving it
396 * to @i+1 and reducing its size by @head bytes.
397 *
398 * If @tail is non-zero, the target block, which can be @i or @i+1
399 * depending on @head, is reduced by @tail bytes and @tail byte block
400 * is inserted after the target block.
401 *
9f7dcf22 402 * @chunk->map must have enough free slots to accomodate the split.
ccea34b5
TH
403 *
404 * CONTEXT:
405 * pcpu_lock.
fbf59bc9 406 */
9f7dcf22
TH
407static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
408 int head, int tail)
fbf59bc9
TH
409{
410 int nr_extra = !!head + !!tail;
1880d93b 411
9f7dcf22 412 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
fbf59bc9 413
9f7dcf22 414 /* insert new subblocks */
fbf59bc9
TH
415 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
416 sizeof(chunk->map[0]) * (chunk->map_used - i));
417 chunk->map_used += nr_extra;
418
419 if (head) {
420 chunk->map[i + 1] = chunk->map[i] - head;
421 chunk->map[i++] = head;
422 }
423 if (tail) {
424 chunk->map[i++] -= tail;
425 chunk->map[i] = tail;
426 }
fbf59bc9
TH
427}
428
429/**
430 * pcpu_alloc_area - allocate area from a pcpu_chunk
431 * @chunk: chunk of interest
cae3aeb8 432 * @size: wanted size in bytes
fbf59bc9
TH
433 * @align: wanted align
434 *
435 * Try to allocate @size bytes area aligned at @align from @chunk.
436 * Note that this function only allocates the offset. It doesn't
437 * populate or map the area.
438 *
9f7dcf22
TH
439 * @chunk->map must have at least two free slots.
440 *
ccea34b5
TH
441 * CONTEXT:
442 * pcpu_lock.
443 *
fbf59bc9 444 * RETURNS:
9f7dcf22
TH
445 * Allocated offset in @chunk on success, -1 if no matching area is
446 * found.
fbf59bc9
TH
447 */
448static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
449{
450 int oslot = pcpu_chunk_slot(chunk);
451 int max_contig = 0;
452 int i, off;
453
fbf59bc9
TH
454 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
455 bool is_last = i + 1 == chunk->map_used;
456 int head, tail;
457
458 /* extra for alignment requirement */
459 head = ALIGN(off, align) - off;
460 BUG_ON(i == 0 && head != 0);
461
462 if (chunk->map[i] < 0)
463 continue;
464 if (chunk->map[i] < head + size) {
465 max_contig = max(chunk->map[i], max_contig);
466 continue;
467 }
468
469 /*
470 * If head is small or the previous block is free,
471 * merge'em. Note that 'small' is defined as smaller
472 * than sizeof(int), which is very small but isn't too
473 * uncommon for percpu allocations.
474 */
475 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
476 if (chunk->map[i - 1] > 0)
477 chunk->map[i - 1] += head;
478 else {
479 chunk->map[i - 1] -= head;
480 chunk->free_size -= head;
481 }
482 chunk->map[i] -= head;
483 off += head;
484 head = 0;
485 }
486
487 /* if tail is small, just keep it around */
488 tail = chunk->map[i] - head - size;
489 if (tail < sizeof(int))
490 tail = 0;
491
492 /* split if warranted */
493 if (head || tail) {
9f7dcf22 494 pcpu_split_block(chunk, i, head, tail);
fbf59bc9
TH
495 if (head) {
496 i++;
497 off += head;
498 max_contig = max(chunk->map[i - 1], max_contig);
499 }
500 if (tail)
501 max_contig = max(chunk->map[i + 1], max_contig);
502 }
503
504 /* update hint and mark allocated */
505 if (is_last)
506 chunk->contig_hint = max_contig; /* fully scanned */
507 else
508 chunk->contig_hint = max(chunk->contig_hint,
509 max_contig);
510
511 chunk->free_size -= chunk->map[i];
512 chunk->map[i] = -chunk->map[i];
513
514 pcpu_chunk_relocate(chunk, oslot);
515 return off;
516 }
517
518 chunk->contig_hint = max_contig; /* fully scanned */
519 pcpu_chunk_relocate(chunk, oslot);
520
9f7dcf22
TH
521 /* tell the upper layer that this chunk has no matching area */
522 return -1;
fbf59bc9
TH
523}
524
525/**
526 * pcpu_free_area - free area to a pcpu_chunk
527 * @chunk: chunk of interest
528 * @freeme: offset of area to free
529 *
530 * Free area starting from @freeme to @chunk. Note that this function
531 * only modifies the allocation map. It doesn't depopulate or unmap
532 * the area.
ccea34b5
TH
533 *
534 * CONTEXT:
535 * pcpu_lock.
fbf59bc9
TH
536 */
537static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
538{
539 int oslot = pcpu_chunk_slot(chunk);
540 int i, off;
541
542 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
543 if (off == freeme)
544 break;
545 BUG_ON(off != freeme);
546 BUG_ON(chunk->map[i] > 0);
547
548 chunk->map[i] = -chunk->map[i];
549 chunk->free_size += chunk->map[i];
550
551 /* merge with previous? */
552 if (i > 0 && chunk->map[i - 1] >= 0) {
553 chunk->map[i - 1] += chunk->map[i];
554 chunk->map_used--;
555 memmove(&chunk->map[i], &chunk->map[i + 1],
556 (chunk->map_used - i) * sizeof(chunk->map[0]));
557 i--;
558 }
559 /* merge with next? */
560 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
561 chunk->map[i] += chunk->map[i + 1];
562 chunk->map_used--;
563 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
564 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
565 }
566
567 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
568 pcpu_chunk_relocate(chunk, oslot);
569}
570
571/**
ce3141a2
TH
572 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
573 * @chunk: chunk of interest
574 * @bitmapp: output parameter for bitmap
575 * @may_alloc: may allocate the array
576 *
577 * Returns pointer to array of pointers to struct page and bitmap,
578 * both of which can be indexed with pcpu_page_idx(). The returned
579 * array is cleared to zero and *@bitmapp is copied from
580 * @chunk->populated. Note that there is only one array and bitmap
581 * and access exclusion is the caller's responsibility.
582 *
583 * CONTEXT:
584 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
585 * Otherwise, don't care.
586 *
587 * RETURNS:
588 * Pointer to temp pages array on success, NULL on failure.
589 */
590static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
591 unsigned long **bitmapp,
592 bool may_alloc)
593{
594 static struct page **pages;
595 static unsigned long *bitmap;
596 size_t pages_size = num_possible_cpus() * pcpu_unit_pages *
597 sizeof(pages[0]);
598 size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
599 sizeof(unsigned long);
600
601 if (!pages || !bitmap) {
602 if (may_alloc && !pages)
603 pages = pcpu_mem_alloc(pages_size);
604 if (may_alloc && !bitmap)
605 bitmap = pcpu_mem_alloc(bitmap_size);
606 if (!pages || !bitmap)
607 return NULL;
608 }
609
610 memset(pages, 0, pages_size);
611 bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
612
613 *bitmapp = bitmap;
614 return pages;
615}
616
617/**
618 * pcpu_free_pages - free pages which were allocated for @chunk
619 * @chunk: chunk pages were allocated for
620 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
621 * @populated: populated bitmap
622 * @page_start: page index of the first page to be freed
623 * @page_end: page index of the last page to be freed + 1
624 *
625 * Free pages [@page_start and @page_end) in @pages for all units.
626 * The pages were allocated for @chunk.
627 */
628static void pcpu_free_pages(struct pcpu_chunk *chunk,
629 struct page **pages, unsigned long *populated,
630 int page_start, int page_end)
631{
632 unsigned int cpu;
633 int i;
634
635 for_each_possible_cpu(cpu) {
636 for (i = page_start; i < page_end; i++) {
637 struct page *page = pages[pcpu_page_idx(cpu, i)];
638
639 if (page)
640 __free_page(page);
641 }
642 }
643}
644
645/**
646 * pcpu_alloc_pages - allocates pages for @chunk
647 * @chunk: target chunk
648 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
649 * @populated: populated bitmap
650 * @page_start: page index of the first page to be allocated
651 * @page_end: page index of the last page to be allocated + 1
652 *
653 * Allocate pages [@page_start,@page_end) into @pages for all units.
654 * The allocation is for @chunk. Percpu core doesn't care about the
655 * content of @pages and will pass it verbatim to pcpu_map_pages().
656 */
657static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
658 struct page **pages, unsigned long *populated,
659 int page_start, int page_end)
660{
661 const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
662 unsigned int cpu;
663 int i;
664
665 for_each_possible_cpu(cpu) {
666 for (i = page_start; i < page_end; i++) {
667 struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
668
669 *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
670 if (!*pagep) {
671 pcpu_free_pages(chunk, pages, populated,
672 page_start, page_end);
673 return -ENOMEM;
674 }
675 }
676 }
677 return 0;
678}
679
680/**
681 * pcpu_pre_unmap_flush - flush cache prior to unmapping
682 * @chunk: chunk the regions to be flushed belongs to
683 * @page_start: page index of the first page to be flushed
684 * @page_end: page index of the last page to be flushed + 1
685 *
686 * Pages in [@page_start,@page_end) of @chunk are about to be
687 * unmapped. Flush cache. As each flushing trial can be very
688 * expensive, issue flush on the whole region at once rather than
689 * doing it for each cpu. This could be an overkill but is more
690 * scalable.
691 */
692static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
693 int page_start, int page_end)
694{
695 unsigned int last = num_possible_cpus() - 1;
696
697 flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start),
698 pcpu_chunk_addr(chunk, last, page_end));
699}
700
701static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
702{
703 unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
704}
705
706/**
707 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
fbf59bc9 708 * @chunk: chunk of interest
ce3141a2
TH
709 * @pages: pages array which can be used to pass information to free
710 * @populated: populated bitmap
fbf59bc9
TH
711 * @page_start: page index of the first page to unmap
712 * @page_end: page index of the last page to unmap + 1
fbf59bc9
TH
713 *
714 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
ce3141a2
TH
715 * Corresponding elements in @pages were cleared by the caller and can
716 * be used to carry information to pcpu_free_pages() which will be
717 * called after all unmaps are finished. The caller should call
718 * proper pre/post flush functions.
fbf59bc9 719 */
ce3141a2
TH
720static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
721 struct page **pages, unsigned long *populated,
722 int page_start, int page_end)
fbf59bc9 723{
fbf59bc9 724 unsigned int cpu;
ce3141a2 725 int i;
fbf59bc9 726
ce3141a2
TH
727 for_each_possible_cpu(cpu) {
728 for (i = page_start; i < page_end; i++) {
729 struct page *page;
8d408b4b 730
ce3141a2
TH
731 page = pcpu_chunk_page(chunk, cpu, i);
732 WARN_ON(!page);
733 pages[pcpu_page_idx(cpu, i)] = page;
734 }
735 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
736 page_end - page_start);
737 }
fbf59bc9 738
ce3141a2
TH
739 for (i = page_start; i < page_end; i++)
740 __clear_bit(i, populated);
741}
742
743/**
744 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
745 * @chunk: pcpu_chunk the regions to be flushed belong to
746 * @page_start: page index of the first page to be flushed
747 * @page_end: page index of the last page to be flushed + 1
748 *
749 * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
750 * TLB for the regions. This can be skipped if the area is to be
751 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
752 *
753 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
754 * for the whole region.
755 */
756static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
757 int page_start, int page_end)
758{
759 unsigned int last = num_possible_cpus() - 1;
760
761 flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start),
762 pcpu_chunk_addr(chunk, last, page_end));
fbf59bc9
TH
763}
764
c8a51be4
TH
765static int __pcpu_map_pages(unsigned long addr, struct page **pages,
766 int nr_pages)
767{
768 return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
769 PAGE_KERNEL, pages);
770}
771
772/**
ce3141a2 773 * pcpu_map_pages - map pages into a pcpu_chunk
c8a51be4 774 * @chunk: chunk of interest
ce3141a2
TH
775 * @pages: pages array containing pages to be mapped
776 * @populated: populated bitmap
c8a51be4
TH
777 * @page_start: page index of the first page to map
778 * @page_end: page index of the last page to map + 1
779 *
ce3141a2
TH
780 * For each cpu, map pages [@page_start,@page_end) into @chunk. The
781 * caller is responsible for calling pcpu_post_map_flush() after all
782 * mappings are complete.
783 *
784 * This function is responsible for setting corresponding bits in
785 * @chunk->populated bitmap and whatever is necessary for reverse
786 * lookup (addr -> chunk).
c8a51be4 787 */
ce3141a2
TH
788static int pcpu_map_pages(struct pcpu_chunk *chunk,
789 struct page **pages, unsigned long *populated,
790 int page_start, int page_end)
c8a51be4 791{
ce3141a2
TH
792 unsigned int cpu, tcpu;
793 int i, err;
c8a51be4
TH
794
795 for_each_possible_cpu(cpu) {
796 err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
ce3141a2 797 &pages[pcpu_page_idx(cpu, page_start)],
c8a51be4
TH
798 page_end - page_start);
799 if (err < 0)
ce3141a2 800 goto err;
c8a51be4
TH
801 }
802
ce3141a2
TH
803 /* mapping successful, link chunk and mark populated */
804 for (i = page_start; i < page_end; i++) {
805 for_each_possible_cpu(cpu)
806 pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
807 chunk);
808 __set_bit(i, populated);
809 }
810
811 return 0;
812
813err:
814 for_each_possible_cpu(tcpu) {
815 if (tcpu == cpu)
816 break;
817 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
818 page_end - page_start);
819 }
820 return err;
821}
822
823/**
824 * pcpu_post_map_flush - flush cache after mapping
825 * @chunk: pcpu_chunk the regions to be flushed belong to
826 * @page_start: page index of the first page to be flushed
827 * @page_end: page index of the last page to be flushed + 1
828 *
829 * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
830 * cache.
831 *
832 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
833 * for the whole region.
834 */
835static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
836 int page_start, int page_end)
837{
838 unsigned int last = num_possible_cpus() - 1;
839
c8a51be4
TH
840 /* flush at once, please read comments in pcpu_unmap() */
841 flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start),
842 pcpu_chunk_addr(chunk, last, page_end));
c8a51be4
TH
843}
844
fbf59bc9
TH
845/**
846 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
847 * @chunk: chunk to depopulate
848 * @off: offset to the area to depopulate
cae3aeb8 849 * @size: size of the area to depopulate in bytes
fbf59bc9
TH
850 * @flush: whether to flush cache and tlb or not
851 *
852 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
853 * from @chunk. If @flush is true, vcache is flushed before unmapping
854 * and tlb after.
ccea34b5
TH
855 *
856 * CONTEXT:
857 * pcpu_alloc_mutex.
fbf59bc9 858 */
ce3141a2 859static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
fbf59bc9
TH
860{
861 int page_start = PFN_DOWN(off);
862 int page_end = PFN_UP(off + size);
ce3141a2
TH
863 struct page **pages;
864 unsigned long *populated;
865 int rs, re;
866
867 /* quick path, check whether it's empty already */
868 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
869 if (rs == page_start && re == page_end)
870 return;
871 break;
872 }
fbf59bc9 873
ce3141a2
TH
874 /* immutable chunks can't be depopulated */
875 WARN_ON(chunk->immutable);
fbf59bc9 876
ce3141a2
TH
877 /*
878 * If control reaches here, there must have been at least one
879 * successful population attempt so the temp pages array must
880 * be available now.
881 */
882 pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
883 BUG_ON(!pages);
fbf59bc9 884
ce3141a2
TH
885 /* unmap and free */
886 pcpu_pre_unmap_flush(chunk, page_start, page_end);
fbf59bc9 887
ce3141a2
TH
888 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
889 pcpu_unmap_pages(chunk, pages, populated, rs, re);
fbf59bc9 890
ce3141a2
TH
891 /* no need to flush tlb, vmalloc will handle it lazily */
892
893 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
894 pcpu_free_pages(chunk, pages, populated, rs, re);
fbf59bc9 895
ce3141a2
TH
896 /* commit new bitmap */
897 bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
fbf59bc9
TH
898}
899
fbf59bc9
TH
900/**
901 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
902 * @chunk: chunk of interest
903 * @off: offset to the area to populate
cae3aeb8 904 * @size: size of the area to populate in bytes
fbf59bc9
TH
905 *
906 * For each cpu, populate and map pages [@page_start,@page_end) into
907 * @chunk. The area is cleared on return.
ccea34b5
TH
908 *
909 * CONTEXT:
910 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
fbf59bc9
TH
911 */
912static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
913{
fbf59bc9
TH
914 int page_start = PFN_DOWN(off);
915 int page_end = PFN_UP(off + size);
ce3141a2
TH
916 int free_end = page_start, unmap_end = page_start;
917 struct page **pages;
918 unsigned long *populated;
fbf59bc9 919 unsigned int cpu;
ce3141a2 920 int rs, re, rc;
fbf59bc9 921
ce3141a2
TH
922 /* quick path, check whether all pages are already there */
923 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) {
924 if (rs == page_start && re == page_end)
925 goto clear;
926 break;
927 }
fbf59bc9 928
ce3141a2
TH
929 /* need to allocate and map pages, this chunk can't be immutable */
930 WARN_ON(chunk->immutable);
fbf59bc9 931
ce3141a2
TH
932 pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
933 if (!pages)
934 return -ENOMEM;
fbf59bc9 935
ce3141a2
TH
936 /* alloc and map */
937 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
938 rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
939 if (rc)
940 goto err_free;
941 free_end = re;
fbf59bc9
TH
942 }
943
ce3141a2
TH
944 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
945 rc = pcpu_map_pages(chunk, pages, populated, rs, re);
946 if (rc)
947 goto err_unmap;
948 unmap_end = re;
949 }
950 pcpu_post_map_flush(chunk, page_start, page_end);
fbf59bc9 951
ce3141a2
TH
952 /* commit new bitmap */
953 bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
954clear:
fbf59bc9 955 for_each_possible_cpu(cpu)
d9b55eeb 956 memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0,
fbf59bc9 957 size);
fbf59bc9 958 return 0;
ce3141a2
TH
959
960err_unmap:
961 pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
962 pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
963 pcpu_unmap_pages(chunk, pages, populated, rs, re);
964 pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
965err_free:
966 pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
967 pcpu_free_pages(chunk, pages, populated, rs, re);
968 return rc;
fbf59bc9
TH
969}
970
971static void free_pcpu_chunk(struct pcpu_chunk *chunk)
972{
973 if (!chunk)
974 return;
975 if (chunk->vm)
976 free_vm_area(chunk->vm);
1880d93b 977 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
fbf59bc9
TH
978 kfree(chunk);
979}
980
981static struct pcpu_chunk *alloc_pcpu_chunk(void)
982{
983 struct pcpu_chunk *chunk;
984
985 chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
986 if (!chunk)
987 return NULL;
988
1880d93b 989 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
fbf59bc9
TH
990 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
991 chunk->map[chunk->map_used++] = pcpu_unit_size;
992
993 chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL);
994 if (!chunk->vm) {
995 free_pcpu_chunk(chunk);
996 return NULL;
997 }
998
999 INIT_LIST_HEAD(&chunk->list);
1000 chunk->free_size = pcpu_unit_size;
1001 chunk->contig_hint = pcpu_unit_size;
1002
1003 return chunk;
1004}
1005
1006/**
edcb4639 1007 * pcpu_alloc - the percpu allocator
cae3aeb8 1008 * @size: size of area to allocate in bytes
fbf59bc9 1009 * @align: alignment of area (max PAGE_SIZE)
edcb4639 1010 * @reserved: allocate from the reserved chunk if available
fbf59bc9 1011 *
ccea34b5
TH
1012 * Allocate percpu area of @size bytes aligned at @align.
1013 *
1014 * CONTEXT:
1015 * Does GFP_KERNEL allocation.
fbf59bc9
TH
1016 *
1017 * RETURNS:
1018 * Percpu pointer to the allocated area on success, NULL on failure.
1019 */
edcb4639 1020static void *pcpu_alloc(size_t size, size_t align, bool reserved)
fbf59bc9 1021{
fbf59bc9
TH
1022 struct pcpu_chunk *chunk;
1023 int slot, off;
1024
8d408b4b 1025 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
fbf59bc9
TH
1026 WARN(true, "illegal size (%zu) or align (%zu) for "
1027 "percpu allocation\n", size, align);
1028 return NULL;
1029 }
1030
ccea34b5
TH
1031 mutex_lock(&pcpu_alloc_mutex);
1032 spin_lock_irq(&pcpu_lock);
fbf59bc9 1033
edcb4639
TH
1034 /* serve reserved allocations from the reserved chunk if available */
1035 if (reserved && pcpu_reserved_chunk) {
1036 chunk = pcpu_reserved_chunk;
9f7dcf22
TH
1037 if (size > chunk->contig_hint ||
1038 pcpu_extend_area_map(chunk) < 0)
ccea34b5 1039 goto fail_unlock;
edcb4639
TH
1040 off = pcpu_alloc_area(chunk, size, align);
1041 if (off >= 0)
1042 goto area_found;
ccea34b5 1043 goto fail_unlock;
edcb4639
TH
1044 }
1045
ccea34b5 1046restart:
edcb4639 1047 /* search through normal chunks */
fbf59bc9
TH
1048 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1049 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1050 if (size > chunk->contig_hint)
1051 continue;
ccea34b5
TH
1052
1053 switch (pcpu_extend_area_map(chunk)) {
1054 case 0:
1055 break;
1056 case 1:
1057 goto restart; /* pcpu_lock dropped, restart */
1058 default:
1059 goto fail_unlock;
1060 }
1061
fbf59bc9
TH
1062 off = pcpu_alloc_area(chunk, size, align);
1063 if (off >= 0)
1064 goto area_found;
fbf59bc9
TH
1065 }
1066 }
1067
1068 /* hmmm... no space left, create a new chunk */
ccea34b5
TH
1069 spin_unlock_irq(&pcpu_lock);
1070
fbf59bc9
TH
1071 chunk = alloc_pcpu_chunk();
1072 if (!chunk)
ccea34b5
TH
1073 goto fail_unlock_mutex;
1074
1075 spin_lock_irq(&pcpu_lock);
fbf59bc9 1076 pcpu_chunk_relocate(chunk, -1);
ccea34b5 1077 goto restart;
fbf59bc9
TH
1078
1079area_found:
ccea34b5
TH
1080 spin_unlock_irq(&pcpu_lock);
1081
fbf59bc9
TH
1082 /* populate, map and clear the area */
1083 if (pcpu_populate_chunk(chunk, off, size)) {
ccea34b5 1084 spin_lock_irq(&pcpu_lock);
fbf59bc9 1085 pcpu_free_area(chunk, off);
ccea34b5 1086 goto fail_unlock;
fbf59bc9
TH
1087 }
1088
ccea34b5
TH
1089 mutex_unlock(&pcpu_alloc_mutex);
1090
1091 return __addr_to_pcpu_ptr(chunk->vm->addr + off);
1092
1093fail_unlock:
1094 spin_unlock_irq(&pcpu_lock);
1095fail_unlock_mutex:
1096 mutex_unlock(&pcpu_alloc_mutex);
1097 return NULL;
fbf59bc9 1098}
edcb4639
TH
1099
1100/**
1101 * __alloc_percpu - allocate dynamic percpu area
1102 * @size: size of area to allocate in bytes
1103 * @align: alignment of area (max PAGE_SIZE)
1104 *
1105 * Allocate percpu area of @size bytes aligned at @align. Might
1106 * sleep. Might trigger writeouts.
1107 *
ccea34b5
TH
1108 * CONTEXT:
1109 * Does GFP_KERNEL allocation.
1110 *
edcb4639
TH
1111 * RETURNS:
1112 * Percpu pointer to the allocated area on success, NULL on failure.
1113 */
1114void *__alloc_percpu(size_t size, size_t align)
1115{
1116 return pcpu_alloc(size, align, false);
1117}
fbf59bc9
TH
1118EXPORT_SYMBOL_GPL(__alloc_percpu);
1119
edcb4639
TH
1120/**
1121 * __alloc_reserved_percpu - allocate reserved percpu area
1122 * @size: size of area to allocate in bytes
1123 * @align: alignment of area (max PAGE_SIZE)
1124 *
1125 * Allocate percpu area of @size bytes aligned at @align from reserved
1126 * percpu area if arch has set it up; otherwise, allocation is served
1127 * from the same dynamic area. Might sleep. Might trigger writeouts.
1128 *
ccea34b5
TH
1129 * CONTEXT:
1130 * Does GFP_KERNEL allocation.
1131 *
edcb4639
TH
1132 * RETURNS:
1133 * Percpu pointer to the allocated area on success, NULL on failure.
1134 */
1135void *__alloc_reserved_percpu(size_t size, size_t align)
1136{
1137 return pcpu_alloc(size, align, true);
1138}
1139
a56dbddf
TH
1140/**
1141 * pcpu_reclaim - reclaim fully free chunks, workqueue function
1142 * @work: unused
1143 *
1144 * Reclaim all fully free chunks except for the first one.
ccea34b5
TH
1145 *
1146 * CONTEXT:
1147 * workqueue context.
a56dbddf
TH
1148 */
1149static void pcpu_reclaim(struct work_struct *work)
fbf59bc9 1150{
a56dbddf
TH
1151 LIST_HEAD(todo);
1152 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
1153 struct pcpu_chunk *chunk, *next;
1154
ccea34b5
TH
1155 mutex_lock(&pcpu_alloc_mutex);
1156 spin_lock_irq(&pcpu_lock);
a56dbddf
TH
1157
1158 list_for_each_entry_safe(chunk, next, head, list) {
1159 WARN_ON(chunk->immutable);
1160
1161 /* spare the first one */
1162 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
1163 continue;
1164
a56dbddf
TH
1165 list_move(&chunk->list, &todo);
1166 }
1167
ccea34b5
TH
1168 spin_unlock_irq(&pcpu_lock);
1169 mutex_unlock(&pcpu_alloc_mutex);
a56dbddf
TH
1170
1171 list_for_each_entry_safe(chunk, next, &todo, list) {
ce3141a2 1172 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
a56dbddf
TH
1173 free_pcpu_chunk(chunk);
1174 }
fbf59bc9
TH
1175}
1176
1177/**
1178 * free_percpu - free percpu area
1179 * @ptr: pointer to area to free
1180 *
ccea34b5
TH
1181 * Free percpu area @ptr.
1182 *
1183 * CONTEXT:
1184 * Can be called from atomic context.
fbf59bc9
TH
1185 */
1186void free_percpu(void *ptr)
1187{
1188 void *addr = __pcpu_ptr_to_addr(ptr);
1189 struct pcpu_chunk *chunk;
ccea34b5 1190 unsigned long flags;
fbf59bc9
TH
1191 int off;
1192
1193 if (!ptr)
1194 return;
1195
ccea34b5 1196 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
1197
1198 chunk = pcpu_chunk_addr_search(addr);
1199 off = addr - chunk->vm->addr;
1200
1201 pcpu_free_area(chunk, off);
1202
a56dbddf 1203 /* if there are more than one fully free chunks, wake up grim reaper */
fbf59bc9
TH
1204 if (chunk->free_size == pcpu_unit_size) {
1205 struct pcpu_chunk *pos;
1206
a56dbddf 1207 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 1208 if (pos != chunk) {
a56dbddf 1209 schedule_work(&pcpu_reclaim_work);
fbf59bc9
TH
1210 break;
1211 }
1212 }
1213
ccea34b5 1214 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
1215}
1216EXPORT_SYMBOL_GPL(free_percpu);
1217
1218/**
8d408b4b 1219 * pcpu_setup_first_chunk - initialize the first percpu chunk
8d408b4b 1220 * @static_size: the size of static percpu area in bytes
38a6be52 1221 * @reserved_size: the size of reserved percpu area in bytes, 0 for none
cafe8816 1222 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
38a6be52
TH
1223 * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE
1224 * @base_addr: mapped address
8d408b4b
TH
1225 *
1226 * Initialize the first percpu chunk which contains the kernel static
1227 * perpcu area. This function is to be called from arch percpu area
38a6be52 1228 * setup path.
8d408b4b 1229 *
edcb4639
TH
1230 * @reserved_size, if non-zero, specifies the amount of bytes to
1231 * reserve after the static area in the first chunk. This reserves
1232 * the first chunk such that it's available only through reserved
1233 * percpu allocation. This is primarily used to serve module percpu
1234 * static areas on architectures where the addressing model has
1235 * limited offset range for symbol relocations to guarantee module
1236 * percpu symbols fall inside the relocatable range.
1237 *
6074d5b0
TH
1238 * @dyn_size, if non-negative, determines the number of bytes
1239 * available for dynamic allocation in the first chunk. Specifying
1240 * non-negative value makes percpu leave alone the area beyond
1241 * @static_size + @reserved_size + @dyn_size.
1242 *
38a6be52
TH
1243 * @unit_size specifies unit size and must be aligned to PAGE_SIZE and
1244 * equal to or larger than @static_size + @reserved_size + if
1245 * non-negative, @dyn_size.
8d408b4b 1246 *
38a6be52
TH
1247 * The caller should have mapped the first chunk at @base_addr and
1248 * copied static data to each unit.
fbf59bc9 1249 *
edcb4639
TH
1250 * If the first chunk ends up with both reserved and dynamic areas, it
1251 * is served by two chunks - one to serve the core static and reserved
1252 * areas and the other for the dynamic area. They share the same vm
1253 * and page map but uses different area allocation map to stay away
1254 * from each other. The latter chunk is circulated in the chunk slots
1255 * and available for dynamic allocation like any other chunks.
1256 *
fbf59bc9
TH
1257 * RETURNS:
1258 * The determined pcpu_unit_size which can be used to initialize
1259 * percpu access.
1260 */
ce3141a2 1261size_t __init pcpu_setup_first_chunk(size_t static_size, size_t reserved_size,
38a6be52
TH
1262 ssize_t dyn_size, size_t unit_size,
1263 void *base_addr)
fbf59bc9 1264{
2441d15c 1265 static struct vm_struct first_vm;
edcb4639 1266 static int smap[2], dmap[2];
6074d5b0
TH
1267 size_t size_sum = static_size + reserved_size +
1268 (dyn_size >= 0 ? dyn_size : 0);
edcb4639 1269 struct pcpu_chunk *schunk, *dchunk = NULL;
ce3141a2 1270 int i;
fbf59bc9 1271
8d408b4b 1272 /* santiy checks */
edcb4639
TH
1273 BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
1274 ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
8d408b4b 1275 BUG_ON(!static_size);
38a6be52
TH
1276 BUG_ON(!base_addr);
1277 BUG_ON(unit_size < size_sum);
1278 BUG_ON(unit_size & ~PAGE_MASK);
1279 BUG_ON(unit_size < PCPU_MIN_UNIT_SIZE);
8d408b4b 1280
38a6be52 1281 pcpu_unit_pages = unit_size >> PAGE_SHIFT;
d9b55eeb 1282 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
fbf59bc9 1283 pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size;
ce3141a2
TH
1284 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1285 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
fbf59bc9 1286
cafe8816 1287 if (dyn_size < 0)
edcb4639 1288 dyn_size = pcpu_unit_size - static_size - reserved_size;
cafe8816 1289
38a6be52
TH
1290 first_vm.flags = VM_ALLOC;
1291 first_vm.size = pcpu_chunk_size;
1292 first_vm.addr = base_addr;
1293
d9b55eeb
TH
1294 /*
1295 * Allocate chunk slots. The additional last slot is for
1296 * empty chunks.
1297 */
1298 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
fbf59bc9
TH
1299 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1300 for (i = 0; i < pcpu_nr_slots; i++)
1301 INIT_LIST_HEAD(&pcpu_slot[i]);
1302
edcb4639
TH
1303 /*
1304 * Initialize static chunk. If reserved_size is zero, the
1305 * static chunk covers static area + dynamic allocation area
1306 * in the first chunk. If reserved_size is not zero, it
1307 * covers static area + reserved area (mostly used for module
1308 * static percpu allocation).
1309 */
2441d15c
TH
1310 schunk = alloc_bootmem(pcpu_chunk_struct_size);
1311 INIT_LIST_HEAD(&schunk->list);
1312 schunk->vm = &first_vm;
61ace7fa
TH
1313 schunk->map = smap;
1314 schunk->map_alloc = ARRAY_SIZE(smap);
38a6be52 1315 schunk->immutable = true;
ce3141a2 1316 bitmap_fill(schunk->populated, pcpu_unit_pages);
edcb4639
TH
1317
1318 if (reserved_size) {
1319 schunk->free_size = reserved_size;
ae9e6bc9
TH
1320 pcpu_reserved_chunk = schunk;
1321 pcpu_reserved_chunk_limit = static_size + reserved_size;
edcb4639
TH
1322 } else {
1323 schunk->free_size = dyn_size;
1324 dyn_size = 0; /* dynamic area covered */
1325 }
2441d15c 1326 schunk->contig_hint = schunk->free_size;
fbf59bc9 1327
61ace7fa
TH
1328 schunk->map[schunk->map_used++] = -static_size;
1329 if (schunk->free_size)
1330 schunk->map[schunk->map_used++] = schunk->free_size;
1331
edcb4639
TH
1332 /* init dynamic chunk if necessary */
1333 if (dyn_size) {
ce3141a2 1334 dchunk = alloc_bootmem(pcpu_chunk_struct_size);
edcb4639
TH
1335 INIT_LIST_HEAD(&dchunk->list);
1336 dchunk->vm = &first_vm;
1337 dchunk->map = dmap;
1338 dchunk->map_alloc = ARRAY_SIZE(dmap);
38a6be52 1339 dchunk->immutable = true;
ce3141a2 1340 bitmap_fill(dchunk->populated, pcpu_unit_pages);
edcb4639
TH
1341
1342 dchunk->contig_hint = dchunk->free_size = dyn_size;
1343 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1344 dchunk->map[dchunk->map_used++] = dchunk->free_size;
1345 }
1346
2441d15c 1347 /* link the first chunk in */
ae9e6bc9
TH
1348 pcpu_first_chunk = dchunk ?: schunk;
1349 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9
TH
1350
1351 /* we're done */
2441d15c 1352 pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0);
fbf59bc9
TH
1353 return pcpu_unit_size;
1354}
66c3a757 1355
8c4bfc6e
TH
1356static size_t pcpu_calc_fc_sizes(size_t static_size, size_t reserved_size,
1357 ssize_t *dyn_sizep)
1358{
1359 size_t size_sum;
1360
1361 size_sum = PFN_ALIGN(static_size + reserved_size +
1362 (*dyn_sizep >= 0 ? *dyn_sizep : 0));
1363 if (*dyn_sizep != 0)
1364 *dyn_sizep = size_sum - static_size - reserved_size;
1365
1366 return size_sum;
1367}
1368
66c3a757
TH
1369/**
1370 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1371 * @static_size: the size of static percpu area in bytes
1372 * @reserved_size: the size of reserved percpu area in bytes
1373 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
66c3a757
TH
1374 *
1375 * This is a helper to ease setting up embedded first percpu chunk and
1376 * can be called where pcpu_setup_first_chunk() is expected.
1377 *
1378 * If this function is used to setup the first chunk, it is allocated
1379 * as a contiguous area using bootmem allocator and used as-is without
1380 * being mapped into vmalloc area. This enables the first chunk to
1381 * piggy back on the linear physical mapping which often uses larger
1382 * page size.
1383 *
1384 * When @dyn_size is positive, dynamic area might be larger than
788e5abc
TH
1385 * specified to fill page alignment. When @dyn_size is auto,
1386 * @dyn_size is just big enough to fill page alignment after static
1387 * and reserved areas.
66c3a757
TH
1388 *
1389 * If the needed size is smaller than the minimum or specified unit
1390 * size, the leftover is returned to the bootmem allocator.
1391 *
1392 * RETURNS:
1393 * The determined pcpu_unit_size which can be used to initialize
1394 * percpu access on success, -errno on failure.
1395 */
1396ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size,
788e5abc 1397 ssize_t dyn_size)
66c3a757 1398{
ce3141a2
TH
1399 size_t size_sum, unit_size, chunk_size;
1400 void *base;
66c3a757
TH
1401 unsigned int cpu;
1402
1403 /* determine parameters and allocate */
ce3141a2 1404 size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
66c3a757 1405
ce3141a2
TH
1406 unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1407 chunk_size = unit_size * num_possible_cpus();
fa8a7094 1408
ce3141a2
TH
1409 base = __alloc_bootmem_nopanic(chunk_size, PAGE_SIZE,
1410 __pa(MAX_DMA_ADDRESS));
1411 if (!base) {
fa8a7094
TH
1412 pr_warning("PERCPU: failed to allocate %zu bytes for "
1413 "embedding\n", chunk_size);
66c3a757 1414 return -ENOMEM;
fa8a7094 1415 }
66c3a757
TH
1416
1417 /* return the leftover and copy */
1418 for_each_possible_cpu(cpu) {
ce3141a2 1419 void *ptr = base + cpu * unit_size;
66c3a757 1420
ce3141a2 1421 free_bootmem(__pa(ptr + size_sum), unit_size - size_sum);
66c3a757
TH
1422 memcpy(ptr, __per_cpu_load, static_size);
1423 }
1424
1425 /* we're ready, commit */
1426 pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n",
ce3141a2 1427 size_sum >> PAGE_SHIFT, base, static_size);
d4b95f80 1428
ce3141a2
TH
1429 return pcpu_setup_first_chunk(static_size, reserved_size, dyn_size,
1430 unit_size, base);
d4b95f80
TH
1431}
1432
1433/**
1434 * pcpu_4k_first_chunk - map the first chunk using PAGE_SIZE pages
1435 * @static_size: the size of static percpu area in bytes
1436 * @reserved_size: the size of reserved percpu area in bytes
1437 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1438 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
1439 * @populate_pte_fn: function to populate pte
1440 *
1441 * This is a helper to ease setting up embedded first percpu chunk and
1442 * can be called where pcpu_setup_first_chunk() is expected.
1443 *
1444 * This is the basic allocator. Static percpu area is allocated
1445 * page-by-page into vmalloc area.
1446 *
1447 * RETURNS:
1448 * The determined pcpu_unit_size which can be used to initialize
1449 * percpu access on success, -errno on failure.
1450 */
1451ssize_t __init pcpu_4k_first_chunk(size_t static_size, size_t reserved_size,
1452 pcpu_fc_alloc_fn_t alloc_fn,
1453 pcpu_fc_free_fn_t free_fn,
1454 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1455{
8f05a6a6 1456 static struct vm_struct vm;
ce3141a2 1457 int unit_pages;
d4b95f80 1458 size_t pages_size;
ce3141a2 1459 struct page **pages;
d4b95f80
TH
1460 unsigned int cpu;
1461 int i, j;
1462 ssize_t ret;
1463
ce3141a2
TH
1464 unit_pages = PFN_UP(max_t(size_t, static_size + reserved_size,
1465 PCPU_MIN_UNIT_SIZE));
d4b95f80
TH
1466
1467 /* unaligned allocations can't be freed, round up to page size */
ce3141a2
TH
1468 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1469 sizeof(pages[0]));
1470 pages = alloc_bootmem(pages_size);
d4b95f80 1471
8f05a6a6 1472 /* allocate pages */
d4b95f80
TH
1473 j = 0;
1474 for_each_possible_cpu(cpu)
ce3141a2 1475 for (i = 0; i < unit_pages; i++) {
d4b95f80
TH
1476 void *ptr;
1477
1478 ptr = alloc_fn(cpu, PAGE_SIZE);
1479 if (!ptr) {
1480 pr_warning("PERCPU: failed to allocate "
1481 "4k page for cpu%u\n", cpu);
1482 goto enomem;
1483 }
ce3141a2 1484 pages[j++] = virt_to_page(ptr);
d4b95f80
TH
1485 }
1486
8f05a6a6
TH
1487 /* allocate vm area, map the pages and copy static data */
1488 vm.flags = VM_ALLOC;
ce3141a2 1489 vm.size = num_possible_cpus() * unit_pages << PAGE_SHIFT;
8f05a6a6
TH
1490 vm_area_register_early(&vm, PAGE_SIZE);
1491
1492 for_each_possible_cpu(cpu) {
1493 unsigned long unit_addr = (unsigned long)vm.addr +
ce3141a2 1494 (cpu * unit_pages << PAGE_SHIFT);
8f05a6a6 1495
ce3141a2 1496 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
1497 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1498
1499 /* pte already populated, the following shouldn't fail */
ce3141a2
TH
1500 ret = __pcpu_map_pages(unit_addr, &pages[cpu * unit_pages],
1501 unit_pages);
8f05a6a6
TH
1502 if (ret < 0)
1503 panic("failed to map percpu area, err=%zd\n", ret);
1504
1505 /*
1506 * FIXME: Archs with virtual cache should flush local
1507 * cache for the linear mapping here - something
1508 * equivalent to flush_cache_vmap() on the local cpu.
1509 * flush_cache_vmap() can't be used as most supporting
1510 * data structures are not set up yet.
1511 */
1512
1513 /* copy static data */
1514 memcpy((void *)unit_addr, __per_cpu_load, static_size);
1515 }
1516
d4b95f80 1517 /* we're ready, commit */
8f05a6a6 1518 pr_info("PERCPU: %d 4k pages per cpu, static data %zu bytes\n",
ce3141a2 1519 unit_pages, static_size);
d4b95f80 1520
ce3141a2
TH
1521 ret = pcpu_setup_first_chunk(static_size, reserved_size, -1,
1522 unit_pages << PAGE_SHIFT, vm.addr);
d4b95f80
TH
1523 goto out_free_ar;
1524
1525enomem:
1526 while (--j >= 0)
ce3141a2 1527 free_fn(page_address(pages[j]), PAGE_SIZE);
d4b95f80
TH
1528 ret = -ENOMEM;
1529out_free_ar:
ce3141a2 1530 free_bootmem(__pa(pages), pages_size);
d4b95f80
TH
1531 return ret;
1532}
1533
8c4bfc6e
TH
1534/*
1535 * Large page remapping first chunk setup helper
1536 */
1537#ifdef CONFIG_NEED_MULTIPLE_NODES
1538struct pcpul_ent {
1539 unsigned int cpu;
1540 void *ptr;
1541};
1542
1543static size_t pcpul_size;
1544static size_t pcpul_unit_size;
1545static struct pcpul_ent *pcpul_map;
1546static struct vm_struct pcpul_vm;
1547
8c4bfc6e
TH
1548/**
1549 * pcpu_lpage_first_chunk - remap the first percpu chunk using large page
1550 * @static_size: the size of static percpu area in bytes
1551 * @reserved_size: the size of reserved percpu area in bytes
1552 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1553 * @lpage_size: the size of a large page
1554 * @alloc_fn: function to allocate percpu lpage, always called with lpage_size
1555 * @free_fn: function to free percpu memory, @size <= lpage_size
1556 * @map_fn: function to map percpu lpage, always called with lpage_size
1557 *
1558 * This allocator uses large page as unit. A large page is allocated
1559 * for each cpu and each is remapped into vmalloc area using large
1560 * page mapping. As large page can be quite large, only part of it is
1561 * used for the first chunk. Unused part is returned to the bootmem
1562 * allocator.
1563 *
1564 * So, the large pages are mapped twice - once to the physical mapping
1565 * and to the vmalloc area for the first percpu chunk. The double
1566 * mapping does add one more large TLB entry pressure but still is
1567 * much better than only using 4k mappings while still being NUMA
1568 * friendly.
1569 *
1570 * RETURNS:
1571 * The determined pcpu_unit_size which can be used to initialize
1572 * percpu access on success, -errno on failure.
1573 */
1574ssize_t __init pcpu_lpage_first_chunk(size_t static_size, size_t reserved_size,
1575 ssize_t dyn_size, size_t lpage_size,
1576 pcpu_fc_alloc_fn_t alloc_fn,
1577 pcpu_fc_free_fn_t free_fn,
1578 pcpu_fc_map_fn_t map_fn)
1579{
1580 size_t size_sum;
1581 size_t map_size;
1582 unsigned int cpu;
1583 int i, j;
1584 ssize_t ret;
1585
1586 /*
1587 * Currently supports only single page. Supporting multiple
1588 * pages won't be too difficult if it ever becomes necessary.
1589 */
1590 size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
1591
1592 pcpul_unit_size = lpage_size;
1593 pcpul_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1594 if (pcpul_size > pcpul_unit_size) {
1595 pr_warning("PERCPU: static data is larger than large page, "
1596 "can't use large page\n");
1597 return -EINVAL;
1598 }
1599
1600 /* allocate pointer array and alloc large pages */
1601 map_size = PFN_ALIGN(num_possible_cpus() * sizeof(pcpul_map[0]));
1602 pcpul_map = alloc_bootmem(map_size);
1603
1604 for_each_possible_cpu(cpu) {
1605 void *ptr;
1606
1607 ptr = alloc_fn(cpu, lpage_size);
1608 if (!ptr) {
1609 pr_warning("PERCPU: failed to allocate large page "
1610 "for cpu%u\n", cpu);
1611 goto enomem;
1612 }
1613
1614 /*
1615 * Only use pcpul_size bytes and give back the rest.
1616 *
1617 * Ingo: The lpage_size up-rounding bootmem is needed
1618 * to make sure the partial lpage is still fully RAM -
1619 * it's not well-specified to have a incompatible area
1620 * (unmapped RAM, device memory, etc.) in that hole.
1621 */
1622 free_fn(ptr + pcpul_size, lpage_size - pcpul_size);
1623
1624 pcpul_map[cpu].cpu = cpu;
1625 pcpul_map[cpu].ptr = ptr;
1626
1627 memcpy(ptr, __per_cpu_load, static_size);
1628 }
1629
1630 /* allocate address and map */
1631 pcpul_vm.flags = VM_ALLOC;
1632 pcpul_vm.size = num_possible_cpus() * pcpul_unit_size;
1633 vm_area_register_early(&pcpul_vm, pcpul_unit_size);
1634
1635 for_each_possible_cpu(cpu)
1636 map_fn(pcpul_map[cpu].ptr, pcpul_unit_size,
1637 pcpul_vm.addr + cpu * pcpul_unit_size);
1638
1639 /* we're ready, commit */
1640 pr_info("PERCPU: Remapped at %p with large pages, static data "
1641 "%zu bytes\n", pcpul_vm.addr, static_size);
1642
ce3141a2
TH
1643 ret = pcpu_setup_first_chunk(static_size, reserved_size, dyn_size,
1644 pcpul_unit_size, pcpul_vm.addr);
8c4bfc6e
TH
1645
1646 /* sort pcpul_map array for pcpu_lpage_remapped() */
1647 for (i = 0; i < num_possible_cpus() - 1; i++)
1648 for (j = i + 1; j < num_possible_cpus(); j++)
1649 if (pcpul_map[i].ptr > pcpul_map[j].ptr) {
1650 struct pcpul_ent tmp = pcpul_map[i];
1651 pcpul_map[i] = pcpul_map[j];
1652 pcpul_map[j] = tmp;
1653 }
1654
1655 return ret;
1656
1657enomem:
1658 for_each_possible_cpu(cpu)
1659 if (pcpul_map[cpu].ptr)
1660 free_fn(pcpul_map[cpu].ptr, pcpul_size);
1661 free_bootmem(__pa(pcpul_map), map_size);
1662 return -ENOMEM;
1663}
1664
1665/**
1666 * pcpu_lpage_remapped - determine whether a kaddr is in pcpul recycled area
1667 * @kaddr: the kernel address in question
1668 *
1669 * Determine whether @kaddr falls in the pcpul recycled area. This is
1670 * used by pageattr to detect VM aliases and break up the pcpu large
1671 * page mapping such that the same physical page is not mapped under
1672 * different attributes.
1673 *
1674 * The recycled area is always at the tail of a partially used large
1675 * page.
1676 *
1677 * RETURNS:
1678 * Address of corresponding remapped pcpu address if match is found;
1679 * otherwise, NULL.
1680 */
1681void *pcpu_lpage_remapped(void *kaddr)
1682{
1683 unsigned long unit_mask = pcpul_unit_size - 1;
1684 void *lpage_addr = (void *)((unsigned long)kaddr & ~unit_mask);
1685 unsigned long offset = (unsigned long)kaddr & unit_mask;
1686 int left = 0, right = num_possible_cpus() - 1;
1687 int pos;
1688
1689 /* pcpul in use at all? */
1690 if (!pcpul_map)
1691 return NULL;
1692
1693 /* okay, perform binary search */
1694 while (left <= right) {
1695 pos = (left + right) / 2;
1696
1697 if (pcpul_map[pos].ptr < lpage_addr)
1698 left = pos + 1;
1699 else if (pcpul_map[pos].ptr > lpage_addr)
1700 right = pos - 1;
1701 else {
1702 /* it shouldn't be in the area for the first chunk */
1703 WARN_ON(offset < pcpul_size);
1704
1705 return pcpul_vm.addr +
1706 pcpul_map[pos].cpu * pcpul_unit_size + offset;
1707 }
1708 }
1709
1710 return NULL;
1711}
1712#endif
1713
e74e3962
TH
1714/*
1715 * Generic percpu area setup.
1716 *
1717 * The embedding helper is used because its behavior closely resembles
1718 * the original non-dynamic generic percpu area setup. This is
1719 * important because many archs have addressing restrictions and might
1720 * fail if the percpu area is located far away from the previous
1721 * location. As an added bonus, in non-NUMA cases, embedding is
1722 * generally a good idea TLB-wise because percpu area can piggy back
1723 * on the physical linear memory mapping which uses large page
1724 * mappings on applicable archs.
1725 */
1726#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
1727unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1728EXPORT_SYMBOL(__per_cpu_offset);
1729
1730void __init setup_per_cpu_areas(void)
1731{
1732 size_t static_size = __per_cpu_end - __per_cpu_start;
1733 ssize_t unit_size;
1734 unsigned long delta;
1735 unsigned int cpu;
1736
1737 /*
1738 * Always reserve area for module percpu variables. That's
1739 * what the legacy allocator did.
1740 */
1741 unit_size = pcpu_embed_first_chunk(static_size, PERCPU_MODULE_RESERVE,
788e5abc 1742 PERCPU_DYNAMIC_RESERVE);
e74e3962
TH
1743 if (unit_size < 0)
1744 panic("Failed to initialized percpu areas.");
1745
1746 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1747 for_each_possible_cpu(cpu)
1748 __per_cpu_offset[cpu] = delta + cpu * unit_size;
1749}
1750#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */