]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/percpu.c
percpu: factor out pcpu_addr_in_first/reserved_chunk() and update per_cpu_ptr_to_phys()
[net-next-2.6.git] / mm / percpu.c
CommitLineData
fbf59bc9
TH
1/*
2 * linux/mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each
2f39e637
TH
11 * chunk is consisted of boot-time determined number of units and the
12 * first chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated. ie. in
17 * vmalloc area
fbf59bc9
TH
18 *
19 * c0 c1 c2
20 * ------------------- ------------------- ------------
21 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
22 * ------------------- ...... ------------------- .... ------------
23 *
24 * Allocation is done in offset-size areas of single unit space. Ie,
25 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
2f39e637
TH
26 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
27 * cpus. On NUMA, the mapping can be non-linear and even sparse.
28 * Percpu access can be done by configuring percpu base registers
29 * according to cpu to unit mapping and pcpu_unit_size.
fbf59bc9 30 *
2f39e637
TH
31 * There are usually many small percpu allocations many of them being
32 * as small as 4 bytes. The allocator organizes chunks into lists
fbf59bc9
TH
33 * according to free size and tries to allocate from the fullest one.
34 * Each chunk keeps the maximum contiguous area size hint which is
35 * guaranteed to be eqaul to or larger than the maximum contiguous
36 * area in the chunk. This helps the allocator not to iterate the
37 * chunk maps unnecessarily.
38 *
39 * Allocation state in each chunk is kept using an array of integers
40 * on chunk->map. A positive value in the map represents a free
41 * region and negative allocated. Allocation inside a chunk is done
42 * by scanning this map sequentially and serving the first matching
43 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
44 * Chunks can be determined from the address using the index field
45 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9
TH
46 *
47 * To use this allocator, arch code should do the followings.
48 *
fbf59bc9 49 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
50 * regular address to percpu pointer and back if they need to be
51 * different from the default
fbf59bc9 52 *
8d408b4b
TH
53 * - use pcpu_setup_first_chunk() during percpu area initialization to
54 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
55 */
56
57#include <linux/bitmap.h>
58#include <linux/bootmem.h>
fd1e8a1f 59#include <linux/err.h>
fbf59bc9 60#include <linux/list.h>
a530b795 61#include <linux/log2.h>
fbf59bc9
TH
62#include <linux/mm.h>
63#include <linux/module.h>
64#include <linux/mutex.h>
65#include <linux/percpu.h>
66#include <linux/pfn.h>
fbf59bc9 67#include <linux/slab.h>
ccea34b5 68#include <linux/spinlock.h>
fbf59bc9 69#include <linux/vmalloc.h>
a56dbddf 70#include <linux/workqueue.h>
fbf59bc9
TH
71
72#include <asm/cacheflush.h>
e0100983 73#include <asm/sections.h>
fbf59bc9 74#include <asm/tlbflush.h>
3b034b0d 75#include <asm/io.h>
fbf59bc9 76
fbf59bc9
TH
77#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
78#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
79
e0100983
TH
80/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
81#ifndef __addr_to_pcpu_ptr
82#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
83 (void __percpu *)((unsigned long)(addr) - \
84 (unsigned long)pcpu_base_addr + \
85 (unsigned long)__per_cpu_start)
e0100983
TH
86#endif
87#ifndef __pcpu_ptr_to_addr
88#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
89 (void __force *)((unsigned long)(ptr) + \
90 (unsigned long)pcpu_base_addr - \
91 (unsigned long)__per_cpu_start)
e0100983
TH
92#endif
93
fbf59bc9
TH
94struct pcpu_chunk {
95 struct list_head list; /* linked to pcpu_slot lists */
fbf59bc9
TH
96 int free_size; /* free bytes in the chunk */
97 int contig_hint; /* max contiguous size hint */
bba174f5 98 void *base_addr; /* base address of this chunk */
fbf59bc9
TH
99 int map_used; /* # of map entries used */
100 int map_alloc; /* # of map entries allocated */
101 int *map; /* allocation map */
6563297c 102 struct vm_struct **vms; /* mapped vmalloc regions */
8d408b4b 103 bool immutable; /* no [de]population allowed */
ce3141a2 104 unsigned long populated[]; /* populated bitmap */
fbf59bc9
TH
105};
106
40150d37
TH
107static int pcpu_unit_pages __read_mostly;
108static int pcpu_unit_size __read_mostly;
2f39e637 109static int pcpu_nr_units __read_mostly;
6563297c 110static int pcpu_atom_size __read_mostly;
40150d37
TH
111static int pcpu_nr_slots __read_mostly;
112static size_t pcpu_chunk_struct_size __read_mostly;
fbf59bc9 113
2f39e637
TH
114/* cpus with the lowest and highest unit numbers */
115static unsigned int pcpu_first_unit_cpu __read_mostly;
116static unsigned int pcpu_last_unit_cpu __read_mostly;
117
fbf59bc9 118/* the address of the first chunk which starts with the kernel static area */
40150d37 119void *pcpu_base_addr __read_mostly;
fbf59bc9
TH
120EXPORT_SYMBOL_GPL(pcpu_base_addr);
121
fb435d52
TH
122static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
123const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
2f39e637 124
6563297c
TH
125/* group information, used for vm allocation */
126static int pcpu_nr_groups __read_mostly;
127static const unsigned long *pcpu_group_offsets __read_mostly;
128static const size_t *pcpu_group_sizes __read_mostly;
129
ae9e6bc9
TH
130/*
131 * The first chunk which always exists. Note that unlike other
132 * chunks, this one can be allocated and mapped in several different
133 * ways and thus often doesn't live in the vmalloc area.
134 */
135static struct pcpu_chunk *pcpu_first_chunk;
136
137/*
138 * Optional reserved chunk. This chunk reserves part of the first
139 * chunk and serves it for reserved allocations. The amount of
140 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
141 * area doesn't exist, the following variables contain NULL and 0
142 * respectively.
143 */
edcb4639 144static struct pcpu_chunk *pcpu_reserved_chunk;
edcb4639
TH
145static int pcpu_reserved_chunk_limit;
146
fbf59bc9 147/*
ccea34b5
TH
148 * Synchronization rules.
149 *
150 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
ce3141a2
TH
151 * protects allocation/reclaim paths, chunks, populated bitmap and
152 * vmalloc mapping. The latter is a spinlock and protects the index
153 * data structures - chunk slots, chunks and area maps in chunks.
ccea34b5
TH
154 *
155 * During allocation, pcpu_alloc_mutex is kept locked all the time and
156 * pcpu_lock is grabbed and released as necessary. All actual memory
403a91b1
JK
157 * allocations are done using GFP_KERNEL with pcpu_lock released. In
158 * general, percpu memory can't be allocated with irq off but
159 * irqsave/restore are still used in alloc path so that it can be used
160 * from early init path - sched_init() specifically.
ccea34b5
TH
161 *
162 * Free path accesses and alters only the index data structures, so it
163 * can be safely called from atomic context. When memory needs to be
164 * returned to the system, free path schedules reclaim_work which
165 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
166 * reclaimed, release both locks and frees the chunks. Note that it's
167 * necessary to grab both locks to remove a chunk from circulation as
168 * allocation path might be referencing the chunk with only
169 * pcpu_alloc_mutex locked.
fbf59bc9 170 */
ccea34b5
TH
171static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
172static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
fbf59bc9 173
40150d37 174static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
fbf59bc9 175
a56dbddf
TH
176/* reclaim work to release fully free chunks, scheduled from free path */
177static void pcpu_reclaim(struct work_struct *work);
178static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
179
020ec653
TH
180static bool pcpu_addr_in_first_chunk(void *addr)
181{
182 void *first_start = pcpu_first_chunk->base_addr;
183
184 return addr >= first_start && addr < first_start + pcpu_unit_size;
185}
186
187static bool pcpu_addr_in_reserved_chunk(void *addr)
188{
189 void *first_start = pcpu_first_chunk->base_addr;
190
191 return addr >= first_start &&
192 addr < first_start + pcpu_reserved_chunk_limit;
193}
194
d9b55eeb 195static int __pcpu_size_to_slot(int size)
fbf59bc9 196{
cae3aeb8 197 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
198 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
199}
200
d9b55eeb
TH
201static int pcpu_size_to_slot(int size)
202{
203 if (size == pcpu_unit_size)
204 return pcpu_nr_slots - 1;
205 return __pcpu_size_to_slot(size);
206}
207
fbf59bc9
TH
208static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
209{
210 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
211 return 0;
212
213 return pcpu_size_to_slot(chunk->free_size);
214}
215
216static int pcpu_page_idx(unsigned int cpu, int page_idx)
217{
2f39e637 218 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
219}
220
221static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
222 unsigned int cpu, int page_idx)
223{
bba174f5 224 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
fb435d52 225 (page_idx << PAGE_SHIFT);
fbf59bc9
TH
226}
227
ce3141a2
TH
228static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
229 unsigned int cpu, int page_idx)
fbf59bc9 230{
ce3141a2
TH
231 /* must not be used on pre-mapped chunk */
232 WARN_ON(chunk->immutable);
c8a51be4 233
ce3141a2 234 return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
fbf59bc9
TH
235}
236
e1b9aa3f
CL
237/* set the pointer to a chunk in a page struct */
238static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
239{
240 page->index = (unsigned long)pcpu;
241}
242
243/* obtain pointer to a chunk from a page struct */
244static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
245{
246 return (struct pcpu_chunk *)page->index;
247}
248
ce3141a2
TH
249static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
250{
251 *rs = find_next_zero_bit(chunk->populated, end, *rs);
252 *re = find_next_bit(chunk->populated, end, *rs + 1);
253}
254
255static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
256{
257 *rs = find_next_bit(chunk->populated, end, *rs);
258 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
259}
260
261/*
262 * (Un)populated page region iterators. Iterate over (un)populated
263 * page regions betwen @start and @end in @chunk. @rs and @re should
264 * be integer variables and will be set to start and end page index of
265 * the current region.
266 */
267#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
268 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
269 (rs) < (re); \
270 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
271
272#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
273 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
274 (rs) < (re); \
275 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
276
fbf59bc9 277/**
1880d93b
TH
278 * pcpu_mem_alloc - allocate memory
279 * @size: bytes to allocate
fbf59bc9 280 *
1880d93b
TH
281 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
282 * kzalloc() is used; otherwise, vmalloc() is used. The returned
283 * memory is always zeroed.
fbf59bc9 284 *
ccea34b5
TH
285 * CONTEXT:
286 * Does GFP_KERNEL allocation.
287 *
fbf59bc9 288 * RETURNS:
1880d93b 289 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 290 */
1880d93b 291static void *pcpu_mem_alloc(size_t size)
fbf59bc9 292{
1880d93b
TH
293 if (size <= PAGE_SIZE)
294 return kzalloc(size, GFP_KERNEL);
295 else {
296 void *ptr = vmalloc(size);
297 if (ptr)
298 memset(ptr, 0, size);
299 return ptr;
300 }
301}
fbf59bc9 302
1880d93b
TH
303/**
304 * pcpu_mem_free - free memory
305 * @ptr: memory to free
306 * @size: size of the area
307 *
308 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
309 */
310static void pcpu_mem_free(void *ptr, size_t size)
311{
fbf59bc9 312 if (size <= PAGE_SIZE)
1880d93b 313 kfree(ptr);
fbf59bc9 314 else
1880d93b 315 vfree(ptr);
fbf59bc9
TH
316}
317
318/**
319 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
320 * @chunk: chunk of interest
321 * @oslot: the previous slot it was on
322 *
323 * This function is called after an allocation or free changed @chunk.
324 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
325 * moved to the slot. Note that the reserved chunk is never put on
326 * chunk slots.
ccea34b5
TH
327 *
328 * CONTEXT:
329 * pcpu_lock.
fbf59bc9
TH
330 */
331static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
332{
333 int nslot = pcpu_chunk_slot(chunk);
334
edcb4639 335 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
336 if (oslot < nslot)
337 list_move(&chunk->list, &pcpu_slot[nslot]);
338 else
339 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
340 }
341}
342
fbf59bc9 343/**
e1b9aa3f
CL
344 * pcpu_chunk_addr_search - determine chunk containing specified address
345 * @addr: address for which the chunk needs to be determined.
ccea34b5 346 *
fbf59bc9
TH
347 * RETURNS:
348 * The address of the found chunk.
349 */
350static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
351{
ae9e6bc9 352 /* is it in the first chunk? */
020ec653 353 if (pcpu_addr_in_first_chunk(addr)) {
ae9e6bc9 354 /* is it in the reserved area? */
020ec653 355 if (pcpu_addr_in_reserved_chunk(addr))
edcb4639 356 return pcpu_reserved_chunk;
ae9e6bc9 357 return pcpu_first_chunk;
edcb4639
TH
358 }
359
04a13c7c
TH
360 /*
361 * The address is relative to unit0 which might be unused and
362 * thus unmapped. Offset the address to the unit space of the
363 * current processor before looking it up in the vmalloc
364 * space. Note that any possible cpu id can be used here, so
365 * there's no need to worry about preemption or cpu hotplug.
366 */
5579fd7e 367 addr += pcpu_unit_offsets[raw_smp_processor_id()];
e1b9aa3f 368 return pcpu_get_page_chunk(vmalloc_to_page(addr));
fbf59bc9
TH
369}
370
9f7dcf22 371/**
833af842
TH
372 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
373 * @chunk: chunk of interest
9f7dcf22 374 *
833af842
TH
375 * Determine whether area map of @chunk needs to be extended to
376 * accomodate a new allocation.
9f7dcf22 377 *
ccea34b5 378 * CONTEXT:
833af842 379 * pcpu_lock.
ccea34b5 380 *
9f7dcf22 381 * RETURNS:
833af842
TH
382 * New target map allocation length if extension is necessary, 0
383 * otherwise.
9f7dcf22 384 */
833af842 385static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
9f7dcf22
TH
386{
387 int new_alloc;
9f7dcf22 388
9f7dcf22
TH
389 if (chunk->map_alloc >= chunk->map_used + 2)
390 return 0;
391
392 new_alloc = PCPU_DFL_MAP_ALLOC;
393 while (new_alloc < chunk->map_used + 2)
394 new_alloc *= 2;
395
833af842
TH
396 return new_alloc;
397}
398
399/**
400 * pcpu_extend_area_map - extend area map of a chunk
401 * @chunk: chunk of interest
402 * @new_alloc: new target allocation length of the area map
403 *
404 * Extend area map of @chunk to have @new_alloc entries.
405 *
406 * CONTEXT:
407 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
408 *
409 * RETURNS:
410 * 0 on success, -errno on failure.
411 */
412static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
413{
414 int *old = NULL, *new = NULL;
415 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
416 unsigned long flags;
417
418 new = pcpu_mem_alloc(new_size);
419 if (!new)
9f7dcf22 420 return -ENOMEM;
ccea34b5 421
833af842
TH
422 /* acquire pcpu_lock and switch to new area map */
423 spin_lock_irqsave(&pcpu_lock, flags);
424
425 if (new_alloc <= chunk->map_alloc)
426 goto out_unlock;
9f7dcf22 427
833af842
TH
428 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
429 memcpy(new, chunk->map, old_size);
9f7dcf22
TH
430
431 /*
432 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
433 * one of the first chunks and still using static map.
434 */
435 if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
833af842 436 old = chunk->map;
9f7dcf22
TH
437
438 chunk->map_alloc = new_alloc;
439 chunk->map = new;
833af842
TH
440 new = NULL;
441
442out_unlock:
443 spin_unlock_irqrestore(&pcpu_lock, flags);
444
445 /*
446 * pcpu_mem_free() might end up calling vfree() which uses
447 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
448 */
449 pcpu_mem_free(old, old_size);
450 pcpu_mem_free(new, new_size);
451
9f7dcf22
TH
452 return 0;
453}
454
fbf59bc9
TH
455/**
456 * pcpu_split_block - split a map block
457 * @chunk: chunk of interest
458 * @i: index of map block to split
cae3aeb8
TH
459 * @head: head size in bytes (can be 0)
460 * @tail: tail size in bytes (can be 0)
fbf59bc9
TH
461 *
462 * Split the @i'th map block into two or three blocks. If @head is
463 * non-zero, @head bytes block is inserted before block @i moving it
464 * to @i+1 and reducing its size by @head bytes.
465 *
466 * If @tail is non-zero, the target block, which can be @i or @i+1
467 * depending on @head, is reduced by @tail bytes and @tail byte block
468 * is inserted after the target block.
469 *
9f7dcf22 470 * @chunk->map must have enough free slots to accomodate the split.
ccea34b5
TH
471 *
472 * CONTEXT:
473 * pcpu_lock.
fbf59bc9 474 */
9f7dcf22
TH
475static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
476 int head, int tail)
fbf59bc9
TH
477{
478 int nr_extra = !!head + !!tail;
1880d93b 479
9f7dcf22 480 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
fbf59bc9 481
9f7dcf22 482 /* insert new subblocks */
fbf59bc9
TH
483 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
484 sizeof(chunk->map[0]) * (chunk->map_used - i));
485 chunk->map_used += nr_extra;
486
487 if (head) {
488 chunk->map[i + 1] = chunk->map[i] - head;
489 chunk->map[i++] = head;
490 }
491 if (tail) {
492 chunk->map[i++] -= tail;
493 chunk->map[i] = tail;
494 }
fbf59bc9
TH
495}
496
497/**
498 * pcpu_alloc_area - allocate area from a pcpu_chunk
499 * @chunk: chunk of interest
cae3aeb8 500 * @size: wanted size in bytes
fbf59bc9
TH
501 * @align: wanted align
502 *
503 * Try to allocate @size bytes area aligned at @align from @chunk.
504 * Note that this function only allocates the offset. It doesn't
505 * populate or map the area.
506 *
9f7dcf22
TH
507 * @chunk->map must have at least two free slots.
508 *
ccea34b5
TH
509 * CONTEXT:
510 * pcpu_lock.
511 *
fbf59bc9 512 * RETURNS:
9f7dcf22
TH
513 * Allocated offset in @chunk on success, -1 if no matching area is
514 * found.
fbf59bc9
TH
515 */
516static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
517{
518 int oslot = pcpu_chunk_slot(chunk);
519 int max_contig = 0;
520 int i, off;
521
fbf59bc9
TH
522 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
523 bool is_last = i + 1 == chunk->map_used;
524 int head, tail;
525
526 /* extra for alignment requirement */
527 head = ALIGN(off, align) - off;
528 BUG_ON(i == 0 && head != 0);
529
530 if (chunk->map[i] < 0)
531 continue;
532 if (chunk->map[i] < head + size) {
533 max_contig = max(chunk->map[i], max_contig);
534 continue;
535 }
536
537 /*
538 * If head is small or the previous block is free,
539 * merge'em. Note that 'small' is defined as smaller
540 * than sizeof(int), which is very small but isn't too
541 * uncommon for percpu allocations.
542 */
543 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
544 if (chunk->map[i - 1] > 0)
545 chunk->map[i - 1] += head;
546 else {
547 chunk->map[i - 1] -= head;
548 chunk->free_size -= head;
549 }
550 chunk->map[i] -= head;
551 off += head;
552 head = 0;
553 }
554
555 /* if tail is small, just keep it around */
556 tail = chunk->map[i] - head - size;
557 if (tail < sizeof(int))
558 tail = 0;
559
560 /* split if warranted */
561 if (head || tail) {
9f7dcf22 562 pcpu_split_block(chunk, i, head, tail);
fbf59bc9
TH
563 if (head) {
564 i++;
565 off += head;
566 max_contig = max(chunk->map[i - 1], max_contig);
567 }
568 if (tail)
569 max_contig = max(chunk->map[i + 1], max_contig);
570 }
571
572 /* update hint and mark allocated */
573 if (is_last)
574 chunk->contig_hint = max_contig; /* fully scanned */
575 else
576 chunk->contig_hint = max(chunk->contig_hint,
577 max_contig);
578
579 chunk->free_size -= chunk->map[i];
580 chunk->map[i] = -chunk->map[i];
581
582 pcpu_chunk_relocate(chunk, oslot);
583 return off;
584 }
585
586 chunk->contig_hint = max_contig; /* fully scanned */
587 pcpu_chunk_relocate(chunk, oslot);
588
9f7dcf22
TH
589 /* tell the upper layer that this chunk has no matching area */
590 return -1;
fbf59bc9
TH
591}
592
593/**
594 * pcpu_free_area - free area to a pcpu_chunk
595 * @chunk: chunk of interest
596 * @freeme: offset of area to free
597 *
598 * Free area starting from @freeme to @chunk. Note that this function
599 * only modifies the allocation map. It doesn't depopulate or unmap
600 * the area.
ccea34b5
TH
601 *
602 * CONTEXT:
603 * pcpu_lock.
fbf59bc9
TH
604 */
605static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
606{
607 int oslot = pcpu_chunk_slot(chunk);
608 int i, off;
609
610 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
611 if (off == freeme)
612 break;
613 BUG_ON(off != freeme);
614 BUG_ON(chunk->map[i] > 0);
615
616 chunk->map[i] = -chunk->map[i];
617 chunk->free_size += chunk->map[i];
618
619 /* merge with previous? */
620 if (i > 0 && chunk->map[i - 1] >= 0) {
621 chunk->map[i - 1] += chunk->map[i];
622 chunk->map_used--;
623 memmove(&chunk->map[i], &chunk->map[i + 1],
624 (chunk->map_used - i) * sizeof(chunk->map[0]));
625 i--;
626 }
627 /* merge with next? */
628 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
629 chunk->map[i] += chunk->map[i + 1];
630 chunk->map_used--;
631 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
632 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
633 }
634
635 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
636 pcpu_chunk_relocate(chunk, oslot);
637}
638
639/**
ce3141a2 640 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
fbf59bc9 641 * @chunk: chunk of interest
ce3141a2
TH
642 * @bitmapp: output parameter for bitmap
643 * @may_alloc: may allocate the array
fbf59bc9 644 *
ce3141a2
TH
645 * Returns pointer to array of pointers to struct page and bitmap,
646 * both of which can be indexed with pcpu_page_idx(). The returned
647 * array is cleared to zero and *@bitmapp is copied from
648 * @chunk->populated. Note that there is only one array and bitmap
649 * and access exclusion is the caller's responsibility.
650 *
651 * CONTEXT:
652 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
653 * Otherwise, don't care.
654 *
655 * RETURNS:
656 * Pointer to temp pages array on success, NULL on failure.
fbf59bc9 657 */
ce3141a2
TH
658static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
659 unsigned long **bitmapp,
660 bool may_alloc)
fbf59bc9 661{
ce3141a2
TH
662 static struct page **pages;
663 static unsigned long *bitmap;
2f39e637 664 size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
ce3141a2
TH
665 size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
666 sizeof(unsigned long);
667
668 if (!pages || !bitmap) {
669 if (may_alloc && !pages)
670 pages = pcpu_mem_alloc(pages_size);
671 if (may_alloc && !bitmap)
672 bitmap = pcpu_mem_alloc(bitmap_size);
673 if (!pages || !bitmap)
674 return NULL;
675 }
fbf59bc9 676
ce3141a2
TH
677 memset(pages, 0, pages_size);
678 bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
8d408b4b 679
ce3141a2
TH
680 *bitmapp = bitmap;
681 return pages;
682}
fbf59bc9 683
ce3141a2
TH
684/**
685 * pcpu_free_pages - free pages which were allocated for @chunk
686 * @chunk: chunk pages were allocated for
687 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
688 * @populated: populated bitmap
689 * @page_start: page index of the first page to be freed
690 * @page_end: page index of the last page to be freed + 1
691 *
692 * Free pages [@page_start and @page_end) in @pages for all units.
693 * The pages were allocated for @chunk.
694 */
695static void pcpu_free_pages(struct pcpu_chunk *chunk,
696 struct page **pages, unsigned long *populated,
697 int page_start, int page_end)
698{
699 unsigned int cpu;
700 int i;
701
702 for_each_possible_cpu(cpu) {
703 for (i = page_start; i < page_end; i++) {
704 struct page *page = pages[pcpu_page_idx(cpu, i)];
705
706 if (page)
707 __free_page(page);
708 }
709 }
fbf59bc9
TH
710}
711
712/**
ce3141a2
TH
713 * pcpu_alloc_pages - allocates pages for @chunk
714 * @chunk: target chunk
715 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
716 * @populated: populated bitmap
717 * @page_start: page index of the first page to be allocated
718 * @page_end: page index of the last page to be allocated + 1
719 *
720 * Allocate pages [@page_start,@page_end) into @pages for all units.
721 * The allocation is for @chunk. Percpu core doesn't care about the
722 * content of @pages and will pass it verbatim to pcpu_map_pages().
fbf59bc9 723 */
ce3141a2
TH
724static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
725 struct page **pages, unsigned long *populated,
726 int page_start, int page_end)
fbf59bc9 727{
ce3141a2 728 const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
fbf59bc9
TH
729 unsigned int cpu;
730 int i;
731
ce3141a2
TH
732 for_each_possible_cpu(cpu) {
733 for (i = page_start; i < page_end; i++) {
734 struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
735
736 *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
737 if (!*pagep) {
738 pcpu_free_pages(chunk, pages, populated,
739 page_start, page_end);
740 return -ENOMEM;
741 }
742 }
743 }
744 return 0;
745}
fbf59bc9 746
ce3141a2
TH
747/**
748 * pcpu_pre_unmap_flush - flush cache prior to unmapping
749 * @chunk: chunk the regions to be flushed belongs to
750 * @page_start: page index of the first page to be flushed
751 * @page_end: page index of the last page to be flushed + 1
752 *
753 * Pages in [@page_start,@page_end) of @chunk are about to be
754 * unmapped. Flush cache. As each flushing trial can be very
755 * expensive, issue flush on the whole region at once rather than
756 * doing it for each cpu. This could be an overkill but is more
757 * scalable.
758 */
759static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
760 int page_start, int page_end)
761{
2f39e637
TH
762 flush_cache_vunmap(
763 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
764 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
ce3141a2
TH
765}
766
767static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
768{
769 unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
770}
fbf59bc9 771
ce3141a2
TH
772/**
773 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
fbf59bc9 774 * @chunk: chunk of interest
ce3141a2
TH
775 * @pages: pages array which can be used to pass information to free
776 * @populated: populated bitmap
fbf59bc9
TH
777 * @page_start: page index of the first page to unmap
778 * @page_end: page index of the last page to unmap + 1
fbf59bc9
TH
779 *
780 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
ce3141a2
TH
781 * Corresponding elements in @pages were cleared by the caller and can
782 * be used to carry information to pcpu_free_pages() which will be
783 * called after all unmaps are finished. The caller should call
784 * proper pre/post flush functions.
fbf59bc9 785 */
ce3141a2
TH
786static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
787 struct page **pages, unsigned long *populated,
788 int page_start, int page_end)
fbf59bc9 789{
fbf59bc9 790 unsigned int cpu;
ce3141a2 791 int i;
fbf59bc9 792
ce3141a2
TH
793 for_each_possible_cpu(cpu) {
794 for (i = page_start; i < page_end; i++) {
795 struct page *page;
fbf59bc9 796
ce3141a2
TH
797 page = pcpu_chunk_page(chunk, cpu, i);
798 WARN_ON(!page);
799 pages[pcpu_page_idx(cpu, i)] = page;
fbf59bc9 800 }
ce3141a2
TH
801 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
802 page_end - page_start);
fbf59bc9
TH
803 }
804
ce3141a2
TH
805 for (i = page_start; i < page_end; i++)
806 __clear_bit(i, populated);
807}
808
809/**
810 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
811 * @chunk: pcpu_chunk the regions to be flushed belong to
812 * @page_start: page index of the first page to be flushed
813 * @page_end: page index of the last page to be flushed + 1
814 *
815 * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
816 * TLB for the regions. This can be skipped if the area is to be
817 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
818 *
819 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
820 * for the whole region.
821 */
822static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
823 int page_start, int page_end)
824{
2f39e637
TH
825 flush_tlb_kernel_range(
826 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
827 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
fbf59bc9
TH
828}
829
c8a51be4
TH
830static int __pcpu_map_pages(unsigned long addr, struct page **pages,
831 int nr_pages)
832{
833 return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
834 PAGE_KERNEL, pages);
fbf59bc9
TH
835}
836
837/**
ce3141a2 838 * pcpu_map_pages - map pages into a pcpu_chunk
fbf59bc9 839 * @chunk: chunk of interest
ce3141a2
TH
840 * @pages: pages array containing pages to be mapped
841 * @populated: populated bitmap
fbf59bc9
TH
842 * @page_start: page index of the first page to map
843 * @page_end: page index of the last page to map + 1
844 *
ce3141a2
TH
845 * For each cpu, map pages [@page_start,@page_end) into @chunk. The
846 * caller is responsible for calling pcpu_post_map_flush() after all
847 * mappings are complete.
848 *
849 * This function is responsible for setting corresponding bits in
850 * @chunk->populated bitmap and whatever is necessary for reverse
851 * lookup (addr -> chunk).
fbf59bc9 852 */
ce3141a2
TH
853static int pcpu_map_pages(struct pcpu_chunk *chunk,
854 struct page **pages, unsigned long *populated,
855 int page_start, int page_end)
fbf59bc9 856{
ce3141a2
TH
857 unsigned int cpu, tcpu;
858 int i, err;
8d408b4b 859
fbf59bc9 860 for_each_possible_cpu(cpu) {
c8a51be4 861 err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
ce3141a2 862 &pages[pcpu_page_idx(cpu, page_start)],
c8a51be4 863 page_end - page_start);
fbf59bc9 864 if (err < 0)
ce3141a2 865 goto err;
c8a51be4
TH
866 }
867
ce3141a2
TH
868 /* mapping successful, link chunk and mark populated */
869 for (i = page_start; i < page_end; i++) {
870 for_each_possible_cpu(cpu)
871 pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
872 chunk);
873 __set_bit(i, populated);
fbf59bc9
TH
874 }
875
fbf59bc9 876 return 0;
ce3141a2
TH
877
878err:
879 for_each_possible_cpu(tcpu) {
880 if (tcpu == cpu)
881 break;
882 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
883 page_end - page_start);
884 }
885 return err;
886}
887
888/**
889 * pcpu_post_map_flush - flush cache after mapping
890 * @chunk: pcpu_chunk the regions to be flushed belong to
891 * @page_start: page index of the first page to be flushed
892 * @page_end: page index of the last page to be flushed + 1
893 *
894 * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
895 * cache.
896 *
897 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
898 * for the whole region.
899 */
900static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
901 int page_start, int page_end)
902{
2f39e637
TH
903 flush_cache_vmap(
904 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
905 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
c8a51be4
TH
906}
907
fbf59bc9
TH
908/**
909 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
910 * @chunk: chunk to depopulate
911 * @off: offset to the area to depopulate
cae3aeb8 912 * @size: size of the area to depopulate in bytes
fbf59bc9
TH
913 * @flush: whether to flush cache and tlb or not
914 *
915 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
916 * from @chunk. If @flush is true, vcache is flushed before unmapping
917 * and tlb after.
ccea34b5
TH
918 *
919 * CONTEXT:
920 * pcpu_alloc_mutex.
fbf59bc9 921 */
ce3141a2 922static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
fbf59bc9
TH
923{
924 int page_start = PFN_DOWN(off);
925 int page_end = PFN_UP(off + size);
ce3141a2
TH
926 struct page **pages;
927 unsigned long *populated;
928 int rs, re;
929
930 /* quick path, check whether it's empty already */
22b737f4
WC
931 rs = page_start;
932 pcpu_next_unpop(chunk, &rs, &re, page_end);
933 if (rs == page_start && re == page_end)
934 return;
fbf59bc9 935
ce3141a2
TH
936 /* immutable chunks can't be depopulated */
937 WARN_ON(chunk->immutable);
fbf59bc9 938
ce3141a2
TH
939 /*
940 * If control reaches here, there must have been at least one
941 * successful population attempt so the temp pages array must
942 * be available now.
943 */
944 pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
945 BUG_ON(!pages);
fbf59bc9 946
ce3141a2
TH
947 /* unmap and free */
948 pcpu_pre_unmap_flush(chunk, page_start, page_end);
fbf59bc9 949
ce3141a2
TH
950 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
951 pcpu_unmap_pages(chunk, pages, populated, rs, re);
fbf59bc9 952
ce3141a2
TH
953 /* no need to flush tlb, vmalloc will handle it lazily */
954
955 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
956 pcpu_free_pages(chunk, pages, populated, rs, re);
fbf59bc9 957
ce3141a2
TH
958 /* commit new bitmap */
959 bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
fbf59bc9
TH
960}
961
962/**
963 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
964 * @chunk: chunk of interest
965 * @off: offset to the area to populate
cae3aeb8 966 * @size: size of the area to populate in bytes
fbf59bc9
TH
967 *
968 * For each cpu, populate and map pages [@page_start,@page_end) into
969 * @chunk. The area is cleared on return.
ccea34b5
TH
970 *
971 * CONTEXT:
972 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
fbf59bc9
TH
973 */
974static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
975{
fbf59bc9
TH
976 int page_start = PFN_DOWN(off);
977 int page_end = PFN_UP(off + size);
ce3141a2
TH
978 int free_end = page_start, unmap_end = page_start;
979 struct page **pages;
980 unsigned long *populated;
fbf59bc9 981 unsigned int cpu;
ce3141a2 982 int rs, re, rc;
fbf59bc9 983
ce3141a2 984 /* quick path, check whether all pages are already there */
22b737f4
WC
985 rs = page_start;
986 pcpu_next_pop(chunk, &rs, &re, page_end);
987 if (rs == page_start && re == page_end)
988 goto clear;
fbf59bc9 989
ce3141a2
TH
990 /* need to allocate and map pages, this chunk can't be immutable */
991 WARN_ON(chunk->immutable);
fbf59bc9 992
ce3141a2
TH
993 pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
994 if (!pages)
995 return -ENOMEM;
fbf59bc9 996
ce3141a2
TH
997 /* alloc and map */
998 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
999 rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
1000 if (rc)
1001 goto err_free;
1002 free_end = re;
fbf59bc9
TH
1003 }
1004
ce3141a2
TH
1005 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
1006 rc = pcpu_map_pages(chunk, pages, populated, rs, re);
1007 if (rc)
1008 goto err_unmap;
1009 unmap_end = re;
1010 }
1011 pcpu_post_map_flush(chunk, page_start, page_end);
fbf59bc9 1012
ce3141a2
TH
1013 /* commit new bitmap */
1014 bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
1015clear:
fbf59bc9 1016 for_each_possible_cpu(cpu)
2f39e637 1017 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
fbf59bc9 1018 return 0;
ce3141a2
TH
1019
1020err_unmap:
1021 pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
1022 pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
1023 pcpu_unmap_pages(chunk, pages, populated, rs, re);
1024 pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
1025err_free:
1026 pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
1027 pcpu_free_pages(chunk, pages, populated, rs, re);
1028 return rc;
fbf59bc9
TH
1029}
1030
1031static void free_pcpu_chunk(struct pcpu_chunk *chunk)
1032{
1033 if (!chunk)
1034 return;
6563297c
TH
1035 if (chunk->vms)
1036 pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups);
1880d93b 1037 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
fbf59bc9
TH
1038 kfree(chunk);
1039}
1040
1041static struct pcpu_chunk *alloc_pcpu_chunk(void)
1042{
1043 struct pcpu_chunk *chunk;
1044
1045 chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
1046 if (!chunk)
1047 return NULL;
1048
1880d93b 1049 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
fbf59bc9
TH
1050 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
1051 chunk->map[chunk->map_used++] = pcpu_unit_size;
1052
6563297c
TH
1053 chunk->vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
1054 pcpu_nr_groups, pcpu_atom_size,
1055 GFP_KERNEL);
1056 if (!chunk->vms) {
fbf59bc9
TH
1057 free_pcpu_chunk(chunk);
1058 return NULL;
1059 }
1060
1061 INIT_LIST_HEAD(&chunk->list);
1062 chunk->free_size = pcpu_unit_size;
1063 chunk->contig_hint = pcpu_unit_size;
6563297c 1064 chunk->base_addr = chunk->vms[0]->addr - pcpu_group_offsets[0];
fbf59bc9
TH
1065
1066 return chunk;
1067}
1068
1069/**
edcb4639 1070 * pcpu_alloc - the percpu allocator
cae3aeb8 1071 * @size: size of area to allocate in bytes
fbf59bc9 1072 * @align: alignment of area (max PAGE_SIZE)
edcb4639 1073 * @reserved: allocate from the reserved chunk if available
fbf59bc9 1074 *
ccea34b5
TH
1075 * Allocate percpu area of @size bytes aligned at @align.
1076 *
1077 * CONTEXT:
1078 * Does GFP_KERNEL allocation.
fbf59bc9
TH
1079 *
1080 * RETURNS:
1081 * Percpu pointer to the allocated area on success, NULL on failure.
1082 */
43cf38eb 1083static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
fbf59bc9 1084{
f2badb0c 1085 static int warn_limit = 10;
fbf59bc9 1086 struct pcpu_chunk *chunk;
f2badb0c 1087 const char *err;
833af842 1088 int slot, off, new_alloc;
403a91b1 1089 unsigned long flags;
fbf59bc9 1090
8d408b4b 1091 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
fbf59bc9
TH
1092 WARN(true, "illegal size (%zu) or align (%zu) for "
1093 "percpu allocation\n", size, align);
1094 return NULL;
1095 }
1096
ccea34b5 1097 mutex_lock(&pcpu_alloc_mutex);
403a91b1 1098 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 1099
edcb4639
TH
1100 /* serve reserved allocations from the reserved chunk if available */
1101 if (reserved && pcpu_reserved_chunk) {
1102 chunk = pcpu_reserved_chunk;
833af842
TH
1103
1104 if (size > chunk->contig_hint) {
1105 err = "alloc from reserved chunk failed";
ccea34b5 1106 goto fail_unlock;
f2badb0c 1107 }
833af842
TH
1108
1109 while ((new_alloc = pcpu_need_to_extend(chunk))) {
1110 spin_unlock_irqrestore(&pcpu_lock, flags);
1111 if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
1112 err = "failed to extend area map of reserved chunk";
1113 goto fail_unlock_mutex;
1114 }
1115 spin_lock_irqsave(&pcpu_lock, flags);
1116 }
1117
edcb4639
TH
1118 off = pcpu_alloc_area(chunk, size, align);
1119 if (off >= 0)
1120 goto area_found;
833af842 1121
f2badb0c 1122 err = "alloc from reserved chunk failed";
ccea34b5 1123 goto fail_unlock;
edcb4639
TH
1124 }
1125
ccea34b5 1126restart:
edcb4639 1127 /* search through normal chunks */
fbf59bc9
TH
1128 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1129 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1130 if (size > chunk->contig_hint)
1131 continue;
ccea34b5 1132
833af842
TH
1133 new_alloc = pcpu_need_to_extend(chunk);
1134 if (new_alloc) {
1135 spin_unlock_irqrestore(&pcpu_lock, flags);
1136 if (pcpu_extend_area_map(chunk,
1137 new_alloc) < 0) {
1138 err = "failed to extend area map";
1139 goto fail_unlock_mutex;
1140 }
1141 spin_lock_irqsave(&pcpu_lock, flags);
1142 /*
1143 * pcpu_lock has been dropped, need to
1144 * restart cpu_slot list walking.
1145 */
1146 goto restart;
ccea34b5
TH
1147 }
1148
fbf59bc9
TH
1149 off = pcpu_alloc_area(chunk, size, align);
1150 if (off >= 0)
1151 goto area_found;
fbf59bc9
TH
1152 }
1153 }
1154
1155 /* hmmm... no space left, create a new chunk */
403a91b1 1156 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1157
fbf59bc9 1158 chunk = alloc_pcpu_chunk();
f2badb0c
TH
1159 if (!chunk) {
1160 err = "failed to allocate new chunk";
ccea34b5 1161 goto fail_unlock_mutex;
f2badb0c 1162 }
ccea34b5 1163
403a91b1 1164 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 1165 pcpu_chunk_relocate(chunk, -1);
ccea34b5 1166 goto restart;
fbf59bc9
TH
1167
1168area_found:
403a91b1 1169 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 1170
fbf59bc9
TH
1171 /* populate, map and clear the area */
1172 if (pcpu_populate_chunk(chunk, off, size)) {
403a91b1 1173 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 1174 pcpu_free_area(chunk, off);
f2badb0c 1175 err = "failed to populate";
ccea34b5 1176 goto fail_unlock;
fbf59bc9
TH
1177 }
1178
ccea34b5
TH
1179 mutex_unlock(&pcpu_alloc_mutex);
1180
bba174f5
TH
1181 /* return address relative to base address */
1182 return __addr_to_pcpu_ptr(chunk->base_addr + off);
ccea34b5
TH
1183
1184fail_unlock:
403a91b1 1185 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5
TH
1186fail_unlock_mutex:
1187 mutex_unlock(&pcpu_alloc_mutex);
f2badb0c
TH
1188 if (warn_limit) {
1189 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
1190 "%s\n", size, align, err);
1191 dump_stack();
1192 if (!--warn_limit)
1193 pr_info("PERCPU: limit reached, disable warning\n");
1194 }
ccea34b5 1195 return NULL;
fbf59bc9 1196}
edcb4639
TH
1197
1198/**
1199 * __alloc_percpu - allocate dynamic percpu area
1200 * @size: size of area to allocate in bytes
1201 * @align: alignment of area (max PAGE_SIZE)
1202 *
1203 * Allocate percpu area of @size bytes aligned at @align. Might
1204 * sleep. Might trigger writeouts.
1205 *
ccea34b5
TH
1206 * CONTEXT:
1207 * Does GFP_KERNEL allocation.
1208 *
edcb4639
TH
1209 * RETURNS:
1210 * Percpu pointer to the allocated area on success, NULL on failure.
1211 */
43cf38eb 1212void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639
TH
1213{
1214 return pcpu_alloc(size, align, false);
1215}
fbf59bc9
TH
1216EXPORT_SYMBOL_GPL(__alloc_percpu);
1217
edcb4639
TH
1218/**
1219 * __alloc_reserved_percpu - allocate reserved percpu area
1220 * @size: size of area to allocate in bytes
1221 * @align: alignment of area (max PAGE_SIZE)
1222 *
1223 * Allocate percpu area of @size bytes aligned at @align from reserved
1224 * percpu area if arch has set it up; otherwise, allocation is served
1225 * from the same dynamic area. Might sleep. Might trigger writeouts.
1226 *
ccea34b5
TH
1227 * CONTEXT:
1228 * Does GFP_KERNEL allocation.
1229 *
edcb4639
TH
1230 * RETURNS:
1231 * Percpu pointer to the allocated area on success, NULL on failure.
1232 */
43cf38eb 1233void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639
TH
1234{
1235 return pcpu_alloc(size, align, true);
1236}
1237
a56dbddf
TH
1238/**
1239 * pcpu_reclaim - reclaim fully free chunks, workqueue function
1240 * @work: unused
1241 *
1242 * Reclaim all fully free chunks except for the first one.
ccea34b5
TH
1243 *
1244 * CONTEXT:
1245 * workqueue context.
a56dbddf
TH
1246 */
1247static void pcpu_reclaim(struct work_struct *work)
fbf59bc9 1248{
a56dbddf
TH
1249 LIST_HEAD(todo);
1250 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
1251 struct pcpu_chunk *chunk, *next;
1252
ccea34b5
TH
1253 mutex_lock(&pcpu_alloc_mutex);
1254 spin_lock_irq(&pcpu_lock);
a56dbddf
TH
1255
1256 list_for_each_entry_safe(chunk, next, head, list) {
1257 WARN_ON(chunk->immutable);
1258
1259 /* spare the first one */
1260 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
1261 continue;
1262
a56dbddf
TH
1263 list_move(&chunk->list, &todo);
1264 }
1265
ccea34b5 1266 spin_unlock_irq(&pcpu_lock);
a56dbddf
TH
1267
1268 list_for_each_entry_safe(chunk, next, &todo, list) {
ce3141a2 1269 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
a56dbddf
TH
1270 free_pcpu_chunk(chunk);
1271 }
971f3918
TH
1272
1273 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
1274}
1275
1276/**
1277 * free_percpu - free percpu area
1278 * @ptr: pointer to area to free
1279 *
ccea34b5
TH
1280 * Free percpu area @ptr.
1281 *
1282 * CONTEXT:
1283 * Can be called from atomic context.
fbf59bc9 1284 */
43cf38eb 1285void free_percpu(void __percpu *ptr)
fbf59bc9 1286{
129182e5 1287 void *addr;
fbf59bc9 1288 struct pcpu_chunk *chunk;
ccea34b5 1289 unsigned long flags;
fbf59bc9
TH
1290 int off;
1291
1292 if (!ptr)
1293 return;
1294
129182e5
AM
1295 addr = __pcpu_ptr_to_addr(ptr);
1296
ccea34b5 1297 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
1298
1299 chunk = pcpu_chunk_addr_search(addr);
bba174f5 1300 off = addr - chunk->base_addr;
fbf59bc9
TH
1301
1302 pcpu_free_area(chunk, off);
1303
a56dbddf 1304 /* if there are more than one fully free chunks, wake up grim reaper */
fbf59bc9
TH
1305 if (chunk->free_size == pcpu_unit_size) {
1306 struct pcpu_chunk *pos;
1307
a56dbddf 1308 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 1309 if (pos != chunk) {
a56dbddf 1310 schedule_work(&pcpu_reclaim_work);
fbf59bc9
TH
1311 break;
1312 }
1313 }
1314
ccea34b5 1315 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
1316}
1317EXPORT_SYMBOL_GPL(free_percpu);
1318
10fad5e4
TH
1319/**
1320 * is_kernel_percpu_address - test whether address is from static percpu area
1321 * @addr: address to test
1322 *
1323 * Test whether @addr belongs to in-kernel static percpu area. Module
1324 * static percpu areas are not considered. For those, use
1325 * is_module_percpu_address().
1326 *
1327 * RETURNS:
1328 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1329 */
1330bool is_kernel_percpu_address(unsigned long addr)
1331{
1332 const size_t static_size = __per_cpu_end - __per_cpu_start;
1333 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1334 unsigned int cpu;
1335
1336 for_each_possible_cpu(cpu) {
1337 void *start = per_cpu_ptr(base, cpu);
1338
1339 if ((void *)addr >= start && (void *)addr < start + static_size)
1340 return true;
1341 }
1342 return false;
1343}
1344
3b034b0d
VG
1345/**
1346 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1347 * @addr: the address to be converted to physical address
1348 *
1349 * Given @addr which is dereferenceable address obtained via one of
1350 * percpu access macros, this function translates it into its physical
1351 * address. The caller is responsible for ensuring @addr stays valid
1352 * until this function finishes.
1353 *
1354 * RETURNS:
1355 * The physical address for @addr.
1356 */
1357phys_addr_t per_cpu_ptr_to_phys(void *addr)
1358{
020ec653
TH
1359 if (pcpu_addr_in_first_chunk(addr)) {
1360 if ((unsigned long)addr < VMALLOC_START ||
1361 (unsigned long)addr >= VMALLOC_END)
1362 return __pa(addr);
1363 else
1364 return page_to_phys(vmalloc_to_page(addr));
1365 } else
3b034b0d
VG
1366 return page_to_phys(vmalloc_to_page(addr));
1367}
1368
033e48fb
TH
1369static inline size_t pcpu_calc_fc_sizes(size_t static_size,
1370 size_t reserved_size,
1371 ssize_t *dyn_sizep)
1372{
1373 size_t size_sum;
1374
1375 size_sum = PFN_ALIGN(static_size + reserved_size +
1376 (*dyn_sizep >= 0 ? *dyn_sizep : 0));
1377 if (*dyn_sizep != 0)
1378 *dyn_sizep = size_sum - static_size - reserved_size;
1379
1380 return size_sum;
1381}
1382
fbf59bc9 1383/**
fd1e8a1f
TH
1384 * pcpu_alloc_alloc_info - allocate percpu allocation info
1385 * @nr_groups: the number of groups
1386 * @nr_units: the number of units
1387 *
1388 * Allocate ai which is large enough for @nr_groups groups containing
1389 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1390 * cpu_map array which is long enough for @nr_units and filled with
1391 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1392 * pointer of other groups.
1393 *
1394 * RETURNS:
1395 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1396 * failure.
1397 */
1398struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1399 int nr_units)
1400{
1401 struct pcpu_alloc_info *ai;
1402 size_t base_size, ai_size;
1403 void *ptr;
1404 int unit;
1405
1406 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1407 __alignof__(ai->groups[0].cpu_map[0]));
1408 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1409
1410 ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1411 if (!ptr)
1412 return NULL;
1413 ai = ptr;
1414 ptr += base_size;
1415
1416 ai->groups[0].cpu_map = ptr;
1417
1418 for (unit = 0; unit < nr_units; unit++)
1419 ai->groups[0].cpu_map[unit] = NR_CPUS;
1420
1421 ai->nr_groups = nr_groups;
1422 ai->__ai_size = PFN_ALIGN(ai_size);
1423
1424 return ai;
1425}
1426
1427/**
1428 * pcpu_free_alloc_info - free percpu allocation info
1429 * @ai: pcpu_alloc_info to free
1430 *
1431 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1432 */
1433void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1434{
1435 free_bootmem(__pa(ai), ai->__ai_size);
1436}
1437
1438/**
1439 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
edcb4639 1440 * @reserved_size: the size of reserved percpu area in bytes
cafe8816 1441 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
fd1e8a1f
TH
1442 * @atom_size: allocation atom size
1443 * @cpu_distance_fn: callback to determine distance between cpus, optional
033e48fb 1444 *
fd1e8a1f
TH
1445 * This function determines grouping of units, their mappings to cpus
1446 * and other parameters considering needed percpu size, allocation
1447 * atom size and distances between CPUs.
033e48fb 1448 *
fd1e8a1f
TH
1449 * Groups are always mutliples of atom size and CPUs which are of
1450 * LOCAL_DISTANCE both ways are grouped together and share space for
1451 * units in the same group. The returned configuration is guaranteed
1452 * to have CPUs on different nodes on different groups and >=75% usage
1453 * of allocated virtual address space.
033e48fb
TH
1454 *
1455 * RETURNS:
fd1e8a1f
TH
1456 * On success, pointer to the new allocation_info is returned. On
1457 * failure, ERR_PTR value is returned.
033e48fb 1458 */
fd1e8a1f
TH
1459struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1460 size_t reserved_size, ssize_t dyn_size,
1461 size_t atom_size,
1462 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
033e48fb
TH
1463{
1464 static int group_map[NR_CPUS] __initdata;
1465 static int group_cnt[NR_CPUS] __initdata;
1466 const size_t static_size = __per_cpu_end - __per_cpu_start;
fd1e8a1f 1467 int group_cnt_max = 0, nr_groups = 1, nr_units = 0;
033e48fb
TH
1468 size_t size_sum, min_unit_size, alloc_size;
1469 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
fd1e8a1f 1470 int last_allocs, group, unit;
033e48fb 1471 unsigned int cpu, tcpu;
fd1e8a1f
TH
1472 struct pcpu_alloc_info *ai;
1473 unsigned int *cpu_map;
033e48fb 1474
fb59e72e
TH
1475 /* this function may be called multiple times */
1476 memset(group_map, 0, sizeof(group_map));
1477 memset(group_cnt, 0, sizeof(group_map));
1478
033e48fb
TH
1479 /*
1480 * Determine min_unit_size, alloc_size and max_upa such that
fd1e8a1f 1481 * alloc_size is multiple of atom_size and is the smallest
033e48fb
TH
1482 * which can accomodate 4k aligned segments which are equal to
1483 * or larger than min_unit_size.
1484 */
fd1e8a1f 1485 size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
033e48fb
TH
1486 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1487
fd1e8a1f 1488 alloc_size = roundup(min_unit_size, atom_size);
033e48fb
TH
1489 upa = alloc_size / min_unit_size;
1490 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1491 upa--;
1492 max_upa = upa;
1493
1494 /* group cpus according to their proximity */
1495 for_each_possible_cpu(cpu) {
1496 group = 0;
1497 next_group:
1498 for_each_possible_cpu(tcpu) {
1499 if (cpu == tcpu)
1500 break;
fd1e8a1f 1501 if (group_map[tcpu] == group && cpu_distance_fn &&
033e48fb
TH
1502 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1503 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1504 group++;
fd1e8a1f 1505 nr_groups = max(nr_groups, group + 1);
033e48fb
TH
1506 goto next_group;
1507 }
1508 }
1509 group_map[cpu] = group;
1510 group_cnt[group]++;
1511 group_cnt_max = max(group_cnt_max, group_cnt[group]);
1512 }
1513
1514 /*
1515 * Expand unit size until address space usage goes over 75%
1516 * and then as much as possible without using more address
1517 * space.
1518 */
1519 last_allocs = INT_MAX;
1520 for (upa = max_upa; upa; upa--) {
1521 int allocs = 0, wasted = 0;
1522
1523 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1524 continue;
1525
fd1e8a1f 1526 for (group = 0; group < nr_groups; group++) {
033e48fb
TH
1527 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1528 allocs += this_allocs;
1529 wasted += this_allocs * upa - group_cnt[group];
1530 }
1531
1532 /*
1533 * Don't accept if wastage is over 25%. The
1534 * greater-than comparison ensures upa==1 always
1535 * passes the following check.
1536 */
1537 if (wasted > num_possible_cpus() / 3)
1538 continue;
1539
1540 /* and then don't consume more memory */
1541 if (allocs > last_allocs)
1542 break;
1543 last_allocs = allocs;
1544 best_upa = upa;
1545 }
fd1e8a1f
TH
1546 upa = best_upa;
1547
1548 /* allocate and fill alloc_info */
1549 for (group = 0; group < nr_groups; group++)
1550 nr_units += roundup(group_cnt[group], upa);
1551
1552 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1553 if (!ai)
1554 return ERR_PTR(-ENOMEM);
1555 cpu_map = ai->groups[0].cpu_map;
1556
1557 for (group = 0; group < nr_groups; group++) {
1558 ai->groups[group].cpu_map = cpu_map;
1559 cpu_map += roundup(group_cnt[group], upa);
1560 }
1561
1562 ai->static_size = static_size;
1563 ai->reserved_size = reserved_size;
1564 ai->dyn_size = dyn_size;
1565 ai->unit_size = alloc_size / upa;
1566 ai->atom_size = atom_size;
1567 ai->alloc_size = alloc_size;
1568
1569 for (group = 0, unit = 0; group_cnt[group]; group++) {
1570 struct pcpu_group_info *gi = &ai->groups[group];
1571
1572 /*
1573 * Initialize base_offset as if all groups are located
1574 * back-to-back. The caller should update this to
1575 * reflect actual allocation.
1576 */
1577 gi->base_offset = unit * ai->unit_size;
033e48fb 1578
033e48fb
TH
1579 for_each_possible_cpu(cpu)
1580 if (group_map[cpu] == group)
fd1e8a1f
TH
1581 gi->cpu_map[gi->nr_units++] = cpu;
1582 gi->nr_units = roundup(gi->nr_units, upa);
1583 unit += gi->nr_units;
033e48fb 1584 }
fd1e8a1f 1585 BUG_ON(unit != nr_units);
033e48fb 1586
fd1e8a1f 1587 return ai;
033e48fb
TH
1588}
1589
fd1e8a1f
TH
1590/**
1591 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1592 * @lvl: loglevel
1593 * @ai: allocation info to dump
1594 *
1595 * Print out information about @ai using loglevel @lvl.
1596 */
1597static void pcpu_dump_alloc_info(const char *lvl,
1598 const struct pcpu_alloc_info *ai)
033e48fb 1599{
fd1e8a1f 1600 int group_width = 1, cpu_width = 1, width;
033e48fb 1601 char empty_str[] = "--------";
fd1e8a1f
TH
1602 int alloc = 0, alloc_end = 0;
1603 int group, v;
1604 int upa, apl; /* units per alloc, allocs per line */
1605
1606 v = ai->nr_groups;
1607 while (v /= 10)
1608 group_width++;
033e48fb 1609
fd1e8a1f 1610 v = num_possible_cpus();
033e48fb 1611 while (v /= 10)
fd1e8a1f
TH
1612 cpu_width++;
1613 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 1614
fd1e8a1f
TH
1615 upa = ai->alloc_size / ai->unit_size;
1616 width = upa * (cpu_width + 1) + group_width + 3;
1617 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 1618
fd1e8a1f
TH
1619 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1620 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1621 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 1622
fd1e8a1f
TH
1623 for (group = 0; group < ai->nr_groups; group++) {
1624 const struct pcpu_group_info *gi = &ai->groups[group];
1625 int unit = 0, unit_end = 0;
1626
1627 BUG_ON(gi->nr_units % upa);
1628 for (alloc_end += gi->nr_units / upa;
1629 alloc < alloc_end; alloc++) {
1630 if (!(alloc % apl)) {
033e48fb 1631 printk("\n");
fd1e8a1f
TH
1632 printk("%spcpu-alloc: ", lvl);
1633 }
1634 printk("[%0*d] ", group_width, group);
1635
1636 for (unit_end += upa; unit < unit_end; unit++)
1637 if (gi->cpu_map[unit] != NR_CPUS)
1638 printk("%0*d ", cpu_width,
1639 gi->cpu_map[unit]);
1640 else
1641 printk("%s ", empty_str);
033e48fb 1642 }
033e48fb
TH
1643 }
1644 printk("\n");
1645}
033e48fb 1646
fbf59bc9 1647/**
8d408b4b 1648 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 1649 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 1650 * @base_addr: mapped address
8d408b4b
TH
1651 *
1652 * Initialize the first percpu chunk which contains the kernel static
1653 * perpcu area. This function is to be called from arch percpu area
38a6be52 1654 * setup path.
8d408b4b 1655 *
fd1e8a1f
TH
1656 * @ai contains all information necessary to initialize the first
1657 * chunk and prime the dynamic percpu allocator.
1658 *
1659 * @ai->static_size is the size of static percpu area.
1660 *
1661 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
1662 * reserve after the static area in the first chunk. This reserves
1663 * the first chunk such that it's available only through reserved
1664 * percpu allocation. This is primarily used to serve module percpu
1665 * static areas on architectures where the addressing model has
1666 * limited offset range for symbol relocations to guarantee module
1667 * percpu symbols fall inside the relocatable range.
1668 *
fd1e8a1f
TH
1669 * @ai->dyn_size determines the number of bytes available for dynamic
1670 * allocation in the first chunk. The area between @ai->static_size +
1671 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 1672 *
fd1e8a1f
TH
1673 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1674 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1675 * @ai->dyn_size.
8d408b4b 1676 *
fd1e8a1f
TH
1677 * @ai->atom_size is the allocation atom size and used as alignment
1678 * for vm areas.
8d408b4b 1679 *
fd1e8a1f
TH
1680 * @ai->alloc_size is the allocation size and always multiple of
1681 * @ai->atom_size. This is larger than @ai->atom_size if
1682 * @ai->unit_size is larger than @ai->atom_size.
1683 *
1684 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1685 * percpu areas. Units which should be colocated are put into the
1686 * same group. Dynamic VM areas will be allocated according to these
1687 * groupings. If @ai->nr_groups is zero, a single group containing
1688 * all units is assumed.
8d408b4b 1689 *
38a6be52
TH
1690 * The caller should have mapped the first chunk at @base_addr and
1691 * copied static data to each unit.
fbf59bc9 1692 *
edcb4639
TH
1693 * If the first chunk ends up with both reserved and dynamic areas, it
1694 * is served by two chunks - one to serve the core static and reserved
1695 * areas and the other for the dynamic area. They share the same vm
1696 * and page map but uses different area allocation map to stay away
1697 * from each other. The latter chunk is circulated in the chunk slots
1698 * and available for dynamic allocation like any other chunks.
1699 *
fbf59bc9 1700 * RETURNS:
fb435d52 1701 * 0 on success, -errno on failure.
fbf59bc9 1702 */
fb435d52
TH
1703int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1704 void *base_addr)
fbf59bc9 1705{
635b75fc 1706 static char cpus_buf[4096] __initdata;
edcb4639 1707 static int smap[2], dmap[2];
fd1e8a1f
TH
1708 size_t dyn_size = ai->dyn_size;
1709 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
edcb4639 1710 struct pcpu_chunk *schunk, *dchunk = NULL;
6563297c
TH
1711 unsigned long *group_offsets;
1712 size_t *group_sizes;
fb435d52 1713 unsigned long *unit_off;
fbf59bc9 1714 unsigned int cpu;
fd1e8a1f
TH
1715 int *unit_map;
1716 int group, unit, i;
fbf59bc9 1717
635b75fc
TH
1718 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1719
1720#define PCPU_SETUP_BUG_ON(cond) do { \
1721 if (unlikely(cond)) { \
1722 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1723 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1724 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1725 BUG(); \
1726 } \
1727} while (0)
1728
2f39e637 1729 /* sanity checks */
edcb4639
TH
1730 BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
1731 ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
635b75fc
TH
1732 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1733 PCPU_SETUP_BUG_ON(!ai->static_size);
1734 PCPU_SETUP_BUG_ON(!base_addr);
1735 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1736 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1737 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
8d408b4b 1738
6563297c
TH
1739 /* process group information and build config tables accordingly */
1740 group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
1741 group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
fd1e8a1f 1742 unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
fb435d52 1743 unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
2f39e637 1744
fd1e8a1f 1745 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 1746 unit_map[cpu] = UINT_MAX;
fd1e8a1f 1747 pcpu_first_unit_cpu = NR_CPUS;
2f39e637 1748
fd1e8a1f
TH
1749 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1750 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 1751
6563297c
TH
1752 group_offsets[group] = gi->base_offset;
1753 group_sizes[group] = gi->nr_units * ai->unit_size;
1754
fd1e8a1f
TH
1755 for (i = 0; i < gi->nr_units; i++) {
1756 cpu = gi->cpu_map[i];
1757 if (cpu == NR_CPUS)
1758 continue;
8d408b4b 1759
635b75fc
TH
1760 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1761 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1762 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 1763
fd1e8a1f 1764 unit_map[cpu] = unit + i;
fb435d52
TH
1765 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1766
fd1e8a1f
TH
1767 if (pcpu_first_unit_cpu == NR_CPUS)
1768 pcpu_first_unit_cpu = cpu;
1769 }
2f39e637 1770 }
fd1e8a1f
TH
1771 pcpu_last_unit_cpu = cpu;
1772 pcpu_nr_units = unit;
1773
1774 for_each_possible_cpu(cpu)
635b75fc
TH
1775 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1776
1777 /* we're done parsing the input, undefine BUG macro and dump config */
1778#undef PCPU_SETUP_BUG_ON
1779 pcpu_dump_alloc_info(KERN_INFO, ai);
fd1e8a1f 1780
6563297c
TH
1781 pcpu_nr_groups = ai->nr_groups;
1782 pcpu_group_offsets = group_offsets;
1783 pcpu_group_sizes = group_sizes;
fd1e8a1f 1784 pcpu_unit_map = unit_map;
fb435d52 1785 pcpu_unit_offsets = unit_off;
2f39e637
TH
1786
1787 /* determine basic parameters */
fd1e8a1f 1788 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 1789 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 1790 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
1791 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1792 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 1793
d9b55eeb
TH
1794 /*
1795 * Allocate chunk slots. The additional last slot is for
1796 * empty chunks.
1797 */
1798 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
fbf59bc9
TH
1799 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1800 for (i = 0; i < pcpu_nr_slots; i++)
1801 INIT_LIST_HEAD(&pcpu_slot[i]);
1802
edcb4639
TH
1803 /*
1804 * Initialize static chunk. If reserved_size is zero, the
1805 * static chunk covers static area + dynamic allocation area
1806 * in the first chunk. If reserved_size is not zero, it
1807 * covers static area + reserved area (mostly used for module
1808 * static percpu allocation).
1809 */
2441d15c
TH
1810 schunk = alloc_bootmem(pcpu_chunk_struct_size);
1811 INIT_LIST_HEAD(&schunk->list);
bba174f5 1812 schunk->base_addr = base_addr;
61ace7fa
TH
1813 schunk->map = smap;
1814 schunk->map_alloc = ARRAY_SIZE(smap);
38a6be52 1815 schunk->immutable = true;
ce3141a2 1816 bitmap_fill(schunk->populated, pcpu_unit_pages);
edcb4639 1817
fd1e8a1f
TH
1818 if (ai->reserved_size) {
1819 schunk->free_size = ai->reserved_size;
ae9e6bc9 1820 pcpu_reserved_chunk = schunk;
fd1e8a1f 1821 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
edcb4639
TH
1822 } else {
1823 schunk->free_size = dyn_size;
1824 dyn_size = 0; /* dynamic area covered */
1825 }
2441d15c 1826 schunk->contig_hint = schunk->free_size;
fbf59bc9 1827
fd1e8a1f 1828 schunk->map[schunk->map_used++] = -ai->static_size;
61ace7fa
TH
1829 if (schunk->free_size)
1830 schunk->map[schunk->map_used++] = schunk->free_size;
1831
edcb4639
TH
1832 /* init dynamic chunk if necessary */
1833 if (dyn_size) {
ce3141a2 1834 dchunk = alloc_bootmem(pcpu_chunk_struct_size);
edcb4639 1835 INIT_LIST_HEAD(&dchunk->list);
bba174f5 1836 dchunk->base_addr = base_addr;
edcb4639
TH
1837 dchunk->map = dmap;
1838 dchunk->map_alloc = ARRAY_SIZE(dmap);
38a6be52 1839 dchunk->immutable = true;
ce3141a2 1840 bitmap_fill(dchunk->populated, pcpu_unit_pages);
edcb4639
TH
1841
1842 dchunk->contig_hint = dchunk->free_size = dyn_size;
1843 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1844 dchunk->map[dchunk->map_used++] = dchunk->free_size;
1845 }
1846
2441d15c 1847 /* link the first chunk in */
ae9e6bc9
TH
1848 pcpu_first_chunk = dchunk ?: schunk;
1849 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9
TH
1850
1851 /* we're done */
bba174f5 1852 pcpu_base_addr = base_addr;
fb435d52 1853 return 0;
fbf59bc9 1854}
66c3a757 1855
f58dc01b
TH
1856const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1857 [PCPU_FC_AUTO] = "auto",
1858 [PCPU_FC_EMBED] = "embed",
1859 [PCPU_FC_PAGE] = "page",
f58dc01b 1860};
66c3a757 1861
f58dc01b 1862enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 1863
f58dc01b
TH
1864static int __init percpu_alloc_setup(char *str)
1865{
1866 if (0)
1867 /* nada */;
1868#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1869 else if (!strcmp(str, "embed"))
1870 pcpu_chosen_fc = PCPU_FC_EMBED;
1871#endif
1872#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1873 else if (!strcmp(str, "page"))
1874 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
1875#endif
1876 else
1877 pr_warning("PERCPU: unknown allocator %s specified\n", str);
66c3a757 1878
f58dc01b 1879 return 0;
66c3a757 1880}
f58dc01b 1881early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 1882
08fc4580
TH
1883#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1884 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
66c3a757
TH
1885/**
1886 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757
TH
1887 * @reserved_size: the size of reserved percpu area in bytes
1888 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
c8826dd5
TH
1889 * @atom_size: allocation atom size
1890 * @cpu_distance_fn: callback to determine distance between cpus, optional
1891 * @alloc_fn: function to allocate percpu page
1892 * @free_fn: funtion to free percpu page
66c3a757
TH
1893 *
1894 * This is a helper to ease setting up embedded first percpu chunk and
1895 * can be called where pcpu_setup_first_chunk() is expected.
1896 *
1897 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
1898 * by calling @alloc_fn and used as-is without being mapped into
1899 * vmalloc area. Allocations are always whole multiples of @atom_size
1900 * aligned to @atom_size.
1901 *
1902 * This enables the first chunk to piggy back on the linear physical
1903 * mapping which often uses larger page size. Please note that this
1904 * can result in very sparse cpu->unit mapping on NUMA machines thus
1905 * requiring large vmalloc address space. Don't use this allocator if
1906 * vmalloc space is not orders of magnitude larger than distances
1907 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757
TH
1908 *
1909 * When @dyn_size is positive, dynamic area might be larger than
788e5abc
TH
1910 * specified to fill page alignment. When @dyn_size is auto,
1911 * @dyn_size is just big enough to fill page alignment after static
1912 * and reserved areas.
66c3a757
TH
1913 *
1914 * If the needed size is smaller than the minimum or specified unit
c8826dd5 1915 * size, the leftover is returned using @free_fn.
66c3a757
TH
1916 *
1917 * RETURNS:
fb435d52 1918 * 0 on success, -errno on failure.
66c3a757 1919 */
c8826dd5
TH
1920int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
1921 size_t atom_size,
1922 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1923 pcpu_fc_alloc_fn_t alloc_fn,
1924 pcpu_fc_free_fn_t free_fn)
66c3a757 1925{
c8826dd5
TH
1926 void *base = (void *)ULONG_MAX;
1927 void **areas = NULL;
fd1e8a1f 1928 struct pcpu_alloc_info *ai;
6ea529a2 1929 size_t size_sum, areas_size, max_distance;
c8826dd5 1930 int group, i, rc;
66c3a757 1931
c8826dd5
TH
1932 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1933 cpu_distance_fn);
fd1e8a1f
TH
1934 if (IS_ERR(ai))
1935 return PTR_ERR(ai);
66c3a757 1936
fd1e8a1f 1937 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 1938 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 1939
c8826dd5
TH
1940 areas = alloc_bootmem_nopanic(areas_size);
1941 if (!areas) {
fb435d52 1942 rc = -ENOMEM;
c8826dd5 1943 goto out_free;
fa8a7094 1944 }
66c3a757 1945
c8826dd5
TH
1946 /* allocate, copy and determine base address */
1947 for (group = 0; group < ai->nr_groups; group++) {
1948 struct pcpu_group_info *gi = &ai->groups[group];
1949 unsigned int cpu = NR_CPUS;
1950 void *ptr;
1951
1952 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1953 cpu = gi->cpu_map[i];
1954 BUG_ON(cpu == NR_CPUS);
1955
1956 /* allocate space for the whole group */
1957 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1958 if (!ptr) {
1959 rc = -ENOMEM;
1960 goto out_free_areas;
1961 }
1962 areas[group] = ptr;
fd1e8a1f 1963
c8826dd5
TH
1964 base = min(ptr, base);
1965
1966 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1967 if (gi->cpu_map[i] == NR_CPUS) {
1968 /* unused unit, free whole */
1969 free_fn(ptr, ai->unit_size);
1970 continue;
1971 }
1972 /* copy and return the unused part */
1973 memcpy(ptr, __per_cpu_load, ai->static_size);
1974 free_fn(ptr + size_sum, ai->unit_size - size_sum);
1975 }
fa8a7094 1976 }
66c3a757 1977
c8826dd5 1978 /* base address is now known, determine group base offsets */
6ea529a2
TH
1979 max_distance = 0;
1980 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 1981 ai->groups[group].base_offset = areas[group] - base;
1a0c3298
TH
1982 max_distance = max_t(size_t, max_distance,
1983 ai->groups[group].base_offset);
6ea529a2
TH
1984 }
1985 max_distance += ai->unit_size;
1986
1987 /* warn if maximum distance is further than 75% of vmalloc space */
1988 if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
1a0c3298 1989 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
6ea529a2
TH
1990 "space 0x%lx\n",
1991 max_distance, VMALLOC_END - VMALLOC_START);
1992#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1993 /* and fail if we have fallback */
1994 rc = -EINVAL;
1995 goto out_free;
1996#endif
1997 }
c8826dd5 1998
004018e2 1999 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
2000 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2001 ai->dyn_size, ai->unit_size);
d4b95f80 2002
fb435d52 2003 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
2004 goto out_free;
2005
2006out_free_areas:
2007 for (group = 0; group < ai->nr_groups; group++)
2008 free_fn(areas[group],
2009 ai->groups[group].nr_units * ai->unit_size);
2010out_free:
fd1e8a1f 2011 pcpu_free_alloc_info(ai);
c8826dd5
TH
2012 if (areas)
2013 free_bootmem(__pa(areas), areas_size);
fb435d52 2014 return rc;
d4b95f80 2015}
08fc4580
TH
2016#endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
2017 !CONFIG_HAVE_SETUP_PER_CPU_AREA */
d4b95f80 2018
08fc4580 2019#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
d4b95f80 2020/**
00ae4064 2021 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
2022 * @reserved_size: the size of reserved percpu area in bytes
2023 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2024 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
2025 * @populate_pte_fn: function to populate pte
2026 *
00ae4064
TH
2027 * This is a helper to ease setting up page-remapped first percpu
2028 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
2029 *
2030 * This is the basic allocator. Static percpu area is allocated
2031 * page-by-page into vmalloc area.
2032 *
2033 * RETURNS:
fb435d52 2034 * 0 on success, -errno on failure.
d4b95f80 2035 */
fb435d52
TH
2036int __init pcpu_page_first_chunk(size_t reserved_size,
2037 pcpu_fc_alloc_fn_t alloc_fn,
2038 pcpu_fc_free_fn_t free_fn,
2039 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 2040{
8f05a6a6 2041 static struct vm_struct vm;
fd1e8a1f 2042 struct pcpu_alloc_info *ai;
00ae4064 2043 char psize_str[16];
ce3141a2 2044 int unit_pages;
d4b95f80 2045 size_t pages_size;
ce3141a2 2046 struct page **pages;
fb435d52 2047 int unit, i, j, rc;
d4b95f80 2048
00ae4064
TH
2049 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2050
fd1e8a1f
TH
2051 ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL);
2052 if (IS_ERR(ai))
2053 return PTR_ERR(ai);
2054 BUG_ON(ai->nr_groups != 1);
2055 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
2056
2057 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
2058
2059 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
2060 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2061 sizeof(pages[0]));
ce3141a2 2062 pages = alloc_bootmem(pages_size);
d4b95f80 2063
8f05a6a6 2064 /* allocate pages */
d4b95f80 2065 j = 0;
fd1e8a1f 2066 for (unit = 0; unit < num_possible_cpus(); unit++)
ce3141a2 2067 for (i = 0; i < unit_pages; i++) {
fd1e8a1f 2068 unsigned int cpu = ai->groups[0].cpu_map[unit];
d4b95f80
TH
2069 void *ptr;
2070
3cbc8565 2071 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 2072 if (!ptr) {
00ae4064
TH
2073 pr_warning("PERCPU: failed to allocate %s page "
2074 "for cpu%u\n", psize_str, cpu);
d4b95f80
TH
2075 goto enomem;
2076 }
ce3141a2 2077 pages[j++] = virt_to_page(ptr);
d4b95f80
TH
2078 }
2079
8f05a6a6
TH
2080 /* allocate vm area, map the pages and copy static data */
2081 vm.flags = VM_ALLOC;
fd1e8a1f 2082 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
2083 vm_area_register_early(&vm, PAGE_SIZE);
2084
fd1e8a1f 2085 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 2086 unsigned long unit_addr =
fd1e8a1f 2087 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 2088
ce3141a2 2089 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
2090 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2091
2092 /* pte already populated, the following shouldn't fail */
fb435d52
TH
2093 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2094 unit_pages);
2095 if (rc < 0)
2096 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 2097
8f05a6a6
TH
2098 /*
2099 * FIXME: Archs with virtual cache should flush local
2100 * cache for the linear mapping here - something
2101 * equivalent to flush_cache_vmap() on the local cpu.
2102 * flush_cache_vmap() can't be used as most supporting
2103 * data structures are not set up yet.
2104 */
2105
2106 /* copy static data */
fd1e8a1f 2107 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
2108 }
2109
2110 /* we're ready, commit */
1d9d3257 2111 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
2112 unit_pages, psize_str, vm.addr, ai->static_size,
2113 ai->reserved_size, ai->dyn_size);
d4b95f80 2114
fb435d52 2115 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
2116 goto out_free_ar;
2117
2118enomem:
2119 while (--j >= 0)
ce3141a2 2120 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 2121 rc = -ENOMEM;
d4b95f80 2122out_free_ar:
ce3141a2 2123 free_bootmem(__pa(pages), pages_size);
fd1e8a1f 2124 pcpu_free_alloc_info(ai);
fb435d52 2125 return rc;
d4b95f80 2126}
08fc4580 2127#endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
d4b95f80 2128
e74e3962
TH
2129/*
2130 * Generic percpu area setup.
2131 *
2132 * The embedding helper is used because its behavior closely resembles
2133 * the original non-dynamic generic percpu area setup. This is
2134 * important because many archs have addressing restrictions and might
2135 * fail if the percpu area is located far away from the previous
2136 * location. As an added bonus, in non-NUMA cases, embedding is
2137 * generally a good idea TLB-wise because percpu area can piggy back
2138 * on the physical linear memory mapping which uses large page
2139 * mappings on applicable archs.
2140 */
2141#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2142unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2143EXPORT_SYMBOL(__per_cpu_offset);
2144
c8826dd5
TH
2145static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2146 size_t align)
2147{
2148 return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
2149}
66c3a757 2150
c8826dd5
TH
2151static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2152{
2153 free_bootmem(__pa(ptr), size);
2154}
2155
e74e3962
TH
2156void __init setup_per_cpu_areas(void)
2157{
e74e3962
TH
2158 unsigned long delta;
2159 unsigned int cpu;
fb435d52 2160 int rc;
e74e3962
TH
2161
2162 /*
2163 * Always reserve area for module percpu variables. That's
2164 * what the legacy allocator did.
2165 */
fb435d52 2166 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
2167 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2168 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 2169 if (rc < 0)
e74e3962
TH
2170 panic("Failed to initialized percpu areas.");
2171
2172 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2173 for_each_possible_cpu(cpu)
fb435d52 2174 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 2175}
e74e3962 2176#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */