]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/migrate.c
pageflag helpers for configed-out flags
[net-next-2.6.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
cde53535 12 * Christoph Lameter
b20a3503
CL
13 */
14
15#include <linux/migrate.h>
16#include <linux/module.h>
17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503
CL
23#include <linux/pagevec.h>
24#include <linux/rmap.h>
25#include <linux/topology.h>
26#include <linux/cpu.h>
27#include <linux/cpuset.h>
04e62a29 28#include <linux/writeback.h>
742755a1
CL
29#include <linux/mempolicy.h>
30#include <linux/vmalloc.h>
86c3a764 31#include <linux/security.h>
8a9f3ccd 32#include <linux/memcontrol.h>
4f5ca265 33#include <linux/syscalls.h>
b20a3503
CL
34
35#include "internal.h"
36
b20a3503
CL
37#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
38
b20a3503 39/*
742755a1
CL
40 * migrate_prep() needs to be called before we start compiling a list of pages
41 * to be migrated using isolate_lru_page().
b20a3503
CL
42 */
43int migrate_prep(void)
44{
b20a3503
CL
45 /*
46 * Clear the LRU lists so pages can be isolated.
47 * Note that pages may be moved off the LRU after we have
48 * drained them. Those pages will fail to migrate like other
49 * pages that may be busy.
50 */
51 lru_add_drain_all();
52
53 return 0;
54}
55
56static inline void move_to_lru(struct page *page)
57{
f04e9ebb 58 lru_cache_add_lru(page, page_lru(page));
b20a3503
CL
59 put_page(page);
60}
61
62/*
63 * Add isolated pages on the list back to the LRU.
64 *
65 * returns the number of pages put back.
66 */
67int putback_lru_pages(struct list_head *l)
68{
69 struct page *page;
70 struct page *page2;
71 int count = 0;
72
73 list_for_each_entry_safe(page, page2, l, lru) {
e24f0b8f 74 list_del(&page->lru);
b20a3503
CL
75 move_to_lru(page);
76 count++;
77 }
78 return count;
79}
80
0697212a
CL
81/*
82 * Restore a potential migration pte to a working pte entry
83 */
04e62a29 84static void remove_migration_pte(struct vm_area_struct *vma,
0697212a
CL
85 struct page *old, struct page *new)
86{
87 struct mm_struct *mm = vma->vm_mm;
88 swp_entry_t entry;
89 pgd_t *pgd;
90 pud_t *pud;
91 pmd_t *pmd;
92 pte_t *ptep, pte;
93 spinlock_t *ptl;
04e62a29
CL
94 unsigned long addr = page_address_in_vma(new, vma);
95
96 if (addr == -EFAULT)
97 return;
0697212a
CL
98
99 pgd = pgd_offset(mm, addr);
100 if (!pgd_present(*pgd))
101 return;
102
103 pud = pud_offset(pgd, addr);
104 if (!pud_present(*pud))
105 return;
106
107 pmd = pmd_offset(pud, addr);
108 if (!pmd_present(*pmd))
109 return;
110
111 ptep = pte_offset_map(pmd, addr);
112
113 if (!is_swap_pte(*ptep)) {
114 pte_unmap(ptep);
115 return;
116 }
117
118 ptl = pte_lockptr(mm, pmd);
119 spin_lock(ptl);
120 pte = *ptep;
121 if (!is_swap_pte(pte))
122 goto out;
123
124 entry = pte_to_swp_entry(pte);
125
126 if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
127 goto out;
128
98837c7f
HD
129 /*
130 * Yes, ignore the return value from a GFP_ATOMIC mem_cgroup_charge.
131 * Failure is not an option here: we're now expected to remove every
132 * migration pte, and will cause crashes otherwise. Normally this
133 * is not an issue: mem_cgroup_prepare_migration bumped up the old
134 * page_cgroup count for safety, that's now attached to the new page,
135 * so this charge should just be another incrementation of the count,
136 * to keep in balance with rmap.c's mem_cgroup_uncharging. But if
137 * there's been a force_empty, those reference counts may no longer
138 * be reliable, and this charge can actually fail: oh well, we don't
139 * make the situation any worse by proceeding as if it had succeeded.
140 */
141 mem_cgroup_charge(new, mm, GFP_ATOMIC);
142
0697212a
CL
143 get_page(new);
144 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
145 if (is_write_migration_entry(entry))
146 pte = pte_mkwrite(pte);
97ee0524 147 flush_cache_page(vma, addr, pte_pfn(pte));
0697212a 148 set_pte_at(mm, addr, ptep, pte);
04e62a29
CL
149
150 if (PageAnon(new))
151 page_add_anon_rmap(new, vma, addr);
152 else
153 page_add_file_rmap(new);
154
155 /* No need to invalidate - it was non-present before */
156 update_mmu_cache(vma, addr, pte);
04e62a29 157
0697212a
CL
158out:
159 pte_unmap_unlock(ptep, ptl);
160}
161
162/*
04e62a29
CL
163 * Note that remove_file_migration_ptes will only work on regular mappings,
164 * Nonlinear mappings do not use migration entries.
165 */
166static void remove_file_migration_ptes(struct page *old, struct page *new)
167{
168 struct vm_area_struct *vma;
169 struct address_space *mapping = page_mapping(new);
170 struct prio_tree_iter iter;
171 pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
172
173 if (!mapping)
174 return;
175
176 spin_lock(&mapping->i_mmap_lock);
177
178 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
179 remove_migration_pte(vma, old, new);
180
181 spin_unlock(&mapping->i_mmap_lock);
182}
183
184/*
0697212a
CL
185 * Must hold mmap_sem lock on at least one of the vmas containing
186 * the page so that the anon_vma cannot vanish.
187 */
04e62a29 188static void remove_anon_migration_ptes(struct page *old, struct page *new)
0697212a
CL
189{
190 struct anon_vma *anon_vma;
191 struct vm_area_struct *vma;
192 unsigned long mapping;
193
194 mapping = (unsigned long)new->mapping;
195
196 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
197 return;
198
199 /*
200 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
201 */
202 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
203 spin_lock(&anon_vma->lock);
204
205 list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
04e62a29 206 remove_migration_pte(vma, old, new);
0697212a
CL
207
208 spin_unlock(&anon_vma->lock);
209}
210
04e62a29
CL
211/*
212 * Get rid of all migration entries and replace them by
213 * references to the indicated page.
214 */
215static void remove_migration_ptes(struct page *old, struct page *new)
216{
217 if (PageAnon(new))
218 remove_anon_migration_ptes(old, new);
219 else
220 remove_file_migration_ptes(old, new);
221}
222
0697212a
CL
223/*
224 * Something used the pte of a page under migration. We need to
225 * get to the page and wait until migration is finished.
226 * When we return from this function the fault will be retried.
227 *
228 * This function is called from do_swap_page().
229 */
230void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
231 unsigned long address)
232{
233 pte_t *ptep, pte;
234 spinlock_t *ptl;
235 swp_entry_t entry;
236 struct page *page;
237
238 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
239 pte = *ptep;
240 if (!is_swap_pte(pte))
241 goto out;
242
243 entry = pte_to_swp_entry(pte);
244 if (!is_migration_entry(entry))
245 goto out;
246
247 page = migration_entry_to_page(entry);
248
e286781d
NP
249 /*
250 * Once radix-tree replacement of page migration started, page_count
251 * *must* be zero. And, we don't want to call wait_on_page_locked()
252 * against a page without get_page().
253 * So, we use get_page_unless_zero(), here. Even failed, page fault
254 * will occur again.
255 */
256 if (!get_page_unless_zero(page))
257 goto out;
0697212a
CL
258 pte_unmap_unlock(ptep, ptl);
259 wait_on_page_locked(page);
260 put_page(page);
261 return;
262out:
263 pte_unmap_unlock(ptep, ptl);
264}
265
b20a3503 266/*
c3fcf8a5 267 * Replace the page in the mapping.
5b5c7120
CL
268 *
269 * The number of remaining references must be:
270 * 1 for anonymous pages without a mapping
271 * 2 for pages with a mapping
272 * 3 for pages with a mapping and PagePrivate set.
b20a3503 273 */
2d1db3b1
CL
274static int migrate_page_move_mapping(struct address_space *mapping,
275 struct page *newpage, struct page *page)
b20a3503 276{
e286781d 277 int expected_count;
7cf9c2c7 278 void **pslot;
b20a3503 279
6c5240ae 280 if (!mapping) {
0e8c7d0f 281 /* Anonymous page without mapping */
6c5240ae
CL
282 if (page_count(page) != 1)
283 return -EAGAIN;
284 return 0;
285 }
286
19fd6231 287 spin_lock_irq(&mapping->tree_lock);
b20a3503 288
7cf9c2c7
NP
289 pslot = radix_tree_lookup_slot(&mapping->page_tree,
290 page_index(page));
b20a3503 291
e286781d
NP
292 expected_count = 2 + !!PagePrivate(page);
293 if (page_count(page) != expected_count ||
7cf9c2c7 294 (struct page *)radix_tree_deref_slot(pslot) != page) {
19fd6231 295 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 296 return -EAGAIN;
b20a3503
CL
297 }
298
e286781d 299 if (!page_freeze_refs(page, expected_count)) {
19fd6231 300 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
301 return -EAGAIN;
302 }
303
b20a3503
CL
304 /*
305 * Now we know that no one else is looking at the page.
b20a3503 306 */
7cf9c2c7 307 get_page(newpage); /* add cache reference */
6c5240ae 308#ifdef CONFIG_SWAP
b20a3503
CL
309 if (PageSwapCache(page)) {
310 SetPageSwapCache(newpage);
311 set_page_private(newpage, page_private(page));
312 }
6c5240ae 313#endif
b20a3503 314
7cf9c2c7
NP
315 radix_tree_replace_slot(pslot, newpage);
316
e286781d 317 page_unfreeze_refs(page, expected_count);
7cf9c2c7
NP
318 /*
319 * Drop cache reference from old page.
320 * We know this isn't the last reference.
321 */
b20a3503 322 __put_page(page);
7cf9c2c7 323
0e8c7d0f
CL
324 /*
325 * If moved to a different zone then also account
326 * the page for that zone. Other VM counters will be
327 * taken care of when we establish references to the
328 * new page and drop references to the old page.
329 *
330 * Note that anonymous pages are accounted for
331 * via NR_FILE_PAGES and NR_ANON_PAGES if they
332 * are mapped to swap space.
333 */
334 __dec_zone_page_state(page, NR_FILE_PAGES);
335 __inc_zone_page_state(newpage, NR_FILE_PAGES);
336
19fd6231
NP
337 spin_unlock_irq(&mapping->tree_lock);
338 if (!PageSwapCache(newpage))
69029cd5 339 mem_cgroup_uncharge_cache_page(page);
b20a3503
CL
340
341 return 0;
342}
b20a3503
CL
343
344/*
345 * Copy the page to its new location
346 */
e7340f73 347static void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503
CL
348{
349 copy_highpage(newpage, page);
350
351 if (PageError(page))
352 SetPageError(newpage);
353 if (PageReferenced(page))
354 SetPageReferenced(newpage);
355 if (PageUptodate(page))
356 SetPageUptodate(newpage);
357 if (PageActive(page))
358 SetPageActive(newpage);
359 if (PageChecked(page))
360 SetPageChecked(newpage);
361 if (PageMappedToDisk(page))
362 SetPageMappedToDisk(newpage);
363
364 if (PageDirty(page)) {
365 clear_page_dirty_for_io(page);
3a902c5f
NP
366 /*
367 * Want to mark the page and the radix tree as dirty, and
368 * redo the accounting that clear_page_dirty_for_io undid,
369 * but we can't use set_page_dirty because that function
370 * is actually a signal that all of the page has become dirty.
371 * Wheras only part of our page may be dirty.
372 */
373 __set_page_dirty_nobuffers(newpage);
b20a3503
CL
374 }
375
6c5240ae 376#ifdef CONFIG_SWAP
b20a3503 377 ClearPageSwapCache(page);
6c5240ae 378#endif
b20a3503
CL
379 ClearPageActive(page);
380 ClearPagePrivate(page);
381 set_page_private(page, 0);
382 page->mapping = NULL;
383
384 /*
385 * If any waiters have accumulated on the new page then
386 * wake them up.
387 */
388 if (PageWriteback(newpage))
389 end_page_writeback(newpage);
390}
b20a3503 391
1d8b85cc
CL
392/************************************************************
393 * Migration functions
394 ***********************************************************/
395
396/* Always fail migration. Used for mappings that are not movable */
2d1db3b1
CL
397int fail_migrate_page(struct address_space *mapping,
398 struct page *newpage, struct page *page)
1d8b85cc
CL
399{
400 return -EIO;
401}
402EXPORT_SYMBOL(fail_migrate_page);
403
b20a3503
CL
404/*
405 * Common logic to directly migrate a single page suitable for
406 * pages that do not use PagePrivate.
407 *
408 * Pages are locked upon entry and exit.
409 */
2d1db3b1
CL
410int migrate_page(struct address_space *mapping,
411 struct page *newpage, struct page *page)
b20a3503
CL
412{
413 int rc;
414
415 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
416
2d1db3b1 417 rc = migrate_page_move_mapping(mapping, newpage, page);
b20a3503
CL
418
419 if (rc)
420 return rc;
421
422 migrate_page_copy(newpage, page);
b20a3503
CL
423 return 0;
424}
425EXPORT_SYMBOL(migrate_page);
426
9361401e 427#ifdef CONFIG_BLOCK
1d8b85cc
CL
428/*
429 * Migration function for pages with buffers. This function can only be used
430 * if the underlying filesystem guarantees that no other references to "page"
431 * exist.
432 */
2d1db3b1
CL
433int buffer_migrate_page(struct address_space *mapping,
434 struct page *newpage, struct page *page)
1d8b85cc 435{
1d8b85cc
CL
436 struct buffer_head *bh, *head;
437 int rc;
438
1d8b85cc 439 if (!page_has_buffers(page))
2d1db3b1 440 return migrate_page(mapping, newpage, page);
1d8b85cc
CL
441
442 head = page_buffers(page);
443
2d1db3b1 444 rc = migrate_page_move_mapping(mapping, newpage, page);
1d8b85cc
CL
445
446 if (rc)
447 return rc;
448
449 bh = head;
450 do {
451 get_bh(bh);
452 lock_buffer(bh);
453 bh = bh->b_this_page;
454
455 } while (bh != head);
456
457 ClearPagePrivate(page);
458 set_page_private(newpage, page_private(page));
459 set_page_private(page, 0);
460 put_page(page);
461 get_page(newpage);
462
463 bh = head;
464 do {
465 set_bh_page(bh, newpage, bh_offset(bh));
466 bh = bh->b_this_page;
467
468 } while (bh != head);
469
470 SetPagePrivate(newpage);
471
472 migrate_page_copy(newpage, page);
473
474 bh = head;
475 do {
476 unlock_buffer(bh);
477 put_bh(bh);
478 bh = bh->b_this_page;
479
480 } while (bh != head);
481
482 return 0;
483}
484EXPORT_SYMBOL(buffer_migrate_page);
9361401e 485#endif
1d8b85cc 486
04e62a29
CL
487/*
488 * Writeback a page to clean the dirty state
489 */
490static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 491{
04e62a29
CL
492 struct writeback_control wbc = {
493 .sync_mode = WB_SYNC_NONE,
494 .nr_to_write = 1,
495 .range_start = 0,
496 .range_end = LLONG_MAX,
497 .nonblocking = 1,
498 .for_reclaim = 1
499 };
500 int rc;
501
502 if (!mapping->a_ops->writepage)
503 /* No write method for the address space */
504 return -EINVAL;
505
506 if (!clear_page_dirty_for_io(page))
507 /* Someone else already triggered a write */
508 return -EAGAIN;
509
8351a6e4 510 /*
04e62a29
CL
511 * A dirty page may imply that the underlying filesystem has
512 * the page on some queue. So the page must be clean for
513 * migration. Writeout may mean we loose the lock and the
514 * page state is no longer what we checked for earlier.
515 * At this point we know that the migration attempt cannot
516 * be successful.
8351a6e4 517 */
04e62a29 518 remove_migration_ptes(page, page);
8351a6e4 519
04e62a29
CL
520 rc = mapping->a_ops->writepage(page, &wbc);
521 if (rc < 0)
522 /* I/O Error writing */
523 return -EIO;
8351a6e4 524
04e62a29
CL
525 if (rc != AOP_WRITEPAGE_ACTIVATE)
526 /* unlocked. Relock */
527 lock_page(page);
528
529 return -EAGAIN;
530}
531
532/*
533 * Default handling if a filesystem does not provide a migration function.
534 */
535static int fallback_migrate_page(struct address_space *mapping,
536 struct page *newpage, struct page *page)
537{
538 if (PageDirty(page))
539 return writeout(mapping, page);
8351a6e4
CL
540
541 /*
542 * Buffers may be managed in a filesystem specific way.
543 * We must have no buffers or drop them.
544 */
b398f6bf 545 if (PagePrivate(page) &&
8351a6e4
CL
546 !try_to_release_page(page, GFP_KERNEL))
547 return -EAGAIN;
548
549 return migrate_page(mapping, newpage, page);
550}
551
e24f0b8f
CL
552/*
553 * Move a page to a newly allocated page
554 * The page is locked and all ptes have been successfully removed.
555 *
556 * The new page will have replaced the old page if this function
557 * is successful.
558 */
559static int move_to_new_page(struct page *newpage, struct page *page)
560{
561 struct address_space *mapping;
562 int rc;
563
564 /*
565 * Block others from accessing the page when we get around to
566 * establishing additional references. We are the only one
567 * holding a reference to the new page at this point.
568 */
529ae9aa 569 if (!trylock_page(newpage))
e24f0b8f
CL
570 BUG();
571
572 /* Prepare mapping for the new page.*/
573 newpage->index = page->index;
574 newpage->mapping = page->mapping;
b2e18538
RR
575 if (PageSwapBacked(page))
576 SetPageSwapBacked(newpage);
e24f0b8f
CL
577
578 mapping = page_mapping(page);
579 if (!mapping)
580 rc = migrate_page(mapping, newpage, page);
581 else if (mapping->a_ops->migratepage)
582 /*
583 * Most pages have a mapping and most filesystems
584 * should provide a migration function. Anonymous
585 * pages are part of swap space which also has its
586 * own migration function. This is the most common
587 * path for page migration.
588 */
589 rc = mapping->a_ops->migratepage(mapping,
590 newpage, page);
591 else
592 rc = fallback_migrate_page(mapping, newpage, page);
593
ae41be37 594 if (!rc) {
e24f0b8f 595 remove_migration_ptes(page, newpage);
ae41be37 596 } else
e24f0b8f
CL
597 newpage->mapping = NULL;
598
599 unlock_page(newpage);
600
601 return rc;
602}
603
604/*
605 * Obtain the lock on page, remove all ptes and migrate the page
606 * to the newly allocated page in newpage.
607 */
95a402c3
CL
608static int unmap_and_move(new_page_t get_new_page, unsigned long private,
609 struct page *page, int force)
e24f0b8f
CL
610{
611 int rc = 0;
742755a1
CL
612 int *result = NULL;
613 struct page *newpage = get_new_page(page, private, &result);
989f89c5 614 int rcu_locked = 0;
ae41be37 615 int charge = 0;
95a402c3
CL
616
617 if (!newpage)
618 return -ENOMEM;
e24f0b8f
CL
619
620 if (page_count(page) == 1)
621 /* page was freed from under us. So we are done. */
95a402c3 622 goto move_newpage;
e24f0b8f 623
e8589cc1
KH
624 charge = mem_cgroup_prepare_migration(page, newpage);
625 if (charge == -ENOMEM) {
626 rc = -ENOMEM;
627 goto move_newpage;
628 }
629 /* prepare cgroup just returns 0 or -ENOMEM */
630 BUG_ON(charge);
631
e24f0b8f 632 rc = -EAGAIN;
529ae9aa 633 if (!trylock_page(page)) {
e24f0b8f 634 if (!force)
95a402c3 635 goto move_newpage;
e24f0b8f
CL
636 lock_page(page);
637 }
638
639 if (PageWriteback(page)) {
640 if (!force)
641 goto unlock;
642 wait_on_page_writeback(page);
643 }
e24f0b8f 644 /*
dc386d4d
KH
645 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
646 * we cannot notice that anon_vma is freed while we migrates a page.
647 * This rcu_read_lock() delays freeing anon_vma pointer until the end
648 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
649 * File Caches may use write_page() or lock_page() in migration, then,
650 * just care Anon page here.
dc386d4d 651 */
989f89c5
KH
652 if (PageAnon(page)) {
653 rcu_read_lock();
654 rcu_locked = 1;
655 }
62e1c553 656
dc386d4d 657 /*
62e1c553
SL
658 * Corner case handling:
659 * 1. When a new swap-cache page is read into, it is added to the LRU
660 * and treated as swapcache but it has no rmap yet.
661 * Calling try_to_unmap() against a page->mapping==NULL page will
662 * trigger a BUG. So handle it here.
663 * 2. An orphaned page (see truncate_complete_page) might have
664 * fs-private metadata. The page can be picked up due to memory
665 * offlining. Everywhere else except page reclaim, the page is
666 * invisible to the vm, so the page can not be migrated. So try to
667 * free the metadata, so the page can be freed.
e24f0b8f 668 */
62e1c553
SL
669 if (!page->mapping) {
670 if (!PageAnon(page) && PagePrivate(page)) {
671 /*
672 * Go direct to try_to_free_buffers() here because
673 * a) that's what try_to_release_page() would do anyway
674 * b) we may be under rcu_read_lock() here, so we can't
675 * use GFP_KERNEL which is what try_to_release_page()
676 * needs to be effective.
677 */
678 try_to_free_buffers(page);
679 }
dc386d4d 680 goto rcu_unlock;
62e1c553
SL
681 }
682
dc386d4d 683 /* Establish migration ptes or remove ptes */
e6a1530d 684 try_to_unmap(page, 1);
dc386d4d 685
e6a1530d
CL
686 if (!page_mapped(page))
687 rc = move_to_new_page(newpage, page);
e24f0b8f 688
e8589cc1 689 if (rc)
e24f0b8f 690 remove_migration_ptes(page, page);
dc386d4d 691rcu_unlock:
989f89c5
KH
692 if (rcu_locked)
693 rcu_read_unlock();
e6a1530d 694
e24f0b8f 695unlock:
dc386d4d 696
e24f0b8f 697 unlock_page(page);
95a402c3 698
e24f0b8f 699 if (rc != -EAGAIN) {
aaa994b3
CL
700 /*
701 * A page that has been migrated has all references
702 * removed and will be freed. A page that has not been
703 * migrated will have kepts its references and be
704 * restored.
705 */
706 list_del(&page->lru);
707 move_to_lru(page);
e24f0b8f 708 }
95a402c3
CL
709
710move_newpage:
e8589cc1
KH
711 if (!charge)
712 mem_cgroup_end_migration(newpage);
95a402c3
CL
713 /*
714 * Move the new page to the LRU. If migration was not successful
715 * then this will free the page.
716 */
717 move_to_lru(newpage);
742755a1
CL
718 if (result) {
719 if (rc)
720 *result = rc;
721 else
722 *result = page_to_nid(newpage);
723 }
e24f0b8f
CL
724 return rc;
725}
726
b20a3503
CL
727/*
728 * migrate_pages
729 *
95a402c3
CL
730 * The function takes one list of pages to migrate and a function
731 * that determines from the page to be migrated and the private data
732 * the target of the move and allocates the page.
b20a3503
CL
733 *
734 * The function returns after 10 attempts or if no pages
735 * are movable anymore because to has become empty
aaa994b3 736 * or no retryable pages exist anymore. All pages will be
e9534b3f 737 * returned to the LRU or freed.
b20a3503 738 *
95a402c3 739 * Return: Number of pages not migrated or error code.
b20a3503 740 */
95a402c3
CL
741int migrate_pages(struct list_head *from,
742 new_page_t get_new_page, unsigned long private)
b20a3503 743{
e24f0b8f 744 int retry = 1;
b20a3503
CL
745 int nr_failed = 0;
746 int pass = 0;
747 struct page *page;
748 struct page *page2;
749 int swapwrite = current->flags & PF_SWAPWRITE;
750 int rc;
751
752 if (!swapwrite)
753 current->flags |= PF_SWAPWRITE;
754
e24f0b8f
CL
755 for(pass = 0; pass < 10 && retry; pass++) {
756 retry = 0;
b20a3503 757
e24f0b8f 758 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 759 cond_resched();
2d1db3b1 760
95a402c3
CL
761 rc = unmap_and_move(get_new_page, private,
762 page, pass > 2);
2d1db3b1 763
e24f0b8f 764 switch(rc) {
95a402c3
CL
765 case -ENOMEM:
766 goto out;
e24f0b8f 767 case -EAGAIN:
2d1db3b1 768 retry++;
e24f0b8f
CL
769 break;
770 case 0:
e24f0b8f
CL
771 break;
772 default:
2d1db3b1 773 /* Permanent failure */
2d1db3b1 774 nr_failed++;
e24f0b8f 775 break;
2d1db3b1 776 }
b20a3503
CL
777 }
778 }
95a402c3
CL
779 rc = 0;
780out:
b20a3503
CL
781 if (!swapwrite)
782 current->flags &= ~PF_SWAPWRITE;
783
aaa994b3 784 putback_lru_pages(from);
b20a3503 785
95a402c3
CL
786 if (rc)
787 return rc;
b20a3503 788
95a402c3 789 return nr_failed + retry;
b20a3503 790}
95a402c3 791
742755a1
CL
792#ifdef CONFIG_NUMA
793/*
794 * Move a list of individual pages
795 */
796struct page_to_node {
797 unsigned long addr;
798 struct page *page;
799 int node;
800 int status;
801};
802
803static struct page *new_page_node(struct page *p, unsigned long private,
804 int **result)
805{
806 struct page_to_node *pm = (struct page_to_node *)private;
807
808 while (pm->node != MAX_NUMNODES && pm->page != p)
809 pm++;
810
811 if (pm->node == MAX_NUMNODES)
812 return NULL;
813
814 *result = &pm->status;
815
769848c0
MG
816 return alloc_pages_node(pm->node,
817 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
742755a1
CL
818}
819
820/*
821 * Move a set of pages as indicated in the pm array. The addr
822 * field must be set to the virtual address of the page to be moved
823 * and the node number must contain a valid target node.
824 */
825static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm,
826 int migrate_all)
827{
828 int err;
829 struct page_to_node *pp;
830 LIST_HEAD(pagelist);
831
832 down_read(&mm->mmap_sem);
833
834 /*
835 * Build a list of pages to migrate
836 */
837 migrate_prep();
838 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
839 struct vm_area_struct *vma;
840 struct page *page;
841
842 /*
843 * A valid page pointer that will not match any of the
844 * pages that will be moved.
845 */
846 pp->page = ZERO_PAGE(0);
847
848 err = -EFAULT;
849 vma = find_vma(mm, pp->addr);
0dc952dc 850 if (!vma || !vma_migratable(vma))
742755a1
CL
851 goto set_status;
852
853 page = follow_page(vma, pp->addr, FOLL_GET);
89f5b7da
LT
854
855 err = PTR_ERR(page);
856 if (IS_ERR(page))
857 goto set_status;
858
742755a1
CL
859 err = -ENOENT;
860 if (!page)
861 goto set_status;
862
863 if (PageReserved(page)) /* Check for zero page */
864 goto put_and_set;
865
866 pp->page = page;
867 err = page_to_nid(page);
868
869 if (err == pp->node)
870 /*
871 * Node already in the right place
872 */
873 goto put_and_set;
874
875 err = -EACCES;
876 if (page_mapcount(page) > 1 &&
877 !migrate_all)
878 goto put_and_set;
879
62695a84
NP
880 err = isolate_lru_page(page);
881 if (!err)
882 list_add_tail(&page->lru, &pagelist);
742755a1
CL
883put_and_set:
884 /*
885 * Either remove the duplicate refcount from
886 * isolate_lru_page() or drop the page ref if it was
887 * not isolated.
888 */
889 put_page(page);
890set_status:
891 pp->status = err;
892 }
893
894 if (!list_empty(&pagelist))
895 err = migrate_pages(&pagelist, new_page_node,
896 (unsigned long)pm);
897 else
898 err = -ENOENT;
899
900 up_read(&mm->mmap_sem);
901 return err;
902}
903
904/*
905 * Determine the nodes of a list of pages. The addr in the pm array
906 * must have been set to the virtual address of which we want to determine
907 * the node number.
908 */
909static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm)
910{
911 down_read(&mm->mmap_sem);
912
913 for ( ; pm->node != MAX_NUMNODES; pm++) {
914 struct vm_area_struct *vma;
915 struct page *page;
916 int err;
917
918 err = -EFAULT;
919 vma = find_vma(mm, pm->addr);
920 if (!vma)
921 goto set_status;
922
923 page = follow_page(vma, pm->addr, 0);
89f5b7da
LT
924
925 err = PTR_ERR(page);
926 if (IS_ERR(page))
927 goto set_status;
928
742755a1
CL
929 err = -ENOENT;
930 /* Use PageReserved to check for zero page */
931 if (!page || PageReserved(page))
932 goto set_status;
933
934 err = page_to_nid(page);
935set_status:
936 pm->status = err;
937 }
938
939 up_read(&mm->mmap_sem);
940 return 0;
941}
942
943/*
944 * Move a list of pages in the address space of the currently executing
945 * process.
946 */
947asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
948 const void __user * __user *pages,
949 const int __user *nodes,
950 int __user *status, int flags)
951{
952 int err = 0;
953 int i;
954 struct task_struct *task;
955 nodemask_t task_nodes;
956 struct mm_struct *mm;
957 struct page_to_node *pm = NULL;
958
959 /* Check flags */
960 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
961 return -EINVAL;
962
963 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
964 return -EPERM;
965
966 /* Find the mm_struct */
967 read_lock(&tasklist_lock);
228ebcbe 968 task = pid ? find_task_by_vpid(pid) : current;
742755a1
CL
969 if (!task) {
970 read_unlock(&tasklist_lock);
971 return -ESRCH;
972 }
973 mm = get_task_mm(task);
974 read_unlock(&tasklist_lock);
975
976 if (!mm)
977 return -EINVAL;
978
979 /*
980 * Check if this process has the right to modify the specified
981 * process. The right exists if the process has administrative
982 * capabilities, superuser privileges or the same
983 * userid as the target process.
984 */
985 if ((current->euid != task->suid) && (current->euid != task->uid) &&
986 (current->uid != task->suid) && (current->uid != task->uid) &&
987 !capable(CAP_SYS_NICE)) {
988 err = -EPERM;
989 goto out2;
990 }
991
86c3a764
DQ
992 err = security_task_movememory(task);
993 if (err)
994 goto out2;
995
996
742755a1
CL
997 task_nodes = cpuset_mems_allowed(task);
998
999 /* Limit nr_pages so that the multiplication may not overflow */
1000 if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) {
1001 err = -E2BIG;
1002 goto out2;
1003 }
1004
1005 pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node));
1006 if (!pm) {
1007 err = -ENOMEM;
1008 goto out2;
1009 }
1010
1011 /*
1012 * Get parameters from user space and initialize the pm
1013 * array. Return various errors if the user did something wrong.
1014 */
1015 for (i = 0; i < nr_pages; i++) {
9d966d49 1016 const void __user *p;
742755a1
CL
1017
1018 err = -EFAULT;
1019 if (get_user(p, pages + i))
1020 goto out;
1021
1022 pm[i].addr = (unsigned long)p;
1023 if (nodes) {
1024 int node;
1025
1026 if (get_user(node, nodes + i))
1027 goto out;
1028
1029 err = -ENODEV;
56bbd65d 1030 if (!node_state(node, N_HIGH_MEMORY))
742755a1
CL
1031 goto out;
1032
1033 err = -EACCES;
1034 if (!node_isset(node, task_nodes))
1035 goto out;
1036
1037 pm[i].node = node;
8ce08464
SR
1038 } else
1039 pm[i].node = 0; /* anything to not match MAX_NUMNODES */
742755a1
CL
1040 }
1041 /* End marker */
1042 pm[nr_pages].node = MAX_NUMNODES;
1043
1044 if (nodes)
1045 err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL);
1046 else
1047 err = do_pages_stat(mm, pm);
1048
1049 if (err >= 0)
1050 /* Return status information */
1051 for (i = 0; i < nr_pages; i++)
1052 if (put_user(pm[i].status, status + i))
1053 err = -EFAULT;
1054
1055out:
1056 vfree(pm);
1057out2:
1058 mmput(mm);
1059 return err;
1060}
742755a1 1061
7b2259b3
CL
1062/*
1063 * Call migration functions in the vma_ops that may prepare
1064 * memory in a vm for migration. migration functions may perform
1065 * the migration for vmas that do not have an underlying page struct.
1066 */
1067int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1068 const nodemask_t *from, unsigned long flags)
1069{
1070 struct vm_area_struct *vma;
1071 int err = 0;
1072
1073 for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
1074 if (vma->vm_ops && vma->vm_ops->migrate) {
1075 err = vma->vm_ops->migrate(vma, to, from, flags);
1076 if (err)
1077 break;
1078 }
1079 }
1080 return err;
1081}
83d1674a 1082#endif