]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/migrate.c
[PATCH] page migration: simplify migrate_pages()
[net-next-2.6.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter <clameter@sgi.com>
13 */
14
15#include <linux/migrate.h>
16#include <linux/module.h>
17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503
CL
21#include <linux/mm_inline.h>
22#include <linux/pagevec.h>
23#include <linux/rmap.h>
24#include <linux/topology.h>
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
04e62a29 27#include <linux/writeback.h>
b20a3503
CL
28
29#include "internal.h"
30
b20a3503
CL
31/* The maximum number of pages to take off the LRU for migration */
32#define MIGRATE_CHUNK_SIZE 256
33
34#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
35
36/*
37 * Isolate one page from the LRU lists. If successful put it onto
38 * the indicated list with elevated page count.
39 *
40 * Result:
41 * -EBUSY: page not on LRU list
42 * 0: page removed from LRU list and added to the specified list.
43 */
44int isolate_lru_page(struct page *page, struct list_head *pagelist)
45{
46 int ret = -EBUSY;
47
48 if (PageLRU(page)) {
49 struct zone *zone = page_zone(page);
50
51 spin_lock_irq(&zone->lru_lock);
52 if (PageLRU(page)) {
53 ret = 0;
54 get_page(page);
55 ClearPageLRU(page);
56 if (PageActive(page))
57 del_page_from_active_list(zone, page);
58 else
59 del_page_from_inactive_list(zone, page);
60 list_add_tail(&page->lru, pagelist);
61 }
62 spin_unlock_irq(&zone->lru_lock);
63 }
64 return ret;
65}
66
67/*
68 * migrate_prep() needs to be called after we have compiled the list of pages
69 * to be migrated using isolate_lru_page() but before we begin a series of calls
70 * to migrate_pages().
71 */
72int migrate_prep(void)
73{
b20a3503
CL
74 /*
75 * Clear the LRU lists so pages can be isolated.
76 * Note that pages may be moved off the LRU after we have
77 * drained them. Those pages will fail to migrate like other
78 * pages that may be busy.
79 */
80 lru_add_drain_all();
81
82 return 0;
83}
84
85static inline void move_to_lru(struct page *page)
86{
b20a3503
CL
87 if (PageActive(page)) {
88 /*
89 * lru_cache_add_active checks that
90 * the PG_active bit is off.
91 */
92 ClearPageActive(page);
93 lru_cache_add_active(page);
94 } else {
95 lru_cache_add(page);
96 }
97 put_page(page);
98}
99
100/*
101 * Add isolated pages on the list back to the LRU.
102 *
103 * returns the number of pages put back.
104 */
105int putback_lru_pages(struct list_head *l)
106{
107 struct page *page;
108 struct page *page2;
109 int count = 0;
110
111 list_for_each_entry_safe(page, page2, l, lru) {
e24f0b8f 112 list_del(&page->lru);
b20a3503
CL
113 move_to_lru(page);
114 count++;
115 }
116 return count;
117}
118
0697212a
CL
119static inline int is_swap_pte(pte_t pte)
120{
121 return !pte_none(pte) && !pte_present(pte) && !pte_file(pte);
122}
123
124/*
125 * Restore a potential migration pte to a working pte entry
126 */
04e62a29 127static void remove_migration_pte(struct vm_area_struct *vma,
0697212a
CL
128 struct page *old, struct page *new)
129{
130 struct mm_struct *mm = vma->vm_mm;
131 swp_entry_t entry;
132 pgd_t *pgd;
133 pud_t *pud;
134 pmd_t *pmd;
135 pte_t *ptep, pte;
136 spinlock_t *ptl;
04e62a29
CL
137 unsigned long addr = page_address_in_vma(new, vma);
138
139 if (addr == -EFAULT)
140 return;
0697212a
CL
141
142 pgd = pgd_offset(mm, addr);
143 if (!pgd_present(*pgd))
144 return;
145
146 pud = pud_offset(pgd, addr);
147 if (!pud_present(*pud))
148 return;
149
150 pmd = pmd_offset(pud, addr);
151 if (!pmd_present(*pmd))
152 return;
153
154 ptep = pte_offset_map(pmd, addr);
155
156 if (!is_swap_pte(*ptep)) {
157 pte_unmap(ptep);
158 return;
159 }
160
161 ptl = pte_lockptr(mm, pmd);
162 spin_lock(ptl);
163 pte = *ptep;
164 if (!is_swap_pte(pte))
165 goto out;
166
167 entry = pte_to_swp_entry(pte);
168
169 if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
170 goto out;
171
0697212a
CL
172 get_page(new);
173 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
174 if (is_write_migration_entry(entry))
175 pte = pte_mkwrite(pte);
176 set_pte_at(mm, addr, ptep, pte);
04e62a29
CL
177
178 if (PageAnon(new))
179 page_add_anon_rmap(new, vma, addr);
180 else
181 page_add_file_rmap(new);
182
183 /* No need to invalidate - it was non-present before */
184 update_mmu_cache(vma, addr, pte);
185 lazy_mmu_prot_update(pte);
186
0697212a
CL
187out:
188 pte_unmap_unlock(ptep, ptl);
189}
190
191/*
04e62a29
CL
192 * Note that remove_file_migration_ptes will only work on regular mappings,
193 * Nonlinear mappings do not use migration entries.
194 */
195static void remove_file_migration_ptes(struct page *old, struct page *new)
196{
197 struct vm_area_struct *vma;
198 struct address_space *mapping = page_mapping(new);
199 struct prio_tree_iter iter;
200 pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
201
202 if (!mapping)
203 return;
204
205 spin_lock(&mapping->i_mmap_lock);
206
207 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
208 remove_migration_pte(vma, old, new);
209
210 spin_unlock(&mapping->i_mmap_lock);
211}
212
213/*
0697212a
CL
214 * Must hold mmap_sem lock on at least one of the vmas containing
215 * the page so that the anon_vma cannot vanish.
216 */
04e62a29 217static void remove_anon_migration_ptes(struct page *old, struct page *new)
0697212a
CL
218{
219 struct anon_vma *anon_vma;
220 struct vm_area_struct *vma;
221 unsigned long mapping;
222
223 mapping = (unsigned long)new->mapping;
224
225 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
226 return;
227
228 /*
229 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
230 */
231 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
232 spin_lock(&anon_vma->lock);
233
234 list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
04e62a29 235 remove_migration_pte(vma, old, new);
0697212a
CL
236
237 spin_unlock(&anon_vma->lock);
238}
239
04e62a29
CL
240/*
241 * Get rid of all migration entries and replace them by
242 * references to the indicated page.
243 */
244static void remove_migration_ptes(struct page *old, struct page *new)
245{
246 if (PageAnon(new))
247 remove_anon_migration_ptes(old, new);
248 else
249 remove_file_migration_ptes(old, new);
250}
251
0697212a
CL
252/*
253 * Something used the pte of a page under migration. We need to
254 * get to the page and wait until migration is finished.
255 * When we return from this function the fault will be retried.
256 *
257 * This function is called from do_swap_page().
258 */
259void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
260 unsigned long address)
261{
262 pte_t *ptep, pte;
263 spinlock_t *ptl;
264 swp_entry_t entry;
265 struct page *page;
266
267 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
268 pte = *ptep;
269 if (!is_swap_pte(pte))
270 goto out;
271
272 entry = pte_to_swp_entry(pte);
273 if (!is_migration_entry(entry))
274 goto out;
275
276 page = migration_entry_to_page(entry);
277
278 get_page(page);
279 pte_unmap_unlock(ptep, ptl);
280 wait_on_page_locked(page);
281 put_page(page);
282 return;
283out:
284 pte_unmap_unlock(ptep, ptl);
285}
286
b20a3503 287/*
c3fcf8a5 288 * Replace the page in the mapping.
5b5c7120
CL
289 *
290 * The number of remaining references must be:
291 * 1 for anonymous pages without a mapping
292 * 2 for pages with a mapping
293 * 3 for pages with a mapping and PagePrivate set.
b20a3503 294 */
2d1db3b1
CL
295static int migrate_page_move_mapping(struct address_space *mapping,
296 struct page *newpage, struct page *page)
b20a3503 297{
b20a3503
CL
298 struct page **radix_pointer;
299
6c5240ae
CL
300 if (!mapping) {
301 /* Anonymous page */
302 if (page_count(page) != 1)
303 return -EAGAIN;
304 return 0;
305 }
306
b20a3503
CL
307 write_lock_irq(&mapping->tree_lock);
308
309 radix_pointer = (struct page **)radix_tree_lookup_slot(
310 &mapping->page_tree,
311 page_index(page));
312
6c5240ae 313 if (page_count(page) != 2 + !!PagePrivate(page) ||
b20a3503
CL
314 *radix_pointer != page) {
315 write_unlock_irq(&mapping->tree_lock);
e23ca00b 316 return -EAGAIN;
b20a3503
CL
317 }
318
319 /*
320 * Now we know that no one else is looking at the page.
b20a3503
CL
321 */
322 get_page(newpage);
6c5240ae 323#ifdef CONFIG_SWAP
b20a3503
CL
324 if (PageSwapCache(page)) {
325 SetPageSwapCache(newpage);
326 set_page_private(newpage, page_private(page));
327 }
6c5240ae 328#endif
b20a3503
CL
329
330 *radix_pointer = newpage;
331 __put_page(page);
332 write_unlock_irq(&mapping->tree_lock);
333
334 return 0;
335}
b20a3503
CL
336
337/*
338 * Copy the page to its new location
339 */
e7340f73 340static void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503
CL
341{
342 copy_highpage(newpage, page);
343
344 if (PageError(page))
345 SetPageError(newpage);
346 if (PageReferenced(page))
347 SetPageReferenced(newpage);
348 if (PageUptodate(page))
349 SetPageUptodate(newpage);
350 if (PageActive(page))
351 SetPageActive(newpage);
352 if (PageChecked(page))
353 SetPageChecked(newpage);
354 if (PageMappedToDisk(page))
355 SetPageMappedToDisk(newpage);
356
357 if (PageDirty(page)) {
358 clear_page_dirty_for_io(page);
359 set_page_dirty(newpage);
360 }
361
6c5240ae 362#ifdef CONFIG_SWAP
b20a3503 363 ClearPageSwapCache(page);
6c5240ae 364#endif
b20a3503
CL
365 ClearPageActive(page);
366 ClearPagePrivate(page);
367 set_page_private(page, 0);
368 page->mapping = NULL;
369
370 /*
371 * If any waiters have accumulated on the new page then
372 * wake them up.
373 */
374 if (PageWriteback(newpage))
375 end_page_writeback(newpage);
376}
b20a3503 377
1d8b85cc
CL
378/************************************************************
379 * Migration functions
380 ***********************************************************/
381
382/* Always fail migration. Used for mappings that are not movable */
2d1db3b1
CL
383int fail_migrate_page(struct address_space *mapping,
384 struct page *newpage, struct page *page)
1d8b85cc
CL
385{
386 return -EIO;
387}
388EXPORT_SYMBOL(fail_migrate_page);
389
b20a3503
CL
390/*
391 * Common logic to directly migrate a single page suitable for
392 * pages that do not use PagePrivate.
393 *
394 * Pages are locked upon entry and exit.
395 */
2d1db3b1
CL
396int migrate_page(struct address_space *mapping,
397 struct page *newpage, struct page *page)
b20a3503
CL
398{
399 int rc;
400
401 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
402
2d1db3b1 403 rc = migrate_page_move_mapping(mapping, newpage, page);
b20a3503
CL
404
405 if (rc)
406 return rc;
407
408 migrate_page_copy(newpage, page);
b20a3503
CL
409 return 0;
410}
411EXPORT_SYMBOL(migrate_page);
412
1d8b85cc
CL
413/*
414 * Migration function for pages with buffers. This function can only be used
415 * if the underlying filesystem guarantees that no other references to "page"
416 * exist.
417 */
2d1db3b1
CL
418int buffer_migrate_page(struct address_space *mapping,
419 struct page *newpage, struct page *page)
1d8b85cc 420{
1d8b85cc
CL
421 struct buffer_head *bh, *head;
422 int rc;
423
1d8b85cc 424 if (!page_has_buffers(page))
2d1db3b1 425 return migrate_page(mapping, newpage, page);
1d8b85cc
CL
426
427 head = page_buffers(page);
428
2d1db3b1 429 rc = migrate_page_move_mapping(mapping, newpage, page);
1d8b85cc
CL
430
431 if (rc)
432 return rc;
433
434 bh = head;
435 do {
436 get_bh(bh);
437 lock_buffer(bh);
438 bh = bh->b_this_page;
439
440 } while (bh != head);
441
442 ClearPagePrivate(page);
443 set_page_private(newpage, page_private(page));
444 set_page_private(page, 0);
445 put_page(page);
446 get_page(newpage);
447
448 bh = head;
449 do {
450 set_bh_page(bh, newpage, bh_offset(bh));
451 bh = bh->b_this_page;
452
453 } while (bh != head);
454
455 SetPagePrivate(newpage);
456
457 migrate_page_copy(newpage, page);
458
459 bh = head;
460 do {
461 unlock_buffer(bh);
462 put_bh(bh);
463 bh = bh->b_this_page;
464
465 } while (bh != head);
466
467 return 0;
468}
469EXPORT_SYMBOL(buffer_migrate_page);
470
04e62a29
CL
471/*
472 * Writeback a page to clean the dirty state
473 */
474static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 475{
04e62a29
CL
476 struct writeback_control wbc = {
477 .sync_mode = WB_SYNC_NONE,
478 .nr_to_write = 1,
479 .range_start = 0,
480 .range_end = LLONG_MAX,
481 .nonblocking = 1,
482 .for_reclaim = 1
483 };
484 int rc;
485
486 if (!mapping->a_ops->writepage)
487 /* No write method for the address space */
488 return -EINVAL;
489
490 if (!clear_page_dirty_for_io(page))
491 /* Someone else already triggered a write */
492 return -EAGAIN;
493
8351a6e4 494 /*
04e62a29
CL
495 * A dirty page may imply that the underlying filesystem has
496 * the page on some queue. So the page must be clean for
497 * migration. Writeout may mean we loose the lock and the
498 * page state is no longer what we checked for earlier.
499 * At this point we know that the migration attempt cannot
500 * be successful.
8351a6e4 501 */
04e62a29 502 remove_migration_ptes(page, page);
8351a6e4 503
04e62a29
CL
504 rc = mapping->a_ops->writepage(page, &wbc);
505 if (rc < 0)
506 /* I/O Error writing */
507 return -EIO;
8351a6e4 508
04e62a29
CL
509 if (rc != AOP_WRITEPAGE_ACTIVATE)
510 /* unlocked. Relock */
511 lock_page(page);
512
513 return -EAGAIN;
514}
515
516/*
517 * Default handling if a filesystem does not provide a migration function.
518 */
519static int fallback_migrate_page(struct address_space *mapping,
520 struct page *newpage, struct page *page)
521{
522 if (PageDirty(page))
523 return writeout(mapping, page);
8351a6e4
CL
524
525 /*
526 * Buffers may be managed in a filesystem specific way.
527 * We must have no buffers or drop them.
528 */
529 if (page_has_buffers(page) &&
530 !try_to_release_page(page, GFP_KERNEL))
531 return -EAGAIN;
532
533 return migrate_page(mapping, newpage, page);
534}
535
e24f0b8f
CL
536/*
537 * Move a page to a newly allocated page
538 * The page is locked and all ptes have been successfully removed.
539 *
540 * The new page will have replaced the old page if this function
541 * is successful.
542 */
543static int move_to_new_page(struct page *newpage, struct page *page)
544{
545 struct address_space *mapping;
546 int rc;
547
548 /*
549 * Block others from accessing the page when we get around to
550 * establishing additional references. We are the only one
551 * holding a reference to the new page at this point.
552 */
553 if (TestSetPageLocked(newpage))
554 BUG();
555
556 /* Prepare mapping for the new page.*/
557 newpage->index = page->index;
558 newpage->mapping = page->mapping;
559
560 mapping = page_mapping(page);
561 if (!mapping)
562 rc = migrate_page(mapping, newpage, page);
563 else if (mapping->a_ops->migratepage)
564 /*
565 * Most pages have a mapping and most filesystems
566 * should provide a migration function. Anonymous
567 * pages are part of swap space which also has its
568 * own migration function. This is the most common
569 * path for page migration.
570 */
571 rc = mapping->a_ops->migratepage(mapping,
572 newpage, page);
573 else
574 rc = fallback_migrate_page(mapping, newpage, page);
575
576 if (!rc)
577 remove_migration_ptes(page, newpage);
578 else
579 newpage->mapping = NULL;
580
581 unlock_page(newpage);
582
583 return rc;
584}
585
586/*
587 * Obtain the lock on page, remove all ptes and migrate the page
588 * to the newly allocated page in newpage.
589 */
590static int unmap_and_move(struct page *newpage, struct page *page, int force)
591{
592 int rc = 0;
593
594 if (page_count(page) == 1)
595 /* page was freed from under us. So we are done. */
596 goto ret;
597
598 rc = -EAGAIN;
599 if (TestSetPageLocked(page)) {
600 if (!force)
601 goto ret;
602 lock_page(page);
603 }
604
605 if (PageWriteback(page)) {
606 if (!force)
607 goto unlock;
608 wait_on_page_writeback(page);
609 }
610
611 /*
612 * Establish migration ptes or remove ptes
613 */
614 if (try_to_unmap(page, 1) != SWAP_FAIL) {
615 if (!page_mapped(page))
616 rc = move_to_new_page(newpage, page);
617 } else
618 /* A vma has VM_LOCKED set -> permanent failure */
619 rc = -EPERM;
620
621 if (rc)
622 remove_migration_ptes(page, page);
623unlock:
624 unlock_page(page);
625ret:
626 if (rc != -EAGAIN) {
627 list_del(&newpage->lru);
628 move_to_lru(newpage);
629 }
630 return rc;
631}
632
b20a3503
CL
633/*
634 * migrate_pages
635 *
636 * Two lists are passed to this function. The first list
637 * contains the pages isolated from the LRU to be migrated.
e24f0b8f 638 * The second list contains new pages that the isolated pages
d75a0fcd 639 * can be moved to.
b20a3503
CL
640 *
641 * The function returns after 10 attempts or if no pages
642 * are movable anymore because to has become empty
643 * or no retryable pages exist anymore.
644 *
645 * Return: Number of pages not migrated when "to" ran empty.
646 */
647int migrate_pages(struct list_head *from, struct list_head *to,
648 struct list_head *moved, struct list_head *failed)
649{
e24f0b8f 650 int retry = 1;
b20a3503
CL
651 int nr_failed = 0;
652 int pass = 0;
653 struct page *page;
654 struct page *page2;
655 int swapwrite = current->flags & PF_SWAPWRITE;
656 int rc;
657
658 if (!swapwrite)
659 current->flags |= PF_SWAPWRITE;
660
e24f0b8f
CL
661 for(pass = 0; pass < 10 && retry; pass++) {
662 retry = 0;
b20a3503 663
e24f0b8f 664 list_for_each_entry_safe(page, page2, from, lru) {
b20a3503 665
e24f0b8f
CL
666 if (list_empty(to))
667 break;
c3fcf8a5 668
e24f0b8f 669 cond_resched();
2d1db3b1 670
e24f0b8f 671 rc = unmap_and_move(lru_to_page(to), page, pass > 2);
2d1db3b1 672
e24f0b8f
CL
673 switch(rc) {
674 case -EAGAIN:
2d1db3b1 675 retry++;
e24f0b8f
CL
676 break;
677 case 0:
678 list_move(&page->lru, moved);
679 break;
680 default:
2d1db3b1
CL
681 /* Permanent failure */
682 list_move(&page->lru, failed);
683 nr_failed++;
e24f0b8f 684 break;
2d1db3b1 685 }
b20a3503
CL
686 }
687 }
b20a3503
CL
688
689 if (!swapwrite)
690 current->flags &= ~PF_SWAPWRITE;
691
692 return nr_failed + retry;
693}
694
b20a3503
CL
695/*
696 * Migrate the list 'pagelist' of pages to a certain destination.
697 *
698 * Specify destination with either non-NULL vma or dest_node >= 0
699 * Return the number of pages not migrated or error code
700 */
701int migrate_pages_to(struct list_head *pagelist,
702 struct vm_area_struct *vma, int dest)
703{
704 LIST_HEAD(newlist);
705 LIST_HEAD(moved);
706 LIST_HEAD(failed);
707 int err = 0;
708 unsigned long offset = 0;
709 int nr_pages;
710 struct page *page;
711 struct list_head *p;
712
713redo:
714 nr_pages = 0;
715 list_for_each(p, pagelist) {
716 if (vma) {
717 /*
718 * The address passed to alloc_page_vma is used to
719 * generate the proper interleave behavior. We fake
720 * the address here by an increasing offset in order
721 * to get the proper distribution of pages.
722 *
723 * No decision has been made as to which page
724 * a certain old page is moved to so we cannot
725 * specify the correct address.
726 */
727 page = alloc_page_vma(GFP_HIGHUSER, vma,
728 offset + vma->vm_start);
729 offset += PAGE_SIZE;
730 }
731 else
732 page = alloc_pages_node(dest, GFP_HIGHUSER, 0);
733
734 if (!page) {
735 err = -ENOMEM;
736 goto out;
737 }
738 list_add_tail(&page->lru, &newlist);
739 nr_pages++;
740 if (nr_pages > MIGRATE_CHUNK_SIZE)
741 break;
742 }
743 err = migrate_pages(pagelist, &newlist, &moved, &failed);
744
745 putback_lru_pages(&moved); /* Call release pages instead ?? */
746
747 if (err >= 0 && list_empty(&newlist) && !list_empty(pagelist))
748 goto redo;
749out:
750 /* Return leftover allocated pages */
751 while (!list_empty(&newlist)) {
752 page = list_entry(newlist.next, struct page, lru);
753 list_del(&page->lru);
754 __free_page(page);
755 }
756 list_splice(&failed, pagelist);
757 if (err < 0)
758 return err;
759
760 /* Calculate number of leftover pages */
761 nr_pages = 0;
762 list_for_each(p, pagelist)
763 nr_pages++;
764 return nr_pages;
765}