]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/migrate.c
mm: migration: share the anon_vma ref counts between KSM and page migration
[net-next-2.6.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
cde53535 12 * Christoph Lameter
b20a3503
CL
13 */
14
15#include <linux/migrate.h>
16#include <linux/module.h>
17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503 23#include <linux/pagevec.h>
e9995ef9 24#include <linux/ksm.h>
b20a3503
CL
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
04e62a29 29#include <linux/writeback.h>
742755a1
CL
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
86c3a764 32#include <linux/security.h>
8a9f3ccd 33#include <linux/memcontrol.h>
4f5ca265 34#include <linux/syscalls.h>
5a0e3ad6 35#include <linux/gfp.h>
b20a3503
CL
36
37#include "internal.h"
38
b20a3503
CL
39#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
40
b20a3503 41/*
742755a1
CL
42 * migrate_prep() needs to be called before we start compiling a list of pages
43 * to be migrated using isolate_lru_page().
b20a3503
CL
44 */
45int migrate_prep(void)
46{
b20a3503
CL
47 /*
48 * Clear the LRU lists so pages can be isolated.
49 * Note that pages may be moved off the LRU after we have
50 * drained them. Those pages will fail to migrate like other
51 * pages that may be busy.
52 */
53 lru_add_drain_all();
54
55 return 0;
56}
57
b20a3503 58/*
894bc310
LS
59 * Add isolated pages on the list back to the LRU under page lock
60 * to avoid leaking evictable pages back onto unevictable list.
b20a3503 61 */
e13861d8 62void putback_lru_pages(struct list_head *l)
b20a3503
CL
63{
64 struct page *page;
65 struct page *page2;
b20a3503
CL
66
67 list_for_each_entry_safe(page, page2, l, lru) {
e24f0b8f 68 list_del(&page->lru);
a731286d 69 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 70 page_is_file_cache(page));
894bc310 71 putback_lru_page(page);
b20a3503 72 }
b20a3503
CL
73}
74
0697212a
CL
75/*
76 * Restore a potential migration pte to a working pte entry
77 */
e9995ef9
HD
78static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
79 unsigned long addr, void *old)
0697212a
CL
80{
81 struct mm_struct *mm = vma->vm_mm;
82 swp_entry_t entry;
83 pgd_t *pgd;
84 pud_t *pud;
85 pmd_t *pmd;
86 pte_t *ptep, pte;
87 spinlock_t *ptl;
88
89 pgd = pgd_offset(mm, addr);
90 if (!pgd_present(*pgd))
e9995ef9 91 goto out;
0697212a
CL
92
93 pud = pud_offset(pgd, addr);
94 if (!pud_present(*pud))
e9995ef9 95 goto out;
0697212a
CL
96
97 pmd = pmd_offset(pud, addr);
98 if (!pmd_present(*pmd))
e9995ef9 99 goto out;
0697212a
CL
100
101 ptep = pte_offset_map(pmd, addr);
102
103 if (!is_swap_pte(*ptep)) {
104 pte_unmap(ptep);
e9995ef9 105 goto out;
0697212a
CL
106 }
107
108 ptl = pte_lockptr(mm, pmd);
109 spin_lock(ptl);
110 pte = *ptep;
111 if (!is_swap_pte(pte))
e9995ef9 112 goto unlock;
0697212a
CL
113
114 entry = pte_to_swp_entry(pte);
115
e9995ef9
HD
116 if (!is_migration_entry(entry) ||
117 migration_entry_to_page(entry) != old)
118 goto unlock;
0697212a 119
0697212a
CL
120 get_page(new);
121 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
122 if (is_write_migration_entry(entry))
123 pte = pte_mkwrite(pte);
97ee0524 124 flush_cache_page(vma, addr, pte_pfn(pte));
0697212a 125 set_pte_at(mm, addr, ptep, pte);
04e62a29
CL
126
127 if (PageAnon(new))
128 page_add_anon_rmap(new, vma, addr);
129 else
130 page_add_file_rmap(new);
131
132 /* No need to invalidate - it was non-present before */
4b3073e1 133 update_mmu_cache(vma, addr, ptep);
e9995ef9 134unlock:
0697212a 135 pte_unmap_unlock(ptep, ptl);
e9995ef9
HD
136out:
137 return SWAP_AGAIN;
0697212a
CL
138}
139
04e62a29
CL
140/*
141 * Get rid of all migration entries and replace them by
142 * references to the indicated page.
143 */
144static void remove_migration_ptes(struct page *old, struct page *new)
145{
e9995ef9 146 rmap_walk(new, remove_migration_pte, old);
04e62a29
CL
147}
148
0697212a
CL
149/*
150 * Something used the pte of a page under migration. We need to
151 * get to the page and wait until migration is finished.
152 * When we return from this function the fault will be retried.
153 *
154 * This function is called from do_swap_page().
155 */
156void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
157 unsigned long address)
158{
159 pte_t *ptep, pte;
160 spinlock_t *ptl;
161 swp_entry_t entry;
162 struct page *page;
163
164 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
165 pte = *ptep;
166 if (!is_swap_pte(pte))
167 goto out;
168
169 entry = pte_to_swp_entry(pte);
170 if (!is_migration_entry(entry))
171 goto out;
172
173 page = migration_entry_to_page(entry);
174
e286781d
NP
175 /*
176 * Once radix-tree replacement of page migration started, page_count
177 * *must* be zero. And, we don't want to call wait_on_page_locked()
178 * against a page without get_page().
179 * So, we use get_page_unless_zero(), here. Even failed, page fault
180 * will occur again.
181 */
182 if (!get_page_unless_zero(page))
183 goto out;
0697212a
CL
184 pte_unmap_unlock(ptep, ptl);
185 wait_on_page_locked(page);
186 put_page(page);
187 return;
188out:
189 pte_unmap_unlock(ptep, ptl);
190}
191
b20a3503 192/*
c3fcf8a5 193 * Replace the page in the mapping.
5b5c7120
CL
194 *
195 * The number of remaining references must be:
196 * 1 for anonymous pages without a mapping
197 * 2 for pages with a mapping
266cf658 198 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 199 */
2d1db3b1
CL
200static int migrate_page_move_mapping(struct address_space *mapping,
201 struct page *newpage, struct page *page)
b20a3503 202{
e286781d 203 int expected_count;
7cf9c2c7 204 void **pslot;
b20a3503 205
6c5240ae 206 if (!mapping) {
0e8c7d0f 207 /* Anonymous page without mapping */
6c5240ae
CL
208 if (page_count(page) != 1)
209 return -EAGAIN;
210 return 0;
211 }
212
19fd6231 213 spin_lock_irq(&mapping->tree_lock);
b20a3503 214
7cf9c2c7
NP
215 pslot = radix_tree_lookup_slot(&mapping->page_tree,
216 page_index(page));
b20a3503 217
edcf4748 218 expected_count = 2 + page_has_private(page);
e286781d 219 if (page_count(page) != expected_count ||
7cf9c2c7 220 (struct page *)radix_tree_deref_slot(pslot) != page) {
19fd6231 221 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 222 return -EAGAIN;
b20a3503
CL
223 }
224
e286781d 225 if (!page_freeze_refs(page, expected_count)) {
19fd6231 226 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
227 return -EAGAIN;
228 }
229
b20a3503
CL
230 /*
231 * Now we know that no one else is looking at the page.
b20a3503 232 */
7cf9c2c7 233 get_page(newpage); /* add cache reference */
b20a3503
CL
234 if (PageSwapCache(page)) {
235 SetPageSwapCache(newpage);
236 set_page_private(newpage, page_private(page));
237 }
238
7cf9c2c7
NP
239 radix_tree_replace_slot(pslot, newpage);
240
e286781d 241 page_unfreeze_refs(page, expected_count);
7cf9c2c7
NP
242 /*
243 * Drop cache reference from old page.
244 * We know this isn't the last reference.
245 */
b20a3503 246 __put_page(page);
7cf9c2c7 247
0e8c7d0f
CL
248 /*
249 * If moved to a different zone then also account
250 * the page for that zone. Other VM counters will be
251 * taken care of when we establish references to the
252 * new page and drop references to the old page.
253 *
254 * Note that anonymous pages are accounted for
255 * via NR_FILE_PAGES and NR_ANON_PAGES if they
256 * are mapped to swap space.
257 */
258 __dec_zone_page_state(page, NR_FILE_PAGES);
259 __inc_zone_page_state(newpage, NR_FILE_PAGES);
4b02108a
KM
260 if (PageSwapBacked(page)) {
261 __dec_zone_page_state(page, NR_SHMEM);
262 __inc_zone_page_state(newpage, NR_SHMEM);
263 }
19fd6231 264 spin_unlock_irq(&mapping->tree_lock);
b20a3503
CL
265
266 return 0;
267}
b20a3503
CL
268
269/*
270 * Copy the page to its new location
271 */
e7340f73 272static void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503
CL
273{
274 copy_highpage(newpage, page);
275
276 if (PageError(page))
277 SetPageError(newpage);
278 if (PageReferenced(page))
279 SetPageReferenced(newpage);
280 if (PageUptodate(page))
281 SetPageUptodate(newpage);
894bc310
LS
282 if (TestClearPageActive(page)) {
283 VM_BUG_ON(PageUnevictable(page));
b20a3503 284 SetPageActive(newpage);
418b27ef
LS
285 } else if (TestClearPageUnevictable(page))
286 SetPageUnevictable(newpage);
b20a3503
CL
287 if (PageChecked(page))
288 SetPageChecked(newpage);
289 if (PageMappedToDisk(page))
290 SetPageMappedToDisk(newpage);
291
292 if (PageDirty(page)) {
293 clear_page_dirty_for_io(page);
3a902c5f
NP
294 /*
295 * Want to mark the page and the radix tree as dirty, and
296 * redo the accounting that clear_page_dirty_for_io undid,
297 * but we can't use set_page_dirty because that function
298 * is actually a signal that all of the page has become dirty.
299 * Wheras only part of our page may be dirty.
300 */
301 __set_page_dirty_nobuffers(newpage);
b20a3503
CL
302 }
303
b291f000 304 mlock_migrate_page(newpage, page);
e9995ef9 305 ksm_migrate_page(newpage, page);
b291f000 306
b20a3503 307 ClearPageSwapCache(page);
b20a3503
CL
308 ClearPagePrivate(page);
309 set_page_private(page, 0);
310 page->mapping = NULL;
311
312 /*
313 * If any waiters have accumulated on the new page then
314 * wake them up.
315 */
316 if (PageWriteback(newpage))
317 end_page_writeback(newpage);
318}
b20a3503 319
1d8b85cc
CL
320/************************************************************
321 * Migration functions
322 ***********************************************************/
323
324/* Always fail migration. Used for mappings that are not movable */
2d1db3b1
CL
325int fail_migrate_page(struct address_space *mapping,
326 struct page *newpage, struct page *page)
1d8b85cc
CL
327{
328 return -EIO;
329}
330EXPORT_SYMBOL(fail_migrate_page);
331
b20a3503
CL
332/*
333 * Common logic to directly migrate a single page suitable for
266cf658 334 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
335 *
336 * Pages are locked upon entry and exit.
337 */
2d1db3b1
CL
338int migrate_page(struct address_space *mapping,
339 struct page *newpage, struct page *page)
b20a3503
CL
340{
341 int rc;
342
343 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
344
2d1db3b1 345 rc = migrate_page_move_mapping(mapping, newpage, page);
b20a3503
CL
346
347 if (rc)
348 return rc;
349
350 migrate_page_copy(newpage, page);
b20a3503
CL
351 return 0;
352}
353EXPORT_SYMBOL(migrate_page);
354
9361401e 355#ifdef CONFIG_BLOCK
1d8b85cc
CL
356/*
357 * Migration function for pages with buffers. This function can only be used
358 * if the underlying filesystem guarantees that no other references to "page"
359 * exist.
360 */
2d1db3b1
CL
361int buffer_migrate_page(struct address_space *mapping,
362 struct page *newpage, struct page *page)
1d8b85cc 363{
1d8b85cc
CL
364 struct buffer_head *bh, *head;
365 int rc;
366
1d8b85cc 367 if (!page_has_buffers(page))
2d1db3b1 368 return migrate_page(mapping, newpage, page);
1d8b85cc
CL
369
370 head = page_buffers(page);
371
2d1db3b1 372 rc = migrate_page_move_mapping(mapping, newpage, page);
1d8b85cc
CL
373
374 if (rc)
375 return rc;
376
377 bh = head;
378 do {
379 get_bh(bh);
380 lock_buffer(bh);
381 bh = bh->b_this_page;
382
383 } while (bh != head);
384
385 ClearPagePrivate(page);
386 set_page_private(newpage, page_private(page));
387 set_page_private(page, 0);
388 put_page(page);
389 get_page(newpage);
390
391 bh = head;
392 do {
393 set_bh_page(bh, newpage, bh_offset(bh));
394 bh = bh->b_this_page;
395
396 } while (bh != head);
397
398 SetPagePrivate(newpage);
399
400 migrate_page_copy(newpage, page);
401
402 bh = head;
403 do {
404 unlock_buffer(bh);
405 put_bh(bh);
406 bh = bh->b_this_page;
407
408 } while (bh != head);
409
410 return 0;
411}
412EXPORT_SYMBOL(buffer_migrate_page);
9361401e 413#endif
1d8b85cc 414
04e62a29
CL
415/*
416 * Writeback a page to clean the dirty state
417 */
418static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 419{
04e62a29
CL
420 struct writeback_control wbc = {
421 .sync_mode = WB_SYNC_NONE,
422 .nr_to_write = 1,
423 .range_start = 0,
424 .range_end = LLONG_MAX,
425 .nonblocking = 1,
426 .for_reclaim = 1
427 };
428 int rc;
429
430 if (!mapping->a_ops->writepage)
431 /* No write method for the address space */
432 return -EINVAL;
433
434 if (!clear_page_dirty_for_io(page))
435 /* Someone else already triggered a write */
436 return -EAGAIN;
437
8351a6e4 438 /*
04e62a29
CL
439 * A dirty page may imply that the underlying filesystem has
440 * the page on some queue. So the page must be clean for
441 * migration. Writeout may mean we loose the lock and the
442 * page state is no longer what we checked for earlier.
443 * At this point we know that the migration attempt cannot
444 * be successful.
8351a6e4 445 */
04e62a29 446 remove_migration_ptes(page, page);
8351a6e4 447
04e62a29 448 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 449
04e62a29
CL
450 if (rc != AOP_WRITEPAGE_ACTIVATE)
451 /* unlocked. Relock */
452 lock_page(page);
453
bda8550d 454 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
455}
456
457/*
458 * Default handling if a filesystem does not provide a migration function.
459 */
460static int fallback_migrate_page(struct address_space *mapping,
461 struct page *newpage, struct page *page)
462{
463 if (PageDirty(page))
464 return writeout(mapping, page);
8351a6e4
CL
465
466 /*
467 * Buffers may be managed in a filesystem specific way.
468 * We must have no buffers or drop them.
469 */
266cf658 470 if (page_has_private(page) &&
8351a6e4
CL
471 !try_to_release_page(page, GFP_KERNEL))
472 return -EAGAIN;
473
474 return migrate_page(mapping, newpage, page);
475}
476
e24f0b8f
CL
477/*
478 * Move a page to a newly allocated page
479 * The page is locked and all ptes have been successfully removed.
480 *
481 * The new page will have replaced the old page if this function
482 * is successful.
894bc310
LS
483 *
484 * Return value:
485 * < 0 - error code
486 * == 0 - success
e24f0b8f
CL
487 */
488static int move_to_new_page(struct page *newpage, struct page *page)
489{
490 struct address_space *mapping;
491 int rc;
492
493 /*
494 * Block others from accessing the page when we get around to
495 * establishing additional references. We are the only one
496 * holding a reference to the new page at this point.
497 */
529ae9aa 498 if (!trylock_page(newpage))
e24f0b8f
CL
499 BUG();
500
501 /* Prepare mapping for the new page.*/
502 newpage->index = page->index;
503 newpage->mapping = page->mapping;
b2e18538
RR
504 if (PageSwapBacked(page))
505 SetPageSwapBacked(newpage);
e24f0b8f
CL
506
507 mapping = page_mapping(page);
508 if (!mapping)
509 rc = migrate_page(mapping, newpage, page);
510 else if (mapping->a_ops->migratepage)
511 /*
512 * Most pages have a mapping and most filesystems
513 * should provide a migration function. Anonymous
514 * pages are part of swap space which also has its
515 * own migration function. This is the most common
516 * path for page migration.
517 */
518 rc = mapping->a_ops->migratepage(mapping,
519 newpage, page);
520 else
521 rc = fallback_migrate_page(mapping, newpage, page);
522
e9995ef9 523 if (!rc)
e24f0b8f 524 remove_migration_ptes(page, newpage);
e9995ef9 525 else
e24f0b8f
CL
526 newpage->mapping = NULL;
527
528 unlock_page(newpage);
529
530 return rc;
531}
532
533/*
534 * Obtain the lock on page, remove all ptes and migrate the page
535 * to the newly allocated page in newpage.
536 */
95a402c3 537static int unmap_and_move(new_page_t get_new_page, unsigned long private,
62b61f61 538 struct page *page, int force, int offlining)
e24f0b8f
CL
539{
540 int rc = 0;
742755a1
CL
541 int *result = NULL;
542 struct page *newpage = get_new_page(page, private, &result);
989f89c5 543 int rcu_locked = 0;
ae41be37 544 int charge = 0;
e00e4316 545 struct mem_cgroup *mem = NULL;
3f6c8272 546 struct anon_vma *anon_vma = NULL;
95a402c3
CL
547
548 if (!newpage)
549 return -ENOMEM;
e24f0b8f 550
894bc310 551 if (page_count(page) == 1) {
e24f0b8f 552 /* page was freed from under us. So we are done. */
95a402c3 553 goto move_newpage;
894bc310 554 }
e24f0b8f 555
e8589cc1 556 /* prepare cgroup just returns 0 or -ENOMEM */
e24f0b8f 557 rc = -EAGAIN;
01b1ae63 558
529ae9aa 559 if (!trylock_page(page)) {
e24f0b8f 560 if (!force)
95a402c3 561 goto move_newpage;
e24f0b8f
CL
562 lock_page(page);
563 }
564
62b61f61
HD
565 /*
566 * Only memory hotplug's offline_pages() caller has locked out KSM,
567 * and can safely migrate a KSM page. The other cases have skipped
568 * PageKsm along with PageReserved - but it is only now when we have
569 * the page lock that we can be certain it will not go KSM beneath us
570 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
571 * its pagecount raised, but only here do we take the page lock which
572 * serializes that).
573 */
574 if (PageKsm(page) && !offlining) {
575 rc = -EBUSY;
576 goto unlock;
577 }
578
01b1ae63
KH
579 /* charge against new page */
580 charge = mem_cgroup_prepare_migration(page, &mem);
581 if (charge == -ENOMEM) {
582 rc = -ENOMEM;
583 goto unlock;
584 }
585 BUG_ON(charge);
586
e24f0b8f
CL
587 if (PageWriteback(page)) {
588 if (!force)
01b1ae63 589 goto uncharge;
e24f0b8f
CL
590 wait_on_page_writeback(page);
591 }
e24f0b8f 592 /*
dc386d4d
KH
593 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
594 * we cannot notice that anon_vma is freed while we migrates a page.
595 * This rcu_read_lock() delays freeing anon_vma pointer until the end
596 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
597 * File Caches may use write_page() or lock_page() in migration, then,
598 * just care Anon page here.
dc386d4d 599 */
989f89c5
KH
600 if (PageAnon(page)) {
601 rcu_read_lock();
602 rcu_locked = 1;
3f6c8272 603 anon_vma = page_anon_vma(page);
7f60c214 604 atomic_inc(&anon_vma->external_refcount);
989f89c5 605 }
62e1c553 606
dc386d4d 607 /*
62e1c553
SL
608 * Corner case handling:
609 * 1. When a new swap-cache page is read into, it is added to the LRU
610 * and treated as swapcache but it has no rmap yet.
611 * Calling try_to_unmap() against a page->mapping==NULL page will
612 * trigger a BUG. So handle it here.
613 * 2. An orphaned page (see truncate_complete_page) might have
614 * fs-private metadata. The page can be picked up due to memory
615 * offlining. Everywhere else except page reclaim, the page is
616 * invisible to the vm, so the page can not be migrated. So try to
617 * free the metadata, so the page can be freed.
e24f0b8f 618 */
62e1c553 619 if (!page->mapping) {
266cf658 620 if (!PageAnon(page) && page_has_private(page)) {
62e1c553
SL
621 /*
622 * Go direct to try_to_free_buffers() here because
623 * a) that's what try_to_release_page() would do anyway
624 * b) we may be under rcu_read_lock() here, so we can't
625 * use GFP_KERNEL which is what try_to_release_page()
626 * needs to be effective.
627 */
628 try_to_free_buffers(page);
abfc3488 629 goto rcu_unlock;
62e1c553 630 }
abfc3488 631 goto skip_unmap;
62e1c553
SL
632 }
633
dc386d4d 634 /* Establish migration ptes or remove ptes */
14fa31b8 635 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
dc386d4d 636
abfc3488 637skip_unmap:
e6a1530d
CL
638 if (!page_mapped(page))
639 rc = move_to_new_page(newpage, page);
e24f0b8f 640
e8589cc1 641 if (rc)
e24f0b8f 642 remove_migration_ptes(page, page);
dc386d4d 643rcu_unlock:
3f6c8272
MG
644
645 /* Drop an anon_vma reference if we took one */
7f60c214 646 if (anon_vma && atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->lock)) {
3f6c8272
MG
647 int empty = list_empty(&anon_vma->head);
648 spin_unlock(&anon_vma->lock);
649 if (empty)
650 anon_vma_free(anon_vma);
651 }
652
989f89c5
KH
653 if (rcu_locked)
654 rcu_read_unlock();
01b1ae63
KH
655uncharge:
656 if (!charge)
657 mem_cgroup_end_migration(mem, page, newpage);
e24f0b8f
CL
658unlock:
659 unlock_page(page);
95a402c3 660
e24f0b8f 661 if (rc != -EAGAIN) {
aaa994b3
CL
662 /*
663 * A page that has been migrated has all references
664 * removed and will be freed. A page that has not been
665 * migrated will have kepts its references and be
666 * restored.
667 */
668 list_del(&page->lru);
a731286d 669 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 670 page_is_file_cache(page));
894bc310 671 putback_lru_page(page);
e24f0b8f 672 }
95a402c3
CL
673
674move_newpage:
894bc310 675
95a402c3
CL
676 /*
677 * Move the new page to the LRU. If migration was not successful
678 * then this will free the page.
679 */
894bc310
LS
680 putback_lru_page(newpage);
681
742755a1
CL
682 if (result) {
683 if (rc)
684 *result = rc;
685 else
686 *result = page_to_nid(newpage);
687 }
e24f0b8f
CL
688 return rc;
689}
690
b20a3503
CL
691/*
692 * migrate_pages
693 *
95a402c3
CL
694 * The function takes one list of pages to migrate and a function
695 * that determines from the page to be migrated and the private data
696 * the target of the move and allocates the page.
b20a3503
CL
697 *
698 * The function returns after 10 attempts or if no pages
699 * are movable anymore because to has become empty
aaa994b3 700 * or no retryable pages exist anymore. All pages will be
e9534b3f 701 * returned to the LRU or freed.
b20a3503 702 *
95a402c3 703 * Return: Number of pages not migrated or error code.
b20a3503 704 */
95a402c3 705int migrate_pages(struct list_head *from,
62b61f61 706 new_page_t get_new_page, unsigned long private, int offlining)
b20a3503 707{
e24f0b8f 708 int retry = 1;
b20a3503
CL
709 int nr_failed = 0;
710 int pass = 0;
711 struct page *page;
712 struct page *page2;
713 int swapwrite = current->flags & PF_SWAPWRITE;
714 int rc;
715
716 if (!swapwrite)
717 current->flags |= PF_SWAPWRITE;
718
e24f0b8f
CL
719 for(pass = 0; pass < 10 && retry; pass++) {
720 retry = 0;
b20a3503 721
e24f0b8f 722 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 723 cond_resched();
2d1db3b1 724
95a402c3 725 rc = unmap_and_move(get_new_page, private,
62b61f61 726 page, pass > 2, offlining);
2d1db3b1 727
e24f0b8f 728 switch(rc) {
95a402c3
CL
729 case -ENOMEM:
730 goto out;
e24f0b8f 731 case -EAGAIN:
2d1db3b1 732 retry++;
e24f0b8f
CL
733 break;
734 case 0:
e24f0b8f
CL
735 break;
736 default:
2d1db3b1 737 /* Permanent failure */
2d1db3b1 738 nr_failed++;
e24f0b8f 739 break;
2d1db3b1 740 }
b20a3503
CL
741 }
742 }
95a402c3
CL
743 rc = 0;
744out:
b20a3503
CL
745 if (!swapwrite)
746 current->flags &= ~PF_SWAPWRITE;
747
aaa994b3 748 putback_lru_pages(from);
b20a3503 749
95a402c3
CL
750 if (rc)
751 return rc;
b20a3503 752
95a402c3 753 return nr_failed + retry;
b20a3503 754}
95a402c3 755
742755a1
CL
756#ifdef CONFIG_NUMA
757/*
758 * Move a list of individual pages
759 */
760struct page_to_node {
761 unsigned long addr;
762 struct page *page;
763 int node;
764 int status;
765};
766
767static struct page *new_page_node(struct page *p, unsigned long private,
768 int **result)
769{
770 struct page_to_node *pm = (struct page_to_node *)private;
771
772 while (pm->node != MAX_NUMNODES && pm->page != p)
773 pm++;
774
775 if (pm->node == MAX_NUMNODES)
776 return NULL;
777
778 *result = &pm->status;
779
6484eb3e 780 return alloc_pages_exact_node(pm->node,
769848c0 781 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
742755a1
CL
782}
783
784/*
785 * Move a set of pages as indicated in the pm array. The addr
786 * field must be set to the virtual address of the page to be moved
787 * and the node number must contain a valid target node.
5e9a0f02 788 * The pm array ends with node = MAX_NUMNODES.
742755a1 789 */
5e9a0f02
BG
790static int do_move_page_to_node_array(struct mm_struct *mm,
791 struct page_to_node *pm,
792 int migrate_all)
742755a1
CL
793{
794 int err;
795 struct page_to_node *pp;
796 LIST_HEAD(pagelist);
797
798 down_read(&mm->mmap_sem);
799
800 /*
801 * Build a list of pages to migrate
802 */
742755a1
CL
803 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
804 struct vm_area_struct *vma;
805 struct page *page;
806
742755a1
CL
807 err = -EFAULT;
808 vma = find_vma(mm, pp->addr);
0dc952dc 809 if (!vma || !vma_migratable(vma))
742755a1
CL
810 goto set_status;
811
812 page = follow_page(vma, pp->addr, FOLL_GET);
89f5b7da
LT
813
814 err = PTR_ERR(page);
815 if (IS_ERR(page))
816 goto set_status;
817
742755a1
CL
818 err = -ENOENT;
819 if (!page)
820 goto set_status;
821
62b61f61
HD
822 /* Use PageReserved to check for zero page */
823 if (PageReserved(page) || PageKsm(page))
742755a1
CL
824 goto put_and_set;
825
826 pp->page = page;
827 err = page_to_nid(page);
828
829 if (err == pp->node)
830 /*
831 * Node already in the right place
832 */
833 goto put_and_set;
834
835 err = -EACCES;
836 if (page_mapcount(page) > 1 &&
837 !migrate_all)
838 goto put_and_set;
839
62695a84 840 err = isolate_lru_page(page);
6d9c285a 841 if (!err) {
62695a84 842 list_add_tail(&page->lru, &pagelist);
6d9c285a
KM
843 inc_zone_page_state(page, NR_ISOLATED_ANON +
844 page_is_file_cache(page));
845 }
742755a1
CL
846put_and_set:
847 /*
848 * Either remove the duplicate refcount from
849 * isolate_lru_page() or drop the page ref if it was
850 * not isolated.
851 */
852 put_page(page);
853set_status:
854 pp->status = err;
855 }
856
e78bbfa8 857 err = 0;
742755a1
CL
858 if (!list_empty(&pagelist))
859 err = migrate_pages(&pagelist, new_page_node,
62b61f61 860 (unsigned long)pm, 0);
742755a1
CL
861
862 up_read(&mm->mmap_sem);
863 return err;
864}
865
5e9a0f02
BG
866/*
867 * Migrate an array of page address onto an array of nodes and fill
868 * the corresponding array of status.
869 */
870static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
871 unsigned long nr_pages,
872 const void __user * __user *pages,
873 const int __user *nodes,
874 int __user *status, int flags)
875{
3140a227 876 struct page_to_node *pm;
5e9a0f02 877 nodemask_t task_nodes;
3140a227
BG
878 unsigned long chunk_nr_pages;
879 unsigned long chunk_start;
880 int err;
5e9a0f02
BG
881
882 task_nodes = cpuset_mems_allowed(task);
883
3140a227
BG
884 err = -ENOMEM;
885 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
886 if (!pm)
5e9a0f02 887 goto out;
35282a2d
BG
888
889 migrate_prep();
890
5e9a0f02 891 /*
3140a227
BG
892 * Store a chunk of page_to_node array in a page,
893 * but keep the last one as a marker
5e9a0f02 894 */
3140a227 895 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
5e9a0f02 896
3140a227
BG
897 for (chunk_start = 0;
898 chunk_start < nr_pages;
899 chunk_start += chunk_nr_pages) {
900 int j;
5e9a0f02 901
3140a227
BG
902 if (chunk_start + chunk_nr_pages > nr_pages)
903 chunk_nr_pages = nr_pages - chunk_start;
904
905 /* fill the chunk pm with addrs and nodes from user-space */
906 for (j = 0; j < chunk_nr_pages; j++) {
907 const void __user *p;
5e9a0f02
BG
908 int node;
909
3140a227
BG
910 err = -EFAULT;
911 if (get_user(p, pages + j + chunk_start))
912 goto out_pm;
913 pm[j].addr = (unsigned long) p;
914
915 if (get_user(node, nodes + j + chunk_start))
5e9a0f02
BG
916 goto out_pm;
917
918 err = -ENODEV;
6f5a55f1
LT
919 if (node < 0 || node >= MAX_NUMNODES)
920 goto out_pm;
921
5e9a0f02
BG
922 if (!node_state(node, N_HIGH_MEMORY))
923 goto out_pm;
924
925 err = -EACCES;
926 if (!node_isset(node, task_nodes))
927 goto out_pm;
928
3140a227
BG
929 pm[j].node = node;
930 }
931
932 /* End marker for this chunk */
933 pm[chunk_nr_pages].node = MAX_NUMNODES;
934
935 /* Migrate this chunk */
936 err = do_move_page_to_node_array(mm, pm,
937 flags & MPOL_MF_MOVE_ALL);
938 if (err < 0)
939 goto out_pm;
5e9a0f02 940
5e9a0f02 941 /* Return status information */
3140a227
BG
942 for (j = 0; j < chunk_nr_pages; j++)
943 if (put_user(pm[j].status, status + j + chunk_start)) {
5e9a0f02 944 err = -EFAULT;
3140a227
BG
945 goto out_pm;
946 }
947 }
948 err = 0;
5e9a0f02
BG
949
950out_pm:
3140a227 951 free_page((unsigned long)pm);
5e9a0f02
BG
952out:
953 return err;
954}
955
742755a1 956/*
2f007e74 957 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 958 */
80bba129
BG
959static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
960 const void __user **pages, int *status)
742755a1 961{
2f007e74 962 unsigned long i;
2f007e74 963
742755a1
CL
964 down_read(&mm->mmap_sem);
965
2f007e74 966 for (i = 0; i < nr_pages; i++) {
80bba129 967 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
968 struct vm_area_struct *vma;
969 struct page *page;
c095adbc 970 int err = -EFAULT;
2f007e74
BG
971
972 vma = find_vma(mm, addr);
742755a1
CL
973 if (!vma)
974 goto set_status;
975
2f007e74 976 page = follow_page(vma, addr, 0);
89f5b7da
LT
977
978 err = PTR_ERR(page);
979 if (IS_ERR(page))
980 goto set_status;
981
742755a1
CL
982 err = -ENOENT;
983 /* Use PageReserved to check for zero page */
62b61f61 984 if (!page || PageReserved(page) || PageKsm(page))
742755a1
CL
985 goto set_status;
986
987 err = page_to_nid(page);
988set_status:
80bba129
BG
989 *status = err;
990
991 pages++;
992 status++;
993 }
994
995 up_read(&mm->mmap_sem);
996}
997
998/*
999 * Determine the nodes of a user array of pages and store it in
1000 * a user array of status.
1001 */
1002static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1003 const void __user * __user *pages,
1004 int __user *status)
1005{
1006#define DO_PAGES_STAT_CHUNK_NR 16
1007 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1008 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1009
87b8d1ad
PA
1010 while (nr_pages) {
1011 unsigned long chunk_nr;
80bba129 1012
87b8d1ad
PA
1013 chunk_nr = nr_pages;
1014 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1015 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1016
1017 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1018 break;
80bba129
BG
1019
1020 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1021
87b8d1ad
PA
1022 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1023 break;
742755a1 1024
87b8d1ad
PA
1025 pages += chunk_nr;
1026 status += chunk_nr;
1027 nr_pages -= chunk_nr;
1028 }
1029 return nr_pages ? -EFAULT : 0;
742755a1
CL
1030}
1031
1032/*
1033 * Move a list of pages in the address space of the currently executing
1034 * process.
1035 */
938bb9f5
HC
1036SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1037 const void __user * __user *, pages,
1038 const int __user *, nodes,
1039 int __user *, status, int, flags)
742755a1 1040{
c69e8d9c 1041 const struct cred *cred = current_cred(), *tcred;
742755a1 1042 struct task_struct *task;
742755a1 1043 struct mm_struct *mm;
5e9a0f02 1044 int err;
742755a1
CL
1045
1046 /* Check flags */
1047 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1048 return -EINVAL;
1049
1050 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1051 return -EPERM;
1052
1053 /* Find the mm_struct */
1054 read_lock(&tasklist_lock);
228ebcbe 1055 task = pid ? find_task_by_vpid(pid) : current;
742755a1
CL
1056 if (!task) {
1057 read_unlock(&tasklist_lock);
1058 return -ESRCH;
1059 }
1060 mm = get_task_mm(task);
1061 read_unlock(&tasklist_lock);
1062
1063 if (!mm)
1064 return -EINVAL;
1065
1066 /*
1067 * Check if this process has the right to modify the specified
1068 * process. The right exists if the process has administrative
1069 * capabilities, superuser privileges or the same
1070 * userid as the target process.
1071 */
c69e8d9c
DH
1072 rcu_read_lock();
1073 tcred = __task_cred(task);
b6dff3ec
DH
1074 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1075 cred->uid != tcred->suid && cred->uid != tcred->uid &&
742755a1 1076 !capable(CAP_SYS_NICE)) {
c69e8d9c 1077 rcu_read_unlock();
742755a1 1078 err = -EPERM;
5e9a0f02 1079 goto out;
742755a1 1080 }
c69e8d9c 1081 rcu_read_unlock();
742755a1 1082
86c3a764
DQ
1083 err = security_task_movememory(task);
1084 if (err)
5e9a0f02 1085 goto out;
86c3a764 1086
5e9a0f02
BG
1087 if (nodes) {
1088 err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1089 flags);
1090 } else {
2f007e74 1091 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1
CL
1092 }
1093
742755a1 1094out:
742755a1
CL
1095 mmput(mm);
1096 return err;
1097}
742755a1 1098
7b2259b3
CL
1099/*
1100 * Call migration functions in the vma_ops that may prepare
1101 * memory in a vm for migration. migration functions may perform
1102 * the migration for vmas that do not have an underlying page struct.
1103 */
1104int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1105 const nodemask_t *from, unsigned long flags)
1106{
1107 struct vm_area_struct *vma;
1108 int err = 0;
1109
1001c9fb 1110 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
7b2259b3
CL
1111 if (vma->vm_ops && vma->vm_ops->migrate) {
1112 err = vma->vm_ops->migrate(vma, to, from, flags);
1113 if (err)
1114 break;
1115 }
1116 }
1117 return err;
1118}
83d1674a 1119#endif