]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/migrate.c
Document lowmem_reserve_ratio
[net-next-2.6.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter <clameter@sgi.com>
13 */
14
15#include <linux/migrate.h>
16#include <linux/module.h>
17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503
CL
23#include <linux/pagevec.h>
24#include <linux/rmap.h>
25#include <linux/topology.h>
26#include <linux/cpu.h>
27#include <linux/cpuset.h>
04e62a29 28#include <linux/writeback.h>
742755a1
CL
29#include <linux/mempolicy.h>
30#include <linux/vmalloc.h>
86c3a764 31#include <linux/security.h>
b20a3503
CL
32
33#include "internal.h"
34
b20a3503
CL
35#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
36
37/*
38 * Isolate one page from the LRU lists. If successful put it onto
39 * the indicated list with elevated page count.
40 *
41 * Result:
42 * -EBUSY: page not on LRU list
43 * 0: page removed from LRU list and added to the specified list.
44 */
45int isolate_lru_page(struct page *page, struct list_head *pagelist)
46{
47 int ret = -EBUSY;
48
49 if (PageLRU(page)) {
50 struct zone *zone = page_zone(page);
51
52 spin_lock_irq(&zone->lru_lock);
3dd9fe8c 53 if (PageLRU(page) && get_page_unless_zero(page)) {
b20a3503 54 ret = 0;
b20a3503
CL
55 ClearPageLRU(page);
56 if (PageActive(page))
57 del_page_from_active_list(zone, page);
58 else
59 del_page_from_inactive_list(zone, page);
60 list_add_tail(&page->lru, pagelist);
61 }
62 spin_unlock_irq(&zone->lru_lock);
63 }
64 return ret;
65}
66
67/*
742755a1
CL
68 * migrate_prep() needs to be called before we start compiling a list of pages
69 * to be migrated using isolate_lru_page().
b20a3503
CL
70 */
71int migrate_prep(void)
72{
b20a3503
CL
73 /*
74 * Clear the LRU lists so pages can be isolated.
75 * Note that pages may be moved off the LRU after we have
76 * drained them. Those pages will fail to migrate like other
77 * pages that may be busy.
78 */
79 lru_add_drain_all();
80
81 return 0;
82}
83
84static inline void move_to_lru(struct page *page)
85{
b20a3503
CL
86 if (PageActive(page)) {
87 /*
88 * lru_cache_add_active checks that
89 * the PG_active bit is off.
90 */
91 ClearPageActive(page);
92 lru_cache_add_active(page);
93 } else {
94 lru_cache_add(page);
95 }
96 put_page(page);
97}
98
99/*
100 * Add isolated pages on the list back to the LRU.
101 *
102 * returns the number of pages put back.
103 */
104int putback_lru_pages(struct list_head *l)
105{
106 struct page *page;
107 struct page *page2;
108 int count = 0;
109
110 list_for_each_entry_safe(page, page2, l, lru) {
e24f0b8f 111 list_del(&page->lru);
b20a3503
CL
112 move_to_lru(page);
113 count++;
114 }
115 return count;
116}
117
0697212a
CL
118/*
119 * Restore a potential migration pte to a working pte entry
120 */
04e62a29 121static void remove_migration_pte(struct vm_area_struct *vma,
0697212a
CL
122 struct page *old, struct page *new)
123{
124 struct mm_struct *mm = vma->vm_mm;
125 swp_entry_t entry;
126 pgd_t *pgd;
127 pud_t *pud;
128 pmd_t *pmd;
129 pte_t *ptep, pte;
130 spinlock_t *ptl;
04e62a29
CL
131 unsigned long addr = page_address_in_vma(new, vma);
132
133 if (addr == -EFAULT)
134 return;
0697212a
CL
135
136 pgd = pgd_offset(mm, addr);
137 if (!pgd_present(*pgd))
138 return;
139
140 pud = pud_offset(pgd, addr);
141 if (!pud_present(*pud))
142 return;
143
144 pmd = pmd_offset(pud, addr);
145 if (!pmd_present(*pmd))
146 return;
147
148 ptep = pte_offset_map(pmd, addr);
149
150 if (!is_swap_pte(*ptep)) {
151 pte_unmap(ptep);
152 return;
153 }
154
155 ptl = pte_lockptr(mm, pmd);
156 spin_lock(ptl);
157 pte = *ptep;
158 if (!is_swap_pte(pte))
159 goto out;
160
161 entry = pte_to_swp_entry(pte);
162
163 if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
164 goto out;
165
0697212a
CL
166 get_page(new);
167 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
168 if (is_write_migration_entry(entry))
169 pte = pte_mkwrite(pte);
97ee0524 170 flush_cache_page(vma, addr, pte_pfn(pte));
0697212a 171 set_pte_at(mm, addr, ptep, pte);
04e62a29
CL
172
173 if (PageAnon(new))
174 page_add_anon_rmap(new, vma, addr);
175 else
176 page_add_file_rmap(new);
177
178 /* No need to invalidate - it was non-present before */
179 update_mmu_cache(vma, addr, pte);
04e62a29 180
0697212a
CL
181out:
182 pte_unmap_unlock(ptep, ptl);
183}
184
185/*
04e62a29
CL
186 * Note that remove_file_migration_ptes will only work on regular mappings,
187 * Nonlinear mappings do not use migration entries.
188 */
189static void remove_file_migration_ptes(struct page *old, struct page *new)
190{
191 struct vm_area_struct *vma;
192 struct address_space *mapping = page_mapping(new);
193 struct prio_tree_iter iter;
194 pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
195
196 if (!mapping)
197 return;
198
199 spin_lock(&mapping->i_mmap_lock);
200
201 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
202 remove_migration_pte(vma, old, new);
203
204 spin_unlock(&mapping->i_mmap_lock);
205}
206
207/*
0697212a
CL
208 * Must hold mmap_sem lock on at least one of the vmas containing
209 * the page so that the anon_vma cannot vanish.
210 */
04e62a29 211static void remove_anon_migration_ptes(struct page *old, struct page *new)
0697212a
CL
212{
213 struct anon_vma *anon_vma;
214 struct vm_area_struct *vma;
215 unsigned long mapping;
216
217 mapping = (unsigned long)new->mapping;
218
219 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
220 return;
221
222 /*
223 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
224 */
225 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
226 spin_lock(&anon_vma->lock);
227
228 list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
04e62a29 229 remove_migration_pte(vma, old, new);
0697212a
CL
230
231 spin_unlock(&anon_vma->lock);
232}
233
04e62a29
CL
234/*
235 * Get rid of all migration entries and replace them by
236 * references to the indicated page.
237 */
238static void remove_migration_ptes(struct page *old, struct page *new)
239{
240 if (PageAnon(new))
241 remove_anon_migration_ptes(old, new);
242 else
243 remove_file_migration_ptes(old, new);
244}
245
0697212a
CL
246/*
247 * Something used the pte of a page under migration. We need to
248 * get to the page and wait until migration is finished.
249 * When we return from this function the fault will be retried.
250 *
251 * This function is called from do_swap_page().
252 */
253void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
254 unsigned long address)
255{
256 pte_t *ptep, pte;
257 spinlock_t *ptl;
258 swp_entry_t entry;
259 struct page *page;
260
261 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
262 pte = *ptep;
263 if (!is_swap_pte(pte))
264 goto out;
265
266 entry = pte_to_swp_entry(pte);
267 if (!is_migration_entry(entry))
268 goto out;
269
270 page = migration_entry_to_page(entry);
271
272 get_page(page);
273 pte_unmap_unlock(ptep, ptl);
274 wait_on_page_locked(page);
275 put_page(page);
276 return;
277out:
278 pte_unmap_unlock(ptep, ptl);
279}
280
b20a3503 281/*
c3fcf8a5 282 * Replace the page in the mapping.
5b5c7120
CL
283 *
284 * The number of remaining references must be:
285 * 1 for anonymous pages without a mapping
286 * 2 for pages with a mapping
287 * 3 for pages with a mapping and PagePrivate set.
b20a3503 288 */
2d1db3b1
CL
289static int migrate_page_move_mapping(struct address_space *mapping,
290 struct page *newpage, struct page *page)
b20a3503 291{
7cf9c2c7 292 void **pslot;
b20a3503 293
6c5240ae 294 if (!mapping) {
0e8c7d0f 295 /* Anonymous page without mapping */
6c5240ae
CL
296 if (page_count(page) != 1)
297 return -EAGAIN;
298 return 0;
299 }
300
b20a3503
CL
301 write_lock_irq(&mapping->tree_lock);
302
7cf9c2c7
NP
303 pslot = radix_tree_lookup_slot(&mapping->page_tree,
304 page_index(page));
b20a3503 305
6c5240ae 306 if (page_count(page) != 2 + !!PagePrivate(page) ||
7cf9c2c7 307 (struct page *)radix_tree_deref_slot(pslot) != page) {
b20a3503 308 write_unlock_irq(&mapping->tree_lock);
e23ca00b 309 return -EAGAIN;
b20a3503
CL
310 }
311
312 /*
313 * Now we know that no one else is looking at the page.
b20a3503 314 */
7cf9c2c7 315 get_page(newpage); /* add cache reference */
6c5240ae 316#ifdef CONFIG_SWAP
b20a3503
CL
317 if (PageSwapCache(page)) {
318 SetPageSwapCache(newpage);
319 set_page_private(newpage, page_private(page));
320 }
6c5240ae 321#endif
b20a3503 322
7cf9c2c7
NP
323 radix_tree_replace_slot(pslot, newpage);
324
325 /*
326 * Drop cache reference from old page.
327 * We know this isn't the last reference.
328 */
b20a3503 329 __put_page(page);
7cf9c2c7 330
0e8c7d0f
CL
331 /*
332 * If moved to a different zone then also account
333 * the page for that zone. Other VM counters will be
334 * taken care of when we establish references to the
335 * new page and drop references to the old page.
336 *
337 * Note that anonymous pages are accounted for
338 * via NR_FILE_PAGES and NR_ANON_PAGES if they
339 * are mapped to swap space.
340 */
341 __dec_zone_page_state(page, NR_FILE_PAGES);
342 __inc_zone_page_state(newpage, NR_FILE_PAGES);
343
b20a3503
CL
344 write_unlock_irq(&mapping->tree_lock);
345
346 return 0;
347}
b20a3503
CL
348
349/*
350 * Copy the page to its new location
351 */
e7340f73 352static void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503
CL
353{
354 copy_highpage(newpage, page);
355
356 if (PageError(page))
357 SetPageError(newpage);
358 if (PageReferenced(page))
359 SetPageReferenced(newpage);
360 if (PageUptodate(page))
361 SetPageUptodate(newpage);
362 if (PageActive(page))
363 SetPageActive(newpage);
364 if (PageChecked(page))
365 SetPageChecked(newpage);
366 if (PageMappedToDisk(page))
367 SetPageMappedToDisk(newpage);
368
369 if (PageDirty(page)) {
370 clear_page_dirty_for_io(page);
371 set_page_dirty(newpage);
372 }
373
6c5240ae 374#ifdef CONFIG_SWAP
b20a3503 375 ClearPageSwapCache(page);
6c5240ae 376#endif
b20a3503
CL
377 ClearPageActive(page);
378 ClearPagePrivate(page);
379 set_page_private(page, 0);
380 page->mapping = NULL;
381
382 /*
383 * If any waiters have accumulated on the new page then
384 * wake them up.
385 */
386 if (PageWriteback(newpage))
387 end_page_writeback(newpage);
388}
b20a3503 389
1d8b85cc
CL
390/************************************************************
391 * Migration functions
392 ***********************************************************/
393
394/* Always fail migration. Used for mappings that are not movable */
2d1db3b1
CL
395int fail_migrate_page(struct address_space *mapping,
396 struct page *newpage, struct page *page)
1d8b85cc
CL
397{
398 return -EIO;
399}
400EXPORT_SYMBOL(fail_migrate_page);
401
b20a3503
CL
402/*
403 * Common logic to directly migrate a single page suitable for
404 * pages that do not use PagePrivate.
405 *
406 * Pages are locked upon entry and exit.
407 */
2d1db3b1
CL
408int migrate_page(struct address_space *mapping,
409 struct page *newpage, struct page *page)
b20a3503
CL
410{
411 int rc;
412
413 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
414
2d1db3b1 415 rc = migrate_page_move_mapping(mapping, newpage, page);
b20a3503
CL
416
417 if (rc)
418 return rc;
419
420 migrate_page_copy(newpage, page);
b20a3503
CL
421 return 0;
422}
423EXPORT_SYMBOL(migrate_page);
424
9361401e 425#ifdef CONFIG_BLOCK
1d8b85cc
CL
426/*
427 * Migration function for pages with buffers. This function can only be used
428 * if the underlying filesystem guarantees that no other references to "page"
429 * exist.
430 */
2d1db3b1
CL
431int buffer_migrate_page(struct address_space *mapping,
432 struct page *newpage, struct page *page)
1d8b85cc 433{
1d8b85cc
CL
434 struct buffer_head *bh, *head;
435 int rc;
436
1d8b85cc 437 if (!page_has_buffers(page))
2d1db3b1 438 return migrate_page(mapping, newpage, page);
1d8b85cc
CL
439
440 head = page_buffers(page);
441
2d1db3b1 442 rc = migrate_page_move_mapping(mapping, newpage, page);
1d8b85cc
CL
443
444 if (rc)
445 return rc;
446
447 bh = head;
448 do {
449 get_bh(bh);
450 lock_buffer(bh);
451 bh = bh->b_this_page;
452
453 } while (bh != head);
454
455 ClearPagePrivate(page);
456 set_page_private(newpage, page_private(page));
457 set_page_private(page, 0);
458 put_page(page);
459 get_page(newpage);
460
461 bh = head;
462 do {
463 set_bh_page(bh, newpage, bh_offset(bh));
464 bh = bh->b_this_page;
465
466 } while (bh != head);
467
468 SetPagePrivate(newpage);
469
470 migrate_page_copy(newpage, page);
471
472 bh = head;
473 do {
474 unlock_buffer(bh);
475 put_bh(bh);
476 bh = bh->b_this_page;
477
478 } while (bh != head);
479
480 return 0;
481}
482EXPORT_SYMBOL(buffer_migrate_page);
9361401e 483#endif
1d8b85cc 484
04e62a29
CL
485/*
486 * Writeback a page to clean the dirty state
487 */
488static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 489{
04e62a29
CL
490 struct writeback_control wbc = {
491 .sync_mode = WB_SYNC_NONE,
492 .nr_to_write = 1,
493 .range_start = 0,
494 .range_end = LLONG_MAX,
495 .nonblocking = 1,
496 .for_reclaim = 1
497 };
498 int rc;
499
500 if (!mapping->a_ops->writepage)
501 /* No write method for the address space */
502 return -EINVAL;
503
504 if (!clear_page_dirty_for_io(page))
505 /* Someone else already triggered a write */
506 return -EAGAIN;
507
8351a6e4 508 /*
04e62a29
CL
509 * A dirty page may imply that the underlying filesystem has
510 * the page on some queue. So the page must be clean for
511 * migration. Writeout may mean we loose the lock and the
512 * page state is no longer what we checked for earlier.
513 * At this point we know that the migration attempt cannot
514 * be successful.
8351a6e4 515 */
04e62a29 516 remove_migration_ptes(page, page);
8351a6e4 517
04e62a29
CL
518 rc = mapping->a_ops->writepage(page, &wbc);
519 if (rc < 0)
520 /* I/O Error writing */
521 return -EIO;
8351a6e4 522
04e62a29
CL
523 if (rc != AOP_WRITEPAGE_ACTIVATE)
524 /* unlocked. Relock */
525 lock_page(page);
526
527 return -EAGAIN;
528}
529
530/*
531 * Default handling if a filesystem does not provide a migration function.
532 */
533static int fallback_migrate_page(struct address_space *mapping,
534 struct page *newpage, struct page *page)
535{
536 if (PageDirty(page))
537 return writeout(mapping, page);
8351a6e4
CL
538
539 /*
540 * Buffers may be managed in a filesystem specific way.
541 * We must have no buffers or drop them.
542 */
b398f6bf 543 if (PagePrivate(page) &&
8351a6e4
CL
544 !try_to_release_page(page, GFP_KERNEL))
545 return -EAGAIN;
546
547 return migrate_page(mapping, newpage, page);
548}
549
e24f0b8f
CL
550/*
551 * Move a page to a newly allocated page
552 * The page is locked and all ptes have been successfully removed.
553 *
554 * The new page will have replaced the old page if this function
555 * is successful.
556 */
557static int move_to_new_page(struct page *newpage, struct page *page)
558{
559 struct address_space *mapping;
560 int rc;
561
562 /*
563 * Block others from accessing the page when we get around to
564 * establishing additional references. We are the only one
565 * holding a reference to the new page at this point.
566 */
567 if (TestSetPageLocked(newpage))
568 BUG();
569
570 /* Prepare mapping for the new page.*/
571 newpage->index = page->index;
572 newpage->mapping = page->mapping;
573
574 mapping = page_mapping(page);
575 if (!mapping)
576 rc = migrate_page(mapping, newpage, page);
577 else if (mapping->a_ops->migratepage)
578 /*
579 * Most pages have a mapping and most filesystems
580 * should provide a migration function. Anonymous
581 * pages are part of swap space which also has its
582 * own migration function. This is the most common
583 * path for page migration.
584 */
585 rc = mapping->a_ops->migratepage(mapping,
586 newpage, page);
587 else
588 rc = fallback_migrate_page(mapping, newpage, page);
589
590 if (!rc)
591 remove_migration_ptes(page, newpage);
592 else
593 newpage->mapping = NULL;
594
595 unlock_page(newpage);
596
597 return rc;
598}
599
600/*
601 * Obtain the lock on page, remove all ptes and migrate the page
602 * to the newly allocated page in newpage.
603 */
95a402c3
CL
604static int unmap_and_move(new_page_t get_new_page, unsigned long private,
605 struct page *page, int force)
e24f0b8f
CL
606{
607 int rc = 0;
742755a1
CL
608 int *result = NULL;
609 struct page *newpage = get_new_page(page, private, &result);
989f89c5 610 int rcu_locked = 0;
95a402c3
CL
611
612 if (!newpage)
613 return -ENOMEM;
e24f0b8f
CL
614
615 if (page_count(page) == 1)
616 /* page was freed from under us. So we are done. */
95a402c3 617 goto move_newpage;
e24f0b8f
CL
618
619 rc = -EAGAIN;
620 if (TestSetPageLocked(page)) {
621 if (!force)
95a402c3 622 goto move_newpage;
e24f0b8f
CL
623 lock_page(page);
624 }
625
626 if (PageWriteback(page)) {
627 if (!force)
628 goto unlock;
629 wait_on_page_writeback(page);
630 }
e24f0b8f 631 /*
dc386d4d
KH
632 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
633 * we cannot notice that anon_vma is freed while we migrates a page.
634 * This rcu_read_lock() delays freeing anon_vma pointer until the end
635 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
636 * File Caches may use write_page() or lock_page() in migration, then,
637 * just care Anon page here.
dc386d4d 638 */
989f89c5
KH
639 if (PageAnon(page)) {
640 rcu_read_lock();
641 rcu_locked = 1;
642 }
dc386d4d
KH
643 /*
644 * This is a corner case handling.
645 * When a new swap-cache is read into, it is linked to LRU
646 * and treated as swapcache but has no rmap yet.
647 * Calling try_to_unmap() against a page->mapping==NULL page is
648 * BUG. So handle it here.
e24f0b8f 649 */
dc386d4d
KH
650 if (!page->mapping)
651 goto rcu_unlock;
652 /* Establish migration ptes or remove ptes */
e6a1530d 653 try_to_unmap(page, 1);
dc386d4d 654
e6a1530d
CL
655 if (!page_mapped(page))
656 rc = move_to_new_page(newpage, page);
e24f0b8f
CL
657
658 if (rc)
659 remove_migration_ptes(page, page);
dc386d4d 660rcu_unlock:
989f89c5
KH
661 if (rcu_locked)
662 rcu_read_unlock();
e6a1530d 663
e24f0b8f 664unlock:
dc386d4d 665
e24f0b8f 666 unlock_page(page);
95a402c3 667
e24f0b8f 668 if (rc != -EAGAIN) {
aaa994b3
CL
669 /*
670 * A page that has been migrated has all references
671 * removed and will be freed. A page that has not been
672 * migrated will have kepts its references and be
673 * restored.
674 */
675 list_del(&page->lru);
676 move_to_lru(page);
e24f0b8f 677 }
95a402c3
CL
678
679move_newpage:
680 /*
681 * Move the new page to the LRU. If migration was not successful
682 * then this will free the page.
683 */
684 move_to_lru(newpage);
742755a1
CL
685 if (result) {
686 if (rc)
687 *result = rc;
688 else
689 *result = page_to_nid(newpage);
690 }
e24f0b8f
CL
691 return rc;
692}
693
b20a3503
CL
694/*
695 * migrate_pages
696 *
95a402c3
CL
697 * The function takes one list of pages to migrate and a function
698 * that determines from the page to be migrated and the private data
699 * the target of the move and allocates the page.
b20a3503
CL
700 *
701 * The function returns after 10 attempts or if no pages
702 * are movable anymore because to has become empty
aaa994b3 703 * or no retryable pages exist anymore. All pages will be
e9534b3f 704 * returned to the LRU or freed.
b20a3503 705 *
95a402c3 706 * Return: Number of pages not migrated or error code.
b20a3503 707 */
95a402c3
CL
708int migrate_pages(struct list_head *from,
709 new_page_t get_new_page, unsigned long private)
b20a3503 710{
e24f0b8f 711 int retry = 1;
b20a3503
CL
712 int nr_failed = 0;
713 int pass = 0;
714 struct page *page;
715 struct page *page2;
716 int swapwrite = current->flags & PF_SWAPWRITE;
717 int rc;
718
719 if (!swapwrite)
720 current->flags |= PF_SWAPWRITE;
721
e24f0b8f
CL
722 for(pass = 0; pass < 10 && retry; pass++) {
723 retry = 0;
b20a3503 724
e24f0b8f 725 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 726 cond_resched();
2d1db3b1 727
95a402c3
CL
728 rc = unmap_and_move(get_new_page, private,
729 page, pass > 2);
2d1db3b1 730
e24f0b8f 731 switch(rc) {
95a402c3
CL
732 case -ENOMEM:
733 goto out;
e24f0b8f 734 case -EAGAIN:
2d1db3b1 735 retry++;
e24f0b8f
CL
736 break;
737 case 0:
e24f0b8f
CL
738 break;
739 default:
2d1db3b1 740 /* Permanent failure */
2d1db3b1 741 nr_failed++;
e24f0b8f 742 break;
2d1db3b1 743 }
b20a3503
CL
744 }
745 }
95a402c3
CL
746 rc = 0;
747out:
b20a3503
CL
748 if (!swapwrite)
749 current->flags &= ~PF_SWAPWRITE;
750
aaa994b3 751 putback_lru_pages(from);
b20a3503 752
95a402c3
CL
753 if (rc)
754 return rc;
b20a3503 755
95a402c3 756 return nr_failed + retry;
b20a3503 757}
95a402c3 758
742755a1
CL
759#ifdef CONFIG_NUMA
760/*
761 * Move a list of individual pages
762 */
763struct page_to_node {
764 unsigned long addr;
765 struct page *page;
766 int node;
767 int status;
768};
769
770static struct page *new_page_node(struct page *p, unsigned long private,
771 int **result)
772{
773 struct page_to_node *pm = (struct page_to_node *)private;
774
775 while (pm->node != MAX_NUMNODES && pm->page != p)
776 pm++;
777
778 if (pm->node == MAX_NUMNODES)
779 return NULL;
780
781 *result = &pm->status;
782
769848c0
MG
783 return alloc_pages_node(pm->node,
784 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
742755a1
CL
785}
786
787/*
788 * Move a set of pages as indicated in the pm array. The addr
789 * field must be set to the virtual address of the page to be moved
790 * and the node number must contain a valid target node.
791 */
792static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm,
793 int migrate_all)
794{
795 int err;
796 struct page_to_node *pp;
797 LIST_HEAD(pagelist);
798
799 down_read(&mm->mmap_sem);
800
801 /*
802 * Build a list of pages to migrate
803 */
804 migrate_prep();
805 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
806 struct vm_area_struct *vma;
807 struct page *page;
808
809 /*
810 * A valid page pointer that will not match any of the
811 * pages that will be moved.
812 */
813 pp->page = ZERO_PAGE(0);
814
815 err = -EFAULT;
816 vma = find_vma(mm, pp->addr);
0dc952dc 817 if (!vma || !vma_migratable(vma))
742755a1
CL
818 goto set_status;
819
820 page = follow_page(vma, pp->addr, FOLL_GET);
821 err = -ENOENT;
822 if (!page)
823 goto set_status;
824
825 if (PageReserved(page)) /* Check for zero page */
826 goto put_and_set;
827
828 pp->page = page;
829 err = page_to_nid(page);
830
831 if (err == pp->node)
832 /*
833 * Node already in the right place
834 */
835 goto put_and_set;
836
837 err = -EACCES;
838 if (page_mapcount(page) > 1 &&
839 !migrate_all)
840 goto put_and_set;
841
842 err = isolate_lru_page(page, &pagelist);
843put_and_set:
844 /*
845 * Either remove the duplicate refcount from
846 * isolate_lru_page() or drop the page ref if it was
847 * not isolated.
848 */
849 put_page(page);
850set_status:
851 pp->status = err;
852 }
853
854 if (!list_empty(&pagelist))
855 err = migrate_pages(&pagelist, new_page_node,
856 (unsigned long)pm);
857 else
858 err = -ENOENT;
859
860 up_read(&mm->mmap_sem);
861 return err;
862}
863
864/*
865 * Determine the nodes of a list of pages. The addr in the pm array
866 * must have been set to the virtual address of which we want to determine
867 * the node number.
868 */
869static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm)
870{
871 down_read(&mm->mmap_sem);
872
873 for ( ; pm->node != MAX_NUMNODES; pm++) {
874 struct vm_area_struct *vma;
875 struct page *page;
876 int err;
877
878 err = -EFAULT;
879 vma = find_vma(mm, pm->addr);
880 if (!vma)
881 goto set_status;
882
883 page = follow_page(vma, pm->addr, 0);
884 err = -ENOENT;
885 /* Use PageReserved to check for zero page */
886 if (!page || PageReserved(page))
887 goto set_status;
888
889 err = page_to_nid(page);
890set_status:
891 pm->status = err;
892 }
893
894 up_read(&mm->mmap_sem);
895 return 0;
896}
897
898/*
899 * Move a list of pages in the address space of the currently executing
900 * process.
901 */
902asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
903 const void __user * __user *pages,
904 const int __user *nodes,
905 int __user *status, int flags)
906{
907 int err = 0;
908 int i;
909 struct task_struct *task;
910 nodemask_t task_nodes;
911 struct mm_struct *mm;
912 struct page_to_node *pm = NULL;
913
914 /* Check flags */
915 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
916 return -EINVAL;
917
918 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
919 return -EPERM;
920
921 /* Find the mm_struct */
922 read_lock(&tasklist_lock);
228ebcbe 923 task = pid ? find_task_by_vpid(pid) : current;
742755a1
CL
924 if (!task) {
925 read_unlock(&tasklist_lock);
926 return -ESRCH;
927 }
928 mm = get_task_mm(task);
929 read_unlock(&tasklist_lock);
930
931 if (!mm)
932 return -EINVAL;
933
934 /*
935 * Check if this process has the right to modify the specified
936 * process. The right exists if the process has administrative
937 * capabilities, superuser privileges or the same
938 * userid as the target process.
939 */
940 if ((current->euid != task->suid) && (current->euid != task->uid) &&
941 (current->uid != task->suid) && (current->uid != task->uid) &&
942 !capable(CAP_SYS_NICE)) {
943 err = -EPERM;
944 goto out2;
945 }
946
86c3a764
DQ
947 err = security_task_movememory(task);
948 if (err)
949 goto out2;
950
951
742755a1
CL
952 task_nodes = cpuset_mems_allowed(task);
953
954 /* Limit nr_pages so that the multiplication may not overflow */
955 if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) {
956 err = -E2BIG;
957 goto out2;
958 }
959
960 pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node));
961 if (!pm) {
962 err = -ENOMEM;
963 goto out2;
964 }
965
966 /*
967 * Get parameters from user space and initialize the pm
968 * array. Return various errors if the user did something wrong.
969 */
970 for (i = 0; i < nr_pages; i++) {
9d966d49 971 const void __user *p;
742755a1
CL
972
973 err = -EFAULT;
974 if (get_user(p, pages + i))
975 goto out;
976
977 pm[i].addr = (unsigned long)p;
978 if (nodes) {
979 int node;
980
981 if (get_user(node, nodes + i))
982 goto out;
983
984 err = -ENODEV;
56bbd65d 985 if (!node_state(node, N_HIGH_MEMORY))
742755a1
CL
986 goto out;
987
988 err = -EACCES;
989 if (!node_isset(node, task_nodes))
990 goto out;
991
992 pm[i].node = node;
8ce08464
SR
993 } else
994 pm[i].node = 0; /* anything to not match MAX_NUMNODES */
742755a1
CL
995 }
996 /* End marker */
997 pm[nr_pages].node = MAX_NUMNODES;
998
999 if (nodes)
1000 err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL);
1001 else
1002 err = do_pages_stat(mm, pm);
1003
1004 if (err >= 0)
1005 /* Return status information */
1006 for (i = 0; i < nr_pages; i++)
1007 if (put_user(pm[i].status, status + i))
1008 err = -EFAULT;
1009
1010out:
1011 vfree(pm);
1012out2:
1013 mmput(mm);
1014 return err;
1015}
1016#endif
1017
7b2259b3
CL
1018/*
1019 * Call migration functions in the vma_ops that may prepare
1020 * memory in a vm for migration. migration functions may perform
1021 * the migration for vmas that do not have an underlying page struct.
1022 */
1023int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1024 const nodemask_t *from, unsigned long flags)
1025{
1026 struct vm_area_struct *vma;
1027 int err = 0;
1028
1029 for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
1030 if (vma->vm_ops && vma->vm_ops->migrate) {
1031 err = vma->vm_ops->migrate(vma, to, from, flags);
1032 if (err)
1033 break;
1034 }
1035 }
1036 return err;
1037}