]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/migrate.c
Fix read/truncate race
[net-next-2.6.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter <clameter@sgi.com>
13 */
14
15#include <linux/migrate.h>
16#include <linux/module.h>
17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503
CL
21#include <linux/mm_inline.h>
22#include <linux/pagevec.h>
23#include <linux/rmap.h>
24#include <linux/topology.h>
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
04e62a29 27#include <linux/writeback.h>
742755a1
CL
28#include <linux/mempolicy.h>
29#include <linux/vmalloc.h>
86c3a764 30#include <linux/security.h>
b20a3503
CL
31
32#include "internal.h"
33
b20a3503
CL
34#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
35
36/*
37 * Isolate one page from the LRU lists. If successful put it onto
38 * the indicated list with elevated page count.
39 *
40 * Result:
41 * -EBUSY: page not on LRU list
42 * 0: page removed from LRU list and added to the specified list.
43 */
44int isolate_lru_page(struct page *page, struct list_head *pagelist)
45{
46 int ret = -EBUSY;
47
48 if (PageLRU(page)) {
49 struct zone *zone = page_zone(page);
50
51 spin_lock_irq(&zone->lru_lock);
52 if (PageLRU(page)) {
53 ret = 0;
54 get_page(page);
55 ClearPageLRU(page);
56 if (PageActive(page))
57 del_page_from_active_list(zone, page);
58 else
59 del_page_from_inactive_list(zone, page);
60 list_add_tail(&page->lru, pagelist);
61 }
62 spin_unlock_irq(&zone->lru_lock);
63 }
64 return ret;
65}
66
67/*
742755a1
CL
68 * migrate_prep() needs to be called before we start compiling a list of pages
69 * to be migrated using isolate_lru_page().
b20a3503
CL
70 */
71int migrate_prep(void)
72{
b20a3503
CL
73 /*
74 * Clear the LRU lists so pages can be isolated.
75 * Note that pages may be moved off the LRU after we have
76 * drained them. Those pages will fail to migrate like other
77 * pages that may be busy.
78 */
79 lru_add_drain_all();
80
81 return 0;
82}
83
84static inline void move_to_lru(struct page *page)
85{
b20a3503
CL
86 if (PageActive(page)) {
87 /*
88 * lru_cache_add_active checks that
89 * the PG_active bit is off.
90 */
91 ClearPageActive(page);
92 lru_cache_add_active(page);
93 } else {
94 lru_cache_add(page);
95 }
96 put_page(page);
97}
98
99/*
100 * Add isolated pages on the list back to the LRU.
101 *
102 * returns the number of pages put back.
103 */
104int putback_lru_pages(struct list_head *l)
105{
106 struct page *page;
107 struct page *page2;
108 int count = 0;
109
110 list_for_each_entry_safe(page, page2, l, lru) {
e24f0b8f 111 list_del(&page->lru);
b20a3503
CL
112 move_to_lru(page);
113 count++;
114 }
115 return count;
116}
117
0697212a
CL
118static inline int is_swap_pte(pte_t pte)
119{
120 return !pte_none(pte) && !pte_present(pte) && !pte_file(pte);
121}
122
123/*
124 * Restore a potential migration pte to a working pte entry
125 */
04e62a29 126static void remove_migration_pte(struct vm_area_struct *vma,
0697212a
CL
127 struct page *old, struct page *new)
128{
129 struct mm_struct *mm = vma->vm_mm;
130 swp_entry_t entry;
131 pgd_t *pgd;
132 pud_t *pud;
133 pmd_t *pmd;
134 pte_t *ptep, pte;
135 spinlock_t *ptl;
04e62a29
CL
136 unsigned long addr = page_address_in_vma(new, vma);
137
138 if (addr == -EFAULT)
139 return;
0697212a
CL
140
141 pgd = pgd_offset(mm, addr);
142 if (!pgd_present(*pgd))
143 return;
144
145 pud = pud_offset(pgd, addr);
146 if (!pud_present(*pud))
147 return;
148
149 pmd = pmd_offset(pud, addr);
150 if (!pmd_present(*pmd))
151 return;
152
153 ptep = pte_offset_map(pmd, addr);
154
155 if (!is_swap_pte(*ptep)) {
156 pte_unmap(ptep);
157 return;
158 }
159
160 ptl = pte_lockptr(mm, pmd);
161 spin_lock(ptl);
162 pte = *ptep;
163 if (!is_swap_pte(pte))
164 goto out;
165
166 entry = pte_to_swp_entry(pte);
167
168 if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
169 goto out;
170
0697212a
CL
171 get_page(new);
172 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
173 if (is_write_migration_entry(entry))
174 pte = pte_mkwrite(pte);
175 set_pte_at(mm, addr, ptep, pte);
04e62a29
CL
176
177 if (PageAnon(new))
178 page_add_anon_rmap(new, vma, addr);
179 else
180 page_add_file_rmap(new);
181
182 /* No need to invalidate - it was non-present before */
183 update_mmu_cache(vma, addr, pte);
184 lazy_mmu_prot_update(pte);
185
0697212a
CL
186out:
187 pte_unmap_unlock(ptep, ptl);
188}
189
190/*
04e62a29
CL
191 * Note that remove_file_migration_ptes will only work on regular mappings,
192 * Nonlinear mappings do not use migration entries.
193 */
194static void remove_file_migration_ptes(struct page *old, struct page *new)
195{
196 struct vm_area_struct *vma;
197 struct address_space *mapping = page_mapping(new);
198 struct prio_tree_iter iter;
199 pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
200
201 if (!mapping)
202 return;
203
204 spin_lock(&mapping->i_mmap_lock);
205
206 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
207 remove_migration_pte(vma, old, new);
208
209 spin_unlock(&mapping->i_mmap_lock);
210}
211
212/*
0697212a
CL
213 * Must hold mmap_sem lock on at least one of the vmas containing
214 * the page so that the anon_vma cannot vanish.
215 */
04e62a29 216static void remove_anon_migration_ptes(struct page *old, struct page *new)
0697212a
CL
217{
218 struct anon_vma *anon_vma;
219 struct vm_area_struct *vma;
220 unsigned long mapping;
221
222 mapping = (unsigned long)new->mapping;
223
224 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
225 return;
226
227 /*
228 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
229 */
230 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
231 spin_lock(&anon_vma->lock);
232
233 list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
04e62a29 234 remove_migration_pte(vma, old, new);
0697212a
CL
235
236 spin_unlock(&anon_vma->lock);
237}
238
04e62a29
CL
239/*
240 * Get rid of all migration entries and replace them by
241 * references to the indicated page.
242 */
243static void remove_migration_ptes(struct page *old, struct page *new)
244{
245 if (PageAnon(new))
246 remove_anon_migration_ptes(old, new);
247 else
248 remove_file_migration_ptes(old, new);
249}
250
0697212a
CL
251/*
252 * Something used the pte of a page under migration. We need to
253 * get to the page and wait until migration is finished.
254 * When we return from this function the fault will be retried.
255 *
256 * This function is called from do_swap_page().
257 */
258void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
259 unsigned long address)
260{
261 pte_t *ptep, pte;
262 spinlock_t *ptl;
263 swp_entry_t entry;
264 struct page *page;
265
266 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
267 pte = *ptep;
268 if (!is_swap_pte(pte))
269 goto out;
270
271 entry = pte_to_swp_entry(pte);
272 if (!is_migration_entry(entry))
273 goto out;
274
275 page = migration_entry_to_page(entry);
276
277 get_page(page);
278 pte_unmap_unlock(ptep, ptl);
279 wait_on_page_locked(page);
280 put_page(page);
281 return;
282out:
283 pte_unmap_unlock(ptep, ptl);
284}
285
b20a3503 286/*
c3fcf8a5 287 * Replace the page in the mapping.
5b5c7120
CL
288 *
289 * The number of remaining references must be:
290 * 1 for anonymous pages without a mapping
291 * 2 for pages with a mapping
292 * 3 for pages with a mapping and PagePrivate set.
b20a3503 293 */
2d1db3b1
CL
294static int migrate_page_move_mapping(struct address_space *mapping,
295 struct page *newpage, struct page *page)
b20a3503 296{
7cf9c2c7 297 void **pslot;
b20a3503 298
6c5240ae 299 if (!mapping) {
0e8c7d0f 300 /* Anonymous page without mapping */
6c5240ae
CL
301 if (page_count(page) != 1)
302 return -EAGAIN;
303 return 0;
304 }
305
b20a3503
CL
306 write_lock_irq(&mapping->tree_lock);
307
7cf9c2c7
NP
308 pslot = radix_tree_lookup_slot(&mapping->page_tree,
309 page_index(page));
b20a3503 310
6c5240ae 311 if (page_count(page) != 2 + !!PagePrivate(page) ||
7cf9c2c7 312 (struct page *)radix_tree_deref_slot(pslot) != page) {
b20a3503 313 write_unlock_irq(&mapping->tree_lock);
e23ca00b 314 return -EAGAIN;
b20a3503
CL
315 }
316
317 /*
318 * Now we know that no one else is looking at the page.
b20a3503 319 */
7cf9c2c7 320 get_page(newpage); /* add cache reference */
6c5240ae 321#ifdef CONFIG_SWAP
b20a3503
CL
322 if (PageSwapCache(page)) {
323 SetPageSwapCache(newpage);
324 set_page_private(newpage, page_private(page));
325 }
6c5240ae 326#endif
b20a3503 327
7cf9c2c7
NP
328 radix_tree_replace_slot(pslot, newpage);
329
330 /*
331 * Drop cache reference from old page.
332 * We know this isn't the last reference.
333 */
b20a3503 334 __put_page(page);
7cf9c2c7 335
0e8c7d0f
CL
336 /*
337 * If moved to a different zone then also account
338 * the page for that zone. Other VM counters will be
339 * taken care of when we establish references to the
340 * new page and drop references to the old page.
341 *
342 * Note that anonymous pages are accounted for
343 * via NR_FILE_PAGES and NR_ANON_PAGES if they
344 * are mapped to swap space.
345 */
346 __dec_zone_page_state(page, NR_FILE_PAGES);
347 __inc_zone_page_state(newpage, NR_FILE_PAGES);
348
b20a3503
CL
349 write_unlock_irq(&mapping->tree_lock);
350
351 return 0;
352}
b20a3503
CL
353
354/*
355 * Copy the page to its new location
356 */
e7340f73 357static void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503
CL
358{
359 copy_highpage(newpage, page);
360
361 if (PageError(page))
362 SetPageError(newpage);
363 if (PageReferenced(page))
364 SetPageReferenced(newpage);
365 if (PageUptodate(page))
366 SetPageUptodate(newpage);
367 if (PageActive(page))
368 SetPageActive(newpage);
369 if (PageChecked(page))
370 SetPageChecked(newpage);
371 if (PageMappedToDisk(page))
372 SetPageMappedToDisk(newpage);
373
374 if (PageDirty(page)) {
375 clear_page_dirty_for_io(page);
376 set_page_dirty(newpage);
377 }
378
6c5240ae 379#ifdef CONFIG_SWAP
b20a3503 380 ClearPageSwapCache(page);
6c5240ae 381#endif
b20a3503
CL
382 ClearPageActive(page);
383 ClearPagePrivate(page);
384 set_page_private(page, 0);
385 page->mapping = NULL;
386
387 /*
388 * If any waiters have accumulated on the new page then
389 * wake them up.
390 */
391 if (PageWriteback(newpage))
392 end_page_writeback(newpage);
393}
b20a3503 394
1d8b85cc
CL
395/************************************************************
396 * Migration functions
397 ***********************************************************/
398
399/* Always fail migration. Used for mappings that are not movable */
2d1db3b1
CL
400int fail_migrate_page(struct address_space *mapping,
401 struct page *newpage, struct page *page)
1d8b85cc
CL
402{
403 return -EIO;
404}
405EXPORT_SYMBOL(fail_migrate_page);
406
b20a3503
CL
407/*
408 * Common logic to directly migrate a single page suitable for
409 * pages that do not use PagePrivate.
410 *
411 * Pages are locked upon entry and exit.
412 */
2d1db3b1
CL
413int migrate_page(struct address_space *mapping,
414 struct page *newpage, struct page *page)
b20a3503
CL
415{
416 int rc;
417
418 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
419
2d1db3b1 420 rc = migrate_page_move_mapping(mapping, newpage, page);
b20a3503
CL
421
422 if (rc)
423 return rc;
424
425 migrate_page_copy(newpage, page);
b20a3503
CL
426 return 0;
427}
428EXPORT_SYMBOL(migrate_page);
429
9361401e 430#ifdef CONFIG_BLOCK
1d8b85cc
CL
431/*
432 * Migration function for pages with buffers. This function can only be used
433 * if the underlying filesystem guarantees that no other references to "page"
434 * exist.
435 */
2d1db3b1
CL
436int buffer_migrate_page(struct address_space *mapping,
437 struct page *newpage, struct page *page)
1d8b85cc 438{
1d8b85cc
CL
439 struct buffer_head *bh, *head;
440 int rc;
441
1d8b85cc 442 if (!page_has_buffers(page))
2d1db3b1 443 return migrate_page(mapping, newpage, page);
1d8b85cc
CL
444
445 head = page_buffers(page);
446
2d1db3b1 447 rc = migrate_page_move_mapping(mapping, newpage, page);
1d8b85cc
CL
448
449 if (rc)
450 return rc;
451
452 bh = head;
453 do {
454 get_bh(bh);
455 lock_buffer(bh);
456 bh = bh->b_this_page;
457
458 } while (bh != head);
459
460 ClearPagePrivate(page);
461 set_page_private(newpage, page_private(page));
462 set_page_private(page, 0);
463 put_page(page);
464 get_page(newpage);
465
466 bh = head;
467 do {
468 set_bh_page(bh, newpage, bh_offset(bh));
469 bh = bh->b_this_page;
470
471 } while (bh != head);
472
473 SetPagePrivate(newpage);
474
475 migrate_page_copy(newpage, page);
476
477 bh = head;
478 do {
479 unlock_buffer(bh);
480 put_bh(bh);
481 bh = bh->b_this_page;
482
483 } while (bh != head);
484
485 return 0;
486}
487EXPORT_SYMBOL(buffer_migrate_page);
9361401e 488#endif
1d8b85cc 489
04e62a29
CL
490/*
491 * Writeback a page to clean the dirty state
492 */
493static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 494{
04e62a29
CL
495 struct writeback_control wbc = {
496 .sync_mode = WB_SYNC_NONE,
497 .nr_to_write = 1,
498 .range_start = 0,
499 .range_end = LLONG_MAX,
500 .nonblocking = 1,
501 .for_reclaim = 1
502 };
503 int rc;
504
505 if (!mapping->a_ops->writepage)
506 /* No write method for the address space */
507 return -EINVAL;
508
509 if (!clear_page_dirty_for_io(page))
510 /* Someone else already triggered a write */
511 return -EAGAIN;
512
8351a6e4 513 /*
04e62a29
CL
514 * A dirty page may imply that the underlying filesystem has
515 * the page on some queue. So the page must be clean for
516 * migration. Writeout may mean we loose the lock and the
517 * page state is no longer what we checked for earlier.
518 * At this point we know that the migration attempt cannot
519 * be successful.
8351a6e4 520 */
04e62a29 521 remove_migration_ptes(page, page);
8351a6e4 522
04e62a29
CL
523 rc = mapping->a_ops->writepage(page, &wbc);
524 if (rc < 0)
525 /* I/O Error writing */
526 return -EIO;
8351a6e4 527
04e62a29
CL
528 if (rc != AOP_WRITEPAGE_ACTIVATE)
529 /* unlocked. Relock */
530 lock_page(page);
531
532 return -EAGAIN;
533}
534
535/*
536 * Default handling if a filesystem does not provide a migration function.
537 */
538static int fallback_migrate_page(struct address_space *mapping,
539 struct page *newpage, struct page *page)
540{
541 if (PageDirty(page))
542 return writeout(mapping, page);
8351a6e4
CL
543
544 /*
545 * Buffers may be managed in a filesystem specific way.
546 * We must have no buffers or drop them.
547 */
b398f6bf 548 if (PagePrivate(page) &&
8351a6e4
CL
549 !try_to_release_page(page, GFP_KERNEL))
550 return -EAGAIN;
551
552 return migrate_page(mapping, newpage, page);
553}
554
e24f0b8f
CL
555/*
556 * Move a page to a newly allocated page
557 * The page is locked and all ptes have been successfully removed.
558 *
559 * The new page will have replaced the old page if this function
560 * is successful.
561 */
562static int move_to_new_page(struct page *newpage, struct page *page)
563{
564 struct address_space *mapping;
565 int rc;
566
567 /*
568 * Block others from accessing the page when we get around to
569 * establishing additional references. We are the only one
570 * holding a reference to the new page at this point.
571 */
572 if (TestSetPageLocked(newpage))
573 BUG();
574
575 /* Prepare mapping for the new page.*/
576 newpage->index = page->index;
577 newpage->mapping = page->mapping;
578
579 mapping = page_mapping(page);
580 if (!mapping)
581 rc = migrate_page(mapping, newpage, page);
582 else if (mapping->a_ops->migratepage)
583 /*
584 * Most pages have a mapping and most filesystems
585 * should provide a migration function. Anonymous
586 * pages are part of swap space which also has its
587 * own migration function. This is the most common
588 * path for page migration.
589 */
590 rc = mapping->a_ops->migratepage(mapping,
591 newpage, page);
592 else
593 rc = fallback_migrate_page(mapping, newpage, page);
594
595 if (!rc)
596 remove_migration_ptes(page, newpage);
597 else
598 newpage->mapping = NULL;
599
600 unlock_page(newpage);
601
602 return rc;
603}
604
605/*
606 * Obtain the lock on page, remove all ptes and migrate the page
607 * to the newly allocated page in newpage.
608 */
95a402c3
CL
609static int unmap_and_move(new_page_t get_new_page, unsigned long private,
610 struct page *page, int force)
e24f0b8f
CL
611{
612 int rc = 0;
742755a1
CL
613 int *result = NULL;
614 struct page *newpage = get_new_page(page, private, &result);
95a402c3
CL
615
616 if (!newpage)
617 return -ENOMEM;
e24f0b8f
CL
618
619 if (page_count(page) == 1)
620 /* page was freed from under us. So we are done. */
95a402c3 621 goto move_newpage;
e24f0b8f
CL
622
623 rc = -EAGAIN;
624 if (TestSetPageLocked(page)) {
625 if (!force)
95a402c3 626 goto move_newpage;
e24f0b8f
CL
627 lock_page(page);
628 }
629
630 if (PageWriteback(page)) {
631 if (!force)
632 goto unlock;
633 wait_on_page_writeback(page);
634 }
635
636 /*
637 * Establish migration ptes or remove ptes
638 */
e6a1530d
CL
639 try_to_unmap(page, 1);
640 if (!page_mapped(page))
641 rc = move_to_new_page(newpage, page);
e24f0b8f
CL
642
643 if (rc)
644 remove_migration_ptes(page, page);
e6a1530d 645
e24f0b8f
CL
646unlock:
647 unlock_page(page);
95a402c3 648
e24f0b8f 649 if (rc != -EAGAIN) {
aaa994b3
CL
650 /*
651 * A page that has been migrated has all references
652 * removed and will be freed. A page that has not been
653 * migrated will have kepts its references and be
654 * restored.
655 */
656 list_del(&page->lru);
657 move_to_lru(page);
e24f0b8f 658 }
95a402c3
CL
659
660move_newpage:
661 /*
662 * Move the new page to the LRU. If migration was not successful
663 * then this will free the page.
664 */
665 move_to_lru(newpage);
742755a1
CL
666 if (result) {
667 if (rc)
668 *result = rc;
669 else
670 *result = page_to_nid(newpage);
671 }
e24f0b8f
CL
672 return rc;
673}
674
b20a3503
CL
675/*
676 * migrate_pages
677 *
95a402c3
CL
678 * The function takes one list of pages to migrate and a function
679 * that determines from the page to be migrated and the private data
680 * the target of the move and allocates the page.
b20a3503
CL
681 *
682 * The function returns after 10 attempts or if no pages
683 * are movable anymore because to has become empty
aaa994b3
CL
684 * or no retryable pages exist anymore. All pages will be
685 * retruned to the LRU or freed.
b20a3503 686 *
95a402c3 687 * Return: Number of pages not migrated or error code.
b20a3503 688 */
95a402c3
CL
689int migrate_pages(struct list_head *from,
690 new_page_t get_new_page, unsigned long private)
b20a3503 691{
e24f0b8f 692 int retry = 1;
b20a3503
CL
693 int nr_failed = 0;
694 int pass = 0;
695 struct page *page;
696 struct page *page2;
697 int swapwrite = current->flags & PF_SWAPWRITE;
698 int rc;
699
700 if (!swapwrite)
701 current->flags |= PF_SWAPWRITE;
702
e24f0b8f
CL
703 for(pass = 0; pass < 10 && retry; pass++) {
704 retry = 0;
b20a3503 705
e24f0b8f 706 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 707 cond_resched();
2d1db3b1 708
95a402c3
CL
709 rc = unmap_and_move(get_new_page, private,
710 page, pass > 2);
2d1db3b1 711
e24f0b8f 712 switch(rc) {
95a402c3
CL
713 case -ENOMEM:
714 goto out;
e24f0b8f 715 case -EAGAIN:
2d1db3b1 716 retry++;
e24f0b8f
CL
717 break;
718 case 0:
e24f0b8f
CL
719 break;
720 default:
2d1db3b1 721 /* Permanent failure */
2d1db3b1 722 nr_failed++;
e24f0b8f 723 break;
2d1db3b1 724 }
b20a3503
CL
725 }
726 }
95a402c3
CL
727 rc = 0;
728out:
b20a3503
CL
729 if (!swapwrite)
730 current->flags &= ~PF_SWAPWRITE;
731
aaa994b3 732 putback_lru_pages(from);
b20a3503 733
95a402c3
CL
734 if (rc)
735 return rc;
b20a3503 736
95a402c3 737 return nr_failed + retry;
b20a3503 738}
95a402c3 739
742755a1
CL
740#ifdef CONFIG_NUMA
741/*
742 * Move a list of individual pages
743 */
744struct page_to_node {
745 unsigned long addr;
746 struct page *page;
747 int node;
748 int status;
749};
750
751static struct page *new_page_node(struct page *p, unsigned long private,
752 int **result)
753{
754 struct page_to_node *pm = (struct page_to_node *)private;
755
756 while (pm->node != MAX_NUMNODES && pm->page != p)
757 pm++;
758
759 if (pm->node == MAX_NUMNODES)
760 return NULL;
761
762 *result = &pm->status;
763
980128f2 764 return alloc_pages_node(pm->node, GFP_HIGHUSER | GFP_THISNODE, 0);
742755a1
CL
765}
766
767/*
768 * Move a set of pages as indicated in the pm array. The addr
769 * field must be set to the virtual address of the page to be moved
770 * and the node number must contain a valid target node.
771 */
772static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm,
773 int migrate_all)
774{
775 int err;
776 struct page_to_node *pp;
777 LIST_HEAD(pagelist);
778
779 down_read(&mm->mmap_sem);
780
781 /*
782 * Build a list of pages to migrate
783 */
784 migrate_prep();
785 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
786 struct vm_area_struct *vma;
787 struct page *page;
788
789 /*
790 * A valid page pointer that will not match any of the
791 * pages that will be moved.
792 */
793 pp->page = ZERO_PAGE(0);
794
795 err = -EFAULT;
796 vma = find_vma(mm, pp->addr);
0dc952dc 797 if (!vma || !vma_migratable(vma))
742755a1
CL
798 goto set_status;
799
800 page = follow_page(vma, pp->addr, FOLL_GET);
801 err = -ENOENT;
802 if (!page)
803 goto set_status;
804
805 if (PageReserved(page)) /* Check for zero page */
806 goto put_and_set;
807
808 pp->page = page;
809 err = page_to_nid(page);
810
811 if (err == pp->node)
812 /*
813 * Node already in the right place
814 */
815 goto put_and_set;
816
817 err = -EACCES;
818 if (page_mapcount(page) > 1 &&
819 !migrate_all)
820 goto put_and_set;
821
822 err = isolate_lru_page(page, &pagelist);
823put_and_set:
824 /*
825 * Either remove the duplicate refcount from
826 * isolate_lru_page() or drop the page ref if it was
827 * not isolated.
828 */
829 put_page(page);
830set_status:
831 pp->status = err;
832 }
833
834 if (!list_empty(&pagelist))
835 err = migrate_pages(&pagelist, new_page_node,
836 (unsigned long)pm);
837 else
838 err = -ENOENT;
839
840 up_read(&mm->mmap_sem);
841 return err;
842}
843
844/*
845 * Determine the nodes of a list of pages. The addr in the pm array
846 * must have been set to the virtual address of which we want to determine
847 * the node number.
848 */
849static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm)
850{
851 down_read(&mm->mmap_sem);
852
853 for ( ; pm->node != MAX_NUMNODES; pm++) {
854 struct vm_area_struct *vma;
855 struct page *page;
856 int err;
857
858 err = -EFAULT;
859 vma = find_vma(mm, pm->addr);
860 if (!vma)
861 goto set_status;
862
863 page = follow_page(vma, pm->addr, 0);
864 err = -ENOENT;
865 /* Use PageReserved to check for zero page */
866 if (!page || PageReserved(page))
867 goto set_status;
868
869 err = page_to_nid(page);
870set_status:
871 pm->status = err;
872 }
873
874 up_read(&mm->mmap_sem);
875 return 0;
876}
877
878/*
879 * Move a list of pages in the address space of the currently executing
880 * process.
881 */
882asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
883 const void __user * __user *pages,
884 const int __user *nodes,
885 int __user *status, int flags)
886{
887 int err = 0;
888 int i;
889 struct task_struct *task;
890 nodemask_t task_nodes;
891 struct mm_struct *mm;
892 struct page_to_node *pm = NULL;
893
894 /* Check flags */
895 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
896 return -EINVAL;
897
898 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
899 return -EPERM;
900
901 /* Find the mm_struct */
902 read_lock(&tasklist_lock);
903 task = pid ? find_task_by_pid(pid) : current;
904 if (!task) {
905 read_unlock(&tasklist_lock);
906 return -ESRCH;
907 }
908 mm = get_task_mm(task);
909 read_unlock(&tasklist_lock);
910
911 if (!mm)
912 return -EINVAL;
913
914 /*
915 * Check if this process has the right to modify the specified
916 * process. The right exists if the process has administrative
917 * capabilities, superuser privileges or the same
918 * userid as the target process.
919 */
920 if ((current->euid != task->suid) && (current->euid != task->uid) &&
921 (current->uid != task->suid) && (current->uid != task->uid) &&
922 !capable(CAP_SYS_NICE)) {
923 err = -EPERM;
924 goto out2;
925 }
926
86c3a764
DQ
927 err = security_task_movememory(task);
928 if (err)
929 goto out2;
930
931
742755a1
CL
932 task_nodes = cpuset_mems_allowed(task);
933
934 /* Limit nr_pages so that the multiplication may not overflow */
935 if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) {
936 err = -E2BIG;
937 goto out2;
938 }
939
940 pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node));
941 if (!pm) {
942 err = -ENOMEM;
943 goto out2;
944 }
945
946 /*
947 * Get parameters from user space and initialize the pm
948 * array. Return various errors if the user did something wrong.
949 */
950 for (i = 0; i < nr_pages; i++) {
951 const void *p;
952
953 err = -EFAULT;
954 if (get_user(p, pages + i))
955 goto out;
956
957 pm[i].addr = (unsigned long)p;
958 if (nodes) {
959 int node;
960
961 if (get_user(node, nodes + i))
962 goto out;
963
964 err = -ENODEV;
965 if (!node_online(node))
966 goto out;
967
968 err = -EACCES;
969 if (!node_isset(node, task_nodes))
970 goto out;
971
972 pm[i].node = node;
8ce08464
SR
973 } else
974 pm[i].node = 0; /* anything to not match MAX_NUMNODES */
742755a1
CL
975 }
976 /* End marker */
977 pm[nr_pages].node = MAX_NUMNODES;
978
979 if (nodes)
980 err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL);
981 else
982 err = do_pages_stat(mm, pm);
983
984 if (err >= 0)
985 /* Return status information */
986 for (i = 0; i < nr_pages; i++)
987 if (put_user(pm[i].status, status + i))
988 err = -EFAULT;
989
990out:
991 vfree(pm);
992out2:
993 mmput(mm);
994 return err;
995}
996#endif
997
7b2259b3
CL
998/*
999 * Call migration functions in the vma_ops that may prepare
1000 * memory in a vm for migration. migration functions may perform
1001 * the migration for vmas that do not have an underlying page struct.
1002 */
1003int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1004 const nodemask_t *from, unsigned long flags)
1005{
1006 struct vm_area_struct *vma;
1007 int err = 0;
1008
1009 for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
1010 if (vma->vm_ops && vma->vm_ops->migrate) {
1011 err = vma->vm_ops->migrate(vma, to, from, flags);
1012 if (err)
1013 break;
1014 }
1015 }
1016 return err;
1017}