]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/migrate.c
vmscan: free swap space on swap-in/activation
[net-next-2.6.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
cde53535 12 * Christoph Lameter
b20a3503
CL
13 */
14
15#include <linux/migrate.h>
16#include <linux/module.h>
17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503
CL
23#include <linux/pagevec.h>
24#include <linux/rmap.h>
25#include <linux/topology.h>
26#include <linux/cpu.h>
27#include <linux/cpuset.h>
04e62a29 28#include <linux/writeback.h>
742755a1
CL
29#include <linux/mempolicy.h>
30#include <linux/vmalloc.h>
86c3a764 31#include <linux/security.h>
8a9f3ccd 32#include <linux/memcontrol.h>
4f5ca265 33#include <linux/syscalls.h>
b20a3503
CL
34
35#include "internal.h"
36
b20a3503
CL
37#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
38
b20a3503 39/*
742755a1
CL
40 * migrate_prep() needs to be called before we start compiling a list of pages
41 * to be migrated using isolate_lru_page().
b20a3503
CL
42 */
43int migrate_prep(void)
44{
b20a3503
CL
45 /*
46 * Clear the LRU lists so pages can be isolated.
47 * Note that pages may be moved off the LRU after we have
48 * drained them. Those pages will fail to migrate like other
49 * pages that may be busy.
50 */
51 lru_add_drain_all();
52
53 return 0;
54}
55
56static inline void move_to_lru(struct page *page)
57{
f04e9ebb 58 lru_cache_add_lru(page, page_lru(page));
b20a3503
CL
59 put_page(page);
60}
61
62/*
63 * Add isolated pages on the list back to the LRU.
64 *
65 * returns the number of pages put back.
66 */
67int putback_lru_pages(struct list_head *l)
68{
69 struct page *page;
70 struct page *page2;
71 int count = 0;
72
73 list_for_each_entry_safe(page, page2, l, lru) {
e24f0b8f 74 list_del(&page->lru);
b20a3503
CL
75 move_to_lru(page);
76 count++;
77 }
78 return count;
79}
80
0697212a
CL
81/*
82 * Restore a potential migration pte to a working pte entry
83 */
04e62a29 84static void remove_migration_pte(struct vm_area_struct *vma,
0697212a
CL
85 struct page *old, struct page *new)
86{
87 struct mm_struct *mm = vma->vm_mm;
88 swp_entry_t entry;
89 pgd_t *pgd;
90 pud_t *pud;
91 pmd_t *pmd;
92 pte_t *ptep, pte;
93 spinlock_t *ptl;
04e62a29
CL
94 unsigned long addr = page_address_in_vma(new, vma);
95
96 if (addr == -EFAULT)
97 return;
0697212a
CL
98
99 pgd = pgd_offset(mm, addr);
100 if (!pgd_present(*pgd))
101 return;
102
103 pud = pud_offset(pgd, addr);
104 if (!pud_present(*pud))
105 return;
106
107 pmd = pmd_offset(pud, addr);
108 if (!pmd_present(*pmd))
109 return;
110
111 ptep = pte_offset_map(pmd, addr);
112
113 if (!is_swap_pte(*ptep)) {
114 pte_unmap(ptep);
115 return;
116 }
117
118 ptl = pte_lockptr(mm, pmd);
119 spin_lock(ptl);
120 pte = *ptep;
121 if (!is_swap_pte(pte))
122 goto out;
123
124 entry = pte_to_swp_entry(pte);
125
126 if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
127 goto out;
128
98837c7f
HD
129 /*
130 * Yes, ignore the return value from a GFP_ATOMIC mem_cgroup_charge.
131 * Failure is not an option here: we're now expected to remove every
132 * migration pte, and will cause crashes otherwise. Normally this
133 * is not an issue: mem_cgroup_prepare_migration bumped up the old
134 * page_cgroup count for safety, that's now attached to the new page,
135 * so this charge should just be another incrementation of the count,
136 * to keep in balance with rmap.c's mem_cgroup_uncharging. But if
137 * there's been a force_empty, those reference counts may no longer
138 * be reliable, and this charge can actually fail: oh well, we don't
139 * make the situation any worse by proceeding as if it had succeeded.
140 */
141 mem_cgroup_charge(new, mm, GFP_ATOMIC);
142
0697212a
CL
143 get_page(new);
144 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
145 if (is_write_migration_entry(entry))
146 pte = pte_mkwrite(pte);
97ee0524 147 flush_cache_page(vma, addr, pte_pfn(pte));
0697212a 148 set_pte_at(mm, addr, ptep, pte);
04e62a29
CL
149
150 if (PageAnon(new))
151 page_add_anon_rmap(new, vma, addr);
152 else
153 page_add_file_rmap(new);
154
155 /* No need to invalidate - it was non-present before */
156 update_mmu_cache(vma, addr, pte);
04e62a29 157
0697212a
CL
158out:
159 pte_unmap_unlock(ptep, ptl);
160}
161
162/*
04e62a29
CL
163 * Note that remove_file_migration_ptes will only work on regular mappings,
164 * Nonlinear mappings do not use migration entries.
165 */
166static void remove_file_migration_ptes(struct page *old, struct page *new)
167{
168 struct vm_area_struct *vma;
169 struct address_space *mapping = page_mapping(new);
170 struct prio_tree_iter iter;
171 pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
172
173 if (!mapping)
174 return;
175
176 spin_lock(&mapping->i_mmap_lock);
177
178 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
179 remove_migration_pte(vma, old, new);
180
181 spin_unlock(&mapping->i_mmap_lock);
182}
183
184/*
0697212a
CL
185 * Must hold mmap_sem lock on at least one of the vmas containing
186 * the page so that the anon_vma cannot vanish.
187 */
04e62a29 188static void remove_anon_migration_ptes(struct page *old, struct page *new)
0697212a
CL
189{
190 struct anon_vma *anon_vma;
191 struct vm_area_struct *vma;
192 unsigned long mapping;
193
194 mapping = (unsigned long)new->mapping;
195
196 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
197 return;
198
199 /*
200 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
201 */
202 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
203 spin_lock(&anon_vma->lock);
204
205 list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
04e62a29 206 remove_migration_pte(vma, old, new);
0697212a
CL
207
208 spin_unlock(&anon_vma->lock);
209}
210
04e62a29
CL
211/*
212 * Get rid of all migration entries and replace them by
213 * references to the indicated page.
214 */
215static void remove_migration_ptes(struct page *old, struct page *new)
216{
217 if (PageAnon(new))
218 remove_anon_migration_ptes(old, new);
219 else
220 remove_file_migration_ptes(old, new);
221}
222
0697212a
CL
223/*
224 * Something used the pte of a page under migration. We need to
225 * get to the page and wait until migration is finished.
226 * When we return from this function the fault will be retried.
227 *
228 * This function is called from do_swap_page().
229 */
230void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
231 unsigned long address)
232{
233 pte_t *ptep, pte;
234 spinlock_t *ptl;
235 swp_entry_t entry;
236 struct page *page;
237
238 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
239 pte = *ptep;
240 if (!is_swap_pte(pte))
241 goto out;
242
243 entry = pte_to_swp_entry(pte);
244 if (!is_migration_entry(entry))
245 goto out;
246
247 page = migration_entry_to_page(entry);
248
e286781d
NP
249 /*
250 * Once radix-tree replacement of page migration started, page_count
251 * *must* be zero. And, we don't want to call wait_on_page_locked()
252 * against a page without get_page().
253 * So, we use get_page_unless_zero(), here. Even failed, page fault
254 * will occur again.
255 */
256 if (!get_page_unless_zero(page))
257 goto out;
0697212a
CL
258 pte_unmap_unlock(ptep, ptl);
259 wait_on_page_locked(page);
260 put_page(page);
261 return;
262out:
263 pte_unmap_unlock(ptep, ptl);
264}
265
b20a3503 266/*
c3fcf8a5 267 * Replace the page in the mapping.
5b5c7120
CL
268 *
269 * The number of remaining references must be:
270 * 1 for anonymous pages without a mapping
271 * 2 for pages with a mapping
272 * 3 for pages with a mapping and PagePrivate set.
b20a3503 273 */
2d1db3b1
CL
274static int migrate_page_move_mapping(struct address_space *mapping,
275 struct page *newpage, struct page *page)
b20a3503 276{
e286781d 277 int expected_count;
7cf9c2c7 278 void **pslot;
b20a3503 279
6c5240ae 280 if (!mapping) {
0e8c7d0f 281 /* Anonymous page without mapping */
6c5240ae
CL
282 if (page_count(page) != 1)
283 return -EAGAIN;
284 return 0;
285 }
286
19fd6231 287 spin_lock_irq(&mapping->tree_lock);
b20a3503 288
7cf9c2c7
NP
289 pslot = radix_tree_lookup_slot(&mapping->page_tree,
290 page_index(page));
b20a3503 291
e286781d
NP
292 expected_count = 2 + !!PagePrivate(page);
293 if (page_count(page) != expected_count ||
7cf9c2c7 294 (struct page *)radix_tree_deref_slot(pslot) != page) {
19fd6231 295 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 296 return -EAGAIN;
b20a3503
CL
297 }
298
e286781d 299 if (!page_freeze_refs(page, expected_count)) {
19fd6231 300 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
301 return -EAGAIN;
302 }
303
b20a3503
CL
304 /*
305 * Now we know that no one else is looking at the page.
b20a3503 306 */
7cf9c2c7 307 get_page(newpage); /* add cache reference */
6c5240ae 308#ifdef CONFIG_SWAP
b20a3503
CL
309 if (PageSwapCache(page)) {
310 SetPageSwapCache(newpage);
311 set_page_private(newpage, page_private(page));
312 }
6c5240ae 313#endif
b20a3503 314
7cf9c2c7
NP
315 radix_tree_replace_slot(pslot, newpage);
316
e286781d 317 page_unfreeze_refs(page, expected_count);
7cf9c2c7
NP
318 /*
319 * Drop cache reference from old page.
320 * We know this isn't the last reference.
321 */
b20a3503 322 __put_page(page);
7cf9c2c7 323
0e8c7d0f
CL
324 /*
325 * If moved to a different zone then also account
326 * the page for that zone. Other VM counters will be
327 * taken care of when we establish references to the
328 * new page and drop references to the old page.
329 *
330 * Note that anonymous pages are accounted for
331 * via NR_FILE_PAGES and NR_ANON_PAGES if they
332 * are mapped to swap space.
333 */
334 __dec_zone_page_state(page, NR_FILE_PAGES);
335 __inc_zone_page_state(newpage, NR_FILE_PAGES);
336
19fd6231
NP
337 spin_unlock_irq(&mapping->tree_lock);
338 if (!PageSwapCache(newpage))
69029cd5 339 mem_cgroup_uncharge_cache_page(page);
b20a3503
CL
340
341 return 0;
342}
b20a3503
CL
343
344/*
345 * Copy the page to its new location
346 */
e7340f73 347static void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503
CL
348{
349 copy_highpage(newpage, page);
350
351 if (PageError(page))
352 SetPageError(newpage);
353 if (PageReferenced(page))
354 SetPageReferenced(newpage);
355 if (PageUptodate(page))
356 SetPageUptodate(newpage);
357 if (PageActive(page))
358 SetPageActive(newpage);
359 if (PageChecked(page))
360 SetPageChecked(newpage);
361 if (PageMappedToDisk(page))
362 SetPageMappedToDisk(newpage);
363
364 if (PageDirty(page)) {
365 clear_page_dirty_for_io(page);
3a902c5f
NP
366 /*
367 * Want to mark the page and the radix tree as dirty, and
368 * redo the accounting that clear_page_dirty_for_io undid,
369 * but we can't use set_page_dirty because that function
370 * is actually a signal that all of the page has become dirty.
371 * Wheras only part of our page may be dirty.
372 */
373 __set_page_dirty_nobuffers(newpage);
b20a3503
CL
374 }
375
6c5240ae 376#ifdef CONFIG_SWAP
b20a3503 377 ClearPageSwapCache(page);
6c5240ae 378#endif
b20a3503
CL
379 ClearPageActive(page);
380 ClearPagePrivate(page);
381 set_page_private(page, 0);
382 page->mapping = NULL;
383
384 /*
385 * If any waiters have accumulated on the new page then
386 * wake them up.
387 */
388 if (PageWriteback(newpage))
389 end_page_writeback(newpage);
390}
b20a3503 391
1d8b85cc
CL
392/************************************************************
393 * Migration functions
394 ***********************************************************/
395
396/* Always fail migration. Used for mappings that are not movable */
2d1db3b1
CL
397int fail_migrate_page(struct address_space *mapping,
398 struct page *newpage, struct page *page)
1d8b85cc
CL
399{
400 return -EIO;
401}
402EXPORT_SYMBOL(fail_migrate_page);
403
b20a3503
CL
404/*
405 * Common logic to directly migrate a single page suitable for
406 * pages that do not use PagePrivate.
407 *
408 * Pages are locked upon entry and exit.
409 */
2d1db3b1
CL
410int migrate_page(struct address_space *mapping,
411 struct page *newpage, struct page *page)
b20a3503
CL
412{
413 int rc;
414
415 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
416
2d1db3b1 417 rc = migrate_page_move_mapping(mapping, newpage, page);
b20a3503
CL
418
419 if (rc)
420 return rc;
421
422 migrate_page_copy(newpage, page);
b20a3503
CL
423 return 0;
424}
425EXPORT_SYMBOL(migrate_page);
426
9361401e 427#ifdef CONFIG_BLOCK
1d8b85cc
CL
428/*
429 * Migration function for pages with buffers. This function can only be used
430 * if the underlying filesystem guarantees that no other references to "page"
431 * exist.
432 */
2d1db3b1
CL
433int buffer_migrate_page(struct address_space *mapping,
434 struct page *newpage, struct page *page)
1d8b85cc 435{
1d8b85cc
CL
436 struct buffer_head *bh, *head;
437 int rc;
438
1d8b85cc 439 if (!page_has_buffers(page))
2d1db3b1 440 return migrate_page(mapping, newpage, page);
1d8b85cc
CL
441
442 head = page_buffers(page);
443
2d1db3b1 444 rc = migrate_page_move_mapping(mapping, newpage, page);
1d8b85cc
CL
445
446 if (rc)
447 return rc;
448
449 bh = head;
450 do {
451 get_bh(bh);
452 lock_buffer(bh);
453 bh = bh->b_this_page;
454
455 } while (bh != head);
456
457 ClearPagePrivate(page);
458 set_page_private(newpage, page_private(page));
459 set_page_private(page, 0);
460 put_page(page);
461 get_page(newpage);
462
463 bh = head;
464 do {
465 set_bh_page(bh, newpage, bh_offset(bh));
466 bh = bh->b_this_page;
467
468 } while (bh != head);
469
470 SetPagePrivate(newpage);
471
472 migrate_page_copy(newpage, page);
473
474 bh = head;
475 do {
476 unlock_buffer(bh);
477 put_bh(bh);
478 bh = bh->b_this_page;
479
480 } while (bh != head);
481
482 return 0;
483}
484EXPORT_SYMBOL(buffer_migrate_page);
9361401e 485#endif
1d8b85cc 486
04e62a29
CL
487/*
488 * Writeback a page to clean the dirty state
489 */
490static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 491{
04e62a29
CL
492 struct writeback_control wbc = {
493 .sync_mode = WB_SYNC_NONE,
494 .nr_to_write = 1,
495 .range_start = 0,
496 .range_end = LLONG_MAX,
497 .nonblocking = 1,
498 .for_reclaim = 1
499 };
500 int rc;
501
502 if (!mapping->a_ops->writepage)
503 /* No write method for the address space */
504 return -EINVAL;
505
506 if (!clear_page_dirty_for_io(page))
507 /* Someone else already triggered a write */
508 return -EAGAIN;
509
8351a6e4 510 /*
04e62a29
CL
511 * A dirty page may imply that the underlying filesystem has
512 * the page on some queue. So the page must be clean for
513 * migration. Writeout may mean we loose the lock and the
514 * page state is no longer what we checked for earlier.
515 * At this point we know that the migration attempt cannot
516 * be successful.
8351a6e4 517 */
04e62a29 518 remove_migration_ptes(page, page);
8351a6e4 519
04e62a29
CL
520 rc = mapping->a_ops->writepage(page, &wbc);
521 if (rc < 0)
522 /* I/O Error writing */
523 return -EIO;
8351a6e4 524
04e62a29
CL
525 if (rc != AOP_WRITEPAGE_ACTIVATE)
526 /* unlocked. Relock */
527 lock_page(page);
528
529 return -EAGAIN;
530}
531
532/*
533 * Default handling if a filesystem does not provide a migration function.
534 */
535static int fallback_migrate_page(struct address_space *mapping,
536 struct page *newpage, struct page *page)
537{
538 if (PageDirty(page))
539 return writeout(mapping, page);
8351a6e4
CL
540
541 /*
542 * Buffers may be managed in a filesystem specific way.
543 * We must have no buffers or drop them.
544 */
b398f6bf 545 if (PagePrivate(page) &&
8351a6e4
CL
546 !try_to_release_page(page, GFP_KERNEL))
547 return -EAGAIN;
548
549 return migrate_page(mapping, newpage, page);
550}
551
e24f0b8f
CL
552/*
553 * Move a page to a newly allocated page
554 * The page is locked and all ptes have been successfully removed.
555 *
556 * The new page will have replaced the old page if this function
557 * is successful.
558 */
559static int move_to_new_page(struct page *newpage, struct page *page)
560{
561 struct address_space *mapping;
562 int rc;
563
564 /*
565 * Block others from accessing the page when we get around to
566 * establishing additional references. We are the only one
567 * holding a reference to the new page at this point.
568 */
529ae9aa 569 if (!trylock_page(newpage))
e24f0b8f
CL
570 BUG();
571
572 /* Prepare mapping for the new page.*/
573 newpage->index = page->index;
574 newpage->mapping = page->mapping;
575
576 mapping = page_mapping(page);
577 if (!mapping)
578 rc = migrate_page(mapping, newpage, page);
579 else if (mapping->a_ops->migratepage)
580 /*
581 * Most pages have a mapping and most filesystems
582 * should provide a migration function. Anonymous
583 * pages are part of swap space which also has its
584 * own migration function. This is the most common
585 * path for page migration.
586 */
587 rc = mapping->a_ops->migratepage(mapping,
588 newpage, page);
589 else
590 rc = fallback_migrate_page(mapping, newpage, page);
591
ae41be37 592 if (!rc) {
e24f0b8f 593 remove_migration_ptes(page, newpage);
ae41be37 594 } else
e24f0b8f
CL
595 newpage->mapping = NULL;
596
597 unlock_page(newpage);
598
599 return rc;
600}
601
602/*
603 * Obtain the lock on page, remove all ptes and migrate the page
604 * to the newly allocated page in newpage.
605 */
95a402c3
CL
606static int unmap_and_move(new_page_t get_new_page, unsigned long private,
607 struct page *page, int force)
e24f0b8f
CL
608{
609 int rc = 0;
742755a1
CL
610 int *result = NULL;
611 struct page *newpage = get_new_page(page, private, &result);
989f89c5 612 int rcu_locked = 0;
ae41be37 613 int charge = 0;
95a402c3
CL
614
615 if (!newpage)
616 return -ENOMEM;
e24f0b8f
CL
617
618 if (page_count(page) == 1)
619 /* page was freed from under us. So we are done. */
95a402c3 620 goto move_newpage;
e24f0b8f 621
e8589cc1
KH
622 charge = mem_cgroup_prepare_migration(page, newpage);
623 if (charge == -ENOMEM) {
624 rc = -ENOMEM;
625 goto move_newpage;
626 }
627 /* prepare cgroup just returns 0 or -ENOMEM */
628 BUG_ON(charge);
629
e24f0b8f 630 rc = -EAGAIN;
529ae9aa 631 if (!trylock_page(page)) {
e24f0b8f 632 if (!force)
95a402c3 633 goto move_newpage;
e24f0b8f
CL
634 lock_page(page);
635 }
636
637 if (PageWriteback(page)) {
638 if (!force)
639 goto unlock;
640 wait_on_page_writeback(page);
641 }
e24f0b8f 642 /*
dc386d4d
KH
643 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
644 * we cannot notice that anon_vma is freed while we migrates a page.
645 * This rcu_read_lock() delays freeing anon_vma pointer until the end
646 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
647 * File Caches may use write_page() or lock_page() in migration, then,
648 * just care Anon page here.
dc386d4d 649 */
989f89c5
KH
650 if (PageAnon(page)) {
651 rcu_read_lock();
652 rcu_locked = 1;
653 }
62e1c553 654
dc386d4d 655 /*
62e1c553
SL
656 * Corner case handling:
657 * 1. When a new swap-cache page is read into, it is added to the LRU
658 * and treated as swapcache but it has no rmap yet.
659 * Calling try_to_unmap() against a page->mapping==NULL page will
660 * trigger a BUG. So handle it here.
661 * 2. An orphaned page (see truncate_complete_page) might have
662 * fs-private metadata. The page can be picked up due to memory
663 * offlining. Everywhere else except page reclaim, the page is
664 * invisible to the vm, so the page can not be migrated. So try to
665 * free the metadata, so the page can be freed.
e24f0b8f 666 */
62e1c553
SL
667 if (!page->mapping) {
668 if (!PageAnon(page) && PagePrivate(page)) {
669 /*
670 * Go direct to try_to_free_buffers() here because
671 * a) that's what try_to_release_page() would do anyway
672 * b) we may be under rcu_read_lock() here, so we can't
673 * use GFP_KERNEL which is what try_to_release_page()
674 * needs to be effective.
675 */
676 try_to_free_buffers(page);
677 }
dc386d4d 678 goto rcu_unlock;
62e1c553
SL
679 }
680
dc386d4d 681 /* Establish migration ptes or remove ptes */
e6a1530d 682 try_to_unmap(page, 1);
dc386d4d 683
e6a1530d
CL
684 if (!page_mapped(page))
685 rc = move_to_new_page(newpage, page);
e24f0b8f 686
e8589cc1 687 if (rc)
e24f0b8f 688 remove_migration_ptes(page, page);
dc386d4d 689rcu_unlock:
989f89c5
KH
690 if (rcu_locked)
691 rcu_read_unlock();
e6a1530d 692
e24f0b8f 693unlock:
dc386d4d 694
e24f0b8f 695 unlock_page(page);
95a402c3 696
e24f0b8f 697 if (rc != -EAGAIN) {
aaa994b3
CL
698 /*
699 * A page that has been migrated has all references
700 * removed and will be freed. A page that has not been
701 * migrated will have kepts its references and be
702 * restored.
703 */
704 list_del(&page->lru);
705 move_to_lru(page);
e24f0b8f 706 }
95a402c3
CL
707
708move_newpage:
e8589cc1
KH
709 if (!charge)
710 mem_cgroup_end_migration(newpage);
95a402c3
CL
711 /*
712 * Move the new page to the LRU. If migration was not successful
713 * then this will free the page.
714 */
715 move_to_lru(newpage);
742755a1
CL
716 if (result) {
717 if (rc)
718 *result = rc;
719 else
720 *result = page_to_nid(newpage);
721 }
e24f0b8f
CL
722 return rc;
723}
724
b20a3503
CL
725/*
726 * migrate_pages
727 *
95a402c3
CL
728 * The function takes one list of pages to migrate and a function
729 * that determines from the page to be migrated and the private data
730 * the target of the move and allocates the page.
b20a3503
CL
731 *
732 * The function returns after 10 attempts or if no pages
733 * are movable anymore because to has become empty
aaa994b3 734 * or no retryable pages exist anymore. All pages will be
e9534b3f 735 * returned to the LRU or freed.
b20a3503 736 *
95a402c3 737 * Return: Number of pages not migrated or error code.
b20a3503 738 */
95a402c3
CL
739int migrate_pages(struct list_head *from,
740 new_page_t get_new_page, unsigned long private)
b20a3503 741{
e24f0b8f 742 int retry = 1;
b20a3503
CL
743 int nr_failed = 0;
744 int pass = 0;
745 struct page *page;
746 struct page *page2;
747 int swapwrite = current->flags & PF_SWAPWRITE;
748 int rc;
749
750 if (!swapwrite)
751 current->flags |= PF_SWAPWRITE;
752
e24f0b8f
CL
753 for(pass = 0; pass < 10 && retry; pass++) {
754 retry = 0;
b20a3503 755
e24f0b8f 756 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 757 cond_resched();
2d1db3b1 758
95a402c3
CL
759 rc = unmap_and_move(get_new_page, private,
760 page, pass > 2);
2d1db3b1 761
e24f0b8f 762 switch(rc) {
95a402c3
CL
763 case -ENOMEM:
764 goto out;
e24f0b8f 765 case -EAGAIN:
2d1db3b1 766 retry++;
e24f0b8f
CL
767 break;
768 case 0:
e24f0b8f
CL
769 break;
770 default:
2d1db3b1 771 /* Permanent failure */
2d1db3b1 772 nr_failed++;
e24f0b8f 773 break;
2d1db3b1 774 }
b20a3503
CL
775 }
776 }
95a402c3
CL
777 rc = 0;
778out:
b20a3503
CL
779 if (!swapwrite)
780 current->flags &= ~PF_SWAPWRITE;
781
aaa994b3 782 putback_lru_pages(from);
b20a3503 783
95a402c3
CL
784 if (rc)
785 return rc;
b20a3503 786
95a402c3 787 return nr_failed + retry;
b20a3503 788}
95a402c3 789
742755a1
CL
790#ifdef CONFIG_NUMA
791/*
792 * Move a list of individual pages
793 */
794struct page_to_node {
795 unsigned long addr;
796 struct page *page;
797 int node;
798 int status;
799};
800
801static struct page *new_page_node(struct page *p, unsigned long private,
802 int **result)
803{
804 struct page_to_node *pm = (struct page_to_node *)private;
805
806 while (pm->node != MAX_NUMNODES && pm->page != p)
807 pm++;
808
809 if (pm->node == MAX_NUMNODES)
810 return NULL;
811
812 *result = &pm->status;
813
769848c0
MG
814 return alloc_pages_node(pm->node,
815 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
742755a1
CL
816}
817
818/*
819 * Move a set of pages as indicated in the pm array. The addr
820 * field must be set to the virtual address of the page to be moved
821 * and the node number must contain a valid target node.
822 */
823static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm,
824 int migrate_all)
825{
826 int err;
827 struct page_to_node *pp;
828 LIST_HEAD(pagelist);
829
830 down_read(&mm->mmap_sem);
831
832 /*
833 * Build a list of pages to migrate
834 */
835 migrate_prep();
836 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
837 struct vm_area_struct *vma;
838 struct page *page;
839
840 /*
841 * A valid page pointer that will not match any of the
842 * pages that will be moved.
843 */
844 pp->page = ZERO_PAGE(0);
845
846 err = -EFAULT;
847 vma = find_vma(mm, pp->addr);
0dc952dc 848 if (!vma || !vma_migratable(vma))
742755a1
CL
849 goto set_status;
850
851 page = follow_page(vma, pp->addr, FOLL_GET);
89f5b7da
LT
852
853 err = PTR_ERR(page);
854 if (IS_ERR(page))
855 goto set_status;
856
742755a1
CL
857 err = -ENOENT;
858 if (!page)
859 goto set_status;
860
861 if (PageReserved(page)) /* Check for zero page */
862 goto put_and_set;
863
864 pp->page = page;
865 err = page_to_nid(page);
866
867 if (err == pp->node)
868 /*
869 * Node already in the right place
870 */
871 goto put_and_set;
872
873 err = -EACCES;
874 if (page_mapcount(page) > 1 &&
875 !migrate_all)
876 goto put_and_set;
877
62695a84
NP
878 err = isolate_lru_page(page);
879 if (!err)
880 list_add_tail(&page->lru, &pagelist);
742755a1
CL
881put_and_set:
882 /*
883 * Either remove the duplicate refcount from
884 * isolate_lru_page() or drop the page ref if it was
885 * not isolated.
886 */
887 put_page(page);
888set_status:
889 pp->status = err;
890 }
891
892 if (!list_empty(&pagelist))
893 err = migrate_pages(&pagelist, new_page_node,
894 (unsigned long)pm);
895 else
896 err = -ENOENT;
897
898 up_read(&mm->mmap_sem);
899 return err;
900}
901
902/*
903 * Determine the nodes of a list of pages. The addr in the pm array
904 * must have been set to the virtual address of which we want to determine
905 * the node number.
906 */
907static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm)
908{
909 down_read(&mm->mmap_sem);
910
911 for ( ; pm->node != MAX_NUMNODES; pm++) {
912 struct vm_area_struct *vma;
913 struct page *page;
914 int err;
915
916 err = -EFAULT;
917 vma = find_vma(mm, pm->addr);
918 if (!vma)
919 goto set_status;
920
921 page = follow_page(vma, pm->addr, 0);
89f5b7da
LT
922
923 err = PTR_ERR(page);
924 if (IS_ERR(page))
925 goto set_status;
926
742755a1
CL
927 err = -ENOENT;
928 /* Use PageReserved to check for zero page */
929 if (!page || PageReserved(page))
930 goto set_status;
931
932 err = page_to_nid(page);
933set_status:
934 pm->status = err;
935 }
936
937 up_read(&mm->mmap_sem);
938 return 0;
939}
940
941/*
942 * Move a list of pages in the address space of the currently executing
943 * process.
944 */
945asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
946 const void __user * __user *pages,
947 const int __user *nodes,
948 int __user *status, int flags)
949{
950 int err = 0;
951 int i;
952 struct task_struct *task;
953 nodemask_t task_nodes;
954 struct mm_struct *mm;
955 struct page_to_node *pm = NULL;
956
957 /* Check flags */
958 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
959 return -EINVAL;
960
961 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
962 return -EPERM;
963
964 /* Find the mm_struct */
965 read_lock(&tasklist_lock);
228ebcbe 966 task = pid ? find_task_by_vpid(pid) : current;
742755a1
CL
967 if (!task) {
968 read_unlock(&tasklist_lock);
969 return -ESRCH;
970 }
971 mm = get_task_mm(task);
972 read_unlock(&tasklist_lock);
973
974 if (!mm)
975 return -EINVAL;
976
977 /*
978 * Check if this process has the right to modify the specified
979 * process. The right exists if the process has administrative
980 * capabilities, superuser privileges or the same
981 * userid as the target process.
982 */
983 if ((current->euid != task->suid) && (current->euid != task->uid) &&
984 (current->uid != task->suid) && (current->uid != task->uid) &&
985 !capable(CAP_SYS_NICE)) {
986 err = -EPERM;
987 goto out2;
988 }
989
86c3a764
DQ
990 err = security_task_movememory(task);
991 if (err)
992 goto out2;
993
994
742755a1
CL
995 task_nodes = cpuset_mems_allowed(task);
996
997 /* Limit nr_pages so that the multiplication may not overflow */
998 if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) {
999 err = -E2BIG;
1000 goto out2;
1001 }
1002
1003 pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node));
1004 if (!pm) {
1005 err = -ENOMEM;
1006 goto out2;
1007 }
1008
1009 /*
1010 * Get parameters from user space and initialize the pm
1011 * array. Return various errors if the user did something wrong.
1012 */
1013 for (i = 0; i < nr_pages; i++) {
9d966d49 1014 const void __user *p;
742755a1
CL
1015
1016 err = -EFAULT;
1017 if (get_user(p, pages + i))
1018 goto out;
1019
1020 pm[i].addr = (unsigned long)p;
1021 if (nodes) {
1022 int node;
1023
1024 if (get_user(node, nodes + i))
1025 goto out;
1026
1027 err = -ENODEV;
56bbd65d 1028 if (!node_state(node, N_HIGH_MEMORY))
742755a1
CL
1029 goto out;
1030
1031 err = -EACCES;
1032 if (!node_isset(node, task_nodes))
1033 goto out;
1034
1035 pm[i].node = node;
8ce08464
SR
1036 } else
1037 pm[i].node = 0; /* anything to not match MAX_NUMNODES */
742755a1
CL
1038 }
1039 /* End marker */
1040 pm[nr_pages].node = MAX_NUMNODES;
1041
1042 if (nodes)
1043 err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL);
1044 else
1045 err = do_pages_stat(mm, pm);
1046
1047 if (err >= 0)
1048 /* Return status information */
1049 for (i = 0; i < nr_pages; i++)
1050 if (put_user(pm[i].status, status + i))
1051 err = -EFAULT;
1052
1053out:
1054 vfree(pm);
1055out2:
1056 mmput(mm);
1057 return err;
1058}
742755a1 1059
7b2259b3
CL
1060/*
1061 * Call migration functions in the vma_ops that may prepare
1062 * memory in a vm for migration. migration functions may perform
1063 * the migration for vmas that do not have an underlying page struct.
1064 */
1065int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1066 const nodemask_t *from, unsigned long flags)
1067{
1068 struct vm_area_struct *vma;
1069 int err = 0;
1070
1071 for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
1072 if (vma->vm_ops && vma->vm_ops->migrate) {
1073 err = vma->vm_ops->migrate(vma, to, from, flags);
1074 if (err)
1075 break;
1076 }
1077 }
1078 return err;
1079}
83d1674a 1080#endif