]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/percpu.c
Merge branch 'percpu-for-linus' into percpu-for-next
[net-next-2.6.git] / mm / percpu.c
CommitLineData
fbf59bc9
TH
1/*
2 * linux/mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each
2f39e637
TH
11 * chunk is consisted of boot-time determined number of units and the
12 * first chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated. ie. in
17 * vmalloc area
fbf59bc9
TH
18 *
19 * c0 c1 c2
20 * ------------------- ------------------- ------------
21 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
22 * ------------------- ...... ------------------- .... ------------
23 *
24 * Allocation is done in offset-size areas of single unit space. Ie,
25 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
2f39e637
TH
26 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
27 * cpus. On NUMA, the mapping can be non-linear and even sparse.
28 * Percpu access can be done by configuring percpu base registers
29 * according to cpu to unit mapping and pcpu_unit_size.
fbf59bc9 30 *
2f39e637
TH
31 * There are usually many small percpu allocations many of them being
32 * as small as 4 bytes. The allocator organizes chunks into lists
fbf59bc9
TH
33 * according to free size and tries to allocate from the fullest one.
34 * Each chunk keeps the maximum contiguous area size hint which is
35 * guaranteed to be eqaul to or larger than the maximum contiguous
36 * area in the chunk. This helps the allocator not to iterate the
37 * chunk maps unnecessarily.
38 *
39 * Allocation state in each chunk is kept using an array of integers
40 * on chunk->map. A positive value in the map represents a free
41 * region and negative allocated. Allocation inside a chunk is done
42 * by scanning this map sequentially and serving the first matching
43 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
44 * Chunks can be determined from the address using the index field
45 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9
TH
46 *
47 * To use this allocator, arch code should do the followings.
48 *
e74e3962 49 * - drop CONFIG_HAVE_LEGACY_PER_CPU_AREA
fbf59bc9
TH
50 *
51 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
52 * regular address to percpu pointer and back if they need to be
53 * different from the default
fbf59bc9 54 *
8d408b4b
TH
55 * - use pcpu_setup_first_chunk() during percpu area initialization to
56 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
57 */
58
59#include <linux/bitmap.h>
60#include <linux/bootmem.h>
61#include <linux/list.h>
a530b795 62#include <linux/log2.h>
fbf59bc9
TH
63#include <linux/mm.h>
64#include <linux/module.h>
65#include <linux/mutex.h>
66#include <linux/percpu.h>
67#include <linux/pfn.h>
fbf59bc9 68#include <linux/slab.h>
ccea34b5 69#include <linux/spinlock.h>
fbf59bc9 70#include <linux/vmalloc.h>
a56dbddf 71#include <linux/workqueue.h>
fbf59bc9
TH
72
73#include <asm/cacheflush.h>
e0100983 74#include <asm/sections.h>
fbf59bc9
TH
75#include <asm/tlbflush.h>
76
fbf59bc9
TH
77#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
78#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
79
e0100983
TH
80/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
81#ifndef __addr_to_pcpu_ptr
82#define __addr_to_pcpu_ptr(addr) \
83 (void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr \
84 + (unsigned long)__per_cpu_start)
85#endif
86#ifndef __pcpu_ptr_to_addr
87#define __pcpu_ptr_to_addr(ptr) \
88 (void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr \
89 - (unsigned long)__per_cpu_start)
90#endif
91
fbf59bc9
TH
92struct pcpu_chunk {
93 struct list_head list; /* linked to pcpu_slot lists */
fbf59bc9
TH
94 int free_size; /* free bytes in the chunk */
95 int contig_hint; /* max contiguous size hint */
96 struct vm_struct *vm; /* mapped vmalloc region */
97 int map_used; /* # of map entries used */
98 int map_alloc; /* # of map entries allocated */
99 int *map; /* allocation map */
8d408b4b 100 bool immutable; /* no [de]population allowed */
ce3141a2 101 unsigned long populated[]; /* populated bitmap */
fbf59bc9
TH
102};
103
40150d37
TH
104static int pcpu_unit_pages __read_mostly;
105static int pcpu_unit_size __read_mostly;
2f39e637 106static int pcpu_nr_units __read_mostly;
40150d37
TH
107static int pcpu_chunk_size __read_mostly;
108static int pcpu_nr_slots __read_mostly;
109static size_t pcpu_chunk_struct_size __read_mostly;
fbf59bc9 110
2f39e637
TH
111/* cpus with the lowest and highest unit numbers */
112static unsigned int pcpu_first_unit_cpu __read_mostly;
113static unsigned int pcpu_last_unit_cpu __read_mostly;
114
fbf59bc9 115/* the address of the first chunk which starts with the kernel static area */
40150d37 116void *pcpu_base_addr __read_mostly;
fbf59bc9
TH
117EXPORT_SYMBOL_GPL(pcpu_base_addr);
118
2f39e637
TH
119/* cpu -> unit map */
120const int *pcpu_unit_map __read_mostly;
121
ae9e6bc9
TH
122/*
123 * The first chunk which always exists. Note that unlike other
124 * chunks, this one can be allocated and mapped in several different
125 * ways and thus often doesn't live in the vmalloc area.
126 */
127static struct pcpu_chunk *pcpu_first_chunk;
128
129/*
130 * Optional reserved chunk. This chunk reserves part of the first
131 * chunk and serves it for reserved allocations. The amount of
132 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
133 * area doesn't exist, the following variables contain NULL and 0
134 * respectively.
135 */
edcb4639 136static struct pcpu_chunk *pcpu_reserved_chunk;
edcb4639
TH
137static int pcpu_reserved_chunk_limit;
138
fbf59bc9 139/*
ccea34b5
TH
140 * Synchronization rules.
141 *
142 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
ce3141a2
TH
143 * protects allocation/reclaim paths, chunks, populated bitmap and
144 * vmalloc mapping. The latter is a spinlock and protects the index
145 * data structures - chunk slots, chunks and area maps in chunks.
ccea34b5
TH
146 *
147 * During allocation, pcpu_alloc_mutex is kept locked all the time and
148 * pcpu_lock is grabbed and released as necessary. All actual memory
149 * allocations are done using GFP_KERNEL with pcpu_lock released.
150 *
151 * Free path accesses and alters only the index data structures, so it
152 * can be safely called from atomic context. When memory needs to be
153 * returned to the system, free path schedules reclaim_work which
154 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
155 * reclaimed, release both locks and frees the chunks. Note that it's
156 * necessary to grab both locks to remove a chunk from circulation as
157 * allocation path might be referencing the chunk with only
158 * pcpu_alloc_mutex locked.
fbf59bc9 159 */
ccea34b5
TH
160static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
161static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
fbf59bc9 162
40150d37 163static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
fbf59bc9 164
a56dbddf
TH
165/* reclaim work to release fully free chunks, scheduled from free path */
166static void pcpu_reclaim(struct work_struct *work);
167static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
168
d9b55eeb 169static int __pcpu_size_to_slot(int size)
fbf59bc9 170{
cae3aeb8 171 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
172 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
173}
174
d9b55eeb
TH
175static int pcpu_size_to_slot(int size)
176{
177 if (size == pcpu_unit_size)
178 return pcpu_nr_slots - 1;
179 return __pcpu_size_to_slot(size);
180}
181
fbf59bc9
TH
182static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
183{
184 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
185 return 0;
186
187 return pcpu_size_to_slot(chunk->free_size);
188}
189
190static int pcpu_page_idx(unsigned int cpu, int page_idx)
191{
2f39e637 192 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
193}
194
fbf59bc9
TH
195static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
196 unsigned int cpu, int page_idx)
197{
198 return (unsigned long)chunk->vm->addr +
199 (pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT);
200}
201
ce3141a2
TH
202static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
203 unsigned int cpu, int page_idx)
c8a51be4 204{
ce3141a2
TH
205 /* must not be used on pre-mapped chunk */
206 WARN_ON(chunk->immutable);
c8a51be4 207
ce3141a2 208 return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
fbf59bc9
TH
209}
210
e1b9aa3f
CL
211/* set the pointer to a chunk in a page struct */
212static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
213{
214 page->index = (unsigned long)pcpu;
215}
216
217/* obtain pointer to a chunk from a page struct */
218static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
219{
220 return (struct pcpu_chunk *)page->index;
221}
222
ce3141a2
TH
223static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
224{
225 *rs = find_next_zero_bit(chunk->populated, end, *rs);
226 *re = find_next_bit(chunk->populated, end, *rs + 1);
227}
228
229static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
230{
231 *rs = find_next_bit(chunk->populated, end, *rs);
232 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
233}
234
235/*
236 * (Un)populated page region iterators. Iterate over (un)populated
237 * page regions betwen @start and @end in @chunk. @rs and @re should
238 * be integer variables and will be set to start and end page index of
239 * the current region.
240 */
241#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
242 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
243 (rs) < (re); \
244 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
245
246#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
247 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
248 (rs) < (re); \
249 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
250
fbf59bc9 251/**
1880d93b
TH
252 * pcpu_mem_alloc - allocate memory
253 * @size: bytes to allocate
fbf59bc9 254 *
1880d93b
TH
255 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
256 * kzalloc() is used; otherwise, vmalloc() is used. The returned
257 * memory is always zeroed.
fbf59bc9 258 *
ccea34b5
TH
259 * CONTEXT:
260 * Does GFP_KERNEL allocation.
261 *
fbf59bc9 262 * RETURNS:
1880d93b 263 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 264 */
1880d93b 265static void *pcpu_mem_alloc(size_t size)
fbf59bc9 266{
1880d93b
TH
267 if (size <= PAGE_SIZE)
268 return kzalloc(size, GFP_KERNEL);
269 else {
270 void *ptr = vmalloc(size);
271 if (ptr)
272 memset(ptr, 0, size);
273 return ptr;
274 }
275}
fbf59bc9 276
1880d93b
TH
277/**
278 * pcpu_mem_free - free memory
279 * @ptr: memory to free
280 * @size: size of the area
281 *
282 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
283 */
284static void pcpu_mem_free(void *ptr, size_t size)
285{
fbf59bc9 286 if (size <= PAGE_SIZE)
1880d93b 287 kfree(ptr);
fbf59bc9 288 else
1880d93b 289 vfree(ptr);
fbf59bc9
TH
290}
291
292/**
293 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
294 * @chunk: chunk of interest
295 * @oslot: the previous slot it was on
296 *
297 * This function is called after an allocation or free changed @chunk.
298 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
299 * moved to the slot. Note that the reserved chunk is never put on
300 * chunk slots.
ccea34b5
TH
301 *
302 * CONTEXT:
303 * pcpu_lock.
fbf59bc9
TH
304 */
305static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
306{
307 int nslot = pcpu_chunk_slot(chunk);
308
edcb4639 309 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
310 if (oslot < nslot)
311 list_move(&chunk->list, &pcpu_slot[nslot]);
312 else
313 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
314 }
315}
316
fbf59bc9 317/**
e1b9aa3f
CL
318 * pcpu_chunk_addr_search - determine chunk containing specified address
319 * @addr: address for which the chunk needs to be determined.
ccea34b5 320 *
fbf59bc9
TH
321 * RETURNS:
322 * The address of the found chunk.
323 */
324static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
325{
ae9e6bc9 326 void *first_start = pcpu_first_chunk->vm->addr;
fbf59bc9 327
ae9e6bc9 328 /* is it in the first chunk? */
79ba6ac8 329 if (addr >= first_start && addr < first_start + pcpu_unit_size) {
ae9e6bc9
TH
330 /* is it in the reserved area? */
331 if (addr < first_start + pcpu_reserved_chunk_limit)
edcb4639 332 return pcpu_reserved_chunk;
ae9e6bc9 333 return pcpu_first_chunk;
edcb4639
TH
334 }
335
2f39e637
TH
336 /*
337 * The address is relative to unit0 which might be unused and
338 * thus unmapped. Offset the address to the unit space of the
339 * current processor before looking it up in the vmalloc
340 * space. Note that any possible cpu id can be used here, so
341 * there's no need to worry about preemption or cpu hotplug.
342 */
343 addr += pcpu_unit_map[smp_processor_id()] * pcpu_unit_size;
e1b9aa3f 344 return pcpu_get_page_chunk(vmalloc_to_page(addr));
fbf59bc9
TH
345}
346
9f7dcf22
TH
347/**
348 * pcpu_extend_area_map - extend area map for allocation
349 * @chunk: target chunk
350 *
351 * Extend area map of @chunk so that it can accomodate an allocation.
352 * A single allocation can split an area into three areas, so this
353 * function makes sure that @chunk->map has at least two extra slots.
354 *
ccea34b5
TH
355 * CONTEXT:
356 * pcpu_alloc_mutex, pcpu_lock. pcpu_lock is released and reacquired
357 * if area map is extended.
358 *
9f7dcf22
TH
359 * RETURNS:
360 * 0 if noop, 1 if successfully extended, -errno on failure.
361 */
362static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
363{
364 int new_alloc;
365 int *new;
366 size_t size;
367
368 /* has enough? */
369 if (chunk->map_alloc >= chunk->map_used + 2)
370 return 0;
371
ccea34b5
TH
372 spin_unlock_irq(&pcpu_lock);
373
9f7dcf22
TH
374 new_alloc = PCPU_DFL_MAP_ALLOC;
375 while (new_alloc < chunk->map_used + 2)
376 new_alloc *= 2;
377
378 new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
ccea34b5
TH
379 if (!new) {
380 spin_lock_irq(&pcpu_lock);
9f7dcf22 381 return -ENOMEM;
ccea34b5
TH
382 }
383
384 /*
385 * Acquire pcpu_lock and switch to new area map. Only free
386 * could have happened inbetween, so map_used couldn't have
387 * grown.
388 */
389 spin_lock_irq(&pcpu_lock);
390 BUG_ON(new_alloc < chunk->map_used + 2);
9f7dcf22
TH
391
392 size = chunk->map_alloc * sizeof(chunk->map[0]);
393 memcpy(new, chunk->map, size);
394
395 /*
396 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
397 * one of the first chunks and still using static map.
398 */
399 if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
400 pcpu_mem_free(chunk->map, size);
401
402 chunk->map_alloc = new_alloc;
403 chunk->map = new;
404 return 0;
405}
406
fbf59bc9
TH
407/**
408 * pcpu_split_block - split a map block
409 * @chunk: chunk of interest
410 * @i: index of map block to split
cae3aeb8
TH
411 * @head: head size in bytes (can be 0)
412 * @tail: tail size in bytes (can be 0)
fbf59bc9
TH
413 *
414 * Split the @i'th map block into two or three blocks. If @head is
415 * non-zero, @head bytes block is inserted before block @i moving it
416 * to @i+1 and reducing its size by @head bytes.
417 *
418 * If @tail is non-zero, the target block, which can be @i or @i+1
419 * depending on @head, is reduced by @tail bytes and @tail byte block
420 * is inserted after the target block.
421 *
9f7dcf22 422 * @chunk->map must have enough free slots to accomodate the split.
ccea34b5
TH
423 *
424 * CONTEXT:
425 * pcpu_lock.
fbf59bc9 426 */
9f7dcf22
TH
427static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
428 int head, int tail)
fbf59bc9
TH
429{
430 int nr_extra = !!head + !!tail;
1880d93b 431
9f7dcf22 432 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
fbf59bc9 433
9f7dcf22 434 /* insert new subblocks */
fbf59bc9
TH
435 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
436 sizeof(chunk->map[0]) * (chunk->map_used - i));
437 chunk->map_used += nr_extra;
438
439 if (head) {
440 chunk->map[i + 1] = chunk->map[i] - head;
441 chunk->map[i++] = head;
442 }
443 if (tail) {
444 chunk->map[i++] -= tail;
445 chunk->map[i] = tail;
446 }
fbf59bc9
TH
447}
448
449/**
450 * pcpu_alloc_area - allocate area from a pcpu_chunk
451 * @chunk: chunk of interest
cae3aeb8 452 * @size: wanted size in bytes
fbf59bc9
TH
453 * @align: wanted align
454 *
455 * Try to allocate @size bytes area aligned at @align from @chunk.
456 * Note that this function only allocates the offset. It doesn't
457 * populate or map the area.
458 *
9f7dcf22
TH
459 * @chunk->map must have at least two free slots.
460 *
ccea34b5
TH
461 * CONTEXT:
462 * pcpu_lock.
463 *
fbf59bc9 464 * RETURNS:
9f7dcf22
TH
465 * Allocated offset in @chunk on success, -1 if no matching area is
466 * found.
fbf59bc9
TH
467 */
468static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
469{
470 int oslot = pcpu_chunk_slot(chunk);
471 int max_contig = 0;
472 int i, off;
473
fbf59bc9
TH
474 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
475 bool is_last = i + 1 == chunk->map_used;
476 int head, tail;
477
478 /* extra for alignment requirement */
479 head = ALIGN(off, align) - off;
480 BUG_ON(i == 0 && head != 0);
481
482 if (chunk->map[i] < 0)
483 continue;
484 if (chunk->map[i] < head + size) {
485 max_contig = max(chunk->map[i], max_contig);
486 continue;
487 }
488
489 /*
490 * If head is small or the previous block is free,
491 * merge'em. Note that 'small' is defined as smaller
492 * than sizeof(int), which is very small but isn't too
493 * uncommon for percpu allocations.
494 */
495 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
496 if (chunk->map[i - 1] > 0)
497 chunk->map[i - 1] += head;
498 else {
499 chunk->map[i - 1] -= head;
500 chunk->free_size -= head;
501 }
502 chunk->map[i] -= head;
503 off += head;
504 head = 0;
505 }
506
507 /* if tail is small, just keep it around */
508 tail = chunk->map[i] - head - size;
509 if (tail < sizeof(int))
510 tail = 0;
511
512 /* split if warranted */
513 if (head || tail) {
9f7dcf22 514 pcpu_split_block(chunk, i, head, tail);
fbf59bc9
TH
515 if (head) {
516 i++;
517 off += head;
518 max_contig = max(chunk->map[i - 1], max_contig);
519 }
520 if (tail)
521 max_contig = max(chunk->map[i + 1], max_contig);
522 }
523
524 /* update hint and mark allocated */
525 if (is_last)
526 chunk->contig_hint = max_contig; /* fully scanned */
527 else
528 chunk->contig_hint = max(chunk->contig_hint,
529 max_contig);
530
531 chunk->free_size -= chunk->map[i];
532 chunk->map[i] = -chunk->map[i];
533
534 pcpu_chunk_relocate(chunk, oslot);
535 return off;
536 }
537
538 chunk->contig_hint = max_contig; /* fully scanned */
539 pcpu_chunk_relocate(chunk, oslot);
540
9f7dcf22
TH
541 /* tell the upper layer that this chunk has no matching area */
542 return -1;
fbf59bc9
TH
543}
544
545/**
546 * pcpu_free_area - free area to a pcpu_chunk
547 * @chunk: chunk of interest
548 * @freeme: offset of area to free
549 *
550 * Free area starting from @freeme to @chunk. Note that this function
551 * only modifies the allocation map. It doesn't depopulate or unmap
552 * the area.
ccea34b5
TH
553 *
554 * CONTEXT:
555 * pcpu_lock.
fbf59bc9
TH
556 */
557static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
558{
559 int oslot = pcpu_chunk_slot(chunk);
560 int i, off;
561
562 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
563 if (off == freeme)
564 break;
565 BUG_ON(off != freeme);
566 BUG_ON(chunk->map[i] > 0);
567
568 chunk->map[i] = -chunk->map[i];
569 chunk->free_size += chunk->map[i];
570
571 /* merge with previous? */
572 if (i > 0 && chunk->map[i - 1] >= 0) {
573 chunk->map[i - 1] += chunk->map[i];
574 chunk->map_used--;
575 memmove(&chunk->map[i], &chunk->map[i + 1],
576 (chunk->map_used - i) * sizeof(chunk->map[0]));
577 i--;
578 }
579 /* merge with next? */
580 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
581 chunk->map[i] += chunk->map[i + 1];
582 chunk->map_used--;
583 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
584 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
585 }
586
587 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
588 pcpu_chunk_relocate(chunk, oslot);
589}
590
591/**
ce3141a2
TH
592 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
593 * @chunk: chunk of interest
594 * @bitmapp: output parameter for bitmap
595 * @may_alloc: may allocate the array
596 *
597 * Returns pointer to array of pointers to struct page and bitmap,
598 * both of which can be indexed with pcpu_page_idx(). The returned
599 * array is cleared to zero and *@bitmapp is copied from
600 * @chunk->populated. Note that there is only one array and bitmap
601 * and access exclusion is the caller's responsibility.
602 *
603 * CONTEXT:
604 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
605 * Otherwise, don't care.
606 *
607 * RETURNS:
608 * Pointer to temp pages array on success, NULL on failure.
609 */
610static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
611 unsigned long **bitmapp,
612 bool may_alloc)
613{
614 static struct page **pages;
615 static unsigned long *bitmap;
2f39e637 616 size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
ce3141a2
TH
617 size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
618 sizeof(unsigned long);
619
620 if (!pages || !bitmap) {
621 if (may_alloc && !pages)
622 pages = pcpu_mem_alloc(pages_size);
623 if (may_alloc && !bitmap)
624 bitmap = pcpu_mem_alloc(bitmap_size);
625 if (!pages || !bitmap)
626 return NULL;
627 }
628
629 memset(pages, 0, pages_size);
630 bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
631
632 *bitmapp = bitmap;
633 return pages;
634}
635
636/**
637 * pcpu_free_pages - free pages which were allocated for @chunk
638 * @chunk: chunk pages were allocated for
639 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
640 * @populated: populated bitmap
641 * @page_start: page index of the first page to be freed
642 * @page_end: page index of the last page to be freed + 1
643 *
644 * Free pages [@page_start and @page_end) in @pages for all units.
645 * The pages were allocated for @chunk.
646 */
647static void pcpu_free_pages(struct pcpu_chunk *chunk,
648 struct page **pages, unsigned long *populated,
649 int page_start, int page_end)
650{
651 unsigned int cpu;
652 int i;
653
654 for_each_possible_cpu(cpu) {
655 for (i = page_start; i < page_end; i++) {
656 struct page *page = pages[pcpu_page_idx(cpu, i)];
657
658 if (page)
659 __free_page(page);
660 }
661 }
662}
663
664/**
665 * pcpu_alloc_pages - allocates pages for @chunk
666 * @chunk: target chunk
667 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
668 * @populated: populated bitmap
669 * @page_start: page index of the first page to be allocated
670 * @page_end: page index of the last page to be allocated + 1
671 *
672 * Allocate pages [@page_start,@page_end) into @pages for all units.
673 * The allocation is for @chunk. Percpu core doesn't care about the
674 * content of @pages and will pass it verbatim to pcpu_map_pages().
675 */
676static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
677 struct page **pages, unsigned long *populated,
678 int page_start, int page_end)
679{
680 const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
681 unsigned int cpu;
682 int i;
683
684 for_each_possible_cpu(cpu) {
685 for (i = page_start; i < page_end; i++) {
686 struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
687
688 *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
689 if (!*pagep) {
690 pcpu_free_pages(chunk, pages, populated,
691 page_start, page_end);
692 return -ENOMEM;
693 }
694 }
695 }
696 return 0;
697}
698
699/**
700 * pcpu_pre_unmap_flush - flush cache prior to unmapping
701 * @chunk: chunk the regions to be flushed belongs to
702 * @page_start: page index of the first page to be flushed
703 * @page_end: page index of the last page to be flushed + 1
704 *
705 * Pages in [@page_start,@page_end) of @chunk are about to be
706 * unmapped. Flush cache. As each flushing trial can be very
707 * expensive, issue flush on the whole region at once rather than
708 * doing it for each cpu. This could be an overkill but is more
709 * scalable.
710 */
711static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
712 int page_start, int page_end)
713{
2f39e637
TH
714 flush_cache_vunmap(
715 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
716 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
ce3141a2
TH
717}
718
719static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
720{
721 unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
722}
723
724/**
725 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
fbf59bc9 726 * @chunk: chunk of interest
ce3141a2
TH
727 * @pages: pages array which can be used to pass information to free
728 * @populated: populated bitmap
fbf59bc9
TH
729 * @page_start: page index of the first page to unmap
730 * @page_end: page index of the last page to unmap + 1
fbf59bc9
TH
731 *
732 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
ce3141a2
TH
733 * Corresponding elements in @pages were cleared by the caller and can
734 * be used to carry information to pcpu_free_pages() which will be
735 * called after all unmaps are finished. The caller should call
736 * proper pre/post flush functions.
fbf59bc9 737 */
ce3141a2
TH
738static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
739 struct page **pages, unsigned long *populated,
740 int page_start, int page_end)
fbf59bc9 741{
fbf59bc9 742 unsigned int cpu;
ce3141a2 743 int i;
fbf59bc9 744
ce3141a2
TH
745 for_each_possible_cpu(cpu) {
746 for (i = page_start; i < page_end; i++) {
747 struct page *page;
8d408b4b 748
ce3141a2
TH
749 page = pcpu_chunk_page(chunk, cpu, i);
750 WARN_ON(!page);
751 pages[pcpu_page_idx(cpu, i)] = page;
752 }
753 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
754 page_end - page_start);
755 }
fbf59bc9 756
ce3141a2
TH
757 for (i = page_start; i < page_end; i++)
758 __clear_bit(i, populated);
759}
760
761/**
762 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
763 * @chunk: pcpu_chunk the regions to be flushed belong to
764 * @page_start: page index of the first page to be flushed
765 * @page_end: page index of the last page to be flushed + 1
766 *
767 * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
768 * TLB for the regions. This can be skipped if the area is to be
769 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
770 *
771 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
772 * for the whole region.
773 */
774static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
775 int page_start, int page_end)
776{
2f39e637
TH
777 flush_tlb_kernel_range(
778 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
779 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
fbf59bc9
TH
780}
781
c8a51be4
TH
782static int __pcpu_map_pages(unsigned long addr, struct page **pages,
783 int nr_pages)
784{
785 return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
786 PAGE_KERNEL, pages);
787}
788
789/**
ce3141a2 790 * pcpu_map_pages - map pages into a pcpu_chunk
c8a51be4 791 * @chunk: chunk of interest
ce3141a2
TH
792 * @pages: pages array containing pages to be mapped
793 * @populated: populated bitmap
c8a51be4
TH
794 * @page_start: page index of the first page to map
795 * @page_end: page index of the last page to map + 1
796 *
ce3141a2
TH
797 * For each cpu, map pages [@page_start,@page_end) into @chunk. The
798 * caller is responsible for calling pcpu_post_map_flush() after all
799 * mappings are complete.
800 *
801 * This function is responsible for setting corresponding bits in
802 * @chunk->populated bitmap and whatever is necessary for reverse
803 * lookup (addr -> chunk).
c8a51be4 804 */
ce3141a2
TH
805static int pcpu_map_pages(struct pcpu_chunk *chunk,
806 struct page **pages, unsigned long *populated,
807 int page_start, int page_end)
c8a51be4 808{
ce3141a2
TH
809 unsigned int cpu, tcpu;
810 int i, err;
c8a51be4
TH
811
812 for_each_possible_cpu(cpu) {
813 err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
ce3141a2 814 &pages[pcpu_page_idx(cpu, page_start)],
c8a51be4
TH
815 page_end - page_start);
816 if (err < 0)
ce3141a2 817 goto err;
c8a51be4
TH
818 }
819
ce3141a2
TH
820 /* mapping successful, link chunk and mark populated */
821 for (i = page_start; i < page_end; i++) {
822 for_each_possible_cpu(cpu)
823 pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
824 chunk);
825 __set_bit(i, populated);
826 }
827
828 return 0;
829
830err:
831 for_each_possible_cpu(tcpu) {
832 if (tcpu == cpu)
833 break;
834 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
835 page_end - page_start);
836 }
837 return err;
838}
839
840/**
841 * pcpu_post_map_flush - flush cache after mapping
842 * @chunk: pcpu_chunk the regions to be flushed belong to
843 * @page_start: page index of the first page to be flushed
844 * @page_end: page index of the last page to be flushed + 1
845 *
846 * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
847 * cache.
848 *
849 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
850 * for the whole region.
851 */
852static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
853 int page_start, int page_end)
854{
2f39e637
TH
855 flush_cache_vmap(
856 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
857 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
c8a51be4
TH
858}
859
fbf59bc9
TH
860/**
861 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
862 * @chunk: chunk to depopulate
863 * @off: offset to the area to depopulate
cae3aeb8 864 * @size: size of the area to depopulate in bytes
fbf59bc9
TH
865 * @flush: whether to flush cache and tlb or not
866 *
867 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
868 * from @chunk. If @flush is true, vcache is flushed before unmapping
869 * and tlb after.
ccea34b5
TH
870 *
871 * CONTEXT:
872 * pcpu_alloc_mutex.
fbf59bc9 873 */
ce3141a2 874static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
fbf59bc9
TH
875{
876 int page_start = PFN_DOWN(off);
877 int page_end = PFN_UP(off + size);
ce3141a2
TH
878 struct page **pages;
879 unsigned long *populated;
880 int rs, re;
881
882 /* quick path, check whether it's empty already */
883 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
884 if (rs == page_start && re == page_end)
885 return;
886 break;
887 }
fbf59bc9 888
ce3141a2
TH
889 /* immutable chunks can't be depopulated */
890 WARN_ON(chunk->immutable);
fbf59bc9 891
ce3141a2
TH
892 /*
893 * If control reaches here, there must have been at least one
894 * successful population attempt so the temp pages array must
895 * be available now.
896 */
897 pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
898 BUG_ON(!pages);
fbf59bc9 899
ce3141a2
TH
900 /* unmap and free */
901 pcpu_pre_unmap_flush(chunk, page_start, page_end);
fbf59bc9 902
ce3141a2
TH
903 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
904 pcpu_unmap_pages(chunk, pages, populated, rs, re);
fbf59bc9 905
ce3141a2
TH
906 /* no need to flush tlb, vmalloc will handle it lazily */
907
908 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
909 pcpu_free_pages(chunk, pages, populated, rs, re);
fbf59bc9 910
ce3141a2
TH
911 /* commit new bitmap */
912 bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
fbf59bc9
TH
913}
914
fbf59bc9
TH
915/**
916 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
917 * @chunk: chunk of interest
918 * @off: offset to the area to populate
cae3aeb8 919 * @size: size of the area to populate in bytes
fbf59bc9
TH
920 *
921 * For each cpu, populate and map pages [@page_start,@page_end) into
922 * @chunk. The area is cleared on return.
ccea34b5
TH
923 *
924 * CONTEXT:
925 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
fbf59bc9
TH
926 */
927static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
928{
fbf59bc9
TH
929 int page_start = PFN_DOWN(off);
930 int page_end = PFN_UP(off + size);
ce3141a2
TH
931 int free_end = page_start, unmap_end = page_start;
932 struct page **pages;
933 unsigned long *populated;
fbf59bc9 934 unsigned int cpu;
ce3141a2 935 int rs, re, rc;
fbf59bc9 936
ce3141a2
TH
937 /* quick path, check whether all pages are already there */
938 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) {
939 if (rs == page_start && re == page_end)
940 goto clear;
941 break;
942 }
fbf59bc9 943
ce3141a2
TH
944 /* need to allocate and map pages, this chunk can't be immutable */
945 WARN_ON(chunk->immutable);
fbf59bc9 946
ce3141a2
TH
947 pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
948 if (!pages)
949 return -ENOMEM;
fbf59bc9 950
ce3141a2
TH
951 /* alloc and map */
952 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
953 rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
954 if (rc)
955 goto err_free;
956 free_end = re;
fbf59bc9
TH
957 }
958
ce3141a2
TH
959 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
960 rc = pcpu_map_pages(chunk, pages, populated, rs, re);
961 if (rc)
962 goto err_unmap;
963 unmap_end = re;
964 }
965 pcpu_post_map_flush(chunk, page_start, page_end);
fbf59bc9 966
ce3141a2
TH
967 /* commit new bitmap */
968 bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
969clear:
fbf59bc9 970 for_each_possible_cpu(cpu)
2f39e637 971 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
fbf59bc9 972 return 0;
ce3141a2
TH
973
974err_unmap:
975 pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
976 pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
977 pcpu_unmap_pages(chunk, pages, populated, rs, re);
978 pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
979err_free:
980 pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
981 pcpu_free_pages(chunk, pages, populated, rs, re);
982 return rc;
fbf59bc9
TH
983}
984
985static void free_pcpu_chunk(struct pcpu_chunk *chunk)
986{
987 if (!chunk)
988 return;
989 if (chunk->vm)
990 free_vm_area(chunk->vm);
1880d93b 991 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
fbf59bc9
TH
992 kfree(chunk);
993}
994
995static struct pcpu_chunk *alloc_pcpu_chunk(void)
996{
997 struct pcpu_chunk *chunk;
998
999 chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
1000 if (!chunk)
1001 return NULL;
1002
1880d93b 1003 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
fbf59bc9
TH
1004 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
1005 chunk->map[chunk->map_used++] = pcpu_unit_size;
1006
142d44b0 1007 chunk->vm = get_vm_area(pcpu_chunk_size, VM_ALLOC);
fbf59bc9
TH
1008 if (!chunk->vm) {
1009 free_pcpu_chunk(chunk);
1010 return NULL;
1011 }
1012
1013 INIT_LIST_HEAD(&chunk->list);
1014 chunk->free_size = pcpu_unit_size;
1015 chunk->contig_hint = pcpu_unit_size;
1016
1017 return chunk;
1018}
1019
1020/**
edcb4639 1021 * pcpu_alloc - the percpu allocator
cae3aeb8 1022 * @size: size of area to allocate in bytes
fbf59bc9 1023 * @align: alignment of area (max PAGE_SIZE)
edcb4639 1024 * @reserved: allocate from the reserved chunk if available
fbf59bc9 1025 *
ccea34b5
TH
1026 * Allocate percpu area of @size bytes aligned at @align.
1027 *
1028 * CONTEXT:
1029 * Does GFP_KERNEL allocation.
fbf59bc9
TH
1030 *
1031 * RETURNS:
1032 * Percpu pointer to the allocated area on success, NULL on failure.
1033 */
edcb4639 1034static void *pcpu_alloc(size_t size, size_t align, bool reserved)
fbf59bc9 1035{
fbf59bc9
TH
1036 struct pcpu_chunk *chunk;
1037 int slot, off;
1038
8d408b4b 1039 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
fbf59bc9
TH
1040 WARN(true, "illegal size (%zu) or align (%zu) for "
1041 "percpu allocation\n", size, align);
1042 return NULL;
1043 }
1044
ccea34b5
TH
1045 mutex_lock(&pcpu_alloc_mutex);
1046 spin_lock_irq(&pcpu_lock);
fbf59bc9 1047
edcb4639
TH
1048 /* serve reserved allocations from the reserved chunk if available */
1049 if (reserved && pcpu_reserved_chunk) {
1050 chunk = pcpu_reserved_chunk;
9f7dcf22
TH
1051 if (size > chunk->contig_hint ||
1052 pcpu_extend_area_map(chunk) < 0)
ccea34b5 1053 goto fail_unlock;
edcb4639
TH
1054 off = pcpu_alloc_area(chunk, size, align);
1055 if (off >= 0)
1056 goto area_found;
ccea34b5 1057 goto fail_unlock;
edcb4639
TH
1058 }
1059
ccea34b5 1060restart:
edcb4639 1061 /* search through normal chunks */
fbf59bc9
TH
1062 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1063 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1064 if (size > chunk->contig_hint)
1065 continue;
ccea34b5
TH
1066
1067 switch (pcpu_extend_area_map(chunk)) {
1068 case 0:
1069 break;
1070 case 1:
1071 goto restart; /* pcpu_lock dropped, restart */
1072 default:
1073 goto fail_unlock;
1074 }
1075
fbf59bc9
TH
1076 off = pcpu_alloc_area(chunk, size, align);
1077 if (off >= 0)
1078 goto area_found;
fbf59bc9
TH
1079 }
1080 }
1081
1082 /* hmmm... no space left, create a new chunk */
ccea34b5
TH
1083 spin_unlock_irq(&pcpu_lock);
1084
fbf59bc9
TH
1085 chunk = alloc_pcpu_chunk();
1086 if (!chunk)
ccea34b5
TH
1087 goto fail_unlock_mutex;
1088
1089 spin_lock_irq(&pcpu_lock);
fbf59bc9 1090 pcpu_chunk_relocate(chunk, -1);
ccea34b5 1091 goto restart;
fbf59bc9
TH
1092
1093area_found:
ccea34b5
TH
1094 spin_unlock_irq(&pcpu_lock);
1095
fbf59bc9
TH
1096 /* populate, map and clear the area */
1097 if (pcpu_populate_chunk(chunk, off, size)) {
ccea34b5 1098 spin_lock_irq(&pcpu_lock);
fbf59bc9 1099 pcpu_free_area(chunk, off);
ccea34b5 1100 goto fail_unlock;
fbf59bc9
TH
1101 }
1102
ccea34b5
TH
1103 mutex_unlock(&pcpu_alloc_mutex);
1104
2f39e637 1105 /* return address relative to unit0 */
ccea34b5
TH
1106 return __addr_to_pcpu_ptr(chunk->vm->addr + off);
1107
1108fail_unlock:
1109 spin_unlock_irq(&pcpu_lock);
1110fail_unlock_mutex:
1111 mutex_unlock(&pcpu_alloc_mutex);
1112 return NULL;
fbf59bc9 1113}
edcb4639
TH
1114
1115/**
1116 * __alloc_percpu - allocate dynamic percpu area
1117 * @size: size of area to allocate in bytes
1118 * @align: alignment of area (max PAGE_SIZE)
1119 *
1120 * Allocate percpu area of @size bytes aligned at @align. Might
1121 * sleep. Might trigger writeouts.
1122 *
ccea34b5
TH
1123 * CONTEXT:
1124 * Does GFP_KERNEL allocation.
1125 *
edcb4639
TH
1126 * RETURNS:
1127 * Percpu pointer to the allocated area on success, NULL on failure.
1128 */
1129void *__alloc_percpu(size_t size, size_t align)
1130{
1131 return pcpu_alloc(size, align, false);
1132}
fbf59bc9
TH
1133EXPORT_SYMBOL_GPL(__alloc_percpu);
1134
edcb4639
TH
1135/**
1136 * __alloc_reserved_percpu - allocate reserved percpu area
1137 * @size: size of area to allocate in bytes
1138 * @align: alignment of area (max PAGE_SIZE)
1139 *
1140 * Allocate percpu area of @size bytes aligned at @align from reserved
1141 * percpu area if arch has set it up; otherwise, allocation is served
1142 * from the same dynamic area. Might sleep. Might trigger writeouts.
1143 *
ccea34b5
TH
1144 * CONTEXT:
1145 * Does GFP_KERNEL allocation.
1146 *
edcb4639
TH
1147 * RETURNS:
1148 * Percpu pointer to the allocated area on success, NULL on failure.
1149 */
1150void *__alloc_reserved_percpu(size_t size, size_t align)
1151{
1152 return pcpu_alloc(size, align, true);
1153}
1154
a56dbddf
TH
1155/**
1156 * pcpu_reclaim - reclaim fully free chunks, workqueue function
1157 * @work: unused
1158 *
1159 * Reclaim all fully free chunks except for the first one.
ccea34b5
TH
1160 *
1161 * CONTEXT:
1162 * workqueue context.
a56dbddf
TH
1163 */
1164static void pcpu_reclaim(struct work_struct *work)
fbf59bc9 1165{
a56dbddf
TH
1166 LIST_HEAD(todo);
1167 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
1168 struct pcpu_chunk *chunk, *next;
1169
ccea34b5
TH
1170 mutex_lock(&pcpu_alloc_mutex);
1171 spin_lock_irq(&pcpu_lock);
a56dbddf
TH
1172
1173 list_for_each_entry_safe(chunk, next, head, list) {
1174 WARN_ON(chunk->immutable);
1175
1176 /* spare the first one */
1177 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
1178 continue;
1179
a56dbddf
TH
1180 list_move(&chunk->list, &todo);
1181 }
1182
ccea34b5
TH
1183 spin_unlock_irq(&pcpu_lock);
1184 mutex_unlock(&pcpu_alloc_mutex);
a56dbddf
TH
1185
1186 list_for_each_entry_safe(chunk, next, &todo, list) {
ce3141a2 1187 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
a56dbddf
TH
1188 free_pcpu_chunk(chunk);
1189 }
fbf59bc9
TH
1190}
1191
1192/**
1193 * free_percpu - free percpu area
1194 * @ptr: pointer to area to free
1195 *
ccea34b5
TH
1196 * Free percpu area @ptr.
1197 *
1198 * CONTEXT:
1199 * Can be called from atomic context.
fbf59bc9
TH
1200 */
1201void free_percpu(void *ptr)
1202{
1203 void *addr = __pcpu_ptr_to_addr(ptr);
1204 struct pcpu_chunk *chunk;
ccea34b5 1205 unsigned long flags;
fbf59bc9
TH
1206 int off;
1207
1208 if (!ptr)
1209 return;
1210
ccea34b5 1211 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
1212
1213 chunk = pcpu_chunk_addr_search(addr);
1214 off = addr - chunk->vm->addr;
1215
1216 pcpu_free_area(chunk, off);
1217
a56dbddf 1218 /* if there are more than one fully free chunks, wake up grim reaper */
fbf59bc9
TH
1219 if (chunk->free_size == pcpu_unit_size) {
1220 struct pcpu_chunk *pos;
1221
a56dbddf 1222 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 1223 if (pos != chunk) {
a56dbddf 1224 schedule_work(&pcpu_reclaim_work);
fbf59bc9
TH
1225 break;
1226 }
1227 }
1228
ccea34b5 1229 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
1230}
1231EXPORT_SYMBOL_GPL(free_percpu);
1232
1233/**
8d408b4b 1234 * pcpu_setup_first_chunk - initialize the first percpu chunk
8d408b4b 1235 * @static_size: the size of static percpu area in bytes
38a6be52 1236 * @reserved_size: the size of reserved percpu area in bytes, 0 for none
cafe8816 1237 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
38a6be52
TH
1238 * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE
1239 * @base_addr: mapped address
2f39e637 1240 * @unit_map: cpu -> unit map, NULL for sequential mapping
8d408b4b
TH
1241 *
1242 * Initialize the first percpu chunk which contains the kernel static
1243 * perpcu area. This function is to be called from arch percpu area
38a6be52 1244 * setup path.
8d408b4b 1245 *
edcb4639
TH
1246 * @reserved_size, if non-zero, specifies the amount of bytes to
1247 * reserve after the static area in the first chunk. This reserves
1248 * the first chunk such that it's available only through reserved
1249 * percpu allocation. This is primarily used to serve module percpu
1250 * static areas on architectures where the addressing model has
1251 * limited offset range for symbol relocations to guarantee module
1252 * percpu symbols fall inside the relocatable range.
1253 *
6074d5b0
TH
1254 * @dyn_size, if non-negative, determines the number of bytes
1255 * available for dynamic allocation in the first chunk. Specifying
1256 * non-negative value makes percpu leave alone the area beyond
1257 * @static_size + @reserved_size + @dyn_size.
1258 *
38a6be52
TH
1259 * @unit_size specifies unit size and must be aligned to PAGE_SIZE and
1260 * equal to or larger than @static_size + @reserved_size + if
1261 * non-negative, @dyn_size.
8d408b4b 1262 *
38a6be52
TH
1263 * The caller should have mapped the first chunk at @base_addr and
1264 * copied static data to each unit.
fbf59bc9 1265 *
edcb4639
TH
1266 * If the first chunk ends up with both reserved and dynamic areas, it
1267 * is served by two chunks - one to serve the core static and reserved
1268 * areas and the other for the dynamic area. They share the same vm
1269 * and page map but uses different area allocation map to stay away
1270 * from each other. The latter chunk is circulated in the chunk slots
1271 * and available for dynamic allocation like any other chunks.
1272 *
fbf59bc9
TH
1273 * RETURNS:
1274 * The determined pcpu_unit_size which can be used to initialize
1275 * percpu access.
1276 */
ce3141a2 1277size_t __init pcpu_setup_first_chunk(size_t static_size, size_t reserved_size,
38a6be52 1278 ssize_t dyn_size, size_t unit_size,
2f39e637 1279 void *base_addr, const int *unit_map)
fbf59bc9 1280{
2441d15c 1281 static struct vm_struct first_vm;
edcb4639 1282 static int smap[2], dmap[2];
6074d5b0
TH
1283 size_t size_sum = static_size + reserved_size +
1284 (dyn_size >= 0 ? dyn_size : 0);
edcb4639 1285 struct pcpu_chunk *schunk, *dchunk = NULL;
2f39e637 1286 unsigned int cpu, tcpu;
ce3141a2 1287 int i;
fbf59bc9 1288
2f39e637 1289 /* sanity checks */
edcb4639
TH
1290 BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
1291 ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
8d408b4b 1292 BUG_ON(!static_size);
38a6be52
TH
1293 BUG_ON(!base_addr);
1294 BUG_ON(unit_size < size_sum);
1295 BUG_ON(unit_size & ~PAGE_MASK);
1296 BUG_ON(unit_size < PCPU_MIN_UNIT_SIZE);
8d408b4b 1297
2f39e637
TH
1298 /* determine number of units and verify and initialize pcpu_unit_map */
1299 if (unit_map) {
1300 int first_unit = INT_MAX, last_unit = INT_MIN;
1301
1302 for_each_possible_cpu(cpu) {
1303 int unit = unit_map[cpu];
1304
1305 BUG_ON(unit < 0);
1306 for_each_possible_cpu(tcpu) {
1307 if (tcpu == cpu)
1308 break;
1309 /* the mapping should be one-to-one */
1310 BUG_ON(unit_map[tcpu] == unit);
1311 }
1312
1313 if (unit < first_unit) {
1314 pcpu_first_unit_cpu = cpu;
1315 first_unit = unit;
1316 }
1317 if (unit > last_unit) {
1318 pcpu_last_unit_cpu = cpu;
1319 last_unit = unit;
1320 }
1321 }
1322 pcpu_nr_units = last_unit + 1;
1323 pcpu_unit_map = unit_map;
1324 } else {
1325 int *identity_map;
1326
1327 /* #units == #cpus, identity mapped */
384be2b1 1328 identity_map = alloc_bootmem(nr_cpu_ids *
2f39e637
TH
1329 sizeof(identity_map[0]));
1330
1331 for_each_possible_cpu(cpu)
1332 identity_map[cpu] = cpu;
1333
1334 pcpu_first_unit_cpu = 0;
1335 pcpu_last_unit_cpu = pcpu_nr_units - 1;
384be2b1 1336 pcpu_nr_units = nr_cpu_ids;
2f39e637
TH
1337 pcpu_unit_map = identity_map;
1338 }
1339
1340 /* determine basic parameters */
38a6be52 1341 pcpu_unit_pages = unit_size >> PAGE_SHIFT;
d9b55eeb 1342 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2f39e637 1343 pcpu_chunk_size = pcpu_nr_units * pcpu_unit_size;
ce3141a2
TH
1344 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1345 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
fbf59bc9 1346
cafe8816 1347 if (dyn_size < 0)
edcb4639 1348 dyn_size = pcpu_unit_size - static_size - reserved_size;
cafe8816 1349
38a6be52
TH
1350 first_vm.flags = VM_ALLOC;
1351 first_vm.size = pcpu_chunk_size;
1352 first_vm.addr = base_addr;
1353
d9b55eeb
TH
1354 /*
1355 * Allocate chunk slots. The additional last slot is for
1356 * empty chunks.
1357 */
1358 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
fbf59bc9
TH
1359 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1360 for (i = 0; i < pcpu_nr_slots; i++)
1361 INIT_LIST_HEAD(&pcpu_slot[i]);
1362
edcb4639
TH
1363 /*
1364 * Initialize static chunk. If reserved_size is zero, the
1365 * static chunk covers static area + dynamic allocation area
1366 * in the first chunk. If reserved_size is not zero, it
1367 * covers static area + reserved area (mostly used for module
1368 * static percpu allocation).
1369 */
2441d15c
TH
1370 schunk = alloc_bootmem(pcpu_chunk_struct_size);
1371 INIT_LIST_HEAD(&schunk->list);
1372 schunk->vm = &first_vm;
61ace7fa
TH
1373 schunk->map = smap;
1374 schunk->map_alloc = ARRAY_SIZE(smap);
38a6be52 1375 schunk->immutable = true;
ce3141a2 1376 bitmap_fill(schunk->populated, pcpu_unit_pages);
edcb4639
TH
1377
1378 if (reserved_size) {
1379 schunk->free_size = reserved_size;
ae9e6bc9
TH
1380 pcpu_reserved_chunk = schunk;
1381 pcpu_reserved_chunk_limit = static_size + reserved_size;
edcb4639
TH
1382 } else {
1383 schunk->free_size = dyn_size;
1384 dyn_size = 0; /* dynamic area covered */
1385 }
2441d15c 1386 schunk->contig_hint = schunk->free_size;
fbf59bc9 1387
61ace7fa
TH
1388 schunk->map[schunk->map_used++] = -static_size;
1389 if (schunk->free_size)
1390 schunk->map[schunk->map_used++] = schunk->free_size;
1391
edcb4639
TH
1392 /* init dynamic chunk if necessary */
1393 if (dyn_size) {
ce3141a2 1394 dchunk = alloc_bootmem(pcpu_chunk_struct_size);
edcb4639
TH
1395 INIT_LIST_HEAD(&dchunk->list);
1396 dchunk->vm = &first_vm;
1397 dchunk->map = dmap;
1398 dchunk->map_alloc = ARRAY_SIZE(dmap);
38a6be52 1399 dchunk->immutable = true;
ce3141a2 1400 bitmap_fill(dchunk->populated, pcpu_unit_pages);
edcb4639
TH
1401
1402 dchunk->contig_hint = dchunk->free_size = dyn_size;
1403 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1404 dchunk->map[dchunk->map_used++] = dchunk->free_size;
1405 }
1406
2441d15c 1407 /* link the first chunk in */
ae9e6bc9
TH
1408 pcpu_first_chunk = dchunk ?: schunk;
1409 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9
TH
1410
1411 /* we're done */
2f39e637 1412 pcpu_base_addr = schunk->vm->addr;
fbf59bc9
TH
1413 return pcpu_unit_size;
1414}
66c3a757 1415
8c4bfc6e
TH
1416static size_t pcpu_calc_fc_sizes(size_t static_size, size_t reserved_size,
1417 ssize_t *dyn_sizep)
1418{
1419 size_t size_sum;
1420
1421 size_sum = PFN_ALIGN(static_size + reserved_size +
1422 (*dyn_sizep >= 0 ? *dyn_sizep : 0));
1423 if (*dyn_sizep != 0)
1424 *dyn_sizep = size_sum - static_size - reserved_size;
1425
1426 return size_sum;
1427}
1428
66c3a757
TH
1429/**
1430 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1431 * @static_size: the size of static percpu area in bytes
1432 * @reserved_size: the size of reserved percpu area in bytes
1433 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
66c3a757
TH
1434 *
1435 * This is a helper to ease setting up embedded first percpu chunk and
1436 * can be called where pcpu_setup_first_chunk() is expected.
1437 *
1438 * If this function is used to setup the first chunk, it is allocated
1439 * as a contiguous area using bootmem allocator and used as-is without
1440 * being mapped into vmalloc area. This enables the first chunk to
1441 * piggy back on the linear physical mapping which often uses larger
1442 * page size.
1443 *
1444 * When @dyn_size is positive, dynamic area might be larger than
788e5abc
TH
1445 * specified to fill page alignment. When @dyn_size is auto,
1446 * @dyn_size is just big enough to fill page alignment after static
1447 * and reserved areas.
66c3a757
TH
1448 *
1449 * If the needed size is smaller than the minimum or specified unit
1450 * size, the leftover is returned to the bootmem allocator.
1451 *
1452 * RETURNS:
1453 * The determined pcpu_unit_size which can be used to initialize
1454 * percpu access on success, -errno on failure.
1455 */
1456ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size,
788e5abc 1457 ssize_t dyn_size)
66c3a757 1458{
ce3141a2
TH
1459 size_t size_sum, unit_size, chunk_size;
1460 void *base;
66c3a757
TH
1461 unsigned int cpu;
1462
1463 /* determine parameters and allocate */
ce3141a2 1464 size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
66c3a757 1465
ce3141a2 1466 unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
384be2b1 1467 chunk_size = unit_size * nr_cpu_ids;
fa8a7094 1468
ce3141a2
TH
1469 base = __alloc_bootmem_nopanic(chunk_size, PAGE_SIZE,
1470 __pa(MAX_DMA_ADDRESS));
1471 if (!base) {
fa8a7094
TH
1472 pr_warning("PERCPU: failed to allocate %zu bytes for "
1473 "embedding\n", chunk_size);
66c3a757 1474 return -ENOMEM;
fa8a7094 1475 }
66c3a757
TH
1476
1477 /* return the leftover and copy */
74d46d6b 1478 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
ce3141a2 1479 void *ptr = base + cpu * unit_size;
66c3a757 1480
74d46d6b 1481 if (cpu_possible(cpu)) {
384be2b1
TH
1482 free_bootmem(__pa(ptr + size_sum),
1483 unit_size - size_sum);
74d46d6b
TH
1484 memcpy(ptr, __per_cpu_load, static_size);
1485 } else
384be2b1 1486 free_bootmem(__pa(ptr), unit_size);
66c3a757
TH
1487 }
1488
1489 /* we're ready, commit */
1490 pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n",
ce3141a2 1491 size_sum >> PAGE_SHIFT, base, static_size);
d4b95f80 1492
ce3141a2 1493 return pcpu_setup_first_chunk(static_size, reserved_size, dyn_size,
2f39e637 1494 unit_size, base, NULL);
d4b95f80
TH
1495}
1496
1497/**
1498 * pcpu_4k_first_chunk - map the first chunk using PAGE_SIZE pages
1499 * @static_size: the size of static percpu area in bytes
1500 * @reserved_size: the size of reserved percpu area in bytes
1501 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1502 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
1503 * @populate_pte_fn: function to populate pte
1504 *
1505 * This is a helper to ease setting up embedded first percpu chunk and
1506 * can be called where pcpu_setup_first_chunk() is expected.
1507 *
1508 * This is the basic allocator. Static percpu area is allocated
1509 * page-by-page into vmalloc area.
1510 *
1511 * RETURNS:
1512 * The determined pcpu_unit_size which can be used to initialize
1513 * percpu access on success, -errno on failure.
1514 */
1515ssize_t __init pcpu_4k_first_chunk(size_t static_size, size_t reserved_size,
1516 pcpu_fc_alloc_fn_t alloc_fn,
1517 pcpu_fc_free_fn_t free_fn,
1518 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1519{
8f05a6a6 1520 static struct vm_struct vm;
ce3141a2 1521 int unit_pages;
d4b95f80 1522 size_t pages_size;
ce3141a2 1523 struct page **pages;
d4b95f80
TH
1524 unsigned int cpu;
1525 int i, j;
1526 ssize_t ret;
1527
ce3141a2
TH
1528 unit_pages = PFN_UP(max_t(size_t, static_size + reserved_size,
1529 PCPU_MIN_UNIT_SIZE));
d4b95f80
TH
1530
1531 /* unaligned allocations can't be freed, round up to page size */
384be2b1 1532 pages_size = PFN_ALIGN(unit_pages * nr_cpu_ids * sizeof(pages[0]));
ce3141a2 1533 pages = alloc_bootmem(pages_size);
d4b95f80 1534
8f05a6a6 1535 /* allocate pages */
d4b95f80
TH
1536 j = 0;
1537 for_each_possible_cpu(cpu)
ce3141a2 1538 for (i = 0; i < unit_pages; i++) {
d4b95f80
TH
1539 void *ptr;
1540
1541 ptr = alloc_fn(cpu, PAGE_SIZE);
1542 if (!ptr) {
1543 pr_warning("PERCPU: failed to allocate "
1544 "4k page for cpu%u\n", cpu);
1545 goto enomem;
1546 }
ce3141a2 1547 pages[j++] = virt_to_page(ptr);
d4b95f80
TH
1548 }
1549
8f05a6a6
TH
1550 /* allocate vm area, map the pages and copy static data */
1551 vm.flags = VM_ALLOC;
384be2b1 1552 vm.size = nr_cpu_ids * unit_pages << PAGE_SHIFT;
8f05a6a6
TH
1553 vm_area_register_early(&vm, PAGE_SIZE);
1554
1555 for_each_possible_cpu(cpu) {
1556 unsigned long unit_addr = (unsigned long)vm.addr +
ce3141a2 1557 (cpu * unit_pages << PAGE_SHIFT);
8f05a6a6 1558
ce3141a2 1559 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
1560 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1561
1562 /* pte already populated, the following shouldn't fail */
ce3141a2
TH
1563 ret = __pcpu_map_pages(unit_addr, &pages[cpu * unit_pages],
1564 unit_pages);
8f05a6a6
TH
1565 if (ret < 0)
1566 panic("failed to map percpu area, err=%zd\n", ret);
1567
1568 /*
1569 * FIXME: Archs with virtual cache should flush local
1570 * cache for the linear mapping here - something
1571 * equivalent to flush_cache_vmap() on the local cpu.
1572 * flush_cache_vmap() can't be used as most supporting
1573 * data structures are not set up yet.
1574 */
1575
1576 /* copy static data */
1577 memcpy((void *)unit_addr, __per_cpu_load, static_size);
1578 }
1579
d4b95f80 1580 /* we're ready, commit */
8f05a6a6 1581 pr_info("PERCPU: %d 4k pages per cpu, static data %zu bytes\n",
ce3141a2 1582 unit_pages, static_size);
d4b95f80 1583
ce3141a2 1584 ret = pcpu_setup_first_chunk(static_size, reserved_size, -1,
2f39e637 1585 unit_pages << PAGE_SHIFT, vm.addr, NULL);
d4b95f80
TH
1586 goto out_free_ar;
1587
1588enomem:
1589 while (--j >= 0)
ce3141a2 1590 free_fn(page_address(pages[j]), PAGE_SIZE);
d4b95f80
TH
1591 ret = -ENOMEM;
1592out_free_ar:
ce3141a2 1593 free_bootmem(__pa(pages), pages_size);
d4b95f80
TH
1594 return ret;
1595}
1596
8c4bfc6e
TH
1597/*
1598 * Large page remapping first chunk setup helper
1599 */
1600#ifdef CONFIG_NEED_MULTIPLE_NODES
a530b795
TH
1601
1602/**
1603 * pcpu_lpage_build_unit_map - build unit_map for large page remapping
1604 * @static_size: the size of static percpu area in bytes
1605 * @reserved_size: the size of reserved percpu area in bytes
1606 * @dyn_sizep: in/out parameter for dynamic size, -1 for auto
1607 * @unit_sizep: out parameter for unit size
1608 * @unit_map: unit_map to be filled
1609 * @cpu_distance_fn: callback to determine distance between cpus
1610 *
1611 * This function builds cpu -> unit map and determine other parameters
1612 * considering needed percpu size, large page size and distances
1613 * between CPUs in NUMA.
1614 *
1615 * CPUs which are of LOCAL_DISTANCE both ways are grouped together and
1616 * may share units in the same large page. The returned configuration
1617 * is guaranteed to have CPUs on different nodes on different large
1618 * pages and >=75% usage of allocated virtual address space.
1619 *
1620 * RETURNS:
1621 * On success, fills in @unit_map, sets *@dyn_sizep, *@unit_sizep and
1622 * returns the number of units to be allocated. -errno on failure.
1623 */
1624int __init pcpu_lpage_build_unit_map(size_t static_size, size_t reserved_size,
1625 ssize_t *dyn_sizep, size_t *unit_sizep,
1626 size_t lpage_size, int *unit_map,
1627 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1628{
1629 static int group_map[NR_CPUS] __initdata;
1630 static int group_cnt[NR_CPUS] __initdata;
1631 int group_cnt_max = 0;
1632 size_t size_sum, min_unit_size, alloc_size;
1633 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1634 int last_allocs;
1635 unsigned int cpu, tcpu;
1636 int group, unit;
1637
1638 /*
1639 * Determine min_unit_size, alloc_size and max_upa such that
1640 * alloc_size is multiple of lpage_size and is the smallest
1641 * which can accomodate 4k aligned segments which are equal to
1642 * or larger than min_unit_size.
1643 */
1644 size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, dyn_sizep);
1645 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1646
1647 alloc_size = roundup(min_unit_size, lpage_size);
1648 upa = alloc_size / min_unit_size;
1649 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1650 upa--;
1651 max_upa = upa;
1652
1653 /* group cpus according to their proximity */
1654 for_each_possible_cpu(cpu) {
1655 group = 0;
1656 next_group:
1657 for_each_possible_cpu(tcpu) {
1658 if (cpu == tcpu)
1659 break;
1660 if (group_map[tcpu] == group &&
1661 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1662 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1663 group++;
1664 goto next_group;
1665 }
1666 }
1667 group_map[cpu] = group;
1668 group_cnt[group]++;
1669 group_cnt_max = max(group_cnt_max, group_cnt[group]);
1670 }
1671
1672 /*
1673 * Expand unit size until address space usage goes over 75%
1674 * and then as much as possible without using more address
1675 * space.
1676 */
1677 last_allocs = INT_MAX;
1678 for (upa = max_upa; upa; upa--) {
1679 int allocs = 0, wasted = 0;
1680
1681 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1682 continue;
1683
1684 for (group = 0; group_cnt[group]; group++) {
1685 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1686 allocs += this_allocs;
1687 wasted += this_allocs * upa - group_cnt[group];
1688 }
1689
1690 /*
1691 * Don't accept if wastage is over 25%. The
1692 * greater-than comparison ensures upa==1 always
1693 * passes the following check.
1694 */
1695 if (wasted > num_possible_cpus() / 3)
1696 continue;
1697
1698 /* and then don't consume more memory */
1699 if (allocs > last_allocs)
1700 break;
1701 last_allocs = allocs;
1702 best_upa = upa;
1703 }
1704 *unit_sizep = alloc_size / best_upa;
1705
1706 /* assign units to cpus accordingly */
1707 unit = 0;
1708 for (group = 0; group_cnt[group]; group++) {
1709 for_each_possible_cpu(cpu)
1710 if (group_map[cpu] == group)
1711 unit_map[cpu] = unit++;
1712 unit = roundup(unit, best_upa);
1713 }
1714
1715 return unit; /* unit contains aligned number of units */
1716}
1717
8c4bfc6e 1718struct pcpul_ent {
8c4bfc6e 1719 void *ptr;
a530b795 1720 void *map_addr;
8c4bfc6e
TH
1721};
1722
1723static size_t pcpul_size;
a530b795
TH
1724static size_t pcpul_lpage_size;
1725static int pcpul_nr_lpages;
8c4bfc6e 1726static struct pcpul_ent *pcpul_map;
a530b795
TH
1727
1728static bool __init pcpul_unit_to_cpu(int unit, const int *unit_map,
1729 unsigned int *cpup)
1730{
1731 unsigned int cpu;
1732
1733 for_each_possible_cpu(cpu)
1734 if (unit_map[cpu] == unit) {
1735 if (cpup)
1736 *cpup = cpu;
1737 return true;
1738 }
1739
1740 return false;
1741}
1742
1743static void __init pcpul_lpage_dump_cfg(const char *lvl, size_t static_size,
1744 size_t reserved_size, size_t dyn_size,
1745 size_t unit_size, size_t lpage_size,
1746 const int *unit_map, int nr_units)
1747{
1748 int width = 1, v = nr_units;
1749 char empty_str[] = "--------";
1750 int upl, lpl; /* units per lpage, lpage per line */
1751 unsigned int cpu;
1752 int lpage, unit;
1753
1754 while (v /= 10)
1755 width++;
1756 empty_str[min_t(int, width, sizeof(empty_str) - 1)] = '\0';
1757
1758 upl = max_t(int, lpage_size / unit_size, 1);
1759 lpl = rounddown_pow_of_two(max_t(int, 60 / (upl * (width + 1) + 2), 1));
1760
1761 printk("%spcpu-lpage: sta/res/dyn=%zu/%zu/%zu unit=%zu lpage=%zu", lvl,
1762 static_size, reserved_size, dyn_size, unit_size, lpage_size);
1763
1764 for (lpage = 0, unit = 0; unit < nr_units; unit++) {
1765 if (!(unit % upl)) {
1766 if (!(lpage++ % lpl)) {
1767 printk("\n");
1768 printk("%spcpu-lpage: ", lvl);
1769 } else
1770 printk("| ");
1771 }
1772 if (pcpul_unit_to_cpu(unit, unit_map, &cpu))
1773 printk("%0*d ", width, cpu);
1774 else
1775 printk("%s ", empty_str);
1776 }
1777 printk("\n");
1778}
8c4bfc6e 1779
8c4bfc6e
TH
1780/**
1781 * pcpu_lpage_first_chunk - remap the first percpu chunk using large page
1782 * @static_size: the size of static percpu area in bytes
1783 * @reserved_size: the size of reserved percpu area in bytes
a530b795
TH
1784 * @dyn_size: free size for dynamic allocation in bytes
1785 * @unit_size: unit size in bytes
8c4bfc6e 1786 * @lpage_size: the size of a large page
a530b795
TH
1787 * @unit_map: cpu -> unit mapping
1788 * @nr_units: the number of units
8c4bfc6e
TH
1789 * @alloc_fn: function to allocate percpu lpage, always called with lpage_size
1790 * @free_fn: function to free percpu memory, @size <= lpage_size
1791 * @map_fn: function to map percpu lpage, always called with lpage_size
1792 *
a530b795
TH
1793 * This allocator uses large page to build and map the first chunk.
1794 * Unlike other helpers, the caller should always specify @dyn_size
1795 * and @unit_size. These parameters along with @unit_map and
1796 * @nr_units can be determined using pcpu_lpage_build_unit_map().
1797 * This two stage initialization is to allow arch code to evaluate the
1798 * parameters before committing to it.
1799 *
1800 * Large pages are allocated as directed by @unit_map and other
1801 * parameters and mapped to vmalloc space. Unused holes are returned
1802 * to the page allocator. Note that these holes end up being actively
1803 * mapped twice - once to the physical mapping and to the vmalloc area
1804 * for the first percpu chunk. Depending on architecture, this might
1805 * cause problem when changing page attributes of the returned area.
1806 * These double mapped areas can be detected using
1807 * pcpu_lpage_remapped().
8c4bfc6e
TH
1808 *
1809 * RETURNS:
1810 * The determined pcpu_unit_size which can be used to initialize
1811 * percpu access on success, -errno on failure.
1812 */
1813ssize_t __init pcpu_lpage_first_chunk(size_t static_size, size_t reserved_size,
a530b795
TH
1814 size_t dyn_size, size_t unit_size,
1815 size_t lpage_size, const int *unit_map,
1816 int nr_units,
8c4bfc6e
TH
1817 pcpu_fc_alloc_fn_t alloc_fn,
1818 pcpu_fc_free_fn_t free_fn,
1819 pcpu_fc_map_fn_t map_fn)
1820{
a530b795
TH
1821 static struct vm_struct vm;
1822 size_t chunk_size = unit_size * nr_units;
8c4bfc6e
TH
1823 size_t map_size;
1824 unsigned int cpu;
8c4bfc6e 1825 ssize_t ret;
a530b795 1826 int i, j, unit;
8c4bfc6e 1827
a530b795
TH
1828 pcpul_lpage_dump_cfg(KERN_DEBUG, static_size, reserved_size, dyn_size,
1829 unit_size, lpage_size, unit_map, nr_units);
8c4bfc6e 1830
a530b795
TH
1831 BUG_ON(chunk_size % lpage_size);
1832
1833 pcpul_size = static_size + reserved_size + dyn_size;
1834 pcpul_lpage_size = lpage_size;
1835 pcpul_nr_lpages = chunk_size / lpage_size;
8c4bfc6e
TH
1836
1837 /* allocate pointer array and alloc large pages */
a530b795 1838 map_size = pcpul_nr_lpages * sizeof(pcpul_map[0]);
8c4bfc6e
TH
1839 pcpul_map = alloc_bootmem(map_size);
1840
a530b795
TH
1841 /* allocate all pages */
1842 for (i = 0; i < pcpul_nr_lpages; i++) {
1843 size_t offset = i * lpage_size;
1844 int first_unit = offset / unit_size;
1845 int last_unit = (offset + lpage_size - 1) / unit_size;
8c4bfc6e
TH
1846 void *ptr;
1847
a530b795
TH
1848 /* find out which cpu is mapped to this unit */
1849 for (unit = first_unit; unit <= last_unit; unit++)
1850 if (pcpul_unit_to_cpu(unit, unit_map, &cpu))
1851 goto found;
1852 continue;
1853 found:
8c4bfc6e
TH
1854 ptr = alloc_fn(cpu, lpage_size);
1855 if (!ptr) {
1856 pr_warning("PERCPU: failed to allocate large page "
1857 "for cpu%u\n", cpu);
1858 goto enomem;
1859 }
1860
a530b795
TH
1861 pcpul_map[i].ptr = ptr;
1862 }
8c4bfc6e 1863
a530b795
TH
1864 /* return unused holes */
1865 for (unit = 0; unit < nr_units; unit++) {
1866 size_t start = unit * unit_size;
1867 size_t end = start + unit_size;
1868 size_t off, next;
1869
1870 /* don't free used part of occupied unit */
1871 if (pcpul_unit_to_cpu(unit, unit_map, NULL))
1872 start += pcpul_size;
1873
1874 /* unit can span more than one page, punch the holes */
1875 for (off = start; off < end; off = next) {
1876 void *ptr = pcpul_map[off / lpage_size].ptr;
1877 next = min(roundup(off + 1, lpage_size), end);
1878 if (ptr)
1879 free_fn(ptr + off % lpage_size, next - off);
1880 }
8c4bfc6e
TH
1881 }
1882
a530b795
TH
1883 /* allocate address, map and copy */
1884 vm.flags = VM_ALLOC;
1885 vm.size = chunk_size;
1886 vm_area_register_early(&vm, unit_size);
1887
1888 for (i = 0; i < pcpul_nr_lpages; i++) {
1889 if (!pcpul_map[i].ptr)
1890 continue;
1891 pcpul_map[i].map_addr = vm.addr + i * lpage_size;
1892 map_fn(pcpul_map[i].ptr, lpage_size, pcpul_map[i].map_addr);
1893 }
8c4bfc6e
TH
1894
1895 for_each_possible_cpu(cpu)
a530b795
TH
1896 memcpy(vm.addr + unit_map[cpu] * unit_size, __per_cpu_load,
1897 static_size);
8c4bfc6e
TH
1898
1899 /* we're ready, commit */
1900 pr_info("PERCPU: Remapped at %p with large pages, static data "
a530b795 1901 "%zu bytes\n", vm.addr, static_size);
8c4bfc6e 1902
ce3141a2 1903 ret = pcpu_setup_first_chunk(static_size, reserved_size, dyn_size,
a530b795
TH
1904 unit_size, vm.addr, unit_map);
1905
1906 /*
1907 * Sort pcpul_map array for pcpu_lpage_remapped(). Unmapped
1908 * lpages are pushed to the end and trimmed.
1909 */
1910 for (i = 0; i < pcpul_nr_lpages - 1; i++)
1911 for (j = i + 1; j < pcpul_nr_lpages; j++) {
1912 struct pcpul_ent tmp;
1913
1914 if (!pcpul_map[j].ptr)
1915 continue;
1916 if (pcpul_map[i].ptr &&
1917 pcpul_map[i].ptr < pcpul_map[j].ptr)
1918 continue;
1919
1920 tmp = pcpul_map[i];
1921 pcpul_map[i] = pcpul_map[j];
1922 pcpul_map[j] = tmp;
1923 }
1924
1925 while (pcpul_nr_lpages && !pcpul_map[pcpul_nr_lpages - 1].ptr)
1926 pcpul_nr_lpages--;
8c4bfc6e
TH
1927
1928 return ret;
1929
1930enomem:
a530b795
TH
1931 for (i = 0; i < pcpul_nr_lpages; i++)
1932 if (pcpul_map[i].ptr)
1933 free_fn(pcpul_map[i].ptr, lpage_size);
8c4bfc6e
TH
1934 free_bootmem(__pa(pcpul_map), map_size);
1935 return -ENOMEM;
1936}
1937
1938/**
1939 * pcpu_lpage_remapped - determine whether a kaddr is in pcpul recycled area
1940 * @kaddr: the kernel address in question
1941 *
1942 * Determine whether @kaddr falls in the pcpul recycled area. This is
1943 * used by pageattr to detect VM aliases and break up the pcpu large
1944 * page mapping such that the same physical page is not mapped under
1945 * different attributes.
1946 *
1947 * The recycled area is always at the tail of a partially used large
1948 * page.
1949 *
1950 * RETURNS:
1951 * Address of corresponding remapped pcpu address if match is found;
1952 * otherwise, NULL.
1953 */
1954void *pcpu_lpage_remapped(void *kaddr)
1955{
a530b795
TH
1956 unsigned long lpage_mask = pcpul_lpage_size - 1;
1957 void *lpage_addr = (void *)((unsigned long)kaddr & ~lpage_mask);
1958 unsigned long offset = (unsigned long)kaddr & lpage_mask;
1959 int left = 0, right = pcpul_nr_lpages - 1;
8c4bfc6e
TH
1960 int pos;
1961
1962 /* pcpul in use at all? */
1963 if (!pcpul_map)
1964 return NULL;
1965
1966 /* okay, perform binary search */
1967 while (left <= right) {
1968 pos = (left + right) / 2;
1969
1970 if (pcpul_map[pos].ptr < lpage_addr)
1971 left = pos + 1;
1972 else if (pcpul_map[pos].ptr > lpage_addr)
1973 right = pos - 1;
a530b795
TH
1974 else
1975 return pcpul_map[pos].map_addr + offset;
8c4bfc6e
TH
1976 }
1977
1978 return NULL;
1979}
1980#endif
1981
e74e3962
TH
1982/*
1983 * Generic percpu area setup.
1984 *
1985 * The embedding helper is used because its behavior closely resembles
1986 * the original non-dynamic generic percpu area setup. This is
1987 * important because many archs have addressing restrictions and might
1988 * fail if the percpu area is located far away from the previous
1989 * location. As an added bonus, in non-NUMA cases, embedding is
1990 * generally a good idea TLB-wise because percpu area can piggy back
1991 * on the physical linear memory mapping which uses large page
1992 * mappings on applicable archs.
1993 */
1994#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
1995unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1996EXPORT_SYMBOL(__per_cpu_offset);
1997
1998void __init setup_per_cpu_areas(void)
1999{
2000 size_t static_size = __per_cpu_end - __per_cpu_start;
2001 ssize_t unit_size;
2002 unsigned long delta;
2003 unsigned int cpu;
2004
2005 /*
2006 * Always reserve area for module percpu variables. That's
2007 * what the legacy allocator did.
2008 */
2009 unit_size = pcpu_embed_first_chunk(static_size, PERCPU_MODULE_RESERVE,
788e5abc 2010 PERCPU_DYNAMIC_RESERVE);
e74e3962
TH
2011 if (unit_size < 0)
2012 panic("Failed to initialized percpu areas.");
2013
2014 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2015 for_each_possible_cpu(cpu)
2016 __per_cpu_offset[cpu] = delta + cpu * unit_size;
2017}
2018#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */