]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/percpu.c
percpu: move fully free chunk reclamation into a work
[net-next-2.6.git] / mm / percpu.c
CommitLineData
fbf59bc9
TH
1/*
2 * linux/mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each
11 * chunk is consisted of num_possible_cpus() units and the first chunk
12 * is used for static percpu variables in the kernel image (special
13 * boot time alloc/init handling necessary as these areas need to be
14 * brought up before allocation services are running). Unit grows as
15 * necessary and all units grow or shrink in unison. When a chunk is
16 * filled up, another chunk is allocated. ie. in vmalloc area
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring
26 * percpu base registers UNIT_SIZE apart.
27 *
28 * There are usually many small percpu allocations many of them as
29 * small as 4 bytes. The allocator organizes chunks into lists
30 * according to free size and tries to allocate from the fullest one.
31 * Each chunk keeps the maximum contiguous area size hint which is
32 * guaranteed to be eqaul to or larger than the maximum contiguous
33 * area in the chunk. This helps the allocator not to iterate the
34 * chunk maps unnecessarily.
35 *
36 * Allocation state in each chunk is kept using an array of integers
37 * on chunk->map. A positive value in the map represents a free
38 * region and negative allocated. Allocation inside a chunk is done
39 * by scanning this map sequentially and serving the first matching
40 * entry. This is mostly copied from the percpu_modalloc() allocator.
41 * Chunks are also linked into a rb tree to ease address to chunk
42 * mapping during free.
43 *
44 * To use this allocator, arch code should do the followings.
45 *
46 * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA
47 *
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back
50 *
8d408b4b
TH
51 * - use pcpu_setup_first_chunk() during percpu area initialization to
52 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
53 */
54
55#include <linux/bitmap.h>
56#include <linux/bootmem.h>
57#include <linux/list.h>
58#include <linux/mm.h>
59#include <linux/module.h>
60#include <linux/mutex.h>
61#include <linux/percpu.h>
62#include <linux/pfn.h>
63#include <linux/rbtree.h>
64#include <linux/slab.h>
65#include <linux/vmalloc.h>
a56dbddf 66#include <linux/workqueue.h>
fbf59bc9
TH
67
68#include <asm/cacheflush.h>
69#include <asm/tlbflush.h>
70
fbf59bc9
TH
71#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
72#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
73
74struct pcpu_chunk {
75 struct list_head list; /* linked to pcpu_slot lists */
76 struct rb_node rb_node; /* key is chunk->vm->addr */
77 int free_size; /* free bytes in the chunk */
78 int contig_hint; /* max contiguous size hint */
79 struct vm_struct *vm; /* mapped vmalloc region */
80 int map_used; /* # of map entries used */
81 int map_alloc; /* # of map entries allocated */
82 int *map; /* allocation map */
8d408b4b 83 bool immutable; /* no [de]population allowed */
3e24aa58
TH
84 struct page **page; /* points to page array */
85 struct page *page_ar[]; /* #cpus * UNIT_PAGES */
fbf59bc9
TH
86};
87
40150d37
TH
88static int pcpu_unit_pages __read_mostly;
89static int pcpu_unit_size __read_mostly;
90static int pcpu_chunk_size __read_mostly;
91static int pcpu_nr_slots __read_mostly;
92static size_t pcpu_chunk_struct_size __read_mostly;
fbf59bc9
TH
93
94/* the address of the first chunk which starts with the kernel static area */
40150d37 95void *pcpu_base_addr __read_mostly;
fbf59bc9
TH
96EXPORT_SYMBOL_GPL(pcpu_base_addr);
97
edcb4639
TH
98/* optional reserved chunk, only accessible for reserved allocations */
99static struct pcpu_chunk *pcpu_reserved_chunk;
100/* offset limit of the reserved chunk */
101static int pcpu_reserved_chunk_limit;
102
fbf59bc9
TH
103/*
104 * One mutex to rule them all.
105 *
106 * The following mutex is grabbed in the outermost public alloc/free
107 * interface functions and released only when the operation is
108 * complete. As such, every function in this file other than the
109 * outermost functions are called under pcpu_mutex.
110 *
111 * It can easily be switched to use spinlock such that only the area
112 * allocation and page population commit are protected with it doing
113 * actual [de]allocation without holding any lock. However, given
114 * what this allocator does, I think it's better to let them run
115 * sequentially.
116 */
117static DEFINE_MUTEX(pcpu_mutex);
118
40150d37 119static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
fbf59bc9
TH
120static struct rb_root pcpu_addr_root = RB_ROOT; /* chunks by address */
121
a56dbddf
TH
122/* reclaim work to release fully free chunks, scheduled from free path */
123static void pcpu_reclaim(struct work_struct *work);
124static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
125
d9b55eeb 126static int __pcpu_size_to_slot(int size)
fbf59bc9 127{
cae3aeb8 128 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
129 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
130}
131
d9b55eeb
TH
132static int pcpu_size_to_slot(int size)
133{
134 if (size == pcpu_unit_size)
135 return pcpu_nr_slots - 1;
136 return __pcpu_size_to_slot(size);
137}
138
fbf59bc9
TH
139static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
140{
141 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
142 return 0;
143
144 return pcpu_size_to_slot(chunk->free_size);
145}
146
147static int pcpu_page_idx(unsigned int cpu, int page_idx)
148{
d9b55eeb 149 return cpu * pcpu_unit_pages + page_idx;
fbf59bc9
TH
150}
151
152static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk,
153 unsigned int cpu, int page_idx)
154{
155 return &chunk->page[pcpu_page_idx(cpu, page_idx)];
156}
157
158static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
159 unsigned int cpu, int page_idx)
160{
161 return (unsigned long)chunk->vm->addr +
162 (pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT);
163}
164
165static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk,
166 int page_idx)
167{
168 return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL;
169}
170
171/**
1880d93b
TH
172 * pcpu_mem_alloc - allocate memory
173 * @size: bytes to allocate
fbf59bc9 174 *
1880d93b
TH
175 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
176 * kzalloc() is used; otherwise, vmalloc() is used. The returned
177 * memory is always zeroed.
fbf59bc9
TH
178 *
179 * RETURNS:
1880d93b 180 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 181 */
1880d93b 182static void *pcpu_mem_alloc(size_t size)
fbf59bc9 183{
1880d93b
TH
184 if (size <= PAGE_SIZE)
185 return kzalloc(size, GFP_KERNEL);
186 else {
187 void *ptr = vmalloc(size);
188 if (ptr)
189 memset(ptr, 0, size);
190 return ptr;
191 }
192}
fbf59bc9 193
1880d93b
TH
194/**
195 * pcpu_mem_free - free memory
196 * @ptr: memory to free
197 * @size: size of the area
198 *
199 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
200 */
201static void pcpu_mem_free(void *ptr, size_t size)
202{
fbf59bc9 203 if (size <= PAGE_SIZE)
1880d93b 204 kfree(ptr);
fbf59bc9 205 else
1880d93b 206 vfree(ptr);
fbf59bc9
TH
207}
208
209/**
210 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
211 * @chunk: chunk of interest
212 * @oslot: the previous slot it was on
213 *
214 * This function is called after an allocation or free changed @chunk.
215 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
216 * moved to the slot. Note that the reserved chunk is never put on
217 * chunk slots.
fbf59bc9
TH
218 */
219static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
220{
221 int nslot = pcpu_chunk_slot(chunk);
222
edcb4639 223 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
224 if (oslot < nslot)
225 list_move(&chunk->list, &pcpu_slot[nslot]);
226 else
227 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
228 }
229}
230
231static struct rb_node **pcpu_chunk_rb_search(void *addr,
232 struct rb_node **parentp)
233{
234 struct rb_node **p = &pcpu_addr_root.rb_node;
235 struct rb_node *parent = NULL;
236 struct pcpu_chunk *chunk;
237
238 while (*p) {
239 parent = *p;
240 chunk = rb_entry(parent, struct pcpu_chunk, rb_node);
241
242 if (addr < chunk->vm->addr)
243 p = &(*p)->rb_left;
244 else if (addr > chunk->vm->addr)
245 p = &(*p)->rb_right;
246 else
247 break;
248 }
249
250 if (parentp)
251 *parentp = parent;
252 return p;
253}
254
255/**
256 * pcpu_chunk_addr_search - search for chunk containing specified address
257 * @addr: address to search for
258 *
259 * Look for chunk which might contain @addr. More specifically, it
260 * searchs for the chunk with the highest start address which isn't
261 * beyond @addr.
262 *
263 * RETURNS:
264 * The address of the found chunk.
265 */
266static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
267{
268 struct rb_node *n, *parent;
269 struct pcpu_chunk *chunk;
270
edcb4639
TH
271 /* is it in the reserved chunk? */
272 if (pcpu_reserved_chunk) {
273 void *start = pcpu_reserved_chunk->vm->addr;
274
275 if (addr >= start && addr < start + pcpu_reserved_chunk_limit)
276 return pcpu_reserved_chunk;
277 }
278
279 /* nah... search the regular ones */
fbf59bc9
TH
280 n = *pcpu_chunk_rb_search(addr, &parent);
281 if (!n) {
282 /* no exactly matching chunk, the parent is the closest */
283 n = parent;
284 BUG_ON(!n);
285 }
286 chunk = rb_entry(n, struct pcpu_chunk, rb_node);
287
288 if (addr < chunk->vm->addr) {
289 /* the parent was the next one, look for the previous one */
290 n = rb_prev(n);
291 BUG_ON(!n);
292 chunk = rb_entry(n, struct pcpu_chunk, rb_node);
293 }
294
295 return chunk;
296}
297
298/**
299 * pcpu_chunk_addr_insert - insert chunk into address rb tree
300 * @new: chunk to insert
301 *
302 * Insert @new into address rb tree.
303 */
304static void pcpu_chunk_addr_insert(struct pcpu_chunk *new)
305{
306 struct rb_node **p, *parent;
307
308 p = pcpu_chunk_rb_search(new->vm->addr, &parent);
309 BUG_ON(*p);
310 rb_link_node(&new->rb_node, parent, p);
311 rb_insert_color(&new->rb_node, &pcpu_addr_root);
312}
313
9f7dcf22
TH
314/**
315 * pcpu_extend_area_map - extend area map for allocation
316 * @chunk: target chunk
317 *
318 * Extend area map of @chunk so that it can accomodate an allocation.
319 * A single allocation can split an area into three areas, so this
320 * function makes sure that @chunk->map has at least two extra slots.
321 *
322 * RETURNS:
323 * 0 if noop, 1 if successfully extended, -errno on failure.
324 */
325static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
326{
327 int new_alloc;
328 int *new;
329 size_t size;
330
331 /* has enough? */
332 if (chunk->map_alloc >= chunk->map_used + 2)
333 return 0;
334
335 new_alloc = PCPU_DFL_MAP_ALLOC;
336 while (new_alloc < chunk->map_used + 2)
337 new_alloc *= 2;
338
339 new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
340 if (!new)
341 return -ENOMEM;
342
343 size = chunk->map_alloc * sizeof(chunk->map[0]);
344 memcpy(new, chunk->map, size);
345
346 /*
347 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
348 * one of the first chunks and still using static map.
349 */
350 if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
351 pcpu_mem_free(chunk->map, size);
352
353 chunk->map_alloc = new_alloc;
354 chunk->map = new;
355 return 0;
356}
357
fbf59bc9
TH
358/**
359 * pcpu_split_block - split a map block
360 * @chunk: chunk of interest
361 * @i: index of map block to split
cae3aeb8
TH
362 * @head: head size in bytes (can be 0)
363 * @tail: tail size in bytes (can be 0)
fbf59bc9
TH
364 *
365 * Split the @i'th map block into two or three blocks. If @head is
366 * non-zero, @head bytes block is inserted before block @i moving it
367 * to @i+1 and reducing its size by @head bytes.
368 *
369 * If @tail is non-zero, the target block, which can be @i or @i+1
370 * depending on @head, is reduced by @tail bytes and @tail byte block
371 * is inserted after the target block.
372 *
9f7dcf22 373 * @chunk->map must have enough free slots to accomodate the split.
fbf59bc9 374 */
9f7dcf22
TH
375static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
376 int head, int tail)
fbf59bc9
TH
377{
378 int nr_extra = !!head + !!tail;
1880d93b 379
9f7dcf22 380 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
fbf59bc9 381
9f7dcf22 382 /* insert new subblocks */
fbf59bc9
TH
383 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
384 sizeof(chunk->map[0]) * (chunk->map_used - i));
385 chunk->map_used += nr_extra;
386
387 if (head) {
388 chunk->map[i + 1] = chunk->map[i] - head;
389 chunk->map[i++] = head;
390 }
391 if (tail) {
392 chunk->map[i++] -= tail;
393 chunk->map[i] = tail;
394 }
fbf59bc9
TH
395}
396
397/**
398 * pcpu_alloc_area - allocate area from a pcpu_chunk
399 * @chunk: chunk of interest
cae3aeb8 400 * @size: wanted size in bytes
fbf59bc9
TH
401 * @align: wanted align
402 *
403 * Try to allocate @size bytes area aligned at @align from @chunk.
404 * Note that this function only allocates the offset. It doesn't
405 * populate or map the area.
406 *
9f7dcf22
TH
407 * @chunk->map must have at least two free slots.
408 *
fbf59bc9 409 * RETURNS:
9f7dcf22
TH
410 * Allocated offset in @chunk on success, -1 if no matching area is
411 * found.
fbf59bc9
TH
412 */
413static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
414{
415 int oslot = pcpu_chunk_slot(chunk);
416 int max_contig = 0;
417 int i, off;
418
fbf59bc9
TH
419 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
420 bool is_last = i + 1 == chunk->map_used;
421 int head, tail;
422
423 /* extra for alignment requirement */
424 head = ALIGN(off, align) - off;
425 BUG_ON(i == 0 && head != 0);
426
427 if (chunk->map[i] < 0)
428 continue;
429 if (chunk->map[i] < head + size) {
430 max_contig = max(chunk->map[i], max_contig);
431 continue;
432 }
433
434 /*
435 * If head is small or the previous block is free,
436 * merge'em. Note that 'small' is defined as smaller
437 * than sizeof(int), which is very small but isn't too
438 * uncommon for percpu allocations.
439 */
440 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
441 if (chunk->map[i - 1] > 0)
442 chunk->map[i - 1] += head;
443 else {
444 chunk->map[i - 1] -= head;
445 chunk->free_size -= head;
446 }
447 chunk->map[i] -= head;
448 off += head;
449 head = 0;
450 }
451
452 /* if tail is small, just keep it around */
453 tail = chunk->map[i] - head - size;
454 if (tail < sizeof(int))
455 tail = 0;
456
457 /* split if warranted */
458 if (head || tail) {
9f7dcf22 459 pcpu_split_block(chunk, i, head, tail);
fbf59bc9
TH
460 if (head) {
461 i++;
462 off += head;
463 max_contig = max(chunk->map[i - 1], max_contig);
464 }
465 if (tail)
466 max_contig = max(chunk->map[i + 1], max_contig);
467 }
468
469 /* update hint and mark allocated */
470 if (is_last)
471 chunk->contig_hint = max_contig; /* fully scanned */
472 else
473 chunk->contig_hint = max(chunk->contig_hint,
474 max_contig);
475
476 chunk->free_size -= chunk->map[i];
477 chunk->map[i] = -chunk->map[i];
478
479 pcpu_chunk_relocate(chunk, oslot);
480 return off;
481 }
482
483 chunk->contig_hint = max_contig; /* fully scanned */
484 pcpu_chunk_relocate(chunk, oslot);
485
9f7dcf22
TH
486 /* tell the upper layer that this chunk has no matching area */
487 return -1;
fbf59bc9
TH
488}
489
490/**
491 * pcpu_free_area - free area to a pcpu_chunk
492 * @chunk: chunk of interest
493 * @freeme: offset of area to free
494 *
495 * Free area starting from @freeme to @chunk. Note that this function
496 * only modifies the allocation map. It doesn't depopulate or unmap
497 * the area.
498 */
499static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
500{
501 int oslot = pcpu_chunk_slot(chunk);
502 int i, off;
503
504 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
505 if (off == freeme)
506 break;
507 BUG_ON(off != freeme);
508 BUG_ON(chunk->map[i] > 0);
509
510 chunk->map[i] = -chunk->map[i];
511 chunk->free_size += chunk->map[i];
512
513 /* merge with previous? */
514 if (i > 0 && chunk->map[i - 1] >= 0) {
515 chunk->map[i - 1] += chunk->map[i];
516 chunk->map_used--;
517 memmove(&chunk->map[i], &chunk->map[i + 1],
518 (chunk->map_used - i) * sizeof(chunk->map[0]));
519 i--;
520 }
521 /* merge with next? */
522 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
523 chunk->map[i] += chunk->map[i + 1];
524 chunk->map_used--;
525 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
526 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
527 }
528
529 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
530 pcpu_chunk_relocate(chunk, oslot);
531}
532
533/**
534 * pcpu_unmap - unmap pages out of a pcpu_chunk
535 * @chunk: chunk of interest
536 * @page_start: page index of the first page to unmap
537 * @page_end: page index of the last page to unmap + 1
538 * @flush: whether to flush cache and tlb or not
539 *
540 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
541 * If @flush is true, vcache is flushed before unmapping and tlb
542 * after.
543 */
544static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end,
545 bool flush)
546{
547 unsigned int last = num_possible_cpus() - 1;
548 unsigned int cpu;
549
8d408b4b
TH
550 /* unmap must not be done on immutable chunk */
551 WARN_ON(chunk->immutable);
552
fbf59bc9
TH
553 /*
554 * Each flushing trial can be very expensive, issue flush on
555 * the whole region at once rather than doing it for each cpu.
556 * This could be an overkill but is more scalable.
557 */
558 if (flush)
559 flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start),
560 pcpu_chunk_addr(chunk, last, page_end));
561
562 for_each_possible_cpu(cpu)
563 unmap_kernel_range_noflush(
564 pcpu_chunk_addr(chunk, cpu, page_start),
565 (page_end - page_start) << PAGE_SHIFT);
566
567 /* ditto as flush_cache_vunmap() */
568 if (flush)
569 flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start),
570 pcpu_chunk_addr(chunk, last, page_end));
571}
572
573/**
574 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
575 * @chunk: chunk to depopulate
576 * @off: offset to the area to depopulate
cae3aeb8 577 * @size: size of the area to depopulate in bytes
fbf59bc9
TH
578 * @flush: whether to flush cache and tlb or not
579 *
580 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
581 * from @chunk. If @flush is true, vcache is flushed before unmapping
582 * and tlb after.
583 */
cae3aeb8
TH
584static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size,
585 bool flush)
fbf59bc9
TH
586{
587 int page_start = PFN_DOWN(off);
588 int page_end = PFN_UP(off + size);
589 int unmap_start = -1;
590 int uninitialized_var(unmap_end);
591 unsigned int cpu;
592 int i;
593
594 for (i = page_start; i < page_end; i++) {
595 for_each_possible_cpu(cpu) {
596 struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
597
598 if (!*pagep)
599 continue;
600
601 __free_page(*pagep);
602
603 /*
604 * If it's partial depopulation, it might get
605 * populated or depopulated again. Mark the
606 * page gone.
607 */
608 *pagep = NULL;
609
610 unmap_start = unmap_start < 0 ? i : unmap_start;
611 unmap_end = i + 1;
612 }
613 }
614
615 if (unmap_start >= 0)
616 pcpu_unmap(chunk, unmap_start, unmap_end, flush);
617}
618
619/**
620 * pcpu_map - map pages into a pcpu_chunk
621 * @chunk: chunk of interest
622 * @page_start: page index of the first page to map
623 * @page_end: page index of the last page to map + 1
624 *
625 * For each cpu, map pages [@page_start,@page_end) into @chunk.
626 * vcache is flushed afterwards.
627 */
628static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end)
629{
630 unsigned int last = num_possible_cpus() - 1;
631 unsigned int cpu;
632 int err;
633
8d408b4b
TH
634 /* map must not be done on immutable chunk */
635 WARN_ON(chunk->immutable);
636
fbf59bc9
TH
637 for_each_possible_cpu(cpu) {
638 err = map_kernel_range_noflush(
639 pcpu_chunk_addr(chunk, cpu, page_start),
640 (page_end - page_start) << PAGE_SHIFT,
641 PAGE_KERNEL,
642 pcpu_chunk_pagep(chunk, cpu, page_start));
643 if (err < 0)
644 return err;
645 }
646
647 /* flush at once, please read comments in pcpu_unmap() */
648 flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start),
649 pcpu_chunk_addr(chunk, last, page_end));
650 return 0;
651}
652
653/**
654 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
655 * @chunk: chunk of interest
656 * @off: offset to the area to populate
cae3aeb8 657 * @size: size of the area to populate in bytes
fbf59bc9
TH
658 *
659 * For each cpu, populate and map pages [@page_start,@page_end) into
660 * @chunk. The area is cleared on return.
661 */
662static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
663{
664 const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
665 int page_start = PFN_DOWN(off);
666 int page_end = PFN_UP(off + size);
667 int map_start = -1;
02d51fdf 668 int uninitialized_var(map_end);
fbf59bc9
TH
669 unsigned int cpu;
670 int i;
671
672 for (i = page_start; i < page_end; i++) {
673 if (pcpu_chunk_page_occupied(chunk, i)) {
674 if (map_start >= 0) {
675 if (pcpu_map(chunk, map_start, map_end))
676 goto err;
677 map_start = -1;
678 }
679 continue;
680 }
681
682 map_start = map_start < 0 ? i : map_start;
683 map_end = i + 1;
684
685 for_each_possible_cpu(cpu) {
686 struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
687
688 *pagep = alloc_pages_node(cpu_to_node(cpu),
689 alloc_mask, 0);
690 if (!*pagep)
691 goto err;
692 }
693 }
694
695 if (map_start >= 0 && pcpu_map(chunk, map_start, map_end))
696 goto err;
697
698 for_each_possible_cpu(cpu)
d9b55eeb 699 memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0,
fbf59bc9
TH
700 size);
701
702 return 0;
703err:
704 /* likely under heavy memory pressure, give memory back */
705 pcpu_depopulate_chunk(chunk, off, size, true);
706 return -ENOMEM;
707}
708
709static void free_pcpu_chunk(struct pcpu_chunk *chunk)
710{
711 if (!chunk)
712 return;
713 if (chunk->vm)
714 free_vm_area(chunk->vm);
1880d93b 715 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
fbf59bc9
TH
716 kfree(chunk);
717}
718
719static struct pcpu_chunk *alloc_pcpu_chunk(void)
720{
721 struct pcpu_chunk *chunk;
722
723 chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
724 if (!chunk)
725 return NULL;
726
1880d93b 727 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
fbf59bc9
TH
728 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
729 chunk->map[chunk->map_used++] = pcpu_unit_size;
3e24aa58 730 chunk->page = chunk->page_ar;
fbf59bc9
TH
731
732 chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL);
733 if (!chunk->vm) {
734 free_pcpu_chunk(chunk);
735 return NULL;
736 }
737
738 INIT_LIST_HEAD(&chunk->list);
739 chunk->free_size = pcpu_unit_size;
740 chunk->contig_hint = pcpu_unit_size;
741
742 return chunk;
743}
744
745/**
edcb4639 746 * pcpu_alloc - the percpu allocator
cae3aeb8 747 * @size: size of area to allocate in bytes
fbf59bc9 748 * @align: alignment of area (max PAGE_SIZE)
edcb4639 749 * @reserved: allocate from the reserved chunk if available
fbf59bc9
TH
750 *
751 * Allocate percpu area of @size bytes aligned at @align. Might
752 * sleep. Might trigger writeouts.
753 *
754 * RETURNS:
755 * Percpu pointer to the allocated area on success, NULL on failure.
756 */
edcb4639 757static void *pcpu_alloc(size_t size, size_t align, bool reserved)
fbf59bc9
TH
758{
759 void *ptr = NULL;
760 struct pcpu_chunk *chunk;
761 int slot, off;
762
8d408b4b 763 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
fbf59bc9
TH
764 WARN(true, "illegal size (%zu) or align (%zu) for "
765 "percpu allocation\n", size, align);
766 return NULL;
767 }
768
769 mutex_lock(&pcpu_mutex);
770
edcb4639
TH
771 /* serve reserved allocations from the reserved chunk if available */
772 if (reserved && pcpu_reserved_chunk) {
773 chunk = pcpu_reserved_chunk;
9f7dcf22
TH
774 if (size > chunk->contig_hint ||
775 pcpu_extend_area_map(chunk) < 0)
edcb4639
TH
776 goto out_unlock;
777 off = pcpu_alloc_area(chunk, size, align);
778 if (off >= 0)
779 goto area_found;
780 goto out_unlock;
781 }
782
783 /* search through normal chunks */
fbf59bc9
TH
784 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
785 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
786 if (size > chunk->contig_hint)
787 continue;
9f7dcf22
TH
788 if (pcpu_extend_area_map(chunk) < 0)
789 goto out_unlock;
fbf59bc9
TH
790 off = pcpu_alloc_area(chunk, size, align);
791 if (off >= 0)
792 goto area_found;
fbf59bc9
TH
793 }
794 }
795
796 /* hmmm... no space left, create a new chunk */
797 chunk = alloc_pcpu_chunk();
798 if (!chunk)
799 goto out_unlock;
800 pcpu_chunk_relocate(chunk, -1);
801 pcpu_chunk_addr_insert(chunk);
802
803 off = pcpu_alloc_area(chunk, size, align);
804 if (off < 0)
805 goto out_unlock;
806
807area_found:
808 /* populate, map and clear the area */
809 if (pcpu_populate_chunk(chunk, off, size)) {
810 pcpu_free_area(chunk, off);
811 goto out_unlock;
812 }
813
814 ptr = __addr_to_pcpu_ptr(chunk->vm->addr + off);
815out_unlock:
816 mutex_unlock(&pcpu_mutex);
817 return ptr;
818}
edcb4639
TH
819
820/**
821 * __alloc_percpu - allocate dynamic percpu area
822 * @size: size of area to allocate in bytes
823 * @align: alignment of area (max PAGE_SIZE)
824 *
825 * Allocate percpu area of @size bytes aligned at @align. Might
826 * sleep. Might trigger writeouts.
827 *
828 * RETURNS:
829 * Percpu pointer to the allocated area on success, NULL on failure.
830 */
831void *__alloc_percpu(size_t size, size_t align)
832{
833 return pcpu_alloc(size, align, false);
834}
fbf59bc9
TH
835EXPORT_SYMBOL_GPL(__alloc_percpu);
836
edcb4639
TH
837/**
838 * __alloc_reserved_percpu - allocate reserved percpu area
839 * @size: size of area to allocate in bytes
840 * @align: alignment of area (max PAGE_SIZE)
841 *
842 * Allocate percpu area of @size bytes aligned at @align from reserved
843 * percpu area if arch has set it up; otherwise, allocation is served
844 * from the same dynamic area. Might sleep. Might trigger writeouts.
845 *
846 * RETURNS:
847 * Percpu pointer to the allocated area on success, NULL on failure.
848 */
849void *__alloc_reserved_percpu(size_t size, size_t align)
850{
851 return pcpu_alloc(size, align, true);
852}
853
a56dbddf
TH
854/**
855 * pcpu_reclaim - reclaim fully free chunks, workqueue function
856 * @work: unused
857 *
858 * Reclaim all fully free chunks except for the first one.
859 */
860static void pcpu_reclaim(struct work_struct *work)
fbf59bc9 861{
a56dbddf
TH
862 LIST_HEAD(todo);
863 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
864 struct pcpu_chunk *chunk, *next;
865
866 mutex_lock(&pcpu_mutex);
867
868 list_for_each_entry_safe(chunk, next, head, list) {
869 WARN_ON(chunk->immutable);
870
871 /* spare the first one */
872 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
873 continue;
874
875 rb_erase(&chunk->rb_node, &pcpu_addr_root);
876 list_move(&chunk->list, &todo);
877 }
878
879 mutex_unlock(&pcpu_mutex);
880
881 list_for_each_entry_safe(chunk, next, &todo, list) {
882 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false);
883 free_pcpu_chunk(chunk);
884 }
fbf59bc9
TH
885}
886
887/**
888 * free_percpu - free percpu area
889 * @ptr: pointer to area to free
890 *
891 * Free percpu area @ptr. Might sleep.
892 */
893void free_percpu(void *ptr)
894{
895 void *addr = __pcpu_ptr_to_addr(ptr);
896 struct pcpu_chunk *chunk;
897 int off;
898
899 if (!ptr)
900 return;
901
902 mutex_lock(&pcpu_mutex);
903
904 chunk = pcpu_chunk_addr_search(addr);
905 off = addr - chunk->vm->addr;
906
907 pcpu_free_area(chunk, off);
908
a56dbddf 909 /* if there are more than one fully free chunks, wake up grim reaper */
fbf59bc9
TH
910 if (chunk->free_size == pcpu_unit_size) {
911 struct pcpu_chunk *pos;
912
a56dbddf 913 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 914 if (pos != chunk) {
a56dbddf 915 schedule_work(&pcpu_reclaim_work);
fbf59bc9
TH
916 break;
917 }
918 }
919
920 mutex_unlock(&pcpu_mutex);
921}
922EXPORT_SYMBOL_GPL(free_percpu);
923
924/**
8d408b4b
TH
925 * pcpu_setup_first_chunk - initialize the first percpu chunk
926 * @get_page_fn: callback to fetch page pointer
927 * @static_size: the size of static percpu area in bytes
edcb4639 928 * @reserved_size: the size of reserved percpu area in bytes
cafe8816
TH
929 * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto
930 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
8d408b4b
TH
931 * @base_addr: mapped address, NULL for auto
932 * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary
933 *
934 * Initialize the first percpu chunk which contains the kernel static
935 * perpcu area. This function is to be called from arch percpu area
936 * setup path. The first two parameters are mandatory. The rest are
937 * optional.
938 *
939 * @get_page_fn() should return pointer to percpu page given cpu
940 * number and page number. It should at least return enough pages to
941 * cover the static area. The returned pages for static area should
942 * have been initialized with valid data. If @unit_size is specified,
943 * it can also return pages after the static area. NULL return
944 * indicates end of pages for the cpu. Note that @get_page_fn() must
945 * return the same number of pages for all cpus.
946 *
edcb4639
TH
947 * @reserved_size, if non-zero, specifies the amount of bytes to
948 * reserve after the static area in the first chunk. This reserves
949 * the first chunk such that it's available only through reserved
950 * percpu allocation. This is primarily used to serve module percpu
951 * static areas on architectures where the addressing model has
952 * limited offset range for symbol relocations to guarantee module
953 * percpu symbols fall inside the relocatable range.
954 *
cafe8816
TH
955 * @unit_size, if non-negative, specifies unit size and must be
956 * aligned to PAGE_SIZE and equal to or larger than @static_size +
edcb4639 957 * @reserved_size + @dyn_size.
8d408b4b 958 *
cafe8816
TH
959 * @dyn_size, if non-negative, limits the number of bytes available
960 * for dynamic allocation in the first chunk. Specifying non-negative
961 * value make percpu leave alone the area beyond @static_size +
edcb4639 962 * @reserved_size + @dyn_size.
8d408b4b
TH
963 *
964 * Non-null @base_addr means that the caller already allocated virtual
965 * region for the first chunk and mapped it. percpu must not mess
966 * with the chunk. Note that @base_addr with 0 @unit_size or non-NULL
967 * @populate_pte_fn doesn't make any sense.
968 *
969 * @populate_pte_fn is used to populate the pagetable. NULL means the
970 * caller already populated the pagetable.
fbf59bc9 971 *
edcb4639
TH
972 * If the first chunk ends up with both reserved and dynamic areas, it
973 * is served by two chunks - one to serve the core static and reserved
974 * areas and the other for the dynamic area. They share the same vm
975 * and page map but uses different area allocation map to stay away
976 * from each other. The latter chunk is circulated in the chunk slots
977 * and available for dynamic allocation like any other chunks.
978 *
fbf59bc9
TH
979 * RETURNS:
980 * The determined pcpu_unit_size which can be used to initialize
981 * percpu access.
982 */
8d408b4b 983size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
edcb4639 984 size_t static_size, size_t reserved_size,
cafe8816
TH
985 ssize_t unit_size, ssize_t dyn_size,
986 void *base_addr,
8d408b4b 987 pcpu_populate_pte_fn_t populate_pte_fn)
fbf59bc9 988{
2441d15c 989 static struct vm_struct first_vm;
edcb4639
TH
990 static int smap[2], dmap[2];
991 struct pcpu_chunk *schunk, *dchunk = NULL;
fbf59bc9 992 unsigned int cpu;
8d408b4b 993 int nr_pages;
fbf59bc9
TH
994 int err, i;
995
8d408b4b 996 /* santiy checks */
edcb4639
TH
997 BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
998 ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
8d408b4b 999 BUG_ON(!static_size);
cafe8816 1000 if (unit_size >= 0) {
edcb4639 1001 BUG_ON(unit_size < static_size + reserved_size +
cafe8816
TH
1002 (dyn_size >= 0 ? dyn_size : 0));
1003 BUG_ON(unit_size & ~PAGE_MASK);
1004 } else {
1005 BUG_ON(dyn_size >= 0);
1006 BUG_ON(base_addr);
1007 }
8d408b4b 1008 BUG_ON(base_addr && populate_pte_fn);
fbf59bc9 1009
cafe8816 1010 if (unit_size >= 0)
8d408b4b
TH
1011 pcpu_unit_pages = unit_size >> PAGE_SHIFT;
1012 else
1013 pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT,
edcb4639 1014 PFN_UP(static_size + reserved_size));
8d408b4b 1015
d9b55eeb 1016 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
fbf59bc9 1017 pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size;
fbf59bc9 1018 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk)
cb83b42e 1019 + num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *);
fbf59bc9 1020
cafe8816 1021 if (dyn_size < 0)
edcb4639 1022 dyn_size = pcpu_unit_size - static_size - reserved_size;
cafe8816 1023
d9b55eeb
TH
1024 /*
1025 * Allocate chunk slots. The additional last slot is for
1026 * empty chunks.
1027 */
1028 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
fbf59bc9
TH
1029 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1030 for (i = 0; i < pcpu_nr_slots; i++)
1031 INIT_LIST_HEAD(&pcpu_slot[i]);
1032
edcb4639
TH
1033 /*
1034 * Initialize static chunk. If reserved_size is zero, the
1035 * static chunk covers static area + dynamic allocation area
1036 * in the first chunk. If reserved_size is not zero, it
1037 * covers static area + reserved area (mostly used for module
1038 * static percpu allocation).
1039 */
2441d15c
TH
1040 schunk = alloc_bootmem(pcpu_chunk_struct_size);
1041 INIT_LIST_HEAD(&schunk->list);
1042 schunk->vm = &first_vm;
61ace7fa
TH
1043 schunk->map = smap;
1044 schunk->map_alloc = ARRAY_SIZE(smap);
3e24aa58 1045 schunk->page = schunk->page_ar;
edcb4639
TH
1046
1047 if (reserved_size) {
1048 schunk->free_size = reserved_size;
1049 pcpu_reserved_chunk = schunk; /* not for dynamic alloc */
1050 } else {
1051 schunk->free_size = dyn_size;
1052 dyn_size = 0; /* dynamic area covered */
1053 }
2441d15c 1054 schunk->contig_hint = schunk->free_size;
fbf59bc9 1055
61ace7fa
TH
1056 schunk->map[schunk->map_used++] = -static_size;
1057 if (schunk->free_size)
1058 schunk->map[schunk->map_used++] = schunk->free_size;
1059
edcb4639
TH
1060 pcpu_reserved_chunk_limit = static_size + schunk->free_size;
1061
1062 /* init dynamic chunk if necessary */
1063 if (dyn_size) {
1064 dchunk = alloc_bootmem(sizeof(struct pcpu_chunk));
1065 INIT_LIST_HEAD(&dchunk->list);
1066 dchunk->vm = &first_vm;
1067 dchunk->map = dmap;
1068 dchunk->map_alloc = ARRAY_SIZE(dmap);
1069 dchunk->page = schunk->page_ar; /* share page map with schunk */
1070
1071 dchunk->contig_hint = dchunk->free_size = dyn_size;
1072 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1073 dchunk->map[dchunk->map_used++] = dchunk->free_size;
1074 }
1075
8d408b4b 1076 /* allocate vm address */
2441d15c
TH
1077 first_vm.flags = VM_ALLOC;
1078 first_vm.size = pcpu_chunk_size;
8d408b4b
TH
1079
1080 if (!base_addr)
2441d15c 1081 vm_area_register_early(&first_vm, PAGE_SIZE);
8d408b4b
TH
1082 else {
1083 /*
1084 * Pages already mapped. No need to remap into
edcb4639
TH
1085 * vmalloc area. In this case the first chunks can't
1086 * be mapped or unmapped by percpu and are marked
8d408b4b
TH
1087 * immutable.
1088 */
2441d15c
TH
1089 first_vm.addr = base_addr;
1090 schunk->immutable = true;
edcb4639
TH
1091 if (dchunk)
1092 dchunk->immutable = true;
8d408b4b
TH
1093 }
1094
1095 /* assign pages */
1096 nr_pages = -1;
fbf59bc9 1097 for_each_possible_cpu(cpu) {
8d408b4b
TH
1098 for (i = 0; i < pcpu_unit_pages; i++) {
1099 struct page *page = get_page_fn(cpu, i);
1100
1101 if (!page)
1102 break;
2441d15c 1103 *pcpu_chunk_pagep(schunk, cpu, i) = page;
fbf59bc9 1104 }
8d408b4b 1105
61ace7fa 1106 BUG_ON(i < PFN_UP(static_size));
8d408b4b
TH
1107
1108 if (nr_pages < 0)
1109 nr_pages = i;
1110 else
1111 BUG_ON(nr_pages != i);
fbf59bc9
TH
1112 }
1113
8d408b4b
TH
1114 /* map them */
1115 if (populate_pte_fn) {
1116 for_each_possible_cpu(cpu)
1117 for (i = 0; i < nr_pages; i++)
2441d15c 1118 populate_pte_fn(pcpu_chunk_addr(schunk,
8d408b4b
TH
1119 cpu, i));
1120
2441d15c 1121 err = pcpu_map(schunk, 0, nr_pages);
8d408b4b
TH
1122 if (err)
1123 panic("failed to setup static percpu area, err=%d\n",
1124 err);
1125 }
fbf59bc9 1126
2441d15c 1127 /* link the first chunk in */
edcb4639
TH
1128 if (!dchunk) {
1129 pcpu_chunk_relocate(schunk, -1);
1130 pcpu_chunk_addr_insert(schunk);
1131 } else {
1132 pcpu_chunk_relocate(dchunk, -1);
1133 pcpu_chunk_addr_insert(dchunk);
1134 }
fbf59bc9
TH
1135
1136 /* we're done */
2441d15c 1137 pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0);
fbf59bc9
TH
1138 return pcpu_unit_size;
1139}