]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/migrate.c
[PATCH] page migration cleanup: move fallback handling into special function
[net-next-2.6.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter <clameter@sgi.com>
13 */
14
15#include <linux/migrate.h>
16#include <linux/module.h>
17#include <linux/swap.h>
18#include <linux/pagemap.h>
e23ca00b 19#include <linux/buffer_head.h>
b20a3503
CL
20#include <linux/mm_inline.h>
21#include <linux/pagevec.h>
22#include <linux/rmap.h>
23#include <linux/topology.h>
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/swapops.h>
27
28#include "internal.h"
29
b20a3503
CL
30/* The maximum number of pages to take off the LRU for migration */
31#define MIGRATE_CHUNK_SIZE 256
32
33#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
34
35/*
36 * Isolate one page from the LRU lists. If successful put it onto
37 * the indicated list with elevated page count.
38 *
39 * Result:
40 * -EBUSY: page not on LRU list
41 * 0: page removed from LRU list and added to the specified list.
42 */
43int isolate_lru_page(struct page *page, struct list_head *pagelist)
44{
45 int ret = -EBUSY;
46
47 if (PageLRU(page)) {
48 struct zone *zone = page_zone(page);
49
50 spin_lock_irq(&zone->lru_lock);
51 if (PageLRU(page)) {
52 ret = 0;
53 get_page(page);
54 ClearPageLRU(page);
55 if (PageActive(page))
56 del_page_from_active_list(zone, page);
57 else
58 del_page_from_inactive_list(zone, page);
59 list_add_tail(&page->lru, pagelist);
60 }
61 spin_unlock_irq(&zone->lru_lock);
62 }
63 return ret;
64}
65
66/*
67 * migrate_prep() needs to be called after we have compiled the list of pages
68 * to be migrated using isolate_lru_page() but before we begin a series of calls
69 * to migrate_pages().
70 */
71int migrate_prep(void)
72{
73 /* Must have swap device for migration */
74 if (nr_swap_pages <= 0)
75 return -ENODEV;
76
77 /*
78 * Clear the LRU lists so pages can be isolated.
79 * Note that pages may be moved off the LRU after we have
80 * drained them. Those pages will fail to migrate like other
81 * pages that may be busy.
82 */
83 lru_add_drain_all();
84
85 return 0;
86}
87
88static inline void move_to_lru(struct page *page)
89{
90 list_del(&page->lru);
91 if (PageActive(page)) {
92 /*
93 * lru_cache_add_active checks that
94 * the PG_active bit is off.
95 */
96 ClearPageActive(page);
97 lru_cache_add_active(page);
98 } else {
99 lru_cache_add(page);
100 }
101 put_page(page);
102}
103
104/*
105 * Add isolated pages on the list back to the LRU.
106 *
107 * returns the number of pages put back.
108 */
109int putback_lru_pages(struct list_head *l)
110{
111 struct page *page;
112 struct page *page2;
113 int count = 0;
114
115 list_for_each_entry_safe(page, page2, l, lru) {
116 move_to_lru(page);
117 count++;
118 }
119 return count;
120}
121
b20a3503
CL
122/*
123 * swapout a single page
124 * page is locked upon entry, unlocked on exit
125 */
126static int swap_page(struct page *page)
127{
128 struct address_space *mapping = page_mapping(page);
129
130 if (page_mapped(page) && mapping)
131 if (try_to_unmap(page, 1) != SWAP_SUCCESS)
132 goto unlock_retry;
133
134 if (PageDirty(page)) {
135 /* Page is dirty, try to write it out here */
136 switch(pageout(page, mapping)) {
137 case PAGE_KEEP:
138 case PAGE_ACTIVATE:
139 goto unlock_retry;
140
141 case PAGE_SUCCESS:
142 goto retry;
143
144 case PAGE_CLEAN:
145 ; /* try to free the page below */
146 }
147 }
148
149 if (PagePrivate(page)) {
150 if (!try_to_release_page(page, GFP_KERNEL) ||
151 (!mapping && page_count(page) == 1))
152 goto unlock_retry;
153 }
154
155 if (remove_mapping(mapping, page)) {
156 /* Success */
157 unlock_page(page);
158 return 0;
159 }
160
161unlock_retry:
162 unlock_page(page);
163
164retry:
165 return -EAGAIN;
166}
b20a3503
CL
167
168/*
c3fcf8a5 169 * Replace the page in the mapping.
5b5c7120
CL
170 *
171 * The number of remaining references must be:
172 * 1 for anonymous pages without a mapping
173 * 2 for pages with a mapping
174 * 3 for pages with a mapping and PagePrivate set.
b20a3503 175 */
2d1db3b1
CL
176static int migrate_page_move_mapping(struct address_space *mapping,
177 struct page *newpage, struct page *page)
b20a3503 178{
b20a3503
CL
179 struct page **radix_pointer;
180
b20a3503
CL
181 write_lock_irq(&mapping->tree_lock);
182
183 radix_pointer = (struct page **)radix_tree_lookup_slot(
184 &mapping->page_tree,
185 page_index(page));
186
5b5c7120
CL
187 if (!page_mapping(page) ||
188 page_count(page) != 2 + !!PagePrivate(page) ||
b20a3503
CL
189 *radix_pointer != page) {
190 write_unlock_irq(&mapping->tree_lock);
e23ca00b 191 return -EAGAIN;
b20a3503
CL
192 }
193
194 /*
195 * Now we know that no one else is looking at the page.
b20a3503
CL
196 */
197 get_page(newpage);
b20a3503
CL
198 if (PageSwapCache(page)) {
199 SetPageSwapCache(newpage);
200 set_page_private(newpage, page_private(page));
201 }
202
203 *radix_pointer = newpage;
204 __put_page(page);
205 write_unlock_irq(&mapping->tree_lock);
206
207 return 0;
208}
b20a3503
CL
209
210/*
211 * Copy the page to its new location
212 */
e7340f73 213static void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503
CL
214{
215 copy_highpage(newpage, page);
216
217 if (PageError(page))
218 SetPageError(newpage);
219 if (PageReferenced(page))
220 SetPageReferenced(newpage);
221 if (PageUptodate(page))
222 SetPageUptodate(newpage);
223 if (PageActive(page))
224 SetPageActive(newpage);
225 if (PageChecked(page))
226 SetPageChecked(newpage);
227 if (PageMappedToDisk(page))
228 SetPageMappedToDisk(newpage);
229
230 if (PageDirty(page)) {
231 clear_page_dirty_for_io(page);
232 set_page_dirty(newpage);
233 }
234
235 ClearPageSwapCache(page);
236 ClearPageActive(page);
237 ClearPagePrivate(page);
238 set_page_private(page, 0);
239 page->mapping = NULL;
240
241 /*
242 * If any waiters have accumulated on the new page then
243 * wake them up.
244 */
245 if (PageWriteback(newpage))
246 end_page_writeback(newpage);
247}
b20a3503 248
1d8b85cc
CL
249/************************************************************
250 * Migration functions
251 ***********************************************************/
252
253/* Always fail migration. Used for mappings that are not movable */
2d1db3b1
CL
254int fail_migrate_page(struct address_space *mapping,
255 struct page *newpage, struct page *page)
1d8b85cc
CL
256{
257 return -EIO;
258}
259EXPORT_SYMBOL(fail_migrate_page);
260
b20a3503
CL
261/*
262 * Common logic to directly migrate a single page suitable for
263 * pages that do not use PagePrivate.
264 *
265 * Pages are locked upon entry and exit.
266 */
2d1db3b1
CL
267int migrate_page(struct address_space *mapping,
268 struct page *newpage, struct page *page)
b20a3503
CL
269{
270 int rc;
271
272 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
273
2d1db3b1 274 rc = migrate_page_move_mapping(mapping, newpage, page);
b20a3503
CL
275
276 if (rc)
277 return rc;
278
279 migrate_page_copy(newpage, page);
280
281 /*
282 * Remove auxiliary swap entries and replace
283 * them with real ptes.
284 *
285 * Note that a real pte entry will allow processes that are not
286 * waiting on the page lock to use the new page via the page tables
287 * before the new page is unlocked.
288 */
289 remove_from_swap(newpage);
290 return 0;
291}
292EXPORT_SYMBOL(migrate_page);
293
1d8b85cc
CL
294/*
295 * Migration function for pages with buffers. This function can only be used
296 * if the underlying filesystem guarantees that no other references to "page"
297 * exist.
298 */
2d1db3b1
CL
299int buffer_migrate_page(struct address_space *mapping,
300 struct page *newpage, struct page *page)
1d8b85cc 301{
1d8b85cc
CL
302 struct buffer_head *bh, *head;
303 int rc;
304
1d8b85cc 305 if (!page_has_buffers(page))
2d1db3b1 306 return migrate_page(mapping, newpage, page);
1d8b85cc
CL
307
308 head = page_buffers(page);
309
2d1db3b1 310 rc = migrate_page_move_mapping(mapping, newpage, page);
1d8b85cc
CL
311
312 if (rc)
313 return rc;
314
315 bh = head;
316 do {
317 get_bh(bh);
318 lock_buffer(bh);
319 bh = bh->b_this_page;
320
321 } while (bh != head);
322
323 ClearPagePrivate(page);
324 set_page_private(newpage, page_private(page));
325 set_page_private(page, 0);
326 put_page(page);
327 get_page(newpage);
328
329 bh = head;
330 do {
331 set_bh_page(bh, newpage, bh_offset(bh));
332 bh = bh->b_this_page;
333
334 } while (bh != head);
335
336 SetPagePrivate(newpage);
337
338 migrate_page_copy(newpage, page);
339
340 bh = head;
341 do {
342 unlock_buffer(bh);
343 put_bh(bh);
344 bh = bh->b_this_page;
345
346 } while (bh != head);
347
348 return 0;
349}
350EXPORT_SYMBOL(buffer_migrate_page);
351
8351a6e4
CL
352static int fallback_migrate_page(struct address_space *mapping,
353 struct page *newpage, struct page *page)
354{
355 /*
356 * Default handling if a filesystem does not provide
357 * a migration function. We can only migrate clean
358 * pages so try to write out any dirty pages first.
359 */
360 if (PageDirty(page)) {
361 switch (pageout(page, mapping)) {
362 case PAGE_KEEP:
363 case PAGE_ACTIVATE:
364 return -EAGAIN;
365
366 case PAGE_SUCCESS:
367 /* Relock since we lost the lock */
368 lock_page(page);
369 /* Must retry since page state may have changed */
370 return -EAGAIN;
371
372 case PAGE_CLEAN:
373 ; /* try to migrate the page below */
374 }
375 }
376
377 /*
378 * Buffers may be managed in a filesystem specific way.
379 * We must have no buffers or drop them.
380 */
381 if (page_has_buffers(page) &&
382 !try_to_release_page(page, GFP_KERNEL))
383 return -EAGAIN;
384
385 return migrate_page(mapping, newpage, page);
386}
387
b20a3503
CL
388/*
389 * migrate_pages
390 *
391 * Two lists are passed to this function. The first list
392 * contains the pages isolated from the LRU to be migrated.
393 * The second list contains new pages that the pages isolated
394 * can be moved to. If the second list is NULL then all
395 * pages are swapped out.
396 *
397 * The function returns after 10 attempts or if no pages
398 * are movable anymore because to has become empty
399 * or no retryable pages exist anymore.
400 *
401 * Return: Number of pages not migrated when "to" ran empty.
402 */
403int migrate_pages(struct list_head *from, struct list_head *to,
404 struct list_head *moved, struct list_head *failed)
405{
406 int retry;
407 int nr_failed = 0;
408 int pass = 0;
409 struct page *page;
410 struct page *page2;
411 int swapwrite = current->flags & PF_SWAPWRITE;
412 int rc;
413
414 if (!swapwrite)
415 current->flags |= PF_SWAPWRITE;
416
417redo:
418 retry = 0;
419
420 list_for_each_entry_safe(page, page2, from, lru) {
421 struct page *newpage = NULL;
422 struct address_space *mapping;
423
424 cond_resched();
425
426 rc = 0;
427 if (page_count(page) == 1)
428 /* page was freed from under us. So we are done. */
429 goto next;
430
431 if (to && list_empty(to))
432 break;
433
434 /*
435 * Skip locked pages during the first two passes to give the
436 * functions holding the lock time to release the page. Later we
437 * use lock_page() to have a higher chance of acquiring the
438 * lock.
439 */
440 rc = -EAGAIN;
441 if (pass > 2)
442 lock_page(page);
443 else
444 if (TestSetPageLocked(page))
445 goto next;
446
447 /*
448 * Only wait on writeback if we have already done a pass where
449 * we we may have triggered writeouts for lots of pages.
450 */
451 if (pass > 0) {
452 wait_on_page_writeback(page);
453 } else {
454 if (PageWriteback(page))
455 goto unlock_page;
456 }
457
458 /*
459 * Anonymous pages must have swap cache references otherwise
460 * the information contained in the page maps cannot be
461 * preserved.
462 */
463 if (PageAnon(page) && !PageSwapCache(page)) {
464 if (!add_to_swap(page, GFP_KERNEL)) {
465 rc = -ENOMEM;
466 goto unlock_page;
467 }
468 }
469
470 if (!to) {
471 rc = swap_page(page);
472 goto next;
473 }
474
c3fcf8a5
CL
475 /*
476 * Establish swap ptes for anonymous pages or destroy pte
477 * maps for files.
478 *
479 * In order to reestablish file backed mappings the fault handlers
480 * will take the radix tree_lock which may then be used to stop
481 * processses from accessing this page until the new page is ready.
482 *
483 * A process accessing via a swap pte (an anonymous page) will take a
484 * page_lock on the old page which will block the process until the
485 * migration attempt is complete. At that time the PageSwapCache bit
486 * will be examined. If the page was migrated then the PageSwapCache
487 * bit will be clear and the operation to retrieve the page will be
488 * retried which will find the new page in the radix tree. Then a new
489 * direct mapping may be generated based on the radix tree contents.
490 *
491 * If the page was not migrated then the PageSwapCache bit
492 * is still set and the operation may continue.
493 */
494 rc = -EPERM;
495 if (try_to_unmap(page, 1) == SWAP_FAIL)
496 /* A vma has VM_LOCKED set -> permanent failure */
2d1db3b1 497 goto unlock_page;
c3fcf8a5
CL
498
499 rc = -EAGAIN;
500 if (page_mapped(page))
2d1db3b1
CL
501 goto unlock_page;
502
503 newpage = lru_to_page(to);
504 lock_page(newpage);
505 /* Prepare mapping for the new page.*/
506 newpage->index = page->index;
507 newpage->mapping = page->mapping;
508
b20a3503
CL
509 /*
510 * Pages are properly locked and writeback is complete.
511 * Try to migrate the page.
512 */
513 mapping = page_mapping(page);
514 if (!mapping)
515 goto unlock_both;
516
8351a6e4 517 if (mapping->a_ops->migratepage)
b20a3503
CL
518 /*
519 * Most pages have a mapping and most filesystems
520 * should provide a migration function. Anonymous
521 * pages are part of swap space which also has its
522 * own migration function. This is the most common
523 * path for page migration.
524 */
2d1db3b1
CL
525 rc = mapping->a_ops->migratepage(mapping,
526 newpage, page);
8351a6e4
CL
527 else
528 rc = fallback_migrate_page(mapping, newpage, page);
b20a3503
CL
529
530unlock_both:
531 unlock_page(newpage);
532
533unlock_page:
534 unlock_page(page);
535
536next:
2d1db3b1
CL
537 if (rc) {
538 if (newpage)
539 newpage->mapping = NULL;
540
541 if (rc == -EAGAIN)
542 retry++;
543 else {
544 /* Permanent failure */
545 list_move(&page->lru, failed);
546 nr_failed++;
547 }
b20a3503
CL
548 } else {
549 if (newpage) {
550 /* Successful migration. Return page to LRU */
551 move_to_lru(newpage);
552 }
553 list_move(&page->lru, moved);
554 }
555 }
556 if (retry && pass++ < 10)
557 goto redo;
558
559 if (!swapwrite)
560 current->flags &= ~PF_SWAPWRITE;
561
562 return nr_failed + retry;
563}
564
b20a3503
CL
565/*
566 * Migrate the list 'pagelist' of pages to a certain destination.
567 *
568 * Specify destination with either non-NULL vma or dest_node >= 0
569 * Return the number of pages not migrated or error code
570 */
571int migrate_pages_to(struct list_head *pagelist,
572 struct vm_area_struct *vma, int dest)
573{
574 LIST_HEAD(newlist);
575 LIST_HEAD(moved);
576 LIST_HEAD(failed);
577 int err = 0;
578 unsigned long offset = 0;
579 int nr_pages;
580 struct page *page;
581 struct list_head *p;
582
583redo:
584 nr_pages = 0;
585 list_for_each(p, pagelist) {
586 if (vma) {
587 /*
588 * The address passed to alloc_page_vma is used to
589 * generate the proper interleave behavior. We fake
590 * the address here by an increasing offset in order
591 * to get the proper distribution of pages.
592 *
593 * No decision has been made as to which page
594 * a certain old page is moved to so we cannot
595 * specify the correct address.
596 */
597 page = alloc_page_vma(GFP_HIGHUSER, vma,
598 offset + vma->vm_start);
599 offset += PAGE_SIZE;
600 }
601 else
602 page = alloc_pages_node(dest, GFP_HIGHUSER, 0);
603
604 if (!page) {
605 err = -ENOMEM;
606 goto out;
607 }
608 list_add_tail(&page->lru, &newlist);
609 nr_pages++;
610 if (nr_pages > MIGRATE_CHUNK_SIZE)
611 break;
612 }
613 err = migrate_pages(pagelist, &newlist, &moved, &failed);
614
615 putback_lru_pages(&moved); /* Call release pages instead ?? */
616
617 if (err >= 0 && list_empty(&newlist) && !list_empty(pagelist))
618 goto redo;
619out:
620 /* Return leftover allocated pages */
621 while (!list_empty(&newlist)) {
622 page = list_entry(newlist.next, struct page, lru);
623 list_del(&page->lru);
624 __free_page(page);
625 }
626 list_splice(&failed, pagelist);
627 if (err < 0)
628 return err;
629
630 /* Calculate number of leftover pages */
631 nr_pages = 0;
632 list_for_each(p, pagelist)
633 nr_pages++;
634 return nr_pages;
635}