]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/percpu.c
percpu: don't put the first chunk in reverse-map rbtree
[net-next-2.6.git] / mm / percpu.c
CommitLineData
fbf59bc9
TH
1/*
2 * linux/mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each
11 * chunk is consisted of num_possible_cpus() units and the first chunk
12 * is used for static percpu variables in the kernel image (special
13 * boot time alloc/init handling necessary as these areas need to be
14 * brought up before allocation services are running). Unit grows as
15 * necessary and all units grow or shrink in unison. When a chunk is
16 * filled up, another chunk is allocated. ie. in vmalloc area
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring
26 * percpu base registers UNIT_SIZE apart.
27 *
28 * There are usually many small percpu allocations many of them as
29 * small as 4 bytes. The allocator organizes chunks into lists
30 * according to free size and tries to allocate from the fullest one.
31 * Each chunk keeps the maximum contiguous area size hint which is
32 * guaranteed to be eqaul to or larger than the maximum contiguous
33 * area in the chunk. This helps the allocator not to iterate the
34 * chunk maps unnecessarily.
35 *
36 * Allocation state in each chunk is kept using an array of integers
37 * on chunk->map. A positive value in the map represents a free
38 * region and negative allocated. Allocation inside a chunk is done
39 * by scanning this map sequentially and serving the first matching
40 * entry. This is mostly copied from the percpu_modalloc() allocator.
41 * Chunks are also linked into a rb tree to ease address to chunk
42 * mapping during free.
43 *
44 * To use this allocator, arch code should do the followings.
45 *
46 * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA
47 *
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
fbf59bc9 51 *
8d408b4b
TH
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
54 */
55
56#include <linux/bitmap.h>
57#include <linux/bootmem.h>
58#include <linux/list.h>
59#include <linux/mm.h>
60#include <linux/module.h>
61#include <linux/mutex.h>
62#include <linux/percpu.h>
63#include <linux/pfn.h>
64#include <linux/rbtree.h>
65#include <linux/slab.h>
ccea34b5 66#include <linux/spinlock.h>
fbf59bc9 67#include <linux/vmalloc.h>
a56dbddf 68#include <linux/workqueue.h>
fbf59bc9
TH
69
70#include <asm/cacheflush.h>
e0100983 71#include <asm/sections.h>
fbf59bc9
TH
72#include <asm/tlbflush.h>
73
fbf59bc9
TH
74#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
75#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
76
e0100983
TH
77/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
78#ifndef __addr_to_pcpu_ptr
79#define __addr_to_pcpu_ptr(addr) \
80 (void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr \
81 + (unsigned long)__per_cpu_start)
82#endif
83#ifndef __pcpu_ptr_to_addr
84#define __pcpu_ptr_to_addr(ptr) \
85 (void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr \
86 - (unsigned long)__per_cpu_start)
87#endif
88
fbf59bc9
TH
89struct pcpu_chunk {
90 struct list_head list; /* linked to pcpu_slot lists */
91 struct rb_node rb_node; /* key is chunk->vm->addr */
92 int free_size; /* free bytes in the chunk */
93 int contig_hint; /* max contiguous size hint */
94 struct vm_struct *vm; /* mapped vmalloc region */
95 int map_used; /* # of map entries used */
96 int map_alloc; /* # of map entries allocated */
97 int *map; /* allocation map */
8d408b4b 98 bool immutable; /* no [de]population allowed */
3e24aa58
TH
99 struct page **page; /* points to page array */
100 struct page *page_ar[]; /* #cpus * UNIT_PAGES */
fbf59bc9
TH
101};
102
40150d37
TH
103static int pcpu_unit_pages __read_mostly;
104static int pcpu_unit_size __read_mostly;
105static int pcpu_chunk_size __read_mostly;
106static int pcpu_nr_slots __read_mostly;
107static size_t pcpu_chunk_struct_size __read_mostly;
fbf59bc9
TH
108
109/* the address of the first chunk which starts with the kernel static area */
40150d37 110void *pcpu_base_addr __read_mostly;
fbf59bc9
TH
111EXPORT_SYMBOL_GPL(pcpu_base_addr);
112
ae9e6bc9
TH
113/*
114 * The first chunk which always exists. Note that unlike other
115 * chunks, this one can be allocated and mapped in several different
116 * ways and thus often doesn't live in the vmalloc area.
117 */
118static struct pcpu_chunk *pcpu_first_chunk;
119
120/*
121 * Optional reserved chunk. This chunk reserves part of the first
122 * chunk and serves it for reserved allocations. The amount of
123 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
124 * area doesn't exist, the following variables contain NULL and 0
125 * respectively.
126 */
edcb4639 127static struct pcpu_chunk *pcpu_reserved_chunk;
edcb4639
TH
128static int pcpu_reserved_chunk_limit;
129
fbf59bc9 130/*
ccea34b5
TH
131 * Synchronization rules.
132 *
133 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
134 * protects allocation/reclaim paths, chunks and chunk->page arrays.
135 * The latter is a spinlock and protects the index data structures -
136 * chunk slots, rbtree, chunks and area maps in chunks.
137 *
138 * During allocation, pcpu_alloc_mutex is kept locked all the time and
139 * pcpu_lock is grabbed and released as necessary. All actual memory
140 * allocations are done using GFP_KERNEL with pcpu_lock released.
141 *
142 * Free path accesses and alters only the index data structures, so it
143 * can be safely called from atomic context. When memory needs to be
144 * returned to the system, free path schedules reclaim_work which
145 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
146 * reclaimed, release both locks and frees the chunks. Note that it's
147 * necessary to grab both locks to remove a chunk from circulation as
148 * allocation path might be referencing the chunk with only
149 * pcpu_alloc_mutex locked.
fbf59bc9 150 */
ccea34b5
TH
151static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
152static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
fbf59bc9 153
40150d37 154static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
fbf59bc9
TH
155static struct rb_root pcpu_addr_root = RB_ROOT; /* chunks by address */
156
a56dbddf
TH
157/* reclaim work to release fully free chunks, scheduled from free path */
158static void pcpu_reclaim(struct work_struct *work);
159static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
160
d9b55eeb 161static int __pcpu_size_to_slot(int size)
fbf59bc9 162{
cae3aeb8 163 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
164 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
165}
166
d9b55eeb
TH
167static int pcpu_size_to_slot(int size)
168{
169 if (size == pcpu_unit_size)
170 return pcpu_nr_slots - 1;
171 return __pcpu_size_to_slot(size);
172}
173
fbf59bc9
TH
174static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
175{
176 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
177 return 0;
178
179 return pcpu_size_to_slot(chunk->free_size);
180}
181
182static int pcpu_page_idx(unsigned int cpu, int page_idx)
183{
d9b55eeb 184 return cpu * pcpu_unit_pages + page_idx;
fbf59bc9
TH
185}
186
187static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk,
188 unsigned int cpu, int page_idx)
189{
190 return &chunk->page[pcpu_page_idx(cpu, page_idx)];
191}
192
193static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
194 unsigned int cpu, int page_idx)
195{
196 return (unsigned long)chunk->vm->addr +
197 (pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT);
198}
199
200static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk,
201 int page_idx)
202{
203 return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL;
204}
205
206/**
1880d93b
TH
207 * pcpu_mem_alloc - allocate memory
208 * @size: bytes to allocate
fbf59bc9 209 *
1880d93b
TH
210 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
211 * kzalloc() is used; otherwise, vmalloc() is used. The returned
212 * memory is always zeroed.
fbf59bc9 213 *
ccea34b5
TH
214 * CONTEXT:
215 * Does GFP_KERNEL allocation.
216 *
fbf59bc9 217 * RETURNS:
1880d93b 218 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 219 */
1880d93b 220static void *pcpu_mem_alloc(size_t size)
fbf59bc9 221{
1880d93b
TH
222 if (size <= PAGE_SIZE)
223 return kzalloc(size, GFP_KERNEL);
224 else {
225 void *ptr = vmalloc(size);
226 if (ptr)
227 memset(ptr, 0, size);
228 return ptr;
229 }
230}
fbf59bc9 231
1880d93b
TH
232/**
233 * pcpu_mem_free - free memory
234 * @ptr: memory to free
235 * @size: size of the area
236 *
237 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
238 */
239static void pcpu_mem_free(void *ptr, size_t size)
240{
fbf59bc9 241 if (size <= PAGE_SIZE)
1880d93b 242 kfree(ptr);
fbf59bc9 243 else
1880d93b 244 vfree(ptr);
fbf59bc9
TH
245}
246
247/**
248 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
249 * @chunk: chunk of interest
250 * @oslot: the previous slot it was on
251 *
252 * This function is called after an allocation or free changed @chunk.
253 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
254 * moved to the slot. Note that the reserved chunk is never put on
255 * chunk slots.
ccea34b5
TH
256 *
257 * CONTEXT:
258 * pcpu_lock.
fbf59bc9
TH
259 */
260static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
261{
262 int nslot = pcpu_chunk_slot(chunk);
263
edcb4639 264 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
265 if (oslot < nslot)
266 list_move(&chunk->list, &pcpu_slot[nslot]);
267 else
268 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
269 }
270}
271
272static struct rb_node **pcpu_chunk_rb_search(void *addr,
273 struct rb_node **parentp)
274{
275 struct rb_node **p = &pcpu_addr_root.rb_node;
276 struct rb_node *parent = NULL;
277 struct pcpu_chunk *chunk;
278
279 while (*p) {
280 parent = *p;
281 chunk = rb_entry(parent, struct pcpu_chunk, rb_node);
282
283 if (addr < chunk->vm->addr)
284 p = &(*p)->rb_left;
285 else if (addr > chunk->vm->addr)
286 p = &(*p)->rb_right;
287 else
288 break;
289 }
290
291 if (parentp)
292 *parentp = parent;
293 return p;
294}
295
296/**
297 * pcpu_chunk_addr_search - search for chunk containing specified address
298 * @addr: address to search for
299 *
300 * Look for chunk which might contain @addr. More specifically, it
301 * searchs for the chunk with the highest start address which isn't
302 * beyond @addr.
303 *
ccea34b5
TH
304 * CONTEXT:
305 * pcpu_lock.
306 *
fbf59bc9
TH
307 * RETURNS:
308 * The address of the found chunk.
309 */
310static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
311{
ae9e6bc9 312 void *first_start = pcpu_first_chunk->vm->addr;
fbf59bc9
TH
313 struct rb_node *n, *parent;
314 struct pcpu_chunk *chunk;
315
ae9e6bc9
TH
316 /* is it in the first chunk? */
317 if (addr >= first_start && addr < first_start + pcpu_chunk_size) {
318 /* is it in the reserved area? */
319 if (addr < first_start + pcpu_reserved_chunk_limit)
edcb4639 320 return pcpu_reserved_chunk;
ae9e6bc9 321 return pcpu_first_chunk;
edcb4639
TH
322 }
323
324 /* nah... search the regular ones */
fbf59bc9
TH
325 n = *pcpu_chunk_rb_search(addr, &parent);
326 if (!n) {
327 /* no exactly matching chunk, the parent is the closest */
328 n = parent;
329 BUG_ON(!n);
330 }
331 chunk = rb_entry(n, struct pcpu_chunk, rb_node);
332
333 if (addr < chunk->vm->addr) {
334 /* the parent was the next one, look for the previous one */
335 n = rb_prev(n);
336 BUG_ON(!n);
337 chunk = rb_entry(n, struct pcpu_chunk, rb_node);
338 }
339
340 return chunk;
341}
342
343/**
344 * pcpu_chunk_addr_insert - insert chunk into address rb tree
345 * @new: chunk to insert
346 *
347 * Insert @new into address rb tree.
ccea34b5
TH
348 *
349 * CONTEXT:
350 * pcpu_lock.
fbf59bc9
TH
351 */
352static void pcpu_chunk_addr_insert(struct pcpu_chunk *new)
353{
354 struct rb_node **p, *parent;
355
356 p = pcpu_chunk_rb_search(new->vm->addr, &parent);
357 BUG_ON(*p);
358 rb_link_node(&new->rb_node, parent, p);
359 rb_insert_color(&new->rb_node, &pcpu_addr_root);
360}
361
9f7dcf22
TH
362/**
363 * pcpu_extend_area_map - extend area map for allocation
364 * @chunk: target chunk
365 *
366 * Extend area map of @chunk so that it can accomodate an allocation.
367 * A single allocation can split an area into three areas, so this
368 * function makes sure that @chunk->map has at least two extra slots.
369 *
ccea34b5
TH
370 * CONTEXT:
371 * pcpu_alloc_mutex, pcpu_lock. pcpu_lock is released and reacquired
372 * if area map is extended.
373 *
9f7dcf22
TH
374 * RETURNS:
375 * 0 if noop, 1 if successfully extended, -errno on failure.
376 */
377static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
378{
379 int new_alloc;
380 int *new;
381 size_t size;
382
383 /* has enough? */
384 if (chunk->map_alloc >= chunk->map_used + 2)
385 return 0;
386
ccea34b5
TH
387 spin_unlock_irq(&pcpu_lock);
388
9f7dcf22
TH
389 new_alloc = PCPU_DFL_MAP_ALLOC;
390 while (new_alloc < chunk->map_used + 2)
391 new_alloc *= 2;
392
393 new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
ccea34b5
TH
394 if (!new) {
395 spin_lock_irq(&pcpu_lock);
9f7dcf22 396 return -ENOMEM;
ccea34b5
TH
397 }
398
399 /*
400 * Acquire pcpu_lock and switch to new area map. Only free
401 * could have happened inbetween, so map_used couldn't have
402 * grown.
403 */
404 spin_lock_irq(&pcpu_lock);
405 BUG_ON(new_alloc < chunk->map_used + 2);
9f7dcf22
TH
406
407 size = chunk->map_alloc * sizeof(chunk->map[0]);
408 memcpy(new, chunk->map, size);
409
410 /*
411 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
412 * one of the first chunks and still using static map.
413 */
414 if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
415 pcpu_mem_free(chunk->map, size);
416
417 chunk->map_alloc = new_alloc;
418 chunk->map = new;
419 return 0;
420}
421
fbf59bc9
TH
422/**
423 * pcpu_split_block - split a map block
424 * @chunk: chunk of interest
425 * @i: index of map block to split
cae3aeb8
TH
426 * @head: head size in bytes (can be 0)
427 * @tail: tail size in bytes (can be 0)
fbf59bc9
TH
428 *
429 * Split the @i'th map block into two or three blocks. If @head is
430 * non-zero, @head bytes block is inserted before block @i moving it
431 * to @i+1 and reducing its size by @head bytes.
432 *
433 * If @tail is non-zero, the target block, which can be @i or @i+1
434 * depending on @head, is reduced by @tail bytes and @tail byte block
435 * is inserted after the target block.
436 *
9f7dcf22 437 * @chunk->map must have enough free slots to accomodate the split.
ccea34b5
TH
438 *
439 * CONTEXT:
440 * pcpu_lock.
fbf59bc9 441 */
9f7dcf22
TH
442static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
443 int head, int tail)
fbf59bc9
TH
444{
445 int nr_extra = !!head + !!tail;
1880d93b 446
9f7dcf22 447 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
fbf59bc9 448
9f7dcf22 449 /* insert new subblocks */
fbf59bc9
TH
450 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
451 sizeof(chunk->map[0]) * (chunk->map_used - i));
452 chunk->map_used += nr_extra;
453
454 if (head) {
455 chunk->map[i + 1] = chunk->map[i] - head;
456 chunk->map[i++] = head;
457 }
458 if (tail) {
459 chunk->map[i++] -= tail;
460 chunk->map[i] = tail;
461 }
fbf59bc9
TH
462}
463
464/**
465 * pcpu_alloc_area - allocate area from a pcpu_chunk
466 * @chunk: chunk of interest
cae3aeb8 467 * @size: wanted size in bytes
fbf59bc9
TH
468 * @align: wanted align
469 *
470 * Try to allocate @size bytes area aligned at @align from @chunk.
471 * Note that this function only allocates the offset. It doesn't
472 * populate or map the area.
473 *
9f7dcf22
TH
474 * @chunk->map must have at least two free slots.
475 *
ccea34b5
TH
476 * CONTEXT:
477 * pcpu_lock.
478 *
fbf59bc9 479 * RETURNS:
9f7dcf22
TH
480 * Allocated offset in @chunk on success, -1 if no matching area is
481 * found.
fbf59bc9
TH
482 */
483static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
484{
485 int oslot = pcpu_chunk_slot(chunk);
486 int max_contig = 0;
487 int i, off;
488
fbf59bc9
TH
489 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
490 bool is_last = i + 1 == chunk->map_used;
491 int head, tail;
492
493 /* extra for alignment requirement */
494 head = ALIGN(off, align) - off;
495 BUG_ON(i == 0 && head != 0);
496
497 if (chunk->map[i] < 0)
498 continue;
499 if (chunk->map[i] < head + size) {
500 max_contig = max(chunk->map[i], max_contig);
501 continue;
502 }
503
504 /*
505 * If head is small or the previous block is free,
506 * merge'em. Note that 'small' is defined as smaller
507 * than sizeof(int), which is very small but isn't too
508 * uncommon for percpu allocations.
509 */
510 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
511 if (chunk->map[i - 1] > 0)
512 chunk->map[i - 1] += head;
513 else {
514 chunk->map[i - 1] -= head;
515 chunk->free_size -= head;
516 }
517 chunk->map[i] -= head;
518 off += head;
519 head = 0;
520 }
521
522 /* if tail is small, just keep it around */
523 tail = chunk->map[i] - head - size;
524 if (tail < sizeof(int))
525 tail = 0;
526
527 /* split if warranted */
528 if (head || tail) {
9f7dcf22 529 pcpu_split_block(chunk, i, head, tail);
fbf59bc9
TH
530 if (head) {
531 i++;
532 off += head;
533 max_contig = max(chunk->map[i - 1], max_contig);
534 }
535 if (tail)
536 max_contig = max(chunk->map[i + 1], max_contig);
537 }
538
539 /* update hint and mark allocated */
540 if (is_last)
541 chunk->contig_hint = max_contig; /* fully scanned */
542 else
543 chunk->contig_hint = max(chunk->contig_hint,
544 max_contig);
545
546 chunk->free_size -= chunk->map[i];
547 chunk->map[i] = -chunk->map[i];
548
549 pcpu_chunk_relocate(chunk, oslot);
550 return off;
551 }
552
553 chunk->contig_hint = max_contig; /* fully scanned */
554 pcpu_chunk_relocate(chunk, oslot);
555
9f7dcf22
TH
556 /* tell the upper layer that this chunk has no matching area */
557 return -1;
fbf59bc9
TH
558}
559
560/**
561 * pcpu_free_area - free area to a pcpu_chunk
562 * @chunk: chunk of interest
563 * @freeme: offset of area to free
564 *
565 * Free area starting from @freeme to @chunk. Note that this function
566 * only modifies the allocation map. It doesn't depopulate or unmap
567 * the area.
ccea34b5
TH
568 *
569 * CONTEXT:
570 * pcpu_lock.
fbf59bc9
TH
571 */
572static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
573{
574 int oslot = pcpu_chunk_slot(chunk);
575 int i, off;
576
577 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
578 if (off == freeme)
579 break;
580 BUG_ON(off != freeme);
581 BUG_ON(chunk->map[i] > 0);
582
583 chunk->map[i] = -chunk->map[i];
584 chunk->free_size += chunk->map[i];
585
586 /* merge with previous? */
587 if (i > 0 && chunk->map[i - 1] >= 0) {
588 chunk->map[i - 1] += chunk->map[i];
589 chunk->map_used--;
590 memmove(&chunk->map[i], &chunk->map[i + 1],
591 (chunk->map_used - i) * sizeof(chunk->map[0]));
592 i--;
593 }
594 /* merge with next? */
595 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
596 chunk->map[i] += chunk->map[i + 1];
597 chunk->map_used--;
598 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
599 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
600 }
601
602 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
603 pcpu_chunk_relocate(chunk, oslot);
604}
605
606/**
607 * pcpu_unmap - unmap pages out of a pcpu_chunk
608 * @chunk: chunk of interest
609 * @page_start: page index of the first page to unmap
610 * @page_end: page index of the last page to unmap + 1
611 * @flush: whether to flush cache and tlb or not
612 *
613 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
614 * If @flush is true, vcache is flushed before unmapping and tlb
615 * after.
616 */
617static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end,
618 bool flush)
619{
620 unsigned int last = num_possible_cpus() - 1;
621 unsigned int cpu;
622
8d408b4b
TH
623 /* unmap must not be done on immutable chunk */
624 WARN_ON(chunk->immutable);
625
fbf59bc9
TH
626 /*
627 * Each flushing trial can be very expensive, issue flush on
628 * the whole region at once rather than doing it for each cpu.
629 * This could be an overkill but is more scalable.
630 */
631 if (flush)
632 flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start),
633 pcpu_chunk_addr(chunk, last, page_end));
634
635 for_each_possible_cpu(cpu)
636 unmap_kernel_range_noflush(
637 pcpu_chunk_addr(chunk, cpu, page_start),
638 (page_end - page_start) << PAGE_SHIFT);
639
640 /* ditto as flush_cache_vunmap() */
641 if (flush)
642 flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start),
643 pcpu_chunk_addr(chunk, last, page_end));
644}
645
646/**
647 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
648 * @chunk: chunk to depopulate
649 * @off: offset to the area to depopulate
cae3aeb8 650 * @size: size of the area to depopulate in bytes
fbf59bc9
TH
651 * @flush: whether to flush cache and tlb or not
652 *
653 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
654 * from @chunk. If @flush is true, vcache is flushed before unmapping
655 * and tlb after.
ccea34b5
TH
656 *
657 * CONTEXT:
658 * pcpu_alloc_mutex.
fbf59bc9 659 */
cae3aeb8
TH
660static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size,
661 bool flush)
fbf59bc9
TH
662{
663 int page_start = PFN_DOWN(off);
664 int page_end = PFN_UP(off + size);
665 int unmap_start = -1;
666 int uninitialized_var(unmap_end);
667 unsigned int cpu;
668 int i;
669
670 for (i = page_start; i < page_end; i++) {
671 for_each_possible_cpu(cpu) {
672 struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
673
674 if (!*pagep)
675 continue;
676
677 __free_page(*pagep);
678
679 /*
680 * If it's partial depopulation, it might get
681 * populated or depopulated again. Mark the
682 * page gone.
683 */
684 *pagep = NULL;
685
686 unmap_start = unmap_start < 0 ? i : unmap_start;
687 unmap_end = i + 1;
688 }
689 }
690
691 if (unmap_start >= 0)
692 pcpu_unmap(chunk, unmap_start, unmap_end, flush);
693}
694
695/**
696 * pcpu_map - map pages into a pcpu_chunk
697 * @chunk: chunk of interest
698 * @page_start: page index of the first page to map
699 * @page_end: page index of the last page to map + 1
700 *
701 * For each cpu, map pages [@page_start,@page_end) into @chunk.
702 * vcache is flushed afterwards.
703 */
704static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end)
705{
706 unsigned int last = num_possible_cpus() - 1;
707 unsigned int cpu;
708 int err;
709
8d408b4b
TH
710 /* map must not be done on immutable chunk */
711 WARN_ON(chunk->immutable);
712
fbf59bc9
TH
713 for_each_possible_cpu(cpu) {
714 err = map_kernel_range_noflush(
715 pcpu_chunk_addr(chunk, cpu, page_start),
716 (page_end - page_start) << PAGE_SHIFT,
717 PAGE_KERNEL,
718 pcpu_chunk_pagep(chunk, cpu, page_start));
719 if (err < 0)
720 return err;
721 }
722
723 /* flush at once, please read comments in pcpu_unmap() */
724 flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start),
725 pcpu_chunk_addr(chunk, last, page_end));
726 return 0;
727}
728
729/**
730 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
731 * @chunk: chunk of interest
732 * @off: offset to the area to populate
cae3aeb8 733 * @size: size of the area to populate in bytes
fbf59bc9
TH
734 *
735 * For each cpu, populate and map pages [@page_start,@page_end) into
736 * @chunk. The area is cleared on return.
ccea34b5
TH
737 *
738 * CONTEXT:
739 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
fbf59bc9
TH
740 */
741static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
742{
743 const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
744 int page_start = PFN_DOWN(off);
745 int page_end = PFN_UP(off + size);
746 int map_start = -1;
02d51fdf 747 int uninitialized_var(map_end);
fbf59bc9
TH
748 unsigned int cpu;
749 int i;
750
751 for (i = page_start; i < page_end; i++) {
752 if (pcpu_chunk_page_occupied(chunk, i)) {
753 if (map_start >= 0) {
754 if (pcpu_map(chunk, map_start, map_end))
755 goto err;
756 map_start = -1;
757 }
758 continue;
759 }
760
761 map_start = map_start < 0 ? i : map_start;
762 map_end = i + 1;
763
764 for_each_possible_cpu(cpu) {
765 struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
766
767 *pagep = alloc_pages_node(cpu_to_node(cpu),
768 alloc_mask, 0);
769 if (!*pagep)
770 goto err;
771 }
772 }
773
774 if (map_start >= 0 && pcpu_map(chunk, map_start, map_end))
775 goto err;
776
777 for_each_possible_cpu(cpu)
d9b55eeb 778 memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0,
fbf59bc9
TH
779 size);
780
781 return 0;
782err:
783 /* likely under heavy memory pressure, give memory back */
784 pcpu_depopulate_chunk(chunk, off, size, true);
785 return -ENOMEM;
786}
787
788static void free_pcpu_chunk(struct pcpu_chunk *chunk)
789{
790 if (!chunk)
791 return;
792 if (chunk->vm)
793 free_vm_area(chunk->vm);
1880d93b 794 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
fbf59bc9
TH
795 kfree(chunk);
796}
797
798static struct pcpu_chunk *alloc_pcpu_chunk(void)
799{
800 struct pcpu_chunk *chunk;
801
802 chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
803 if (!chunk)
804 return NULL;
805
1880d93b 806 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
fbf59bc9
TH
807 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
808 chunk->map[chunk->map_used++] = pcpu_unit_size;
3e24aa58 809 chunk->page = chunk->page_ar;
fbf59bc9
TH
810
811 chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL);
812 if (!chunk->vm) {
813 free_pcpu_chunk(chunk);
814 return NULL;
815 }
816
817 INIT_LIST_HEAD(&chunk->list);
818 chunk->free_size = pcpu_unit_size;
819 chunk->contig_hint = pcpu_unit_size;
820
821 return chunk;
822}
823
824/**
edcb4639 825 * pcpu_alloc - the percpu allocator
cae3aeb8 826 * @size: size of area to allocate in bytes
fbf59bc9 827 * @align: alignment of area (max PAGE_SIZE)
edcb4639 828 * @reserved: allocate from the reserved chunk if available
fbf59bc9 829 *
ccea34b5
TH
830 * Allocate percpu area of @size bytes aligned at @align.
831 *
832 * CONTEXT:
833 * Does GFP_KERNEL allocation.
fbf59bc9
TH
834 *
835 * RETURNS:
836 * Percpu pointer to the allocated area on success, NULL on failure.
837 */
edcb4639 838static void *pcpu_alloc(size_t size, size_t align, bool reserved)
fbf59bc9 839{
fbf59bc9
TH
840 struct pcpu_chunk *chunk;
841 int slot, off;
842
8d408b4b 843 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
fbf59bc9
TH
844 WARN(true, "illegal size (%zu) or align (%zu) for "
845 "percpu allocation\n", size, align);
846 return NULL;
847 }
848
ccea34b5
TH
849 mutex_lock(&pcpu_alloc_mutex);
850 spin_lock_irq(&pcpu_lock);
fbf59bc9 851
edcb4639
TH
852 /* serve reserved allocations from the reserved chunk if available */
853 if (reserved && pcpu_reserved_chunk) {
854 chunk = pcpu_reserved_chunk;
9f7dcf22
TH
855 if (size > chunk->contig_hint ||
856 pcpu_extend_area_map(chunk) < 0)
ccea34b5 857 goto fail_unlock;
edcb4639
TH
858 off = pcpu_alloc_area(chunk, size, align);
859 if (off >= 0)
860 goto area_found;
ccea34b5 861 goto fail_unlock;
edcb4639
TH
862 }
863
ccea34b5 864restart:
edcb4639 865 /* search through normal chunks */
fbf59bc9
TH
866 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
867 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
868 if (size > chunk->contig_hint)
869 continue;
ccea34b5
TH
870
871 switch (pcpu_extend_area_map(chunk)) {
872 case 0:
873 break;
874 case 1:
875 goto restart; /* pcpu_lock dropped, restart */
876 default:
877 goto fail_unlock;
878 }
879
fbf59bc9
TH
880 off = pcpu_alloc_area(chunk, size, align);
881 if (off >= 0)
882 goto area_found;
fbf59bc9
TH
883 }
884 }
885
886 /* hmmm... no space left, create a new chunk */
ccea34b5
TH
887 spin_unlock_irq(&pcpu_lock);
888
fbf59bc9
TH
889 chunk = alloc_pcpu_chunk();
890 if (!chunk)
ccea34b5
TH
891 goto fail_unlock_mutex;
892
893 spin_lock_irq(&pcpu_lock);
fbf59bc9
TH
894 pcpu_chunk_relocate(chunk, -1);
895 pcpu_chunk_addr_insert(chunk);
ccea34b5 896 goto restart;
fbf59bc9
TH
897
898area_found:
ccea34b5
TH
899 spin_unlock_irq(&pcpu_lock);
900
fbf59bc9
TH
901 /* populate, map and clear the area */
902 if (pcpu_populate_chunk(chunk, off, size)) {
ccea34b5 903 spin_lock_irq(&pcpu_lock);
fbf59bc9 904 pcpu_free_area(chunk, off);
ccea34b5 905 goto fail_unlock;
fbf59bc9
TH
906 }
907
ccea34b5
TH
908 mutex_unlock(&pcpu_alloc_mutex);
909
910 return __addr_to_pcpu_ptr(chunk->vm->addr + off);
911
912fail_unlock:
913 spin_unlock_irq(&pcpu_lock);
914fail_unlock_mutex:
915 mutex_unlock(&pcpu_alloc_mutex);
916 return NULL;
fbf59bc9 917}
edcb4639
TH
918
919/**
920 * __alloc_percpu - allocate dynamic percpu area
921 * @size: size of area to allocate in bytes
922 * @align: alignment of area (max PAGE_SIZE)
923 *
924 * Allocate percpu area of @size bytes aligned at @align. Might
925 * sleep. Might trigger writeouts.
926 *
ccea34b5
TH
927 * CONTEXT:
928 * Does GFP_KERNEL allocation.
929 *
edcb4639
TH
930 * RETURNS:
931 * Percpu pointer to the allocated area on success, NULL on failure.
932 */
933void *__alloc_percpu(size_t size, size_t align)
934{
935 return pcpu_alloc(size, align, false);
936}
fbf59bc9
TH
937EXPORT_SYMBOL_GPL(__alloc_percpu);
938
edcb4639
TH
939/**
940 * __alloc_reserved_percpu - allocate reserved percpu area
941 * @size: size of area to allocate in bytes
942 * @align: alignment of area (max PAGE_SIZE)
943 *
944 * Allocate percpu area of @size bytes aligned at @align from reserved
945 * percpu area if arch has set it up; otherwise, allocation is served
946 * from the same dynamic area. Might sleep. Might trigger writeouts.
947 *
ccea34b5
TH
948 * CONTEXT:
949 * Does GFP_KERNEL allocation.
950 *
edcb4639
TH
951 * RETURNS:
952 * Percpu pointer to the allocated area on success, NULL on failure.
953 */
954void *__alloc_reserved_percpu(size_t size, size_t align)
955{
956 return pcpu_alloc(size, align, true);
957}
958
a56dbddf
TH
959/**
960 * pcpu_reclaim - reclaim fully free chunks, workqueue function
961 * @work: unused
962 *
963 * Reclaim all fully free chunks except for the first one.
ccea34b5
TH
964 *
965 * CONTEXT:
966 * workqueue context.
a56dbddf
TH
967 */
968static void pcpu_reclaim(struct work_struct *work)
fbf59bc9 969{
a56dbddf
TH
970 LIST_HEAD(todo);
971 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
972 struct pcpu_chunk *chunk, *next;
973
ccea34b5
TH
974 mutex_lock(&pcpu_alloc_mutex);
975 spin_lock_irq(&pcpu_lock);
a56dbddf
TH
976
977 list_for_each_entry_safe(chunk, next, head, list) {
978 WARN_ON(chunk->immutable);
979
980 /* spare the first one */
981 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
982 continue;
983
984 rb_erase(&chunk->rb_node, &pcpu_addr_root);
985 list_move(&chunk->list, &todo);
986 }
987
ccea34b5
TH
988 spin_unlock_irq(&pcpu_lock);
989 mutex_unlock(&pcpu_alloc_mutex);
a56dbddf
TH
990
991 list_for_each_entry_safe(chunk, next, &todo, list) {
992 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false);
993 free_pcpu_chunk(chunk);
994 }
fbf59bc9
TH
995}
996
997/**
998 * free_percpu - free percpu area
999 * @ptr: pointer to area to free
1000 *
ccea34b5
TH
1001 * Free percpu area @ptr.
1002 *
1003 * CONTEXT:
1004 * Can be called from atomic context.
fbf59bc9
TH
1005 */
1006void free_percpu(void *ptr)
1007{
1008 void *addr = __pcpu_ptr_to_addr(ptr);
1009 struct pcpu_chunk *chunk;
ccea34b5 1010 unsigned long flags;
fbf59bc9
TH
1011 int off;
1012
1013 if (!ptr)
1014 return;
1015
ccea34b5 1016 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
1017
1018 chunk = pcpu_chunk_addr_search(addr);
1019 off = addr - chunk->vm->addr;
1020
1021 pcpu_free_area(chunk, off);
1022
a56dbddf 1023 /* if there are more than one fully free chunks, wake up grim reaper */
fbf59bc9
TH
1024 if (chunk->free_size == pcpu_unit_size) {
1025 struct pcpu_chunk *pos;
1026
a56dbddf 1027 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 1028 if (pos != chunk) {
a56dbddf 1029 schedule_work(&pcpu_reclaim_work);
fbf59bc9
TH
1030 break;
1031 }
1032 }
1033
ccea34b5 1034 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
1035}
1036EXPORT_SYMBOL_GPL(free_percpu);
1037
1038/**
8d408b4b
TH
1039 * pcpu_setup_first_chunk - initialize the first percpu chunk
1040 * @get_page_fn: callback to fetch page pointer
1041 * @static_size: the size of static percpu area in bytes
edcb4639 1042 * @reserved_size: the size of reserved percpu area in bytes
cafe8816 1043 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
6074d5b0 1044 * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto
8d408b4b
TH
1045 * @base_addr: mapped address, NULL for auto
1046 * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary
1047 *
1048 * Initialize the first percpu chunk which contains the kernel static
1049 * perpcu area. This function is to be called from arch percpu area
1050 * setup path. The first two parameters are mandatory. The rest are
1051 * optional.
1052 *
1053 * @get_page_fn() should return pointer to percpu page given cpu
1054 * number and page number. It should at least return enough pages to
1055 * cover the static area. The returned pages for static area should
1056 * have been initialized with valid data. If @unit_size is specified,
1057 * it can also return pages after the static area. NULL return
1058 * indicates end of pages for the cpu. Note that @get_page_fn() must
1059 * return the same number of pages for all cpus.
1060 *
edcb4639
TH
1061 * @reserved_size, if non-zero, specifies the amount of bytes to
1062 * reserve after the static area in the first chunk. This reserves
1063 * the first chunk such that it's available only through reserved
1064 * percpu allocation. This is primarily used to serve module percpu
1065 * static areas on architectures where the addressing model has
1066 * limited offset range for symbol relocations to guarantee module
1067 * percpu symbols fall inside the relocatable range.
1068 *
6074d5b0
TH
1069 * @dyn_size, if non-negative, determines the number of bytes
1070 * available for dynamic allocation in the first chunk. Specifying
1071 * non-negative value makes percpu leave alone the area beyond
1072 * @static_size + @reserved_size + @dyn_size.
1073 *
cafe8816
TH
1074 * @unit_size, if non-negative, specifies unit size and must be
1075 * aligned to PAGE_SIZE and equal to or larger than @static_size +
6074d5b0 1076 * @reserved_size + if non-negative, @dyn_size.
8d408b4b
TH
1077 *
1078 * Non-null @base_addr means that the caller already allocated virtual
1079 * region for the first chunk and mapped it. percpu must not mess
1080 * with the chunk. Note that @base_addr with 0 @unit_size or non-NULL
1081 * @populate_pte_fn doesn't make any sense.
1082 *
1083 * @populate_pte_fn is used to populate the pagetable. NULL means the
1084 * caller already populated the pagetable.
fbf59bc9 1085 *
edcb4639
TH
1086 * If the first chunk ends up with both reserved and dynamic areas, it
1087 * is served by two chunks - one to serve the core static and reserved
1088 * areas and the other for the dynamic area. They share the same vm
1089 * and page map but uses different area allocation map to stay away
1090 * from each other. The latter chunk is circulated in the chunk slots
1091 * and available for dynamic allocation like any other chunks.
1092 *
fbf59bc9
TH
1093 * RETURNS:
1094 * The determined pcpu_unit_size which can be used to initialize
1095 * percpu access.
1096 */
8d408b4b 1097size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
edcb4639 1098 size_t static_size, size_t reserved_size,
6074d5b0 1099 ssize_t dyn_size, ssize_t unit_size,
cafe8816 1100 void *base_addr,
8d408b4b 1101 pcpu_populate_pte_fn_t populate_pte_fn)
fbf59bc9 1102{
2441d15c 1103 static struct vm_struct first_vm;
edcb4639 1104 static int smap[2], dmap[2];
6074d5b0
TH
1105 size_t size_sum = static_size + reserved_size +
1106 (dyn_size >= 0 ? dyn_size : 0);
edcb4639 1107 struct pcpu_chunk *schunk, *dchunk = NULL;
fbf59bc9 1108 unsigned int cpu;
8d408b4b 1109 int nr_pages;
fbf59bc9
TH
1110 int err, i;
1111
8d408b4b 1112 /* santiy checks */
edcb4639
TH
1113 BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
1114 ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
8d408b4b 1115 BUG_ON(!static_size);
cafe8816 1116 if (unit_size >= 0) {
6074d5b0 1117 BUG_ON(unit_size < size_sum);
cafe8816 1118 BUG_ON(unit_size & ~PAGE_MASK);
6074d5b0
TH
1119 BUG_ON(unit_size < PCPU_MIN_UNIT_SIZE);
1120 } else
cafe8816 1121 BUG_ON(base_addr);
8d408b4b 1122 BUG_ON(base_addr && populate_pte_fn);
fbf59bc9 1123
cafe8816 1124 if (unit_size >= 0)
8d408b4b
TH
1125 pcpu_unit_pages = unit_size >> PAGE_SHIFT;
1126 else
1127 pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT,
6074d5b0 1128 PFN_UP(size_sum));
8d408b4b 1129
d9b55eeb 1130 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
fbf59bc9 1131 pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size;
fbf59bc9 1132 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk)
cb83b42e 1133 + num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *);
fbf59bc9 1134
cafe8816 1135 if (dyn_size < 0)
edcb4639 1136 dyn_size = pcpu_unit_size - static_size - reserved_size;
cafe8816 1137
d9b55eeb
TH
1138 /*
1139 * Allocate chunk slots. The additional last slot is for
1140 * empty chunks.
1141 */
1142 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
fbf59bc9
TH
1143 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1144 for (i = 0; i < pcpu_nr_slots; i++)
1145 INIT_LIST_HEAD(&pcpu_slot[i]);
1146
edcb4639
TH
1147 /*
1148 * Initialize static chunk. If reserved_size is zero, the
1149 * static chunk covers static area + dynamic allocation area
1150 * in the first chunk. If reserved_size is not zero, it
1151 * covers static area + reserved area (mostly used for module
1152 * static percpu allocation).
1153 */
2441d15c
TH
1154 schunk = alloc_bootmem(pcpu_chunk_struct_size);
1155 INIT_LIST_HEAD(&schunk->list);
1156 schunk->vm = &first_vm;
61ace7fa
TH
1157 schunk->map = smap;
1158 schunk->map_alloc = ARRAY_SIZE(smap);
3e24aa58 1159 schunk->page = schunk->page_ar;
edcb4639
TH
1160
1161 if (reserved_size) {
1162 schunk->free_size = reserved_size;
ae9e6bc9
TH
1163 pcpu_reserved_chunk = schunk;
1164 pcpu_reserved_chunk_limit = static_size + reserved_size;
edcb4639
TH
1165 } else {
1166 schunk->free_size = dyn_size;
1167 dyn_size = 0; /* dynamic area covered */
1168 }
2441d15c 1169 schunk->contig_hint = schunk->free_size;
fbf59bc9 1170
61ace7fa
TH
1171 schunk->map[schunk->map_used++] = -static_size;
1172 if (schunk->free_size)
1173 schunk->map[schunk->map_used++] = schunk->free_size;
1174
edcb4639
TH
1175 /* init dynamic chunk if necessary */
1176 if (dyn_size) {
1177 dchunk = alloc_bootmem(sizeof(struct pcpu_chunk));
1178 INIT_LIST_HEAD(&dchunk->list);
1179 dchunk->vm = &first_vm;
1180 dchunk->map = dmap;
1181 dchunk->map_alloc = ARRAY_SIZE(dmap);
1182 dchunk->page = schunk->page_ar; /* share page map with schunk */
1183
1184 dchunk->contig_hint = dchunk->free_size = dyn_size;
1185 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1186 dchunk->map[dchunk->map_used++] = dchunk->free_size;
1187 }
1188
8d408b4b 1189 /* allocate vm address */
2441d15c
TH
1190 first_vm.flags = VM_ALLOC;
1191 first_vm.size = pcpu_chunk_size;
8d408b4b
TH
1192
1193 if (!base_addr)
2441d15c 1194 vm_area_register_early(&first_vm, PAGE_SIZE);
8d408b4b
TH
1195 else {
1196 /*
1197 * Pages already mapped. No need to remap into
edcb4639
TH
1198 * vmalloc area. In this case the first chunks can't
1199 * be mapped or unmapped by percpu and are marked
8d408b4b
TH
1200 * immutable.
1201 */
2441d15c
TH
1202 first_vm.addr = base_addr;
1203 schunk->immutable = true;
edcb4639
TH
1204 if (dchunk)
1205 dchunk->immutable = true;
8d408b4b
TH
1206 }
1207
1208 /* assign pages */
1209 nr_pages = -1;
fbf59bc9 1210 for_each_possible_cpu(cpu) {
8d408b4b
TH
1211 for (i = 0; i < pcpu_unit_pages; i++) {
1212 struct page *page = get_page_fn(cpu, i);
1213
1214 if (!page)
1215 break;
2441d15c 1216 *pcpu_chunk_pagep(schunk, cpu, i) = page;
fbf59bc9 1217 }
8d408b4b 1218
61ace7fa 1219 BUG_ON(i < PFN_UP(static_size));
8d408b4b
TH
1220
1221 if (nr_pages < 0)
1222 nr_pages = i;
1223 else
1224 BUG_ON(nr_pages != i);
fbf59bc9
TH
1225 }
1226
8d408b4b
TH
1227 /* map them */
1228 if (populate_pte_fn) {
1229 for_each_possible_cpu(cpu)
1230 for (i = 0; i < nr_pages; i++)
2441d15c 1231 populate_pte_fn(pcpu_chunk_addr(schunk,
8d408b4b
TH
1232 cpu, i));
1233
2441d15c 1234 err = pcpu_map(schunk, 0, nr_pages);
8d408b4b
TH
1235 if (err)
1236 panic("failed to setup static percpu area, err=%d\n",
1237 err);
1238 }
fbf59bc9 1239
2441d15c 1240 /* link the first chunk in */
ae9e6bc9
TH
1241 pcpu_first_chunk = dchunk ?: schunk;
1242 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9
TH
1243
1244 /* we're done */
2441d15c 1245 pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0);
fbf59bc9
TH
1246 return pcpu_unit_size;
1247}
66c3a757
TH
1248
1249/*
1250 * Embedding first chunk setup helper.
1251 */
1252static void *pcpue_ptr __initdata;
1253static size_t pcpue_size __initdata;
1254static size_t pcpue_unit_size __initdata;
1255
1256static struct page * __init pcpue_get_page(unsigned int cpu, int pageno)
1257{
1258 size_t off = (size_t)pageno << PAGE_SHIFT;
1259
1260 if (off >= pcpue_size)
1261 return NULL;
1262
1263 return virt_to_page(pcpue_ptr + cpu * pcpue_unit_size + off);
1264}
1265
1266/**
1267 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1268 * @static_size: the size of static percpu area in bytes
1269 * @reserved_size: the size of reserved percpu area in bytes
1270 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1271 * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto
1272 *
1273 * This is a helper to ease setting up embedded first percpu chunk and
1274 * can be called where pcpu_setup_first_chunk() is expected.
1275 *
1276 * If this function is used to setup the first chunk, it is allocated
1277 * as a contiguous area using bootmem allocator and used as-is without
1278 * being mapped into vmalloc area. This enables the first chunk to
1279 * piggy back on the linear physical mapping which often uses larger
1280 * page size.
1281 *
1282 * When @dyn_size is positive, dynamic area might be larger than
1283 * specified to fill page alignment. Also, when @dyn_size is auto,
1284 * @dyn_size does not fill the whole first chunk but only what's
1285 * necessary for page alignment after static and reserved areas.
1286 *
1287 * If the needed size is smaller than the minimum or specified unit
1288 * size, the leftover is returned to the bootmem allocator.
1289 *
1290 * RETURNS:
1291 * The determined pcpu_unit_size which can be used to initialize
1292 * percpu access on success, -errno on failure.
1293 */
1294ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size,
1295 ssize_t dyn_size, ssize_t unit_size)
1296{
1297 unsigned int cpu;
1298
1299 /* determine parameters and allocate */
1300 pcpue_size = PFN_ALIGN(static_size + reserved_size +
1301 (dyn_size >= 0 ? dyn_size : 0));
1302 if (dyn_size != 0)
1303 dyn_size = pcpue_size - static_size - reserved_size;
1304
1305 if (unit_size >= 0) {
1306 BUG_ON(unit_size < pcpue_size);
1307 pcpue_unit_size = unit_size;
1308 } else
1309 pcpue_unit_size = max_t(size_t, pcpue_size, PCPU_MIN_UNIT_SIZE);
1310
1311 pcpue_ptr = __alloc_bootmem_nopanic(
1312 num_possible_cpus() * pcpue_unit_size,
1313 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
1314 if (!pcpue_ptr)
1315 return -ENOMEM;
1316
1317 /* return the leftover and copy */
1318 for_each_possible_cpu(cpu) {
1319 void *ptr = pcpue_ptr + cpu * pcpue_unit_size;
1320
1321 free_bootmem(__pa(ptr + pcpue_size),
1322 pcpue_unit_size - pcpue_size);
1323 memcpy(ptr, __per_cpu_load, static_size);
1324 }
1325
1326 /* we're ready, commit */
1327 pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n",
1328 pcpue_size >> PAGE_SHIFT, pcpue_ptr, static_size);
1329
1330 return pcpu_setup_first_chunk(pcpue_get_page, static_size,
1331 reserved_size, dyn_size,
1332 pcpue_unit_size, pcpue_ptr, NULL);
1333}