]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/migrate.c
SHM_LOCKED pages are unevictable
[net-next-2.6.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
cde53535 12 * Christoph Lameter
b20a3503
CL
13 */
14
15#include <linux/migrate.h>
16#include <linux/module.h>
17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503
CL
23#include <linux/pagevec.h>
24#include <linux/rmap.h>
25#include <linux/topology.h>
26#include <linux/cpu.h>
27#include <linux/cpuset.h>
04e62a29 28#include <linux/writeback.h>
742755a1
CL
29#include <linux/mempolicy.h>
30#include <linux/vmalloc.h>
86c3a764 31#include <linux/security.h>
8a9f3ccd 32#include <linux/memcontrol.h>
4f5ca265 33#include <linux/syscalls.h>
b20a3503
CL
34
35#include "internal.h"
36
b20a3503
CL
37#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
38
b20a3503 39/*
742755a1
CL
40 * migrate_prep() needs to be called before we start compiling a list of pages
41 * to be migrated using isolate_lru_page().
b20a3503
CL
42 */
43int migrate_prep(void)
44{
b20a3503
CL
45 /*
46 * Clear the LRU lists so pages can be isolated.
47 * Note that pages may be moved off the LRU after we have
48 * drained them. Those pages will fail to migrate like other
49 * pages that may be busy.
50 */
51 lru_add_drain_all();
52
53 return 0;
54}
55
b20a3503 56/*
894bc310
LS
57 * Add isolated pages on the list back to the LRU under page lock
58 * to avoid leaking evictable pages back onto unevictable list.
b20a3503
CL
59 *
60 * returns the number of pages put back.
61 */
62int putback_lru_pages(struct list_head *l)
63{
64 struct page *page;
65 struct page *page2;
66 int count = 0;
67
68 list_for_each_entry_safe(page, page2, l, lru) {
e24f0b8f 69 list_del(&page->lru);
894bc310 70 putback_lru_page(page);
b20a3503
CL
71 count++;
72 }
73 return count;
74}
75
0697212a
CL
76/*
77 * Restore a potential migration pte to a working pte entry
78 */
04e62a29 79static void remove_migration_pte(struct vm_area_struct *vma,
0697212a
CL
80 struct page *old, struct page *new)
81{
82 struct mm_struct *mm = vma->vm_mm;
83 swp_entry_t entry;
84 pgd_t *pgd;
85 pud_t *pud;
86 pmd_t *pmd;
87 pte_t *ptep, pte;
88 spinlock_t *ptl;
04e62a29
CL
89 unsigned long addr = page_address_in_vma(new, vma);
90
91 if (addr == -EFAULT)
92 return;
0697212a
CL
93
94 pgd = pgd_offset(mm, addr);
95 if (!pgd_present(*pgd))
96 return;
97
98 pud = pud_offset(pgd, addr);
99 if (!pud_present(*pud))
100 return;
101
102 pmd = pmd_offset(pud, addr);
103 if (!pmd_present(*pmd))
104 return;
105
106 ptep = pte_offset_map(pmd, addr);
107
108 if (!is_swap_pte(*ptep)) {
109 pte_unmap(ptep);
110 return;
111 }
112
113 ptl = pte_lockptr(mm, pmd);
114 spin_lock(ptl);
115 pte = *ptep;
116 if (!is_swap_pte(pte))
117 goto out;
118
119 entry = pte_to_swp_entry(pte);
120
121 if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
122 goto out;
123
98837c7f
HD
124 /*
125 * Yes, ignore the return value from a GFP_ATOMIC mem_cgroup_charge.
126 * Failure is not an option here: we're now expected to remove every
127 * migration pte, and will cause crashes otherwise. Normally this
128 * is not an issue: mem_cgroup_prepare_migration bumped up the old
129 * page_cgroup count for safety, that's now attached to the new page,
130 * so this charge should just be another incrementation of the count,
131 * to keep in balance with rmap.c's mem_cgroup_uncharging. But if
132 * there's been a force_empty, those reference counts may no longer
133 * be reliable, and this charge can actually fail: oh well, we don't
134 * make the situation any worse by proceeding as if it had succeeded.
135 */
136 mem_cgroup_charge(new, mm, GFP_ATOMIC);
137
0697212a
CL
138 get_page(new);
139 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
140 if (is_write_migration_entry(entry))
141 pte = pte_mkwrite(pte);
97ee0524 142 flush_cache_page(vma, addr, pte_pfn(pte));
0697212a 143 set_pte_at(mm, addr, ptep, pte);
04e62a29
CL
144
145 if (PageAnon(new))
146 page_add_anon_rmap(new, vma, addr);
147 else
148 page_add_file_rmap(new);
149
150 /* No need to invalidate - it was non-present before */
151 update_mmu_cache(vma, addr, pte);
04e62a29 152
0697212a
CL
153out:
154 pte_unmap_unlock(ptep, ptl);
155}
156
157/*
04e62a29
CL
158 * Note that remove_file_migration_ptes will only work on regular mappings,
159 * Nonlinear mappings do not use migration entries.
160 */
161static void remove_file_migration_ptes(struct page *old, struct page *new)
162{
163 struct vm_area_struct *vma;
164 struct address_space *mapping = page_mapping(new);
165 struct prio_tree_iter iter;
166 pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
167
168 if (!mapping)
169 return;
170
171 spin_lock(&mapping->i_mmap_lock);
172
173 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
174 remove_migration_pte(vma, old, new);
175
176 spin_unlock(&mapping->i_mmap_lock);
177}
178
179/*
0697212a
CL
180 * Must hold mmap_sem lock on at least one of the vmas containing
181 * the page so that the anon_vma cannot vanish.
182 */
04e62a29 183static void remove_anon_migration_ptes(struct page *old, struct page *new)
0697212a
CL
184{
185 struct anon_vma *anon_vma;
186 struct vm_area_struct *vma;
187 unsigned long mapping;
188
189 mapping = (unsigned long)new->mapping;
190
191 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
192 return;
193
194 /*
195 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
196 */
197 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
198 spin_lock(&anon_vma->lock);
199
200 list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
04e62a29 201 remove_migration_pte(vma, old, new);
0697212a
CL
202
203 spin_unlock(&anon_vma->lock);
204}
205
04e62a29
CL
206/*
207 * Get rid of all migration entries and replace them by
208 * references to the indicated page.
209 */
210static void remove_migration_ptes(struct page *old, struct page *new)
211{
212 if (PageAnon(new))
213 remove_anon_migration_ptes(old, new);
214 else
215 remove_file_migration_ptes(old, new);
216}
217
0697212a
CL
218/*
219 * Something used the pte of a page under migration. We need to
220 * get to the page and wait until migration is finished.
221 * When we return from this function the fault will be retried.
222 *
223 * This function is called from do_swap_page().
224 */
225void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
226 unsigned long address)
227{
228 pte_t *ptep, pte;
229 spinlock_t *ptl;
230 swp_entry_t entry;
231 struct page *page;
232
233 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
234 pte = *ptep;
235 if (!is_swap_pte(pte))
236 goto out;
237
238 entry = pte_to_swp_entry(pte);
239 if (!is_migration_entry(entry))
240 goto out;
241
242 page = migration_entry_to_page(entry);
243
e286781d
NP
244 /*
245 * Once radix-tree replacement of page migration started, page_count
246 * *must* be zero. And, we don't want to call wait_on_page_locked()
247 * against a page without get_page().
248 * So, we use get_page_unless_zero(), here. Even failed, page fault
249 * will occur again.
250 */
251 if (!get_page_unless_zero(page))
252 goto out;
0697212a
CL
253 pte_unmap_unlock(ptep, ptl);
254 wait_on_page_locked(page);
255 put_page(page);
256 return;
257out:
258 pte_unmap_unlock(ptep, ptl);
259}
260
b20a3503 261/*
c3fcf8a5 262 * Replace the page in the mapping.
5b5c7120
CL
263 *
264 * The number of remaining references must be:
265 * 1 for anonymous pages without a mapping
266 * 2 for pages with a mapping
267 * 3 for pages with a mapping and PagePrivate set.
b20a3503 268 */
2d1db3b1
CL
269static int migrate_page_move_mapping(struct address_space *mapping,
270 struct page *newpage, struct page *page)
b20a3503 271{
e286781d 272 int expected_count;
7cf9c2c7 273 void **pslot;
b20a3503 274
6c5240ae 275 if (!mapping) {
0e8c7d0f 276 /* Anonymous page without mapping */
6c5240ae
CL
277 if (page_count(page) != 1)
278 return -EAGAIN;
279 return 0;
280 }
281
19fd6231 282 spin_lock_irq(&mapping->tree_lock);
b20a3503 283
7cf9c2c7
NP
284 pslot = radix_tree_lookup_slot(&mapping->page_tree,
285 page_index(page));
b20a3503 286
e286781d
NP
287 expected_count = 2 + !!PagePrivate(page);
288 if (page_count(page) != expected_count ||
7cf9c2c7 289 (struct page *)radix_tree_deref_slot(pslot) != page) {
19fd6231 290 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 291 return -EAGAIN;
b20a3503
CL
292 }
293
e286781d 294 if (!page_freeze_refs(page, expected_count)) {
19fd6231 295 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
296 return -EAGAIN;
297 }
298
b20a3503
CL
299 /*
300 * Now we know that no one else is looking at the page.
b20a3503 301 */
7cf9c2c7 302 get_page(newpage); /* add cache reference */
6c5240ae 303#ifdef CONFIG_SWAP
b20a3503
CL
304 if (PageSwapCache(page)) {
305 SetPageSwapCache(newpage);
306 set_page_private(newpage, page_private(page));
307 }
6c5240ae 308#endif
b20a3503 309
7cf9c2c7
NP
310 radix_tree_replace_slot(pslot, newpage);
311
e286781d 312 page_unfreeze_refs(page, expected_count);
7cf9c2c7
NP
313 /*
314 * Drop cache reference from old page.
315 * We know this isn't the last reference.
316 */
b20a3503 317 __put_page(page);
7cf9c2c7 318
0e8c7d0f
CL
319 /*
320 * If moved to a different zone then also account
321 * the page for that zone. Other VM counters will be
322 * taken care of when we establish references to the
323 * new page and drop references to the old page.
324 *
325 * Note that anonymous pages are accounted for
326 * via NR_FILE_PAGES and NR_ANON_PAGES if they
327 * are mapped to swap space.
328 */
329 __dec_zone_page_state(page, NR_FILE_PAGES);
330 __inc_zone_page_state(newpage, NR_FILE_PAGES);
331
19fd6231
NP
332 spin_unlock_irq(&mapping->tree_lock);
333 if (!PageSwapCache(newpage))
69029cd5 334 mem_cgroup_uncharge_cache_page(page);
b20a3503
CL
335
336 return 0;
337}
b20a3503
CL
338
339/*
340 * Copy the page to its new location
341 */
e7340f73 342static void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503
CL
343{
344 copy_highpage(newpage, page);
345
346 if (PageError(page))
347 SetPageError(newpage);
348 if (PageReferenced(page))
349 SetPageReferenced(newpage);
350 if (PageUptodate(page))
351 SetPageUptodate(newpage);
894bc310
LS
352 if (TestClearPageActive(page)) {
353 VM_BUG_ON(PageUnevictable(page));
b20a3503 354 SetPageActive(newpage);
894bc310
LS
355 } else
356 unevictable_migrate_page(newpage, page);
b20a3503
CL
357 if (PageChecked(page))
358 SetPageChecked(newpage);
359 if (PageMappedToDisk(page))
360 SetPageMappedToDisk(newpage);
361
362 if (PageDirty(page)) {
363 clear_page_dirty_for_io(page);
3a902c5f
NP
364 /*
365 * Want to mark the page and the radix tree as dirty, and
366 * redo the accounting that clear_page_dirty_for_io undid,
367 * but we can't use set_page_dirty because that function
368 * is actually a signal that all of the page has become dirty.
369 * Wheras only part of our page may be dirty.
370 */
371 __set_page_dirty_nobuffers(newpage);
b20a3503
CL
372 }
373
6c5240ae 374#ifdef CONFIG_SWAP
b20a3503 375 ClearPageSwapCache(page);
6c5240ae 376#endif
b20a3503
CL
377 ClearPagePrivate(page);
378 set_page_private(page, 0);
379 page->mapping = NULL;
380
381 /*
382 * If any waiters have accumulated on the new page then
383 * wake them up.
384 */
385 if (PageWriteback(newpage))
386 end_page_writeback(newpage);
387}
b20a3503 388
1d8b85cc
CL
389/************************************************************
390 * Migration functions
391 ***********************************************************/
392
393/* Always fail migration. Used for mappings that are not movable */
2d1db3b1
CL
394int fail_migrate_page(struct address_space *mapping,
395 struct page *newpage, struct page *page)
1d8b85cc
CL
396{
397 return -EIO;
398}
399EXPORT_SYMBOL(fail_migrate_page);
400
b20a3503
CL
401/*
402 * Common logic to directly migrate a single page suitable for
403 * pages that do not use PagePrivate.
404 *
405 * Pages are locked upon entry and exit.
406 */
2d1db3b1
CL
407int migrate_page(struct address_space *mapping,
408 struct page *newpage, struct page *page)
b20a3503
CL
409{
410 int rc;
411
412 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
413
2d1db3b1 414 rc = migrate_page_move_mapping(mapping, newpage, page);
b20a3503
CL
415
416 if (rc)
417 return rc;
418
419 migrate_page_copy(newpage, page);
b20a3503
CL
420 return 0;
421}
422EXPORT_SYMBOL(migrate_page);
423
9361401e 424#ifdef CONFIG_BLOCK
1d8b85cc
CL
425/*
426 * Migration function for pages with buffers. This function can only be used
427 * if the underlying filesystem guarantees that no other references to "page"
428 * exist.
429 */
2d1db3b1
CL
430int buffer_migrate_page(struct address_space *mapping,
431 struct page *newpage, struct page *page)
1d8b85cc 432{
1d8b85cc
CL
433 struct buffer_head *bh, *head;
434 int rc;
435
1d8b85cc 436 if (!page_has_buffers(page))
2d1db3b1 437 return migrate_page(mapping, newpage, page);
1d8b85cc
CL
438
439 head = page_buffers(page);
440
2d1db3b1 441 rc = migrate_page_move_mapping(mapping, newpage, page);
1d8b85cc
CL
442
443 if (rc)
444 return rc;
445
446 bh = head;
447 do {
448 get_bh(bh);
449 lock_buffer(bh);
450 bh = bh->b_this_page;
451
452 } while (bh != head);
453
454 ClearPagePrivate(page);
455 set_page_private(newpage, page_private(page));
456 set_page_private(page, 0);
457 put_page(page);
458 get_page(newpage);
459
460 bh = head;
461 do {
462 set_bh_page(bh, newpage, bh_offset(bh));
463 bh = bh->b_this_page;
464
465 } while (bh != head);
466
467 SetPagePrivate(newpage);
468
469 migrate_page_copy(newpage, page);
470
471 bh = head;
472 do {
473 unlock_buffer(bh);
474 put_bh(bh);
475 bh = bh->b_this_page;
476
477 } while (bh != head);
478
479 return 0;
480}
481EXPORT_SYMBOL(buffer_migrate_page);
9361401e 482#endif
1d8b85cc 483
04e62a29
CL
484/*
485 * Writeback a page to clean the dirty state
486 */
487static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 488{
04e62a29
CL
489 struct writeback_control wbc = {
490 .sync_mode = WB_SYNC_NONE,
491 .nr_to_write = 1,
492 .range_start = 0,
493 .range_end = LLONG_MAX,
494 .nonblocking = 1,
495 .for_reclaim = 1
496 };
497 int rc;
498
499 if (!mapping->a_ops->writepage)
500 /* No write method for the address space */
501 return -EINVAL;
502
503 if (!clear_page_dirty_for_io(page))
504 /* Someone else already triggered a write */
505 return -EAGAIN;
506
8351a6e4 507 /*
04e62a29
CL
508 * A dirty page may imply that the underlying filesystem has
509 * the page on some queue. So the page must be clean for
510 * migration. Writeout may mean we loose the lock and the
511 * page state is no longer what we checked for earlier.
512 * At this point we know that the migration attempt cannot
513 * be successful.
8351a6e4 514 */
04e62a29 515 remove_migration_ptes(page, page);
8351a6e4 516
04e62a29
CL
517 rc = mapping->a_ops->writepage(page, &wbc);
518 if (rc < 0)
519 /* I/O Error writing */
520 return -EIO;
8351a6e4 521
04e62a29
CL
522 if (rc != AOP_WRITEPAGE_ACTIVATE)
523 /* unlocked. Relock */
524 lock_page(page);
525
526 return -EAGAIN;
527}
528
529/*
530 * Default handling if a filesystem does not provide a migration function.
531 */
532static int fallback_migrate_page(struct address_space *mapping,
533 struct page *newpage, struct page *page)
534{
535 if (PageDirty(page))
536 return writeout(mapping, page);
8351a6e4
CL
537
538 /*
539 * Buffers may be managed in a filesystem specific way.
540 * We must have no buffers or drop them.
541 */
b398f6bf 542 if (PagePrivate(page) &&
8351a6e4
CL
543 !try_to_release_page(page, GFP_KERNEL))
544 return -EAGAIN;
545
546 return migrate_page(mapping, newpage, page);
547}
548
e24f0b8f
CL
549/*
550 * Move a page to a newly allocated page
551 * The page is locked and all ptes have been successfully removed.
552 *
553 * The new page will have replaced the old page if this function
554 * is successful.
894bc310
LS
555 *
556 * Return value:
557 * < 0 - error code
558 * == 0 - success
e24f0b8f
CL
559 */
560static int move_to_new_page(struct page *newpage, struct page *page)
561{
562 struct address_space *mapping;
563 int rc;
564
565 /*
566 * Block others from accessing the page when we get around to
567 * establishing additional references. We are the only one
568 * holding a reference to the new page at this point.
569 */
529ae9aa 570 if (!trylock_page(newpage))
e24f0b8f
CL
571 BUG();
572
573 /* Prepare mapping for the new page.*/
574 newpage->index = page->index;
575 newpage->mapping = page->mapping;
b2e18538
RR
576 if (PageSwapBacked(page))
577 SetPageSwapBacked(newpage);
e24f0b8f
CL
578
579 mapping = page_mapping(page);
580 if (!mapping)
581 rc = migrate_page(mapping, newpage, page);
582 else if (mapping->a_ops->migratepage)
583 /*
584 * Most pages have a mapping and most filesystems
585 * should provide a migration function. Anonymous
586 * pages are part of swap space which also has its
587 * own migration function. This is the most common
588 * path for page migration.
589 */
590 rc = mapping->a_ops->migratepage(mapping,
591 newpage, page);
592 else
593 rc = fallback_migrate_page(mapping, newpage, page);
594
ae41be37 595 if (!rc) {
e24f0b8f 596 remove_migration_ptes(page, newpage);
ae41be37 597 } else
e24f0b8f
CL
598 newpage->mapping = NULL;
599
600 unlock_page(newpage);
601
602 return rc;
603}
604
605/*
606 * Obtain the lock on page, remove all ptes and migrate the page
607 * to the newly allocated page in newpage.
608 */
95a402c3
CL
609static int unmap_and_move(new_page_t get_new_page, unsigned long private,
610 struct page *page, int force)
e24f0b8f
CL
611{
612 int rc = 0;
742755a1
CL
613 int *result = NULL;
614 struct page *newpage = get_new_page(page, private, &result);
989f89c5 615 int rcu_locked = 0;
ae41be37 616 int charge = 0;
95a402c3
CL
617
618 if (!newpage)
619 return -ENOMEM;
e24f0b8f 620
894bc310 621 if (page_count(page) == 1) {
e24f0b8f 622 /* page was freed from under us. So we are done. */
95a402c3 623 goto move_newpage;
894bc310 624 }
e24f0b8f 625
e8589cc1
KH
626 charge = mem_cgroup_prepare_migration(page, newpage);
627 if (charge == -ENOMEM) {
628 rc = -ENOMEM;
629 goto move_newpage;
630 }
631 /* prepare cgroup just returns 0 or -ENOMEM */
632 BUG_ON(charge);
633
e24f0b8f 634 rc = -EAGAIN;
529ae9aa 635 if (!trylock_page(page)) {
e24f0b8f 636 if (!force)
95a402c3 637 goto move_newpage;
e24f0b8f
CL
638 lock_page(page);
639 }
640
641 if (PageWriteback(page)) {
642 if (!force)
643 goto unlock;
644 wait_on_page_writeback(page);
645 }
e24f0b8f 646 /*
dc386d4d
KH
647 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
648 * we cannot notice that anon_vma is freed while we migrates a page.
649 * This rcu_read_lock() delays freeing anon_vma pointer until the end
650 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
651 * File Caches may use write_page() or lock_page() in migration, then,
652 * just care Anon page here.
dc386d4d 653 */
989f89c5
KH
654 if (PageAnon(page)) {
655 rcu_read_lock();
656 rcu_locked = 1;
657 }
62e1c553 658
dc386d4d 659 /*
62e1c553
SL
660 * Corner case handling:
661 * 1. When a new swap-cache page is read into, it is added to the LRU
662 * and treated as swapcache but it has no rmap yet.
663 * Calling try_to_unmap() against a page->mapping==NULL page will
664 * trigger a BUG. So handle it here.
665 * 2. An orphaned page (see truncate_complete_page) might have
666 * fs-private metadata. The page can be picked up due to memory
667 * offlining. Everywhere else except page reclaim, the page is
668 * invisible to the vm, so the page can not be migrated. So try to
669 * free the metadata, so the page can be freed.
e24f0b8f 670 */
62e1c553
SL
671 if (!page->mapping) {
672 if (!PageAnon(page) && PagePrivate(page)) {
673 /*
674 * Go direct to try_to_free_buffers() here because
675 * a) that's what try_to_release_page() would do anyway
676 * b) we may be under rcu_read_lock() here, so we can't
677 * use GFP_KERNEL which is what try_to_release_page()
678 * needs to be effective.
679 */
680 try_to_free_buffers(page);
681 }
dc386d4d 682 goto rcu_unlock;
62e1c553
SL
683 }
684
dc386d4d 685 /* Establish migration ptes or remove ptes */
e6a1530d 686 try_to_unmap(page, 1);
dc386d4d 687
e6a1530d
CL
688 if (!page_mapped(page))
689 rc = move_to_new_page(newpage, page);
e24f0b8f 690
e8589cc1 691 if (rc)
e24f0b8f 692 remove_migration_ptes(page, page);
dc386d4d 693rcu_unlock:
989f89c5
KH
694 if (rcu_locked)
695 rcu_read_unlock();
e6a1530d 696
e24f0b8f
CL
697unlock:
698 unlock_page(page);
95a402c3 699
e24f0b8f 700 if (rc != -EAGAIN) {
aaa994b3
CL
701 /*
702 * A page that has been migrated has all references
703 * removed and will be freed. A page that has not been
704 * migrated will have kepts its references and be
705 * restored.
706 */
707 list_del(&page->lru);
894bc310 708 putback_lru_page(page);
e24f0b8f 709 }
95a402c3
CL
710
711move_newpage:
e8589cc1
KH
712 if (!charge)
713 mem_cgroup_end_migration(newpage);
894bc310 714
95a402c3
CL
715 /*
716 * Move the new page to the LRU. If migration was not successful
717 * then this will free the page.
718 */
894bc310
LS
719 putback_lru_page(newpage);
720
742755a1
CL
721 if (result) {
722 if (rc)
723 *result = rc;
724 else
725 *result = page_to_nid(newpage);
726 }
e24f0b8f
CL
727 return rc;
728}
729
b20a3503
CL
730/*
731 * migrate_pages
732 *
95a402c3
CL
733 * The function takes one list of pages to migrate and a function
734 * that determines from the page to be migrated and the private data
735 * the target of the move and allocates the page.
b20a3503
CL
736 *
737 * The function returns after 10 attempts or if no pages
738 * are movable anymore because to has become empty
aaa994b3 739 * or no retryable pages exist anymore. All pages will be
e9534b3f 740 * returned to the LRU or freed.
b20a3503 741 *
95a402c3 742 * Return: Number of pages not migrated or error code.
b20a3503 743 */
95a402c3
CL
744int migrate_pages(struct list_head *from,
745 new_page_t get_new_page, unsigned long private)
b20a3503 746{
e24f0b8f 747 int retry = 1;
b20a3503
CL
748 int nr_failed = 0;
749 int pass = 0;
750 struct page *page;
751 struct page *page2;
752 int swapwrite = current->flags & PF_SWAPWRITE;
753 int rc;
754
755 if (!swapwrite)
756 current->flags |= PF_SWAPWRITE;
757
e24f0b8f
CL
758 for(pass = 0; pass < 10 && retry; pass++) {
759 retry = 0;
b20a3503 760
e24f0b8f 761 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 762 cond_resched();
2d1db3b1 763
95a402c3
CL
764 rc = unmap_and_move(get_new_page, private,
765 page, pass > 2);
2d1db3b1 766
e24f0b8f 767 switch(rc) {
95a402c3
CL
768 case -ENOMEM:
769 goto out;
e24f0b8f 770 case -EAGAIN:
2d1db3b1 771 retry++;
e24f0b8f
CL
772 break;
773 case 0:
e24f0b8f
CL
774 break;
775 default:
2d1db3b1 776 /* Permanent failure */
2d1db3b1 777 nr_failed++;
e24f0b8f 778 break;
2d1db3b1 779 }
b20a3503
CL
780 }
781 }
95a402c3
CL
782 rc = 0;
783out:
b20a3503
CL
784 if (!swapwrite)
785 current->flags &= ~PF_SWAPWRITE;
786
aaa994b3 787 putback_lru_pages(from);
b20a3503 788
95a402c3
CL
789 if (rc)
790 return rc;
b20a3503 791
95a402c3 792 return nr_failed + retry;
b20a3503 793}
95a402c3 794
742755a1
CL
795#ifdef CONFIG_NUMA
796/*
797 * Move a list of individual pages
798 */
799struct page_to_node {
800 unsigned long addr;
801 struct page *page;
802 int node;
803 int status;
804};
805
806static struct page *new_page_node(struct page *p, unsigned long private,
807 int **result)
808{
809 struct page_to_node *pm = (struct page_to_node *)private;
810
811 while (pm->node != MAX_NUMNODES && pm->page != p)
812 pm++;
813
814 if (pm->node == MAX_NUMNODES)
815 return NULL;
816
817 *result = &pm->status;
818
769848c0
MG
819 return alloc_pages_node(pm->node,
820 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
742755a1
CL
821}
822
823/*
824 * Move a set of pages as indicated in the pm array. The addr
825 * field must be set to the virtual address of the page to be moved
826 * and the node number must contain a valid target node.
827 */
828static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm,
829 int migrate_all)
830{
831 int err;
832 struct page_to_node *pp;
833 LIST_HEAD(pagelist);
834
835 down_read(&mm->mmap_sem);
836
837 /*
838 * Build a list of pages to migrate
839 */
840 migrate_prep();
841 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
842 struct vm_area_struct *vma;
843 struct page *page;
844
845 /*
846 * A valid page pointer that will not match any of the
847 * pages that will be moved.
848 */
849 pp->page = ZERO_PAGE(0);
850
851 err = -EFAULT;
852 vma = find_vma(mm, pp->addr);
0dc952dc 853 if (!vma || !vma_migratable(vma))
742755a1
CL
854 goto set_status;
855
856 page = follow_page(vma, pp->addr, FOLL_GET);
89f5b7da
LT
857
858 err = PTR_ERR(page);
859 if (IS_ERR(page))
860 goto set_status;
861
742755a1
CL
862 err = -ENOENT;
863 if (!page)
864 goto set_status;
865
866 if (PageReserved(page)) /* Check for zero page */
867 goto put_and_set;
868
869 pp->page = page;
870 err = page_to_nid(page);
871
872 if (err == pp->node)
873 /*
874 * Node already in the right place
875 */
876 goto put_and_set;
877
878 err = -EACCES;
879 if (page_mapcount(page) > 1 &&
880 !migrate_all)
881 goto put_and_set;
882
62695a84
NP
883 err = isolate_lru_page(page);
884 if (!err)
885 list_add_tail(&page->lru, &pagelist);
742755a1
CL
886put_and_set:
887 /*
888 * Either remove the duplicate refcount from
889 * isolate_lru_page() or drop the page ref if it was
890 * not isolated.
891 */
892 put_page(page);
893set_status:
894 pp->status = err;
895 }
896
897 if (!list_empty(&pagelist))
898 err = migrate_pages(&pagelist, new_page_node,
899 (unsigned long)pm);
900 else
901 err = -ENOENT;
902
903 up_read(&mm->mmap_sem);
904 return err;
905}
906
907/*
908 * Determine the nodes of a list of pages. The addr in the pm array
909 * must have been set to the virtual address of which we want to determine
910 * the node number.
911 */
912static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm)
913{
914 down_read(&mm->mmap_sem);
915
916 for ( ; pm->node != MAX_NUMNODES; pm++) {
917 struct vm_area_struct *vma;
918 struct page *page;
919 int err;
920
921 err = -EFAULT;
922 vma = find_vma(mm, pm->addr);
923 if (!vma)
924 goto set_status;
925
926 page = follow_page(vma, pm->addr, 0);
89f5b7da
LT
927
928 err = PTR_ERR(page);
929 if (IS_ERR(page))
930 goto set_status;
931
742755a1
CL
932 err = -ENOENT;
933 /* Use PageReserved to check for zero page */
934 if (!page || PageReserved(page))
935 goto set_status;
936
937 err = page_to_nid(page);
938set_status:
939 pm->status = err;
940 }
941
942 up_read(&mm->mmap_sem);
943 return 0;
944}
945
946/*
947 * Move a list of pages in the address space of the currently executing
948 * process.
949 */
950asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
951 const void __user * __user *pages,
952 const int __user *nodes,
953 int __user *status, int flags)
954{
955 int err = 0;
956 int i;
957 struct task_struct *task;
958 nodemask_t task_nodes;
959 struct mm_struct *mm;
960 struct page_to_node *pm = NULL;
961
962 /* Check flags */
963 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
964 return -EINVAL;
965
966 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
967 return -EPERM;
968
969 /* Find the mm_struct */
970 read_lock(&tasklist_lock);
228ebcbe 971 task = pid ? find_task_by_vpid(pid) : current;
742755a1
CL
972 if (!task) {
973 read_unlock(&tasklist_lock);
974 return -ESRCH;
975 }
976 mm = get_task_mm(task);
977 read_unlock(&tasklist_lock);
978
979 if (!mm)
980 return -EINVAL;
981
982 /*
983 * Check if this process has the right to modify the specified
984 * process. The right exists if the process has administrative
985 * capabilities, superuser privileges or the same
986 * userid as the target process.
987 */
988 if ((current->euid != task->suid) && (current->euid != task->uid) &&
989 (current->uid != task->suid) && (current->uid != task->uid) &&
990 !capable(CAP_SYS_NICE)) {
991 err = -EPERM;
992 goto out2;
993 }
994
86c3a764
DQ
995 err = security_task_movememory(task);
996 if (err)
997 goto out2;
998
999
742755a1
CL
1000 task_nodes = cpuset_mems_allowed(task);
1001
1002 /* Limit nr_pages so that the multiplication may not overflow */
1003 if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) {
1004 err = -E2BIG;
1005 goto out2;
1006 }
1007
1008 pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node));
1009 if (!pm) {
1010 err = -ENOMEM;
1011 goto out2;
1012 }
1013
1014 /*
1015 * Get parameters from user space and initialize the pm
1016 * array. Return various errors if the user did something wrong.
1017 */
1018 for (i = 0; i < nr_pages; i++) {
9d966d49 1019 const void __user *p;
742755a1
CL
1020
1021 err = -EFAULT;
1022 if (get_user(p, pages + i))
1023 goto out;
1024
1025 pm[i].addr = (unsigned long)p;
1026 if (nodes) {
1027 int node;
1028
1029 if (get_user(node, nodes + i))
1030 goto out;
1031
1032 err = -ENODEV;
56bbd65d 1033 if (!node_state(node, N_HIGH_MEMORY))
742755a1
CL
1034 goto out;
1035
1036 err = -EACCES;
1037 if (!node_isset(node, task_nodes))
1038 goto out;
1039
1040 pm[i].node = node;
8ce08464
SR
1041 } else
1042 pm[i].node = 0; /* anything to not match MAX_NUMNODES */
742755a1
CL
1043 }
1044 /* End marker */
1045 pm[nr_pages].node = MAX_NUMNODES;
1046
1047 if (nodes)
1048 err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL);
1049 else
1050 err = do_pages_stat(mm, pm);
1051
1052 if (err >= 0)
1053 /* Return status information */
1054 for (i = 0; i < nr_pages; i++)
1055 if (put_user(pm[i].status, status + i))
1056 err = -EFAULT;
1057
1058out:
1059 vfree(pm);
1060out2:
1061 mmput(mm);
1062 return err;
1063}
742755a1 1064
7b2259b3
CL
1065/*
1066 * Call migration functions in the vma_ops that may prepare
1067 * memory in a vm for migration. migration functions may perform
1068 * the migration for vmas that do not have an underlying page struct.
1069 */
1070int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1071 const nodemask_t *from, unsigned long flags)
1072{
1073 struct vm_area_struct *vma;
1074 int err = 0;
1075
1076 for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
1077 if (vma->vm_ops && vma->vm_ops->migrate) {
1078 err = vma->vm_ops->migrate(vma, to, from, flags);
1079 if (err)
1080 break;
1081 }
1082 }
1083 return err;
1084}
83d1674a 1085#endif