]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/migrate.c
hugetlb: redefine hugepage copy functions
[net-next-2.6.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
cde53535 12 * Christoph Lameter
b20a3503
CL
13 */
14
15#include <linux/migrate.h>
16#include <linux/module.h>
17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503 23#include <linux/pagevec.h>
e9995ef9 24#include <linux/ksm.h>
b20a3503
CL
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
04e62a29 29#include <linux/writeback.h>
742755a1
CL
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
86c3a764 32#include <linux/security.h>
8a9f3ccd 33#include <linux/memcontrol.h>
4f5ca265 34#include <linux/syscalls.h>
5a0e3ad6 35#include <linux/gfp.h>
b20a3503
CL
36
37#include "internal.h"
38
b20a3503
CL
39#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
40
b20a3503 41/*
742755a1 42 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
43 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
44 * undesirable, use migrate_prep_local()
b20a3503
CL
45 */
46int migrate_prep(void)
47{
b20a3503
CL
48 /*
49 * Clear the LRU lists so pages can be isolated.
50 * Note that pages may be moved off the LRU after we have
51 * drained them. Those pages will fail to migrate like other
52 * pages that may be busy.
53 */
54 lru_add_drain_all();
55
56 return 0;
57}
58
748446bb
MG
59/* Do the necessary work of migrate_prep but not if it involves other CPUs */
60int migrate_prep_local(void)
61{
62 lru_add_drain();
63
64 return 0;
65}
66
b20a3503 67/*
894bc310
LS
68 * Add isolated pages on the list back to the LRU under page lock
69 * to avoid leaking evictable pages back onto unevictable list.
b20a3503 70 */
e13861d8 71void putback_lru_pages(struct list_head *l)
b20a3503
CL
72{
73 struct page *page;
74 struct page *page2;
b20a3503
CL
75
76 list_for_each_entry_safe(page, page2, l, lru) {
e24f0b8f 77 list_del(&page->lru);
a731286d 78 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 79 page_is_file_cache(page));
894bc310 80 putback_lru_page(page);
b20a3503 81 }
b20a3503
CL
82}
83
0697212a
CL
84/*
85 * Restore a potential migration pte to a working pte entry
86 */
e9995ef9
HD
87static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
88 unsigned long addr, void *old)
0697212a
CL
89{
90 struct mm_struct *mm = vma->vm_mm;
91 swp_entry_t entry;
92 pgd_t *pgd;
93 pud_t *pud;
94 pmd_t *pmd;
95 pte_t *ptep, pte;
96 spinlock_t *ptl;
97
98 pgd = pgd_offset(mm, addr);
99 if (!pgd_present(*pgd))
e9995ef9 100 goto out;
0697212a
CL
101
102 pud = pud_offset(pgd, addr);
103 if (!pud_present(*pud))
e9995ef9 104 goto out;
0697212a
CL
105
106 pmd = pmd_offset(pud, addr);
107 if (!pmd_present(*pmd))
e9995ef9 108 goto out;
0697212a
CL
109
110 ptep = pte_offset_map(pmd, addr);
111
112 if (!is_swap_pte(*ptep)) {
113 pte_unmap(ptep);
e9995ef9 114 goto out;
0697212a
CL
115 }
116
117 ptl = pte_lockptr(mm, pmd);
118 spin_lock(ptl);
119 pte = *ptep;
120 if (!is_swap_pte(pte))
e9995ef9 121 goto unlock;
0697212a
CL
122
123 entry = pte_to_swp_entry(pte);
124
e9995ef9
HD
125 if (!is_migration_entry(entry) ||
126 migration_entry_to_page(entry) != old)
127 goto unlock;
0697212a 128
0697212a
CL
129 get_page(new);
130 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
131 if (is_write_migration_entry(entry))
132 pte = pte_mkwrite(pte);
97ee0524 133 flush_cache_page(vma, addr, pte_pfn(pte));
0697212a 134 set_pte_at(mm, addr, ptep, pte);
04e62a29
CL
135
136 if (PageAnon(new))
137 page_add_anon_rmap(new, vma, addr);
138 else
139 page_add_file_rmap(new);
140
141 /* No need to invalidate - it was non-present before */
4b3073e1 142 update_mmu_cache(vma, addr, ptep);
e9995ef9 143unlock:
0697212a 144 pte_unmap_unlock(ptep, ptl);
e9995ef9
HD
145out:
146 return SWAP_AGAIN;
0697212a
CL
147}
148
04e62a29
CL
149/*
150 * Get rid of all migration entries and replace them by
151 * references to the indicated page.
152 */
153static void remove_migration_ptes(struct page *old, struct page *new)
154{
e9995ef9 155 rmap_walk(new, remove_migration_pte, old);
04e62a29
CL
156}
157
0697212a
CL
158/*
159 * Something used the pte of a page under migration. We need to
160 * get to the page and wait until migration is finished.
161 * When we return from this function the fault will be retried.
162 *
163 * This function is called from do_swap_page().
164 */
165void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
166 unsigned long address)
167{
168 pte_t *ptep, pte;
169 spinlock_t *ptl;
170 swp_entry_t entry;
171 struct page *page;
172
173 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
174 pte = *ptep;
175 if (!is_swap_pte(pte))
176 goto out;
177
178 entry = pte_to_swp_entry(pte);
179 if (!is_migration_entry(entry))
180 goto out;
181
182 page = migration_entry_to_page(entry);
183
e286781d
NP
184 /*
185 * Once radix-tree replacement of page migration started, page_count
186 * *must* be zero. And, we don't want to call wait_on_page_locked()
187 * against a page without get_page().
188 * So, we use get_page_unless_zero(), here. Even failed, page fault
189 * will occur again.
190 */
191 if (!get_page_unless_zero(page))
192 goto out;
0697212a
CL
193 pte_unmap_unlock(ptep, ptl);
194 wait_on_page_locked(page);
195 put_page(page);
196 return;
197out:
198 pte_unmap_unlock(ptep, ptl);
199}
200
b20a3503 201/*
c3fcf8a5 202 * Replace the page in the mapping.
5b5c7120
CL
203 *
204 * The number of remaining references must be:
205 * 1 for anonymous pages without a mapping
206 * 2 for pages with a mapping
266cf658 207 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 208 */
2d1db3b1
CL
209static int migrate_page_move_mapping(struct address_space *mapping,
210 struct page *newpage, struct page *page)
b20a3503 211{
e286781d 212 int expected_count;
7cf9c2c7 213 void **pslot;
b20a3503 214
6c5240ae 215 if (!mapping) {
0e8c7d0f 216 /* Anonymous page without mapping */
6c5240ae
CL
217 if (page_count(page) != 1)
218 return -EAGAIN;
219 return 0;
220 }
221
19fd6231 222 spin_lock_irq(&mapping->tree_lock);
b20a3503 223
7cf9c2c7
NP
224 pslot = radix_tree_lookup_slot(&mapping->page_tree,
225 page_index(page));
b20a3503 226
edcf4748 227 expected_count = 2 + page_has_private(page);
e286781d 228 if (page_count(page) != expected_count ||
7cf9c2c7 229 (struct page *)radix_tree_deref_slot(pslot) != page) {
19fd6231 230 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 231 return -EAGAIN;
b20a3503
CL
232 }
233
e286781d 234 if (!page_freeze_refs(page, expected_count)) {
19fd6231 235 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
236 return -EAGAIN;
237 }
238
b20a3503
CL
239 /*
240 * Now we know that no one else is looking at the page.
b20a3503 241 */
7cf9c2c7 242 get_page(newpage); /* add cache reference */
b20a3503
CL
243 if (PageSwapCache(page)) {
244 SetPageSwapCache(newpage);
245 set_page_private(newpage, page_private(page));
246 }
247
7cf9c2c7
NP
248 radix_tree_replace_slot(pslot, newpage);
249
e286781d 250 page_unfreeze_refs(page, expected_count);
7cf9c2c7
NP
251 /*
252 * Drop cache reference from old page.
253 * We know this isn't the last reference.
254 */
b20a3503 255 __put_page(page);
7cf9c2c7 256
0e8c7d0f
CL
257 /*
258 * If moved to a different zone then also account
259 * the page for that zone. Other VM counters will be
260 * taken care of when we establish references to the
261 * new page and drop references to the old page.
262 *
263 * Note that anonymous pages are accounted for
264 * via NR_FILE_PAGES and NR_ANON_PAGES if they
265 * are mapped to swap space.
266 */
267 __dec_zone_page_state(page, NR_FILE_PAGES);
268 __inc_zone_page_state(newpage, NR_FILE_PAGES);
4b02108a
KM
269 if (PageSwapBacked(page)) {
270 __dec_zone_page_state(page, NR_SHMEM);
271 __inc_zone_page_state(newpage, NR_SHMEM);
272 }
19fd6231 273 spin_unlock_irq(&mapping->tree_lock);
b20a3503
CL
274
275 return 0;
276}
b20a3503
CL
277
278/*
279 * Copy the page to its new location
280 */
e7340f73 281static void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503
CL
282{
283 copy_highpage(newpage, page);
284
285 if (PageError(page))
286 SetPageError(newpage);
287 if (PageReferenced(page))
288 SetPageReferenced(newpage);
289 if (PageUptodate(page))
290 SetPageUptodate(newpage);
894bc310
LS
291 if (TestClearPageActive(page)) {
292 VM_BUG_ON(PageUnevictable(page));
b20a3503 293 SetPageActive(newpage);
418b27ef
LS
294 } else if (TestClearPageUnevictable(page))
295 SetPageUnevictable(newpage);
b20a3503
CL
296 if (PageChecked(page))
297 SetPageChecked(newpage);
298 if (PageMappedToDisk(page))
299 SetPageMappedToDisk(newpage);
300
301 if (PageDirty(page)) {
302 clear_page_dirty_for_io(page);
3a902c5f
NP
303 /*
304 * Want to mark the page and the radix tree as dirty, and
305 * redo the accounting that clear_page_dirty_for_io undid,
306 * but we can't use set_page_dirty because that function
307 * is actually a signal that all of the page has become dirty.
308 * Wheras only part of our page may be dirty.
309 */
310 __set_page_dirty_nobuffers(newpage);
b20a3503
CL
311 }
312
b291f000 313 mlock_migrate_page(newpage, page);
e9995ef9 314 ksm_migrate_page(newpage, page);
b291f000 315
b20a3503 316 ClearPageSwapCache(page);
b20a3503
CL
317 ClearPagePrivate(page);
318 set_page_private(page, 0);
319 page->mapping = NULL;
320
321 /*
322 * If any waiters have accumulated on the new page then
323 * wake them up.
324 */
325 if (PageWriteback(newpage))
326 end_page_writeback(newpage);
327}
b20a3503 328
1d8b85cc
CL
329/************************************************************
330 * Migration functions
331 ***********************************************************/
332
333/* Always fail migration. Used for mappings that are not movable */
2d1db3b1
CL
334int fail_migrate_page(struct address_space *mapping,
335 struct page *newpage, struct page *page)
1d8b85cc
CL
336{
337 return -EIO;
338}
339EXPORT_SYMBOL(fail_migrate_page);
340
b20a3503
CL
341/*
342 * Common logic to directly migrate a single page suitable for
266cf658 343 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
344 *
345 * Pages are locked upon entry and exit.
346 */
2d1db3b1
CL
347int migrate_page(struct address_space *mapping,
348 struct page *newpage, struct page *page)
b20a3503
CL
349{
350 int rc;
351
352 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
353
2d1db3b1 354 rc = migrate_page_move_mapping(mapping, newpage, page);
b20a3503
CL
355
356 if (rc)
357 return rc;
358
359 migrate_page_copy(newpage, page);
b20a3503
CL
360 return 0;
361}
362EXPORT_SYMBOL(migrate_page);
363
9361401e 364#ifdef CONFIG_BLOCK
1d8b85cc
CL
365/*
366 * Migration function for pages with buffers. This function can only be used
367 * if the underlying filesystem guarantees that no other references to "page"
368 * exist.
369 */
2d1db3b1
CL
370int buffer_migrate_page(struct address_space *mapping,
371 struct page *newpage, struct page *page)
1d8b85cc 372{
1d8b85cc
CL
373 struct buffer_head *bh, *head;
374 int rc;
375
1d8b85cc 376 if (!page_has_buffers(page))
2d1db3b1 377 return migrate_page(mapping, newpage, page);
1d8b85cc
CL
378
379 head = page_buffers(page);
380
2d1db3b1 381 rc = migrate_page_move_mapping(mapping, newpage, page);
1d8b85cc
CL
382
383 if (rc)
384 return rc;
385
386 bh = head;
387 do {
388 get_bh(bh);
389 lock_buffer(bh);
390 bh = bh->b_this_page;
391
392 } while (bh != head);
393
394 ClearPagePrivate(page);
395 set_page_private(newpage, page_private(page));
396 set_page_private(page, 0);
397 put_page(page);
398 get_page(newpage);
399
400 bh = head;
401 do {
402 set_bh_page(bh, newpage, bh_offset(bh));
403 bh = bh->b_this_page;
404
405 } while (bh != head);
406
407 SetPagePrivate(newpage);
408
409 migrate_page_copy(newpage, page);
410
411 bh = head;
412 do {
413 unlock_buffer(bh);
414 put_bh(bh);
415 bh = bh->b_this_page;
416
417 } while (bh != head);
418
419 return 0;
420}
421EXPORT_SYMBOL(buffer_migrate_page);
9361401e 422#endif
1d8b85cc 423
04e62a29
CL
424/*
425 * Writeback a page to clean the dirty state
426 */
427static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 428{
04e62a29
CL
429 struct writeback_control wbc = {
430 .sync_mode = WB_SYNC_NONE,
431 .nr_to_write = 1,
432 .range_start = 0,
433 .range_end = LLONG_MAX,
434 .nonblocking = 1,
435 .for_reclaim = 1
436 };
437 int rc;
438
439 if (!mapping->a_ops->writepage)
440 /* No write method for the address space */
441 return -EINVAL;
442
443 if (!clear_page_dirty_for_io(page))
444 /* Someone else already triggered a write */
445 return -EAGAIN;
446
8351a6e4 447 /*
04e62a29
CL
448 * A dirty page may imply that the underlying filesystem has
449 * the page on some queue. So the page must be clean for
450 * migration. Writeout may mean we loose the lock and the
451 * page state is no longer what we checked for earlier.
452 * At this point we know that the migration attempt cannot
453 * be successful.
8351a6e4 454 */
04e62a29 455 remove_migration_ptes(page, page);
8351a6e4 456
04e62a29 457 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 458
04e62a29
CL
459 if (rc != AOP_WRITEPAGE_ACTIVATE)
460 /* unlocked. Relock */
461 lock_page(page);
462
bda8550d 463 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
464}
465
466/*
467 * Default handling if a filesystem does not provide a migration function.
468 */
469static int fallback_migrate_page(struct address_space *mapping,
470 struct page *newpage, struct page *page)
471{
472 if (PageDirty(page))
473 return writeout(mapping, page);
8351a6e4
CL
474
475 /*
476 * Buffers may be managed in a filesystem specific way.
477 * We must have no buffers or drop them.
478 */
266cf658 479 if (page_has_private(page) &&
8351a6e4
CL
480 !try_to_release_page(page, GFP_KERNEL))
481 return -EAGAIN;
482
483 return migrate_page(mapping, newpage, page);
484}
485
e24f0b8f
CL
486/*
487 * Move a page to a newly allocated page
488 * The page is locked and all ptes have been successfully removed.
489 *
490 * The new page will have replaced the old page if this function
491 * is successful.
894bc310
LS
492 *
493 * Return value:
494 * < 0 - error code
495 * == 0 - success
e24f0b8f 496 */
3fe2011f
MG
497static int move_to_new_page(struct page *newpage, struct page *page,
498 int remap_swapcache)
e24f0b8f
CL
499{
500 struct address_space *mapping;
501 int rc;
502
503 /*
504 * Block others from accessing the page when we get around to
505 * establishing additional references. We are the only one
506 * holding a reference to the new page at this point.
507 */
529ae9aa 508 if (!trylock_page(newpage))
e24f0b8f
CL
509 BUG();
510
511 /* Prepare mapping for the new page.*/
512 newpage->index = page->index;
513 newpage->mapping = page->mapping;
b2e18538
RR
514 if (PageSwapBacked(page))
515 SetPageSwapBacked(newpage);
e24f0b8f
CL
516
517 mapping = page_mapping(page);
518 if (!mapping)
519 rc = migrate_page(mapping, newpage, page);
520 else if (mapping->a_ops->migratepage)
521 /*
522 * Most pages have a mapping and most filesystems
523 * should provide a migration function. Anonymous
524 * pages are part of swap space which also has its
525 * own migration function. This is the most common
526 * path for page migration.
527 */
528 rc = mapping->a_ops->migratepage(mapping,
529 newpage, page);
530 else
531 rc = fallback_migrate_page(mapping, newpage, page);
532
3fe2011f 533 if (rc) {
e24f0b8f 534 newpage->mapping = NULL;
3fe2011f
MG
535 } else {
536 if (remap_swapcache)
537 remove_migration_ptes(page, newpage);
538 }
e24f0b8f
CL
539
540 unlock_page(newpage);
541
542 return rc;
543}
544
545/*
546 * Obtain the lock on page, remove all ptes and migrate the page
547 * to the newly allocated page in newpage.
548 */
95a402c3 549static int unmap_and_move(new_page_t get_new_page, unsigned long private,
62b61f61 550 struct page *page, int force, int offlining)
e24f0b8f
CL
551{
552 int rc = 0;
742755a1
CL
553 int *result = NULL;
554 struct page *newpage = get_new_page(page, private, &result);
3fe2011f 555 int remap_swapcache = 1;
989f89c5 556 int rcu_locked = 0;
ae41be37 557 int charge = 0;
e00e4316 558 struct mem_cgroup *mem = NULL;
3f6c8272 559 struct anon_vma *anon_vma = NULL;
95a402c3
CL
560
561 if (!newpage)
562 return -ENOMEM;
e24f0b8f 563
894bc310 564 if (page_count(page) == 1) {
e24f0b8f 565 /* page was freed from under us. So we are done. */
95a402c3 566 goto move_newpage;
894bc310 567 }
e24f0b8f 568
e8589cc1 569 /* prepare cgroup just returns 0 or -ENOMEM */
e24f0b8f 570 rc = -EAGAIN;
01b1ae63 571
529ae9aa 572 if (!trylock_page(page)) {
e24f0b8f 573 if (!force)
95a402c3 574 goto move_newpage;
e24f0b8f
CL
575 lock_page(page);
576 }
577
62b61f61
HD
578 /*
579 * Only memory hotplug's offline_pages() caller has locked out KSM,
580 * and can safely migrate a KSM page. The other cases have skipped
581 * PageKsm along with PageReserved - but it is only now when we have
582 * the page lock that we can be certain it will not go KSM beneath us
583 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
584 * its pagecount raised, but only here do we take the page lock which
585 * serializes that).
586 */
587 if (PageKsm(page) && !offlining) {
588 rc = -EBUSY;
589 goto unlock;
590 }
591
01b1ae63 592 /* charge against new page */
ac39cf8c 593 charge = mem_cgroup_prepare_migration(page, newpage, &mem);
01b1ae63
KH
594 if (charge == -ENOMEM) {
595 rc = -ENOMEM;
596 goto unlock;
597 }
598 BUG_ON(charge);
599
e24f0b8f
CL
600 if (PageWriteback(page)) {
601 if (!force)
01b1ae63 602 goto uncharge;
e24f0b8f
CL
603 wait_on_page_writeback(page);
604 }
e24f0b8f 605 /*
dc386d4d
KH
606 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
607 * we cannot notice that anon_vma is freed while we migrates a page.
608 * This rcu_read_lock() delays freeing anon_vma pointer until the end
609 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
610 * File Caches may use write_page() or lock_page() in migration, then,
611 * just care Anon page here.
dc386d4d 612 */
989f89c5
KH
613 if (PageAnon(page)) {
614 rcu_read_lock();
615 rcu_locked = 1;
67b9509b 616
3fe2011f
MG
617 /* Determine how to safely use anon_vma */
618 if (!page_mapped(page)) {
619 if (!PageSwapCache(page))
620 goto rcu_unlock;
67b9509b 621
3fe2011f
MG
622 /*
623 * We cannot be sure that the anon_vma of an unmapped
624 * swapcache page is safe to use because we don't
625 * know in advance if the VMA that this page belonged
626 * to still exists. If the VMA and others sharing the
627 * data have been freed, then the anon_vma could
628 * already be invalid.
629 *
630 * To avoid this possibility, swapcache pages get
631 * migrated but are not remapped when migration
632 * completes
633 */
634 remap_swapcache = 0;
635 } else {
636 /*
637 * Take a reference count on the anon_vma if the
638 * page is mapped so that it is guaranteed to
639 * exist when the page is remapped later
640 */
641 anon_vma = page_anon_vma(page);
76545066 642 get_anon_vma(anon_vma);
3fe2011f 643 }
989f89c5 644 }
62e1c553 645
dc386d4d 646 /*
62e1c553
SL
647 * Corner case handling:
648 * 1. When a new swap-cache page is read into, it is added to the LRU
649 * and treated as swapcache but it has no rmap yet.
650 * Calling try_to_unmap() against a page->mapping==NULL page will
651 * trigger a BUG. So handle it here.
652 * 2. An orphaned page (see truncate_complete_page) might have
653 * fs-private metadata. The page can be picked up due to memory
654 * offlining. Everywhere else except page reclaim, the page is
655 * invisible to the vm, so the page can not be migrated. So try to
656 * free the metadata, so the page can be freed.
e24f0b8f 657 */
62e1c553 658 if (!page->mapping) {
266cf658 659 if (!PageAnon(page) && page_has_private(page)) {
62e1c553
SL
660 /*
661 * Go direct to try_to_free_buffers() here because
662 * a) that's what try_to_release_page() would do anyway
663 * b) we may be under rcu_read_lock() here, so we can't
664 * use GFP_KERNEL which is what try_to_release_page()
665 * needs to be effective.
666 */
667 try_to_free_buffers(page);
abfc3488 668 goto rcu_unlock;
62e1c553 669 }
abfc3488 670 goto skip_unmap;
62e1c553
SL
671 }
672
dc386d4d 673 /* Establish migration ptes or remove ptes */
14fa31b8 674 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
dc386d4d 675
abfc3488 676skip_unmap:
e6a1530d 677 if (!page_mapped(page))
3fe2011f 678 rc = move_to_new_page(newpage, page, remap_swapcache);
e24f0b8f 679
3fe2011f 680 if (rc && remap_swapcache)
e24f0b8f 681 remove_migration_ptes(page, page);
dc386d4d 682rcu_unlock:
3f6c8272
MG
683
684 /* Drop an anon_vma reference if we took one */
76545066
RR
685 if (anon_vma)
686 drop_anon_vma(anon_vma);
3f6c8272 687
989f89c5
KH
688 if (rcu_locked)
689 rcu_read_unlock();
01b1ae63
KH
690uncharge:
691 if (!charge)
692 mem_cgroup_end_migration(mem, page, newpage);
e24f0b8f
CL
693unlock:
694 unlock_page(page);
95a402c3 695
e24f0b8f 696 if (rc != -EAGAIN) {
aaa994b3
CL
697 /*
698 * A page that has been migrated has all references
699 * removed and will be freed. A page that has not been
700 * migrated will have kepts its references and be
701 * restored.
702 */
703 list_del(&page->lru);
a731286d 704 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 705 page_is_file_cache(page));
894bc310 706 putback_lru_page(page);
e24f0b8f 707 }
95a402c3
CL
708
709move_newpage:
894bc310 710
95a402c3
CL
711 /*
712 * Move the new page to the LRU. If migration was not successful
713 * then this will free the page.
714 */
894bc310
LS
715 putback_lru_page(newpage);
716
742755a1
CL
717 if (result) {
718 if (rc)
719 *result = rc;
720 else
721 *result = page_to_nid(newpage);
722 }
e24f0b8f
CL
723 return rc;
724}
725
b20a3503
CL
726/*
727 * migrate_pages
728 *
95a402c3
CL
729 * The function takes one list of pages to migrate and a function
730 * that determines from the page to be migrated and the private data
731 * the target of the move and allocates the page.
b20a3503
CL
732 *
733 * The function returns after 10 attempts or if no pages
734 * are movable anymore because to has become empty
aaa994b3 735 * or no retryable pages exist anymore. All pages will be
e9534b3f 736 * returned to the LRU or freed.
b20a3503 737 *
95a402c3 738 * Return: Number of pages not migrated or error code.
b20a3503 739 */
95a402c3 740int migrate_pages(struct list_head *from,
62b61f61 741 new_page_t get_new_page, unsigned long private, int offlining)
b20a3503 742{
e24f0b8f 743 int retry = 1;
b20a3503
CL
744 int nr_failed = 0;
745 int pass = 0;
746 struct page *page;
747 struct page *page2;
748 int swapwrite = current->flags & PF_SWAPWRITE;
749 int rc;
750
751 if (!swapwrite)
752 current->flags |= PF_SWAPWRITE;
753
e24f0b8f
CL
754 for(pass = 0; pass < 10 && retry; pass++) {
755 retry = 0;
b20a3503 756
e24f0b8f 757 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 758 cond_resched();
2d1db3b1 759
95a402c3 760 rc = unmap_and_move(get_new_page, private,
62b61f61 761 page, pass > 2, offlining);
2d1db3b1 762
e24f0b8f 763 switch(rc) {
95a402c3
CL
764 case -ENOMEM:
765 goto out;
e24f0b8f 766 case -EAGAIN:
2d1db3b1 767 retry++;
e24f0b8f
CL
768 break;
769 case 0:
e24f0b8f
CL
770 break;
771 default:
2d1db3b1 772 /* Permanent failure */
2d1db3b1 773 nr_failed++;
e24f0b8f 774 break;
2d1db3b1 775 }
b20a3503
CL
776 }
777 }
95a402c3
CL
778 rc = 0;
779out:
b20a3503
CL
780 if (!swapwrite)
781 current->flags &= ~PF_SWAPWRITE;
782
aaa994b3 783 putback_lru_pages(from);
b20a3503 784
95a402c3
CL
785 if (rc)
786 return rc;
b20a3503 787
95a402c3 788 return nr_failed + retry;
b20a3503 789}
95a402c3 790
742755a1
CL
791#ifdef CONFIG_NUMA
792/*
793 * Move a list of individual pages
794 */
795struct page_to_node {
796 unsigned long addr;
797 struct page *page;
798 int node;
799 int status;
800};
801
802static struct page *new_page_node(struct page *p, unsigned long private,
803 int **result)
804{
805 struct page_to_node *pm = (struct page_to_node *)private;
806
807 while (pm->node != MAX_NUMNODES && pm->page != p)
808 pm++;
809
810 if (pm->node == MAX_NUMNODES)
811 return NULL;
812
813 *result = &pm->status;
814
6484eb3e 815 return alloc_pages_exact_node(pm->node,
769848c0 816 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
742755a1
CL
817}
818
819/*
820 * Move a set of pages as indicated in the pm array. The addr
821 * field must be set to the virtual address of the page to be moved
822 * and the node number must contain a valid target node.
5e9a0f02 823 * The pm array ends with node = MAX_NUMNODES.
742755a1 824 */
5e9a0f02
BG
825static int do_move_page_to_node_array(struct mm_struct *mm,
826 struct page_to_node *pm,
827 int migrate_all)
742755a1
CL
828{
829 int err;
830 struct page_to_node *pp;
831 LIST_HEAD(pagelist);
832
833 down_read(&mm->mmap_sem);
834
835 /*
836 * Build a list of pages to migrate
837 */
742755a1
CL
838 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
839 struct vm_area_struct *vma;
840 struct page *page;
841
742755a1
CL
842 err = -EFAULT;
843 vma = find_vma(mm, pp->addr);
0dc952dc 844 if (!vma || !vma_migratable(vma))
742755a1
CL
845 goto set_status;
846
847 page = follow_page(vma, pp->addr, FOLL_GET);
89f5b7da
LT
848
849 err = PTR_ERR(page);
850 if (IS_ERR(page))
851 goto set_status;
852
742755a1
CL
853 err = -ENOENT;
854 if (!page)
855 goto set_status;
856
62b61f61
HD
857 /* Use PageReserved to check for zero page */
858 if (PageReserved(page) || PageKsm(page))
742755a1
CL
859 goto put_and_set;
860
861 pp->page = page;
862 err = page_to_nid(page);
863
864 if (err == pp->node)
865 /*
866 * Node already in the right place
867 */
868 goto put_and_set;
869
870 err = -EACCES;
871 if (page_mapcount(page) > 1 &&
872 !migrate_all)
873 goto put_and_set;
874
62695a84 875 err = isolate_lru_page(page);
6d9c285a 876 if (!err) {
62695a84 877 list_add_tail(&page->lru, &pagelist);
6d9c285a
KM
878 inc_zone_page_state(page, NR_ISOLATED_ANON +
879 page_is_file_cache(page));
880 }
742755a1
CL
881put_and_set:
882 /*
883 * Either remove the duplicate refcount from
884 * isolate_lru_page() or drop the page ref if it was
885 * not isolated.
886 */
887 put_page(page);
888set_status:
889 pp->status = err;
890 }
891
e78bbfa8 892 err = 0;
742755a1
CL
893 if (!list_empty(&pagelist))
894 err = migrate_pages(&pagelist, new_page_node,
62b61f61 895 (unsigned long)pm, 0);
742755a1
CL
896
897 up_read(&mm->mmap_sem);
898 return err;
899}
900
5e9a0f02
BG
901/*
902 * Migrate an array of page address onto an array of nodes and fill
903 * the corresponding array of status.
904 */
905static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
906 unsigned long nr_pages,
907 const void __user * __user *pages,
908 const int __user *nodes,
909 int __user *status, int flags)
910{
3140a227 911 struct page_to_node *pm;
5e9a0f02 912 nodemask_t task_nodes;
3140a227
BG
913 unsigned long chunk_nr_pages;
914 unsigned long chunk_start;
915 int err;
5e9a0f02
BG
916
917 task_nodes = cpuset_mems_allowed(task);
918
3140a227
BG
919 err = -ENOMEM;
920 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
921 if (!pm)
5e9a0f02 922 goto out;
35282a2d
BG
923
924 migrate_prep();
925
5e9a0f02 926 /*
3140a227
BG
927 * Store a chunk of page_to_node array in a page,
928 * but keep the last one as a marker
5e9a0f02 929 */
3140a227 930 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
5e9a0f02 931
3140a227
BG
932 for (chunk_start = 0;
933 chunk_start < nr_pages;
934 chunk_start += chunk_nr_pages) {
935 int j;
5e9a0f02 936
3140a227
BG
937 if (chunk_start + chunk_nr_pages > nr_pages)
938 chunk_nr_pages = nr_pages - chunk_start;
939
940 /* fill the chunk pm with addrs and nodes from user-space */
941 for (j = 0; j < chunk_nr_pages; j++) {
942 const void __user *p;
5e9a0f02
BG
943 int node;
944
3140a227
BG
945 err = -EFAULT;
946 if (get_user(p, pages + j + chunk_start))
947 goto out_pm;
948 pm[j].addr = (unsigned long) p;
949
950 if (get_user(node, nodes + j + chunk_start))
5e9a0f02
BG
951 goto out_pm;
952
953 err = -ENODEV;
6f5a55f1
LT
954 if (node < 0 || node >= MAX_NUMNODES)
955 goto out_pm;
956
5e9a0f02
BG
957 if (!node_state(node, N_HIGH_MEMORY))
958 goto out_pm;
959
960 err = -EACCES;
961 if (!node_isset(node, task_nodes))
962 goto out_pm;
963
3140a227
BG
964 pm[j].node = node;
965 }
966
967 /* End marker for this chunk */
968 pm[chunk_nr_pages].node = MAX_NUMNODES;
969
970 /* Migrate this chunk */
971 err = do_move_page_to_node_array(mm, pm,
972 flags & MPOL_MF_MOVE_ALL);
973 if (err < 0)
974 goto out_pm;
5e9a0f02 975
5e9a0f02 976 /* Return status information */
3140a227
BG
977 for (j = 0; j < chunk_nr_pages; j++)
978 if (put_user(pm[j].status, status + j + chunk_start)) {
5e9a0f02 979 err = -EFAULT;
3140a227
BG
980 goto out_pm;
981 }
982 }
983 err = 0;
5e9a0f02
BG
984
985out_pm:
3140a227 986 free_page((unsigned long)pm);
5e9a0f02
BG
987out:
988 return err;
989}
990
742755a1 991/*
2f007e74 992 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 993 */
80bba129
BG
994static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
995 const void __user **pages, int *status)
742755a1 996{
2f007e74 997 unsigned long i;
2f007e74 998
742755a1
CL
999 down_read(&mm->mmap_sem);
1000
2f007e74 1001 for (i = 0; i < nr_pages; i++) {
80bba129 1002 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1003 struct vm_area_struct *vma;
1004 struct page *page;
c095adbc 1005 int err = -EFAULT;
2f007e74
BG
1006
1007 vma = find_vma(mm, addr);
742755a1
CL
1008 if (!vma)
1009 goto set_status;
1010
2f007e74 1011 page = follow_page(vma, addr, 0);
89f5b7da
LT
1012
1013 err = PTR_ERR(page);
1014 if (IS_ERR(page))
1015 goto set_status;
1016
742755a1
CL
1017 err = -ENOENT;
1018 /* Use PageReserved to check for zero page */
62b61f61 1019 if (!page || PageReserved(page) || PageKsm(page))
742755a1
CL
1020 goto set_status;
1021
1022 err = page_to_nid(page);
1023set_status:
80bba129
BG
1024 *status = err;
1025
1026 pages++;
1027 status++;
1028 }
1029
1030 up_read(&mm->mmap_sem);
1031}
1032
1033/*
1034 * Determine the nodes of a user array of pages and store it in
1035 * a user array of status.
1036 */
1037static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1038 const void __user * __user *pages,
1039 int __user *status)
1040{
1041#define DO_PAGES_STAT_CHUNK_NR 16
1042 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1043 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1044
87b8d1ad
PA
1045 while (nr_pages) {
1046 unsigned long chunk_nr;
80bba129 1047
87b8d1ad
PA
1048 chunk_nr = nr_pages;
1049 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1050 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1051
1052 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1053 break;
80bba129
BG
1054
1055 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1056
87b8d1ad
PA
1057 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1058 break;
742755a1 1059
87b8d1ad
PA
1060 pages += chunk_nr;
1061 status += chunk_nr;
1062 nr_pages -= chunk_nr;
1063 }
1064 return nr_pages ? -EFAULT : 0;
742755a1
CL
1065}
1066
1067/*
1068 * Move a list of pages in the address space of the currently executing
1069 * process.
1070 */
938bb9f5
HC
1071SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1072 const void __user * __user *, pages,
1073 const int __user *, nodes,
1074 int __user *, status, int, flags)
742755a1 1075{
c69e8d9c 1076 const struct cred *cred = current_cred(), *tcred;
742755a1 1077 struct task_struct *task;
742755a1 1078 struct mm_struct *mm;
5e9a0f02 1079 int err;
742755a1
CL
1080
1081 /* Check flags */
1082 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1083 return -EINVAL;
1084
1085 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1086 return -EPERM;
1087
1088 /* Find the mm_struct */
1089 read_lock(&tasklist_lock);
228ebcbe 1090 task = pid ? find_task_by_vpid(pid) : current;
742755a1
CL
1091 if (!task) {
1092 read_unlock(&tasklist_lock);
1093 return -ESRCH;
1094 }
1095 mm = get_task_mm(task);
1096 read_unlock(&tasklist_lock);
1097
1098 if (!mm)
1099 return -EINVAL;
1100
1101 /*
1102 * Check if this process has the right to modify the specified
1103 * process. The right exists if the process has administrative
1104 * capabilities, superuser privileges or the same
1105 * userid as the target process.
1106 */
c69e8d9c
DH
1107 rcu_read_lock();
1108 tcred = __task_cred(task);
b6dff3ec
DH
1109 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1110 cred->uid != tcred->suid && cred->uid != tcred->uid &&
742755a1 1111 !capable(CAP_SYS_NICE)) {
c69e8d9c 1112 rcu_read_unlock();
742755a1 1113 err = -EPERM;
5e9a0f02 1114 goto out;
742755a1 1115 }
c69e8d9c 1116 rcu_read_unlock();
742755a1 1117
86c3a764
DQ
1118 err = security_task_movememory(task);
1119 if (err)
5e9a0f02 1120 goto out;
86c3a764 1121
5e9a0f02
BG
1122 if (nodes) {
1123 err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1124 flags);
1125 } else {
2f007e74 1126 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1
CL
1127 }
1128
742755a1 1129out:
742755a1
CL
1130 mmput(mm);
1131 return err;
1132}
742755a1 1133
7b2259b3
CL
1134/*
1135 * Call migration functions in the vma_ops that may prepare
1136 * memory in a vm for migration. migration functions may perform
1137 * the migration for vmas that do not have an underlying page struct.
1138 */
1139int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1140 const nodemask_t *from, unsigned long flags)
1141{
1142 struct vm_area_struct *vma;
1143 int err = 0;
1144
1001c9fb 1145 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
7b2259b3
CL
1146 if (vma->vm_ops && vma->vm_ops->migrate) {
1147 err = vma->vm_ops->migrate(vma, to, from, flags);
1148 if (err)
1149 break;
1150 }
1151 }
1152 return err;
1153}
83d1674a 1154#endif